Real Analysis
 By [REDCATED]

Introduction

Continuous at $a: \forall \epsilon>0, \exists \delta>0$ such that $|x-a|<\delta$ implies $|f(x)-f(a)|<\epsilon$.
Supremum: The lest upper bound. The unique real number M such that

- $a \leq M$ for all $a \in A$ and
- If M^{\prime} is any real number such that $a \leq M^{\prime}$ for all $a \in A$ then $M<M^{\prime}$

Convergence: a_{n} converges to a if for every $\epsilon>0$ there exists an $N \in \mathbb{N}$ such that $n \geq N$ implies $\left|a_{n}-a\right|<\epsilon$.
Cauchy Sequence: If for every $\epsilon>0$ there exists an $N \in \mathbb{N}$ such that $m, n \geq N$ implies $\left|a_{m}-a_{n}\right|<\epsilon$
Note: Convergence says that the numbers are getting closer and closer to a as n gets bigger, while Cauchy says that the numbers are getting closer and closer to each other as n gets bigger.
Bolzano-Weierstrass Theorem: Every sequence of real numbers which is bounded must have a convergent subsequence.
Ratio Test: If a sequence satisfies $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=r<1$, then the series $\sum_{n} a_{n}$ converges. If $r>1$ then the series diverges, if $r=1$ it is inconclusive.
Intermediate Value Theorem: For a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$, IVT says that for every value c strictly between $f(a)$ and $f(b)$ there is some $x \in[a, b]$ such that $f(x)=c$.
Extreme Value Theorem: For a continuous function f : $\mathbb{R} \rightarrow \mathbb{R}$, there are values c and d in $[a, b]$ at which f takes on the extreme values m and M where $m \leq f(x) \leq M$ for all $x \in[a, b]$. Meaning $f(c)=m$ and $f(d)=\bar{M}$.
Mean Value Theorem: For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, continuous on a closed interval $[a, b]$ and differentiable on an open interval (a, b), then there exists a point $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Rolles Theorem: If f is continuous on a closed interval $[a, b]$ and differentiable on the open interval (a, b), and $f(a)=f(b)$, then there exists at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Chain Rule: Given a composition of differentiable functions $\phi(x)=L \circ E(x)$ we have $\phi^{\prime}(x)=L^{\prime}(E(x)) E^{\prime}(x)$
Cauchy-Schwarz Inequality:

$$
x_{1} y_{1}+\ldots+a_{n} b_{n} \leq \sqrt{a_{1}^{2}+\ldots+a_{n}^{2}} \sqrt{b_{1}^{2}+\ldots+b_{n}^{2}}
$$

Sequences and Series of Functions:

Pointwise Convergence: The sequence $\left(f_{n}\right)$ converges pointwise to the function f, iff for every x in the domain we have

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

Uniform Convergence: The sequence $\left(f_{n}\right)$ converges uniformly on a set E with limit f if for every $\epsilon>0$ there exists an $N \in \mathbb{N}$ such that for all $n \geq N$ and $x \in E$:

$$
\left|f_{n}(x)-f(x)\right|<\epsilon
$$

If f_{n} converges uniformly then it converges pointwise.
Weierstrass M-test: Suppose there exists a sequence $\left(M_{n}\right)_{n \in \mathbb{N}}$ such that $\left|f_{n}(x)\right| \leq M_{n}, \forall x \in E$ and $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} M_{n}<\infty$. Then the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on E.
Lemma: Uniform convergence iff:

$$
\lim _{n \rightarrow \infty} \sup _{x \in E}\left|f_{n}(x)-f(x)\right|=0
$$

Lemma: If f_{n} is continuous on some interval, and f isn't, then the convergence isn't uniform.
Uniformly Cauchy: A sequence of functions f_{n} is uniformly Cauchy if for all $\epsilon>0$ there exists $N \in \mathbb{N}$ such that if $m, n \geq N$ then $\forall x \in E$ we have $\left|f_{m}(x)-f_{n}(x)\right|<\epsilon$
Power Series: is a series of the form

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

Where a_{n} are the coefficients and c is its centre
Radius of Convergence: R is defined by

$$
R=\sup \left\{r \geq 0:\left(a_{n} r^{n}\right) \text { is bounded }\right\}
$$

Unless $\left(a_{n} r^{n}\right)$ is bounded for all $r \geq 0$, in which case we declare $R=\infty$
It is a general fact that the radius of convergence of a power series is given by:

$$
\lim _{n \rightarrow \infty} \inf _{k \geq n}\left|a_{k}\right|^{-1 / k}
$$

Root Test: Let

$$
L=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}
$$

If $L<1$ then the series converges absolutely. If $L>1$ then it diverges. if $L=1$ and the limit approaches strictly from above then the series diverges.

Theorem 2: Assume that $R>0$. suppose that $0<r<R$. Then the power series converges uniformly and absolutely on $|x-c| \leq r$ to a continuous function f, i.e.

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

defines a continous function $f:(c-R, c+R) \rightarrow \mathbb{R}$.
Lemma: The two power series

$$
\sum_{n=1}^{\infty} a_{n}(x-c)^{n} \text { and } \sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1}
$$

have the same radius of convergence.
Theorem 3: $f(z)$ defined above is infinitely differentiable on $|x-c|<R$ where R is the radius of convergence, and for such x :

$$
f^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n}(x-c)^{n-1}
$$

and the series converges absolutely and uniformly on $[c-r, c+r]$ for any $r<R$. Moreover:

$$
a_{n}=\frac{f^{(n)}(c)}{n!}
$$

Uniformly Continuous: Let I be an interval and let $f: I \rightarrow$ \mathbb{R} be a function. We say that f is uniformly continuous on I if for every $\epsilon>0$ there is a $\delta>0$ such that for all $x, y \in I$, $|x-y|<\delta$ implies that $|f(x)-f(y)|<\epsilon$.
Lemma: Let I be an open interval in \mathbb{R}. Suppose $f: I \rightarrow \mathbb{R}$ is differentiable and its derivative f^{\prime} is bounded on I. Then f is uniformly continuous on I.
Proof: Suppose that $\left|f^{\prime}(\zeta)\right| \leq M$ for all $\zeta \in I$. By MVT we have $f(x)-f(y)=(x-y) f^{\prime}(\zeta)$ for some ζ between x and y. So $|f(x)-f(y)|=|x-y|\left|f^{\prime}(\zeta)\right| \leq M|x-y|$. Let $\epsilon>0$ and let $\delta=\epsilon / M$. If now $|x-y|<\delta$ we have $M|x-y|<M \delta=\epsilon$.
Theorem: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then it is uniformly continuous
Proof: Assume f isn't unif cont. Then there is $\epsilon>0$ and there are sequences x_{n}, y_{n} with $\left|x_{n}-y_{n}\right| \rightarrow 0$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$. Bolzano-Weierstrass tells us that $\left(x_{n}\right)$ has a convergent subsequences $x_{n_{k}} \rightarrow x \in[a, b]$. Since $\left|x_{n}-y_{n}\right| \rightarrow 0, y_{n_{k}}$ also converges to x as $k \rightarrow \infty$. Continuity of f at x gives that $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(x)$ and similarly $\lim _{k \rightarrow \infty} f\left(y_{n_{k}}\right)=f(x)$. So $\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right|=0$. But this contradicts the fact that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$ for all n.
Series Converge Pointwise: Series $\sum_{n=1}^{\infty} f_{n}(x)$ converges pointwise to a function $s: E \rightarrow \mathbb{R}$ on E iff for every $x \in E$
and $\epsilon>0$ there is an $N \in \mathbb{N}$ such that for $k \geq N$ we have $\left|\sum_{n=1}^{k} f_{n}(x)-s(x)\right|<\epsilon$.
Series Converge Uniform: Series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly to $s: E \rightarrow \mathbb{R}$ on E iff for every $\epsilon>0$ there is an $N \in \mathbb{N}$ such that for $k \geq N$ and all $x \in E$ we have $\left|\sum_{n=1}^{k} f_{n}(x)-s(x)\right|<\epsilon$. Alternatively iff for every $\epsilon>0$ there is an $N \in \mathbb{N}$ such that for $k \geq N$ we have $\sup _{x \in E}\left|\sum_{n=1}^{k} f_{n}(x)-s(x)\right|<\epsilon$

Sequence and Series Examples:

- From FPM: $n x^{n} \rightarrow 0$ as $n \rightarrow \infty$
- $f: I \rightarrow \mathbb{R}$ is uniformly continuous on I iff whenever $s_{n}, t_{n} \in I$ are such that $\left|s_{n}-t_{n}\right| \rightarrow 0$, then $\left|f\left(s_{n}\right)-f\left(t_{n}\right)\right| \rightarrow 0$.
Proof: Suppose $f: I \rightarrow \mathbb{R}$ is unif cont on I and that $s_{n}, t_{n} \in I$ are such that $\left|s_{n}-t_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Let $\epsilon>0$. By unif cont of f there is a $\delta>0$ such that $|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon$. Since $\left|s_{n}-t_{n}\right| \rightarrow 0$ there is an N such that $n \geq N$ implies $\left|s_{n}-t_{n}\right|<\delta$. So if $n \geq N$ we have $\left|f\left(s_{n}\right)-f\left(t_{n}\right)\right|<\epsilon$. Now suppose that f is continuous but not unif cont. So there is an $\epsilon>0$ such that taking $\delta=1 / n$ there are $s_{n}, t_{n} \in I$ with $\left|s_{n}-t_{n}\right| \delta$ but $\left|f\left(s_{n}\right)-f\left(t_{n}\right)\right| \geq \epsilon$. So $\left|s_{n}-t_{n}\right| \rightarrow 0$ but $\left|f\left(s_{n}\right)-f\left(t_{n}\right)\right|$ doesn't tend to zero.
- Let $f(x)=x^{2}$ when x is rational and $f(x)=0$ when x is irrational. f is discontinuous everywhere except zero, since if $\epsilon>0$ then $|x|<\sqrt{\epsilon}$ implies $|f(x)=f(0)|<\epsilon$. Therefore it can't be differentiable at any point except possibly zero (It is differentiable at zero).
- Radius of convergence of $\sum_{n=0}^{\infty} a_{n}^{2} x^{n}$: the sequence is $\left(a_{n} r^{n}\right)_{n=0}^{\infty}$ is bounded for $r<R$ and unbounded for $r>R$. So $\left(a_{n}^{2} r^{2 n}\right)$ is bounded for $r^{2}<R^{2}$ and unbounded for $r^{2}>R^{2}$ so that $\left(a_{n}^{2} s^{n}\right)$ is bounded for $s<R^{2}$ and unbounded for $s>R^{2}$. So R^{2} is the radius of convergence.
- Radius of convergence of $\sum_{n=0}^{\infty} a_{2 n} x^{2 n}$ cannot be determined only from R. It might happen that $a_{2 n}=0$ and the radius of convergence is infinite, or the radius of convergence could be R. It could be any value in $[R, \infty)$.
- If R is the radius of convergence for $\sum_{n=0}^{\infty} a_{n} x^{n}$ then the radius of convergence for $\sum_{n=0}^{\infty} a_{n} x^{2 n}$ is $\rho=\sqrt{R}$ and $\sum_{n=0}^{\infty} a_{n}^{2} x^{n}$ is $\rho=R^{2}$
- If f_{n} is continuous and converges uniformly to f on J then f is continuous. Proof: Let $a \in J$ and let
$\epsilon>0$. There exists N such that $n \geq N$ and $\forall x \in J$ we have $\left|f_{n}(x)-f(x)\right|<\epsilon / 3$. Continuity of f_{N} at a implies that $\exists \delta>0$ such that for $|x-a|<\delta$ we have $\left|f_{N}(x)-f_{N}(a)\right|<\epsilon / 3$. So for $|x-a|<\delta$ we have:

$$
|f(x)-f(a)| \leq
$$

$\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(a)\right|+\left|f_{N}(a)-f(a)\right|<3 \epsilon / 3$ So f is continuous at a.

- If f_{n} is uniformly continuous and converges uniformly to f on J then f is uniformly continuous. Proof: consider any $\epsilon>0$. There exists N such that $n \geq N$ and $\forall x \in J$ we have $\left|f_{n}(x)-f(x)\right|<\epsilon / 3$. Uniform continuity of f_{N} implies that $\exists \delta>0$ such that for $x, y \in J,|x-y|<\delta \Longrightarrow$ $\left|f_{N}(x)-f_{N}(y)\right|<\epsilon / 3$. So for any $x, y \in J,|x-y|<\delta$ we have:

$$
|f(x)-f(y)| \leq
$$

$\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(y)\right|+\left|f_{N}(y)-f(y)\right|<3 \epsilon / 3$
So f is uniformly continuous on J.

- Let $f_{n}(x)=n x\left(1-x^{2}\right)^{n}$ for $0 \leq x \leq 1$. Find limit function and if uniform.
Proof: If $x=0,1$ then $f_{n}(0)=0$. If $0<x<1$ then $0<1-x^{2}<1$ and so $n\left(1-x^{2}\right)^{n} \rightarrow 0$. So f_{n} converges pointiwse to the zero function. If it was uniform convergence we'd have $\int_{0}^{1} f_{n} \rightarrow \int_{0}^{1} 0=0$. But $\int_{0}^{1} f_{n}=\frac{n}{2(n+1)} \rightarrow 1 / 2 \neq 0$. So convergence isn't uniform on $[0,1]$. If $a \leq x \leq 1$ then $1-x^{2} \leq 1-a^{2}$ so that $\left|f_{n}(x)\right| \leq n\left(1-a^{2}\right)^{n} \rightarrow 0$ since $a>0$. So the convergence is uniform on such intervals.
- Is $f(x)=1 / x$ on ($0, \infty$) uniformly continuous? No.

Proof: Take $\epsilon=1$. Consider the sequences $x_{n}=1 / n$ and $y_{n}=1 /(n+1)$. Then $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=1$ so there is no $\delta>0$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<1$. What about $[a, \infty)$ for $a>0$? Yes.
Proof: Let $\epsilon>0$. Consider $|f(x)-f(y)|$ for $a \leq x, y$. This equals $|x-y| /|x y| \leq a^{-2}|x-y|$ for such x, y. So if $a>0$, we take $\delta<\epsilon a^{2}$ we have $|x-y|<\delta \Longrightarrow$ $|f(x)-f(y)|<a^{-2} \epsilon a^{2}=\epsilon$.

- Let f_{n} converge uniformly to f. Let $\left(x_{n}\right)$ be a sequence of real numbers which converge to $x \in \mathbb{R}$. Show $f_{n}\left(x_{n}\right) \rightarrow f(x)$.
Proof: From triangle inequality $\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq$ $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right|$. Since it's implied that f is continuous, let $\epsilon>0$. Then by uniform convergence of f_{n} to f, there exists $N \in \mathbb{N}$ such that $n \geq N$
we have $\left|f_{n}(y)-f(y)\right|<\epsilon / 2$ for all y. Let $y=x_{n}$. So if $n \geq N$ we have $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|<\epsilon / 2$. Since $x_{n} \rightarrow x$, and f is continuous, there is an $M \in \mathbb{N}$ such that $n \geq M$ implies $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|<\epsilon / 2$. So if we take $n \geq \max \{N, M\}$ we have: $\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq$ $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right|<\epsilon / 2+\epsilon / 2=\epsilon$
- Proof $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for $p>1$:

From integral test we want f continuous, positive, decreasing on $[1, \infty)$ such that $a_{n}=f(n)$.

$$
\sum_{\mathrm{n}=1}^{\infty} a_{n} \text { converges } \Longleftrightarrow \int_{1}^{\infty} f(x) d x \text { converges }
$$

So define $f(x)=\frac{1}{x}$, then $\int_{1}^{\infty} f(x) d x=[\ln (x)]_{1}^{\infty}=$ $\lim _{n \rightarrow \infty} \ln (u)-0=\infty$.
So $\sum_{n=1}^{\infty} \frac{1}{n}$ doesn't converge.

Integration of Real Functions

Characteristic Function: With $E \subseteq \mathbb{R}$ define $\chi_{E}: \mathbb{R} \rightarrow \mathbb{R}$ by $\chi_{E}(x)=1$ if $x \in E$ and $\chi_{E}(x)=0$ if $x \notin E$. Let I be a bounded interval, and:

$$
\int \chi_{I}:=\operatorname{length}(I)=|I|=b-a
$$

Step Function: We say $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a step function with respect to $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ if there exists $x_{0}<x_{1}<\ldots<x_{n}$ for some $n \in \mathbb{N}$ such that:

- $\phi(x)=0$ for $x<x_{0}$ and $x>x_{n}$
- ϕ is constant on $\left(x_{j-1}, x_{j}\right) 1 \leq j \leq n$

In other words, ϕ is a step function with respect to $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ iff there exists $c_{0}, c_{1}, \ldots, c_{n}$ such that

$$
\phi(x)=\sum_{j=1}^{n} c_{j} \chi_{\left(x_{j-1}, x_{j}\right)}(x)
$$

Integrals of Step Functions: If ϕ is a step function with respect to $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ which takes the value on c_{j} on $\left(x_{j-1}, x_{j}\right)$, then

$$
\int \phi:=\sum_{j=1}^{n} c_{j}\left(x_{j}-x_{j-1}\right)
$$

and

$$
\int(\alpha \phi+\beta \psi)=\alpha \int \phi+\beta \int \psi
$$

Riemann Integrable Def 1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ we say that f is Riemann Integrable if for every $\epsilon>0$ there exists step functions ϕ and ψ such that:

- $\phi \leq f \leq \psi$
- $\int \psi-\int \phi<\epsilon$

Theorem 1: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is R-I iff:
$\sup \left\{\int \phi: \phi\right.$ is a step function and $\left.\phi \leq f\right\}=\inf \left\{\int \psi\right.$
ψ is a step function and $\psi \geq f\}$
Integral Definition: if f is R-I, and ϕ, ψ are step functions, then we define $\int f$:

$$
\int f:=\sup \left\{\int \phi: \phi \leq f\right\}=\inf \left\{\int \psi: \psi \geq f\right\}
$$

Riemann Integrable Def 2: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is R-I iff there exists sequences of step functions ϕ_{n} and ψ_{n} such that:

$$
\phi_{n} \leq f \leq \psi_{n} \text { for all } n, \text { and } \int \psi_{n}-\int \phi_{n} \rightarrow 0
$$

If ϕ_{n} and ψ_{n} are any sequences of step functions satisfying above, then as $n \rightarrow \infty$

$$
\int \phi_{n} \rightarrow \int f \text { and } \int \psi_{n} \rightarrow \int f
$$

Lemma 1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded function with bounded support $[a, b]$. The following are equivalent:

- f is Riemann-Integrable
- For every $\epsilon>0$ there exists $a=x_{0}<\ldots<x_{n}=b$ such that if M_{j} and m_{j} denote the supremum and infimimum values of f on $\left[x_{j-1}, x_{j}\right]$ respectively then

$$
\sum_{j=1}^{n}\left(M_{j}-m_{j}\right)\left(x_{j}-x_{j-1}\right)<\epsilon
$$

- For every $\epsilon>0$ there exists $a=x_{0}<\ldots<x_{n}=b$ such that, with $I_{j}=\left(x_{j-1}, x_{j}\right)$ for $j \geq 1$:

$$
\sum_{j=1}^{n} \sup _{x, y \in I_{j}}|f(x)-f(y)|\left|I_{j}\right|<\epsilon
$$

Theorem 3: Suppose f and g are R-I, and α, β are real numbers. Then:

- $\alpha f+\beta g$ is R-I and the integral is what you expect
- If $f \geq 0$ then $\int f \geq 0$, if $f \leq g$ then $\int f \leq \int g$
- $|f|$ is R-I and $\left|\int f\right| \leq \int|f|$
- $\max \{f, g\}$ and $\min \{f, g\}$ are R-I
- $f g$ is R-I

Theorem: If f is not zero outside some bounded interval then it is not integrable.
Theorem 4: If $g:[a, b] \rightarrow \mathbb{R}$ is continuous, and f is defined by $f(x)=g(x)$ for $a \leq x \leq b, f(x)=0$ for $x \notin[a, b]$, then f is R-I.
Fundamental Theorem of Calculus: Let $g:[a, b] \rightarrow \mathbb{R}$ be R-I. For $a \leq x \leq b$ define

$$
G(x)=\int_{a}^{x} g
$$

G is differentiable on (a, b) and its derivative is $g(x)$.
Theorem 5: Let $g:[a, b] \rightarrow \mathbb{R}$ be R-I. For $a \leq x \leq b$ let $G(x)=\int_{a}^{x} g$. Suppose g is continuous at x for some $x \in[a, b]$. Then G is differentiable at x and $G^{\prime}(x)=g(x)$.
Theorem 6: Suppose $f:[a, b] \rightarrow \mathbb{R}$ has continuous derivative f^{\prime} on $[a, b]$. Then

$$
\int_{a}^{b} f^{\prime}=f(b)-f(a)
$$

Theorem 7: Suppose that $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ is a sequence of R - I functions which converges uniformly to a function f. Suppose that f_{n} and f are zero outside some common interval $[a, b]$. Then f is R-I and

$$
\int f=\lim _{n \rightarrow \infty} \int f_{n}
$$

Corollary: Suppose that $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ is a sequence of R-I functions such that $\sum_{n} f_{n}$ converges uniformly to a function f. Suppose that f_{n} and f are zero outside some common interval $[a, b]$. Then $f=\sum_{n} f_{n}$ is R-I and

$$
\int \sum_{n} f_{n}=\sum_{n} \int f_{n}
$$

Integral Test: Suppose $\left(a_{n}\right)_{n=1}^{\infty}$ is a non negative sequence of numbers and $f:[1, \infty) \rightarrow(0, \infty)$ is a function such that:

- $\int_{1}^{n} f \leq K$ for some K and all n
- $a_{n} \leq f(x)$ for $n \leq x<n+1$

Then $\sum_{n} a_{n}$ converges to a real number which is at most K. Proof: Take $\phi=\sum_{k=1}^{n} a_{k} \chi_{[k, k+2)}$ is a step function which satisfies $\phi \leq f \chi_{[1, n+1)}$ so that:

$$
\sum_{k=1}^{n} a_{k}=\int \phi \leq \int f \chi_{[1, n+1)}=\int_{1}^{n+1} f \leq K
$$

Integral Examples:

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is R-I, then f must be bounded and have bounded support.
Proof: If f is R-I then taking $\epsilon=1$, there exists step functions such that $\phi \leq f \leq \psi$. Then $|f| \leq \max \{|\phi,|\psi|\}$, which as a step function, takes only finitely many values, therefore is bounded. So f is bounded. Moreover, there are $M, N \in \mathbb{R}_{+}$such that $\phi(x)=0$ for $|x|>M$ and $\psi(x)=0$ for $|x|>N$, so that $\phi(x)=\psi(x)=0$ for $|x|>\max \{M, N\}$. Since $\phi \leq f \leq \psi$ this forces $f(x)=0$ for $|x|>\max \{M, N\}$, and so f has bounded support.
- Not zero outside some bounded interval \Longrightarrow not integrable.
Not bounded \Longrightarrow not integrable.
Proof: Since every step function is bounded and vanishing outside a bounded interval, the fact that $\phi_{n} \leq f \leq$ ψ_{n} implies the same for f.
- $\sum_{n=1}^{N} r^{n}=\frac{r^{N+1}-1}{r-1}$ provided $-1<r<1$
- Converges only if: $p>1$

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

- This function is R-I:

$$
f(x)= \begin{cases}1 & x=1 / n^{2}, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Proof: Takes infintely many different values so not a step function. Define $\phi=0$ and $\psi(x)=1$ for $0 \leq x \leq 1 / N^{2}$ and $x=1 / n^{2}, 1 \leq n \leq N$ and $\psi(x)=0$ otherwise. We get $\phi \leq f \leq \psi$, and $\int \phi=0, \int \psi=1 / N^{2}$. So f integrable and $\int f=0$.

- $\chi_{\mathbb{Q} n[0,1]}$ Is not R-I.

Proof: let there be step functions such that $\phi \leq$ $\chi_{\mathbb{Q} \cap[0,1]} \leq \psi$. Then on any interval of positive length on which ϕ is constant, the value of ϕ must in fact be non-positive. This is because any interval of positive length must contain irrationals, and we have that $\chi_{\mathbb{Q} \cap[0,1]}(x)=0$ for irrational x. Thus $\phi(x) \leq 0$ except for possibly finitely many values of x, and therefore $\int \phi \leq 0$. Similarly any interval of positive length must contain rationals, ψ must be at least 1 on any interval of positive length meeting $[0,1]$ on which it is constant. Therefore $\int \psi \geq 1$. Hence $\int \psi-\int \phi \geq 1$. So not true that $\forall \epsilon>0$ there exist step functions ϕ and ψ such that $\phi \leq \chi_{\mathbb{Q} \cap[0,1]} \leq \psi$ and $\int \psi-\int \phi<\epsilon$.

Metric Spaces

Metric Space: is a set X with a function $d: X \times X \rightarrow \mathbb{R}$ which satisfies the following for all $x, y, z \in X$:

- Positive Definite: $d(x, y) \geq 0$ with $d(x, y)=0$ iff $x=y$
- Symmetric: $d(x, y)=d(y, x)$
- Triangle Inequality: $d(x, y) \leq d(x, z)+d(z, y)$

The Usual Metric: Every Euclidean space \mathbb{R}^{n} is a metric space with metric $d(x, y)=\|x-y\|$.
The Discrete Metric: \mathbb{R} is a metric space with metric

$$
\sigma(x, y)= \begin{cases}0 & x=y \\ 1 & x \neq y\end{cases}
$$

Examples:

- $d_{1}(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$ (looks like unit diamond
- $d_{2}(x, y)=\|x-y\|=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{n}\right)^{\frac{1}{n}}$ (looks like the unit circle)
- $d_{\infty}(x, y)=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|$ (looks like the unit square) Function Metric Spaces: on $C([0,1])$ we have:

$$
d_{1}(f, g):=\int_{0}^{1}|f-g|
$$

-

$$
\begin{aligned}
& d_{2}(f, g):=\left(\int_{0}^{1}|f-g|^{2}\right)^{1 / 2} \\
& d_{\infty}(f, g)=\sup _{x}|f(x)-g(x)|
\end{aligned}
$$

Strongly Equivalent: if between two metrics d and ρ on a set X, there exists positive numbers A and B such that:
$d(x, y) \leq A \rho(x, y)$ and $\rho(x, y) \leq B d(x, y)$ for all $x, y \in X$
Equivalent: if between two metrics d and ρ on a set X, for every $x \in X$ and every $\epsilon>0$ there exists a $\delta>0$ such that:

$$
d(x, y)<\delta \Longrightarrow \rho(x, y)<\epsilon
$$

and

$$
\rho(x, y)<\delta \Longrightarrow d(x, y)<\epsilon
$$

Completeness and Contraction

Converging: $\left(x_{n}\right)$ converges in X if there is a point $a \in X$ such that for every $\epsilon>0$ there is an $N \in \mathbb{N}$ such that:

$$
n \geq N \quad \Longrightarrow \quad d\left(x_{n}, a\right)<\epsilon
$$

Cauchy: $\left(x_{n}\right)$ is Cauchy if for every $\epsilon>0$ there is an $N \in \mathbb{N}$ such that:

$$
n, m \geq N \quad \Longrightarrow \quad d\left(x_{n}, x_{m}\right)<\epsilon
$$

Complete Metric Space: If every Cauchy sequence of points in the metric space has a limit that is also in the metric space. Or that every Cauchy sequence in M converges in M .
Contraction: Let (X, d) be a metric space. A function $f: X \rightarrow X$ is called a contraction if there exists a number α with $0<\alpha<1$ such that

$$
d(f(x), f(y)) \leq \alpha d(x, y) \text { for all } x, y \in X
$$

Banach's Contraction Mapping Theorem: If (X, d) is a complete metric space and if $f: X \rightarrow X$ is a contraction, then there is a unique point $x \in X$ such that $f(x)=x$. This point x is called a fixed point of f.
Proof: Pick $x_{0} \in X$, and let $x_{1}=f\left(x_{0}\right), x_{2}=$ $f\left(x_{1}\right), \ldots, x_{n+1}=f\left(x_{n}\right)$. Consider $d\left(x_{n+1}, x_{n}\right)=$ $d\left(f\left(x_{n}\right), f\left(x_{n-1}\right) \leq \alpha d\left(x_{n}, x_{n-1}\right)\right)$. Repeating we get $d\left(x_{n+1}, x_{n}\right) \leq \alpha^{n} d\left(x_{1}, x_{0}\right)$.
So that when $m \geq n$

$$
\begin{gathered}
d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{m-1}\right)+\ldots+d\left(x_{n+1}, x_{n}\right) \\
\leq\left(\alpha^{m-1}+\ldots+\alpha^{n}\right) d\left(x_{1}, x_{0}\right) \\
\leq \frac{\alpha^{n}}{1-\alpha} d\left(x_{1}, x_{0}\right)
\end{gathered}
$$

Since $\alpha<1$. This shows that $\left(x_{n}\right)$ is a Cauchy sequence in X, and since X is complete, there exists $x \in X$ to which it converges. Now a contraction map is continuous, so continuity of f at x shows that $f(x)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)=$ $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=x$, so indeed $f(x)=x$. Finally, if there are $x, y \in X$ with $f(x)=x$ and $f(y)=y$, we have $d(x, y)=d(f(x), f(y)) \leq \alpha d(x, y)$. Which since $\alpha<1$, forces $d(x, y)=0 \Longrightarrow x=y$.

Compactness in Metric Spaces

Cover: A covering of X is a collection of sets whose union is X. An open covering of C is a collection of open sets whose union is X.
Compact: For Q to be compact: for every open cover of Q there is a finite subcover.
Negation: There exists some open cover $\left\{U_{\alpha}\right\}$ of Q which has no finite subcover.
More in Depth Compactness Definition: For every collection of open sets $\left\{U_{\alpha}\right\}$ in \mathbb{R}^{2} such that $Q \subseteq \cup_{\alpha} U_{\alpha}$ there is a finite subcollection $\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{k}}\right\}$ such that $Q \subseteq \cup_{j=1}^{k} U_{\alpha_{j}}$.
Proposition: A subset $A \subseteq \mathbb{R}^{n}$ is compact iff it is closed and bounded.
Corollary: A compact set is always closed. A closed subset of a compact set is compact.
Theorem: Suppose (X, d) is a complete metric space, which for all $r>0$ we can cover X by finitely many closed balls of radius $r>0$. Then X is compact.
Proof Sort Of: Suppose X is compact. Consider the open cover given by $\{B(x, r): x \in X\}$. This has a finite subcover $\left\{B\left(x_{j}, r\right): 1 \leq j \leq n\right\}$. Then the closed balls of radius r with centres at x_{j} cover X.
Lemma: If X is compact then it is sequentially compact. i.e every sequence in X has a convergent subsequence.
Compact Functions: The direct image of a compact metric space by a continuous function is compact. i.e let X and Y be metric spaces, with X compact, and let $f: X \rightarrow Y$ be a continuous surjective map. Then Y is compact.
Continuity: For a mapping $f: X \rightarrow Y$, it is continuous if:

$$
\begin{gathered}
(\forall \epsilon>0)(\forall x \in X)(\exists \delta>0)\left(\forall x^{\prime} \in X\right) \\
d_{X}\left(x, x^{\prime}\right)<\delta \Longrightarrow d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)<\epsilon
\end{gathered}
$$

Uniform Continuity: For a mapping $f: X \rightarrow Y$, it is uniformly continuous if:

$$
\begin{gathered}
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in X)\left(\forall x^{\prime} \in X\right) \\
d_{X}\left(x, x^{\prime}\right)<\delta \Longrightarrow d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)<\epsilon
\end{gathered}
$$

Proposition: Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous.
Cluster Point: $a \in X$ is a cluster point iff $B_{\delta}(a)$ contains infinitely many points for each $\delta>0$
Bolzano-Weierstrass Property: X satisfies the BolzanoWeierstrass Property iff every bounded sequence $x_{n} \in X$ has a convergent subsequence.

Heine-Borel: Let X be a separable metric space which satisfies the Bolzano-Weierstrass Property, and H be a subset of X. Then H is compact iff it is closed and bounded.

Metric Examples:

- Proof of Cauchy-Shwarz $\int f g \leq\left(\int f^{2}\right)^{1 / 2}\left(\int g^{2}\right)^{1 / 2}$ Just expand $\int(f-\alpha g)^{2} \geq 0$ and find the determinant when it has at most one real root.
- On the complete metric space $C([0,1])$ with the metric $\left.d_{\infty}(f, g)=\sup \right) t \in[0,1]|f(t)-g(t)|$. Consider the mapping $T: C([0,1]) \rightarrow C([0,1])$ given by

$$
T(f)(s)=\int_{0}^{s} f(t)(s-t) \mathrm{d} t+g(s)
$$

Nor for any $0 \leq s \leq 1$ we have:

$$
\begin{gathered}
T(f)(s)-T(h)(s)=\int_{0}^{s}(f(t)-h(t))(s-t) \mathrm{d} t \\
|T(f)(s)-T(h)(s)| \leq \int_{0}^{s}|f(t)-h(t)|(s-t) \mathrm{d} t \\
\int_{0}^{s}|f(t)-g(t)|(s-t) d t \leq \sup _{0 \leq t \leq 1}|f(t)-g(t)| \int_{0}^{s}(s-t) d t \\
=\frac{s^{2}}{2} d_{\infty}(f, g) \Longrightarrow d_{\infty}(T f, T h) \leq \frac{1}{2} d_{\infty}(f, h)
\end{gathered}
$$

Since $\alpha<1 \mathrm{~T}$ is a contraction $\Longrightarrow \exists$ unique fixed point $f \in C([0,1])$ of T.

- Function metrics d_{1} and d_{∞} aren't strongly equivalent. Proof: $f_{n}(x)=x^{n}, d_{1}\left(f_{n}, 0\right)=1 /(n+1)$ and $d_{\infty}\left(f_{n}, 0\right)=$ 1 for all n.
- Show that $f(x)=2+x^{-2}$ on $[2, \infty)$ is a contraction mapping $[2, \infty)$ into itself.
Proof: For $x \geq 0$ we have $f(x) \geq 2$ and hence the map maps $[2, \infty)$ into itself. We check that f is a contraction. Clearly:

$$
|f(x)-f(y)|=\left|\frac{1}{x^{2}}-\frac{1}{y^{2}}\right|=\left|f^{\prime}(c)\right||x-y|
$$

for some $c \in[2, \infty)$ by MVT. Since $\left|f^{\prime}(c)\right|=\frac{2}{\left|c^{3}\right|} \leq \frac{1}{4}<1$ the map is a contraction.

- If d and ρ are strongly equivalent, then they are equivalent.
Proof: If $\epsilon>0$ then choosing $\delta=\epsilon / B$ works for the first statement, and $\delta=\epsilon / A$ works for the second statement for all x. So $\delta=\min \{\epsilon / A, \epsilon / B\}$ works for both.
- Let (X, d) be a discrete metric space, then it is complete. Proof: Suppose $\left(x_{n}\right)$ is Cauchy in (X, d). Take $\epsilon=1$. Then $\exists N$ such that for $m, n \geq N$ we have $d\left(x_{m}, x_{n}\right)<1$. But this means for $m, n \geq N$ we have that $x_{m}=x_{n}$, i.e that x_{n} is constant for $n \geq N$. Hence $\left(x_{n}\right)$ converges and so (X, d) is complete.

Spaces:

Interior: Let E be a subset of a metric space X. The interior of E is:

$$
E^{o}:=\bigcup\{V: V \subseteq E \text { and } V \text { is open in } X\}
$$

Closure: Let E be a subset of a metric space X. The closure of E is:

$$
\begin{gathered}
\bar{E}:=\bigcap\{B: B \supseteq E \text { and } B \text { is closed in } X\} \\
\bar{E}=\{x \in X: x \text { is a limit point of } \mathrm{E}\}
\end{gathered}
$$

Theorem:

- $E^{o} \subseteq E \subseteq \bar{E}$
- If V is open and $V \subseteq E$, then $V \subset E^{o}$
- If C is closed and $E \subseteq C$, the $\bar{E} \subseteq C$

Boundary: let $E \subseteq X$, then the boundary of E is:
$\partial E:=\left\{x \in X: \forall r>0, B_{r}(x) \cap E \neq \emptyset\right.$ and $\left.B_{r}(x) \cap E^{c} \neq \emptyset\right\}$
Theorem: Let $E \subseteq X$. Then $\partial E=\bar{E} \backslash E^{o}$
Separable: Metric space X is separable iff it contains a countable dense subset. i.e iff there is a countable set Z of X such that for every point $a \in X$ there is a sequence $x_{k} \in Z$ such that $x_{k} \rightarrow a$ as $k \rightarrow \infty$
Relatively Open: A set $U \subseteq E$ is relatively open in E iff there is a set V open in X such that $U=E \cap V$
Relatively Closed: A set $U \subseteq E$ is relatively closed in E iff there is a set C closed in X such that $A=E \cap C$

Spaces Examples:

- \mathbb{R} is closed and open. $\operatorname{int} \mathbb{R}=\mathbb{R}, \overline{\mathbb{R}}=\mathbb{R}, \partial \mathbb{R}=\emptyset$. Not compact, but connected since path connected.
- \mathbb{Q} is not open, not closed. $\operatorname{int} \mathbb{Q}=\emptyset, \overline{\mathbb{Q}}=\mathbb{R}, \partial \mathbb{Q}=\mathbb{R}$. Not compact, not connected.
- $A \subset \mathbb{R}$ is connected iff A is any type of interval (open, closed or semi-open).
- $E=\bigcup_{n=1}^{\infty}\left\{\frac{1}{n}\right\} \times[0,1]$ Is neither open nor closed. $\operatorname{int} E=\emptyset, \partial E=E=E \cup\{0\} \times[0,1]$. Since it is not closed it is not compact. It is not connected, we can take $U=\{(x, y): x<3 / 4\}$ and $V=\{(x, y): x>3 / 4\}$. These are two open disjoint sets that separate E.

Definitions

- Injective: $f(a)=f(b) \Longrightarrow a=b$
- Surjective: $\forall y \in Y, \exists x \in X$ such that $y=f(x)$
- Closed: A set $F \subset X$ is closed iff the complement $X \backslash F$ is open. That is for any $x \in X \backslash F$ there is $r>0$ such that $B(x, r) \subset X \backslash F$.
- Open Ball: Let $a \in X$ and $r>0$. Then the open ball with centre a and radius r is the set:

$$
B(a, r):=\{x \in X: d(x, a)<r\}
$$

- Closed Ball: Let $a \in X$ and $r>0$. Then the closed ball with centre a and radius r is the set:

$$
B(a, r):=\{x \in X: d(x, a) \leq r\}
$$

- Support: The support of a real valued function is a subset of the domain containing elements which are not mapped to zero. If the domain is a topological space, the support is instead the smallest closed set containing all points not mapped to zero.
- A countable union of countable sets is countable.
- Compact (set): Closed and bounded
- Connected (set): If path connected. i.e connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. i.e
A subset $A \subset X$ is connected if there does not exist open and disjoint sets $U, V \subset X$ such that

$$
A \cap U \neq \emptyset, B \cap V \neq \emptyset, \text { and } A \subset U \cup V
$$

- Radius of Convergence: The radius of convergence R of the given power series is the unique number R such that the series converges for $|x|<R$ and diverges for $|x|>R$. We have $R \in[0, \infty) \cup\{\infty\}$ where when $R=0$ the series only converges at $x=0$ while $R=\infty$ means that the power series converges for all $x \in \mathbb{R}$.

