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CHAPTER 1

The Real Number System

You have already had several calculus courses in which you evaluated limits,
differentiated functions, and computed integrals. You may even remember
some of the major results of calculus, such as the Chain Rule, the Mean Value
Theorem, and the Fundamental Theorem of Calculus. Although you are proba-
bly less familiar with multivariable calculus, you have taken partial derivatives,
computed gradients, and evaluated certain line and surface integrals.

In view of all this, you must be asking: Why another course in calculus? The
answer to this question is twofold. Although some proofs may have been pre-
sented in earlier courses, it is unlikely that the subtler points (e.g., completeness
of the real numbers, uniform continuity, and uniform convergence) were cov-
ered. Moreover, the skills you acquired were mostly computational; you were
rarely asked to prove anything yourself. This course develops the theory of cal-
culus carefully and rigorously from basic principles and gives you a chance to
learn how to construct your own proofs. It also serves as an introduction to
analysis, an important branch of mathematics which provides a foundation for
numerical analysis, functional analysis, harmonic analysis, differential equations,
differential geometry, real analysis, complex analysis, and many other areas of
specialization within mathematics.

1.1 INTRODUCTION

Every rigorous study of mathematics begins with certain undefined concepts,
primitive notions on which the theory is based, and certain postulates, properties
which are assumed to be true and given no proof. Our study will be based on
the primitive notions of real numbers and sets, which will be discussed in this
section.

We shall use standard notation for sets and real numbers. For example, R or
(—00, 00) represents the set of real numbers, @ represents the empty set (the set
with no elements), a € A means that a is an element of A, and a ¢ A means that
a is not an element of A. We can represent a given finite set in two ways. We can
list its elements directly, or we can describe it using sentences or equations. For
example, the set of solutions to the equation x> = 1 can be written as

{1,-1} or {x:x>=1}.

A set A is said to be a subset of a set B (notation: A C B) if and only if every
element of A is also an element of B. If A is a subset of B but there is at least
one element b € B that does not belong to A, we shall call A a proper subset of
B (notation: A C B). Two sets A and B are said to be equal (notation: A = B)

From Chapter 1 of Introduction to Analysis, Fourth Edition. William R. Wade.
Copyright © 2010 by Pearson Education, Inc. All rights reserved.



2 Chapter 1 The Real Number System

if and only if A € B and B € A. If A and B are not equal, we write A # B.
A set A is said to be nonempty if and only if A # @.

The union of two sets A and B (notation: A U B) is the set of elements x such
that x belongs to A or B or both. The intersection of two sets A and B (notation:
A N B) is the set of elements x such that x belongs to both A and B. The com-
plement of B relative to A (notation: A \ B, sometimes B¢ if A is understood)
is the set of elements x such that x belongs to A but does not belong to B. For
example,

{—1,0,1}U{1,2} ={-1,0,1,2}, {—1,0,1} N {1, 2} = {1},
{1,2}\{-1,0,1} ={2} and {-1,0,1}\{1,2}={-1,0}.

Let X and Y be sets. The Cartesian product of X and Y is the set of ordered
pairs defined by

XxY:={x,y):xeX,yeVY}.

(The symbol := means “equal by definition” or “is defined to be.”) Two points
(x,y), (z,w) € X x Y are said to be equal if and only if x = z and y = w.

Let X and Y be sets. A relation on X x Y is any subset of X x Y. Let R be a
relation on X x Y. The domain of R is the collection of x € X such that (x, y)
belongs to R for some y € Y. The range of R is the collection of y € Y such
that (x, y) belongs to R for some x € X. When (x, y) € R, we shall frequently
write xRy.

A function f from X into Y (notation: f : X — Y)isarelation on X x Y whose
domain is X (notation: Dom( f) := X) such that for each x € X there is a unique
(one and only one) y € Y that satisfies (x, y) € f. If (x,y) € f, we shall call y
the value of f at x (notation: y = f(x) or f : x —> y) and call x a preimage
of y under f. We said a preimage because, in general, a point in the range
of f might have more than one preimage. For example, since sin(kw) = 0 for
k=0,=£1,+2,...,the value 0 has infinitely many preimages under f(x) = sinx.

If f is a function from X into Y, we will say that f is defined on X and call Y
the codomain of f. The range of f is the collection of all values of f; that is, the
set Ran(f) ;== {y € Y : f(x) = y for some x € X}. In general, then, the range
of a function is a subset of its codomain and each y € Ran(f) has one or more
preimages. If Ran(f) = Y and each y € Y has exactly one preimage, x € X,
under f, then we shall say that f : X — Y has an inverse, and shall define the
inverse function f~':Y — X by f~!(y) := x, where x € X satisfies f(x) = y.

At this point it is important to notice a consequence of defining a function
to be a set of ordered pairs. By the definition of equality of ordered pairs, two
functions f and g are equal if and only if they have the same domain, and same
values; thatis, f,g : X — Y, and f(x) = g(x) for all x € X. If they have
different domains, they are different functions.

For example, let f(x) = g(x) = x2. Then f :[0,1) — [0, 1) and g : (—1,1) —
[0, 1) are two different functions. They both have the same range, [0, 1), but each
y € (0, 1) has exactly one preimage under f, namely ,/y, and two preimages

under g, namely +,/y. In particular, f has an inverse function, f 1) = Jx,
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but g does not. Making distinctions like this will actually make our life easier
later in the course.

For the first half of this course, most of the concrete functions we consider
will be real-valued functions of a real variable (i.e., functions whose domains and
ranges are subsets of R). We shall often call such functions simply real functions.

You are already familiar with many real functions.

1) The exponential function ¢* : R — (0, co) and its inverse function, the natu-
ral logarithm
/’C dt
logx := —,
1t

defined and real-valued for each x € (0, c0). (Although this last function is
denoted by Inx in elementary calculus texts, most analysts denote it, as we
did just now, by log x. We will follow this practice throughout this text. For a
more constructive definition, see Exercise 4.5.5.)

2) The trigonometric functions (whose formulas are) represented by sin x, cosx,
tanx, cotx, secx, and cscx, and the inverse trigonometric functions arcsin x,
arccos x, and arctan x whose ranges are, respectively, [-7/2, 7 /2], [0, 7], and
(—7m/2,7/2).

3) The power functions x*, which can be defined constructively (see
Appendix A.10 and Exercise 3.3.11) or by using the exponential function:

X% = ealogx,

x>0, aekR

We assume that you are familiar with the various algebraic laws and identities
that these functions satisfy. A list of the most widely used trigonometric identi-
ties can be found in Appendix B. The most widely used properties of the power
functions are x? = 1 for all x # 0; x” = x -...-x (there are n factors here) when
n=1,2,...andx € R; x¥ >0, x? - xf = x**t8 and x*)# = x*P forall x > 0
and @, B € R; x% = %/x when o = 1/m for some m € N and the indicated root
exists and is real; and 0% := 0 for all « > 0. (The symbol 0° is left undefined
because it is indeterminate [see Example 4.31].)

We also assume that you can differentiate algebraic combinations of these
functions using the basic formulas (sinx)’ = cosx, (cosx)’ = —sinx, and (¢*) =
e, for x € R; (logx)’ = 1/x and (x¥)" = ax®~!, for x > 0 and « € R; and

5 @n+ Dr

(tanx) =sec“x forx # 5 , eZ.

(You will have an opportunity to develop some of these rules in the exercises,
e.g., see Exercises 4.2.9, 4.4.6, 4.5.3, 5.3.7, and 5.3.8.) Even with these assump-
tions, we shall repeat some material from elementary calculus.

We mentioned postulates in the opening paragraph. In the next two sections,
we will introduce three postulates (containing a total of 13 different properties)
which characterize the set of real numbers. Although you are probably already
familiar with all but the last of these properties, we will use them to prove other
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eglually familiar properties (e.g., in Example 1.4 we will prove that if a # 0, then
a= > 0).

Why would we assume some properties and prove others? At one point,
mathematicians thought that all laws about real numbers were of equal weight.
Gradually, during the late 1800s, we discovered that many of the well-known
laws satisfied by R are in fact consequences of others. The net result of this
research is that the 13 properties listed below are considered to be fundamental
properties describing R. All other laws satisfied by real numbers are secondary
in the sense that they can be proved using these fundamental properties.

Why would we prove a law that is well known, perhaps even “obvious”? Why
not just assume all known properties about R and proceed from there? We
want this book to be reasonably self-contained, because this will make it easier
for you to begin to construct your own proofs. We want the first proofs you
see to be easily understood, because they deal with familiar properties that are
unobscured by new concepts. But most importantly, we want to form a habit of
proving all statements, even seemingly “obvious” statements.

The reason for this hard-headed approach is that some “obvious” statements
are false. For example, divide an 8 x 8-inch square into triangles and trapezoids
as shown on the left side of Figure 1.1. Since the 3-inch sides of the triangles
perfectly match the 3-inch sides of the trapezoids, it is “obvious” that these tri-
angles and trapezoids can be reassembled into a rectangle (see the right side of
Figure 1.1). Or is it? The area of the square is 8 x 8 = 64 square inches but the
area of the rectangle is 5 x 13 = 65 square inches. Since you cannot increase
area by reassembling pieces, what looked right was in fact wrong. By comput-
ing slopes, you can verify that the rising diagonal on the right side of Figure 1.1
is, in fact, four distinct line segments that form a long narrow diamond which
conceals that extra one square inch.

NOTE: Reading a mathematics book is different from reading any other kind
of book. When you see phrases like “you can verify” or “it is easy to see,” you
should use pencil and paper to do the calculations to be sure what we’ve said is
correct.

Here is another example. Grab a calculator and graph the functions y =
logx and y = '%Yx. It is easy to see, using calculus, that logx and 'Y/x are
both increasing and concave downward on [0, c0). Looking at the graphs (see
Figure 1.2), it’s “obvious” that log x is much larger than '%Y/x no matter how big
x is. Orisit? Let’s evaluate each function at ¢'%%: Jog(¢!9%0) = 10001og e = 1000

is much smaller than 'Ve1000 = ¢!0 ~ 22, 000. Evidently, the graph of y = '%/x

FIGURE 1.1
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FIGURE 1.2

eventually crosses that of y = logx. With a little calculus, you can prove that
logx < '%Yx forever after that (see Exercise 4.4.6a).

What can be learned from these examples? We cannot always trust what
we think we see. We must, as above, find some mathematical way of testing
our perception, either verifying that it is correct, or rejecting it as wrong. This
type of phenomenon is not a rare occurrence. You will soon encounter several
other plausible statements that are, in fact, false. In particular, you must harbor
a skepticism that demands proofs of all statements not assumed in postulates,
even the “obvious” ones.

What, then, are you allowed to use when solving the exercises? You may use
any property of real numbers (e.g.,2+3 = 5, 2 < 7, or +/2 is irrational) without
reference or proof. You may use any algebraic property of real numbers involv-
ing equal signs [e.g., (x + y)? = x” +2xy + y2 or (x + y)(x — y) = x* — y?]
and the techniques of calculus to find local maxima or minima of a given func-
tion without reference or proof. After completing the exercises in Section 1.2,
you may also use any algebraic property of real numbers involving inequalities
(e.g.,0 < a < bimplies 0 < a* < b* for all x > 0) without reference or proof.

1.2 ORDERED FIELD AXIOMS

In this section we explore the algebraic structure of the real number system. We
shall assume that the set of real numbers, R, is a field (i.e., that R satisfies the
following postulate).

Postulate 1. [FIELD AXIOMS]. There are functions + and -, defined on R? :=
R x R, which satisfy the following properties for every a, b, ¢ € R:

Closure Properties. a + b and a - b belong to R.

Associative Properties. a + (b+c¢) =(a+b)+canda-(b-c) =(a-b)-c.
Commutative Properties. « +b=b+aanda-b=b-a.

Distributive Law. ¢ - (b+c¢) =a-b+a - c.
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Existence of the Additive Identity. There is a unique element 0 € R such that
O+a=aforalla € R

Existence of the Multiplicative Identity. There is a unique element 1 € R such
that1 #0and 1-a =aforalla € R.

Existence of Additive Inverses. For every x € R there is a unique element
—x € Rsuch that

x4+ (—x)=0.

Existence of Multiplicative Inverses. For every x € R\ {0} there is a unique
element x~! € R such that

x-h=1L

We note in passing that the word unique can be dropped from the statements
in Postulate 1 (see Appendix A).

We shall usually denote a + (—b) bya — b, a - bbyab, a~! by % or 1/a, and
a-b~!by 5 or a/b. Notice that by the existence of additive and multiplicative
inverses, the equation x 4+ a = 0 can be solved for each a € R, and the equation
ax = 1 can be solved for each a € R provided that a # 0.

From these few properties (i.e., from Postulate 1), we can derive all the usual
algebraic laws of real numbers, including the following:

(—D* =1, (1)
0-a=0, —a=(-1)-a, —(—a)=a, a €R, 2)
—(a—b)=b—a, a,beR, 3)

and
a,beR and ab=0 imply a=0 or b=0. @)

We want to keep our attention sharply focused on analysis. Since the proofs
of algebraic laws like these lie more in algebra than analysis (see Appendix A),
we will not present them here. In fact, with the exception of the absolute value
and the Binomial Formula, we will assume all material usually presented in a
high school algebra course (including the quadratic formula and graphs of the
conic sections).

Postulate 1 is sufficient to derive all algebraic laws of R, but it does not com-
pletely describe the real number system. The set of real numbers also has an
order relation (i.e., a concept of “less than”).

Postulate 2. [ORDER AXIOMS]. There is a relation < on R x R that has the
following properties:

Trichotomy Property. Given a, b € R, one and only one of the following state-
ments holds:

a<b, b<a, or a=hb.

Transitive Property. For a, b, c € R,

a<b and b<c imply a<ec.
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The Additive Property. For a, b, c € R,
a<b and ceR imply a+c<b+ec.
The Multiplicative Properties. For a, b, c € R,
a<b and ¢>0 imply ac < bc

and

a<b and ¢<0 imply bc <ac.

By b > a weshallmeana < b. Bya < b and b > a we shall mean a < b or
a=b.Bya <b<cweshallmeana < b and b < c¢. In particular, 2 < x < 1
makes no sense at all.

WARNING. There are two Multiplicative Properties, so every time you multiply
an inequality by an expression, you must carefully note the sign of that expression
and adjust the inequality accordingly. For example, x < 1 does NOT imply that
x% < x unless x > 0. If x < 0, then by the Second Multiplicative Property, x < 1
implies x> > x.

We shall call a number a € R nonnegative if a > 0 and positive if a > 0.
Postulate 2 has a slightly simpler formulation using the set of positive elements
as a primitive concept (see Exercise 1.2.11). We have introduced Postulate 2 as
above because these are the properties we use most often.

The real number system R contains certain special subsets: the set of natural
numbers

N:={1,2,...},

obtained by beginning with 1 and successively adding 1s to form2 := 141, 3 :=
2 + 1, and so on; the set of integers

Z={.,6,-2,-1,0,12,...}

(Zahl is German for number); the set of rationals (or fractions or quotients)

Q:= {ﬂ:m,nGZandnyéO};

n

and the set of irrationals
Q°=R\Q
Equality in Q is defined by

m_r ifand only if mg = np.



8 Chapter 1 The Real Number System
Recall that each of the sets N, Z, Q, and R is a proper subset of the next; that is,

NcZcQcR

For example, every rational is a real number (because m/n = mn~! is a real

number by Postulate 1), but 4/2 is an irrational.
Since we did not really define N and Z, we must make certain assumptions
about them. If you are interested in the definitions and proofs, see Appendix A.

1.1 Remark. We will assume that the sets N and Z satisfy the following
properties.

i) If n,m € Z, thenn +m, n — m, and mn belong to Z.
ii) If n € Z,thenn € Nifand only if n > 1.
iii) There is no n € Z that satisfies0 < n < 1.

Using these properties, we can prove that Q satisfies Postulate 1 (see Exer-
cise 1.2.9).

We notice in passing that none of the other special subsets of R satisfies Postu-
late 1. N satisfies all but three of the properties in Postulate 1: N has no additive
identity (since 0 ¢ N), N has no additive inverses (e.g., —1 ¢ N), and only one
of the nonzero elements of N (namely, 1) has a multiplicative inverse. Z sat-
isfies all but one of the properties in Postulate 1: Only two nonzero elements
of Z have multiplicative inverses (namely, 1 and —1). Q€ satisfies all but four
of the properties in Postulate 1: Q° does not have an additive identity (since
0 ¢ R\ Q), does not have a multiplicative identity (since 1 ¢ R\ Q), and does
not satisfy either closure property. Indeed, since +/2 is irrational, the sum of
irrationals may be rational (+/2+ (—+/2) = 0) and the product of irrationals may
be rational (v/2 - v/2 = 2).

Notice that any subset of R satisfies Postulate 2. Thus Q satisfies both Pos-
tulates 1 and 2. The remaining postulate, introduced in Section 1.3, identifies a
property that Q does not possess. In particular, Postulates 1 through 3 distin-
guish R from each of its special subsets N, Z, Q, and Q°. These postulates actu-
ally characterize R; that is, R is the only set that satisfies Postulates 1 through 3.
(Such a set is called a complete Archimedean ordered field. We may as well
admit a certain arbitrariness in choosing this approach. R has been developed
axiomatically in at least five other ways [e.g., as a one-dimensional continuum
or as a set of binary decimals with certain arithmetic operations]. The decision
to present R using Postulates 1 through 3 is based partly on economy and partly
on personal taste.)

Postulates 1 and 2 can be used to derive all identities and inequalities which
are true for real numbers [e.g., see implications (5) through (9) below]. Since
arguments based on inequalities are of fundamental importance to analysis, we
begin to supply details of proofs at this stage.

What is a proof? Every mathematical result (for us this includes examples,
remarks, lemmas, and theorems) has hypotheses and a conclusion. There are
three main methods of proof: mathematical induction, direct deduction, and
contradiction.
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Mathematical induction, a special method for proving statements that depend
on positive integers, will be covered in Section 1.4.

To construct a deductive proof, we assume the hypotheses to be true and pro-
ceed step by step to the conclusion. Each step is justified by a hypothesis, a
definition, a postulate, or a mathematical result that has already been proved.
(Actually, this is usually the way we write a proof. When constructing your own
proofs, you may find it helpful to work forward from the hypotheses as far as
you can and then work backward from the conclusion, trying to meet in the
middle.)

To construct a proof by contradiction, we assume the hypotheses to be true,
the conclusion to be false, and work step by step deductively until a contra-
diction occurs; that is, a statement that is obviously false or that is contrary to
the assumptions made. At this point the proof by contradiction is complete. The
phrase “suppose to the contrary” always indicates a proof by contradiction (e.g.,
see the proof of Theorem 1.9).

What about false statements? How do we “prove” that a statement is false?
We can show that a statement is false by producing a single, concrete example
(called a counterexample) that satisfies the hypotheses but not the conclusion
of that statement. For example, to show that the statement “x > 1 implies
x? —x — 2 # 07 is false, we need only observe that x = 2 is greater than 1 but
22-2-2=0.

Here are some examples of deductive proofs. (Note: The symbol B indicates
that the proof or solution is complete.)

1.2 EXAMPLE.
If a € R, prove that

a#0 implies a* > 0. (5)

In particular, —1 < 0 < 1.

Proof. Suppose that a # 0. By the Trichotomy Property, either a > 0 or
a < 0.

Case 1. a > 0. Multiply both sides of this inequality by a, using the First
Multiplicative Property. We obtain a> = a -a > 0 - a. Since (by (2)),0-a =0
we conclude that a® > 0.

Case 2. a < 0. Multiply both sides of this inequality by a. Since a < 0, it
follows from the Second Multiplicative Property thata> =a-a > 0-a = 0.
This proves that a> > 0 when a # 0.

Since 1 # 0, it follows that 1 = 12 > 0. Adding —1 to both sides of this
inequality, we conclude that0 =1—-1>0—-1= —1. |

1.3 EXAMPLE.
If a € R, prove that

0<a<1 implies 0<a’<a and a>1 implies a®>>a. (6)
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Proof. Suppose that 0 < a < 1. Multiply both sides of this inequality by «
using the First Multiplicative Property. We obtain 0 =0-a < a*> < 1-a = a.
In particular, 0 < a® < a.

On the other hand, if ¢ > 1, then a > 0 by Example 1.2 and the Transitive

Property. Multiplying a > 1 by a, we conclude thata®> =a-a >1-a=a. R

Similarly (see Exercise 1.2.2), we can prove that

0<a<b and 0<c<d imply ac < bd, (7)
0<a<b implies 0<a®><b*> and 0<+a <+b, (8)
and
. . 1
0 <a<b implies —>E>0. 9)
a

Much of analysis deals with estimation (of error, of growth, of volume, etc.)
in which these inequalities and the following concept play a central role.

1.4 Definition.

The absolute value of a number a € R is the number

a a>0

lal :=
—a a<0.

When proving results about the absolute value, we can always break the proof
up into several cases, depending on when the parameters are positive, negative,
or zero. Here is a typical example.

1.5 Remark. The absolute value is multiplicative; that is, lab| = |a| |b| for all
a,beR.

Proof. We consider four cases.

Case 1.a = 0or b = 0. Then ab = 0, so by definition, |ab| = 0 = |a]| |b|.

Case2. a > 0and b > 0. By the First Multiplicative Property, ab > 0-b = 0.
Hence by definition, |ab| = ab = |a| |b|.

Case 3. a > 0and b < 0, or, b > 0 and a < 0. By symmetry, we may
suppose that a > 0 and b < 0. (That is, if we can prove it fora > 0 and b < 0,
then by reversing the roles of a and b, we can prove it fora < 0 and b > 0.)
By the Second Multiplicative Property, ab < 0. Hence by Definition 1.4, (2),
associativity, and commutativity,

lab| = —(ab) = (=1)(ab) = a((=1)b) = a(=b) = |a| |b|.
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Case 4. a < 0 and b < 0. By the Second Multiplicative Property, ab > 0.
Hence by Definition 1.4,

lab| = ab = (=1)*(ab) = (—a)(=b) = |a |b|. u

We shall soon see that there are more efficient ways to prove results about
absolute values than breaking the argument into cases.

The following result is useful when solving inequalities involving absolute
value signs.

1.6 Theorem. [FUNDAMENTAL THEOREM OF ABSOLUTE VALUES].
Letace Rand M > 0. Then |a| < M ifand only if —M <a < M.

Proof. Suppose first that |a| < M. Multiplying by -1, we also have —|a| > —M.
Case 1. a > 0. By Definition 1.4, |a| = a. Thus by hypothesis,

—-M<0<a=lal <M.
Case 2. a < 0. By Definition 1.4, |a| = —a. Thus by hypothesis,
—-M<—la|l=a<0<M.
This proves that —M < a < M in either case.
Conversely, if —-M < a < M, thena < M and —M < a. Multiplying the

second inequality by —1, we have —a < M. Consequently, |a| = a < M if
a>0,and |a| = —a < M ifa < O. | |

NOTE: In a similar way we can prove that [a| < M ifand only if —-M <a < M.

Here is another useful result about absolute values.

1.7 Theorem. The absolute value satisfies the following three properties.

i) [PosiTive DEFINITE] For all a € R, |a| > 0 with |a| = 0 if and only if a = 0.
il) [SymMmETRIC] Foralla,b € R, |a —b| = |b —al|.
iii) [TRIANGLE INEQUALITIES] For all a, b € R,

la+b| <lal+1bl and |lal—1b||<|a—b|.

Proof. i) Ifa > 0, then |a] = a > 0. If a < 0, then by Definition 1.4 and the

Second Multiplicative Property, |a| = —a = (—1)a > 0. Thus |a| > 0 for all
a € R
If |a| = 0, then by definition a = |a| = O whena > 0Oanda = —|a| = 0

when a < 0. Thus |a| = 0 implies that a = 0. Conversely, |0] = 0 by definition.
ii) By Remark 1.5, |a — b| = | = 1| |b —a| = |b — a].

11
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iii) To prove the first inequality, notice that |x| < |x| holds for any x € R.
Thus Theorem 1.6 implies that —|a| < a < |a| and —|b| < b < |b|. Adding
these inequalities (see Exercise 1.2.1), we obtain

—(lal + b)) =a+b < |a| +b|.

Hence by Theorem 1.6 again, |a + b| < |a| + |b].
To prove the second inequality, apply the first inequality to (a — b) + b. We
obtain

la| = bl =la —b+b| —|b] < |a —b| +|b| — |b| = |a —b|.
By reversing the roles of a and b and applying part ii), we also obtain
bl —lal < |b —a| = |a — DbI.

Multiplying this last inequality by —1 and combining it with the preceding one
verifies

—la —b| <lal —1b| < |a —bl.

We conclude by Theorem 1.6 that | la| — |b| | <|a —b|. |

Notice once and for all that this last inequality implies that |a| — |b] < |a — b|
for all a, b € R. We will use this inequality several times.

WARNING. Some students mistakenly mix absolute values and the Additive
Property to conclude that b < ¢ implies |a 4+ b| < |a + ¢|. It is important from the
beginning to recognize that this implication is false unless both a + b and a + ¢
are nonnegative. For example, ifa = 1, b = —5,and ¢ = —1, then b < ¢ but
la + b| = 4 is not less than |a + ¢| = 0.

A correct way to estimate using absolute value signs usually involves one of
the triangle inequalities.

1.8 EXAMPLE.
Prove that if —2 < x < 1, then |x2 — x| < 6.
Proof. By hypothesis, |[x| < 2. Hence by the triangle inequality and
Remark 1.5,
X2 — x| < x>+ x| <4+2=6. [

The following result (which is equivalent to the Trichotomy Property) will be
used many times in this and subsequent chapters.

1.9 Theorem. Letx,y,a € R
1) x <y+eforalle >0ifand onlyifx < y.
i) x >y—¢foralle > 0ifand only if x > y.
iii) |a| < & forall e > 0 if and only ifa = 0.
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Proof. i) Suppose to the contrary that x < y + ¢ for all ¢ > 0 but x > y.
Set g9 = x —y > 0 and observe that y + &9 = x. Hence by the Trichotomy
Property, y + g9 cannot be greater than x. This contradicts the hypothesis for
& = ¢gg. Thus x < y.

Conversely, suppose that x < y and ¢ > 01is given. Either x < y or x = y.
If x < y,thenx4+0 < y+0 < y+ ¢ by the Additive and Transitive Properties.
If x = y, then x < y+ ¢ by the Additive Property. Thusx < y+e¢ foralle > 0
in either case. This completes the proof of part i).

ii) Suppose that x > y — ¢ for all ¢ > 0. By the Second Multiplicative
Property, this is equivalent to —x < —y + ¢, hence by part i), equivalent to
—x < —y. By the Second Multiplicative Property, this is equivalent to x > y.

iii) Suppose that |a| < ¢ = 0+ ¢ for all ¢ > 0. By part i), this is equivalent to
la| < 0. Since it is always the case that |a| > 0, we conclude by the Trichotomy
Property that |a| = 0. Therefore, a = 0 by Theorem 1.7i. |

Let a and b be real numbers. A closed interval is a set of the form

[a,b] :={x e R:a <x < b}, [a,00) :={x e R:a < x},
(—o0,bl:={xeR:x<b}, or (—o0,00):=R,

and an open interval is a set of the form

(a,b) ={xeR:a<x<b}, (a,0):={xeR:a<x},
(—oo,b):={xeR:x <b}, or (—o0,o0):=R.

By an interval we mean a closed interval, an open interval, or a set of the form
[a,b) ={xeR:a<x<b} or (a,bl:={xeR:a<x<b}.

Notice, then, that when a < b, the intervals [a, b], [a, b), (a, b], and (a, b) cor-
respond to line segments on the real line, but when b < a, these “intervals” are
all the empty set.

An interval [ is said to be bounded if and only if it has the form [a, b], (a, D),
[a, b), or (a, b] for some —00 < a < b < oo, in which case the numbers a, b
will be called the endpoints of 1. All other intervals will be called unbounded.
An interval with endpoints a, b is called degenerate if a = b and nondegenerate
if a < b. Thus a degenerate open interval is the empty set, and a degenerate
closed interval is a point.

Analysis has a strong geometric flavor. Geometry enters the picture because
the real number system can be identified with the real line in such a way that
a < b if and only if a lies to the left of b (see Figures 1.2, 2.1, and 2.2). This
gives us a way of translating analytic results on R into geometric results on the
number line, and vice versa. We close with several examples.

The absolute value is closely linked to the idea of length. The length of a
bounded interval I with endpoints a, b is defined to be |I| := |b — a|, and the
distance between any two points a, b € R is defined by |a — b|.

13
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Inequalities can be interpreted as statements about intervals. By Theorem 1.6,
la| < M if and only if a belongs to the closed interval [-M, M]; and by Theo-
rem 1.9, a belongs to the open interval (—¢, ¢) for all ¢ > 0 if and only ifa = 0.

We will use this point of view in Chapters 2 through 5 to give geomet-
ric interpretations to the calculus of functions defined on R, and in Chap-
ters 11 through 13 to extend this calculus to functions defined on the Euclidean
spaces R".

EXERCISES

In each of the following exercises, verify the given statement carefully, proceeding
step by step. Validate each step that involves an inequality by using some statement
found in this section.

1.2.0 Leta, b, c,d € R and consider each of the following statements. Decide
which are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) Ifa <bandc <d < 0, then ac > bd.
b) Ifa <bandc > 1,then |a+c| < |b+c|.
c¢) Ifa<bandb <a+c,then|a—b| <c.
d) Ifa <b—eforalle > 0, thena < 0.

1.2.1. Suppose thata,b,c € Randa < b.

a) Provethata+c <b+ec.
b) If ¢ > 0, prove thata -¢c < b - c.

1.2.2. Prove (7), (8), and (9). Show that each of these statements is false if the
hypothesis a > 0 or a > 0 is removed.

This exercise is used in Section 6.3. The positive part of an a € R is

defined by
gt la]l + a
2
and the negative part by
_._lal—a
=—

a) Prove thata =at —a~ and |a| =a™ +a".
b) Prove that

(=)

>
at =1¢ az0 and a = 0 -
0 a<0 —a a <

e

1.2.4. Solve each of the following inequalities for x € R.

a) 2x+1| <7
b) 2—x| <2



1.2.5.

1.2.6.

1.2.7.

1.2.8.

1.2.9.
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c) |x3 =3x+1] <3
d) *
x—1
o) x2 1
<_
4x2 -1 4
Leta,b e R.

a) Prove thatifa >2andb=1+4++/a—1,then2 <b < a.

b) Prove thatif2 <a <3andb =2+ +/a —2,then0 < a < b.
c) Provethatif0 <a <landb=1-+1—a,then0 < b < a.
d) Provethatif3 <a <5andb=2++/a —2,then3 <b < a.

The arithmetic mean of a, b € Ris A(a, b) = (a+b)/2, and the geometric
mean of a,b € [0,00) is G(a,b) = ~ab. If 0 < a < b, prove that
a < G(a,b) < A(a,b) < b. Prove that G(a,b) = A(a, b) if and only if
a=bh.

Letx € R.

a) Prove that |x| < 2 implies [x> — 4| < 4|x — 2|.

b) Prove that |x| < 1 implies x> 4 2x — 3| < 4|x — 1].

¢) Prove that —3 < x < 2 implies |x? + x — 6] < 6]x — 2.

d) Prove that —1 < x < 0 implies |x> — 2x + 1| < 1.26]x — 1].

For each of the following, find all values of n € N that satisfy the given
inequality.
—n
a) 5 < 0.01
—n
2
2n+3
b) noh et < 0.025
2n3 +5n2 +8n+3
n —_—
——— < 0.002
2 w—n2tn—1_
a) Interpreting a rational m/n as m - n~! € R, use Postulate 1 to

prove that

P_mp
q

m_p_mgtnp m p_
b n nq’

4+ 2 =
n q nq

3|3
Il

|
3
o
=]
o
s
S|~
~—

|
Il
~1 S

form,n, p,q,¢ € Zandn,q,¢ #0.
b) Using Remark 1.1, Prove that Postulate 1 holds with Q in place of R.
c¢) Prove that the sum of a rational and an irrational is always irrational.
What can you say about the product of a rational and an irrational?
d) Letm/n, p/q € Rwith n, g > 0. Prove that
% < S ifand only if mgq < np.

(Restricting this observation to Q gives a definition of “<” on Q.)

15
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1.2.10. Prove that
(ab + cd)? < (@* + (b +d?)
foralla, b,c,d € R.

1.2.11. a) Let R represent the collection of positive real numbers. Prove that
R™ satisfies the following two properties.

i) For each x € R, one and only one of the following holds:
xeRT, —xeR", or x=0.

ii) Given x,y € R*, both x + y and x - y belong to R™.

b) Suppose that R contains a subset R* (not necessarily the set of pos-
itive numbers) which satisfies properties i) and ii). Define x < y by
y — x € R™. Prove that Postulate 2 holds with < in place of <.

1.3 COMPLETENESS AXIOM

In this section we introduce the last of three postulates that describe R. To
formulate this postulate, which distinguishes Q from R, we need the following
concepts.

1.10 Definition.

Let E C R be nonempty.

i) The set E is said to be bounded above if and only if there is an M € R such
thata < M for all a € E, in which case M is called an upper bound of E.

ii) A number s is called a supremum of the set E if and only if s is an upper
bound of E and s < M for all upper bounds M of E. (In this case we shall
say that E has a finite supremum s and write s = sup E.)

NOTE: Because French mathematicians (e.g., Borel, Jordan, and Lebesgue)
did fundamental work on the connection between analysis and set theory, and
ensemble is French for set, analysts frequently use E to represent a general set.

By Definition 1.10ii, a supremum of a set £ (when it exists) is the smallest (or
least) upper bound of E. By definition, then, in order to prove that s = sup E
for some set £ C R, we must show two things: s is an upper bound, AND s is
the smallest upper bound. Here is a typical example.

1.11 EXAMPLE.
If E = [0, 1], prove that sup £ = 1.
Proof. By the definition of interval, 1 is an upper bound of E. Let M be any

upper bound of E; thatis, M > x for allx € E. Since 1 € E, it follows that
M > 1. Thus 1 is the smallest upper bound of E. |
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The following two remarks answer the question: How many upper bounds
and suprema can a given set have?

1.12 Remark. Ifa set has one upper bound, it has infinitely many upper bounds.
Proof. 1f My is an upper bound for a set E, then so is M for any M > My. B
1.13 Remark. If a set has a supremum, then it has only one supremum.
Proof. Let s; and s, be suprema of the same set E. Then both s; and s, are
upper bounds of E, whence by Definition 1.10ii, s; < s> and 55 < s1. We

conclude by the Trichotomy Property that s; = s». |

NOTE: This proofillustrates a general principle. When asked to prove a = b, it
is often easier to verify that a < b and b < a separately.

The next result, a fundamental property of suprema, shows that the supremum
of aset E can be approximated by a point in E (see Figure 1.3 for an illustration).

—eo—e . ¢ >
0...1 1 1 1
8 4 2

points in A
: ® *—e : >
0 1 23 1

2 3 3
points in B
FIGURE 1.3

1.14 Theorem. [APPROXIMATION PROPERTY FOR SUPREMA].
If E has a finite supremum and ¢ > 0 is any positive number, then there is a
point a € E such that

supE —e <a <supL.

Proof. Suppose that the theorem is false. Then there is an gy > 0 such that no
element of E lies between s¢ := sup E — g9 and sup E. Since sup E is an upper
bound for E, it follows that a < sg for all @ € E; that is, sg is an upper bound
of E. Thus, by Definition 1.10ii, sup E < so = sup E — g9. Adding ¢g — sup E
to both sides of this inequality, we conclude that g < 0, a contradiction. MW

The Approximation Property can be used to show that the supremum of any
subset of integers is itself an integer.

17
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1.15 Theorem. If E C Z has a supremum, then sup E € E. In particular, if the
supremum of a set, which contains only integers, exists, that supremum must be
an integer.

Proof. Suppose that s := sup E and apply the Approximation Property to
choose an xg € E such thats — 1 < xo < s. If s = x¢, then s € E, as promised.
Otherwise, s — 1 < xp < s and we can apply the Approximation Property
again to choose x| € E such that xg < x; <'s.

Subtract x¢ from this last inequality to obtain 0 < x; — xg < s — xp. Since
—x0 < 1—s,itfollows that0 < x1—x¢ < s+(1—s) = 1. Thus x;—xo € ZN(0, 1),
a contradiction by Remark 1.1iii. We conclude thats € E. |

The existence of suprema is the last assumption about R we make.

Postulate 3. [COMPLETENESS AXIOM]. If F is a nonempty subset of R that
is bounded above, then E has a finite supremum.

We shall use Completeness Axiom many times. Our first two applications deal
with the distribution of integers (Theorem 1.16) and rationals (Theorem 1.18)
among real numbers.

1.16 Theorem. [ARCHIMEDEAN PRINCIPLE].
Given real numbers a and b, with a > 0, there is an integer n € N such that
b < na.

STRATEGY: The idea behind the proof is simple. By the Completeness Axiom
and Theorem 1.15, any nonempty subset of integers that is bounded above has
a “largest” integer. If kg is the largest integer that satisfies kga < b, then n =
(ko + 1) (which is larger than ko) must satisfy na > b. In order to justify this
application of the Completeness Axiom, we have two details to attend to: (1) Is
the set £ := {k € N : ka < b} bounded above? (2) Is £ nonempty? The
answer to the second question depends on whether b < a or not. Here are the
details.

Proof. 1fb < a,setn =1.Ifa < b, consider theset E = {k € N: ka < b}. E is
nonempty since 1 € E. Letk € E (i.e., ka < b). Since a > 0, it follows from
the First Multiplicative Property that k < b/a. This proves that E is bounded
above by b/a. Thus, by the Completeness Axiom and Theorem 1.15, E has a
finite supremum s that belongs to E, in particular, s € N.

Setn = s + 1. Then n € N and (since n is larger than s), n cannot belong to
E. Thus na > b. u

Notice in Example 1.11 and Theorem 1.15 that the supremum of E belonged
to E. The following result shows that this is not always the case.

1.17 EXAMPLE.
Let A ={1, % }‘, % ...}Jand B = {%, % %, ...}. Prove that supA = sup B = 1.
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Proof. 1tis clear that 1 is an upper bound of both sets. It remains to see that
1 is the smallest upper bound of both sets. For A, this is trivial. Indeed, if
M is any upper bound of A, then M > 1 (since 1 € A). On the other hand,
if M is an upper bound for B, but M < 1, then 1| — M > 0. In particular,
1/(1— M) eR.

Choose, by the Archimedean Principle, ann € Nsuch thatn > 1/(1-M). It
follows (do the algebra) that xg := 1—1/n > M. Since x¢ € B, this contradicts
the assumption that M is an upper bound of B (see Figure 1.3). |

The next proof shows how the Archimedean Principle is used to establish
scale.

1.18 Theorem. [DENSITY OF RATIONALS].
If a, b € Rsatisfy a < b, then thereis a g € Q such thata < q < b.

StraTEGY: To find a fraction ¢ = m/n such that a < ¢ < b, we must specify
both numerator m and denominator n. Let’s suppose first that ¢ > 0 and that
the set £ := {k € N : k/n < a} has a supremum, kg. Then m := ko + 1, being
greater than the supremum of E, cannot belong to E. Thus m/n > a. Is this the
fraction we look for? Ism/n < b? Not unless n is large enough. To see this, look
at a concrete example: a = 2/3 and b = 1. If n = 1, then E has no supremum,
When n = 2, kg = 1 and when n = 3, kg = 2. In both cases (kg + 1)/n = 1 1is
too big. However, when n = 4, kg = 2 so (ko + 1)/4 = 3/4 is smaller than b, as
required.

How can we prove that for each fixed a < b there always is an n large enough
so that if k¢ is chosen as above, then (kg + 1)/n < b? By the choice of kg, ko/n <
a. Let’s look at the worst case scenario: a = ky/n. Then b > (kg + 1)/n means

ko+1 ko 1 1
:—+—:a+—
n n n n

b >

(i.e., b —a > 1/n). Such an n can always be chosen by the Archimedean Princi-
ple.

What about the assumption that sup E exists? This requires that E be
nonempty and bounded above. Once n is fixed, E will be bounded above by
na. But the only way that E is nonempty is that at the very least, 1 € E (i.e., that
1/n < a). This requires a second restriction on n. We begin our formal proof at
this point.

Proof. Suppose first that a > 0. Since b — a > 0, use the Archimedean
Principle to choose an n € N that satisfies

o=
n > max { — ,

a’'b—a

and observe that both 1/n <aand 1/n < b — a.
Consider the set E = {k € N: k/n < a}. Since 1 € E, E is nonempty. Since
n > 0, E is bounded above by na. Hence, by Theorem 1.15, kg := sup E exists

19
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and belongs to E, in particular, to N. Set m = kg + 1 and ¢ = m/n. Since kg is
the supremum of E, m ¢ E. Thus ¢ > a. On the other hand, since ky € E, it
follows from the choice of n that

1 m
n

ko ko
b=a+b-a)>—+b—-a)>—+-=—=q.
n n

n

Now suppose that a < 0. Choose, by the Archimedean Principle, an integer

k € Nsuch that k > —a. Then 0 < k + a < k + b, and by the case already
proved, there is an r € Q such thatk +a < r < k 4+ b. Therefore, g :=r — k
belongs to Q and satisfies the inequality a < ¢ < b. |

For some applications, we also need the following concepts.

1.19 Definition.

Let £ C R be nonempty.

i) The set E is said to be bounded below if and only if there is an m € R such
that ¢ > m for all ¢ € E, in which case m is called a lower bound of the
set E.

il) A number ¢ is called an infimum of the set E if and only if 7 is a lower
bound of E and r > m for all lower bounds m of E. In this case we shall say
that E has an infimum t and write ¢t = inf E.

iii) E is said to be bounded if and only if it is bounded both above and below.

When a set E contains its supremum (respectively, its infimum) we shall fre-
quently write max E for sup E (respectively, min E for inf E).

(Some authors call the supremum the least upper bound and the infimum the
greatest lower bound. We will not use this terminology because it is somewhat
old fashioned and because it confuses some students, since the least upper bound
of a given set is always greater than or equal to the greatest lower bound.)

To relate suprema to infima, we define the reflection of a set E C R by

—FE :={x:x=—aforsomea € E }.

For example, —(1, 2] = [-2, —1).

The following result shows that the supremum of a set is the same as the
negative of its reflection’s infimum. This can be used to prove an Approximation
Property and a Completeness Property for Infima (see Exercise 1.3.6).

1.20 Theorem. [REFLECTION PRINCIPLE].
Let E C R be nonempty.

i) E has a supremum if and only if —E has an infimum, in which case

inf(—E) = —supE.
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il) E has an infimum if and only if —E has a supremum, in which case
sup(—FE) = —inf E.

Proof. The proofs of these statements are similar. We prove only the first
statement.

Suppose that E has a supremum s and set t = —s. Since s is an upper bound
for E, s >aforalla € E,so —s < —a for all a € E. Therefore, ¢ is a lower
bound of —E. Suppose that m is any lower bound of —E. Then m < —a for
all @ € E, so —m is an upper bound of E. Since s is the supremum of E, it
follows that s < —m (i.e.,t = —s > m). Thus ¢ is the infimum of —F and
supE =5 = —t = —inf(—E).

Conversely, suppose that —E has an infimum ¢. By definition, r < —a for
all a € E. Thus —¢ is an upper bound for E. Since E is nonempty, E has a
supremum by the Completeness Axiom. |

Theorem 1.20 allows us to obtain information about infima from results about
suprema, and vice versa (see the proof of the next theorem).
We shall use the following result many times.

1.21 Theorem. [MONOTONE PROPERTY].
Suppose that A C B are nonempty subsets of R.

1) If B has a supremum, then sup A < sup B.
il) If B has an infimum, then inf A > inf B.

Proof. 1) Since A C B, any upper bound of B is an upper bound of A. There-
fore, sup B is an upper bound of A. It follows from the Completeness Axiom
that sup A exists, and from Definition 1.10ii that sup A < sup B.

ii) Clearly, —A < —B. Thus by part i), Theorem 1.20, and the Second
Multiplicative Property,

infA = —sup(—A) > —sup(—B) = inf B. |
It is convenient to extend the definition of suprema and infima to all subsets

of R. To do this we expand the definition of R as follows. The set of extended real
numbers is defined to be R := R J{£o0o}. Thus x is an extended real number if

and only if either x € R, x = 400, or x = —o0.
Let E € R be nonempty. We shall define sup E = +oo if E is unbounded
above and inf E = —o0 if E is unbounded below. Finally, we define sup® = —oo

and inf@# = +o0. Notice, then, that the supremum of a subset E of R (respec-
tively, the infimum of E) is finite if and only if E is nonempty and bounded
above (respectively, nonempty and bounded below). Moreover, under the con-
vention —oo < a and a < oo for all @ € R, the Monotone Property still holds
for this extended definition; that is, if A and B are subsets of R and A C B, then
sup A < sup B and inf A > inf B, provided we use the convention that —oco < 0.
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EXERCISES

1.3.0.

1.3.1.

1.3.2.

1.3.3].

1.34.

1.3.5.

1.3.6 .

1.3.7.

1.3.8.

Decide which of the following statements are true and which are false.
Prove the true ones and give counterexamples to the false ones.

a) If A and B are nonempty, bounded subsets of R, then sup(A N B) <
sup A.

b) Let ¢ be a positive real number. If A is a nonempty, bounded subset
of Rand B = {ex : x € A}, then sup(B) = e sup(A).

c) fA+B:={a+b: aec Aandb € B}, where A and B are nonempty,
bounded subsets of R, then sup(A + B) = sup(A) + sup(B).

d) f A—B:={a—b: a € Aandb € B}, where A and B are nonempty,
bounded subsets of R, then sup(A — B) = sup(A) — sup(B)

Find the infimum and supremum of each of the following sets.

a) E={xreR:x?+2x=3)

b) E={xeR:x2—2x+3>x?and x > 0}
¢) E={p/qg €Q:p*<5¢*and p,q > 0}
d) E={xeR:x=1+4(—1)"/nforn € N}
e) E={xeR:x=1/n+(—1)"forn € N}
f) E={2—(=1)"/n*:neN}

Prove that for each a € R and each n € N there exists a rational r,, such
that |[a — r,| < 1/n.

[DENsITY OF IRRATIONALS] This exercise is used in Section 3.3. Prove
that if < b are real numbers, then there is an irrational £ € R such that
a<é&<b.

Prove that a lower bound of a set need not be unique but the infimum
of a given set E is unique.

Show that if E is a nonempty bounded subset of Z, then inf E exists and
belongs to E.

This exercise is used in many sections, including 2.2 and 5.1. Use the
Reflection Principle and analogous results about suprema to prove the
following results.

a) [APPROXIMATION PROPERTY FOR INFIMA] Prove that if a set £ C R has
a finite infimum and ¢ > 0 is any positive number, then there is a
point a € E such thatinf £ + ¢ > a > inf E.

b) [CoMPLETENESS PrOPERTY FOR INFIMA] If £ € R is nonempty and
bounded below, then E has a (finite) infimum.

a) Prove that if x is an upper bound of aset E C Rand x € E, then x is
the supremum of E.

b) Make and prove an analogous statement for the infimum of E.

c) Show by example that the converse of each of these statements is
false.

Suppose that E, A, B C Rand E = A U B. Prove that if E has a supre-
mum and both A and B are nonempty, then sup A and sup B both exist,
and sup E is one of the numbers sup A or sup B.
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1.3.9. A dyadic rational is a number of the form k/2" for some k, n € Z. Prove
that if a and b are real numbers and a < b, then there exists a dyadic
rational g such thata < ¢ < b.

1.3.10. Let x, € R and suppose that there is an M € R such that |x,| < M
for n € N. Prove that s, = sup{x,, x,+1, ...} defines a real number for

each n € N and that s; > sp > ... Prove an analogous result about
t, = inf{x,, xp41, ...}

1.3.11. If a,b € Rand b — a > 1, then there is at least one k € Z such that
a<k<b.

1.4 MATHEMATICAL INDUCTION

In this section we introduce the method of Mathematical Induction and use it
to prove the Binomial Formula, a result that shows how to expand powers of a
binomial expression (i.e., an expression of the form a + b).

We begin by obtaining another consequence of the Completeness Axiom,
the Well-Ordering Principle, which is a statement about the existence of least
elements of subsets of N.

1.22 Theorem. [WELL-ORDERING PRINCIPLE].
If E is a nonempty subset of N, then E has a least element (i.e., E has a finite
infimum and inf E € E).

Proof. Suppose that E C N is nonempty. Then —E is bounded above, by
—1, so by the Completeness Axiom sup(—E) exists, and by Theorem 1.15,
sup(—E) € —E. Hence by Theorem 1.20, inf E = —sup(—FE) exists, and
infE e —(—E)=E. |

Our first application of the Well-Ordering Principle is called the Principle of
Mathematical Induction or the Axiom of Induction (which, under mild assump-
tions, is equivalent to the Well-Ordering Principle —see Appendix A).

1.23 Theorem. Suppose for each n € N that A(n) is a proposition (i.e., a verbal
statement or formula) which satisfies the following two properties:
i) A1) is true.
ii) Forevery n € N for which A(n) is true, A(n + 1) is also true.
Then A(n) is true for all n € N.

Proof. Suppose that the theorem is false. Then the set E = {n € N: A(n)
is false} is nonempty. Hence by the Well-Ordering Principle, E has a least
element, say x.

Since x € E € N C Z, we have by Remark 1.1ii that x > 1. Since x € E,
we have by hypothesis i) that x # 1. In particular, x — 1 > 0. Hence, by
Remark 1.1liandiii,x —1>1andx — 1 € N.

Since x — 1 < x and x is a least element of E, the statement A(x — 1) must
be true. Applying hypothesis ii) ton = x — 1, we see that A(x) = A(n + 1)
must also be true; that is, x ¢ E, a contradiction. |

23
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Recall that if xg, x1, ..., x, are real numbers and 0 < j < n, then

n
Zxk =Xj X+ X
k=j

denotes the sum of the x;’s as k ranges from j to n. The following examples
illustrate the fact that the Principle of Mathematical Induction can be used to
prove a variety of statements involving integers.

1.24 EXAMPLE.
Prove that

n
Z(3k — DGk +2) =3 +6n*+n
k=1

forn € N.
Proof. Let A(n) represent the statement
n
> Bk — 1)(3k +2) =30’ + 6n” + n.
k=1

For n = 1 the left side of this equation is 2 - 5 and the right side is 3 + 6 + 1.
Therefore, A(1) is true. Suppose that A(n) is true for some n > 1. Then

n+l n
Z(3k —1DBk+2)=0Bn+2)Bn+5) + Z(?)k —1D@Bk+2)
k=1 k=1

=GBn+2)GBn+5)+3n°+6n*+n
=31 + 1502+ 221 +10.

On the other hand, a direct calculation reveals that
3n+ 13 +6n+ D>+ (n+ 1) =30 + 1527 + 22n + 10.

Therefore, A(n + 1) is true when A(n) is. We conclude by induction that A(n)
holds for all n € N. n

Two formulas encountered early in an algebra course are the perfect square
and cube formulas:

(@a+b?*=a*>+2ab+b*> and (a+b) =a’+3a®b+3ab*+b°.

Our next application of the Principle of Mathematical Induction generalizes
these formulas from n = 2 and 3 to arbitrary n € N.
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Recall that Pascal’s triangle is the triangular array of integers whose rows
begin and end with 1s with the property that an interior entry on any row is
obtained by adding the two numbers in the preceding row immediately above
that entry. Thus the first few rows of Pascal’s triangle are as below.

1 3 3 1
1 4 6 41
1 5 10 10 5 1
1 6 15 20 15 6 1

Notice that the third and fourth rows are precisely the coefficients that appeared
in the perfect square and cube formulas above.

We can write down a formula for each entry in each row of the Pascal triangle.
The first (and only) entry in the first row is

)~

Using the notation 0! := l andn! ;= 1-2.--(n — 1) - n for n € N, define the
binomial coefficient n choose k by

AN n!
(k) T (n—k)k!

forO<k<mandn=0,1, ....

Since g = Z = 1 for all n € N, the following result shows that the

binomial coefficient n over k does produce the (k + 1)st entry in the (n + 1)st
row of Pascal’s triangle.

1.25 Lemma.
Ifn,k e Nand 1 <k <n, then

n+1 _ n n n
k) \k—1 k)
Proof. By definition,

n n nlk nln—k+1)
(k—1>+<k>=(n—k+1)!k!+(n—k+1)!k!
_ onln+1)  (n+1
_(n—k+1)!k!_< k )

25
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Binomial coefficients can be used to expand the nth power of a sum of
two terms.

1.26 Theorem. [BINOMIAL FORMULA].
Ifa,b € R, n € N, and 0° is interpreted to be 1, then

(a + b)n — Z <Z)an—kbk'

k=0

Proof. The proof is by induction on n. The formula is obvious for n = 1.
Suppose that the formula is true for some n € N. Then by the inductive
hypothesis and Postulate 1,

(a+b)"' = (a+b)a+b)"

n
= (a+b) (Z(Z)a”_kbk)
k=0
n n n n
_ —k+1pk —k pk+1
= (o) (S ()
k=0 k=0
n n—1
_ <an+1 4 Z(Z)ank+lbk> i <bn+l i Z(Z)ankka)
k=1 k=0
n n n
— n+1 n*k+1bk bn+1'
‘ +k§(<k>+<k—1))” i

Hence it follows from Lemma 1.25 that

n+1

(@+ by = gt 4 i (” + l)an+1—kbk Lot = Z <" + 1>an+1—kbk.
N k N k ’
k=1 k=0

that is, the formula is true for n+1. We conclude by induction that the formula
holds for all n € N. |

We close this section with two optional, well-known results that further
demonstrate the power of the Completeness Axiom and its consequences.

*1.27 Remark. If x > 1 and x ¢ N, then there is an n € N such thatn < x <
n+ 1.

Proof. By the Archimedean Principle, the set E = {m € N : x < m}is
nonempty. Hence by the Well-Ordering Principle, E has a least element,
say mo.

Setn = mg—1. Since mg € E, n+ 1 = mg > x. Since myg is least,
n=mo—1 < x. Since x ¢ N, we also have n # x. Therefore,n <x <n+1. R
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Using this last result, we can prove that the set of irrationals is nonempty.

*1.28 Remark. If n € N is not a perfect square (i.e., if there is no m € N such
that n = m?), then /n is irrational.

Proof. Suppose to the contrary that n € Nis not a perfect square but \/n € Q;
that is, s/n = p/q for some p,q € N. Choose by Remark 1.27 an integer
mg € N such that

mo < /n <moy+ 1. (10)

Consider the set E := {k € N : k/n € Z}. Since g/n = p, we know that E
is nonempty. Thus by the Well-Ordering Principle, E has a least element, say
no.
Set x = no(/n—mop). By (10),0 < /n—mo < 1. Multiplying this inequality
by ng, we find that

0 <x < nog. (11)

Since ng is a least element of E, it follows from (11) that x ¢ E. On the
other hand,

x+/n = no(v/n —mo)/n = non — mono/n € Z

since ng € E. Moreover, since x > 0 and x = ng+/n — nomo is the difference
of two integers, x € N. Thus x € E, a contradiction. |

EXERCISES

1.4.0. Decide which of the following statements are true and which are false.
Prove the true ones and give counterexamples to the false ones.

a) If a > 0and b # 0, then (a + b)" > b" foralln € N.
b) Ifa < 0 < b, then (a + b)" < b" foralln € N.
c) If n € N is even and both a and b are negative, then (a + b)" >

a" + na"'b.
d) Ifa # 0, then
1 " (n) (a —2)"*
— —
" Pt k) a™2n

for alln € N.

1.4.1. a) Prove thatif x; > 2 and x,41 = 1 + /x, — 1 forn € N, then 2 <

Xnt1 < X, holds for all n € N.

b) Prove thatif 2 < x; < 3 and x4 = 2 4+ /x, —2 for n € N, then
0 < x, < x,4+1 holds for all n € N.

c) Prove thatif 0 < x; < 1 and x,41 = 1 — /1 —x, for n € N, then
0 < xp+1 < x, holds for all n € N.

d) Prove thatif3 < x; <5and x,41 =2+ V/x, —2,then 3 < x,41 < xp
holds for all n € N.
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1.4.2.

1.4.3.

144|.

14.5).

1.4.6.
1.4.7.
1.4.8.

1.4.9.

1.4.10.

Use the Binomial Formula or the Principle of Induction to prove each
of the following.

a) Y _o(=DF (Z) =0foralln € N.

b) (a+b)" >a" +b"foralln e Nanda,b > 0.
c) 1+1/n)" >2foralln € N.

d) > (Z) =Y )2k foralln € N.

Prove each of the following statements.

a) 2n+1<2"forn=3,4,....
b) n<2"forn=1,2,....
c) n2 <24 1forn=1,2,....
d) nd<3"forn=1,2,....

Parts a) and c) of this exercise are used in Sections 2.4 and 5.1.
Prove that the following formulas hold for all n € N.
n 1
2) 3k = nn+1)
k=1 2
b) i K2 = nn+1D)2n+1)
k=1 6
noag—1 1
c) > =1—-——,a#0
= ak )
n 4n- — 1
d) Y 2k—1)?= M
k=1 3

This exercise is used in Section 2.3. Prove that 0 < a < b implies 0 <

a" <b"and 0 < Ya < Ybforalln € N.

Prove that 2" + 3" is a multiple of 5 for all odd n € N.
Prove that 2" < n! + 2 forn € N.

Prove that

nn—1)(mn-—2)
6

2" >

forn € N.

a) Using Remark 1.28, prove that the square root of an integer m is
rational if and only if m = k? for some k € N.

b) Prove that /n + 3 + /n is rational for some n € N if and only if
n=1

c¢) Find all n € N such that v/n + 7 4 /n is rational.

Letag =3, bg =4, and ¢p = 5.

a) Letay = ax—1+2, by = 2a5—1 +br—1 +2,and cx = 2a5_1 + cx—1 +2
for k € N. Prove that ¢; — by is constant for all k € N.
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b) Prove that the numbers defined in part a) satisfy

2 2 _ 2
a; + by =c;

for all k € N.

INVERSE FUNCTIONS AND IMAGES

Let f : X — Y (i.e., suppose that f is a function from one set X to another
set Y). In this section, we obtain simple conditions for when f has an inverse,
introduce images and inverse images induced by f, and explore how they inter-
act with the algebra of sets.

First, recall from Section 1.1 that a function f : X — Y has an inverse function
if and only if Ran(f) = Y and each y € Y has a unique preimage x € X, in
which case we define the inverse function f~' by f~!(y) := x. In particular, if
f : X — Y has an inverse function, then

ey =x and f(f ') =y (12)
forallx e Xandy €Y.

We introduce the following concepts in order to answer the question, “Is there
an easy way to recognize when f has an inverse?”

1.29 Definition.

Let Xand Y besetsand f: X — Y.

i) f issaid to be 1-1 (one-to-one or an injection) if and only if
xi,x2€X and f(x)) = f(x2) imply x; = xs.

ii) f is said to be onto (or a surjection) if and only if for each y € Y there is
an x € X such that y = f(x).
iii) f is called a bijection if and only if it is both 1-1 and onto.
Sometimes, to emphasize the domain and range of f, we shall say that a
bijection f : X — Y is 1-1 from X onto Y.

For example, the function f(x) = x2 is 1-1 from [0, 0co) onto [0, co) but not
1-1 on any open interval containing 0.

We shall now prove that bijections always have inverse functions and that (12)
characterizes those inverses.

1.30 Theorem. Let X and Y be sets and f : X — Y. Then the following three
statements are equivalent.

i) fhas an inverse;
i) fis I-1 from X onto Y;

29
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iii) There is a function g : Y — X such that
gfx)=x forallx e X (13)

and

fgy) =y forallye?Y. (14)

Moreover, for each f : X — Y, there is only one function g that satisfies (13) and
(14). It is the inverse function f~\.

Proof. i) implies ii). By definition, if f has an inverse, then Ran(f) = Y
(so f takes X onto Y) and each y € Y has a unique preimage in X [so, if
fO1) = f(y2), then y; = yz,ie., fis1-1 on X].

ii) implies iii). The proof that i) implies ii) also shows thatif f : X — Y
is 1-1 and onto, then f has an inverse. In particular, g(y) := f ~1(y) satisfies
(13) and (14) by (12).

iii) implies i). Suppose that there is a function g : ¥ — X which satisfies
(13) and (14). If some y € Y has two preimages, say x; # x» in X, then
f(x1) =y = f(xp). It follows from (13) that x; = g(f(x1)) = g(f(x2)) = x2,
a contradiction. On the other hand, given y € Y, set x = g(y). Then f(x) =
£(8(») = y by (14),s0 Ran(f) = .

Finally, suppose that % is another function which satisfies (13) and (14), and
fix y € Y. By i), there is an x € X such that f(x) = y. Hence by (13),

h(y) =h(f(x)) =x=g(f(x) =g();
thatis, » = g on Y. It follows that the function g is unique. [ |

There are two ways to show that a given function f is 1-1 on a set X. We can
suppose that f(x;) = f(x2) for some x1, x» € X, and prove (using algebra, for
example) that x; = x,. If X is an interval in R and f is differentiable, there is an
easier way to prove that f is 1-1 on X.

1.31 Remark. Let I be an interval and let f : I — R. If the derivative of fis
either always positive on I, or always negative on I, then fis 1-1 on I.

Proof. By symmetry, we may suppose that the derivative f’ of f satisfies
f/(x) > O0forall x € I. We will use a result that almost everyone who has
studied one variable calculus remembers (for a proof, see Theorem 4.17): If
f’ > O0onaninterval I, then f is strictly increasing on 7; that is, x;, x, € I and
x1 < xp imply that f(x1) < f(x2).

To see why this implies that f is 1-1, suppose that f(x;) = f(x,) for some
x1, x21in X. If x| # x;, then it follows from the trichotomy property that either
X1 < xp or xp < x1. Since f is strictly increasing on [, either f(x;) < f(x2)
or f(x2) < f(x1). Both of these conclusions contradict the assumption that

fx) = f(x2). [
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By Theorem 1.30, f : X — Y has an inverse function f~! if and only if
ffl(f(x)) = x for all x € X and f(ffl(y)) = y for all y € Y. This suggests that
we can find a formula for f~!if y = f(x) can be solved for x.

*1.32 EXAMPLE.
Prove that f(x) = ¢* — ¢ is 1-1 on R and find a formula for f~! on Ran(f).

Solution. Since f'(x) = ¢* +e¢* > 0 forall x € R, fis 1-1 on R by
Remark 1.31.

Let y = ¢* — e™*. Multiplying this equation by ¢* and collecting all nonzero
terms on one side of the equation, we have

ezx—yex—1=0,

a quadratic in ¢*. By the quadratic formula,

Yy EVy2+4
= (15)

Since e* is always positive, the minus sign must be discarded. Taking the loga-
rithm of this last identity, we obtain x = log(y + +/y2 + 4) — log 2. Therefore,

£l (x) = log(x + v/x2 + 4) — log2. -

The following concepts greatly simplify the general theory of continuity (see
Theorem 9.26, for example).

1.33 Definition.

Let X and Y be sets and f : X — Y. The image of aset E C X under f is the
set

f(E) ={yeY:y= f(x)forsome x € E}.

The inverse image of a set E C Y under f is the set

fYWE):={x e X: f(x) = yforsome y € E}. (16)

When E is an interval, we will sometimes drop the extra parentheses; for
example, write f(a, b] for f((a, b]) and f~'(a, b] for f~'((a, b)).

1.34 EXAMPLE.

Find the images and inverse images of the sets / = (—1, 0) and J = (0, 1] under
the function f(x) = x2 + x.

Solution. Since “find” doesn’t mean “prove,” we look at the graph y = x? + x.
By definition, f (/) consists of the y-values of f(x) as x ranges over I = (—1, 0).

31
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Since f has roots at x = 0, —1 and has a minimum of —0.25 at x = —0.5, it is
clear by looking at the graph that f(I) = [—0.25, 0). Since f ~1(I) consist of the
x-values whose images belong to I = (—1, 0), and the graph of f lies below the
x-axis only when —1 < x < 0, it is also clear that f~!(I) = (-1, 0). Similarly,
f(J) = (0, 2] and

_ -1-4/5 —14++/5
7o = [T —1) U (o, %}

(Be sure to look at the graph of y = x? + x and understand how these numbers
were obtained.) [ |

WARNING. Unfortunately, there are now three meanings to f~': (1) f~'(x) =
1/f(x), the reciprocal of f which exists when f is real-valued and f(x) # 0;
(2) f~!(x), the inverse function of f which exists when f is 1-1 and onto; (3)
f~UE), the inverse image of E under f, which always exists. Context will usu-
ally indicate which meaning we are using.

Notice that Definition 1.33 contains an asymmetry: y € f(E) means that
y = f(x) for some x € E,but x € f~!(E) does NOT mean that x = f~!(y) for
some y € E. For example, let f(x) = sinx. Since sin(kz) = 0 for all k € Z, the
inverse image of {0} under f is F~1{0}) = {kx : k € Z}, but since the range of
arcsin x is [—/2, /2], the image of {0} under f~! is arcsin{0} = {0}.

Before we give an account of how images and inverse images interact with set
algebra (specifically, what the image and inverse image of a union, an intersec-
tion, and a complement of sets are), we need to expand the algebra of sets to
include unions and intersections of infinitely many sets. We need these concepts
for some of the deeper results in the second half of this book because many of
the proofs involve associating a set E, with each « in a set A. With this end in
mind, we introduce the following terminology.

A collection of sets £ is said to be indexed by a set A if and only if there is a
function F from A onto £ (i.e., each @ € A is associated with one and only one
setin &£). In this case we shall call A the index set of £, say that £ is indexed by A,
and represent F(«) by E,. In particular, £ is indexed by A means £ = {Ey }yeAa-

1.35 Definition.

Let £ = {E,}aea be a collection of sets.

i) The union of the collection & is the set

UEO‘ ={x:x € Ey forsomewa € A}.

acA
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ii) The intersection of the collection & is the set

ﬂEa ={x:x€eE, foralla € A}.

a€A

For example,

U [0,x)=[0,1) and ﬂ [0, x) = {0}.

x€(0,1] x€(0,1]

The following important, often used result shows that there is an easy way to
get from unions to intersections, and vice versa.

1.36 Theorem. [DEMORGAN’S LAWS].
Let X be a set and {Ey}yeca be a collection of subsets of X. If for each E C X
the symbol E€ represents the set X\E, then

(UEa) = ﬂ Eg (17)
acA a€A
and

(ﬂEQ)C =J ES. (18)

a€A a€A

Proof. Suppose that x belongs to the left side of (17); that is, x € X and
x ¢ Uyea Eo- By definition, x € X and x ¢ E, for alla € A. Hence, x € E§
for all « € A; that is, x belongs to the right side of (17). These steps are
reversible. This verifies (17). A similar argument verifies (18). |

The following result, which plays a prominent role in Chapters 9 and 12,
describes images and inverse images of unions and intersections of sets.

1.37 Theorem. Let X and Y besetsand f : X — Y.
i) If{Ey}aca is a collection of subsets of X, then

f (UE> =J f(Ew) and f (ﬂE) < () f(Eo).

aEA aeA a€A aeA

ii) If B and C are subsets of X, then f(C\B) 2 f(C)\ f(B).

33



34

34 Chapter 1 The Real Number System

iii) If {Ey}aca is a collection of subsets of Y, then

f (UE> =Jr 'k and [ (ﬂE) =) /" (Ew.

aeA acA aEA aEA

iv) If B and C are subsets of Y, then f~'(C\B) = f~1(C)\ f~1(B).
v) IfE C f(X), then f(f~Y(E)) = E, butif E C X, then f~'(f(E)) 2 E.

Proof. 1) By definition, y € f(UgecaEy) if and only if y = f(x) for some x €
Ey and o € A. Thisis equivalentto y € Uyea f(Ey). Similarly, y € f(Nyea Ex)
if and only if y = f(x) for some x € Nyea Ey. This implies that for all o € A
there is an x, € E, such that y = f(x,). Therefore, y € Nyea f (Ey).

i) If y € f(C)\f(B), then y = f(c) for some ¢ € C but y # f(b) for any

b € B. It follows that y € f(C\B). Similar arguments prove parts iii), iv),
and v). [

It is important to recognize that the set inequalities in parts i), ii), and v)
can be strict unless f is 1-1 (see Exercises 1.5.6 and 1.5.7). For example, if
f(x) =x2, E; = (1}, and E; = {—1}, then f(E; N E3) = @ is a proper subset of
F(ED) N f(Ey) = {1}.

EXERCISES

1.5.0. Decide which of the following statements are true and which are false.
Prove the true ones and give counterexamples to the false ones.

a) Let f(x) = sinx. Then the function

T 3w
f: [E 7} — [—1,1]

is a bijection, and its inverse function is arcsin x.

b) Suppose that A, B, and C are subsets of some set X and that f :
X—>X.If AnNB #,then f(A)N f(BUC) # 0.

c) Suppose that A and B are subsets of some set X. Then (A\B)‘ =
B\A.

d) If f takes [—1, 1] onto [—1, 1], then f~1(f({0})) = {0}.

1.5.1. a) For each of the following, prove that f is 1-1 on E and find f(E).

a) fx)=3x—-7, E=R

B) f(x) =€ E=(0,00)

y) f(x)=tanx, E = (w/2,37/2)

8) f(x)=x>+2x—5, E = (—00, —6]
e fx)=3x—|x|+|x-2, E=R
0) f(x)=x/(x>+1), E=[-1,1]

*b) Find an explicit formula for f~! on f(E).
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1.5.2. Find f(E) and f~!(E) for each of the following.
a) f(x)=2-3x, E=(-1,2)
b) f(x)=x*+1, E=(-1,2]
c) f(x)=2x—x2 E=[-2,2)
d) f(x) =log(x?—2x+2), E =(0,3]
e) f(x) =cosx, E =0, 00)
1.5.3. Give a simple description of each of the following sets.

a) U x—2,x+1]

x€[0,1]

b) ) (x—1,x+1]
XE[O,}]

9 N[+ 1]
keN =

d) U [-40]
keN =

) U [k t)
keN -

H N[5
keN =

1.5.4. Prove (18).
1.5.5. Prove Theorem 1.37iii, iv, and v.
1.5.6. Let f(x) = x>.

a) Find subsets B and C of R such that f(C\B) # f(C)\f(B).
b) Find a subset E of R such that f~1(f(E)) # E.

1.5.7 |. This exercise is used several times in Chapter 12. Let X, Y be sets and
f + X — Y. Prove that the following are equivalent.

a) fis1-1onX.

b) f(A\B) = f(A)\ f(B) for all subsets A and B of X.

¢) f~Y(f(E)) = E for all subsets E of X.

d) f(ANB) = f(A) N f(B) for all subsets A and B of X.

1.6 COUNTABLE AND UNCOUNTABLE SETS

In this section we will show how to use bijections to “count” infinite sets. We
begin by examining what it means to count a finite set. When we count a
finite set E, we assign consecutive numbers in N to the elements of E; that
is, we construct a function f from {1,2,...,n} to E, where n is the num-
ber of elements in E. For example, if E has three objects, then the “count-
ing” function, f, takes {1, 2, 3} to E. Now in order to count E properly,
we must be careful to avoid two pitfalls. We must not count any element of
E more than once (i.e., f must be 1-1), and we cannot miss any element of
E (i.e., f must take {1, 2, 3} onto E). Accordingly, we make the following
definition.
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1.38 Definition.

Let E be a set.

i) E issaid to be finite if and only if either E = ¢ or there exists a 1-1 function
which takes {1, 2, ..., n} onto E, for some n € N.
il) E is said to be countable if and only if there exists a 1-1 function which
takes N onto E.
iii) E is said to be at most countable if and only if E is either finite or countable.
iv) E is said to be uncountable if and only if E is neither finite nor countable.

Loosely speaking, a set is countable if it has the same number of elements as
N, finite if it has less, and uncountable if it has more.

To show that a set E is countable, it suffices to exhibit a 1-1 function f from
N onto E. For example, the set of even integers E = {2,4,...} is countable
because f (k) := 2k is 1-1 from N onto E. Thus, two infinite sets can have the
same number of elements even though one is a proper subset of the other. (In
fact, this property can be used as a definition of “infinite set.”)

The following result shows that not every infinite set is countable.

1.39 Remark. [CANTOR’S DIAGONALIZATION ARGUMENT]. The open
interval (0, 1) is uncountable.

STRATEGY: Suppose to the contrary that (0, 1) is countable. Then by def-
inition, there is a function f on N such that f(1), f(2), ... exhausts the ele-
ments of (0, 1). We could reach a contradiction if we could find a new number
x € (0, 1) that is different from all the f(k)’s. How can we determine whether
two numbers are different? One easy way is to look at their decimal expansions.
For example, 0.1234 # 0.1254 because they have different decimal expansions.
Thus, we could find an x that has no preimage under f by making the deci-
mal expansion of x different by at least one digit from the decimal expansion of
EVERY f (k).

There is a flaw in this approach that we must fix. Decimal expansions are
unique except for finite decimals, which always have an alternative expansion
that terminates in 9s (e.g., 0.5 = 0.4999... and 0.24 = 0.23999...) (see Exer-
cise 2.2.10). Hence, when specifying the decimal expansion of x, we must avoid
decimals that terminate in 9s.

Proof. Suppose that there is a 1-1 function f that takes N onto the interval
(0, 1). Write the numbers f(j), j € N, in decimal notation, using the finite
expansion when possible, that is,

f) =0ana...,
f2) =0.az21a22...,
f3) =0.azias...,

cey
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where «;; represents the jth digit in the decimal expansion of f (i) and none
of these expansions terminates in 9s. Let x be the number whose decimal
expansion is given by 0.81 85 . . ., where

ok + 1 ifo <5
o — 1 if g > 5.

Clearly, x is a number in (0, 1) whose decimal expansion does not contain
one 9, much less terminate in 9s. Since f is onto, there is a j € N such that
f(j) = x. Since we have avoided 9s, the decimal expansions of f(;j) and
x must be identical (e.g., «j; = B; = «j; £ 1). It follows that 0 = *1, a
contradiction. |

It is natural to ask about the countability of the sets Z, Q, and R. To answer
these questions, we prove several preliminary results. First, to show that a set
E is at most countable, we do not need to construct a ONE-TO-ONE function
which takes N onto E.

1.40 Lemma.
A nonempty set E is at most countable if and only if there is a function g from
N onto E.

Proof. 1f E is countable, then by Definition 1.38ii there is a (1-1) function f
from N onto E, so g := f takes N onto E. If E is finite, then thereisann € N
and a 1-1 function f that takes {1, 2, ..., n} onto E. Hence

2(j) = fG)y j=n
B FAC) J>n
takes N onto E.

Conversely, suppose that g takes N onto E. We need to construct a function
f thatis 1-1 from some subset of N onto E. We will do this by eliminating the
duplication in g. To this end, let k; = 1. If the set E| := {k € N : g(k) # g(k1)}
is empty, then E = {g(k;)}, thus evidently at most countable. Otherwise, let
ko be the least element in E; and notice that k» > k;.

Set E; := {k € N : gk) € E\{g(ky), g(kp)}}. If E, is empty, then E =
{g(k1), g(kp)} is finite, hence at most countable. Otherwise, let k3 be the least
element in E;. Since g(k3z) € E\{g(k1), g(k2)}, we have g(k3z) # g(k2) and
g(k3) # g(kp). Since g is a function, the first condition implies k3 # k;. Since
k is least in E1, the second condition implies k, < k3. Hence, k1 < ky < k3.

Continue this process. If it ever terminates, then some

Ej:={keN:gk) e E\{gki),....gkj)}}

is empty, so E is finite, hence at most countable. If this process never ter-
minates, then we generate integers k| < k» < --- such that k1 is the least
elementof E; for j =1,2,....
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Set f(j) = g(k;), j € N. To show that f is 1-1, notice that j # £ implies
that k; # k¢, say k; < k¢. Then k; < k;_1, so by construction

gke) € EN\{g(k1), ..., 8(kj), ..., gke—D)} S E\{g(k1), ..., g(k))}.

In particular, g(k;) # g(k;); thatis, f(£) # f(j).

To show that f is onto, let x € E. Since g is onto, choose ¢ € N such that
g(¢) = x. Since by construction j < kj, use the Archimedean Principle to
choose a j € N such that k; > ¢. Since k; is the least element in E;_y, it
follows that g(¢) cannot belong to E\{g(k1), ..., g(k;j—1)}; thatis, g(£) = g(k,)
for some n € [1, j — 1]. In particular, f(n) = g(k,) = x. ]

Next, we show how set containment affects countability and use it to answer
the question about countability of R.

1.41 Theorem. Suppose that A and B are sets.

i) If A C B and B is at most countable, then A is at most countable.
ii) If A C B and A is uncountable, then B is uncountable.
iii) R is uncountable.

Proof. i) Since B is at most countable, choose by Lemma 1.40 a function g
which takes N onto B. We may suppose that A is nonempty, hence fix an
ap € A. Then

_ e smea
ao gn) ¢ A

takes N onto A. Hence by Lemma 1.40, A is at most countable.

ii) If B were at most countable, then by part i), A would also be at most
countable, a contradiction.

iii) By Remark 1.39, the interval (0, 1) is an uncountable subset of R. Thus,
by part ii), R is uncountable. |

f(n):

The following result shows that the Cartesian product of two countable sets is
countable, and that a countable union of countable sets is countable.

1.42 Theorem. Let A;, As, ... be at most countable sets.
i) Then A1 x Ay is at most countable.

i) If
o
E:UAj = UAJ ={x:xeA; forsomejeN},
j=1 JjeN

then E is at most countable.

Proof. i) By Lemma 1.40, there exist functions ¢ (respectively, y) which take
N onto A; (respectively, onto Ay). Hence f(n, m) := (¢ (n), ¥ (m)) takes NxN
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onto A x Aj. If we can construct a function g which takes N onto N x N, then
by Exercise 1.6.5a, f og takes N onto Aj x A;. Hence by Lemma 1.40, A| x A;
is at most countable.

To construct the function g, plot the points of Nx N in the plane. Notice that
we can connect these lattice points with a series of parallel backward-slanted
lines; for example, the first line passes through (1, 1), the second line passes
through (1, 2) and (2, 1), and the third line passes through (1, 3), (2, 2), and
(3, 1). This suggests a method for constructing g. Set g(1) = (1, 1), g(2) =
(1,2), g3 =21, g =G, 1D),....

If you wish to see an explicit formula for g, observe that the nth line passes
through the set of lattice points

1,m),2,n—1),3,n—-2),...,(n—1,2), (n, 1);

that is, through the set of lattice points (k, j) which satisfy k + j = n + 1.
Since the sum of integers 1 +2 + --- + (n — 1) is given by (n — 1)n/2 (see
Exercise 1.4.4a), there are (n — 1)n/2 elements in the first n — 1 slanted lines.
Hence a function which takes N onto the nth slanted line is given by

g =Wn+1-0), (19)

where j = £ 4+ (n — 1)n/2. This function is defined on all of N because given
J € N, we can use the Archimedean Principle and the Well-Ordering Principle
to choose n least such that j < n(n+ 1)/2; thatis, such that j = £+ (n — 1)n/2
for some £ € [1, n]. Thus g takes N onto N x N.

ii) By Lemma 1.40, choose functions f; that take Nonto A;, j € N. Clearly,
the function h(k, j) := fx(j) takes N x N onto E. Hence the function % o g,
where g is defined by (19), takes N onto E. We conclude by Lemma 1.40 that
E is at most countable. |

1.43 Remark. The sets Z and Q are countable, but the set of irrationals is
uncountable.

Proof. Z =NU (—N)U {0} and Q = | ;2 ,{p/n : p € Z} are both countable
by Theorem 1.42ii.

If R\Q were countable, then R = (R\Q) U Q would also be countable, a
contradiction of Theorem 1.41iii. |

EXERCISES

1.6.0. Decide which of the following statements are true and which are false.
Prove the true ones and give counterexamples to the false ones.

a) Suppose that E is a set. If there exists a function f from E onto N,
then E is at most countable.

b) A dyadic rational is a point x € R such that x = n/2™ for some n € Z
and m € N. The set of dyadic rationals is uncountable.
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1.6.1.
1.6.2.

1.6.3.

1.6.4.
1.6.5.

1.6.6.

1.6.7.

The Real Number System

c) Suppose that A and B are sets and that f : A — Bis 1-1. If A is
uncountable, then B is uncountable.
d) If Ey, E»,...are finite sets, and

E:=FE x Ey x---:={(x1,x2,...):x; € E; foralljeN}

then E is countable.

Prove that the set of odd integers {1, 3, ...} is countable.

Prove that set of rational lattice points in space—that is, the set Q° :=
{(x,y,2) : x,y,z € Q}—is countable.

Suppose that A and B are sets and that B is uncountable. If there exists a
function which takes A onto B, prove that A is uncountable.

Suppose that A is finite and f is 1-1 from A onto B. Prove that B is finite.
Let f:A— Bandg: B — Canddefinego f:A— Cby(go f)(x):=
g(f(x).

a) Show thatif f g are 1-1 (respectively, onto), then g o f is 1-1 (respec-
tively, onto).

b) Prove that if f is 1-1 from A into B and By := {y : y = f(x) for some
x € A}, then f~!is 1-1 from By onto A.

c¢) Suppose that g is 1-1 from B onto C. Prove that f is 1-1 on A (respec-
tively, onto B) if and only if g o f is 1-1 on A (respectively, onto C).

Suppose thatn e Nand ¢ : {1,2,...,n} - {1,2,...,n}.

a) Prove that ¢ is 1-1 if and only if ¢ is onto.
b) [PiGEONHOLE PRINCIPLE] Suppose that E is a finite set and that f : E —
E. Prove that f is 1-1 on E if and only if f takes E onto E.

A number x¢ € R is called algebraic of degree n if it is the root of a poly-
nomial P(x) = aux" + --- 4+ ajx + ap, where a; € Z, a, # 0, and n is
minimal. A number xg that is not algebraic is called transcendental.

a) Prove thatifn € N and ¢ € Q, then n? is algebraic.

b) Prove that for each n € N the collection of algebraic numbers of
degree n is countable.

c) Prove that the collection of transcendental numbers is uncountable.
(Two famous transcendental numbers are 7 and e. For more informa-
tion on transcendental numbers and their history, see Kline [5].)



CHAPTER 2

Sequences in R

2.1 LIMITS OF SEQUENCES

An infinite sequence (more briefly, a sequence) is a function whose do-
main is N. A sequence f whose terms are x, := f(n) will be denoted by
X1, X2, ... 0T {Xp}peN OF {x,}52,, or {x,}. Thus 1,1/2,1/4,1/8, ... represents the
sequence {1/2”_1},,6N; —1,1,—1, 1, ... represents the sequence {(—1)"},eN; and
1,2,3,4, ... represents the sequence {n},cn.

It is important not to confuse a sequence {x,},eN With the set {x, :n € N};
these are two entirely different concepts. For example, as sequences,
1,2,3,4,...1s different from 2, 1, 3,4, ..., but as sets, {1, 2, 3,4, ...} is identi-
cal with {2, 1, 3,4, ...}. Again, the sequence 1, —1, 1, —1, ... is infinite, but the
set {(—1)" : n € N} has only two points.

The limit concept is one of the fundamental building blocks of analysis. Recall
from elementary calculus that a sequence of real numbers {x,} converges to a
number a if x, gets near a (i.e., the distance between a and x, gets small) as n
gets large. Thus, given ¢ > 0 (no matter how small), if n is large enough, |x, — a|
is smaller than ¢. This leads us to a formal definition of the limit of a sequence.

2.1 Definition.

A sequence of real numbers {x,} is said to converge to a real number a € R if
and only if for every ¢ > 0 there is an N € N (which in general depends on ¢)
such that

n> N implies |x, —a| <e.

We shall use the following phrases and notation interchangeably:

a) {x,} converges to a; b) x, converges to a; ¢) a = lim,_, o x,; d) x, — a as
n — oo; e) the limit of {x,} exists and equals a.

When x, — a asn — o0, you can think of x, as a sequence of approximations
to a, and ¢ as an upper bound for the error of these approximations. The number
N in Definition 2.1 is chosen so that the error is less than ¢ when n > N. In
general, the smaller ¢ gets, the larger N must be. (See, for example, Figure 2.1.)

Notice by definition that x, converges to a if and only if |x, — a|] — 0 as
n — oo. In particular, x,, — 0if and only if |x,| — 0 as n — oo.

According to Definition 2.1, to prove that a particular limit exists, given an
arbitrary ¢ > 0, no matter how small, we must describe how to choose an N such
that n > N implies |x, — a| < e. In particular, ¢ is usually introduced BEFORE

From Chapter 2 of Introduction to Analysis, Fourth Edition. William R. Wade.
Copyright © 2010 by Pearson Education, Inc. All rights reserved.
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FIGURE 2.1

N is specified, and N often is defined to depend on ¢. Since |x, — a| < ¢ for all
n > N, N CANNOT depend on n.

Before we actually prove that some concrete limits exist, we introduce addi-
tional terminology. Let P, be a property indexed by N. We shall say that P,
holds for large n if there is an N € N such that P, is true for alln > N. Hence a
loose summary of Definition 2.1 is that x,, converges to « if and only if |x, — a|
is small for large n. What we mean by this is that given any prescribed positive
quantity ¢ (no matter how small), we can choose N large enough so that |x, — a|
is less than ¢ for alln > N.

2.2 EXAMPLE.
i) Prove that 1/n — 0 as n — oo.

ii) If x, — 2, prove that (2x, + 1)/x, — 5/2 as n — oo.

Proof. i) Let ¢ > 0. Use the Archimedean Principle to choose N € N such
that N > 1/¢. By taking the reciprocal of this inequality, we see thatn > N
implies 1/n < 1/N < ¢. Since 1/n are all positive, it follows that |1/n| < ¢ for
alln > N.

STRATEGY for ii): By definition, we must show that

2%, +1 5 2—x,

Xn 2 2x,

is small for large n. The numerator of this last fraction will be small for large n
since x,, — 2, as n — oo. What about the denominator? Since x, — 2, x, will
be greater than 1 for large n, so 2x, will be greater than 2 for large n. Since
we made n large twice, we will make two restrictions to determine the N that
corresponds to ¢ in Definition 2.1. Let’s try to write all this down carefully to
be sure that it works out.

ii) Let ¢ > 0. Since x, — 2, apply Definition 2.1 to this ¢ > 0 to choose
Ni € N such that n > N; implies |x, — 2| < ¢. Next, apply Definition 2.1 with
¢ = 1 to choose N, such that n > N, implies |x, —2| < 1. By the Fundamental
Theorem of Absolute Values, we have n > N, implies x, > 1 (i.e., 2x, > 2).

Set N = max{N;, N} and suppose that n > N. Since n > N, we have
2 — xp| = |xn — 2| < €. Sincen > Ny, we have 0 < 1/2x;) < 1/2 < 1. It
follows that

<é

2x, +1 5 |2 — x,| &
—_ | = <
Xn 2 2xy, 2xy,

foralln > N. [ |
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Notice that in the proof of Remark 2.1 we forced two properties that held for
n>Nj,j=1,2,toholdforn > N by setting N equal to the maximum of Ny and
N>. It is clear that by this same process, if Ny, ..., N, have been chosen so that
for each j a property P; holds whenn > N; and if N = max{Ny, ..., N,}, then
all g properties Py, ..., P, hold simultaneously when n > N. We shall use this
device frequently below, but rarely write N explicitly as a maximum of integers
N again.

The following two results show that a given sequence can have no limits or
one limit, but no more.

2.3 EXAMPLE.

The sequence {(—1)"},eN has no limit.

Proof. Suppose that (—1)" — aasn — oo forsomea € R. Givene = 1,
there is an N € N such that n > N implies [(—1)" — a| < ¢. For n odd this
implies |1 +a| = | — 1 —al| < 1, and for n even this implies |1 —a| < 1. Hence,

2=1+1=l—=al+14+al<1+1=2
that is, 2 < 2, a contradiction. |
2.4 Remark. A sequence can have at most one limit.

Proof. Suppose that {x,} converges to both a and b. By definition, given
¢ > 0, there is an integer N such that n > N implies |x, — a| < &/2 and
|x, — b| < &/2. Thus it follows from the triangle inequality that

la —b| < |a—xu| + |xp — b| < é&;
thatis, |a — b| < ¢ for all ¢ > 0. We conclude, by Theorem 1.9, thata = 5. R

We shall use the following concept many times.

2.5 Definition.

By a subsequence of a sequence {x,},eN, we shall mean a sequence of the form
{xn, }ken, Where eachny e Nandny <np < - -+

Thus a subsequence x,,, X,,, ... of x1, x2, ... is obtained by “deleting” from
X1, x2, ... all x,’s except those such that n = nj for some k. For example, 1, 1, ...
is a subsequence of (—1)" obtained by deleting every other term (set ny = 2k),
and 1/2, 1/4, ...is asubsequence of 1/n obtained by deleting all nondyadic frac-
tions; that is, deleting 1/3, 1/5,1/6, 1/7, ... (set nx = 2%).
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Subsequences are sometimes used to correct a sequence that behaves badly or
to speed up convergence of another that converges slowly. For example, {1/n}
converges much more slowly to zero than its subsequence {1/2"}, and {(—1)"}
does not converge at all (see Example 2.3 above), but its subsequence 1, 1, ...
converges to 1 immediately.

If x, - a asn — oo, then the x,’s get near a as n gets large. Since ny gets
large as k does, it comes as no surprise that any subsequence of a convergent
sequence also converges.

2.6 Remark. If {x,},eN converges to a and {x, }xeN is any subsequence of
{X1}neN, then x,, converges to a as k — oo.

Proof. Let ¢ > 0 and choose N € N such that n > N implies |x, — a|] < e.
Since ny € Nand n; < np < ---, it is easy to see by induction that n; > k for
all k € N. Hence, k > N implies |x,, —a| < ¢; thatis,x,, - aask —oco. W

The following concepts also play an important role for the theory of
sequences.

2.7 Definition.

Let {x,} be a sequence of real numbers.

i) The sequence {x,} is said to be bounded above if and only if the set {x, :
n € N} is bounded above.

ii) The sequence {x,} is said to be bounded below if and only if the set {x, :
n € N} is bounded below.

iii) {x,}is said to be bounded if and only if it is bounded both above and below.

Combining Definitions 2.7 and 1.10, we see that {x,} is bounded above
(respectively, below) if and only if there is an M € R such that x, < M for
all n € N (respectively, if and only if there is an m € R such that x, > m for all
n € N). It is easy to check (see Exercise 2.1.4) that {x,} is bounded if and only if
there is a C > 0 such that |x,| < C for all n € N. In this case we shall say that
{xn} is bounded, or dominated, by C.

Is there a relationship between convergent sequences and bounded
sequences?

2.8 Theorem. FEvery convergent sequence is bounded.

StraTEGY: The idea behind the proof is simple (see Figure 2.1). Suppose that
Xp — a as n — oo. By definition, for large N the sequence xy, xy+1, ... must
be close to a, hence bounded. Since the finite sequence xi,...,xy_1 is also
bounded, it should follow that the whole sequence is bounded. We now make
this precise.
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Proof. Given ¢ = 1, thereis an N € N such that » > N implies |x, — a| < 1.
Hence by the triangle inequality, |x,| < 1 + |a| for all » > N. On the other
hand,if 1 <n < N, then

|x,| < M :=max{|x|, [x2],..., [xn]}.

Therefore, {x,} is dominated by max{M, 1 + |a|}. |

Notice that by Example 2.3, the converse of Theorem 2.8 is false.

EXERCISES

2.1.0.

2.1.1.

2.1.2.

2.1.3.

2.14.

2.1.5.

Decide which of the following statements are true and which are false.
Prove the true ones and provide a counterexample for the false ones.

a) If x, converges, then x,/n also converges.

b) If x, does not converge, then x,/n does not converge.

c¢) If x, converges and y, is bounded, then x, y, converges.

d) If x, converges to zero and y, > O for all n € N, then x, y, converges.

Using the method of Example 2.2i, prove that the following limits exist.

a) 2—1/n— 2asn — oo.

b) 1+7/y/n— lasn — oo.

¢) 3(1+1/n) —> 3asn — oc.

d) 2n*>+1)/(3n) — 2/3asn — oo.

Suppose that x, is a sequence of real numbers that converges to 1 as
n — oo. Using Definition 2.1, prove that each of the following limits
exists.

a) 1+42x, > 3asn — oo.
b) (rx, —2)/x, > T —2asn — oo.
c) (x2—e)/x, > 1 —easn — .

For each of the following sequences, find two convergent subsequences
that have different limits.

a) 3— (—1)"
b) (—D¥ +2
c) m—(=1)'n—1)/n

Suppose that x, € R.

a) Prove that {x,} is bounded if and only if there is a C > 0 such that
|x,| < C for alln € N.

b) Suppose that {x,} is bounded. Prove that x,/ nk — 0,asn — oo, for
allk € N.

Let C be a fixed, positive constant. If {b,} is a sequence of nonnegative
numbers that converges to 0, and {x,} is a real sequence that satisfies |x, —
a| < Cb, for large n, prove that x,, converges to a.
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2.1.6. Let a be a fixed real number and define x,, := a for n € N. Prove that the
“constant” sequence x; converges.
2.1.7. a) Suppose that {x,} and {y,} converge to the same real number. Prove
that x, — y, —> Oasn — oc.
b) Prove that the sequence {n} does not converge.
¢) Show that there exist unbounded sequences x, # y, which satisfy the
conclusion of part (a).
2.1.8. Suppose that {x,} is a sequence in R. Prove that x, converges to a if and
only if EVERY subsequence of x, also converges to a.

2.2 LIMIT THEOREMS

One of the biggest challenges we face (both for theory and applications) is decid-
ing whether or not a given sequence converges. Once we know that it converges,
we can often use other techniques to approximate or evaluate its limit.

One way to identify convergent sequences is by comparing a sequence whose
convergence is in doubt with another whose convergence property is already
known (see Example 2.10). The following result is the first of many theorems
that addresses this issue.

2.9 Theorem. [SQUEEZE THEOREM].
Suppose that {x,}, {y.}, and {w,} are real sequences.

i) Ifx, = a and y, — a (the SAME a) as n — oo, and if there is an Ny € N
such that

Xy <w, <y, forn=> Ny,

then w,, — a as n — oo.
il) If x, > 0asn — oo and {y,} is bounded, then x,y, — 0 as n — oo.

Proof. i) Let ¢ > 0. Since x, and y, converge to a, use Definition 2.1 and
Theorem 1.6 to choose Ni, N> € N such that n > N; implies —¢ < x, —a < ¢
and n > Ny implies —¢ < y, —a < €. Set N = max{Ny, N1, N»}. If n > N, we
have by hypothesis and the choice of N; and N, that

a—e<xp<wy <y, <a-+eg;

that is, |lw, — a| < ¢ for n > N. We conclude that w,, — a asn — oo.

i) Suppose that x, — 0 and that there is an M > 0 such that |y,| < M for
n € N. Let ¢ > 0 and choose an N € N such that n > N implies |x,| < ¢/M.
Then n > N implies

g
|Xnyn| < MM =e.

We conclude that x,y, — 0asn — oc. |

The following example shows how to use the Squeeze Theorem to find the
limit of a complicated sequence by ignoring its “less important” factors.
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2.10 EXAMPLE.

Find lim,_ o0 2" cos(n® — n% +n — 13).

Solution. The factor cos(n® —n?+n—13) looks intimidating, but it is superfluous
for finding the limit of this sequence. Indeed, since |cosx| < 1 for all x € R,
the sequence {27" cos(n® — n? + n — 13)} is dominated by 27", Since 2" > n,
it is clear by Example 2.2i and the Squeeze Theorem that both 27" — 0 and
27" cos(n® —n?+n—13) - 0asn — oo. |

The Squeeze Theorem can also be used to construct convergent sequences
with certain properties. To illustrate how this works, we now establish a result
that connects suprema and infima with convergent sequences.

2.11 Theorem. Let E C R. If E has a finite supremum (respectively, a finite
infimum), then there is a sequence x, € E such that x, — sup E (respectively, a
sequence y, € E such that y, — inf E) as n — oo.

Proof. Suppose that E has a finite supremum. For each n € N, choose (by
the Approximation Property for Suprema) an x, € E such thatsup £ — 1/n <
xp, < sup E. Then by the Squeeze Theorem and Example 2.2i, x, — sup E as
n — oo. Similarly, there is a sequence y, € E such that y, — inf E. |

Here is another result that helps to evaluate limits of specific sequences. This
one works by viewing complicated sequences in terms of simpler components.

2.12 Theorem. Suppose that {x,} and {y,} are real sequences and that « € R. If
{xn} and {y,} are convergent, then

i) lim (xp + yp) = lim x, + lim yp,
n—o0 n—oo n—oo
ii) lim (ax,) = o lim x,,
n—oo n—>oo
and
iii)

lim (x,y,) = (lim x,)( lim y,).
n— 00 n— 00 n— 00

If, in addition, y, # 0 and lim,,_, , y, # 0, then

iv) Cox, limyeo Xp

(In particular, all these limits exist.)
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Proof. Suppose that x, — x and y, — y asn — oo.

i) Let ¢ > 0 and choose N € N such that n > N implies |x, — x| < /2 and
lyn — y| < &/2. Thus n > N implies
€
2

&
[(n +yu) — (x + )| =< |xp — x|+ |y — I <§+ =e.

ii) It suffices to show that wx, — ax — 0asn — oo. Butx, —x — 0 as
n — 00, hence by the Squeeze Theorem, a(x, —x) — 0asn — oo.

iii) By Theorem 2.8, the sequence {x,} is bounded. Hence by the Squeeze
Theorem the sequences {x,(y, — y)} and {(x, — x)y} both converge to 0. Since

XpYn — Xy = Xqp(Yn — ¥) + (xn — x)y,

it follows from part i) that x,,y, — xy as n — co. A similar argument estab-
lishes part iv) (see Exercise 2.2.4). [ |

Theorem 2.12 can be used to evaluate limits of sums, products, and quotients.
Here is a typical example.

213 EXAMPLE.
Find lim,_, oo (n® + n% — 1) /(1 — 3n3).
Solution. Multiplying the numerator and denominator by 1/n3, we find that

nP4+n?—1 1+ 1/n)—1/n%)
1—-3n3 (1/n3) =3

By Example 2.2i and Theorem 2.12iii, l/nk = (l/n)k — 0, as n — oo, for any
k € N. Thus by Theorem 2.12i, ii, and iv,

o4t -1 1+40-0 1
lim = —— m
n—o00 1—3]13 0—3 3

The sequence {logn},cn fails to converge in a different way than {n(—1)"},en
does. Indeed, the terms log n get steadily larger as n — oo, but the terms n(—1)"
bounce back and forth between large positive values and large negative values.
It is sometimes convenient to emphasize this difference by generalizing limits to
include extended real numbers.

2.14 Definition.

Let {x,} be a sequence of real numbers.

i) {x,} is said to diverge to +oo (notation: x,, — 400 asn — 0o or lim,_, o X,
= 400) if and only if for each M € R there is an N € N such that

n >N implies x, > M.
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ii) {x,} is said to diverge to —oo (notation: x, — —oo as n — 00 or lim,— o0 X,
= —o0) if and only if for each M € R there is an N € N such that

n> N implies x, < M.

Notice by Definition 2.14i that x, — +oo if and only if given M € R, x,
is greater than M for sufficiently large n; that is, eventually x, exceeds every
number M (no matter how large and positive M is). Similarly, x, — —oo if
and only if x,, eventually is less than every number M (no matter how large and
negative M is).

It is easy to see that the Squeeze Theorem can be extended to infinite limits
(see Exercise 2.2.7). The following is an extension of Theorem 2.12.

2.15 Theorem. Suppose that {x,} and {y,} are real sequences such that x, —
400 (respectively, x, — —o0) as n — oo.

i) If y, is bounded below (respectively, v, is bounded above), then

lim (x, + y,) = 400 (respectively, lim (x, + y,) = —0o0).
n—>oo n—oo

i) Ifa > 0, then

lim (@x,) = +o00 (respectively, lim (ax,) = —00).
n—00 n—00

iii) If y, > My for some My > 0 and all n € N, then

lim (x,y,) = +00 (respectively, lim (x,y,) = —00).
n—oo n—oo

iv) If {yn} is bounded and x, # 0, then

lim 2% = 0.
n—>00 Xy,

Proof. We suppose for simplicity that x, — 400 asn — oo.

i) By hypothesis, y, > My for some My € R. Let M € Rand set M| = M — M.
Since x, — 400, choose N € N such that n > N implies x, > Mj. Then
n > N implies x, + y, > M| + My = M.

ii) Let M € R and set M| = M/«a. Choose N € N such that n > N implies
X, > M. Since o > 0, we conclude that ax,, > aM; = M foralln > N.

iii) Let M € R and set M; = M/M,. Choose N € N such that n > N implies
Xxp > M;. Then n > N implies x,,y, > MMy = M.

iv) Let ¢ > 0. Choose My > 0 such that |y,| < My and M; > 0 so large that
Moy/M; < e. Choose N € N such that n > N implies x, > M;. Thenn > N
implies

Yn
Xn

|Vl My
= < — <&
Xn M,
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If we adopt the conventions

X+00=00, X—00=—00, x €R,

X-00=00, X-(—00)=—00, x > 0,

X-00=—00, x-(—00)=o00, x <0,

o0+ 00 =00, —00—00=—00,

0000 = (—00) - (—00) =00, and 00-(—00) = (—00) 00 = —00,

then Theorem 2.15 contains the following corollary.

2.16 Corollary. Let{x,}, {y,} be real sequences and a, x, y be extended real num-
bers. If x,, — x and y, — y, as n — oo, then

lim (xp, + yn) =x+y
n—oo
provided that the right side is not of the form oo — oo, and

lim (ax,;) = ax, lim (x,y,) = xy
n—oo n—oo

provided that none of these products is of the form 0 - £oc.

We have avoided the cases oo — co and 0 - oo because they are “inde-
terminate.” For a discussion of indeterminate forms, see I’'HOpital’s Rule in
Section 4.4.

Theorems 2.12 and 2.15 show how the limit sign interacts with the algebraic
structure of R. (Namely, the limit of a sum (product, quotient) is the sum (prod-
uct, quotient) of the limits.) The following theorem shows how the limit sign
interacts with the order structure of R.

2.17 Theorem. [COMPARISON THEOREM].
Suppose that {x,} and {y,} are convergent sequences. If there is an Ny € N such
that

Xn < yn forn > Ny, (1)
then

lim x, < lim y,.
n—oo n—oo

In particular, if x, € [a, b] converges to some point c, then ¢ must belong to
la, D].

Proof. Suppose that the first statement is false; that is, that (1) holds but x :=
lim,,_, » X, is greater than y := lim,_, o y,. Sete = (x —y)/2. Choose N1 > Ny
such that |x, — x| < € and |y, — y| < € for n > Nj. Then for such an n,

X =y xX—=y
Xp>X—&E=X— 2 =y+ — =y+ée>y,
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which contradicts (1). This proves the first statement.
We conclude by noting that the second statement follows from the first,
since a < x, < bimpliesa < c¢ < b. [ |

One way to remember this result is that it says the limit of an inequality is
the inequality of the limits, provided these limits exist. We shall call this process
“taking the limit of an inequality.” Since x,, < y, implies x, < y,, the Compar-
ison Theorem contains the following corollary: If {x,} and {y,} are convergent
real sequences, then

Xn < Yn, n>=Np, imply nli)ngoxn < nli)ngoyn.

It is important to notice that this result is false if < is replaced by <; that is,

Xn < Yn, n > Ng, doesNOTimplythat lim x, < lim y,.
n—oo n—oo

For example, 1/n> < 1/n, but the limits of these sequences are equal.

EXERCISES

2.2.0. Determine which of the following statements are true and which are
false. Prove the true ones and provide counterexamples for the false
ones.

a) If x, > ooand y, > —oo, thenx, + y, - 0asn — oo.
b) If x, > —oo, then 1/x, — 0asn — oo.

c) Ifx, — 0, then 1/x,, - cocasn — oo.

d) If x, — oo, then (1/2)*» — 0 asn — oo.

2.2.1. Prove that each of the following sequences converges to zero.

a) x, =sin(logn +n’ + e”z)/n
b) x, =2n/(n* + )

) xn=(2n+1)/(n++/2)
d) x, =n/2"

2.2.2. Use Definition 2.14 to prove that each of the following sequences

diverges to +00 or to —oo.
a) x, =n>—n
b) x, =n —3n?

n?+1

C) xp =
n
d) x, =n*Q2 +sin(@® +n+1))
2.2.3. Find the limit (if it exists) of each of the following sequences.

a) X, = 2+43n—4n%)/(1 —2n + 3n?)
b) x, =@ +n—-2)/2n3+n-2)
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2.24.

2.2.5.

2.2.6.

2.2.7.

2.2.8.

Sequences in R

C) xp=+3n+2—.n
d) xpy=Win+1—-Vn—-1)/V/9n+1—-+/n+2)

a) Prove Theorem 2.12iv.
b) Prove Corollary 2.16.

Suppose that x € R, x, > 0, and x, — x asn — oo. Prove that
VXn — /x asn — oo. [For the case x = 0, use inequality (8) in
Section 1.2.]

Prove that given x € R there is a sequence r,, € Q such that r, — x as
n — oo.

Suppose that x and y are extended real numbers and that {x,}, {y,}, and
{w,} are real sequences.

a) [Squeeze THEOREM FOR R]. If x, — x and y, — x, asn — oo, and
xp < w, <y, forn €N, prove that w, — x asn — oc.

b) [ComparisON THEOREM FOR R]. If x, — x and y, — y, asn — oo,
and x, < y, forn € N, prove that x < y.

Using the result in Exercise 2.2.5, prove the following results.

a) Supposethat0 < x; < landx,y; =1—+/1—x,forn e N. Ifx, —> x
asn — oo, thenx =0or 1.

b) Suppose that x; > 3 and x,41 =2+ /x, —2forn € N. If x, — x as
n — oo, then x = 3.

(c) Suppose that x; > 0 and x,4+1 = /2 +x, forn € N. If x, — x as
n — oo, then x = 2. What happens if x; > —2?

. This exercise was used in Section 1.6.

a) Suppose that 0 < y < 1/10" for some integer n > 0. Prove that there
is an integer 0 < w < 9 such that

w - w 1
1o+ =Y = Jor+ + lon+1
b) Prove that given x € [0, 1) there exist integers 0 < x; < 9 such that
foralln € N,
" Xk " Xk 1
S oy L
kK = k
P 10 P 10 107
c) Prove that given x € [0, 1) there exist integers 0 < xx < 9, k € N,
such that

n
. Xk
x = lim E —.
n—oo 10k
k=1

d) Using part c), prove that 0.5 = 0.4999...and 1 = 0.999.. ..

NOTE: The numbers x; are called digits of x, and 0.x1x; ... is called a decimal
expansion of x. Unless x is a rational number whose denominator is of the form
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2i5/ for some integers i > 0, j > 0, this expansion is unique; that is, there is
only one sequence of integers {x;} that satisfies part (c). On the other hand, if
x is a rational number whose denominator is of the form 25/, then there are
two sequences {x;} that satisfy part (c), one that satisfies x; = 0 for large k and
one that satisfies x; = 9 for large k (see part d). We shall identify the second
sequence by saying that it terminates in 9s.

2.3 BOLZANO-WEIERSTRASS THEOREM

Notice that although the sequence {(—1)"} does not converge, it has conver-
gent subsequences. In this section we shall prove that this is a general principle.
Namely, we shall establish the Bolzano—Weierstrass Theorem, which states that
every bounded sequence has a convergent subsequence.

We begin with a special case (monotone sequences) for which the Bolzano-
Weierstrass Theorem is especially transparent. Afterward, we shall use this spe-
cial case to obtain the general result.

2.18 Definition.

Let {x,},en be a sequence of real numbers.

i) {x,} is said to be increasing (respectively, strictly increasing) if and only if
x1 <xp <--- (respectively, x; < xp < --+).
i) {x,} is said to be decreasing (respectively, strictly decreasing) if and only if

X1 > xp > --- (respectively, x; > x3 > ---).
iii) {x,} is said to be monotone if and only if it is either increasing or
decreasing.

(Some authors call decreasing sequences nonincreasing and increasing
sequences nondecreasing.)

If {x,} is increasing (respectively, decreasing) and converges to a, we shall
write x, 1 a (respectively, x, | a), asn — oo. Clearly, every strictly increas-
ing sequence is increasing, and every strictly decreasing sequence is decreasing.
Also, {x,} is increasing if and only if the sequence {—x,} is decreasing.

By Theorem 2.8, any convergent sequence is bounded. We now establish the
converse of this result for monotone sequences. (For an extension to extended
real numbers, see Exercise 2.3.6.)

2.19 Theorem. [MONOTONE CONVERGENCE THEOREM].
If {x,} is increasing and bounded above, or if {x,} is decreasing and bounded
below, then {x,} converges to a finite limit.

Proof. Suppose first that {x,} is increasing and bounded above. By the Com-
pleteness Axiom, the supremum a := sup{x, : n € N} exists and is finite. Let

¢ > 0. By the Approximation Property for Suprema, choose N € N such that

a—¢e<xy <a.
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Since xy < x, forn > N and x, <aforalln € N, it follows thata—¢ < x,, <a
for all n > N. In particular, x, * a as n — oo.

If {x,} is decreasing with infimum b := inf{x, : n € N}, then {—x,} is
increasing with supremum —b (see Theorem 1.20). Hence, by the first case
and Theorem 2.12ii,

b=—(b) =~ Jig (~o) = Jig,xn "

The Monotone Convergence Theorem is used most often to show that a limit

exists. Once existence has been established, it is often easy to find the value
of that limit by using Theorems 2.9 and 2.12. The following examples illustrate
this fact.

2.20 EXAMPLE.

It

la] < 1,thena” — 0asn — oo.

Proof. 1t suffices to prove that |a|" — 0 as n — oo. First, we notice that |a|"
is monotone decreasing since by the Multiplicative Property, |a| < 1 implies
la|"*! < |a|" for all n € N. Next, we observe that |a|" is bounded below (by
0). Hence by the Monotone Convergence Theorem, L := lim,_, o |a|" exists.

Take the limit of the algebraic identity la|™t! = |a| - |a|", as n > oo. By
Remark 2.6 and Theorem 2.12, we obtain L = |a| - L. Thus either L = 0 or
la| = 1. Since |a| < 1 by hypothesis, we conclude that L = 0. |

2.21 EXAMPLE.

It

a > 0,thena!/" - 1asn — oo.

Proof. We consider three cases.

Casel.a = 1. Thena'/" = 1 for all n € N, and it follows that a'/” — 1 as
n — oo.

Case 2. a > 1. We shall apply the Monotone Convergence Theorem. To
show that {a'/"} is decreasing, fix n € N and notice that ¢ > 1 implies a" ! >
a". Taking the n(n + 1)st root of this inequality, we obtain a!/" > q!/*+D);
that is, a!/" is decreasing. Since a > 1 implies a!/* > 1, it follows that a'/"
is decreasing and bounded below. Hence, by the Monotone Convergence
Theorem, L := lim,_o a'/" exists. To find its value, take the limit of the
identity (a'/®)? = ¢!/* asn — oo. We obtain L?> = L; thatis, L = 0 or 1.
Since a!/" > 1, the Comparison Theorem shows that L > 1. Hence L = 1.

Case 3. 0 < a < 1. Then 1/a > 1. It follows from Theorem 2.12 and Case
2 that

1 1
lim ¢'/" = lim == =1 .
n—00 n—00 1/a1/n 11mn—>oo(1/a)l/n

Next, we introduce a monotone property for sequences of sets.
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2.22 Definition.

A sequence of sets {1, },¢eN is said to be nested if and only if

h2hL2---.

In Chapters 3, 8, and 9, we shall use this concept to study continuous func-
tions. Here, we use it to establish the Bolzano—Weierstrass Theorem. All of
these applications depend in a fundamental way on the following result.

2.23 Theorem. [NESTED INTERVAL PROPERTY].

If {I,}eN is a nested sequence of nonempty closed bounded intervals, then E :=
Mo I is nonempty. Moreover, if the lengths of these intervals satisfy |1,| — 0
as n — oo, then E is a single point.

Proof. Let I, = [ay, by,]. Since {I,} is nested, the real sequence {a,} is increas-
ing and bounded above by by, and {b, } is decreasing and bounded below by a;
(see Figure 2.2). Thus by Theorem 2.19, there exist a, b € R such that a, 1 a
and b, | b asn — oo. Since a, < b, for all n € N, it also follows from the
Comparison Theorem that a, < a < b < b,. Hence, a number x belongs to
I, for alln € Nif and only if ¢ < x < b; that is, if and only if x € [a, b]. In
particular, any x € [a, b] belongs to all the I,,’s.

[ e | |

T T 1 1 1

a, a, ay ay...a b...by by b, b,
FIGURE 2.2

We have proved that there is exactly one number that belongs to all the 7,,’s
if and only if « = b. Butif |I,| - 0 asn — oo, then b, —a, — 0asn — oo.
Hence, by Theorem 2.12, a does equal b when |[,| — 0 as n — oo. |

The next two results show that neither of the hypotheses of Theorem 2.23 can
be relaxed.

2.24 Remark. The Nested Interval Property might not hold if “closed” is
omitted.

Proof. The intervals I, = (0, 1/n), n € N, are bounded and nested but not
closed. If there were an x € I, foralln € N, then 0 < x < 1/n; thatis,n < 1/x
for all n € N. Since this contradicts the Archimedean Principle, it follows that
the intervals 7, have no point in common. |

2.25 Remark. The Nested Interval Property might not hold if “bounded” is
omitted.
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Proof. The intervals I, = [n,00), n € N are closed and nested but not
bounded. Again, they have no point in common. |

We are now prepared to establish the main result of this section.

2.26 Theorem. [BOLZANO-WEIERSTRASS THEOREM].
Every bounded sequence of real numbers has a convergent subsequence.

Proof. We begin with a general observation. Let {x,} be any sequence. If
E = AU B are sets and E contains x, for infinitely many values of n, then at
least one of the sets A or B also contains x, for infinitely many values of n. (If
not, then E contains x, for only finitely many n, a contradiction.)

Let {x,} be a bounded sequence. Choose a, b € R such that x,, € [a, b] for
all n € N, and set Iy = [a, b]. Divide Iy into two halves, say I’ = [a, (a + b)/2]
and I” = [(a + b)/2, b]. Since Iy = I’ U I”, at least one of these half-intervals
contains x, for infinitely many n. Call it /1, and choose n; > 1 such that
x,, € I1. Notice that |I1| = [Iy|/2 = (b — a)/2.

Suppose that closed intervals Iy > I} D ... D I, and natural numbers
ny <np < ...< n, have been chosen such that for each 0 < k < m,

| 1| = Z—ka, Xp, € Iy, and x, € Iy for infinitely many n. 2)

To choose I,+1, divide I, = [an, biy] into two halves, say I’ = [ay, (an +
by)/2)and I” = [(am+bym)/2, by]. Since I, = I'UI", at least one of these half-
intervals contains x, for infinitely many »n. Call it I,,, 11, and choose n;,+1 > ny,
such that x,,_, € I,41. Since

|I,| b—a
[m+1| = = ol
it follows by induction that there is a nested sequence {I;};en Of nonempty
closed bounded intervals that satisfy (2) for all k € N.
By the Nested Interval Property, there is an x € R that belongs to I; for all
k € N. Since x € I, we have by (2) that

2

0 < |xp, —x| < Ikl <

for all k € N. Hence by the Squeeze Theorem, x,, — x as k — oo. |

EXERCISES

2.3.0. Decide which of the following statements are true and which are
false. Prove the true ones and provide counterexamples for the false
ones.

a) If x, is strictly decreasing and 0 < x, < 1/2, thenx,, - 0 asn — oo.



2.3.1.

2.3.2.

2.3.3.

2.34.

2.3.5.

236

2.3.7.

2.3.8.
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b) If

_(n— Dcos(n®+n+1)

B 2n — 1 ’
then x, has a convergence subsequence.

c¢) If x, is a strictly increasing sequence and

Xn

1
lxn| <1+ =
n

forn=1,2,...,thenx, - lasn — oo.
d) If x, has a convergent subsequence, then x,, is bounded.

Suppose that xop € (—1,0) and x, = /x,—1 + 1 — 1 for n € N. Prove that
xp 1 0 as n — oco. What happens when xg € [—1, 0]?

Suppose that 0 < x; < 1 and x,41 = 1 — /1 —x, for n € N. Prove
that x, | 0 asn — oo and x,41/x, — 1/2,asn — oo. (Exercise 4.3 in
Apostol [1].)

Suppose that xo > 2 and x,, = 2 + /x,—1 — 2 for n € N. Use the Mono-
tone Convergence Theorem to prove that either x,, — 2 or x, — 3 or as
n — 0o.

Suppose that xo € Rand x, = (1+x,-1)/2 for n € N. Use the Monotone
Convergence Theorem to prove that x, — 1 asn — oo.

Prove that

1 x>0
lim x/@=D = 1o x=0
n— oo

-1 x < 0.

This result is used in Section 6.3 and elsewhere.

a) Suppose that {x,} is a monotone increasing sequence in R (not neces-
sarily bounded above). Prove that there is an extended real number
x such that x, — x asn — oo.

b) State and prove an analogous result for decreasing sequences.

Suppose that E C R is a nonempty bounded set and that supE ¢ E.
Prove that there exists a strictly increasing sequence {x,} that converges
to sup E such that x, € E for alln € N.

Let 0 < y; < x1 and set

Xn + Yn

and  ynp41 = /XnYn, ne€N.

Xn+1 =

a) Prove that0 < y, < x, foralln € N.

b) Prove that y, is increasing and bounded above, and that x,, is decreas-
ing and bounded below.

¢) Prove that 0 < x,,41 — Ynt1 < (x1 — y1)/2" forn € N.
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d) Prove that lim,—, x;, = lim,— oo y,. (This common value is called
the arithmetic-geometric mean of x| and y;.)

2.3.9. Suppose that xg =1, yo =0,

Xn = Xp—1 +2yp—1, and  y, = Xp—1 + Yn-1
for n € N. Prove that x> — 2y2 = +1 for n € N and

Xn
— —> /2 asn — oo.
Yn

2.3.10. [ARrcHIMEDES] Suppose that xo = 2/3, yo = 3,

2Xp—1Yn—1
Xp = ————,
Xn—1+ Yn—1
and
Yn = A/XnYn—-1
forn € N.

a) Prove thatx, | x and y, 1 y, asn — oo, for some x, y € R.
b) Prove that x = y and

3.14155 < x < 3.14161.
(The actual value of x is .)

2.4 CAUCHY SEQUENCES

In this section we introduce an extremely powerful and widely used concept.

By definition, if {x,} is a convergent sequence, then there is a point @ € R such
that x, is near a for large n. If the x,,’s are near a, they are certainly near each
other. This leads us to the following concept.

2.27 Definition.

A sequence of points x, € Ris said to be Cauchy (in R) if and only if for every
¢ > 0 there is an N € N such that

n,m >N imply |x, — x| <e. 3)

The next two results show how this concept is related to convergence.

2.28 Remark. If {x,} is convergent, then {x,} is Cauchy.
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Proof. Suppose that x, — a asn — oo. Then by definition, given ¢ > 0 there
isan N € N such that |x, —a| < ¢/2foralln > N. Hence if n,m > N, it
follows from the triangle inequality that

& &
|xn_xm|§|xn—a|+|xm—a|<§+§=g‘ [}

The following result shows that the converse of Remark 2.28 is also true (for
real sequences).

2.29 Theorem. [CAUCHY].
Let {x,} be a sequence of real numbers. Then {x,} is Cauchy if and only if {x,}
converges (to some point a in R).

STRATEGY: By Remark 2.28 we need only show that every Cauchy sequence
converges. Suppose that {x,} is Cauchy. Since the x,’s are near each other, the
sequence {x,} should be bounded. Hence, by the Bolzano—Weierstrass Theo-
rem, {x,} has a convergent subsequence, say x,,. This means that for large £,
the x,,’s are near some point ¢ € R. But since {x,} is Cauchy, the x,’s should
be near the x,,’s for large n, hence also near a. Thus the full sequence should
converge to that same point a. Here are the details.

Proof. Suppose that {x,} is Cauchy. Given ¢ = 1, choose N € N such that
|xy —xm| < 1for allm > N. By the triangle inequality,

[xm| < 14 |xn] form > N.

Therefore, {x,} is bounded by M = max{|x1], [x2], ..., |[xn=1], 1 + |xn]}.
By the Bolzano—Weierstrass Theorem, {x,} has a convergent subsequence,
say x,, = a ask — oo. Lete > 0. Since x, is Cauchy, choose N; € N such that

. I3
n,m > N imply |xn—xm|<§.

Since x,, — a as k — oo, choose N, € N such that

. &
k> N, implies |x, —al| < 3

Fix k > N, such that ny > N;. Then
|xp —al < |xp — Xy | + |xn, —al <&
for alln > N;. Thus x, — a asn — oo. [ |

This result is extremely useful because it is often easier to show that a
sequence is Cauchy than to show that it converges. The reason for this, as the
following example shows, is that we can prove that a sequence is Cauchy even
when we have no idea what its limit is.



60

60 Chapter 2 Sequences in R

2.30 EXAMPLE.

Prove that any real sequence {x,} that satisfies

1
|xn_xn+1|§2—n, n €N,
is convergent.
Proof. 1If m > n, then
|xn _xm| = |xn — Xn+1 +xn+1 — Xn42 + et X _xm|

< xp — Xpgp1l + X1 — Xpg2l + -+ X1 — X
- 1

= +---+ o

m-—n

1
2n—1

Z 1 1 (1 1 )
S  An—1 - - :
P 2 2 2m—n

(The last step uses Exercise 1.4.4c, for a = 2.) It follows that |x, — x,| <
1/2"=1 for all integers m > n > 1. But given ¢ > 0, we can choose N € N so
large that n > N implies 1/2"~! < &. We have proved that {x,} is Cauchy. By
Theorem 2.29, therefore, it converges to some real number. |

The following result shows that a sequence is not necessarily Cauchy just
because x,, is near x,; for large n.

2.31 Remark. A sequence that satisfies x,+1 — x, — 0 is not necessarily Cauchy.

Proof. Consider the sequence x, := logn. By basic properties of logarithms
(see Exercise 5.3.7),

Xn41 — Xp = log(n + 1) — logn =log((n + 1)/n) — log1 =0

as n — o0. {x,} cannot be Cauchy, however, because it does not converge; in
fact, it diverges to 400 as n — 0. |

EXERCISES

2.4.0. Decide which of the following statements are true and which are false.
Prove the true ones and provide a counterexample for the false ones.

a) If {x,} is Cauchy and {y,} is bounded, then {x, y,} is Cauchy.

b) If {x,} and {y,} are Cauchy and y, # O for all n € N, then {x,/y,} is
Cauchy.

c¢) If {x,} and {y,} are Cauchy and x, +y, > Oforalln € N, then {1/(x, +
y,) cannot converge to zero.
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d) If {x,} is a sequence of real numbers that satisfies x,x — xox-1 — 0 as
k — ocandif x, = 0foralln # 2%k €N, then {x,} is Cauchy.

Prove that if {x,} is a sequence that satisfies

2n? +3

Xnl <
| nl_n3+5n2+3n+1

for all n € N, then {x,} is Cauchy.

Suppose that x, € Z for n € N. If {x,} is Cauchy, prove that x, is eventu-
ally constant; that is, that there exist numbers ¢ € Z and N € N such that
x, =aforalln > N.

Suppose that x, and y, are Cauchy sequences in R and that a € R.

a) Without using Theorem 2.29, prove that ax, is Cauchy.
b) Without using Theorem 2.29, prove that x, + y, is Cauchy.
¢) Without using Theorem 2.29, prove that x, y, is Cauchy.

Let {x,} be a sequence of real numbers. Suppose that for each ¢ > 0 there
isan N € Nsuch thatm > n > N implies |}, x| < e. Prove that

n
lim Zxk
n—oo
k=1

exists and is finite.
Prove that lim,,—, oo Y 7_;(—1)¥/k exists and is finite.
Let {x,} be a sequence. Suppose that there is an a € (0, 1) such that

[Xp41 — X4| < a"

for all n € N. Prove that x,, — x for some x € R.

a) Let E be a subset of R. A point a € R is called a cluster point of E if
E N (a —r,a+r) contains infinitely many points for every r > 0. Prove
that a is a cluster point of E if and only if for each r > 0, EN (a —
r,a + r)\{a} is nonempty.

b) Prove that every bounded infinite subset of R has at least one clus-
ter point.

a) A subset E of Riis said to be sequentially compact if and only if every
sequence x, € E has a convergent subsequence whose limit belongs to
E. Prove that every closed bounded interval is sequentially compact.

b) Prove that there exist bounded intervals in R that are not sequentially
compact.

c) Prove that there exist closed intervals in R that are not sequentially
compact.

*2.5 LIMITS SUPREMUM AND INFIMUM

This section uses no material from any other enrichment section.
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In some situations (e.g., the Root Test in Section 6.3), we shall use the follow-
ing generalization of limits.

2.32 Definition.

Let {x,} be a real sequence. Then the limit supremum of {x,} is the extended
real number

limsupx, := lim (sup xg), (4)
n—o00 n—=>00 k>p

and the limit infimum of {x,} is the extended real number

liminf x,, := lim (inf xg).
n—o00 n—>00 k>n

Before we proceed, we must show that the limits in Definition 2.32 exist as
extended real numbers. To this end, let {x,} be a sequence of real numbers and
consider the sequences

sp = supxg :=sup{xx : k >n} and ¢, = inf x; ;= inf{x; : k > n}.
k>n k>n

Each s, and ¢, is an extended real number, and by the Monotone Property, s, is
a decreasing sequence and #, an increasing sequence of extended real numbers.
In particular, there exist extended real numbers s and ¢ such that s, | s and
tp 1t asn — oo (see Exercise 2.3.6). These extended real numbers are, by
Definition 2.32, the limit infimum and limit supremum of the sequence {x,}.

Here are two examples of how to compute limits supremum and limits
infimum.

2.33 EXAMPLE.

Find lim sup, _, -, x, and lim inf,, 5, x,, if x, = (—1)".

Solution. Since supkzn(—l)k = 1 for all n € N, it follows from Definition 2.32
that lim sup,,_, ., x, = 1. Similarly, lim inf, o x, = —1. |
2.34 EXAMPLE.

Find lim sup,,_, o, x, and lim inf, oo x, if x, = 1 4+ 1/n.

Solution. Since sup.,(1 +1/k) = 1+ 1/nforalln € N, lim sup,_,  x, = 1.
Since infy>,(1 + 1/k) = 1 for alln € N, lim inf,_ o x, = 1. |

These examples suggest that there is a connection among limits supremum,
limits infimum, and convergent subsequences. The next several results make
this connection clear.



Section 2.5 Limits Supremum and Infimum 63

2.35 Theorem. Let {x,} be a sequence of real numbers, s = lim sup,_, o, xn, and
t = lim inf,_, o x,. Then there are subsequences {xy, }ren and {x; j1jeN such that
Xp, — sask — ooandxgj —>tasj— oo.

Proof. We will prove the result for the limit supremum. A similar argument
establishes the result for the limit infimum. Let s, = sup;-, x;x and observe
thats, | s asn — oc. -

Case 1. s = co. Then by definition s,, = co for alln € N. Since s; = oo, there
isan n; € N such that x,, > 1. Since 5,41 = 0o, thereisanny > ny + 1 > ny
such that x,, > 2. Continuing in this manner, we can choose a subsequence
{x,,} such that x,, > k for all k € N. Hence, it follows from the Squeeze
Theorem for R (see Exercise 2.2.7) that x,, — oo = s as k — oo.

Case 2. s = —oo. Since s, > x, foralln € Nand s, — —ooasn — oo, it
follows from the Squeeze Theorem for R that x, - —oco = s asn — oco.

Case 3. —oo < s < o0o. Set ng = 0. By Theorem 1.14 (the Approximation
Property for Suprema), there is an integer n; € N such that s, 11 — 1 < x,, <
Sno+1. Similarly, there is an integer n, > ny + 1 > ny such that s, 1 — 1/2 <
Xp, < 8y,+1. Continuing in this manner, we can choose integersny <np < - --
such that

1
Snp_1+1 — % < Xpp = Spp_1+1 (5)

for k € N. Since s,, ,+1 — s as k — oo, we conclude by the Squeeze Theorem
that x,, — s ask — oo. |

This observation leads directly to a characterization of limits in terms of limits
infimum and limits supremum.

2.36 Theorem. Let {x,} be a real sequence and x be an extended real number.
Then x,, — x as n — oo if and only if

limsup x, = liminfx, = x. (6)
n—00 n—00

Proof. Suppose that x, — x asn — oo. Then x,, — x as k — oo for
all subsequences {x,,}. Hence, by Theorem 2.35, limsup,_, ., x» = x and
lim inf,_, o x, = x; that s, (6) holds.

Conversely, suppose that (6) holds.

Case 1. x = foo0. By considering +x, we may suppose that x = co. Thus
given M € R there is an N € N such that infy>n x; > M. It follows that
x, > M for all n > N; thatis, x,, — coasn — oo.

Case 2. —0co < x < 0o. Let ¢ > 0. Choose N € N such that

£ . €
supxg —x < — and x — inf xx < =.
k>N 2 k>N 2
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Let n, m > N and suppose for simplicity that x, > x,,. Then

. & &
|Xp — Xm| =Xp — X < supxx —x+x— inf xp < -+ - =c¢.
k>N k=N 22

Thus {x,} is Cauchy and converges to some finite real number. But by Theo-
rem 2.35, some subsequence of {x,} converges to x. We conclude that x,, — x
asn — 00. |

Theorem 2.35 also leads to the following geometric interpretation of limits
supremum and limits infimum.

2.37 Theorem. Let {x,} be a sequence of real numbers. Then limsup,_, o, X,
(respectively, liminf,,_, « x,) is the largest value (respectively, the smallest value)
to which some subsequence of {x,} converges. Namely, if x,, — x as k — o0,
then

liminfx, < x < limsup x,. (7)
n—00 n—00

Proof. Suppose that x,, — x as k — oo. Fix N € N and choose K so large
that k > K implies ny > N. Clearly,

inf x; < x,, < sup x;
j=N j>N

for all k > K. Taking the limit of this inequality as k — oo, we obtain

inf Xj <x < sup xj.
jzN j=N

Taking the limit of this last inequality as N — oo and applying Definition 2.32,
we obtain (7). |

We close this section with several other properties of limits supremum and
limits infimum.

2.38 Remark. If {x,} is any sequence of real numbers, then

liminf x, < lim sup x,,.
n—oo n—o0

Proof. Since infy>, x; < supy, x; for all n € N, this inequality follows from
Theorem 2.17 (the Comparison Theorem). [

The following result is an immediate consequence of Definition 2.32, the
Comparison Theorem, and the Monotone Convergence Theorem.

2.39 Remark. A real sequence {x,} is bounded above if and only if
lim sup,_, ., X, < 00, and is bounded below if and only if liminf,,_, o, x, > —o00.
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The following result shows that we can take limits supremum and limits infi-
mum of inequalities.

2.40 Theorem. Ifx, <y, fornlarge, then

limsupx, <limsupy, and liminfx, < liminfy,. 8)
n— 00 n—00 =00 n—0o0

Proof. 1f x; < y; for k > N, then sup;., xx =< sup;-, yx and infy>, xx <
infy>, yx for any n > N. Taking the limit of these inequalities as n — oo, we

obtain (8). |
EXERCISES
2.5.1. Find the limit infimum and the limit supremum of each of the following
sequences.

a) x, =3—(—D"

b) x, = cos (nm/2)

) xp = (=" 4+ (=1)"/n

d) x, =~1+4+n2/2n -15)

e) x, = yn/n, where {y,} is any bounded sequence
£) % =n( + (=)™ +n~ (=" = 1)

g) xn =@ +n*—n+1)/m>+2n+5)

2.5.2. Suppose that {x,} is a real sequence. Prove that

— lim sup x, = liminf(—x;,)
n— 00 n—00

and

— liminf x, = limsup(—x;,).
n—00 n—00

2.5.3. Let {x,} be a real sequence and r € R.

a) Prove that

limsupx, <r implies x, <r
n—oo

for n large.
b) Prove that

limsupx, > r implies x, >r
n—oo

for infinitely many n € N.
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2.5.4. Suppose that {x,} and {y,} are real sequences.

a) Prove that

liminfx, + liminfy, < liminf(x, + y;)
n—o00 n—00 n—00

< limsup x, + liminf y,
n—oo

n—>oo
< limsup(x, + y,) < limsup x, + limsup y,,
n—oo n—odo n—oo

provided that none of these sums is of the form oo — oc.
b) Show that if lim,_, » x, exists, then

liminf(x, + y,) = lim x, + liminf y,
n—00 n—00 n—00

and

limsup(x, + y,) = lim x, + limsup yj,.
n—00 n—00 n—00

c) Show by examples that each of the inequalities in part (a) can be strict.

2.5.5. Let {x,} and {y,} be real sequences.

a) Suppose that x, > 0 and y, > 0 for each n € N. Prove that

lim sup(x,y,) < (lim sup x,) (lim sup yy,),
n— oo n—>oo n—oo

provided that the product on the right is not of the form 0 - co. Show
by example that this inequality can be strict.
b) Suppose that x, < 0 <y, for n € N. Prove that

(liminf x,,) (lim sup y,) < liminf(x, y,),
n— 00 n— 00 n—00

provided that none of these products is of the form 0 - co.

2.5.6. Suppose that x, > 0 and y, > O for all » € N. Prove that if x, — x as

n — oo (x may be an extended real number), then

lim sup(x, y,) = x lim sup y,,
n—oo n—oo

provided that none of these products is of the form 0 - co.

2.5.7. Prove that

1—>00 neN \ >, n—00 neN \kzn

lim sup x, = inf (supxk) and liminfx, = sup <inka>

for any real sequence {x,}.



Section 2.5 Limits Supremum and Infimum 67

2.5.8. Suppose that x, > 0 for n € N. Under the interpretation 1/0 = oo and
1/00 = 0, prove that

_ 1 1 o] 1
limsup— = ——— and liminf —= ———.
n—oo Xp liminf,_, 5o X, n—00 Xp lim SUPy, s 00 Xn

2.5.9. Let x, € R. Prove that x,, - 0 asn — oo if and only if

lim sup |x,| = 0.
n—oo

67



CHAPTER 3

Functions on R

3.1 TWO-SIDED LIMITS

In the preceding chapter we studied limits of real sequences. In this chapter we
examine limits of real functions; that is, functions whose domains and ranges are
subsets of R. To distinguish such functions from functions whose ranges include
oo and/or —oo, we shall sometimes refer to real functions as finite valued.

Recall from elementary calculus that a function f(x) converges to a limit L,
as x approaches a, if f(x) is near L when x is near a. Here is a precise definition
of this concept.

3.1 Definition.

Let a € R, let I be an open interval which contains a, and let f be a real
function defined everywhere on I except possibly at . Then f(x) is said to
converge to L, as x approaches a, if and only if for every ¢ > 0 thereisad > 0
(which in general depends on ¢, f, I, and @) such that

0<l|x—al <8 implies |f(x)—L|<e. (1)

In this case we write

L=1lm f(x) or f(x)—> L as x— a,
X—a

and call L the limit of f(x) as x approaches a.

As was the case for sequences, € represents the maximal error allowed in the
approximation f(x) to L. In practice, the number § represents the tolerance
allowed in the measurement x of ¢ which will produce an approximation f(x)
which is acceptably close to the value L.

According to Definition 3.1, to show that a function has a limit, we must begin
with a general ¢ > 0 and describe how to choose a § which satisfies (1).

3.2 EXAMPLE.
Suppose that f(x) = mx + b, where m, b € R. Prove that

fl@ = lim f(x)

for alla € R.

From Chapter 3 of Introduction to Analysis, Fourth Edition. William R. Wade.
Copyright © 2010 by Pearson Education, Inc. All rights reserved.
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Proof. 1f m = 0, there is nothing to prove. Otherwise, given ¢ > 0, set § =
g/lm|. If |x — a| < §, then

|f(x) = f@] =|mx +b— (ma+b)| =|m||x —a| <|m|§ =¢.
Thus by definition, f(x) — f(a) as x — a. |

Sometimes, in order to determine &, we must break f(x) — L into two factors,
replacing the less important factor by an upper bound.

3.3 EXAMPLE.
If f(x) = x>+ x — 3, prove that f(x) > —l asx — 1.

Proof. Lete > 0andset L = —1. Notice that
fx)—L=x*+x-2=(x—1D(x+2).

If 0 <é <1, then [x — 1| < é implies 0 < x < 2, so by the triangle inequality,
|x + 2| < |x| +2 < 4. Set § = min{l, e/4}. It follows that if |x — 1| < §, then

|[fx)—Ll=x—1]|x+2] <4x — 1| <48 <e.
Thus by definition, f(x) - Lasx — 1. |

Before continuing, we would like to draw your attention to two features of
Definition 3.1: Assumption 1. The interval [ is open; Assumption 2. 0 < |x —a].
If I = (c, d) is an open interval and §p := min{a — ¢, d — a}, then |x — a| < §p
implies x € I. Hence, Assumption 1 guarantees that for § > 0 sufficiently small,
f(x) is defined for all x # a satisfying |x — a| < § (i.e., on BOTH sides of a).
Since |x — a| > 0 is equivalent to x # a, Assumption 2 guarantees that f can
have a limit at a without being defined at a. (This will be crucial for defining
derivatives later.)

The next result shows that even when a function f is defined at a, the value
of the limit of f at a is, in general, independent of the value f(a).

3.4 Remark. Leta € R, let I be an open interval which contains a, and let f,g be
real functions defined everywhere on I except possibly at a. If f(x) = g(x) for all
x € I'\{a}and f(x) —> L as x — a, then g(x) also has a limit as x — a, and

lim g(x) = lim f(x).

X—a X—a
Proof. Lete > 0andchoose § > 0small enough so that (1) holds and |x—a| <
8 implies x € I. Suppose that 0 < |x — a| < 8. We have f(x) = g(x) by
hypothesis and | f(x) — L| < ¢ by (1). It follows that |g(x) — L| < e. |

Thus to prove that a function f has a limit, we may begin by simplifying f
algebraically, even when that algebra is invalid at finitely many points.
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3.5 EXAMPLE.
Prove that

BHxr-x—1

gx) = 71

has a limit as x — 1.

Proof. Set f(x) = x+ 1 and observe by Example 3.2 that f(x) - 2asx — 1.
Since

BHxi—x—1 x+DE2-1
g(x) = 3 = 3
xc—1 xc—1

=f(x)

for x # =+1, it follows from Remark 3.4 that g(x) has a limit as x — 1 (and
that limit is 2). |

There is a close connection between limits of functions and limits of

sequences.

3.6 Theorem. [SEQUENTIAL CHARACTERIZATION OF LIMITS].
Leta € R, let I be an open interval which contains a, and let f be a real function
defined everywhere on I except possibly at a. Then

L= lim f(x)

exists if and only if f(x,) — L asn — oo for every sequence x, € I\ {a} which
converges to a as n — 0.

Proof. Suppose that f converges to L as x approaches a. Then given ¢ > 0
there is a § > 0 such that (1) holds. If x, € I \ {a} converges to a asn — oo,
then choose an N € N such that n > N implies |x, — a| < §. Since x,, # a, it
follows from (1) that | f(x,) — L| < ¢ for all n > N. Therefore, f(x,) — L as
n— oo.

Conversely, suppose that f(x,) — L asn — oo for every sequence x,, € I \
{a} which converges to a. If f does not converge to L as x approaches a, then
there is an ¢ > 0 (call it g9) such that the implication “0 < |x — a| < § implies
|f(x) — L| < ego” does not hold for any § > 0. Thus, for each § = 1/n, n € N,
there is a point x, € I which satisfies two conditions: 0 < |x, —a| < 1/n
and |f(x,) — L| > e9. Now the first condition and the Squeeze Theorem
(Theorem 2.9) imply that x, # a and x,, — a so by hypothesis, f(x,) — L,
as n — oo. In particular, | f(x,) — L| < &o for n large, which contradicts the
second condition. |

Thus to show that the limit of a function f does not exist as x — a, we need

only find two sequences converging to a whose images under f have different
limits.
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3.7 EXAMPLE.
Prove that

Foo =507
0

X =

has no limit as x — 0.

y

Mo 4 — — — —

FIGURE 3.1

Proof. By examining the graph of y = f(x) (see Figure 3.1), we are led to
consider two extremes:

2 d b 2 eN
(= —— an =— n .
(4n + Hm " 4n+ 37w

an
Clearly, both a, and b, converge to 0 as n — oo. On the other hand, since
f(ap) = 1 and f(b,) = —1foralln € N, f(a,) — 1and f(b,) — —1 as
n — o0o. Thus by Theorem 3.6, the limit of f(x), as x — 0, cannot exist. [ |

Theorem 3.6 also allows us to translate results about limits of sequences
to results about limits of functions. The next three theorems illustrate this
principle.

Before stating these results, we introduce an algebra of functions. Suppose
that f,g : E — R. For each x € E, the pointwise sum, f + g, of f and g is
defined by

(f +8)x) = f(x) +gx),
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the scalar product, af , of a scalar « € R with f, by
(af)(x) == af(x),
the pointwise product, fg, of f and g, by
(fe)(x) :== f(x)g(x),

and (when g(x) # 0) the pointwise quotient, f/g, of f and g, by

f _ J&)
(g> =

The following result is a function analogue of Theorem 2.12.

3.8 Theorem. Suppose that a € R, that I is an open interval which contains a,
and that f,g are real functions defined everywhere on I except possibly at a. If f(x)
and g(x) converge as x approaches a, then so do (f + g)(x), (fg)(x), (af)(x),
and (f/g)(x) (when the limit of g(x) is nonzero). In fact,

lim (f + ) (x) = lim f(x)+ lim g(x),
lim (@f) (1) =@ lim f(x),
lim (fg) (¥) = lim /(x) lim g(x),
and (when the limit of g(x) is nonzero)
lim (i) (x) = li'mxaa f(X)
r—a\ g lim, ., g(x)
Proof. Let
L= xlgrz f(x) and M := }g}r}l g(x).

If x, € I'\{a} converges to a, then by Theorem 3.6, f(x,) — L and g(x,) > M
as n — oo. By Theorem 2.12i, f(x,) + g(x,) = L + M as n — oo. Since this
holds for any sequence x, € I \ {a} which converges to a, we conclude by
Theorem 3.6 that

Tim (f +8) (1) = L+ M = lim f(0) + lim g(x).

The other rules follow in an analogous way from Theorem 2.12ii through
2.12iv. |

Similarly, the Sequential Characterization of Limits can be combined with
the Squeeze and Comparison Theorems for sequences to establish the following
results.
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3.9 Theorem. [SQUEEZE THEOREM FOR FUNCTIONS].
Suppose that a € R, that I is an open interval which contains a, and that f,g,h
are real functions defined everywhere on I except possibly at a.

i) If g(x) < h(x) < f(x) forall x € I \ {a}, and
lim f(x) = lim g(x) = L,
then the limit of h(x) exists, as x — a, and

lim h(x) = L.

x—a
ii) If |g(x)| < M forallx € I \ {a} and f(x) - Oas x — a, then
XIH)I}I f(x)gx) =0.
The preceding result is illustrated in Figure 3.2.

\ Y

=Y =fx)
~

|
|
|
|
|
|
|
|
a

FIGURE 3.2

3.10 Theorem. [COMPARISON THEOREM FOR FUNCTIONS].

Suppose that a € R, that 1 is an open interval which contains a, and that f,g are
real functions defined everywhere on I except possibly at a. If f and g have a
limit as x approaches a and f(x) < g(x) forall x € I \ {a}, then

lim f(x) = lim g(x).

X—a

We shall refer to this last result as taking the limit of an inequality.
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The limit theorems (Theorems 3.8, 3.9, and 3.10) allow us to prove that limits
exist without resorting to ¢’s and §’s.

3.11 EXAMPLE.

Prove that
x—1

lim =
x—13x+1

Proof. By Example 32, x — 1 — Oand 3x +1 — 4 asx — 1. Hence, by
Theorem 3.8, (x — 1)/Bx+1) > 0/4 =0asx — 1. |

EXERCISES

3.1.0. Let @ € R and let f and g be real functions defined at all points x in
some open interval containing a except possibly at x = a. Decide which
of the following statements are true and which are false. Prove the true
ones and give counterexamples for the false ones.

a) For each n € N, the function (x — a)"sin(f(x)(x — a)™™") has a limit
asx — a.

b) Suppose that {x,} is a sequence converging to a with x,, # a. If
f(xp) > Lasn — oo, then f(x) > Lasx — a.

c) If f and g are finite valued on the open interval (¢ — 1,a + 1) and
f(x) —> 0asx — a, then f(x)g(x) > 0asx — a.

d) Iflimy_, f(x) does not exist and f(x) < g(x) for all x in some open
interval I containing a, then lim,_,, g(x) doesn’t exist either.

3.1.1. Using Definition 3.1, prove that each of the following limits exist.

a) limx? +2x —5=3

x—2
2
)

b) lim Xrx—2 -3
x—1 x—1

c) limx’+2x+1=4
x—1

d) lim x3 sin(e*’) = 0
x—0

3.1.2. Decide which of the following limits exist and which do not. Prove that
your answer is correct. (You can use well-known facts about the values
of tanx, cosx, and log x, e.g., that logx — —oo0 as x — 0+.)

1
a) lim tan (—)
x—0 X



3.1.3.

3.14.
3.1.5.
3.1.6.

3.1.7
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2
. x4+ 1
b) lim x cos ( 3 )
x—0 X
1
c) im
x—1logx
Evaluate the following limits using results from this section. (You may
assume that sinx, 1 —cosx, tanx, and /x converge to 0 as x — 0.)
o o x242x -3
a) lim ———
x—1 x> —X
S G |
b) lim s neN
x—1 x —1
Vx* —1
)

lim ———
x—1 COS(l — )C)

2sin x + 2x — 2x cos? x

d li
) 00 1 — cos2(2x)

1
e lim tan x sin [ —
) i L X si (x2>

X—>

Prove Theorem 3.9.
Prove Theorem 3.10.
Suppose that f is a real function.

a) Prove that if
L = lim f(x)
X—a
exists, then | f(x)| — |L| as x — a.

b) Show that there is a function such that, as x — a, |f(x)| — |L| but
the limit of f(x) does not exist.

. This exercise is used in Sections 3.2 and 5.2. For each real function f,

define the positive part of f by

Freo=YOIHIW L pon )
and the negative part of f by
) = —lf(x)|2_ SOy € Dom (f).
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a) Prove that fT(x) > 0, f~(x) >0, f(x) = fH(x) — f (x), and
| f(x)] = fT(x) + f~(x) all hold for every x € Dom (f). (Compare
with Exercise 1.2.3.)

b) Prove that if

L = Tim f(x)

exists, then f*(x) - LT and f~(x) - L™ asx — a.

. This exercise is used in Sections 3.2 and 5.2. Let f, g be real functions

and for each x € Dom (f) N Dom (g) define

(f V& (x) :=max{f(x),g(x)} and (f Ag)(x):=min{f(x), g(x)}.
a) Prove that

(f+®) +I1(f -8l

(f Ve = 7

and

(f +8)x) —I(f —)K)

(frg)x) = >

for all x € Dom (f) N Dom (g).
b) Prove that if

L=lim f(x) and M = lim g(x)
xX—a X—>a

exist,then (f v g)(x) > LvMand (f Ag)(x) > LAMasx — a.

Suppose that ¢ € R and I is an open interval which contains a. If f :
I — R satisfies f(x) — f(a), as x — a, and if there exist numbers M
and m such that m < f(a) < M, prove that there exist positive numbers
¢ and § such that

m+e<fx)<M-—c¢

for all x’s which satisty |x — a| < §.

3.2 ONE-SIDED LIMITS AND LIMITS AT INFINITY

In the

preceding section we defined the limit of a real function. In this section

we expand that definition to handle more general situations.

What is the limit of f(x) := 4/x — 1 asx — 1? A reasonable answer is that
the limit is zero. This function, however, does not satisfy Definition 3.1 because
itis not defined on an OPEN interval containing ¢ = 1. Indeed, f is only defined
for x > 1. To handle such situations, we introduce “one-sided” limits.
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3.12 Definition.

Leta € Rand f be a real function.

i) f(x)issaid to converge to L as x approaches a from the right if and only if f
is defined on some open interval / with left endpoint a and for every ¢ > 0
there is a § > 0 (which in general depends on ¢, f, I, and a) such that

a+d8el and a<x<a+é imply |[f(x)—L|<e. 2)
In this case we call L the right-hand limit of f at a, and denote it by

fla+) =L =: XEI}}Jrf(x).

il) f(x) is said to converge to L as x approaches a from the left if and only if
f is defined on some open interval 7 with right endpoint a and for every
¢ > 0 there is a § > 0 (which in general depends on ¢, f, I, and @) such
thata — 8 € I anda — § < x < aimply | f(x) — L| < ¢. In this case we call
L the left-hand limit of f at a and denote it by

fla—):=L =: E)m_f(x).

It is easy to check that when two-sided limits are replaced with one-sided
limits, all the limit theorems from the preceding section hold. We shall use them
as the need arises without further comment.

Existence of a one-sided limit can be established by these limit theorems or
by appealing directly to the definition.

3.13 EXAMPLES.
i) Prove that

x+1 x>0
fx) = x—1 x <0

has one-sided limits at a = 0 but lim,_,¢ f(x) does not exist.
ii) Prove that

lim /x = 0.

x—0+

Proof. i) Lete >0andset§ =¢.If0 <x < §,then |f(x) — 1| = |x| <§ =e.
Hence lim,_, o4 f(x) exists and equals 1. Similarly, lim,_,o_ f(x) exists and
equals —1. However, x, = (—1)"/n — 0 but f(x,) = (—=D"(1 + 1/n) does
not converge as n — oo. Hence by the Sequential Characterization of Limits,
limy_,¢ f(x) does not exist.

ii)Lete > 0andset 5§ =2 If0 <x <48, then |f(x)|=/x </S=¢. W
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Not every function has one-sided limits (see Example 3.7). Examples 3.13
show that even when a function has one-sided limits, it may not have a two-
sided limit. The following result, however, shows that if both one-sided limits,
at a point a, exist and are EQUAL, then the two-sided limit at a exists.

3.14 Theorem. Let fbe a real function. Then the limit
lim f(x)
X—a

exists and equals L if and only if

L= lm f(x)= lm f(x). 3)

Proof. 1f the limit L of f(x) exists as x — a, then given ¢ > 0 choose § > 0
such that 0 < |x — a| < § implies |f(x) — L| < e. Since any x which satisfies
a<x<a+dora—3§ < x < aalso satisfies 0 < |[x — a| < §, it is clear that
both the left and right limits of f(x) exist as x — a and satisfy (3).
Conversely, suppose that (3) holds. Then given ¢ > 0 there exists a §; > 0
(respectively, a 8, > 0) such thata < x < a + §; (respectively,a — &, < x < a)
implies |f(x) — L| < e. Set § = min{é1, §2}. Then 0 < |x — a| < § implies
a<x<a+38 ora—=38 <x < a(depending on whether x is to the right or
to the left of a). Hence (1) holds; that is, f(x) — L asx — a. [ ]

The definition of limits of real functions can be expanded to include extended
real numbers.

3.15 Definition.

Leta, L € Rand let f be a real function.

i) f(x) is said to converge to L as x — oo if and only if there exists a ¢ > 0
such that (¢, c0) C Dom(f) and given ¢ > 0 there is an M € R such that
x > M implies | f(x) — L| < &, in which case we shall write

lim f(x)=L or  f(x)— Lasx — oo.
X—>00

Similarly, f(x) is said to converge to L as x — —oo if and only if there exists
a ¢ > 0 such that (—oo, —¢) € Dom(f) and given ¢ > 0 there is an M € R
such that x < M implies | f(x) — L| < &, in which case we shall write

lim f(x)=L or f(x) —> L asx — oo.
X—>00

ii) The function f(x) is said to converge to co as x — a if and only if there is
an open interval / containing a such that 7\ {a} C Dom(f) and given M € R
there is a § > O such that 0 < |x — a| < § implies f(x) > M, in which case
we shall write

lim f(x) =00 or f(x) > oc0asx — a.
X—>a
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Similarly, f(x) is said to converge to —oo as x — a if and only if there is an
open interval I containing a such that I \ {a} C Dom(f) and given M € R
there is a § > O such that 0 < |x — a| < § implies f(x) < M, in which case
we shall write

lim f(x) = —oc0 or f(x) > —ococasx — a.
xX—a

Obvious modifications of Definition 3.15, which we leave to the reader, can
be made to define f(x) - oo asx — a+ and x — a—, and f(x) — o0 as
x — +o0.

3.16 EXAMPLES.

i) Prove that 1/x — 0 as x — oo.
ii) Prove that
lim £ (x) i x+2
m = lim ——— = —o0.
xilf o xilf 2x2—3x+1

Proof. 1) Givene > 0,set M = 1/e. If x > M, then |1/x| = 1/x < /M = &.
Thus 1/x — 0 as x — oo.

ii) Let M € R. We must show that f(x) < M for x near but to the left of 1
(no matter how large and negative M is). Without loss of generality, assume
that M < 0. As x converges to 1 from the left, 2x2 —3x 4+ 1is negative and
converges to 0. (Observe that 2x? — 3x + 1 is a parabola opening upward with
roots 1/2 and 1.) Therefore, choose § € (0, 1) such that 1 —§ < x < 1 implies
2/M < 2x* —3x 4+ 1 < 0; thatis, —1/(2x> —3x + 1) > —M/2 > 0. Since 0 <
x < lalsoimplies 2 < x 42 < 3, it follows that —(x42)/2x%=3x+1) > —M;
that is,

() x+2
N=——————— <
' 2x2 —3x +1

foralll -8 <x < 1. |

In order to unify the presentation of one-sided, two-sided, and infinite limits,
we introduce the following notation. Let @ be an extended real number, and let
I be a nondegenerate open interval which either contains a or has a as one of its
endpoints. Suppose further that f is a real function defined on I except possibly
at a. If a is finite and / contains a, then

lim f(x) 4)

xel

will denote lim,—,, f(x) (when it exists); if a is a finite left endpoint of 7, then
(4) will denote lim,_, 44 f(x) (when it exists); if a is a finite right endpoint of 7,
then (4) will denote lim,_,,— f(x) (when it exists); if a = +o00 is an endpoint of
I, then (4) will denote lim,_, 1o f(x) (When each exists).

Using this notation, we can state a Sequential Characterization of Limits valid
for two-sided, one-sided, and infinite limits.
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3.17 Theorem. Let a be an extended real number, and let [ be a nondegenerate
open interval which either contains a or has a as one of its endpoints. Suppose
further that fis a real function defined on I except possibly at a. Then

lim f(x)

xel

exists and equals L if and only if f (x,) — L for all sequences x, € I which satisfy

Xn

#aand x, — a asn — oo.

Proof. Since we have already proved this for two-sided limits, we must show
it for the remaining eight cases which notation (4) represents. Since the proofs
are similar, we shall give the details for only one of these cases, namely the
case when a belongs to I and L = oo. Thus we must prove that f(x) — oo as
x — a if and only if f(x,) — oo for any sequence x,, € I which converges to
a and satisfies x;,, # a forn € N.

Suppose first that f(x) - coasx — a. Ifx, € I, x, > aasn — 00,
and x, # a, then given M € Rthereisaé > Osuchthat0 < |x —a| < &
implies f(x) > M, and there is an N € N such that n > N implies |x, —al| < §.
Consequently, n > N implies f(x,) > M; thatis, f(x,) - oo asn — oo as
required.

Conversely, suppose to the contrary that f(x,) — oo for any sequence
x, € I which converges to a and satisfies x,, # a but f(x) does NOT converge
to co as x — a. By the definition of “convergence” to oo there are numbers
My € R and x,, € [ such that |x, —a| < 1/n and f(x;) < My for all n € N.
The first condition implies x,, — a but the second condition implies that f(x,)
does not converge to oo as n — oo. This contradiction proves Theorem 3.17
in the case a € [ and L = oo. [

Using Theorem 3.17, we can prove limit theorems that are function analogues

of Theorem 2.15 and Corollary 2.16. We leave this to the reader and will use
these results as the need arises.

These limit theorems can be used to evaluate infinite limits and limits at +o0.

3.18 EXAMPLE.
Prove that

o2xr—1
lim = -2.
x>0 1 — x2

Proof. Since the limit of a product is the product of the limits, we have by
Example 3.16i that 1/x™ — 0 as x — oo for any m € N. Multiplying numera-
tor and denominator of the expression above by 1/x2, we obtain

22— o 2—1/x? limy_ 00 (2 — 1/x2) 2
lim = lim = — =—==-2.
x—o00 1 — x2 x—>00 —1 4+ 1/x2  limyoo(—1+1/x2) -1
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EXERCISES

3.2.0.

3.2.1.

3.2.2.

Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) If f(x) > ooasx — oo and g(x) > 0, then g(x)/f(x) — 0 as
X — OQ.

b) If f(x) > 0Oasx — a+and g(x) > 1forallx € R, then g(x)/f (x) >
ooasx — a+.

c) If f(x) - oo asx — oo, thensin(x? + x + 1)/f(x) — 0as x — oo.

d) If P and Q are polynomials such that the degree of P is less than or
equal to the degree of Q (see Exercise 3.2.3), then thereisan L € R
such that

P(x) . P(x)
im = lim =
x—=o0 Q(x)  x—>—00 Q(x)

For each of the following, use definitions (rather than limit theorems)
to prove that the limit exists. Identify the limit in each case.
. N2
a) lim ——
x—0—- X
. sinx
b) lim 5
X—>00 X
) li 1
c im
xo—l+x2—1
. x—3
d) lim ————
x—>14+3 —x — 2x2
cos(tan x)
e) R —
x—>-o00 x4+1
Assuming that e* — ¢“, sinx — sina, and cosx — cosa as x — a for

any a € R, evaluate the following limits when they exist.

a) lim

5x24+3x =2
b) lim XX —2
x—003x2 — 2x + 1
) lim e /%
X—>—00
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2
er +2x—1

d) lim -
x—>0+ sinx

. sin(x +7/2)
e) lim —

x—0— Jcosx — 1
. /1 —cosx
f) lim ———

x—0+ sin x

. This exercise is used many places. Recall that a polynomial of degree n

3.2.4.

3.2.5.

3.2.6.

3.2.7.

is a function of the form
P(x) = apx" + ap_1x"" '+ -+ a1x + ag,

wherea; e Rfor j =0,1,...,nanda, # 0.

a) Prove that lim,_,,x" =a" forn =0,1,--- anda € R.
b) Prove thatif P is a polynomial, then

lim P(x) = P(a)

for everya € R.

Prove the following comparison theorems for real functions f and g,
anda € R.

a) If f(x) > g(x) and g(x) — oo as x — a, then f(x) - oo asx — a.
b) If f(x) < g(x) < h(x) and

L:= lim f(x)= lim h(x),
X—>00 X—>

then g(x) — L as x — oo.

Prove the following special case of Theorem 3.17: Suppose that a € R
and f : [a,0) — Rforsome a € R. Then f(x) > L asx — oo if and
only if f(x,) — L for any sequence x, € (a, oo) which converges to co
asn — 00.

Suppose that f : [0,1] — Rand f(a) = lim,_., f(x) for alla € [0, 1].
Prove that f(g) = 0 for allg € QN [0, 1] if and only if f(x) = O for all
x € [0, 1].

Suppose that P is a polynomial and that P(a) > O for a fixed a € R.
Prove that P(x)/(x —a) — oo as x — a+, P(x)/(x —a) - —oo as
x — a—, but

. PX)
lim

x—ax —a

does not exist.
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3.2.8. [CaucHY] Suppose that f : N — R. If
lim f(n+1)— f(n) = L,
n—oo

prove that lim,,_, o, f(n)/n exists and equals L.

3.3 CONTINUITY

In elementary calculus, a function is called continuous at a if a € Dom f and
f(x) — f(a) as x — a. In particular, it is tacitly assumed that f is defined
on BOTH sides of a. Here, we introduce a more general concept of continuity
which includes functions, such as /x at @ = 0, which are defined on only one
side of some point in their domain.

3.19 Definition.

Let E be nonempty subset of Rand f : E — R.

i) f is said to be continuous at a point a € E if and only if given ¢ > 0 there is
a § > 0 (which in general depends on ¢, f, and a) such that

[x —al<é and x € E imply |f(x)— f(a)] <e. 5)

il) f is said to be continuous on E (notation: f : E — Ris continuous) if and
only if f is continuous at every x € E.

The following result shows that if E is an open interval which contains a, then
“f is continuous ata € E” means “ f(x) — f(a) as x — a.” Therefore, we shall
abbreviate “ f is continuous at a € E” by “f is continuous at a” when E is an
open interval.

3.20 Remark. Let I be an open interval which contains a pointa and f : I — R.
Then fis continuous at a € I if and only if

fla) = lim f(x).

Proof. Suppose that I = (¢, d) and set 8y := min{|c — a|, |d — al}. If § < &,
then |x — a| < § implies x € I. Therefore, condition (5) is identical to (1)
when f(a) = L, E = I,and § < §y. It follows that f is continuous at a € I if
and only if f(x) — f(a) asx — a. [ |

By repeating the proof of Theorem 3.6, we can establish a sequential charac-
terization of continuity which is valid on any nonempty set.

3.21 Theorem. Suppose that E is a nonempty subset of R, that a € E, and that
f + E — R. Then the following statements are equivalent:

i) fis continuous at a € E.
i) If x, converges to a and x, € E, then f(x,) — f(a) asn — oo.
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In particular, /x is continuous on I = [0, co) by Exercise 2.2.5.
By combining Theorem 3.21 with Theorem 2.12, we obtain the following result.

3.22 Theorem. Let E be a nonempty subset of Rand f,g : E — R. If f,g are
continuous at a point a € E (respectively, continuous on the set E), then so are
f+g, fg andof (for any a € R). Moreover, f/g is continuous at a € E when
g(a) # 0 (respectively, on E when g(x) # 0 for all x € E).

It follows from Exercises 3.1.6, 3.1.7, and 3.1.8 that if f,g are continuous at a
pointa € E oron aset E, thenso are |f|, f*, f~, f Vg, and f A g. We also
notice by Exercise 3.2.3 that every polynomial is continuous on R.

Many complicated functions can be broken into simpler pieces, using sums,
products, quotients, and the following operation.

3.23 Definition.

Suppose that A and B are subsets of R, that f : A - Rand g : B — R. If
f(A) € B for every x € A, then the composition of g with f is the function
go f:A— Rdefined by

(g0 fHx) == g(f(x)), x €A

The following result contains information about when a limit sign and some-
thing else (in this case, the evaluation of a function) can be interchanged. We
shall return to this theme many times, identifying conditions under which we
can interchange any two of the following objects: limits, integrals, derivatives,
infinite summations, and computation of a function (see especially Sections 7.1,
7.2, and 11.1, and the entry “interchange the order of” in the Index).

3.24 Theorem. Suppose that A and B are subsets of R, that f : A — R and
g : B — R, and that f(x) € B forevery x € A.

i) If A := I\ {a}, where I is a nondegenerate interval which either contains a or
has a as one of its endpoints, if

L= lim f(x)

xel

exists and belongs to B, and if g is continuous at L € B, then

lim (g o /)(x) =g ()}ig}lf(m)-

xel xel

il) If f is continuous at a € A and g is continuous at f(a) € B, then g o f is
continuous at a € A.
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Proof. Suppose that x, € I \ {a} and that x, — a asn — oo. Since
f(A) € B, f(x,) € B. Also, by the Sequential Characterization of Limits
(Theorem 3.17), f(x,) — L asn — oo. Since g is continuous at L € B, it
follows from Theorem 3.21 that g o f(x,) = g(f(x,)) — g(L) asn — oo.
Hence by Theorem 3.17, g o f(x) — g(L) as x — a in I. This proves i). A
similar proof establishes part ii). |

For many applications, it is important to be able to find the maximum or min-
imum of a given function. As a first step in this direction, we introduce the

following concept.

3.25 Definition.

Let E be a nonempty subset of R. A function f : E — Ris said to be bounded
on E if and only if there is an M € R such that | f(x)| < M forallx € E, in
which case we shall say that f is dominated by M on E.

Notice that whether a function f is bounded or not on a set E depends on
E as well as on f. For example, f(x) = 1/x is dominated by 1 on [1, co) but
unbounded on (0,2). Again, the function f(x) = x?% is dominated by4on (-2,2)

but unbounded on [0, c0).

The following result, which will be used often, shows that a continuous func-

tion on a closed, bounded interval is always bounded.

3.26 Theorem. [EXTREME VALUE THEOREM].

If I is a closed, bounded interval and f : I — R is continuous on I, then fis

bounded on I. Moreover, if

M =sup f(x) and m = ingf(x),
xXe

xel

then there exist points x,,, xy € I such that

faum)=M and  f(xn) =m. (6)

Proof. Suppose first that f is not bounded on I. Then there exist x, € [

such that

| f(x)| > n, n € N. @)

Since I is bounded, we know (by the Bolzano—Weierstrass Theorem) that {x,}
has a convergent subsequence, say x,, — a as k — oo. Since I is closed,
we also know (by the Comparison Theorem) that ¢ € I. In particular,
f(a) € R. On the other hand, substituting n; for n in (7) and taking the limit
of this inequality as k — oo, we have | f(a)| = oo, a contradiction. Hence, the

function f is bounded on /.

We have proved that both M and m are finite real numbers. To show that
there is an xys € I such that f(xj) = M, suppose to the contrary that f(x) <

M for all x € I. Then the function
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1

glx) = M= 70

is continuous, hence bounded on /. In particular, there is a C > 0 such that
lg(x)| = g(x) < C. It follows that

1
< M- — 8
fx) = C (8)
for all x € I. Taking the supremum of (8) over all x € I, we obtain M < M —
1/C < M, a contradiction. Hence, there is an x3; € I such that f(xy) = M.

A similar argument proves that there is an x,, € I such that f(x,,) = m. |

We shall sometimes refer to (6) by saying that the supremum and infimum

of f are attained on I. We shall also call the value M (respectively, m) the
maximum (respectively, the minimum) of f on I.

Neither of the hypotheses on the interval 7 in Theorem 3.26 can be relaxed.

3.27 Remark. The Extreme Value Theorem is false if either “closed” or
“bounded” is dropped from the hypotheses.

Proof. The interval (0,1) is bounded but not closed, and the function f(x) =
1/x is continuous and unbounded on (0,1). The interval [0, co) is closed
but not bounded, and the function f(x) = x is continuous and unbounded
on [0, 00). |

What more can be said about continuous functions? One useful conceptual-

ization of functions which are continuous on an interval is that their graphs have
no holes or jumps (see Theorem 3.29 below). Our proof of this fact is based on
the following elementary observation.

3.28 Lemma.

Suppose that a < b and that f : [a,b) — R If fis continuous at a point
xo € [a,b) and f(xo) > O, then there exist a positive number ¢ and a point
x1 € [a, b) such that x|, > xg and f(x) > ¢ for all x € [xg, x1].

STRATEGY: The idea behind the proof is simple. If f(xg) > 0, then f(x) >

f(x0)/2 for x near xo. Here are the details.

Proof. Let e = f(xo)/2. Since xg < b, it is easy to see that §y := (b — x¢)/2
is positive and that a < x < xg + 8o implies x € [a, b). Use Definition 3.19 to
choose 0 < § < §psuch thatx € [a, b) and |[x—x¢| < § imply | f (x)— f(x0)| < &.
Fix x1 € (x9, xo + &) and suppose that x € [xg, x1]. By the choice of ¢ and 8,
it is clear that
_ J(xo) J (x0)

5 < J@) = flxo) < ——.

Solving the left-hand inequality for f(x), we conclude that f(x) > f(x9)/2 =
&, as promised. [ |
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A real number yy is said to lie between two numbers ¢ and 4 if and only if
c<yy<dord <yy<c.

3.29 Theorem. [INTERMEDIATE VALUE THEOREM].
Suppose that a < b and that f : [a, b] — R is continuous. If yg lies between
f(a) and f(b), then there is an xy € (a, b) such that f(xg) = yo.

Proof. We may suppose that f(a) < yo < f(b). Consider the set E =
{x € [a,b] : f(x) < yo} (see Figure 3.3). Sincea € FE and E C [a,b], E
is a nonempty, bounded subset of R. Hence, by the Completeness Axiom,
xo := sup E is a finite real number. It remains to prove that xo € (a, b) and

f(x0) = yo.

1) =
Yo-——————————
|
|
fla) - :
|
| L .
a xy b X
FIGURE 3.3

Choose by Theorem 2.11 a sequence x,, € E such that x, — xp asn — oo.
Since E C [a, b], it follows from Theorem 2.17 that xo € [a, b]. Moreover,
by the continuity of f and the definition of E, we have f(xg) = lim,_ oo
S (xn) < yo.

To show that f(x9) = yo, suppose to the contrary that f(xo) < yo. Then
yo — f(x) is a continuous function on the interval [a, b) whose value at x = xg
is positive. Hence, by Lemma 3.28, we can choose an ¢ and an x; > x¢ such
that yo — f(x1) > ¢ > 0. In particular, x; € E and x| > sup E, a contradiction.

We have shown that xo € [a, b] and yo = f(x9). In view of our opening
assumption, f(a) < yo < f(b), it follows that xo cannot equal a or b. We
conclude that xy € (a, b). |

Thus, if f is continuous on [a, b] and f(a) < yg < f(b), then there is an
xo € la, b] such that f(xg) = yo.

If f fails to be continuous at a point a, we say that f is discontinuous at a
and call a a point of discontinuity of f. How badly can a function behave near
a point of discontinuity? The following examples can be interpreted as answers
to this question. (See also Exercise 9.6.9.)
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3.30 EXAMPLE.
Prove that the function
x|

fo=1x ~70
1 x=0

is continuous on (—oo, 0) and [0, co), discontinuous at 0, and that both f(0+)
and f(0—) exist.

Proof. Since f(x) = 1 for x > 0, it is clear that f(0+) = 1 exists and
f(x) = f(a) as x — a for any a > 0. In particular, f is continuous on

[0, 00). Similarly, f(0—) = —1 and f is continuous on (—oo, 0). Finally, since
f(O+) # f(0—), the limit of f(x) as x — 0 does not exist by Theorem 3.14.
Therefore, f is not continuous at 0. |

3.31 EXAMPLE.
Assuming that sin x is continuous on R, prove that the function
o1
sin — x#0
X
1 x=0

fx) =

is continuous on (—oo, 0) and (0, c0), discontinuous at 0, and neither f(0+) nor
f(0—) exists. (See Figure 3.1.)

Proof. The function 1/x is continuous for x # 0 by Theorem 3.8. Hence,
by Theorem 3.24, f(x) = sin(1/x) is continuous on (—oo, 0) and (0, 00). To
prove that f(0+) does not exist, let x, = 2/((2n + 1)x), and observe (see
Appendix B) that sin(1/x,) = (—1)", n € N. Since x, | 0 but (—1)" does not
converge, it follows from Theorem 3.21 (the Sequential Characterization of
Continuity) that f(0+) does not exist. A similar argument proves that f(0—)
does not exist. |

3.32 EXAMPLE.
The Dirichlet function is defined on R by

1 xeQ

FO=1 <o

Prove that every point x € R is a point of discontinuity of f. (Such functions
are called nowhere continuous.)

Proof. By Theorem 1.18 and Exercise 1.3.3 (Density of Rationals and Irra-
tionals), given any a € Rand § > 0 we can choose x; € Q and x; € R\ Q such
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that |x; —a| < § fori = 1,2. Since f(x;) = 1 and f(x) = 0, f cannot be
continuous at a. [ |

3.33 EXAMPLE.

Prove that the function

x=L¢ Q (inreduced form)

1
fx)=14q
0 x¢Q
is continuous at every irrational in the interval (0,1) but discontinuous at every
rational in (0,1).

Proof. Let a be a rational in (0,1) and suppose that f is continuous at a. If
X, is a sequence of irrationals which converges to a, then f(x,) — f(a); that
is, f(a) = 0. But f(a) # 0 by definition. Hence, f is discontinuous at every
rational in (0,1).

Let a be an irrational in (0,1). We must show that f(x,) — f(a) for every
sequence x, € (0, 1) which satisfies x,, — a as n — co. We may suppose that
xn € Q. For each n € N, write x, = p,/q, in reduced form. Since f(a) = 0,
it suffices to show that ¢, — oo as n — oo. Suppose to the contrary that
there exist integers n; < nz < ... such that |g,,| < M < oo for k € N. Since
X, € (0, 1), it follows that the set

E = {xnkzm:keN}
qny
contains only a finite number of points. Hence, the limit of any sequence in £
must belong to E, a contradiction since «a is such a limit and is irrational. W

To see how counterintuitive Example 3.33 is, try to draw a graph of y = f(x).
Stranger things can happen.

3.34 Remark. The composition of two functions g o f can be nowhere continu-
ous, even though f is discontinuous only on Q and g is discontinuous at only one

point.

Proof. Let f be the function given in Example 3.33 and set

1
g(x)={ x 70

0 x =0.
Clearly,
1
(g0 f)(x) = {O iy 8_

Hence, go f is the Dirichlet function, nowhere continuous by Example 3.32. &
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In view of Example 3.33 and Remark 3.34, we must be skeptical of proofs

which

rely exclusively on geometric intuition. And although we shall use ge-

ometric intuition to suggest methods of proof for many results in subsequent
chapters, these suggestions will always be followed by a careful rigorous proof

which

contains no fuzzy reasoning based on pictures or sketches no matter how

plausible they seem.

EXERCISES

For these exercises, assume that sin x, cosx, and e* are continuous on R.

3.3.0

. Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) If f is continuous on [a,b] and J := f([a, b]), then J is a closed,
bounded interval.

b) If f and g are continuous on [a,b], if f(a) < g(a) and f(b) > g(b),
then there is a ¢ € [a, b] such that f(c) = g(c).

c¢) Suppose that f and g are defined and finite valued on an open inter-
val I which contains «, that f is continuous at a, and that f(a) # O.
Then g is continuous at g if and only if fg is continuous at a.

d) Suppose that f and g are defined and finite valued on R. If f and
g o f are continuous on R, then g is continuous on R.

3.3.1. Use limit theorems to show that the following functions are continuous
on [0,1].
2
¥ /sinx
a) fx)=—""
COS X
x4 x -2
_ 1
b) =11 7
3 x=1
—1/x
e x#0
) fx) = s
0 X =
i sin ~ 0
d) Flx) = X sin < X #£
0 x=0
3.3.2. For each of the following, prove that there is at least one x € R which
satisfies the given equation.
a) ¢ =x3
b) ¢ =2cosx + 1
c)2*=2-3x



3.3.3.

3.34.

3.3.5.

3.3.6.

3.3.7.

3.3.8.

3.3.10.

3.3.11.
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If f :[a, b] — Ris continuous, prove that sup,c, » |f(x)| is finite.

If f : [a, b] — [a, b] is continuous, then f has a fixed point; that is, there
isac € [a, b] such that f(c) = c.

If f is a real function which is continuous at a € R and if f(a) < M for
some M € R, prove that there is an open interval / containing a such
that f(x) < M forall x € I.

Show that there exist nowhere continuous functions f and g whose sum
f + g is continuous on R. Show that the same is true for the product of
functions.

Suppose that a € R, that [ is an open interval containing a, that f, g :
I — R, and that f is continuous at a. Prove that g is continuous at a if
and only if f + g is continuous at a.

Suppose that f : R — R satisfies f(x +y) = f(x) + f(y) for each
x,y €R.

a) Show that f(nx) =nf(x) forallx € Randn € Z.

b) Prove that f(gx) = qf(x) forallx € Rand g € Q.

c¢) Prove that f is continuous at 0 if and only if f is continuous on R.

d) Prove thatif f is continuous at 0, then there is an m € R such that
f(x) = mx for all x € R.

. This exercise is used in Section 7.4. Suppose that f : R — (0, c0)

satisfies f(x + y) = f(x)f(y). Modifying the outline in Exercise 3.3.8,
show that if f is continuous at 0, then there is an a € (0, co) such that
f(x) = a* for all x € R. (You may assume that the function a* is
continuous on R.)

If f : R — Ris continuous and

lim f(x)= lim f(x)= oo,
X—00 X——00
prove that f has a minimum on R; that is, there is an x,, € R such that
f(xp) = inf f(x) < oo.
xeR

Leta > 1. Assume that a?™ = a”a? and (a?)? = a9 for all p,q € Q,
and that a”? < a4 for all p,q € Q which satisfy p < ¢. (This is easy,
but tedious, to prove using algebra, induction, and the definitions a* =
1, a™" =1/a", and a™'" = Ya™ forn € N and m € Z. The hard part is
proving that ¥/a™ exists, and this requires the Completeness Axiom—
see Appendix A.10.)

For each x € R, define

A(x) :=sup{a? :qg € Qand g < x}.
a) Prove that A(x) exists and is finite for all x € R, and that A(p) = a”

for all p € Q. Thus a* := A(x) extends the “power of ¢” function
from Q to R.
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b) If x, y € Rwith x < y, prove that a* < a”.

¢) Use Example 2.21 to prove that the function a* is continuous on R.

d) Prove that a*t’ = a*a?, (a*)’ = a*’, and a™* = 1/a* for all x,
yeR.

e) For 0 < b < 1, define b* = (1/b)™*. Prove that c) and d) hold for
b in place of a. State and prove an analogue of b) for »* and »” in
place of a* and a”.

3.4 UNIFORM CONTINUITY

The following concept is very important and will be used many times in the rest
of the book.

3.35 Definition.

Let E be a nonempty subset of R and f : £ — R. Then f is said to be
uniformly continuous on E (notation: f : E — R is uniformly continuous) if
and only if for every ¢ > O there is a § > 0 such that

[x —al<é and x,ae€ E imply |f(x)— f(a)| <e. 9)

Notice that the § in Definition 3.35 depends on ¢ and f, but not on a
and x. This issue needs to be addressed when we prove that a given func-
tion is uniformly continuous on a specific set (e.g., by determining § before a
is mentioned).

3.36 EXAMPLE.

Prove that f(x) = x? is uniformly continuous on the interval (0,1).

Proof. Givene > 0,seté =¢/2. If x,a € (0, 1), then |x + a| < |x| + |a] < 2.
Therefore, if x,a € (0, 1) and |x — a| < &, then

If(x) = f@)] =Ix* —a*| = |x —al |x +a| <2/x —a| <25 =e¢. ]

The definitions of continuity and uniform continuity are very similar. In
fact, the only difference is that for a continuous function, the parameter § may
depend on a, whereas for a uniformly continuous function, § must be chosen
independently of a. In particular, every function uniformly continuous on E is
also continuous on E. The following example shows that the converse of this
statement is false unless some restriction is made on E.

3.37 EXAMPLE.

Show that f(x) = x? is not uniformly continuous on R.

Proof. Suppose to the contrary that f is uniformly continuous on R. Then
thereis a § > O such that |x —a| < § implies | f(x) — f(a)| < 1 forallx,a € R.
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By the Archimedean Principle, choose n € N so large that né > 1. Seta = n
and x = n + /2. Then |x —a| < § and

82
1>|f(x)—f(a)|=|x2—a2|:n8+z>n8>1.

This contradiction proves that f is not uniformly continuous on R. |

Here is a key which unlocks the difference between continuity and uniform
continuity.

3.38 Lemma.
Suppose that E C R and that f : E — R is uniformly continuous. If x,, € E is
Cauchy, then f(x,) is Cauchy.

Proof. Let ¢ > 0 and choose § > 0 such that (9) holds. Since {x,} is Cauchy,
choose N € N such that n,m > N implies |x, — x| < 6. Thenn,m > N

implies | f (x,) — f(xm)| < &. |
Notice that f(x) = 1/x is continuous on (0,1) and x, = 1/n is Cauchy but
f(x,) is not. In particular, 1/x is continuous but not uniformly continuous on
the open interval (0,1). Notice how the graph of y = 1/x corroborates this fact.

Indeed, as a gets closer to 0, the value of § gets smaller (compare §; to &g in
Figure 3.4) and hence cannot be chosen independently of a.

flixg) + &

fixp) — €

fxp) +¢€

flxp) —€

FIGURE 3.4
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Thus on an open interval, continuity and uniform continuity are different,
even if the interval is bounded. The following result shows that this is not the
case for closed, bounded intervals. (This result is extremely important because
uniform continuity is so strong. Indeed, we shall use it dozens of times before
this book is finished.)

3.39 Theorem. Suppose that I is a closed, bounded interval. If f : I — R is
continuous on I, then f is uniformly continuous on 1.

Proof. Suppose to the contrary that f is continuous but not uniformly con-
tinuous on /. Then there is an ¢y > 0 and points x,,y, € I such that
|X, — yn| < 1/n and

|f () = f ()| = €0, neN. (10)

By the Bolzano-Weierstrass Theorem and the Comparison Theorem, the
sequence {x,} has a subsequence, say x,,, which converges, as k — oo, to
some x € /. Similarly, the sequence {yy, }xen has a convergent subsequence,
Say Y, s which converges, as j — oo, to some y € I. Since Xp, = X a3

Jj — oo and f is continuous, it follows from (10) that | f (x) — f(y)| > &o; that
is, f(x) # f(y). But |x, —y,| < 1/nfor alln € N so Theorem 2.9 (the Squeeze
Theorem) implies x = y. Therefore, f(x) = f(y), a contradiction. |

Our first application of this result is a useful but simple characterization of
uniform continuity on bounded open intervals. (This result does NOT work for
unbounded intervals.)

3.40 Theorem. Supposethata < b and that f : (a,b) — R. Then fis uniformly
continuous on (a, b) if and only if f can be continuously extended to [a, b]; that is,
if and only if there is a continuous function g : [a, b] — R which satisfies

fx) =g), x € (a,b). (11)

Proof. Suppose that f is uniformly continuous on (a, b). Let x,, € (a, b) con-
verge to b as n — oo. Then {x,} is Cauchy; hence, by Lemma 3.38, so is
{f (xp)}. In particular,

g(b) = lim f(x,)

exists. This value does not change if we use a different sequence to approxi-
mate b. Indeed, let y, € (a, b) be another sequence which converges to b as
n — oo. Given ¢ > 0, choose § > 0 such that (9) holds for E = (a, b). Since
Xn — Yo — 0, choose N € N so that n > N implies |x, — y,| < §. By (9),
then, | f(x,) — f(yn)| < e for all n > N. Taking the limit of this inequality as
n — 0o, we obtain

| im fGe) = lim fOu) | <e
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for all £ > 0. It follows from Theorem 1.9 that
lim f(xn) = lim f(yn)-
n—oo n—oo

Thus, g(b) is well defined. A similar argument defines g(a).

Set g(x) = f(x) for x € (a, b). Then g is defined on [a, b], satisfies (11), and
is continuous on [a, b] by the Sequential Characterization of Limits. Thus, f
can be “continuously extended” to g as required.

Conversely, suppose that there is a function g continuous on [a, b] which
satisfies (11). By Theorem 3.39, g is uniformly continuous on [«, b]; hence, g
is uniformly continuous on (a, b). We conclude that f is uniformly continuous
on (a, b). |

Let f be continuous on a bounded, open, nondegenerate interval (a, b).
Notice that f is continuously extendable to [a, b] if and only if the one-sided
limits of f exist at a and b. Indeed, when they exist, we can always define g at
a and b to be the values of these limits. In particular, we can prove that f is
uniformly continuous without using &’s and §’s.

3.41 EXAMPLE.

Prove that f(x) = (x — 1)/ log x is uniformly continuous on (0,1).

Proof. 1tis clear that f(x) — 0as x — 0+. Moreover, by ’'Hopital’s Rule
(see Theorem 4.27),

1
Jm Sl = lim

Hence f is continuously extendable to [0,1], so by Theorem 3.40, f is uni-
formly continuous on (0,1). [ |

EXERCISES

3.4.0. Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) If f is uniformly continuous on (0, co) and g is positive and bounded
on (0, 00), then fg is uniformly continuous on (0, co).

b) The function x log(1/x) is uniformly continuous on (0,1).

¢) The function

COoS X
mx + b

is uniformly continuous on (0,1) for all nonzero m, b € R.
d) If f,g are uniformly continuous on an interval [a, b] and g(x) # 0 for
x € [a, b], then f/g is uniformly continuous on [a, b].
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3.4.2.

3.4.3.

3.4.4.

3.4.5.

3.4.6.

Functions on R

Using Definition 3.35, prove that each of the following functions is uni-
formly continuous on (0,1).

a) f(x)=x2+x
b) f(x)=x3—x+2
c) f(x) =xsin2x

Prove that each of the following functions is uniformly continuous on
(0,1). (You may use I’'Hopital’s Rule and assume that sinx and logx are
continuous on their domains.)

sin x
a) fx)=——
X
1
b) f(x) = xcos =
X
c) f(x) =xlogx
d) fx) =1 =xH

Assuming that sin x is continuous on R, find all real « such that x* sin(1/x)

is uniformly continuous on the open interval (0,1).

a) Suppose that f : [0, c0) — R is continuous and that there isan L € R
such that f(x) — L as x — oo. Prove that f is uniformly continuous
on [0, c0).

b) Prove that f(x) =1/ (x> +1)is uniformly continuous on R.

Suppose that « € R, that E is a nonempty subset of R, and that f, g : E —
R are uniformly continuous on E.

a) Prove that f + g and «f are uniformly continuous on E.

b) Suppose that f,g are bounded on E. Prove that fg is uniformly contin-
uous on E.

c) Show that there exist functions f,g uniformly continuous on R such
that fg is not uniformly continuous on R.

d) Suppose that f is bounded on E and that there is a positive constant &
such that g(x) > go for all x € E. Prove that f/g is uniformly continuous
onE.

e) Show that there exist functions f,g, uniformly continuous on the inter-
val (0,1), with g(x) > 0 for all x € (0, 1), such that f/g is not uniformly
continuous on (0,1).

a) Let I be a bounded interval. Prove that if f : I — R is uniformly
continuous on /, then f is bounded on 1.

b) Prove that a) may be false if 7 is unbounded or if f is merely
continuous.



3.4.7.

3.4.8.

3.4.9.
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Suppose that f is continuous on [a, b]. Prove that given ¢ > 0 there exist
points xo = a < x; < --- < x, = bsuch thatif E; := {y : f(x) = y for
some x € [xx—1, x¢]}, thensup Ex —inf Ey <efork=1,2,...,n.

Let E € R. A function f : E — R is said to be increasing on E if and
only if x1,x € E and x; < xp imply f(x;) < f(x2). Suppose that f is
increasing and bounded on an open, bounded, nonempty interval (a, b).

a) Prove that f(a+) and f(b—) both exist and are finite.

b) Prove that f is continuous on (a, b) if and only if f is uniformly con-
tinuous on (a, b).

c) Show that b) is false if f is unbounded. Indeed, find an increasing
function g : (0, 1) — R which is continuous on (0,1) but not uniformly
continuous on (0,1).

Prove that a polynomial of degree n is uniformly continuous on R if and
onlyifn =0or 1.
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CHAPTER 4

Differentiability on R

4.1 THE DERIVATIVE

For many applications, we need to compute the slope of a tangent line to a curve.
The following concept is useful in this regard.

4.1 Definition.

A real function f is said to be differentiable at a point a € R if and only if f is
defined on some open interval I containing a and

fla+hn - f(a
h

(1)

f'@:= lim

exists. In this case f'(a) is called the derivative of f at a.

The assumption that f be defined on an open interval containing a is made so
that the quotients in (1) are defined for all 4 # 0 sufficiently small.

You may recall that the graph of y = f(x) has a non-vertical tangent line at
the point (a, f(a)) if and only if f has a derivative at a, in which case the slope
of that tangent line is f’(a). To see why this connection makes sense, let us
consider a geometric interpretation of (1). Suppose that f is differentiable at a.
A secant line of the graph y = f(x) is a line passing through at least two points
on the graph, and a chord is a line segment which runs from one point on the
graph to another. Let x = a + &, and observe that the slope of the chord passing
through the points (x, f(x)) and (a, f(a)) is given by (f(x)— f(a))/(x —a). Now,
since x = a + h, (1) becomes

@ tim L@@

X—a X —da

Hence, as x — a the slopes of the chords through (x, f(x)) and (a, f(a))
approximate the slope of the tangent line of y = f(x) at x = a (see Figure 4.1),
and in the limit, the slope of the tangent line to y = f(x) at x = a is precisely
f’'(a). Thus, we shall say that the graph of y = f(x) has a unique tangent line at
a point (a, f(a)) if and only if f/(a) exists.

From Chapter 4 of Introduction to Analysis, Fourth Edition. William R. Wade.
Copyright © 2010 by Pearson Education, Inc. All rights reserved.
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y=f)

Tangent

FIGURE 4.1

If f is differentiable at each point in a set E, then f” is a function on E. This
function is denoted several ways:

Def=L=yi=y

dx

When y = f(x), we shall also use the notation dy/dx or y’ for f’. Higher-order
derivatives are defined recursively; that is, if n € N, then f"*tD(q) := (f™) (),
provided these derivatives exist. Higher-order derivatives are also denoted
several ways, including D" f, d"f/dx", f®, and by d"y/dx" and y™ when
y = f(x). The second derivatives f® (respectively, y®) are usually written
as f” (respectively, y”), and when they exist at some point a, we shall say that f
is twice differentiable at a.

Here are two characterizations of differentiability which we shall use to study
derivatives. The first one, which characterizes the derivative in terms of the
“chord function”

F(x) := M x #a, ()
X —d
will be used to establish the Chain Rule in Section 4.2.

4.2 Theorem. A real function f is differentiable at some point a € R if and only
if there exist an open interval I and a function F : [ — R such thata € I, f is
defined on I, F is continuous at a, and

f&x)=Fx)(x —a)+ f(a) (3)

holds for all x € I, in which case F(a) = f'(a).
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Proof. Notice once and for all that for x € I \ {a}, (2) and (3) are equivalent.
Suppose that f is differentiable at a. Then f is defined on some open interval
I containing a, and the limit in (1) exists. Define F on I by (2) if x # a, and
by F(a) := f'(a). Then (3) holds for all x € I, and F is continuous at a by (2)
since f'(a) exists.

Conversely, if (3) holds, then (2) holds for all x € I, x # a. Taking the limit
of (2) as x — a, bearing in mind that F is continuous at a, we conclude that
F(a) = f'(a). [ |

The second characterization of differentiability, in terms of linear approxi-
mations [i.e., how well f(a + h) — f(a) can be approximated by a straight line
through the origin] will be used in Chapter 11 to define the derivative of a func-
tion of several variables.

4.3 Theorem. A real function f is differentiable at a if and only if there is a
function T of the form T (x) := mx such that

T fla+h)— fla)—T(h)
m =
h—0 h

0. (4)

Proof. Suppose that f is differentiable, and set m := f’(a). Then by (1),

flath) —fl@-TH _ flat+h - fla)
h h

— f'@) =0

ash — 0.
Conversely, if (4) holds for T'(x) := mx and & # 0, then

fla+h)— fla) fla+h)— f(a) —mh
h =m+ h
fla+h)— fa) —T(h)
m + y .

By (4), the limit of this last expression is m. It follows that (f(a + h) —
f(@@)/h — m,as h — 0; that is, that f'(a) exists and equals m. |

Our first application of Theorem 4.2 answers the question: Are differentiabil-
ity and continuity related?

4.4 Theorem. Iffis differentiable at a, then fis continuous at a.

Proof. Suppose that f is differentiable at a. By Theorem 4.2, there is an open
interval I and a function F, continuous at @, such that f(x) = f(a) + F(x)
(x — a) for all x € I. Taking the limit of this last expression as x — a, we
see that

lim () = f(@+ F@-0 = f().

In particular, f(x) — f(a) as x — a; thatis, f is continuous at a. [ |
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Thus any function which fails to be continuous at a cannot be differentiable
at a. The following example shows that the converse of Theorem 4.4 is false.

4.5 EXAMPLE.

Show that f(x) = |x| is continuous at 0 but not differentiable there.

Proof. Since x — 0 implies |x| — 0, f is continuous at 0. On the other hand,

since |h| = h when h > 0 and || = —h when i < 0, we have
h) — f( h) — f(0
lim —f( AU =1 and lim —f( ) = O =—1.
h—0+ h h—>0— h

Since a limit exists if and only if its one-sided limits exist and are equal
(Theorem 3.14), it follows that the limit in (1) does not exist when a = 0
and f(x) = |x|. Therefore, f is not differentiable at 0. |

This example reflects the conventional wisdom about the difference between
differentiable and continuous functions. Since a function differentiable at a
always has a unique tangent line at (a, f(a)), the graph of a differentiable
function on an interval is “smooth” with no corners, cusps, or kinks. On the con-
trary, although the graph of a continuous function on an interval is unbroken
(has no holes or jumps), it may well have corners, cusps, or kinks. In particular,
f(x) = |x| is continuous but not differentiable at x = 0 and the graph of y = |x|
is unbroken but has a corner at the point (0, 0) (see Figure 4.2).

y =lxl

FIGURE 4.2

By Definition 4.1, if f is differentiable at a, then f must be defined on an
open interval containing a (i.e., on both sides of a). As with the theory of limits,
it is convenient to define “one-sided” derivatives to deal with functions whose
domains are closed intervals (see Example 4.7 below). Here is a brief discus-
sion of what it means for a real function to be differentiable on an interval (as
opposed to being differentiable at every point in an interval). This concept will
be used in Sections 5.3, 5.6, and 11.1.
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4.6 Definition.

Let I be a nondegenerate interval.
i) A function f : I — Riis said to be differentiable on I if and only if

f1(a):= lim S = fla@)
1\a)=

xX—>a X —a
xel

exists and is finite for every a € I.
ii) f issaid to be continuously differentiable on I if and only if f; exists and is
continuous on /.

Notice that when a is not an endpoint of 7, f](a) is the same as f'(a). Because
of this, we usually drop the subscript on f;. In particular, if f is differentiable
on [a, b], then

fla+h) - fa
h

f+h)— f(b)
- :

"(@):= i d f'(b):=li
fra= i, ndf0)= iy

The following example shows that Definition 4.6 enlarges the collection of
differentiable functions.

4.7 EXAMPLE.
The function f(x) = x3/? is differentiable on [0, c0) and f’(x) = 3.4/x/2 for all
x € [0, 00).

Proof. By the Power Rule (see Exercise 4.2.7), f'(x) = 34/x/2 for all x €
(0, 00). And by definition,

3/2_0
h

h

£/(0) = lim = lim vh=0. []
h—0+ h—0+

Here is notation widely used in conjunction with Definition 4.6. Let I be

a nondegenerate interval. For each n € N, define the collection of functions
C"(I) by

C"(I):={f:f:1— Rand f"™ exists and is continuous on /}.

We shall denote the collection of f which belong to C"(I) for alln € N by C*°(1).
Notice that C!(I) is precisely the collection of real functions which are continu-
ously differentiable on /. When dealing with specific intervals, we shall drop the
outer set of parentheses; for example, we shall write C"[a, b] for C" ([a, b]).

By modifying the proof of Theorem 4.4, we can show that if f is differentiable
on I, then f is continuous on /. Thus, C*(I) c C"™(I) c C"(I) for all integers
m>n>0.
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The following example shows that not every function which is differentiable
on R belongs to C!(R).

4.8 EXAMPLE.
The function

x2sin(1/x) x#0

f(X)={0 =0

is differentiable on R but not continuously differentiable on any interval which
contains the origin.

Proof. By definition,

. (1 (1 1
£/(0) = lim A sin <—> =0 and f'(x)=2xsin (—) — cos <—>
h—0 h X X

for x # 0. Thus f is differentiable on R but lim,_,¢ f'(x) does not exist. In
particular, f’ is not continuous on any interval which contains the origin. H

It is important to notice that a function which is differentiable on two sets is
not necessarily differentiable on their union.

4.9 Remark. f(x) = |x| is differentiable on [0, 1] and on [—1, 0] but not on
[—1, 1].

Proof. Since f(x) = x when x > 0 and = —x when x < 0, it is clear that f is

differentiable on [—1, 0) U (0, 1] [with f'(x) = 1 for x > 0 and f'(x) = —1 for
x < 0]. By Example 4.5, f is not differentiable at x = 0. However,

h|

fon©@ = lim == =1 and f,© = lim 2= =-1.
Therefore, f is differentiable on [0, 1] and on [—1, 0]. [ |

EXERCISES

4.1.0. Suppose that f, g : [a,b] — R. Decide which of the following state-
ments are true and which are false. Prove the true ones and provide
counterexamples for the false ones.

a) If f = g2 and f is differentiable on [a, b], then g is differentiable on
(a, b).

b) If f is differentiable on [a, b], then f is uniformly continuous on
[a, b].
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4.1.1.

4.1.2].

4.1.3.

4.14.

4.1.5.

4.1.6.

4.1.7.

Differentiability on R

c) If f is differentiable on (a, b) and f(a) = f(b) = 0, then f is uni-
formly continuous on [a, b].

d) If f is differentiable on (a, b] and f(x)/(x —a) — 1 as x — a+, then
f is uniformly continuous on (a, b].

For each of the following real functions, use Definition 4.1 directly to
prove that f/(a) exists.

a) fx)=x>4+x,aeR
B) f(x) =y a>0
¢) f(x)=1/x,a#0

This exercise is used in Section 4.2.

a) Prove that (x")' = nx"~! for every n € N and every x € R.
b) Prove that (x")' = nx"~! for every n € —NU{0} and every x € (0, c0).

Suppose that
1

|x]|¥ sin — x #0
X

0 x =0.

Ja(x) =

Show that f,(x) is continuous at x = 0 when « > 0 and differentiable at
x = 0when « > 1. Graph these functions for « = 1 and o = 2 and give
a geometric interpretation of your results.

Let I be an open interval which contains 0 and f : I — R. If there
exists an ¢ > 1 such that |f(x)| < |x|* for all x € I, prove that f is
differentiable at 0. What happens when o = 1?

a) Find all points (a, b) on the curve C, given by y = x + sinx, so that
the tangent lines to C at (a, b) are parallel to the line y = x + 15.

b) Find all points (a, b) on the curve C, given by y = 3x2 +2, so that the
tangent lines to C at (a, b) pass through the point (—1, —7).

Define f on R by

x3 x>0
Fx) = 0 x < 0.

Find all n € N such that £ exists on all of R.
Suppose that f : (0,00) — R satisfies f(x) — f(y) = f(x/y) for all
x,y € (0,00) and f(1) =0.

a) Prove that f is continuous on (0, co) if and only if f is continuous
at 1.

b) Prove that f is differentiable on (0, co) if and only if f is differen-
tiable at 1.

c) Prove that if f is differentiable at 1, then f'(x) = f'(1)/x for all
x € (0, 00).

[Note: If f/(1) = 1, then f(x) = logx.]
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Let I be an open interval, f : I — R, and ¢ € I. The function f is said
to have a local maximum at c if and only if there is a § > 0 such that
f(c) = f(x) holds for all |x — ¢| < 4.

a) If f has alocal maximum at ¢, prove that

flerw -1 _

u

and wzo

for u > 0 and ¢ < O sufficiently small.

b) If f is differentiable at ¢ and has a local maximum at ¢, prove that
f'(c) =0.

¢) Make and prove analogous statements for local minima.

d) Show by example that the converses of the statements in parts b) and
c) are false. Namely, find an f such that f/(0) = 0 but f has neither
a local maximum nor a local minimum at 0.

Suppose that I = (—a, a) for some a > 0. A function f : I — Ris said
to be even if and only if f(—x) = f(x) for all x € I, and said to be odd
if and only if f(—x) = —f(x)forallx € I.

a) Prove thatif f is odd and differentiable on I, then f’ is even on /.
b) Prove that if f is even and differentiable on I, then f’ is odd on /.

4.2 DIFFERENTIABILITY THEOREMS

In this section we prove several familiar results about derivatives.

4.10 Theorem. Let fand g be real functions and o € R. If f and g are differen-
tiable at a, then  + g, af, f - g, and [when g(a) # 0] f/g are all differentiable
at a. In fact,

(f +8)(a) = f'(a) + g'(a), Q)

(af)(a) = af'(a), (6)

(f -8 (a) =g) f'(a) + fa)g'(a), (7)

( 1) @ = QS @ — f@d@ ®)
8 g=(a)

Proof. The proofs of these rules are similar. We provide the details only
for (7). By adding and subtracting f(a)g(x) in the numerator of the left side
of the following expression, we can write

fg) — fla)gl@) _

X —d

fx)— f(a) gx) —ga)
X —a )

g(x) +f@oF
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This last expression is a product of functions. Since g is continuous (see The-
orem 4.4), it follows from Definition 4.1 and Theorem 3.8 that

lim £ 8&) — fla)g(a)
1m

x—a X —a

=g@ f'(@) + f@g'(@). u

Formula (5) is called the Sum Rule, (6) is sometimes called the Homogeneous
Rule, (7) is called the Product Rule, and (8) is called the Quotient Rule.
Next, we show what the derivative does to a composition of two functions.

4.11 Theorem. [CHAIN RULE].
Let f and g be real functions. If f is differentiable at a and g is differentiable at
f(a), then g o f is differentiable at a with

(go (@) =g (f@)f (@. )

Proof. By Theorem 4.2, there exist open intervals I and J, and functions F :
I — R, continuous at @, and G : J — R, continuous at f(a), such that

F(a) = f'(a), G(f(@) = g'(f(a)),
f@x)=Fx)(x —a)+ f(a), xel, (10)

and

g =G — f@)+g(f(a), yelJ. (11)

Since f is continuous at a, we may assume (by making / smaller if necessary)
that f(x) € J forall x € I.
Fixx € I. Apply (11) to y = f(x) and (10) to x to write

(go Hx) =g(f(x) =G(f)(f(x) — f(a) +g(f(a))
=G(fONF(x)(x —a)+ (go fla).

Set H(x) = G(f(x))F(x) for x € I. Since F is continuous at a and G is
continuous at f(a), it is clear that H is continuous at a. Moreover,

H(a) = G(f(a))F(a) = g'(f(@)f'(a).
It follows from Theorem 4.2, therefore, that (g o f) (@) = ¢'(f(a)) f'(a). N

EXERCISES

4.2.0. Suppose that ] is an open interval containing a, and that f, g, h : I — R.
Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) If f, g, and h are differentiable at a, then

(fgh)'(a) = fl(@g(@h(a) + f(a)g (@h(a) + f(a)g(a)h'(a).
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b) If f is twice differentiable at a and g is twice differentiable at f(a),
then

(g0 )@ =g (f@)f @ +g"(f@)(f (@)
c) If the nth-order derivatives f (a) and g (a) exist, then
(f + 2" @) = () + " ().

d) If the nth-order derivatives f"(a) and g (a) exist and are
nonzero, then

£\ 2@ f™ @) + (=1)" f(@)g™ (a)
= (@) = o .
g g" ! (a)

Suppose that f and g are differentiable at 2 and 3 with f/(2) =
a, Q) =b, g@2)=c,andgB)=d. If f2)=1, f3) =2, g2) =3,
and g(3) = 4, evaluate each of the following derivatives.

a) (fg)'(2)

b) (f/g)'(3)
c) (g0 f)(3)
d) (fog)(©2)

Suppose that f is differentiable at 2 and 4 with f(2) = 2, f(4) = 3,
'@ =m,and f'4) =e.

a) If g(x) = xf(x?), find the value of g’(2).
b) If g(x) = f2(/x), find the value of g’(4).
¢) If g(x) = x/f(x3), find the value of g'(~/2).

[Power RULE] Assume that (¢*)" = ¢* for x € R and (logx)" = 1/x for
x > 0. Use x¥ := e?108x to prove that (x%)" = ax® 1 forall x > 0 and
alla e R.

Using Exercise 4.1.2, prove that every polynomial belongs to C*°(R).
Suppose that f is differentiable at ¢ and f(a) # 0.

a) Show that for & sufficiently small, f(a + k) # 0.
b) [ReciprocaLl RULE] Using Definition 4.1 directly, prove that 1/f(x)
is differentiable at x = a and

1y f(a)
7)) @=—=0
f f(@)
c) Use the Product Rule and the Reciprocal Rule to prove the Quotient
Rule directly.
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4.2.6. Suppose that n € N and f, g are real functions of a real variable
whose nth derivatives f, g exist at a point a. Prove Leibniz’s
generalization of the Product Rule:

n

(f" @ =3y <Z> P @eg" ).

k=0

4.2.7|. This exercise is used in Section 5.3.

a) Prove thatif ¢ = n/m forn € Z and m € N, then
X" —a" = (x7 — a1 p x4 Dg g x@1 M) 4 gDy

for every x,a € (0, 00).
b) [Power RuULE] Use Exercise 4.1.2 and part a) to prove that x4 is
differentiable on (0, co) for every ¢ € Q and that (x?)" = gx4 -1

4.2.8. Assuming that ¢* is differentiable on R, prove that

X

f(x)={m x#0
0

x=0

is differentiable on [0, c0). Is f differentiable at 0?
4.2.9. Using elementary geometry and the definition of sinx, cosx, we can
show that for every x, y € R (see Appendix B)

1) |sinx]| <1, |cosx| <1, sin(0) = 0, cos(0) =1,
ii) sin(—x) = —sinx, cos(—x) = cos x,
iii) sin?x +cos?x = 1, cosx = 1 — 2sin? (%) ,
iv) sin(x £ y) = sinx cos y = cos x sin y.

Moreover, if x is measured in radians, then

V) cosx:sin(%—x), Sinx:cos(%—x),
and

. ) o

vi) 0 <xcosx <sinx < x, O<x§5.

Using these properties, prove each of the following statements.

a) The functions sin x and cos x are continuous at 0.
b) The functions sinx and cos x are continuous on R.
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¢) The limits

sin x .1 —cosx
=1 and Im — =0
x—>0 X x—0 X

exist.
d) The function sin x is differentiable on R with (sin x)’ = cos x.
e) The functions cos x and tanx := sinx/cosx are differentiable on R

with (cosx)’ = —sinx and (tanx)’ = sec? x.

4.3 THE MEAN VALUE THEOREM

The Mean Value Theorem makes a precise statement about the relationship
between the derivative of a function and the slope of one of its chords. It
was discovered by the following geometric reasoning. Suppose that f is
differentiable on (a, b). Since the graph of f on (a, b) has a tangent at each
of its points, it seems likely that the slope of the chord through the points
(a, f(a)) and (b, f(b)) equals the slope f’(c) for some value of ¢ € (a,b)
(see Figure 4.3).

Tangent

Chord

y=f(x)

c———— - - —

|
|
|
|
|
|
|
|
|
c

FIGURE 4.3

We begin with a special case.

4.12 Lemma. [ROLLE’S THEOREM].
Suppose that a, b € Rwith a < b. If fis continuous on [a, b, differentiable on
(a, b), and if f(a) = f(b), then f'(c) = 0 for some ¢ € (a, b).
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Proof. By the Extreme Value Theorem, f has a finite maximum M and a
finite minimum m on [a, b]. If M = m, then f is constant on (a, b) and f'(x) =
Oforall x € (a, b).

Suppose that M # m. Since f(a) = f(b), f must assume one of the values
M or m at some point ¢ € (a, b). By symmetry, we may suppose that f(c) =
M. [That is, if we can prove the theorem when f(c) = M, then a similar proof
establishes the theorem when f(c) = m.] Since M is the maximum of f on
[a, b], we have

fle+h) —fle)=<0
for all & which satisfy ¢ + & € (a, b). In the case i > 0 this implies

ron o Jleth) — flo)
o= g, SEGEE <0

and in the case & < 0 this implies

flet) =1 _

/ — 1'
Fe=,n h

It follows that f’'(c) = 0. [ |
Notice once and for all that the proof of Rolle’s Theorem proves a well-known
result: The extreme values of a differentiable function on an open interval occur

at critical points (i.e., at points where f’ is zero).

4.13 Remark. The continuity hypothesis in Rolle’s Theorem cannot be relaxed
at even one point in [a, b].

Proof. The function

x €[0,1)
x=1

fx) = ;

is continuous on [0, 1), differentiable on (0, 1), and f(0) = f(1) = 0, but f'(x)
is never zero. n

4.14 Remark. The differentiability hypothesis in Rolle’s Theorem cannot be
relaxed at even one point in (a, b).

Proof. The function f(x) = |x| is continuous on [—1, 1], differentiable on
(=1, D\ {0}, and f(—=1) = f(1), but f'(x) is never zero. |

We shall use Rolle’s Theorem to obtain several useful results. The first is a
pair of “Mean Value Theorems.”
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4.15 Theorem. Supposethata,b € Rwitha < b.

i) [GENERALIZED MEAN VALUE THEOREM] If f, g are continuous on [a, b] and
differentiable on (a, b), then there is a ¢ € (a, b) such that

§'©(f(b) = f(@) = f'(c)(gb) — g(a)).

ii) [MEAN VALUE THEOREM] If f is continuous on [a, b] and differentiable on
(a, b), then thereis a ¢ € (a, b) such that

f®) = f@ = (0 -a.

Proof. i) Set h(x) = f(x)(g(b) — g(@)) — g(X)(f(b) — f(a)). Since k'(x) =
f'(x)(g) — gla)) — g x)(f(b) — f(a)), it is clear that h is continuous on
[a, b], differentiable on (a, b), and h(a) = h(b). Thus, by Rolle’s Theorem,
h'(c) = 0 for some ¢ € (a, b).

ii) Set g(x) = x and apply part i). (For a geometric interpretation of this
result, see the opening paragraph of this section and Figure 4.3.) |

The Generalized Mean Value Theorem is also called Cauchy’s Mean Value
Theorem. 1t is usually essential when comparing derivatives of two functions
simultaneously, using higher-order derivatives to approximate functions, and
studying certain kinds of generalized derivatives (e.g., see Taylor’s Formula and
I’Hopital’s Rule in the next section, and Remark 14.32).

The Mean Value Theorem is most often used to extract information about
f from f’ (see, e.g., Exercises 4.3.4, 4.3.5, and 4.3.9). Perhaps the best known
result of this type is the criterion for deciding when a differentiable function
increases. To prove this result, we begin with the following nomenclature.

4.16 Definition.

Let E be a nonempty subset of Rand f : E — R.

i) f is said to be increasing (respectively, strictly increasing) on E if and only
ifx1,xp € Eand x| < xpimply f(x1) < f(x2) [respectively, f(x1) < f(x2)].
i) f issaid to be decreasing (respectively, strictly decreasing) on E if and only
ifx1,xp € Eand x| < xpimply f(x1) > f(xp) [respectively, f(x1) > f(x2)].
iii) f issaid to be monotone (respectively, strictly monotone) on E if and only if
f is either decreasing or increasing (respectively, either strictly decreasing

or strictly increasing) on E.

Thus, although f(x) = x? is strictly monotone on [0, 1], and on [—1, 0], it is
not monotone on [—1, 1].

Monotone functions are important from both a theoretical and a practical
point of view (e.g., see Theorem 5.34). Thus it will come as no surprise that the
following result is very important and widely used.
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4.17 Theorem. Supposethata,b € R, with a < b, that fis continuous on [a, b),
and that f is differentiable on (a, b).

i) If f/(x) > O [respectively, f'(x) < 0] for all x € (a,b), then f is strictly
increasing (respectively, strictly decreasing) on [a, b].
il) If f'(x) =0 for all x € (a, b), then fis constant on [a, b].
i) If g is continuous on [a, b] and differentiable on (a, b), and if f'(x) = g’'(x)
forall x € (a, D), then f-g is constant on [a, b].

Proof. Leta < x; < xp < b. By the Mean Value Theorem, thereisac € (a, b)
such that f(x2) — f(x1) = f'(c)(x2 — x1). Thus, f(x2) > f(x1) when f’(c) > 0
and f(x2) < f(x1) when f’(c) < 0. This proves part i).

To prove part ii), notice that if f’ = 0, then by the proof of part i), f is
both increasing and decreasing, and hence constant on [a, b]. Finally, part iii)
follows from part ii) applied to f-g. |

Theorem 4.17i is a great result. It makes checking a differentiable function
for monotonicity a routine activity. However, there are many nondifferentiable
functions which are monotone. For example, the greatest integer function,

fx)=[x]:=n, n<x<n+1,nel,

is increasing on R but not even continuous, much less differentiable.

How badly can these nondifferentiable, monotone functions behave? The
following result shows that, just like the greatest integer function, any function
which is monotone on an interval always has left and right limits (contrast with
Examples 3.31 and 3.32). This is a function analogue of the Monotone Conver-
gence Theorem.

4.18 Theorem. Suppose that f is increasing on [a, b].

i) Ifc € [a, b), then f(c+) exists and f(c) < f(c+).
i) Ifc € (a, b], then f(c—) exists and f(c—) < f(c).

Proof. Bysymmetry it suffices to show that f(c—) exists and satisfies f(c—) <
f(c) for any fixed c € (a,b]. Set E = f((a,c)) and s = sup E. Since f is
increasing, f(c) is an upper bound of E. Hence, s is a finite real number
which satisfies s < f(c). Given ¢ > 0, choose by the Approximation Property
an xg € (a, c) such that s — e < f(xo) <s. Since f is increasing,

s—&< flxo) = f(x) <s
for all x9 < x < c¢. Therefore, f(c—) exists and satisfies f(c—) =5 < f(c). R
We have seen (Example 3.32) that a function can be nowhere continuous

(i.e., can have uncountably many points of discontinuity). How many points
of discontinuity can a monotone function have?
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*4.19 Theorem. If fis monotone on an interval I, then f has at most countably
many points of discontinuity on I.

Proof. Without loss of generality, we may suppose that f is increasing. Since
the countable union of at most countable sets is at most countable (Theorem
1.42i1), it suffices to show that the set of points of discontinuity of f can be
written as a countable union of at most countable sets. Since R is the union of
closed intervals [—n, n], n € N, we may suppose that I is a closed, bounded
interval [a, b].

Let E represent the set of points of discontinuity of f on (a, b). By Theo-
rem 4.18, f(x—) < f(x) < f(x+) for all x € (a, b). Thus, f is discontinuous
at such an x if and only if f(x+) — f(x—) > 0. It follows that

oo
E=]Aa,.
j=1

where foreach j e N, A; :={x € (a,b) : f(x+) — f(x—) > 1/j}. We will
complete the proof by showing that each A; is finite.

Suppose to the contrary that A j; is infinite for some jo. Set yo := jo(f(b) —
f(a)) and observe that since f is finite valued on I, yy is a finite real number.
On the other hand, since A}, is infinite, then by symmetry we may suppose
that there exist x| < xp < ...in [a, b] such that f(xx+) — f(xx—) > 1/jo for
k € N. Since f is monotone, it follows that

F®) = f@) = Y (fout) — flu—) = J”—O

k=1

that is, yo = jo(f(b) — f(a)) > n for all n € N. Taking the limit of this last
inequality as n — oo, we see that yg = +00. With this contradiction, the proof
of the theorem is complete. |

Theorem 4.17i can be used for less mundane tasks than finding intervals on
which a given function is increasing. The following example shows how to use it
to compare one function with another.

4.20 EXAMPLE.
Prove that 1 + x < e* forall x > 0.
Proof. Let f(x) = ¢* — x, and observe that f/(x) =¢* — 1 > 0 for all x > 0.

It follows from Theorem 4.17i that f(x) is strictly increasing on (0, co). Thus
e* —x = f(x) > f(0) =1for x > 0. In particular, ¢* > x + 1 for x > 0. |

We close this section with some optional results which further explore the

mean value concept.
Our first result shows how (1 + x)* is related to 1 + a.x.
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*4.21 Theorem. [BERNOULLI’S INEQUALITY].
Let o be a positive real number. If0 < a < 1, then (1 + x)* < 1 + ax for all
x €[—1,00), and ifa > 1, then (1 +x)* > 1 +ax forall x € [—1, c0).

Proof. The proofs of these inequalities are similar. We present the details
only for the case 0 < @ < 1. Fixx > —1 and let f(¢) = ¢, t € [0, 00). Since
f/(t) = at*~!, it follows from the Mean Value Theorem (applied to a = 1 and
b =1+ x) that

f+x)— f(1) =axc*! (12)

for some ¢ between 1 and 1 + x.
Case 1. x > 0. Then ¢ > 1. Since 0 < @ < 1 implies ¢ — 1 < 0, it follows
that ¢®~! < 1, hence xc*~! < x. Therefore, we have by (12) that

A4+x)%=fA4+x)=f(D4+axc® ' < f)+ax=1+ax (13)
as required.

Case2. —1 <x <0.Thenc < 1soc¢*! > 1. But since x < 0, it follows that
xc®~! < x as before and we can repeat (13) to obtain the same conclusion.

We will now use Bernoulli’s Inequality to show once again that vague reason-
ing can produce wrong conclusions. To see why, assuming that

] n
lim <1 + —)
n—o0 n

exists, what do you think its limit is? Vague reasoning that well over half your
class would agree with: Since 1 4+ 1/n gets near 1 and 1* = 1 for all « € R, the
limit should be 1, right? Absolutely not.

*4,22 EXAMPLE.

Prove that the sequence (1 4+ 1/n)" is increasing, as n — oo, and its limit L
satisfies 2 < L < 3. (The limit L turns out to be an irrational number, the
natural base e = 2.718281828459 - --.)

Proof. The sequence (1 + 1/n)" is increasing, since by Bernoulli’s Inequality,

1 n/(n+1) 1
(e2) = (i)
n n+1

To prove that this sequence is bounded above, observe by the Binomial For-

mula that
l n n n 1 k
) =26
( n P k n
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n lk_n(n—l)...(n—k—i—l) 1_1_ 1
k)J\n) — nk kT kT k-1

for all k € N. It follows from Exercise 1.4.4c that
1 1\" g 1

for n > 1. Hence, by the Monotone Convergence Theorem, the limit L exists
and satisfies 2 < L < 3. [ |

Now,

The last result in this section shows that although a differentiable function
might not be continuously differentiable, its derivative does satisfy an interme-
diate value theorem. (This result is sometimes called Darboux’s Theorem.)

*4.23 Theorem. [INTERMEDIATE VALUE THEOREM FOR
DERIVATIVES].

Suppose that f is differentiable on [a, b] with f'(a) # f'(b). If yo is a real
number which lies between f'(a) and f'(b), then there is an xy € (a, b) such
that f'(xo) = yo.

STRATEGY: Let F(x) := f(x) — yox. We must find an xo € (a, b) such that
F'(x9) := f'(x0) — yo = 0. Since local extrema of a differentiable function
F occur only where the derivative of F is zero (e.g., see the proof of Rolle’s
Theorem), it suffices to show that F has a local extremum at some xy € (a, b).

Proof. Suppose that yp lies between f’(a) and f'(b). By symmetry, we may
suppose that f'(a) < yo < f'(b). Set F(x) = f(x) — yox for x € [a,b],
and observe that F is differentiable on [a, b]. Hence, by the Extreme Value
Theorem, F has an absolute minimum, say F(xp), on [a, b]. Now F'(a) =
f'(@) —yo < 0,50 F(a + h) — F(a) < 0for h > 0 sufficiently small. Hence
F(a) is NOT the absolute minimum of F on [a, b]. Similarly, F(b) is not the
absolute minimum of F on [a, b]. Hence, the absolute minimum F (xg) must
occur on (a, b); that is, xg € (a, b) and F’(x¢) = 0. |

EXERCISES

4.3.0. Suppose that f, g : [a,b] — R. Decide which of the following state-
ments are true and which are false. Prove the true ones and provide
counterexamples for the false ones.

a) If f and g are increasing on [a, b], then f + g is increasing on [a, b].

b) If f and g are increasing on [a, b], then fg is increasing on [a, b].

c) If f is differentiable on (a, b) and lim,_, . f(x) exists and is finite,
then for each x € (a, b) there is a ¢ between a and x such that f(x) —
flat) = f©x —a).

d) If f and g are differentiable on [a, b] and | f/(x)| < 1 < |g’(x)| for
all x € (a, b),then | f(x) — f(a)| < |g(x) — g(a)| for all x € [a, b].
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4.3.1.

4.3.2.

4.3.3.

4.3.4.

4.3.5.

4.3.6.

4.3.7.

4.3.8.

4.3.9.

4.3.10.

4.3.11.

*4.3.12.

Differentiability on R

Prove that each of the following inequalities holds.

a) 2x +0.7 < e forall x > 1.

b) logx < /x — 0.6 for all x > 4.
¢) sin’x < 2|x|forall x € R.

d) 1 —sinx < e* forall x > 0.

Suppose that I = (0, 2), that f is continuous at x = 0 and x = 2, and
that f is differentiable on /. If f(0) = 1 and f(2) = 3, prove that
1 e f'().

Let f be a real function and recall that an » € R is called a root of
a function f if and only if f(r) = 0. Show that if f is differentiable
on R, then its derivative f’ has at least one root between any two
roots of f.

Suppose that a < b are extended real numbers and that f is differen-
tiable on (a, b). If f’is bounded on (a, b), prove that f is uniformly
continuous on (a, b).

Suppose that f is differentiable on R. If £(0) = 1 and | f/(x)| < 1 for
all x € R, prove that | f(x)| < |x| + 1forallx € R.

Suppose that f is differentiable on (a, b), continuous on [a, b], and
that f(a) = f(b) = 0. Prove that if f(c) # 0 for some ¢ € (a,b),
then there exist xj, xa € (a, b) such that f’(x;) is positive and f/(x) is
negative.

Suppose that f is continuous on [a, b] and that

F(x) = sup f([a, x]).

Prove that F is continuous on [a, b].

Suppose that f is twice differentiable on (a, ») and that there are points
X1 < xp < x3in (a, b) such that f(x;) > f(xp)and f(x3) > f(x2). Prove
that there is a point ¢ € (a, b) such that f”(c) > 0.

Suppose that f is differentiable on (0, 00). If L = limy_, f'(x) and
lim,_, o, f(n) both exist and are finite, prove that L = 0.

Suppose that (a, b) is an open interval, that f : (a,b) — R is differ-
entiable on (a, b), and that x¢ € (a, b) is a proper local maximum of f
(see Exercise 4.1.8).

a) Prove that given § > 0, there exist x; < xo < x such that f/(x;) >
0, f'(x2) <0,and |x; —xg| <8 forj=1,2.

b) Make and prove an analogous statement for a proper local mini-
mum.

Suppose that f : [a, b] — R is continuous and increasing. Prove that
sup f(E) = f(sup E) for every nonempty set E C [a, b].

Suppose that f is differentiable at every point in a closed, bounded
interval [a, b]. Prove that if f’ is increasing on (a, b), then f is contin-
uous on (a, b).
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4.4 TAYLOR'S THEOREM AND I'HOPITAL'S RULE

In this section we use the Generalized Mean Value Theorem to obtain informa-
tion about approximation.

To motivate the first result, notice by the Mean Value Theorem that if f is
differentiable on (a, b), then for any points x, xo € (a, b), there is a ¢ between x
and xo such that

F(x) = f(xo0) + f'(c)(x — x0), x € (a,b).

Thus we have precise information about how closely f(x) can be approximated
by the constant function y = f(xg). Clearly, the values f(x) of a function
whose graph bends at the point (xg, f(xp)) cannot be closely approximated by
a constant function unless x is near xo. But a constant function is a polyno-
mial of degree 0. If we used polynomials of higher degree (whose graphs do
curve), might we be able to approximate f(x) even when x is not so close to xo?
In fact, the next result contains precise information about how closely f(x) can
be approximated by a certain polynomial of degree n. (To understand how Tay-
lor discovered this result, see the proof of Theorem 7.39.)

4.24 Theorem. [TAYLOR’S FORMULA].

Letn € N and let a, b be extended real numbers witha < b. If f : (a,b) — R,
and if "V exists on (a, b), then for each pair of points x, xo € (a, b) there is
a number c between x and xg such that

O (xo) PR ALl (9)
R Ly

)= f0)+ )
k=1

Proof. Without loss of generality, suppose that xo < x. Define

Foy = S0 and 60 = - F0 =
ST e —

(k)
f '(f) (x — t)k

k

for each t € (a, b), and observe that the theorem will be proved if we can
show that there is a ¢ between x and xg such that

G(xo) = F(xo) - f" "V (0). (14)
This looks like a job for the Generalized Mean Value Theorem.

To verify that F and G satisfy the hypotheses of the Generalized Mean
Value Theorem, notice that

d (P AN A0 A 0) k-1
E( R R T a7 s L)
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for ¢t € (a, b) and k € N. Telescoping, we obtain

f(rH-l)(t)

G =+

(x—=0"

for t € (a, b). On the other hand, by the Chain Rule

(x —10)"
n!

F'(t) = —

for t+ € R. Thus F and G are differentiable on (xg, x), continuous on [xg, x],
and satisfy

G'() (n+1)
— = 1), t . 15
P =0 i (15)
By the Generalized Mean Value Theorem, there is a number ¢ € (xg, x)
such that

(F(x) = F(x0))G'(c) = (G(x) = G(x0)) F'(c). (16)

Since F(x) = G(kx) = 0 and x # c, it follows that —F(x0)G'(c) =
—G(x0) F'(c); that is, G(xg) = F(xg) - G'(c)/F'(c). We conclude by (15) that
(14) holds, as promised. [

We shall use this result in Chapter 7 to show that most of the functions
you’ve used in calculus classes before are very nearly polynomials themselves.
To lay some ground work for these results, we introduce some additional
notation.

Define 0! = 1 and f©(x) = f(x), and notice that f(xg) = f© (x0)/0!. We
shall call

n (k)
Pnf’xo(x) = Z M(X — x0)*

k!
k=0

the Taylor polynomial of order n generated by f centered at xo. Clearly, for each
f € C*(a, b), Taylor’s Formula gives us an estimate of how well Taylor polyno-
mials approximate f. In fact, since Taylor’s Formula implies

f("H)(c)

_ pflxo
lf(x) — Py (0)| = D)

(x — xo)"J“1 , (17)

for some ¢ between x and xp and the fraction 1/(n + 1)! gets smaller as n gets
larger, we see that when the derivatives of f are bounded, the higher-order
Taylor polynomials approximate f better than the lower-order ones do.

Let’s look at two specific examples to see how this works out in practice.
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4.25 EXAMPLE.
Let f(x) = ¢* andn € N.

a) Find the Taylor polynomial P, := Pnf 0,
b) Prove thatif x € [—1, 1], then

le* = Py(x)| < TR

¢) Find an n so large that P, approximates ¢* on [—1, 1] to four decimal places.

Proof. a) Since f®(x) = ¢* forall x € Rand k = 0, 1,..., it is clear that
F£%®0) = 1 for all k > 0; that is, that

n xk
PSOx) = o

k=0

(18)

b) Let ¢, x € [—1,1]. Clearly, [¢‘] < ¢! < 3 and |x"| < 1 for alln € N.
But if ¢ lies between x and 0, then ¢ € [—1, 1]. Thus it follows from (17) that
leX — P, (x)| < lex™ | /(n+ D! <3/(n+ 1.

c¢) To get four-place accuracy, we want |e* — P,(x)| < .00005. By part b),
this will hold when 3/(n + 1)! < 0.00005; that is, when (n + 1)! > 60, 000.
According to my calculator, this occurs whenn + 1 > 9,soset n = 8. |

4.26 EXAMPLE.

Let f(x) =sinx andn € N.

a) Find the Taylor polynomial Py, 4 := sz 0

n+1-
b) Prove thatif x € [—1, 1], then

1
i — P < —
|sinx — Pryq1(x)| < a2l

¢) Find an n so large that P,,; approximates sinx on [—1, 1] to three decimal
places.

Proof. a) Observe that f(x) = sinx, f/(x) = cosx, f”(x) = —sinux,
f®x) = —cosx, and f@®(x) = sinx, right back where we started from.
Thus it is clear that f@®(x) = (—=1)fsinx and f@*+D(x) = (—1)*cosx for
k =0,1,.... It follows that fZ9(0) = 0 and f@*+D ) = (—=)* for k > 0;
that is, that

n (—l)kx2k+1

Pty =3 (19)
2n+1 2k + D!

b) Let ¢, x € [—1, 1]. Clearly, | f2"*%(c)| < 1 and |x***2| < 1?"*2 = | for all
n € N. Thus it follows from (17) that | sinx — Py, +1(x)| < 1/2n +2)!.
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c) To get three-place accuracy, we want |sinx — Pa,42(x)| < .0005. By
part b), this will hold when 1/(2n+2)! < 0.0005; that is, when (2rn+2)! > 2000.
According to my calculator, this occurs when 2n +2 > 7,soset n = 3. [

The next result is a widely known technique for evaluating limits of the form
0/0 or co/o0. Since it involves using information about derivatives to draw con-
clusions about the functions themselves, it should come as no surprise that the
proof uses the Mean Value Theorem. (Notice that our statement is general
enough to include one-sided limits and limits at infinity.)

4.27 Theorem. [L’HOPITAL’S RULE].

Let a be an extended real number and I be an open interval which either con-
tains a or has a as an endpoint. Suppose that f and g are differentiable on I\{a}
and that g(x) # 0 # g'(x) for all x € I\{a}. Suppose further that

A:=lim f(x) = lim g(x)
X—a X—a

xel xel
is either 0 or oo. If
’
B:= lim f/ (x)
x—a g (x)

xel

exists as an extended real number, then

GO N lC)

1 .
x—a g(x)  x—>a g'(x)

Proof. Let x; € I be distinct points with x; — a as k — oo such that either
Xy <a or x; >a for all k € N. By the Sequential Characterization of Limits
and by the characterization of two-sided limits in terms of one-sided limits, it
suffices to show that f(x;)/g(xx) — B ask — oo.

We suppose for simplicity that B € R. (For the cases B = +o0, see Exer-
cise 4.4.10.) Notice once and for all, since g’ is never zero on /, that by Mean
Value Theorem the differences g(x) — g(y) are never zero for x, y € I, x # y,
provided either x,y > a or x, y < a. Hence, we can divide by these differ-
ences at will.

Casel. A=0anda € R. Extend f and g to I U {a} by f(a) := 0 =: g(a).
By hypothesis, f and g are continuous on / U {a} and differentiable on 7\{a}.
Hence by the Generalized Mean Value Theorem, there is a ¢ between x; and
y := a such that

JOox) = f()  f(ex)

= . (20)
gCx) —g(y)  g'(cw)
Since f(y) = g(y) = 0, it follows that
FOx)  fO) = f)  f(ex) 1)

g)  gl) —g(y) g’
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Let k — oo. Since ¢ lies between xi and a, ¢i also converges to a as k — o0.
Hence hypothesis and (21) imply f (xx)/g(xx) — B as k — oo.

Case 2. A = +oo and a € R. We suppose by symmetry that A = +oo. For
each k,n € N, apply the Generalized Mean Value Theorem to choose a ¢,
between x; and x, such that (20) holds for x, in place of y and ¢, in place of
ckx. Thus

f@n)  fOn) _ flm) = faw) _ 1 el) — 2 - f(ckn)
gxn) gl glxw) g(xn) " g (ckn)
_ (1 3 g(xk)> f'(ckn) .
g(xn)) g (ckn)’
that is,

fon) _ fle) 8w fleen) | f (k)
8g(xn) g(xn) g(xn) g/(ck,n) g/(ck,n)'

Since A = oo, it is clear that 1/g(x,) — 0 as n — oo, and since ¢, lies
between x; and x,, it is also clear that ¢, — a, as k,n — oo. Thus (22)
and hypothesis should imply that f(x,)/g(x,) =~ 0 — 0+ B = B for large
n and k. Specifically, let 0 < ¢ < 1. Since ¢y, — a as k,n — 0o, choose
an Ny so large that n > Ny implies | f'(cny.n)/8 (cNy.n) — Bl < €/3. Since
g(xp) — oo, choose an N > Ny such that |f(xy,)/g(x,)| and the product
lg(xny)/8(xn)| - | f'(cNy,n) /8 (chy,n)| are both less than ¢/3 for alln > N. It
follows from (22) that for any n > N,

(22)

/(CN(),n)
g,(cNo,n)

—B

< E&.

f ) _B‘ _ [ fGw)
g(xn) | g(xn)

‘g(xN()) f/(CNo,n)
g(xn) &' (cNg,n)

Hence, f(x,)/g(xy,) — B asn — oo.

Case 3. a = £oo. We suppose by symmetry that a = +o0o0. Choose ¢ > 0
such that I D (¢, 00). For each y € (0, 1/¢), set ¢(y) = f(1/y) and ¥ (y) =
g(1/y). Notice that by the Chain Rule,

') _ ANy f1A)y)
v g/ gy
Thus, for x = 1/y € (¢, 00), f'(x)/g' (x) = ¢'(y)/¥'(y). Since x — oo if and

onlyif y = 1/x — 0+, it follows that ¢ and v satisfy the hypotheses of Cases 1
or 2 fora =0and I = (0, 1/¢). In particular,

lim [l lim ' (y) . o0 _ lim fx)
x—>00 g’(x) y%0+1/f(y) y%0+1/f(y) x—o0 g(x)

L’Hopital’s Rule can be used to compare the relative rates of growth of two
functions. For example, the next result shows that as x — oo, e* converges to
oo much faster than x? does.
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4.28 EXAMPLE.

Prove that lim,_ o xz/e" =0.

Proof. Since the limits of x?/¢* and x/e* are of the form co/oco, we apply
I’Hopital’s Rule twice to verify

2
LX . 2x . 2
lim — = lim — = lim — =0. |
x—>00 eX x—>00 eX x—>o00 eX

For each subsequent application of I’'Hopital’s Rule, it is important to check
that the hypotheses still hold. For example,

. x2 . 2x . 2
lim —  —lim——  —0#£1=1lim-—
1—0x24+sinx x—02x 4+ cosx x—072 —sinx

Notice that the middle limit is not of the form 0/0.
I’Hopital’s Rule can be used to evaluate limits of the form 0 - co = —0(—00).

429 EXAMPLE.

Find lim,_, o+ x log x.

Solution. By writing x as 1/(1/x), we see that the limit in question is of the form
oo/0o0. Hence, by ’'Hopital’s Rule,

. . logx ) 1/x
lim xlogx = lim = lim =0. |
x—0+ x—0+ 1/x x—>0+ —1/x2

The next two examples show that I’'Hopital’s Rule can also be used to evaluate
limits of the form 1°° and 0°.

4.30 EXAMPLE.
Find L = lim, o4 (1 4+ 3x)!/~.
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Solution. 1If the limit exists, then by a law of logarithms and the fact that log x
is continuous, we have log L = lim,_,¢4 log(l + 3x)/x. Thus it follows from
I’Hopital’s Rule and the Chain Rule that

log(1+3x) _ . 3/(+30) _

logL = lim 3.
x— 0+ X x—0+ 1
In particular, the limit exists by I’Hopital’s Rule and L = e!°¢L = ¢3. |

4.31 EXAMPLE.

Find L = lim,_, ;4 (log x)' ~*.

Solution. If the limit L > 0 exists, then log L = lim, (1 — x) loglog x is of the
form O - co. Hence, by 'Hopital’s Rule,

log log x . 1/(xlogx) . —2(1 —x)
——— =lim ———— = lim —— =

log L = lim = = lim =
x—11/(1 —x) x—1 1/(1—x)2 x—1 14+ logx
Therefore, the limit exists by I’'Hopital’s Rule and L = ¢° = 1. |
EXERCISES

4.4.0. Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) x/logx - 0asx — 0.

b) Ifn € N, then sin(1/x)/x"* — 0 as x — oo.

c) x°2*¥ 5 0asx — 0+.

d) If there is a 8 > 0 such that f'(x) > B for all x € (0, c0), then
x2/f(x) = 00 as x — 00.

4.4.1. Let f(x) =cosx andn € N.

a) Find the Taylor polynomial Py, := Pza’o.
b) Prove thatif x € [—1, 1], then

1
|cosx — Ppu(x)| < (Zn——i—l)'

c) Find an n so large that P,, approximates cosx on [—1, 1] to seven
decimal places.
4.4.2. Let f(x) =logx andn € N.

a) Find the Taylor polynomial P, := Pnf !
b) Prove that if x € [1, 2], then

1
logx — Py(x)| < ——.
|log x Wl =-"7
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4.4.3.

4.4.4.

4.4.5.

Differentiability on R

¢) Find an n so large that P, approximates log x on [1, 2] to three decimal
places.

Prove that

1 .
+X+E+ +E<€

for every x > 0 and every n € N.

Prove that
.X3 N XS x4n—1 ) .X3 L X XS - )C4n+1
TR TS T T Gy ST T 4n+1)!

for everyn € Nand x € (0, 7).

Evaluate the following limits.
, sin”(5x)
a) limy 0 ——5—
X
cosx —e*
b limy_,oy ————————
) 1My — 0+ IOg(l +.X2)
x A\ 1/x2
c) lim, _, ¢ ( - )
sin x
d) limy 04 (1 — x2)l/x
1
6) limy—1 — 08X
sin(r x)
f) limx»o+ [logx|*
g) li 2oV
imy_,
e V2x2 — 1 —/2x2
. Vi+4—x+1
h) limy 00
Vx+3—-+x+1

. This exercise is used in Sections 5.4, 6.3, and elsewhere. Let o > 0 and

recall that (x%)’ = ax®~! and (logx)’ = 1/x for all x > 0.

a) Prove that logx < x* for x large. Prove that there exists a constant
Cy such that logx < Cox® for all x € [1,00), Cy — o0 as @ — 0+,
and C, — 0asa — oo.

b) Obtain an analogue of part a) valid for ¢* and x* in place of log x and

x“.
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. This exercise is used in Sections 7.4 and 12.5. Assume that ¢* is differen-
tiable on R with (¢*)’ = e*.

a) Show that the following function is differentiable on R with

£'(0) = 0:

el x#0

F&=1, x=0.

b) Do analogous statements hold for " (x) whenn =2,3,...2

4.4.8. Suppose that n € N is odd and f™ exists on [a,b]. If fP(a) =
f®OWB)y=0forallk =0,1,...,n— 1 and f(c) # 0 for some ¢ € (a, b),
prove that there exist x1, xo € (a, b) such that f ™ (x)) is positive and
£ (x7) is negative.

4.4.9. a) Prove that |§ +sin(§ + )| < §°/3! forall0 < 8§ < 1.
b) Prove thatif |x — 7| <8 < 1, then |x + sinx — 7| < §3/3!.

4.4.10. Prove I’'Hopital’s Rule for the case |B| = oo by first proving that
gx)/f(x) = Owhen f(x)/g(x) - +o0,as x — a.

4.4.11. Suppose that f and g are differentiable on an open interval / and that
a € Reither belongs to I or is an endpoint of 7. Suppose further that g
and g’ are never zero on [ \ {a} and that

i Jfx)
m
x—a g(x)

is of the form 0/0. If there is an M € R such that | f'(x)/g’(x)| < M for
all x € I \ {a}, prove that | f(x)/g(x)| < M forall x € I \ {a}.
Is this result true if the limit of f(x)/g(x) is of the form co/oc0?

4.5 [INVERSE FUNCTION THEOREMS

In this section, we explore the continuity and differentiability of inverse
functions.

Recall that f : X — Y has an inverse function f~! if and only if f is 1-1
and onto (Theorem 1.30), in which case f “I(f(x)) = x for all x € X and
f(f~'(y)) = yforall y € Y. Since (x, f(x)) = (f~'(y), y), this means that
the graph of y = f~!(x) is a reflection of the graph of y = f(x) about the line
y = x (see Figure 4.4). In particular, it is not difficult to imagine that f~! is as
smooth as f. This is the subject of the next two results.

4.32 Theorem. Let I be a nondegenerate interval and suppose that f : I — Riis

1-1. If fis continuous on I, then J := f(I) is an interval, f is strictly monotone on
I, and =" is continuous and strictly monotone on J.

Proof. Since f is 1-1 from I onto J, Theorem 1.30 implies that f~! exists and
takes J onto /.
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Ay y =f*'(x)/'

FIGURE 4.4

To show that J is an interval, since I contains at least two points, so does J.
Let ¢, d € J with ¢ < d. By the definition of an interval, it suffices to prove
that every yg € (c, d) belongs to J. Since f takes I onto J, there exist points
a,b € I such that f(a) = ¢ and f(b) = d. Since yq lies between f(a) and
f(b), we can use the Intermediate Value Theorem to choose an xo between a
and b such that yo = f(xg). Since xo € I and f takes I onto J, yg = f(xo)
must belong to J, as required.

Suppose that f is not strictly monotone on /. Then there exist points
a,b,c € I such thata < ¢ < b but f(c) does not lie between f(a) and
f(®). Since f is 1-1, f(a) # f(b), so by symmetry we may suppose that
f(a) < f(b). Since f(c) does not lie between f(a) and f(b), it follows that
either f(c) < f(a) < f(b) or f(a) < f(b) < f(c). Hence by the Interme-
diate Value Theorem, there is an x; € (a, b) such that either f(x;) = f(a) or
f(x1) = f(b). Since f is 1-1, we conclude that either x; = a or x; = b, both
contradictions. Therefore, f is strictly monotone on /.

By symmetry, suppose that f is strictly increasing on I. To prove that f~!is
strictly increasing on J, suppose to the contrary that there exist y;, y» € J such
that yi < y2 but ' (y1) = 7' (y2). Then x; := f~'(y1) and x2 := f7'(32)
satisfy x; > xp and x1,x, € I. Since f is strictly increasing on I, it follows
that y; = f(x1) > f(x2) = y», a contradiction. Thus, £~ is strictly increasing
onJ.

It remains to prove that f~! is continuous from the left and from the right
at each yp € J. We will provide the details for continuity from the right. To
this end, suppose that f~! is not continuous from the right at some yg € J;
that is, that there exist y, € J such that y, > yo, v, — yo asn — o0,
but that

7 ow) = a0 > £ 00) (23)

for some number ag. Since I is an interval and f~! takes J onto I, it follows
that ap belongs to I and there is a by € J such thatay = f L (by). Substituting
this into (23), we see that f~!'(y,) > f~!(by) > f~'(yo). Since f is strictly
increasing, we conclude that y, > by > yyp; that is, y, cannot converge to yy,
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a contradiction. A similar argument verifies that f~! is continuous from the
left at each yo € J. Thus f~! is continuous on J. |

Our final result addresses the differentiability of an inverse function.

4.33 Theorem. [INVERSE FUNCTION THEOREM].
Let I be an open interval and f : I — R be 1-1 and continuous. If b = f(a)
for some a € I and if f'(a) exists and is nonzero, then f~! is differentiable at b

and (f~1'(b) = 1/f'(a).

Proof. By Theorem 4.32, f is strictly monotone, say strictly increasing on /,
and f~! exists and is both continuous and strictly increasing on the range
f(I). Moreover, since a := f~'(b) € I and I is open, we can choose ¢, d € R
such thata € (¢,d) C I.

Let E( be the range of f on (c, d); thatis, Eg = f((c, d)). By Theorem 4.32,
Eo must be an interval. Since f is strictly increasing, it follows that Ey =
(f(c), f(d)). Hence, we can choose § > 0 so small that 0 < |k| < § implies
b+ h € Ey. In particular, f~!(b + h) is defined for all 0 < || < é.

Fix such an 7 and set x = f~!(b+h). Observe that f(x)— f(a) =b+h—b =h.
Since f~!is continuous, x — a if and only if = — 0. Therefore, by direct
substitution, we conclude that

A CE R S () N x—a 1
lim = lim = .
s h y—>a f(x)— f(a)  f(a)

This theorem is usually presented in elementary calculus texts in a form more
easily remembered: If y = f(x) and x = f~Y(y), then

dx 1

dy — dyjdx’

Notice that, by using this formula, we do not need to solve explicitly for f~! to
be able to compute (£~

4.34 EXAMPLE.

If fX) =x> +x*+x3+x2+x+1, prove that f~1(x) exists at x = 6 and find a
value for (f~1)(6).

Solution. Observe that f(1) = 6 and f'(x) > 0 for all x > 0. Thus f is strictly
increasing on (0, c0), and hence 1-1 there.

Letl =(0,2), a=1,andb = 6. Then f(a) = band f'(a) = 15 # 0. Hence, it
follows from the Inverse Function Theorem that (f~')'(6) = 1/f'(1) = 1/15. &
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EXERCISES

4.5.0.

4.5.1.

4.5.2.

4.5.3.

4.54.

4.5.5.

Decide which of the following statements are true and which are
false. Prove the true ones and provide counterexamples for the
false ones.

a) Suppose that I € Risnonempty. If f : I — Ris 1-1 and continuous,
then f is strictly monotone on /.

b) Suppose that I is an open interval which contains 0 and that f :
I — R is 1-1 and differentiable. If f and f’ are never zero on I,
then the derivative of f~! has at least one root in f(I); that is, there
is an a € I such that (f~!)(a) = 0.

c) Suppose that f and g are 1-1 on R. If f and g o f are continuous on
R, then g is continuous on R.

d) Suppose that [ is an open interval and that a € I. Suppose further
that f : I — Rand g : f(I) — R are both 1-1 and continuous and
that b := f(a). If f'(a) and g’(b) both exist and are nonzero, then
(g o f)~'(x) is differentiable at x = g(b), and ((g o £)~)/(g(b)) =
(f'@) - g®)".

Suppose that f and g are 1-1 and continuous on R. If f(0)=2,
g(1)=2, f'(0) =, and g'(1) = e, compute the following derivatives.

a) (f Q)
b) (g7 ()
o (f7g7H

Let f(x) = xze"z, and assume that (e¥)’ = ¢* for all x € R.

a) Show that f —1 exists and is differentiable on (0, c0).
b) Compute (f~1)(e).

Using the Inverse Function Theorem, prove that (arcsin x)’ = 1/+/1 — x2
for x € (—1, 1) and (arctanx)’ = 1/(1 + x?) for x € (—o0, 00).

Suppose that f’ exists and is continuous on a nonempty, open interval
(a, b) with f'(x) # 0 for all x € (a, b).

a) Prove that f is 1-1 on (a, b) and takes (a, b) onto some open interval
(c,d).

b) Show that f~! € Cl(c, d).

c) Using the function f(x) = x3, show that b) is false if the assumption
f'(x) # 0 fails to hold for some x € (a, b).

d) Sketch the graphs of y = tan x and y = arctan x to see that ¢ and d in
part b) might be infinite.

Suppose that a := limy_, (1 + 1/x)* exists and is greater than 1 (see
Example 4.22). Assume that ¢* : R — (0, 00) is onto, continuous,
strictly increasing, and satisfies a*a” = a** and (a¢*)’ = a* for all
x,y € R (see Exercise 3.3.11). Let L(x) denote the inverse function
of a*.



4.5.6.

4.5.7.

4.5.8.

4.5.9.

4.5.10.

*4.5.11.
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a) Prove thattL(1+1/f) — 1 asr — oo.

b) Prove that (a" — 1)/h — 1ash — 0.

c¢) Prove that ¢ is differentiable on R and (a*)" = a* for all x € R.
d) Prove that L'(x) = 1/x for all x > 0.

[Note: a is the natural base e and L(x) is the natural logarithm log x.]
Suppose that [ is a nondegenerate interval, that f : I — R is differen-
tiable, and that f/(x) # Oforallx € I.

a) Prove that f~! exists and is differentiable on f([).
b) Suppose further that I is a closed, bounded interval and that f’ is
continuous. Prove that (f~!) is bounded on f(I).

Suppose that f : [a, b] — [c, d] is differentiable and onto. If f’ is never
zero on [a, b] and d — ¢ > 2, prove that for every x € [c, d] there exist
x1 € [a, bl and x5 € [c, d] such that | f'(x))(f~'(x) — f~ (x2)| = 1.
Suppose that f is differentiable on a closed, bounded interval [a, b].
If fla,b] = [a,b] and f’ is never zero on [a, b], prove that for every
x € [a, b] there exist x1, xp € (a, b) such that

fo) = o0 f @ @) = fH @) + f@.

Let [a, b] be a closed, bounded, nondegenerate interval. Find all func-
tions f which satisfy the following conditions for some fixed o > 0: f
is continuous and 1-1 on [a, b], f'(x) # 0 and f'(x) = a(f~ ' (f(x))
for all x € (a, b).

Suppose that f is C ! on an interval (a, b). If f'(xo) # 0 for some xq €
(a, b), prove that there exist intervals I and J such that f is 1-1 from [/
onto J and f~!is continuously differentiable on J.

Suppose that f is differentiable at every point in a closed, bounded
interval [a, b]. Prove that if f’is 1-1 on [a, b], then f’ is strictly mono-
tone on [a, b].
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CHAPTER 5

Integrability on R

5.1 THE RIEMANN INTEGRAL

In this chapter we shall study integration of real functions. We begin our discus-
sion by introducing the following terminology.

5.1 Definition.

Leta,b € Rwitha < b.

i) A partition of the interval [a, b] is a set of points P = {x¢, x1, ...X,} such
that

a=xg<Xx1<---<Xx,=b.

ii) The norm of a partition P = {xg, x1, .. .x,} is the number

P|| = max |x; —xi_1].
Pl 15,'5;1' j—xj—1l

iii) A refinement of a partition P = {xg, x1,...x,} is a partition Q of [a, b]
which satisfies Q 2 P. In this case we say that Q is finer than P.

5.2 EXAMPLE. [THE DYADIC PARTITION].

Prove that for eachn € N, P, = {j/2" : j = 0,1,...,2"} is a partition of the
interval [0, 1], and P, is finer than P, when m > n.

Proof. Fixn € N. If x; = j/2",then 0 = xo < x1 < --- < x» = 1. Thus,
P, is a partition of [0, 1]. Letm > nandset p =m —n. If 0 < j < 2", then
Jj/2" = j2P /2™ and 0 < j2P < 2™. Thus P,, is finer than P,. |

It is clear that by definition, if P and Q are partitions of [a, b], then P U Q is
finer than both P and Q. (Note that finer does not rule out the possibility that
P U Q = Q, which would be the case if Q were a refinement of P.) And if Q is
arefinement of P, then ||Q| < || P||. We shall use these observations often.

Let f be nonnegative on an interval [a, b]. You may recall that the integral of
f over [a, b] (when this integral exists) is the area of the region bounded by the
curves y = f(x), y =0, x = a, and x = b. This area, A, can be approximated
by rectangles whose bases lie in [a, b] and whose heights approximate f (see
Figure 5.1). If the tops of these rectangles lie above the curve y = f(x), the
resulting approximation is larger than A. If the tops of these rectangles lie below

From Chapter 5 of Introduction to Analysis, Fourth Edition. William R. Wade.
Copyright © 2010 by Pearson Education, Inc. All rights reserved.
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T~

y=f(x)

=Y

a X X, X3 X4 X5 b
FIGURE 5.1

the curve y = f(x), the resulting approximation is smaller than A. Hence, we
make the following definition.

5.3 Definition.

Leta,b € Rwitha < b, let P = {xp, x1, ...x,} be a partition of the interval
[a,b],set Axj :=x; —x;_jfor j =1,2,...,n,and suppose that f : [a, b] = R
is bounded.

i) The upper Riemann sum of f over P is the number

U(f, P):=Y_ M;(f) Axj,

j=1
where

M;(f) = sup f(lxj-1,x;D) = sup f(0).

telxj_1,x;]

ii) The lower Riemann sum of f over P is the number

L(f, P) =) m;(f) Axj,

Jj=1
where

mj(f) = inf f(lxjo1,x/]) = _ inf .

E[xj_l,Xj

(Note: Since we assumed that f is bounded, the numbers M;(f) and m;(f)
exist and are finite.)

Some specific upper and lower Riemann sums can be evaluated with the help
of the following elementary observation.
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5.4 Remark. If g : N — R, then
n
D gk +1) —g(k) = gn+ 1) — g(m)
k=m
foralln > min N.

Proof. The proof is by induction on n. The formula holds for n = m. If it
holds for some n — 1 > m, then

Z(g(k-i- 1) —gk) =(gn) —gm))+ (g +1)—gn) =g +1) — gm).
k=m

We shall refer to this algebraic identity by saying the sum telescopes to
gn + 1) — g(m). In particular, if P = {xg, x1,...,x,} is a partition of [a, b],
the sum Z?:l Ax; telescopes to x, — xo = b — a.

Before we define what it means for a function to be integrable, we make
several elementary observations concerning upper and lower sums.

5.5 Remark. If f(x) = « is constant on [a, b], then
for all partitions P of [a, b].

Proof. Since M;(f) = m;(f) = « for all j, the sums U(f, P) and L(f, P)
telescope to a(b — a). [ |

5.6 Remark. L(f, P) < U(f, P) for all partitions P and all bounded functions f.
Proof. By definition, m ;(f) < M;(f) for all j. [ ]

The next result shows that as the partitions get finer, the upper and lower
Riemann sums get nearer each other.

5.7 Remark. If P is any partition of [a, b] and Q is a refinement of P, then

L(f,P)=L(f,Q) =U(f, Q) =U(f, P).

Proof. Let P = {xo, x1, ...x,} be a partition of [a, b]. Since Q is finer than P,
Q can be obtained from P in a finite number of steps by adding one point at
a time. Hence it suffices to prove the inequalities above for the special case
0 = {c}|J P for some ¢ € (a, b). Moreover, by symmetry and Remark 5.6,
we need only show U (f, Q) < U(f, P).
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We may suppose that ¢ ¢ P. Hence, there is a unique index jy such that
Xj,—1 < ¢ < xj,. By definition, it is clear that

U(f, Q) —U(f, P) = MY —xjo_1) + M (xj, — c) — M Ax,
where
MO = sup f([xjo—1,¢c]), MO = sup f([c, xj,]), and
M = sup f([xjo—1, xj,])-

By the Monotone Property of Suprema, M and M) are both less than or
equal to M. Therefore,

Uf,Q)—U(f, P) = M(c—xj—1) +M(xj, —c) — M Ax;, = 0. [ |

5.8 Remark. If P and Q are any partitions of |a, b], then

L(f, P) =U(f, Q).

Proof. Since P U Q is a refinement of P and Q, it follows from Remark 5.7
that

L(f,P)=L(f,PUQ) =U(f,PUQ) =U(} Q)

for any pair of partitions P, Q, whether Q is a refinement of P or not. |

We now use the connection between area and integration to motivate the
definition of integrable. Suppose that f(x) is nonnegative on [a, b] and that the
region bounded by the curves y = f(x), y = 0, x = a, and x = b has a
well-defined area A. By Definition 5.3, every upper Riemann sum is an over-
estimate of A, and every lower Riemann sum is an underestimate of A (see
Figure 5.1). Since the estimates U (f, P) and L(f, P) should get nearer to A as
P gets finer, the differences U (f, P) — L(f, P) should get smaller. [The shaded
area in Figure 5.2 represents the difference U(f, P) — L(f, P) for a particular
P.] This leads us to the following definition (see also Exercise 5.1.9).

Ay

y=fx)

P S
=
=
(S
=
B9
=
£

“—_
o~ h—_——

=Y

FIGURE 5.2
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5.9 Definition.

Leta,b € Rwitha < b. A function f : [a, b] — R is said to be (Riemann)
integrable on [a, b] if and only if f is bounded on [a, b], and for every ¢ > 0
there is a partition P of [a, b] such that U(f, P) — L(f, P) < ¢.

Notice that this definition makes sense whether or not f is nonnegative.
The connection between nonnegative functions and area was only a convenient
vehicle to motivate Definition 5.9. Also notice that, by Remark 5.6, U(f, P) —
L(f, P)=|U(f, P)—L(f, P)|for all partitions P. Hence, U(f, P)—L(f, P) <e¢
is equivalent to |U(f, P) — L(f, P)| < .

This section provides a good illustration of how mathematics works. The con-
nection between area and integration leads directly to Definition 5.9. This defi-
nition, however, is not easy to apply in concrete situations. Thus, we search for
conditions which imply integrability and are easy to apply. In view of Figure 5.2,
it seems reasonable that a function is integrable if its graph does not jump
around too much (so that it can be covered by thinner and thinner rectan-
gles). Since the graph of a continuous function does not jump at all, we are
led to the following simple criterion that is sufficient (but not necessary) for
integrability.

5.10 Theorem. Suppose that a,b € R with a < b. If f is continuous on the
interval [a, b), then fis integrable on [a, b].

Proof. Let ¢ > 0. Since f is uniformly continuous on [«, b], choose § > 0
such that

=yl <6 implies |f(x)=fO < (1)

Let P = {xo, x1, ..., x,} be any partition of [a, b] which satisfies || P| < §. Fix
an index j and notice, by the Extreme Value Theorem, that there are points
xm and xy in [x;_1, x;] such that

JfGom) =mj(f) and f(xpy) = M;(f).
Since || P|| < 8, we also have |xy — x,,| < 8. Hence by (1), M;(f) —m;(f) <
¢/(b — a). In particular,
n e n
U(f,P)—L(f,P) = Z;(Mj(f) —m;(f)) Axj < mz;mj =&
j= j=
(The last step comes from telescoping.) [ |

Although the converse of Theorem 5.10 is false (see Example 5.12 and
Exercises 5.1.3, 5.1.6, and 5.1.8), there is a close connection between integra-
bility and continuity. Indeed, we shall see (Theorem 9.49) that a function
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is integrable if and only if it has relatively few discontinuities. This princi-
ple is illustrated by the following examples. The nonintegrable function in
Example 5.11 is nowhere continuous (hence has many discontinuities) but the
integrable function in Example 5.12 has only one discontinuity (hence has few
discontinuities).

5.11 EXAMPLE.
The Dirichlet function

1 xeqQ

f =9, ¥ ¢Q

is not Riemann integrable on [0, 1].

Proof. Clearly, f is bounded on [0, 1]. By Theorem 1.18 and Exercise 1.3.3
(Density of Rationals and Irrationals), the supremum of f over any nonde-
generate interval is 1, and the infimum of f over any nondegenerate interval
is 0. Therefore, U(f, P) — L(f, P) = 1 — 0 = 1 for any partition P of the
interval [0, 1]; that is, f is not integrable on [0, 1]. [ |

512 EXAMPLE.
The function

_]0 0<x<1/2
FO=11 p<r<t

is integrable on [0, 1].

Proof. Let e > 0. Choose 0 < x; < 0.5 < xp < 1 such that xo — x; < e.
The set

P =10, x1, x2, 1}

is a partition of [0, 1]. Since m1(f) =0 = M(f), ma(f) =0 < 1 = Ma(f),
and m3(f) =1 = M3(f),itiseasytoseethat U(f, P)—L(f, P) =xp—x| <&.
Therefore, f is integrable on [0, 1]. |

We have defined integrability, but not the value of the integral. We remedy
this situation by using the Riemann sums U (f, P) and L(f, P) to define upper
and lower integrals.

5.13 Definition.

Leta,b € Rwitha < b,and f : [a, b] — R be bounded.

i) The upper integral of f on [a, b] is the number

b
(U)/ f(x) dx :=inf{U(f, P) : P is a partition of [a, b]}.

135
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5.13 Definition. (Continued)

ii) The lower integral of f on [a, b] is the number
b
(L)/ f(x) dx :=sup{L(f, P) : P is a partition of [a, b]}.
a

iii) If the upper and lower integrals of f on [a, b] are equal, we define the
integral of f on [a, b] to be the common value

b b b
/f(x)dx = (U)/ f(x)dxz(L)/ £ () dx.

This defines integration over nondegenerate intervals. Motivated by the inter-
pretation of integration as area, we define the integral of any bounded function
f on [a, a] to be zero; that is,

/a f(x)dx :=0.

Although a bounded function might not be integrable (see Example 5.11
above), the following result shows that the upper and lower integrals of a
bounded function always exist.

5.14 Remark. If f : [a, b] — R is bounded, then its upper and lower integrals
exist and are finite, and satisfy

b b
(L)/ f(X)dXS(U)/ f ) dx.

Proof. By Remark 5.8, L(f, P) < U(Jf, Q) for all partitions P and Q of [a, b].
Taking the supremum of this inequality over all partitions P of [a, b], we have

b
(L) / £ dx < U(f, 0):

that is, the lower integral exists and is finite. Taking the infimum of this last
inequality over all partitions Q of [a, b], we conclude that the upper integral
is also finite and greater than or equal to the lower integral.

Suppose that f is bounded and nonnegative on [a, b]. Since the upper and
lower sums of f approximate the “area” of the region bounded by the curves
y = f(x), y=0, x =a,and x = b, we guess that f is integrable if and only
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if the upper and lower integrals of f are equal. The following result shows that
this guess is true whether or not f is nonnegative.

5.15 Theorem. Leta,b € Rwitha < b, and f : [a, b] — R be bounded. Then f
is integrable on [a, b] if and only if

b b
(L)/ f(x)dx = (U)/ f(x)dx. (2)
a a
Proof. Suppose that f is integrable. Let ¢ > 0 and choose a partition P of
[a, b] such that
U(f, P)—L(f, P) <e. 3)

By definition, (U) [ ab f)dx < U(f, P) and the opposite inequality holds
for the lower integral and the lower sum L( f, P). Therefore, it follows from
Remark 5.14 and (3) that

b b
=(U)/ f(x)dx—(L)/ fx)dx

b b
'(U)f f(x)dx—(L)/ Fx) dx

Since this is valid for all ¢ > 0, (2) holds as promised.
Conversely, suppose that (2) holds. Let ¢ > 0 and choose, by the Approxi-
mation Property, partitions Py and P, of [a, b] such that

&

b
U, P1)<(U)/ Fedr+

and

b
L(f, P) > (L)/ fx)dx — g

Set P = P; U P,. Since P is a refinement of both P; and P, it follows from
Remark 5.7, the choices of P; and P,, and (2) that

b . b .
S(U)/ f(x)dx+5_(L)/ f(x)derE:g' .

Since the integral has been defined only on intervals [a, b], we have tacitly
assumed that a < b. We shall use the convention

a b
/f(X)dX=—/ fx)dx
b a
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to extend the integral to the case ¢ > b. In particular, if f(x) is integrable
and nonpositive on [a, b], then the area of the region bounded by the curves
y=f(), y=0, x =a,and x = bis given by [;' f(x)dx.

In the next section we shall use the machinery of upper and lower sums to
prove several familiar theorems about the Riemann integral. We close this sec-
tion with one more result which reinforces the connection between integration
and area.

5.16 Theorem. If f(x) = « is constant on [a, b], then

b
/ fx)dx =alb —a).

Proof. By Theorem 5.10, f is integrable on [a, b]. Hence, it follows from
Theorem 5.15 and Remark 5.5 that

b b
/f(x)dx:(U)/ f(x)dx:ir}ng(f,P):a(b—a). |

EXERCISES

5.1.0.

5.1.1.

Suppose that ¢ < b < c¢. Decide which of the following statements are
true and which are false. Prove the true ones and give counterexamples
for the false ones.

a) If f is Riemann integrable on [a, b], then f is continuous on [a, b].

b) If | f] is Riemann integrable on [a, b], then f is Riemann integrable
on [a, b].

¢) For all bounded functions f : [a, b] — R,

b b b
(L)/ f(X)dXS/ f(X)dXS(U)/ f(x) dx.

d) If f is continuous on [a, b) and on [b, c], then f is Riemann inte-
grable on [a, c].

For each of the following, compute U(f, P), L(f, P), and f02 f(x)dx,

where
1
P = {0,—,1,2}.
2

Find out whether the lower sum or the upper sum is a better approxi-
mation to the integral. Graph f and explain why this is so.

a) f(x)=x
b) f(x)=3—x?
¢) f(x) =sin(x/5)
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5.1.2. a) Prove that for eachn € N,

is a partition of [0, 1].
b) Prove that a bounded function f is integrable on [0, 1] if

() Ip:= lim L(f, P,) = lim U(f, P,),
n—oo n—oo

in which case fol f(x)dx equals Iy.
¢) For each of the following functions, use Exercise 1.4.4 to find for-
mulas for the upper and lower sums of f on P,, and use them to

compute the value of fol f(x)dx.

) fx)=x
B) fx) =x2

_]o 0<x<1/2
Y) f(X)—{1 12<x<l

5.1.3. Let E = {1/n: n € N}. Prove that the function

1 xeFE
fo) = {O otherwise

is integrable on [0, 1]. What is the value of fol f(x)dx?

5.1.4|. This exercise is used in Section *14.2. Suppose that ¢ < b and that
f :la, b] — Ris bounded.

a) Prove thatif f is continuous at xg € [a, b] and f(xg) # 0, then
b
@ [ 1rendn =0
a

b) Show that if f is continuous on [a, b], then fab |f(x)|dx = 0 if and
only if f(x) = 0for all x € [a, b].

¢) Does part b) hold if the absolute values are removed? If it does,
prove it. If it does not, provide a counterexample.

5.1.5. Suppose that a < b and that f : [a, b] — R is continuous. Show that

fcf(x)dxzo

139
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for all ¢ € [a, b] if and only if f(x) = 0 for all x € [a, b]. (Compare with
Exercise 5.1.4, and notice that f need not be nonnegative here.)

Let f be integrable on [a, b] and E be a finite subset of [a, b]. Show that
if g is a bounded function which satisfies g(x) = f(x) forallx € [a, b]\E,
then g is integrable on [a, b] and

b b
/g(x)dx:/ f(x)dx.

This exercise is used in Section 12.3. Let f, g be bounded on [a, b].

a) Prove that

b b b
W) / (F(0) + g() dx < (U) / F00) dx + (U) / g (x) dx

and

b b b
(L)/ (f(x) +gM)dx = (L)/ f ) dx+(L)/ g(x) dx.

b) Prove that

b c b
(U)/ f(X)dX=(U)/ f(x)der(U)f Sfx)dx

and

b c b
(L)/ f(X)dX=(L)/ f(x)dx+(L)f fx)dx

fora <c <b.
This exercise is used in Sections *5.5, 6.2, and *7.5.

a) If f is increasing on [a, b] and P = {xo, ..., x,} is any partition of
[a, b], prove that

n

D (M) —mj(f) Axj < (f() — f@) IP].

Jj=1

b) Prove that if f is monotone on [a, b], then f is integrable on [a, b].
[Note: By Theorem 4.19, f has at most countably many (i.e., relatively
few) discontinuities on [a, b]. This has nothing to do with the proof of
part b), but points out a general principle which will be discussed in
Section 9.6.]
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5.1.9. Leta < band 0 < ¢ < d be real numbers and f : [a, b] — [c,d]. If fis

Riemann integrable on [a, b], prove that \/f is Riemann integrable on
[a, b].

5.1.10. Let f be bounded on a nondegenerate interval [a, b]. Prove that f is

integrable on [a, b] if and only if given ¢ > 0 there is a partition P, of
[a, b] such that

P D P, implies |U(f, P)—L(f, P)| <e.
5.2 RIEMANN SUMS

There is another definition of the Riemann integral frequently found in elemen-
tary calculus texts.

5.17 Definition.

Let f :[a,b] — R.
i) A Riemann sum of f with respect to a partition P = {xo, ..., x,} of [a, b]
generated by samples ¢; € [x;_1, x;]is a sum
n
S(f. P.tj) ==Y f(t)) Ax;.

j=1

ii) The Riemann sums of f are said to converge to I(f) as ||P| — O if and
only if given ¢ > 0 there is a partition P, of [a, b] such that

P ={xo,...,x,} 2 P. implies [S(f,P.t;)—1(f)] <e

for all choices of t; € [xj_1,x;], j = 1,2,...,n. In this case we shall use
the notation

I(f)= lim S(f.P.tj):= lim > f(t;) Ax;.
j=1

I1PI—0 I1P1—0

The following result shows that this definition of the Riemann integral is the
same as the one using upper and lower integrals.

5.8 Theorem. Leta,b € Rwitha < b, and suppose that f : [a, b] — R. Then
fis Riemann integrable on [a, b] if and only if

I(f)= lim > f(t;) Ax;
j=1

IPI—0

exists, in which case I (f) = fab f(x)dx.
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Proof. Suppose that f is integrable on [a, b] and that ¢ > 0. By the Approxi-
mation Property, there is a partition P, of [a, b] such that

b b
L(f,Pg)>/ f(x)dx —e and U(f,P8)</ f(x)dx +e. 4)

Let P = {x0,x1,...,Xx,} 2 P.. Then (4) holds with P in place of P.. But
m;(f) < f(tj) < M;(f) for any choice of t; € [x;_1, x;]. Hence,

b n b
/f(x)dx—e<L(f,P)§Zf(tj)ij§U(f,P)</ F(x) dx + &

j=1

that is, —e < Z’}Zl f@tj) Axj — fab f(x)dx < e. We conclude that

n b
Y ft) Ax; —/ f(x) dx

<e
j=1
for all partitions P 2 P, and all choices of t; € [x;_1,x;], j =1,2,...,n.
Conversely, suppose that the Riemann sums of f converge to I(f). Let
¢ > 0 and choose a partition P = {xg, x1, ..., x,} of [a, b] such that
- e
D L) Axj—1(H)| < 3 (5)

j=1

for all choices of #; € [xj_1,x;]. Since f is bounded on [a,b] (see
Exercise 5.2.11), use the Approximation Property to choose t;, u; € [x;_1, x;]
such that f(t;)—f(u;) > M;(f)—m;(f)—e/(3(b—a)). By (5) and telescoping,
we have

U(f, P) = L(f, P) =Y (M;(f) —m;(f)) Ax;
j=1

n

< Do) = fu) Ax ot s Y A

j=1 j=1
n
<Y @) Axj—1(f)
j=1
n n
+10H =Y fw)) Ax +3L2ij
j=1 (b=a) iz
2¢ ¢
< ? + § =e¢.
Therefore, f is integrable on [a, b]. |
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The next two results show that Riemann integrals of complicated functions
can be broken into simpler pieces.

5.19 Theorem. [LINEAR PROPERTY].

If f, g are integrable on [a, b] and o € R, then f + g and af are integrable on
[a, b]. In fact,

b b b
/ (F () + g(x)) dx = / F) dx + / g (x) dx (6)
and

b b
/ (@f () dx = f F) dx. 7

Proof. Let ¢ > 0 and choose P such that for any partition P = {xo, x, ...,
Xu} 2 Pg of [a, b] and any choice of t; € [x;_1, x;], we have

Zf(z,)Ax, ff(x)dx <§

j=1

and

n b
> st Ax,-—/ g(x) dx| < <.
j=1 “ 2

By the Triangle Inequality,

Zf(r,)Ax, + Zg(t])Ax] / Fx) dx — / g(x)dx| < e

j=1 j=1 a
for any choice of r; € [x;j_1,x;]. Hence, (6) follows directly from Theo-
rem 5.18.

To prove (7), we may suppose that « # 0. Choose P, such that if P =
{x0, ..., x,} 1s finer than P, then

Zf(tj)ij /f(x)dx <m

for any choice of ¢; € [x;_1, x;]. Multiplying this inequality by |«|, we obtain

Zaf(tj) Ax,-—a/ f(x)dx| < |a|— =

= o
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for any choice of 7; € [x;_1,x;]. We conclude by Theorem 5.18 that (7)
holds. |

5.20 Theorem. Iffisintegrable on [a,b), then fis integrable on each subinterval
[c, d] of [a, b]. Moreover,

b c b
/.ﬂﬂdx=/.ﬂﬂdx+f F(x) dx ()

forall c € (a, b).

Proof. We may suppose that a < b. Let ¢ > 0 and choose a partition P of
[a, b] such that

U(f,P)—L(f,P) <e. 9)

Let P’ = PU{c}and P| = P'N[a, c]. Since P, is a partition of [a, c] and P’ is
a refinement of P, we have by (9) that

U(f, P1) = L(f, P1) =U(f, P) = L(f, P) U(f, P) = L(f. P) <e.

Therefore, f is integrable on [a, c]. A similar argument proves that f is inte-
grable on any subinterval [c, d] of [a, b].

To verify (8), suppose that P is any partition of [a,b]. Let Pp = P U
{c}, P = PyN[a,c],and P, = PyN|c, b]. Then Py = P; U P, and by definition

U(f, P) = U(f, Po) =U(f, P) + U(f, P2)

c b c b
Z(U)/ f(x)dx—{—(U)/ f(x)dx:/ f(x)dx—l—/ f(x)dx.

(This last equality follows from the fact that f is integrable on both [a, ¢] and
[c, b].) Taking the infimum of

c b
U(f,P)Z/ f(X)dX-i-/ f(x)dx

over all partitions P of [a, b], we obtain

b b c b
f.ﬂmdx=HD/.ﬂmdxz/.ﬂmdx+f.ﬂmdx

A similar argument using lower integrals shows that

b c b
/f(x)dxs/ f(X)dx—i-/ f(x)dx. [ ]
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Using the conventions

b a a
/ fx)dx = —/ f(x)dx and / f(x)dx =0,
a b a

it is easy to see that (8) holds whether or not c lies between a and b, provided f
is integrable on the union of these intervals (see Exercise 5.2.4).

5.21 Theorem. [COMPARISON THEOREM FOR INTEGRALS].
If f, g are integrable on [a, b] and f(x) < g(x) forall x € [a, b], then

b b
/ f(X)dXE/ g(x) dx.

In particular, if m < f(x) < M for x € [a, b], then

b
m((b —a) 5/ fx)dx <M — a).

Proof. Let P be a partition of [a, b]. By hypothesis, M;(f) < M;(g) whence
U(f, P) <U(g, P). It follows that

b b
/ f(X)dX=(U)/ fx)dx =U(g, P)

for all partitions P of [a, b]. Taking the infimum of this inequality over all
partitions P of [a, b], we obtain

b b
/ f(X)dXE/ g(x) dx.

If m < f(x) < M, then (by what we just proved and by Theorem 5.16)

b b b
m(b—a):/ mdxf/ f(x)dxf/ Mdx =Mb —a). |

We shall use the following result nearly every time we need to estimate an
integral.

5.22 Theorem. If fis (Riemann) integrable on [a, b, then |f| is integrable on

[a, b] and
b
/ f(x)dx

Proof. Let P = {xo, x1, ..., x,} be a partition of [a, b]. We claim that

M;(LfD) =mi(fI) = M;j(f) —m;(f) (10)

b
5/ £ ()] dox.
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holds for j = 1,2,...,n. Indeed, let x, y € [x;_1, x;]. If f(x), f(y) have the
same sign, say both are nonnegative, then

IfFOI=1fDI = fx) = f) = M;i(f) —m;j(f).

If f(x), f(y) have opposite signs, say f(x) > 0 > f(y), thenm;(f) < 0
and, hence,

IfOI=1fWI= )+ ) =M;i(f)+0=M;(f) —m;(f).

Thus in either case, | f(x)| < M;(f) —m;(f) + | f(y)|. Taking the supremum
of this last inequality for x € [x;_1, x;] and then the infimum as y € [x;_1, x/],
we see that (10) holds, as promised.

Let ¢ > 0 and choose a partition P of [a, b] such that U(f, P)—L(f, P) < ¢.
Since (10) implies U(| f|, P) — L(|f], P) < U(f, P) — L(f, P), it follows that

U(fl. P) = L(|f]. P) <e.

Thus | f| is integrable on [a, b]. Since —| f(x)| < f(x) < |f(x)| holds for any
x € [a, b], we conclude by Theorem 5.21 that

b b b
—/ If(x)ldxff £ dXS/ ()] dx. n

By Theorem 5.19, the sum of integrable functions is integrable. What about

the product?

5.23 Corollary. If fand g are (Riemann) integrable on |a, b], then so is fg.

Proof. Suppose for a moment that the square of any integrable function is
integrable. Then, by hypothesis, f2, g2, and (f + g)? are integrable on
[a, b]. Since

(S - fr—g?
fg= > ,

it follows from Theorem 5.19 that fg is integrable on [a, b].
It remains to prove that f2 is integrable on [a, b]. Let P be a partition of
[a, b]. Since M;(f?) = (M;(|f1))* and m;(f?) = (m;(|f]))?, itis clear that

M;(f5 —mi(f%) = (M) — (m;(|f]))*
= M;(1fD)+m;AfDM;(f]) —m;(f])
<2MM;(If1) —m; (D),

where M = sup | f|([a, b]); that is, | f(x)| < M for all x € [a, b]. Multiplying
the displayed inequality by Ax; and summing over j =1,2,...,n, we have

U(f?, P)— L(f* P) <2MU(|f], P) — L(f], P)).
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Hence, it follows from Theorem 5.22 that £ is integrable on [a, b]. |

We close this section with two integral analogues of the Mean Value
Theorem.

5.24 Theorem. [FIRST MEAN VALUE THEOREM FOR INTEGRALS].
Suppose that f and g are integrable on [a, b] with g(x) > 0 for all x € [a, b]. If

m =inf fla,b] and M = sup fla, b],
then there is a number ¢ € [m, M| such that

b b
/ fx)gx)dx = C/ g(x) dx.

In particular, if f is continuous on [a, b], then there is an xo € [a, b] which
satisfies

b b
/ f(x)gx)dx = f(xo)/ g(x) dx.

Proof. Since g > 0 on [a, b], Theorem 5.21 implies
b b b
m/ g(x) dx 5/ fx)g(x) dx SM/ g(x) dx.
a a a

If fabg(x)dx = 0, then fab f(x)g(x)dx = 0 and there is nothing to prove.
Otherwise, set

_ r @) dx

b
J g(x) dx
and note that ¢ € [m, M]. If f is continuous, then (by the Intermediate Value
Theorem) we can choose xg € [a, b] such that f(xp) = c. |

Before we state the Second Mean Value Theorem, we introduce an idea that
will be used in the next section to prove the Fundamental Theorem of Calculus.
If f is integrable on [a, b], then f can be used to define a new function

Fx) = /x f(@)dt, x € [a, b].

5.25 EXAMPLE.
Find F(x) = [y f(t)dt if
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Solution. By Theorem 5.16,

F(x)=/xf(r>dr={x ¥ =0
0 —X X <

Hence, F(x) = |x|. |

Notice in Example 5.25 that the integral F of f is continuous even though f
itself is not. The following result shows that this is a general principle.

5.26 Theorem. If fis (Riemann) integrable on [a, b], then F(x) = f ax f(@) dt
exists and is continuous on [a, b].

Proof. By Theorem 5.20, F(x) exists for all x € [a, b]. To prove that F is
continuous on [a, b], it suffices to show that F(x+) = F(x) for all x € [a, b)
and F(x—) = F(x) for all x € (a,b]. Fix x9 € [a,b). By definition, f is
bounded on [a, b]. Thus, choose M € R such that | f(z)| < M for all ¢ € [a, b].
Lete > 0andset§ =¢/M. If0 < x — xg < §, then by Theorem 5.22,

X X
|F(x) — F(xo0)| = / (@) dt S/ If(@®)]dt < M|x —xo| <e.
X0 X0
Hence, F(xo+) = F(xp). A similar argument shows that F(xo—) = F(xg) for
all xg € (a, b]. |

5.27 Theorem. [SECOND MEAN VALUE THEOREM FOR INTEGRALS].
Suppose that f, g are integrable on [a, b], that g is nonnegative on [a, b), and that
m, M are real numbers which satisfy m < inf f([a, b]) and M > sup f([a, b]).
Then there is an c¢ € [a, b] such that

b c b
/ f(x)g(x)dx:m/ g(x)dx—I—M/ g(x) dx.

In particular, if f is also nonnegative on [a, b, then there is an c € [a, b] which
satisfies

b b
/ Fg) dx =M / () dix.

Proof. The second statement follows from the first since we may use m = 0
when f > 0. To prove the first statement, set

X b
F(x)=m/ g(t)dt—l—M/ g(t) dt

for x € [a, b], and observe by Theorem 5.26 that F is continuous on [«, b].
Since g is nonnegative, we also have mg(tr) < f(t)g(t) < Mg(t) for all ¢ €
[a, b]. Hence, it follows from the Comparison Theorem (Theorem 5.21) that



Section 5.2 Riemann Sums 149

b b b
F(b)zm/ g(t)drs/ f(t)g(t)dth/ ¢(t) di = F(a).

Since F is continuous, we conclude by the Intermediate Value Theorem that
there is an ¢ € [a, b] such that

b
F(c) =/ f)g)dt.

When g(x) = 1 and f(x) > 0, these mean value theorems have simple geo-
metric interpretations. Indeed, let A represent the area bounded by the curves
y=f(), y=0, x =a, and x = b. By the First Mean Value Theorem, there
is a ¢ € [m, M] such that the area of the rectangle of height ¢ and base b — a
equals A (see Figure 5.3). And by the Second Mean Value Theorem, if M is the
maximum value of f on [a, b], then there is an ¢ € [a, b] such that the area of
the rectangle of height M and base b — ¢ equals A (see Figure 5.4).

y

ﬁ =)
|

FIGURE 5.3

_/ y=fx)

FIGURE 5.4
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EXERCISES

5.2.0.

5.2.1.

5.2.2.

5.2.3.

Suppose that a < b. Decide which of the following statements are true
and which are false. Prove the true ones and give counterexamples for
the false ones.

a) If f and g are Riemann integrable on [a, b], then f — g is Riemann
integrable on [a, b].

b) If f is Riemann integrable on [a, b] and P is any polynomial on R,
then P o f is Riemann integrable on [a, b].

c) If f and g are nonnegative real functions on [a, b], with f continuous
and g Riemann integrable on [a, b], then there exist xg, x; € [a, b]
such that

b b
/ f)gx)dx = f(xo)/ g(x) dx.
a x1

d) If f and g are Riemann integrable on [a, b] and f is continuous, then
there is an xq € [a, b] such that

b b
/ fx)gkx)dx = f(xo)/ g(x) dx.

Using the connection between integrals and area, evaluate each of the
following integrals.
2
a) / |[x + 1| dx
-2
2
b) / (lx + 1] + |x]) dx
-2

a
c) / Va2 —x?dx, a>0
—da

2
d) /(5+v2x+x2)dx
0

a) Suppose thata < b andn € Nis even. If f is continuous on [a, b] and

fab f(x)x"dx = 0, prove that f(x) = 0 for at least one x € [a, b].
b) Show that part a) might not be true if » is odd.
c¢) Prove that part a) does hold for odd n when a + b # 0.

Use Taylor polynomials with three or four nonzero terms to verify the
following inequalities.

1
a) 0.3095 < / sin(xz) dx < 0.3103
0

(The value of this integral is approximately 0.3102683.)



5.24.

5.2.5.

5.2.6.

5.2.7.

5.2.8.
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1
b) 1.4571 </ e dx < 1.5704
0

(The value of this integral is approximately 1.4626517.)

Suppose that f : [0, o0) — [0, 00) is integrable on every closed interval
[a, b] C [0, 00). If

F(x) = /xe_yzf(y) dy, x €0, 00),
0

then there is a function g : [0,00) — [0,00) such that F(x) =
f;(x) f(y)dy forall x € [0, 00).
Prove that if f is integrable on [0, 1] and 8 > 0, then

1/nf
lim n"‘/o f(x)dx=0

foralla < 8.
a) Suppose that g, > 0 is a sequence of integrable functions which
satisfies

b
lim gn(x)dx =0.

—
n—>oo J,

Show thatif f : [a, b] — Ris integrable on [a, b], then

b
nlggof f®)gn(x) dx = 0.

b) Prove thatif f is integrable on [0, 1], then

1
lim x"f(x)dx =0.

n—oo 0

Suppose that f is integrable on [a, b], that xo = a, and that x, is a
sequence of numbers in [a, b] such that x, 4 b as n — oco. Prove that

Xk+1

b n
f f()dx = lim Z/ f(x) dx.
a l’l—)OOk:O X

k
Let f be continuous on a closed, nondegenerate interval [a, b] and set

M = sup [f(x)].

x€la,b]
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5.2.9.

5.2.10.

5.2.11.

Integrability on R

a) Prove that if M > 0 and p > 0, then for every ¢ > 0 there is a
nondegenerate interval I C [a, b] such that

b
(M — &)P|I] 5/ | )P dx < MP(b — a).

b) Prove that

b 1/p
pli)moo (/ |f(x)|pdx> =M.

Let f : [a,b] > R, a = x9 < x1 < -+ < x, = b, and suppose that
f (xx+) exists and is finite for k = 0, 1, ..., n — 1 and f(x;—) exists and is
finite for k = 1, ..., n. Show that if f is continuous on each subinterval

(xk—1, xx), then f is integrable on [a, b] and

k

b n X
/ fdx=Y" f(x) dx.

k=171

Prove thatif f and g are integrable on [a, b], thensoare f v gand f A g
(see Exercise 3.1.8).
Suppose that f : [a, b] — R.

a) If f is not bounded above on [a, b], then given any partition P of
[a,b] and M > 0, there exist ; € [x;_1, x;]such that S(f, P, t;) > M.

b) If the Riemann sums of f converge to a finite number /(f), as || P||
— 0, then f is bounded on [a, b].

5.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Let f be integrable on [a, b] and F(x) = f; f()dt. By Theorem 5.26, F is
continuous on [a, b]. The next result shows that if f is continuous, then F is
continuously differentiable. Thus “indefinite integration” improves the behav-
ior of the function.

5.28

Theorem. [FUNDAMENTAL THEOREM OF CALCULUS].

Let [a, b] be nondegenerate and suppose that f : [a, b] - R
i) If fis continuous on [a, b] and F (x) = fax f(t)dt, then F € C'[a, b] and

d x
d_/ f@®ydt=F'(x) = f(x)
X Ja

for each x € [a, b].
i) If fis differentiable on [a, b] and f' is integrable on [a, b], then

/ fl@®)dt = f(x) — f(a)

foreach x € [a, b].
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Proof. i) For x € [a,b], set F(x) = f; f () dt. By symmetry, it suffices to
show that if f(xo+) = f(xg) for some x¢ € [a, b), then

lim L0 FM = FOo) (11)

h—0+ h

(see Definition 4.6). Let ¢ > 0 and choose a § > 0 such that xg <t < xo +§
implies | f(t) — f(x0)| < €. Fix 0 < h < 8. Notice that by Theorem 5.20,

xo+h
F(xo—i—h)—F(Xo):/ () dt

X0

and that by Theorem 5.16,

1 xo+h
f(x0) = Z/ f(xo) dt.
X0
Therefore,
F h)y—F 1 [roth
(o + 2 OB - / (f() = f(xo)) dt.
X0

Since 0 < h < §, it follows from Theorem 5.22 and the choice of § that

F(xo+ h) — F(xo)
h

1 xo+h
— f(x0) <—/ |f (1) — fxo)| dt <e.

=nl,

This verifies (11) and the proof of part i) is complete.
ii) We may suppose that x = b. Let ¢ > 0. Since f’ is integrable, choose a
partition P = {xg, x1, ..., x,} of [a, b] such that

n b
Zf/(tj) ij—/ fldt| <e

j=1

for any choice of points ¢; € [x;_1,x;]. Use the Mean Value Theorem to
choose points #; € [x;_1,x;] such that f(x;) — f(xj—1) = f'(t;) Ax;. It
follows by telescoping that

< éE&.

b
'f(b)—f(a)—/ @) dr

n b
Z(f(xj)—f(xj—l))—/ [ d
j=1 ¢
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5.29 Remark. The hypotheses of the Fundamental Theorem of Calculus cannot
be relaxed.

Proof. i) Define f on [—1, 1] by

-1 x <0

then f is integrable on [—1, 1], but F(x) := ffl f(x)dx = |x] — 1 is not
differentiable at x = 0.

i) Define f on [0, 1] by f(x) := x?sin(1/x?) when x # 0 and f(0) = 0.
Then f is differentiable on [0, 1], but

, ) 1 2 1
f(x)y=2xsin| —-)——-cos| =), x #0,
()5 ()

is not even bounded on (0, 1], much less integrable on [0, 1]. [ |

By the Fundamental Theorem of Calculus, integration is the inverse of differ-
entiation in the following sense. If f’ is integrable, then

b
f @ dx = f@) = fb) — f@).

In particular,

b a+1
X b
/ x%dx = |
a

for each @ > 0, and for each ¢ < 0, provided « # —1 and [a, b] is a subset
of (0, 00) (see Exercises 4.2.3 and 5.3.7). This result is sometimes called the
Power Rule.

These observations can be used to evaluate many integrals.

530 EXAMPLES.
i) Find f; 3x —2)%dx.
i) Find [77/*(1 + sinx) dx.

Solution. 1) Since (3x — 2)2 = 9x2 — 12x + 4, we have by the Power Rule that
! 1
/ (Bx —2)* dx =3x — 6x7 + 4x [ )= 1.
0

ii) Since (cos x)’ = — sinx, we have by the Fundamental Theorem of Calcu-
lus that

/2 -
/ (1 +sinx) dx = x — cos x \g/2=_+1, -
0 2
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Combining the Product Rule and the Fundamental Theorem of Calculus, we

have another tool for evaluating integrals.

5.31 Theorem. [INTEGRATION BY PARTS].
Suppose that f, g are differentiable on [a, bl with f’, g’ integrable on [a, b]. Then

b b
/ f'()gx) dx = f(b)gb) — f(a)g(a) —/ f0)g'(x) dx.

Proof. By the Product Rule, (f(x)g(x)) = f'(x)g(x) + f(x)g'(x) for x €
[a, b]. Since f, g are continuous on [a, b] and f', g’ are integrable on [a, b],
it follows that (fg)’ is a sum of products of integrable functions and, hence,
integrable on [a, b]. Thus, by the Fundamental Theorem of Calculus,

b b
f(b)g(b) — fla)g(a) :/ fl0)g(x) dx +/ f0)g'(x) dx. u

a a

This rule is sometimes abbreviated as

/udv:uv—/vdu,

where it is understood that if w = h(x) for some differentiable function 4, then
the Leibnizian differential dw is defined by dw = h'(x) dx.

Integration by parts can be used to reduce the exponent n on an expression
of the form (ax + b)" f(x) when f is integrable.

5.32 EXAMPLE.

Find foﬂ/z X sin x dx.

Solution. Let u = x and dv = sinx dx. Then du = dx and v = — cos x. Hence,
by parts,

/2 )2 /2 )2
/ xsinx dx = —xcosx |0 —/ (—cosx) dx =sinx |0 =1. |
0 0

Integration by parts is also very effective on integrals involving products of
polynomials and logarithms.
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5.33 EXAMPLE.
Find f13 log x dx.

Solution. Let u = logx and dv = dx. Then du = dx/x and v = x. Hence, by
parts,

3 3
/ 1ogxdx=xlogx|f—/ dx = 3log3 — 2. u
1 1

Complicated problems can frequently be reduced to simpler ones by changing
variables. The following result shows how to change variables in a Riemann
integral on R.

5.34 Theorem. [CHANGE OF VARIABLES].
Let ¢ be continuously differentiable on a closed, nondegenerate interval

la, b]. If
¢’ is nonzero on [a, b, (12)
and if
f is integrable on [c, d] := ¢la, b], (13)
then f o ¢ - |¢’| is integrable on [a, D], and

d b
f f(@)dt =/ F@x)) - 18" ()| dx. (14)

STRATEGY: By the Mean Value Theorem, hypothesis (12) implies that ¢ is 1-1
on [a, b]. Hence by Theorem 4.32, ¢ is strictly monotone on [a, b] and [c, d] :=
¢la, b] is a closed interval.

Suppose that ¢ is strictly increasing on [a, b]; that is, |¢'| = ¢’ and [c,d] =
[¢(a), p(b)]. By Theorem 4.32, o !is increasing on [c,d]. Thus if P = {1,
t1, ..., ty} 1s a partition of [c,d] and x; = ¢_1(tj), then P := {xg, x1,...,x,}1s a
partition of [a, b]. A Riemann sum of the right side of (14) looks like

S(fop 191 P.sp) = f(@s)I (s)] At} (15)

j=1

On the other hand, a typical term of a Riemann sum of the left side of (14)
looks like

fuj) Axj = fuj)(@(tj) —¢tj-1)).

Since ¢’, hence ¢, is continuous, we can use the Intermediate Value Theorem to
choose s; € [x;_1, x;] such that u; = ¢(s;), and the Mean Value Theorem to
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choose ¢; € [x;_1, xj] such that ¢(x;) — ¢ (x;—1) = ¢'(c;)Ax;. It follows that a
Riemann sum the left side of (14) looks like

S(f. Pouj) =) f(@(s))'(c)) Ax;.

j=1

The only difference between this last sum and (15) is that s; has been replaced
by ¢;. Since ¢; and s; both belong to the interval [x;_1, x;] and ¢’ is continuous,
making this replacement should not change S much if the norm of P is small
enough. Hence, a Riemann sum of the left side of (14) is approximately equal
to a Riemann sum of the right side of (14). This means the integrals in (14)
should be equal. Here are the details.

Case 1. Suppose that ¢ is strictly increasing on [a, b]. Let ¢ > 0. Since f is
bounded, choose M € (0, co) such that | f(x)| < M for all x € [c, d]. Since ¢ is
uniformly continuous on [«, b], choose § > 0 such that

Tea N Al &
l§"(s) ¢(CJ)|<2M(b_a),

that is,

|f @@ () — ' ()] < (16)

&
2(b —a)

foralls;, c; € [a, b] with |s; — c;| < 6.

Next, use the Inverse Function Theorem to verify that ¢! is continuously
differentiable on [c, d]. Thus there is an n > 0 such that if s, ¢ € [c, d] and
|s —c| < n, then |[¢p~ ' (s) —p~1(c)| < 8.

Finally, since f is integrable on [c, d] = [¢(a), ¢ (b)], choose a partition P =
{to, t1, ...1,} of [c, d] such that || P|| < n and

)
S(f,P,M])—/ f(t)dt

¢(a)

< g (17)

holds for any choice of u; € [t;_1, t;].

Setx; = ¢_1(tj) and observe (by the choice of 7) that P = {x0,....,xs}is 2
partition of [a, b] which satisfies ||ﬁ I < 8.

Lets; € [xj_1,xj], setuj = ¢(s;), and apply the Mean Value Theorem to
choose ¢; € [xj_1, x;] such that ¢(x;) — ¢(xj—1) = ¢'(c;) Ax;. Then, by the
choices of cj, uj,and t;, we have u; € [t;_1, t;] and

F@(si)NP'(cj) Axj = fuj)(p(xj) —p(xj—1) = fuj)tj —tj_1).
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Hence, it follows from (16) and (17) that

" ¢ (b)
3 F @) (s)) Axj —/ £ dt
j=1 ¢(a)

<Y F@EN@ (5)) = d'(c))) Ax;
j=1

$(b)
f(0)dt
)

| -0 - [

j=1 ¢(a

n

£ €
Ax; + = .
<2(b—a)jz_; xJ+2<s

We obtained this estimate for the fixed partition P of [a, b], but the same steps
also verify this estimate for any partition finer than P. We conclude by Theo-
rem 5.18 that (f o ¢) - |¢'| is integrable on [a, b] and (14) holds.

Case 2. ¢ is strictly decreasing on [a, b]. Repeat the proof in case 1. The only
changes are P = {¢ ' (x,), ..., ¢ '(x0)} and |¢'| = —¢'. Thus the Mean Value
Theorem implies that

P(xj—1) —Pxj) =P (cj))(xj—1 —xj) = |¢'(c))| Ax;.

Estimating the Riemann sums as above, we again conclude that

d b
/ f@ dt=/ f@) - 1¢' (0] dt. u

The proof of Theorem 5.34 also establishes the following more familiar form
of the Change of Variables Formula: If ¢ is C Uon [a, b], if ¢’ is never zero on
[a, b], and if f is integrable on ¢[a, b], then

$(b) b
fm f@dr = f F@0)¢ (%) dx.

The difficult part of Theorem 5.34 was verifying that f o ¢ - |¢’| is integrable on
[a, b] when f is integrable on [c, d]. If we assume that f is continuous, the proof
is a lot easier.

5.35 Theorem. [CHANGE OF VARIABLES FOR CONTINUOUS
INTEGRANDS].

If ¢ is continuously differentiable on a closed, nondegenerate interval [a, b] and
fis continuous on ¢ ([a, b)), then

$(b) b
/w f@dr= / F@0)$ (%) dx.
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Proof. Set

Gx) = /X f@@®)¢'(t)dt, x €la,b], and

u

Fu) = f@dt, ue¢(a, b)),
¢(a)

and observe that if m is the infimum of ¢ ([a, b]), then F(u) = f;: f(®dr —

f,f(a) f(@)dt. Tt follows from the Fundamental Theorem of Calculus that
G'(x) = f(¢p(x))¢'(x) and F'(u) = f(u). Hence, by the Chain Rule,

d
75 (G = Flg(x))) = 0
X

for all x € [a, b]. It follows from Theorem 4.17ii that G(x) — F(¢(x)) is con-
stant on [a, b]. Evaluation at x = a shows that this constant is zero. Thus
G(x) = F(¢(x)) for all x € [a, b], in particular, when x = b. |

These Change of Variables Formulas can be remembered as a substitution if
we use the Leibnizian differentials introduced above: u = ¢ (x) implies du =
¢’ (x)dx.

Besides the usual applications to finding exact values for integrals of com-
positions of functions, the Change of Variables Formula can also be used to
estimate the value of an integral. Since energy, power, force, and many other
physical quantities can be computed by integration, this technique has practical
implications. For example, it sometimes allows one to use data from a particu-
lar prototype to estimate what would happen if the prototype were redesigned,
without going to the expense of building another prototype.

5.36 EXAMPLE.

Suppose that f is an unknown function which is nonnegative and continuous on

[2, 5]. If data are collected that can be interpreted as f25 f(x)dx = 3, find an
upper bound for the integral

2
I ;=/ F@x?+1) dx.
1

Solution. Let u = x> + 1. Then du = 2x dx. Unlike textbook-style problems,
we do not have a du term already in /. However, since x € [1, 2] implies x > 1,
and since f is nonnegative, it is clear that f (x2+1) < 2xf (x> +1)/2. Therefore,

2 1 [? e 3
1=/ f(x2+1)dx§—/ 2xf(x2—|—1)dx=—/ fwdu=>. W
1 21 2 2 2
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EXERCISES

5.3.0.

5.3.1.

Suppose that ¢ < b. Decide which of the following statements are true
and which are false. Prove the true ones and give counterexamples for
the false ones.

a) If f is continuous and nonnegative on [a, b] and g : [a, b] — [a, b] is
differentiable and increasing on [a, b], then

g(x)
F(x) = / f(@) dt

is increasing on [a, b].
b) If f and g are differentiable on [a, b], if /' and g’ are Riemann inte-
grable on [a, b], and if f(a) = 0 but g is never zero on [a, b], then

_ [ FIORY Y fg' @)
rw= | gm(g(z)) M e

for all x € [a, b].
c) If f and g are differentiable on [a, b], and if f’ and g’ are Riemann
integrable on [a, b], then

b b
/ f'(x)g(x) dx +/ f)g' (x)dx =0

if and only if f(a)g(a) = f(b)g(b).
d) If f and g are continuously differentiable on [a, b], and if % is contin-
uous on [a, b], then

g(f ) b
/ h(x) dx = / h(g(f () (f () f'(x) dx.
g(f(a)) a

If f : R — Riis continuous, find F’(x) for each of the following func-
tions.

a) F(x) =/: f@)dt
b) F(x) = /;3f(t) dt
c) F(x) =/0xcosxtf(t) dt
d) F(x) = /O f—x)dt



5.3.2.

5.3.3.

5.3.4.
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Suppose that f is nonnegative and continuous on [1, 2] and that

f12 x¥f(x)dx = 5+ k* for k = 0, 1,2. Prove that each of the follow-
ing statements is correct.

4

a) / f(V/x)dx <20
1
! 1 5

? /fz/zf <;> = 2
1

c) /xzf(x+1)a’x=2

0

Suppose that f is integrable on [0.5, 2] and that

1 2
/ XK f(x) dx =f xFF(x) dx +2k* =3 + k?
0.5 1

for k = 0,1,2. Compute the exact values of each of the following
integrals.
1
a) / (2 41) dx
0
V323
b) / ———f (V1 —x2) dx
0 V1—x2 / ( )

Suppose that f and g are differentiable on [0, e] and that f” and g’ are
integrable on [0, e].

a) If [ f(x)/xdx < f(e), prove that
/16 f'(x)logx dx > 0.
b) If £(0) = f(1) = 0, prove that
/0 1 e (f(x) + f/(x)) dx = 0.
c) If0 € {£(0), g} N{f(e), g(e)}, prove that

[o f)g'(x)dx = _/0 g(@) f'(x) dx.
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5.3.5.

5.3.6.

5.3.7|.

Integrability on R

Use the First Mean Value Theorem for Integrals to prove the following
version of the Mean Value Theorem for Derivatives. If f € Cl[a, b],
then there is an xg € [a, b] such that

fb) = fa) = (b—a)f'(xo).

If f is continuous on [a, b] and there exist numbers o # 8 such that

c b
oc/ f(x)dx+,3/ fx)dx =0

holds for all ¢ € (a, b), prove that f(x) = 0 for all x € [a, b].
This exercise is used in Sections 5.4 and 6.1. Define L : (0, co) — R by
*dt
L(x) = —.
1t
a) Prove that L is differentiable and strictly increasing on (0, co), with
L'(x)=1/xand L(1) = 0.
b) Prove that L(x) - oo as x — oo and L(x) — —oco as x — 0+. (You
may wish to prove

" Nk ok ke n
ny — —_— - — - = —
L2 )_k§_1 /2k_| t >k§_l:2 (2 2 ) :

foralln € N.)

c) Using the fact that (x9)" = gx?~! for x > 0 and ¢ € Q (see Exer-
cise 4.2.7), prove that L(x?) = gL(x) forallg € Q and x > 0.

d) Prove that L(xy) = L(x) + L(y) for all x, y € (0, 00).

e) Suppose that e = lim,_ (1 + 1/n)" exists. (It does—see Exam-
ple 4.22.) Use ’Hopital’s Rule to show that L(e) = 1. [L(x) is the
natural logarithm function log x.]

. This exercise was used in Section 4.3. Let E = L', where L is defined

in Exercise 5.3.7.

a) Use the Inverse Function Theorem to show that E is differentiable
and strictly increasing on R with E'(x) = E(x), E(0)=1,and E(1) =e.

b) Prove that E(x) — oo asx — oo and E(x) — 0as x — —o0.

c¢) Prove that E(xq) = (E(x))? and E(q) = ¢? for allg € Q and x € R.

d) Prove that E(x +y) = E(x)E(y) forall x, y € R.

e) For each ¢ € R define ¢* = E(x). Let x > 0 and define x* =
e?108x .= E(aL(x)). Prove that0 < x < y implies x* < y* fora > 0
and x* > y* for « < 0. Also prove that

_ 1 _
@B = x%xP, x™%=—, and (%) = ax*!
X

forall, 8 € Rand x > 0.
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5.3.9. Suppose that f : [a, b] — R is continuously differentiable and 1-1 on
[a, b]. Prove that

b f ()
/ F) dx + / £ o) dx = bf(B) — af ().
a f(a)

5.3.10. Suppose that ¢ is C "on [a,b] and f is integrable on [c, d] := ¢[a, b]. If
¢’ is never zero on [a, b], prove that f o ¢ is integrable on [a, b].

5.3.11. Let g € Q. Suppose thata < b,0 < ¢ < d, and that f : [a, b] — [c, d].
If f is integrable on [a, b], then prove that

(fqu(t)dt> = f1(x)

for all x € [a, b].
5.3.12. For each n € N, define

((2n)!>1/”
a, ‘= .
n'n"
Prove that a, — 4/e.

5.4 IMPROPER RIEMANN INTEGRATION

To extend the Riemann integral to unbounded intervals or unbounded func-
tions, we begin with an elementary observation.

5.37 Remark. If fis integrable on |[a, b], then
b d
dx =1 li dx ).
[ o=, ([ 100
Proof. By Theorem 5.26,

F(x) = /X 1) dt

is continuous on [a, b]. Thus
b
/ f(x)dx = F(b) — F(a) = lim+(d1i1£17(F(d) — F(0)))

d
- cLHzIzlJr <d£I£/C Fx) dx) ' n

This leads to the following generalization of the Riemann integral.
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5.38 Definition.

Let (a, b) be a nonempty, open (possibly unbounded) interval and f : (a, b)
— R.

i) f is said to be locally integrable on (a, b) if and only if f is integrable on
each closed subinterval [c, d] of (a, b).

il) f is said to be improperly integrable on (a, b) if and only if f is locally
integrable on (a, b) and

b d
/ f(x)dx == lim ( lim / fx) dx) (18)
a c—>a+ \d—b— J.
exists and is finite. This limit is called the improper (Riemann) integral of f

over (a, b).

5.39 Remark. The order of the limits in (18) does not matter. In particular, if the
limit in (18) exists, then

b d
/a f(x)dx = dl_l)l’ll;l_ (01_1)r21+l f(x) dx) .

Proof. Let xg € (a, b) be fixed. By Theorems 5.20 and 3.8,

d X( d
c1—i>r¢rzl+ (dggl_‘/; f® dx) - CEILI;I-F (/C )f(x) dx +d£r]r71_ /);0 F ) dx)

X d
= lim /Of(x) dx + lim / F(x) dx
¢ d—b— X0

c—a+
d
= dlirlr;lf (Cgrg+/c fx) dx) . .

Thus we shall use the notation

d
lim f(x)dx
c—>a+ J.
d—b—

to represent the limit in (18). If the integral is not improper at one of the
endpoints—for example, if f is Riemann integrable on closed subintervals of
(a, b]—we shall say that f is improperly integrable on (a, b] and simplify the
notation even further by writing

b b
/ fx)dx = .l_i)m+/ f(x)dx.
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The following example shows that an improperly integrable function need not
be bounded.

5.40 EXAMPLE.
Show that f(x) = 1/4/x is improperly integrable on (0, 1].

Solution. By definition,

LS| LS|
—dx =1 —dx = li 2-2 = 2. |
/0 Jx g a—1>r(r)1+/a Jx * a—1>r(r)1+( va

The following example shows that a function can be improperly integrable on
an unbounded interval.

541 EXAMPLE.
Show that f(x) = 1/x? is improperly integrable on [1, c0).

Solution. By definition,

> 1 . (41 , 1
— dx = lim —dx=lim (1-—)=1 |

1 X d—oo J1 X d—o00 d
Because an improper integral is a limit of Riemann integrals, many of the
results we proved earlier in this chapter have analogues for the improper

integral. The next two results illustrate this principle.

5.42 Theorem. If f, g are improperly integrable on (a,b) and o, B € R, then
af + Bg is improperly integrable on (a, b) and

b b b
/(af<x>+ﬁg<x>>dx=a/ f(x)dx+ﬂ/ o(x) dx.

Proof. By Theorem 5.19 (the Linear Property for Riemann Integrals),

d d d
/ (af(x) + Bg(x)) dx =Ot/ f ) dX+ﬂ/ g(x) dx

for alla < ¢ < d < b. Taking the limit as ¢ — a4+ and d — b— finishes the
proof. |

5.43 Theorem. [COMPARISON THEOREM FOR IMPROPER INTEGRALS].

Suppose that f, g are locally integrable on (a,b). If0 < f(x) < g(x) for x €
(a, b), and g is improperly integrable on (a, b), then fis improperly integrable

on (a,b) and
b b
/ £ dxs/ () dx.
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Proof. Fix ¢ € (a,b). Let F(d) = [ f(x)dx and G(d) = [ g(x)dx for d €
[c, b). By the Comparison Theorem for Integrals, F(d) < G(d). Since f > 0,
the function F is increasing on [c, b]; hence F(b—) exists (see Theorem 4.18).
Thus, by definition, f is improperly integrable on (c, ) and

b b
/ F() dx = F(b=) < G(b—) = / o) dx.

A similar argument works for the case ¢ — a+. |

This test is frequently used in conjunction with the following inequalities:
|sinx| < |x| for all x € R (see Appendix B); for every & > 0 there exists a
constant B, > 1 such that |logx| < x® for all x > B, (see Exercise 4.4.6). Here
are two typical examples.

5.44 EXAMPLE.
Prove that f(x) = sinx/+/x3 is improperly integrable on (0, 1].

Proof. Since f is continuous on (0, 1], f is locally integrable there as well.
Since f is nonnegative on (0, 1], it is clear that 0 < f(x) = |sinx/\/F| <
Ix|/x3/? = 1//x on (0, 1]. Since this last function is improperly integrable
on (0, 1] by Example 5.40, it follows from the Comparison Test that f(x) is
improperly integrable on (0, 1]. [

5.45 EXAMPLE.
Prove that f(x) = log x/+/x3 is improperly integrable on [1, 00).

Proof. Since f is continuous on (0, 00), f is integrable on [1, C] for any
C € [1, c0). By Exercise 4.4.6, there is a constant C > 1 such that 0 < f(x) =
logx/v/x3 < x1/2/x5/2 = 1/x2 for x > C. Since this last function is improp-
erly integrable on [1, co) by Example 5.41, it follows from the Comparison
Theorem that f(x) is improperly integrable on [1, co). |

Although improperly integrable functions are not closed under multiplication
(see Exercise 5.4.5), the Comparison Theorem can be used to show that some
kinds of products are improperly integrable.

5.46 Remark. If fis bounded and locally integrable on (a, b) and |g| is improp-
erly integrable on (a, b), then | fg| is improperly integrable on (a, D).

Proof. Let M = sup,c,p) | f(x)|. Then 0 < [f(x)g(x)| < M|g(x)| for all
x € (a, b). Hence, by Theorem 5.43, | fg| is improperly integrable on (a, b). B

For the Riemann integral, we proved that | f| is integrable when f is (see
Theorem 5.22). This is not the case for the improper integral (see Example 5.49
below). For this reason we introduce the following concepts.
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5.47 Definition.

Let (a, b) be a nonempty, open interval and f : (a, b) — R.

i) f is said to be absolutely integrable on (a, b) if and only if f is locally inte-
grable and | f| is improperly integrable on (a, b).
i) f issaid to be conditionally integrable on (a, b) if and only if f is improperly

integrable but not absolutely integrable on (a, b).

The following result, an analogue of Theorem 5.22 for absolute integrable
functions, shows that absolute integrability implies improper integrability.

5.48 Theorem. If fis absolutely integrable on (a, b), then f is improperly inte-
grable on (a, b) and
b
/ f(x)dx
a
Proof. Since 0 < |f(x)| + f(x) < 2|f(x)|, we have by Theorem 5.43 that

|f| + f is improperly integrable on [a, b]. Hence, by Theorem 5.42, so is
f={fl+ f)—1f|. Moreover,

b
5/ £ ()] dox.

d d
[ revax| < [Cirwias
c c
for every a < ¢ < d < b. We finish the proof by taking the limit of this last
inequality as ¢ — a+ and d — b—. |

The converse of Theorem 5.48, however, is false.

5.49 EXAMPLE.

Prove that the function sin x /x is conditionally integrable on [1, c0).

Proof. Integrating by parts, we have

4 ginx COSX g4 4 cos x
—dx = — |1 — 3 dx
X X X
cosd 4 cos x
= cos(1) — — > dx.
d 1 X

Since 1/x? is absolutely integrable on [1, o0), it follows from Remark 5.46 that
cos x/x? is absolutely integrable on [1, co). Therefore, sinx/x is improperly
integrable on [1, co) and

X o1 o0
/ Smx dx = cos(1) —/ coszx dx.
1 1 X

X
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To show that sin x /x is not absolutely integrable on [1, co), notice that

/‘"” |smx| Z/ |smx|

1 k—hx X
> | sinx| dx
Zkﬂ /k D |

w2 _22”:1
k:zkn 7Tk:2k

for each n € N. Since

ZZ/

as n — 00, it follows from the Squeeze Theorem that

k+1 1 n+1 1
f —dx =log(n+1) —log2 — oo
X

| sin x
lim | | dx = oo.
n—oo Jq X
Thus, sin x/x is not absolutely integrable on [1, 00). |

EXERCISES

5.4.0. Suppose that a < b. Decide which of the following statements are true
and which are false. Prove the true ones and give counterexamples for
the false ones.

a) If f is bounded on [a, b], if g is absolutely integrable on (a, b), and
if |f(x)| < g(x) for all x € (a, b), then f is absolutely integrable on
(a, b).

b) Suppose that /4 is absolutely integrable on (a, b). If f is continuous on
(a, b), if g is continuous and never zero on [a, b], and if | f (x)| < h(x)
for all x € [a, b], then f/g is absolutely integrable on (a, b).

c) If f: (a,b) — [0, 0) is continuous and absolutely integrable on
(a, b) for some a, b € R, then /f is absolutely integrable on (a, b).

d) If f and g are absolutely integrable on (a, b), then max{f, g} and
min{ f, g} are both absolutely integrable on (a, b).

5.4.1. Evaluate the following improper integrals.

o0
1
a) / —|—3x dx
1 X
0 3
b) / x2e* dx
—00
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5.4.3.

5.4.4.

5.4.5.

5.4.6.

5.4.7.
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) / /2 cosx J
c ——dx
0 ~/sinx
1
d) / logx dx
0
For each of the following, find all values of p € R for which f is improp-

erly integrable on 1.

a) f(x)=1/xP, I =(1,o00)

b) f(x)=1/xP, I =(0,1)

c) f(x)=1/(xlog’ x), I = (e, 00)

d) f(x)=1/(14+xP), I =(0,00)

e) f(x) =log"x/xP, wherea > 0is fixed, and I = (1, c0)

Let p > 0. Show that sinx/x? is improperly integrable on [1, co) and

that cos x/ log? x is improperly integrable on [e, 00).
Decide which of the following functions are improperly integrable on 1.

a) f(x)=sinx, I = (0, 00)

b) f(x)=1/x* I =[-1,1]

¢) f(x) =x"lsin(x™), I =(1, 00)
d) f(x) =log(sinx), I =(0,1)

e) f(x) = (1 —cosx)/x2, I=(0,00)

Use the examples provided by Exercise 5.4.2b to show that the product
of two improperly integrable functions might not be improperly inte-
grable.

Suppose that f, g are nonnegative and locally integrable on [a, b)
and that

L := lim f )
x—b— g(x)

exists as an extended real number.

a) Show thatif 0 < L < oo and g is improperly integrable on [a, b), then
sois f.

b) Show thatif 0 < L < oo and g is not improperly integrable on [a, b),
then neither is f.

a) Suppose that f is improperly integrable on [0, co). Prove thatif L =
limy,_ o f(x) exists, then L = 0.
b) Let

n<x<n+2" neN

1
fx) = {O otherwise.

Prove that f is improperly integrable on [0, o) but lim,_, f(x)
does not exist.
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5.4.8. Prove thatif f is absolutely integrable on [1, o0), then
o
lim f&x™ dx =0.

n—oo 1

5.4.9. Assuming e = lim,_.oc Y y_o 1/k! (see Example 7.45), prove that

1 o0
lim (—/ xTe™* dx> =1.
n—oo \ n! 1

/2 .
/ e*(lSll’lX dx 5
0
foralla > 0.

b) What happens if cos x replaces sinx?

5.4.10. a) Prove that

SIS

*5.5 FUNCTIONS OF BOUNDED VARIATION

This section uses no material from any other enrichment section.

In this section we study functions which do not wiggle too much. These
functions, which play a prominent role in the theory of Fourier series (see
Sections *14.3 and *14.4) and probability theory, are important tools for
theoretical as well as applied mathematics.

Let ¢ : [a, b] — R. To measure how much ¢ wiggles on an interval [a, b], set

n
Vg, P) =Y 1p(x;) — p(x;-1)l
j=1
for each partition P = {xg, x1, ..., x,} of [a, b]. The variation of ¢ is defined by

Var(¢) := sup{V (¢, P) : P is a partition of [a, b]}. (19)

5.50 Definition.

Let [a, b] be a closed, nondegenerate interval and ¢ : [a, b] — R. Then ¢ is
said to be of bounded variation on [a, b] if and only if Var(¢) < oo.

The following three remarks show how the collection of functions of bounded
variation is related to other collections of functions we have studied.

5.51 Remark. If¢p € C Ua, b, then ¢ is of bounded variation on [a, b]. However,
there exist functions of bounded variation which are not continuously differen-
tiable.

Proof. Let P = {xg, x1, ..., x,} be a partition of [a, b]. By the Extreme Value
Theorem, there is an M > 0O such that [¢'(x)| < M for all x € [a, b]. Therefore,
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it follows from the Mean Value Theorem that for each k between 1 and n there
is a point ¢ between x;_; and x; such that

| (xi) — @ xck—1)| = 1@ (ci) | (xk — xx—1) < M (xg — xg—1).

By telescoping, we obtain V (¢, P) < M(b — a) for any partition P of [a, b].
Therefore,

Var(¢) < M (b — a).

On the other hand, x?sin(1/x) is of bounded variation on [0, 1] (see Exer-
cise 5.5.2) but does not belong to C'[0, 1] (see Example 4.8). |

5.52 Remark. If ¢ is monotone on [a, b], then ¢ is of bounded variation on [a, b].
However, there exist functions of bounded variation which are not monotone.

Proof. Let ¢ be increasing on [a, b] and P = {x¢, x1, ..., X,} be a partition of
[a, b]. Then, by telescoping,

DleG) —p -l =D (@) — dxj-1))

j=1 j=1

= ¢(xn) — P (x0) = (D) —¢p(a) = M < oo.

Thus, Var(f) = M. On the other hand, by Remark 5.51, ¢(x) = x? is of
bounded variation on [—1, 1]. [ |

5.53 Remark. If ¢ is of bounded variation on [a, b], then ¢ is bounded on [a, b].
However, there exist bounded functions which are not of bounded variation.

Proof. Let x € [a, b] and note by definition that

lp(x) — ¢(@)] < 1¢(x) — p(@)| + |p(b) — ¢ (x)| = Var(¢).
Hence, by the Triangle Inequality,

lp ()] < ¢p(a)| + Var(e).

To find a bounded function which is not of bounded variation, consider

__Jsin(1/x) x #0
¢u%_{0 x =0,

Clearly, ¢ is bounded by 1. On the other hand, if

0 j=0
xXj = 2 ! .

(n—j+Dm
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then
n
Db =gl =n— o0
j=1
as n — oo. Thus ¢ is not of bounded variation on [0, 2/7]. |

The following result and Exercise 5.5.3 are partial answers to the question, Is
the class of functions of bounded variation preserved by algebraic operations?

5.54 Theorem. If ¢ and r are of bounded variation on a closed interval [a, b),
then so are ¢ + v and ¢ — .

Proof. Leta =x9 <x; <--- <x, =b. Then

Db £ () — (@) £ Y (xj1)]

j=1

< Z lp(xj) —p(xj—1)] + Z Y (x;) — Y(xj-1)]

Jj=1 j=1
< Var(¢) + Var(y).

Therefore, Var(¢ + ) < Var(¢) + Var(y). [

It turns out that there is a close connection between functions of bounded
variation and monotone functions (see Corollary 5.57 below). To make this
connection clear, we introduce the following concept.

5.55 Definition.

Let ¢ be of bounded variation on a closed interval [a, b]. The total variation of
¢ is the function @ defined on [a, b] by

k
P (x) :=sup Z lp(x;) —p(xj—1)| : {x0, x1, ..., x} is a partition of [a, x]
j=1

5.56 Theorem. Let ¢ be of bounded variation on [a, b] and @ be its total varia-
tion. Then

i) () =) < @(y) —@(x) foralla <x <y <b,
ii) @ and @ — ¢ are increasing on [a, b], and
iii) Var(¢) < Var(®).
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Proof. i) Let x < y belong to [a, b] and {xo, x1, ..., x;} be a partition of
[a,x]. Then {xo, x1, ..., xk, y} is a partition of [a, y], and we have by Defi-
nition 5.55 that

k k
DIpGp) — -l < Y 1) — ¢ D]+ ¢ () — ()] < D(y).

j=1 j=1

Taking the supremum of this inequality over all partitions {xg, x, ..., xx} of
[a, x], we obtain

P(x) =@(x) +1o(y) —p(x)| = 2(y).

ii) By the Monotone Property of Suprema, @ is increasing on [a, b]. To
show that @ — ¢ also increases, suppose that a < x < y < b. By part i),

¢(y) =) < [p(y) =) = P(y) = P(x).

Therefore, @ (x) — ¢ (x) < P(y) — p(y).
iii) Let P = {xo, x1, ..., x,} be a partition of [a, b]. By part i) and Defini-
tion 5.50,

S 1o — ¢l < D 1)) — Pxj_p)| < Var(®).

j=1 j=1

Taking the supremum of this inequality over all partitions P of [a, b], we
obtain Var(¢) < Var(®). [ |

5.57 Corollary. Let [a, b] be a closed interval. Then ¢ is of bounded variation on
la, b] if and only if there exist increasing functions f, g on [a, b] such that

¢(x) = f(x) —gx), x € [a,D].

Proof. Suppose that ¢ is of bounded variation and let @ represent the total
variation of ¢. Set f = & and g = @ — ¢. By Theorem 5.56, f and g are
increasing, and by construction, ¢ = f — g.

Conversely, suppose that ¢ = f — g for some increasing f, g on [a, b]. Then
by Remark 5.52 and Theorem 5.54, ¢ is of bounded variation on [a, b]. |

In particular, if f is of bounded variation on [a, b], then

1) f(x+) exists for each x € [a, b) and f(x—) exists for each x € (a, b] (see
Theorem 4.18),
ii) f has no more than countably many points of discontinuity in [a, b] (see
Theorem 4.19), and
iii) f isintegrable on [a, b] (see Exercise 5.1.8).
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EXERCISES

5.5.1. a) Show that 4k/(4k> — 1) > 1/k for k € N.
b) Prove that

2"—1 on

1 1
E - > —dx =log(2")
=1 k 1 X

for alln € N.
¢) Prove that
2

1
Hx) = xsm; x#0
0 x=0

is not of bounded variation on [0, 1].

5.5.2. a) Show that (8k*> +2)/(4k> — 1)> < 1/k*fork =2,3,....
b) Prove that

; 1<1+/Anld 2 !
J— — dx = —_ =
k:lkz_ 1 x2 n

forn € N.
¢) Prove that
2.1
X< sin — x#0

o(x) = X
0

is of bounded variation on [0, 1].

5.5.3|. This exercise is used in Section *14.3. Suppose that ¢ and ¢ are of
bounded variation on a closed interval [a, b].

a) Prove that a¢ is of bounded variation on [a, b] for every o € R.
b) Prove that ¢y is of bounded variation on [a, b].
c) If there is an gy > 0 such that

d(x) > eo, x €la,bl,

prove that 1/¢ is of bounded variation on [a, b].

5.5.4. Suppose that ¢ is of bounded variation on a closed, bounded interval
[a, b]. Prove that ¢ is continuous on (a, b) if and only if ¢ is uniformly
continuous on (a, b).

5.5.5. a) If ¢ is continuous on a closed nondegenerate interval [a, b], differ-
entiable on (a, b), and if ¢’ is bounded on (a, b), prove that ¢ is of
bounded variation on [a, b].

b) Show that ¢(x) = J/x is of bounded variation on [—1, 1] but ¢’ is
unbounded on (-1, 1).
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Let P be a polynomial of degree N.

a) Show that P is of bounded variation on any closed interval [a, b].
b) Obtain an estimate for Var(P) on [a, b], using values of the derivative
P’(x) at no more than N points.

Let ¢ be a function of bounded variation on [a, b] and @ be its total
variation function. Prove that if @ is continuous at some point xg €
(a, b), then ¢ is continuous at x.

This exercise is used in Section *14.4. If f is integrable on [a, b],
prove that

X
F(x) = / f(t) dt
a
is of bounded variation on [a, b].

Suppose that f’ exists and is integrable on [a, b]. Prove that f is of
bounded variation and

b
Var(f) = / ()] dx.

If f’ is bounded rather than integrable, how do the upper and lower
integrals of f’ compare to the variation of f?

CONVEX FUNCTIONS

The last two results of this section use enrichment Theorems 4.19 and 4.23.

In this section we examine another collection of functions which is impor-
tant for certain applications, especially for Fourier analysis, functional analysis,
numerical analysis, and probability theory.

5.58 Definition.

Let I be aninterval and f : I — R.

i) f issaid to be convex on I if and only if

forall0 <ae <landallx,yel.
ii) f issaid to be concave on I if and only if — f is convex on /.

flax + (0 —a)y) <af(x)+ 1 —a)f(y)

Notice that, by definition, a function f is convex on an interval [ if and only
if f is convex on every closed subinterval of .

It is easy to check that f(x) = mx + b is both convex and concave on any
interval (see also Exercise 5.6.3) but in general it is difficult to apply Defini-
tion 5.58 directly. For this reason, we include the following simple geometric
characterizations of convexity.
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FIGURE 5.5

5.59 Remark. Let I be an interval and f : I — R. Then f is convex on I if and
only if given any [c,d] C I, the chord through the points (c, f(c)), (d, f(d)) lies
on or above the graph of y = f(x) for all x € [c, d]. (See Figure 5.5.)

Proof. Suppose that f is convex on [ and that xo € [¢,d]. Choose 0 <« <1
such that xo = ac + (1 — «)d. The chord from (¢, f(c)) to (d, f(d)) has slope
(f(d) — f(c))/(d — ¢). Hence, the point on this chord which has the form
(x0, yo) must satisfy yo = af(c) + (1 — «) f(d). Since f is convex, it follows
that f(xo) < yo; thatis, the point (xg, yp) lies on or above the point (xg, f(xp))-
A similar argument establishes the reverse implication. |

Thus both f(x) = |x| and f(x) = x? are convex on any interval.

5.60 Remark. A function f is convex on a nonempty, open interval (a, b) if and
only if the slope of the chord always increases on (a, b); that is, if and only if

fo) = flo) _ fd) = fx)

a<c<x<d<b implies
x—c d—x

Proof. Fixa < ¢ < x <d < band let A(x) be the equation of the chord to
f through the points (¢, f(c)) and (d, f(d)). If f is convex, then f(x) < A(x)
(see Figure 5.6). Therefore,

f) = flo) M) —Ae) _Ad) —Ax) _ fld)—fO)

X —c X —c d—x - d—x
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FIGURE 5.6

Conversely, if f is not convex, then A(x) < f(x) for some x € (c, d). It follows
that

fO) = fl©)  Mx)—Me) _ M) —rx) _ fd) - f(x)

xX—c X —c d—x d—x
Therefore, the slope of the chord does not increase on (a, b). |
This leads us to a characterization of differentiable convex functions.

5.61 Theorem. Suppose that fis differentiable on a nonempty, open interval 1.
Then fis convex on I if and only if f' is increasing on I.

Proof. Suppose that f is convex on I =: (a, b) and that ¢,d € (a, b) satisfy
¢ < d. Choose h > 0 sosmall that c+h < d andd + h < b. Then by
Remark 5.60,

fleth) = flo _ fld+h) - fd)
h - h )
In particular, f'(c) < f/(d).
Conversely, suppose that f’ is increasing on (a,b). Leta <c <x <d < b

and use the Mean Value Theorem to choose x¢ (between ¢ and x) and x;
(between x and d) such that

f&) = f@© _

X —cC

= f'(x1).

d) —
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Since xg < xi, it follows that f’'(xp) < f'(x1). In particular, we conclude by
Remark 5.60 that f is convex on (a, b). [ |

Combining Theorems 4.17 and 5.61, we obtain the usual convexity criterion
in terms of the second derivative: If f is twice differentiable on (a, b), then f
is convex on (a, b) if and only if f”(x) > 0 for all x € (a,b). In particular,
convexity is what elementary calculus texts call concave upward and concavity
is what elementary calculus texts call concave downward.

On open intervals, convex functions are always continuous. (The statements
and proofs of the next two results come from Zygmund [15].)

5.62 Theorem. If fis convex on some nonempty, open interval I, then f is con-
tinuous on L.

Proof. Let xo € I =: (a,b). By symmetry, it suffices to show that f(x) —
f(xo) asx — xo+. Leta < ¢ < xp <x <d < b, y = g(x) represent the
equation of the chord through (¢, f(c)), (x0, f(x0)), and y = h(x) represent
the equation of the chord through (xg, f(x0)), (d, f(d)). Since f is convex, we
have by Remark 5.59 that f(x) < h(x). Since f(xp) lies on or below the chord
from (c, f(c)) to (x, f(x)), we also have that g(x) < f(x). Consequently,

g(x) = f(x) = h(x), x € (xo, b).

Both chords y = g(x) and y = h(x) pass through the point (xg, f(xg)), soO
g(x) = f(xo) and h(x) — f(x9) as x — xo+. Hence, it follows from the
Squeeze Theorem that f(x) — f(xg) as x — xo+. |

Theorem 5.62 does not hold for closed intervals [a, b]. Indeed, the function

Fl) = (1) 0<x<1

x=1

is convex on [0, 1] but not continuous there.

A function f is said to have a proper maximum (respectively, proper mini-
mum) at xg if and only if there exists a § > 0 such that f(x) < f(xo) [respec-
tively, f(x) > f(xo)] for all 0 < |x — x9| < 8. As far as proper extrema are
concerned, convex functions behave like strictly increasing functions.

5.63 Theorem.

i) If fis convex on a nonempty, open interval (a, b), then f has no proper maxi-
mum on (a, b).

ii) If f is convex on [0, 00) and has a proper minimum, then f(x) — o0 as
X — oo.

Proof. i) Suppose that xo € (a,b) and that f(xg) is a proper maximum of
f. Then there exist ¢ < xg < d such that f(x) < f(xg) forc < x < d. In
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particular, the chord through (c, f(c)), (d, f(d)) must lie below f(xg) for ¢, d
near xg, a contradiction.

ii) Suppose that xo € (a, b) and that f(xg) is a proper minimum of f. Fix
x1 > xp. Let y = g(x) represent the equation of the chord through (xg, f (x0))
and (x1, f(x1)). Since f(xp) is a proper minimum, f(x;) > f(xo); hence, g
has positive slope. Moreover, by the proof of Theorem 5.62, g(x) < f(x) for
all x € (x1, 00). Since g(x) — oo as x — oo, we conclude that f(x) — oo as
X — 00. |

Another important result about convex functions addresses the question,
What happens when we interchange the order of a convex function and an inte-
gral sign?

5.64 Theorem. [JENSEN’S INEQUALITY].
Let ¢ be convex on a closed interval [a, bl and f : [0, 1] — [a, b]. If fand ¢ o f
are integrable on [0, 1], then

1 1
¢</O £ dx) sfo 60 )(x) dx. (20)

Proof. Set

1
c=/ f(x)dx
0

and observe that

1 1
¢</O f(x)dx>=¢(6)+8</0 f(x)dx—c) (21)

for all s € R. (Note: Since a < f(x) < b for each x € [0, 1], ¢ must belong
to the interval [a, b] by the Comparison Theorem for Integrals. Thus ¢(c) is
defined.)

Let

() — p(x)
p ——.
x€la,c) c—X

By Remark 5.60, s < (¢(u) — ¢(c))/(u — ¢) for all u € (c, b]; that is,

s =

d(c) +s(u—c) < pu) (22)

for all u € [c, b]. On the other hand, if 4 € [a, ¢), we have by the definition of
s that

5> ¢c) —¢w)

c—u
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Thus (22) holds for all u € [a, b]. Applying (22) tou = f(x), we obtain
¢(c) +5(f(x) —c) = (9o fx).

Integrating this inequality as x runs from O to 1, we obtain

1 1
¢(C)+S(/O f(X)dx—C)E/O@Of)(X)dX-

Combining this inequality with (21), we conclude that (20) holds. |

What about differentiability of convex functions? To answer this question we
introduce the following concepts (compare with Definition 4.6).

5.65 Definition.

Let f: (a,b) > Rand x € (a, b).
i) f is said to have a right-hand derivative at x if and only if

S +h)—fix)
h b

Drf(x) = lim

exists as an extended real number.
il) f issaid to have a left-hand derivative at x if and only if

DLf) = tim TEHD I

exists as an extended real number.

The following result is a simple consequence of the definition of differen-
tiability and the characterization of two-sided limits by one-sided limits (see
Theorem 3.14).

5.66 Remark. A real function f is differentiable at x if and only if both Dg f (x)
and Dy f(x) exist, are finite, and are equal, in which case f'(x) = Dgf(x) =

Dy f(x).

The next result shows that the left-hand and right-hand derivatives of a con-
vex function are remarkably well-behaved.

5.67 Theorem. Let f be convex on an open interval (a,b). Then the left-hand
and right-hand derivatives of f exist, are increasing on (a, b), and satisfy

—00 < Dp f(x) < DRrf(x) <00

forall x € (a, b).
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Proof. Let h < 0 and notice that the slope of the chord through the points
(x, f(x))and (x +h, f(x+h))is (f(x+h) — f(x))/h. By Remark 5.60, these
slopes increase as h — 0—. Since increasing functions have a limit (which
may be +00), it follows that Dy f(x) exists and satisfies —oco < Dy f(x) < oo.
Similarly, Dg f (x) exists and satisfies —oco < Dg f(x) < co. Remark 5.60 also
implies

Dp f(x) = Drf(x). (23)

Hence, both numbers are finite, and by symmetry it remains to show that
Dp f (x) is increasing on (a, b).
Let x; < u <t < x; be points which belong to (a, b). Then

f) — f(x1) - fx2) = f()

u— x| B Xy —t

Taking the limit of this inequality as # — x;+ and t — x,—, we conclude by
(23) that

Dpg f(x1) < Dp f(x2) < Dg f(x2). (24)
|

The next proof uses enrichment Theorem 4.19.

*5.68 Corollary. If fis convex on an open interval (a, b), then f is differentiable
at all but countably many points of (a, b), that is, there is an at most countable set
E C (a, b) such that f'(x) exists for all x € (a,b) \ E.

Proof. Let E be the set where either Dy f(x) or Dg f(x) is discontinuous.
By Theorems 5.67 and 4.19, the set E is at most countable. Suppose that
X0 € (a, b) \ E and that x < xg. By (24),

Dg f(x) < D f(x0) < DR f(x0).

Let x — xg. Since both Dy f(x) and Dg f (x) are continuous at xg, we obtain
Drf(x0) < Dpf(x0) < Drf(xp). In particular, f/(xp) exists for all xy €
(a,b)\ E. [ |

How useful is a statement about f’(x) which holds for all but countably many
points x? We address this question by proving a generalization of Theorem 4.17.
(The proof here uses enrichment Theorem 4.23.)

*5.69 Theorem. Suppose that fis continuous on a closed interval [a, b] and dif-
ferentiable on (a, b). If f'(x) > 0 for all but countably many x € (a, b), then fis

increasing on |a, b].

Proof. Suppose that f/(x;) < 0forsome x; € (a,b)andlety € (f'(x;),0). By
Theorem 4.23 (the Intermediate Value Theorem for derivatives), there is an
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x = x(y) € (a, b) such that f'(x) = y < 0. It follows that if f'(x) < 0 for one
x € (a, b), then f'(x) < 0 for uncountably many x € (a, b), a contradiction.
Therefore, f'(x) > 0 for all x € (a, b); hence, by Theorem 4.17, f is increasing
on (a, b). |

*5.70 Corollary. If f is continuous on a closed interval [a, b] and differentiable
on (a, b) with f'(x) = 0 for all but countably many x € (a, b), then f is constant
on [a, b].

EXERCISES

5.6.1.

5.6.2.

5.6.3.

5.6.4.

5.6.5.

5.6.6.

5.6.7.

Suppose that f, g are convex on an interval /. Prove that f + g and cf
are convex on [ for any ¢ > 0.

Suppose that f, is a sequence of functions convex on an interval /
and that

f@) = lim fo(x)

exists for each x € I. Prove that f is convex on /.

Prove that a function f is both convex and concave on 7 if and only if
there exist m, b € Rsuch that f(x) =mx + b forx € I.

Prove that f(x) = x? is convex on [0, co) for p > 1, and concave on
[0,00)for0 < p < 1.

Show that if f is increasing on [a, b], then

F(x) = /x ft) dt

is convex on [a, b]. (Recall that by Exercise 5.1.8, f is integrable on

[a, b].)
If f : [a, b] — Ris integrable on [a, b], prove that

b b 1/2
/If(x)ldxf(b—a)‘/z(/ fz(x)dx> .

Suppose that f : [0, 1] — [a, b] is integrable on [0, 1]. Assume that e/
and | f (x)|? are integrable for all 0 < p < oo (see Exercise 12.2.11).

a) Prove that

1 1 1/r 1
oo £ dx /0 /™ gx and ([O If(X)I’dx) < /O £ ()] dox

forall0 <r < 1.
b) If 0 < p < g, prove that

1 I/p 1 1/q
(/ If(x)l”dx> s(/ If(x)lqu> .
0 0

c) State and prove analogues of these results for improper integrals.
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*5.6.8. Let f be continuous on a closed, bounded interval [a, b] and suppose
that Dy f (x) exists for all x € (a, b).

a) Show thatif f(b) < yo < f(a), then
xo :=sup{x € [a,D]: f(x) > yo}

satisfies f(xg) = yo and Dg f (xg) < 0.

b) Prove thatif f(b) < f(a), then there are uncountably many points x
which satisfy Dg f(x) < 0.

c) Prove thatif Dg f(x) > 0 for all but countably many points x € (a, b),
then f is increasing on [a, b].

d) Prove that if Dgf(x) > 0 and g(x) = f(x) + x/n for some n € N,
then Drg(x) > 0.

e) Prove thatif Dg f(x) > 0 for all but countably many points x € (a, b),
then f is increasing on [a, b].
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CHAPTER 6

Infinite Series of Real Numbers

Infinite series are one of the most widely used tools of analysis. They are used
to approximate numbers and functions. (Series of Ramanujan type have been
used to compute billions of digits of the decimal expansion of 7.) They are
used to approximate solutions of differential equations. (You may have used
power series to solve ordinary differential equations with nonconstant coeffi-
cients.) They even form the basis for some very practical applications, including
pattern recognition (e.g., reading zip codes), image enhancement (e.g., removing
raindrop clutter from a radar scan), and data compression (e.g., transmission of
hundreds of TV programs through a single, photonic, fiber optic cable). Other
applications of infinite series can be found in Section 7.5. In view of the variety
of these applications, it should come as no surprise that the subject matter of
this chapter (and the next) is of fundamental importance.

INTRODUCTION

Let {ax}ren be a sequence of numbers. We shall call an expression of the form

3 M
k=1

an infinite series with terms ay. (No convergence is assumed at this point. This is
merely a formal expression.)

6.1 Definition.

Let § = Y ;2 ax be an infinite series with terms ax.

i) For each n € N, the partial sum of S of order n is defined by

n
sn::Zak.
k=1

ii) S is said to converge if and only if its sequence of partial sums {s,} con-
verges to some s € R as n — oo; that is, if and only if for every ¢ > 0 there
isan N € Nsuch thatn > N implies |s, — s| < ¢. In this case we shall write

From Chapter 6 of Introduction to Analysis, Fourth Edition. William R. Wade.
Copyright © 2010 by Pearson Education, Inc. All rights reserved.
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Zak =5 (2)
k=1

and call s the sum, or value, of the series Z}:‘;l a.

iii) S is said to diverge if and only if its sequence of partial sums {s,} does
not converge as n — oo. When s, diverges to +o0o0 as n — oo, we shall
also write

(We shall deal with series of functions in Chapter 7.)

You are already familiar with one type of infinite series, decimal expan-
sions. Every decimal expansion of a number x € (0, 1) is a series of the form
302, xk/10%, where the x;’s are integers in [0, 9]. For example, when we write
1/3 =0.333... we mean

I 3
3= Lo

In particular, the partial sums 0.3, 0.33, 0.333,...are approximations to 1/3
which get closer and closer to 1/3 as more terms of the decimal expansion
are taken.

One way to determine if a given series converges is to find a formula for its
partial sums simple enough so that we can decide whether or not they converge.
Here are two examples.

6.2 EXAMPLE.
Prove that 72, 27% = 1.

Proof. By induction, we can show that the partial sumss, = > ;_; 1/ 2K satisfy
sp =1—2""forn e N. Thuss, - 1asn — oo. |

6.3 EXAMPLE.
Prove that 322, (— D* diverges.

Proof. The partial sums s, = > ;_, (—1)* satisfy

-1 if n is odd

Sp = e .
0 if n is even.
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Thus s, does not converge as n — 0. u
Another way to show that a series diverges is to estimate its partial sums.

6.4 EXAMPLE. [THE HARMONIC SERIES].

Prove that the sequence 1/k converges but the series ) ;- 1/k diverges to +oo.

Proof. The sequence 1/k converges to zero (by Example 2.2i). On the other
hand, by the Comparison Theorem for Integrals,

n

1 k+11 n+11
S":Z;ZZ/]( ;dx:fl ;dx:log(n+1).

k=1 k=1
We conclude that s,, — oo asn — oo. |

This example shows that the terms of a divergent series may converge. In
particular, a series does not converge just because its terms converge. On the
other hand, the following result shows that a series cannot converge if its terms
do not converge to zero.

6.5 Theorem. [DIVERGENCE TEST].
Let {ag }ren be a sequence of real numbers. If a; does not converge to zero, then
the series Y po, ax diverges.

Proof. Suppose to the contrary that ) 2, ax converges to some s € R. By
definition, the sequence of partial sums s, := Y j_,ax converges to s as
n — oo. Therefore, ar = sy — sk—1 — s —s = 0 as k — oo, a contradiction. H

The proof of this result establishes a property interesting in its own right: If
Z,‘:‘;l ax converges, then ar — 0 as k — oo. It is important to realize from the
beginning that the converse of this statement is false; that is, Theorem 6.5 is a
test for divergence, not a test for convergence. Indeed, the harmonic series is a
divergent series whose terms converge to zero.

Finding the sum of a convergent series is usually difficult. The following two
results show that this is not the case for two special kinds of series.

6.6 Theorem. [TELESCOPIC SERIES].
If {ay} is a convergent real sequence, then

[e.¢]
D (ax —ary1) = a) — lim a.
Pt k— 00
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Proof. By telescoping, we have

n

Spi= Z(ak — Q1) = a1 — Ant 1.
k=1

Hence, s, — a; — limg_, o0 ar asn — o0. |

It’s clear how to modify Definition 6.1 to accommodate series that start at
some index other than k = 1. We use this concept in the following very impor-
tant result.

6.7 Theorem. [GEOMETRIC SERIES].
Suppose that x € R, that N € {0, 1, ...}, and that 0" is interpreted to be 1. Then
the series y oy xK converges if and only if |x| < 1, in which case

In particular,
= 1
Zxk =1 |x] < 1.
k=0

Proof. 1f |x| > 1, then > 32 \ x* diverges by the Divergence Test. If |x| < 1,
then set s, = Y }_, x* and observe by telescoping that

A=xX)sp =0 —=x)x +x>+--+x"

=x x4 x" —x2 = - =

Hence,

T l—x 1 —x

for all n € N. Since x"*!' — 0 asn — oo for all [x| < 1 (see Example 2.20),
we conclude that s,, — x/(1 — x) asn — oo.
For general N, we may suppose that |x| < 1 and x # 0. Hence,

n n—N-+1
Zxk:xN+'~-+x":xN_l Z xk.
k=N k=1

Hence, it follows from Definition 6.1 and what we’ve already proved that

n—N+1 N

o0 n x
E x* = lim E x5 = lim V! E x* = . |
n—oo n—o00 1—x
k=N k=N k=1

187



188

188 Chapter 6 Infinite Series of Real Numbers

In everyday speech, the words sequence and series are considered synonymes.
Example 6.4 shows that in mathematics, this is not the case. In particular, you
must not apply a result valid for sequences to series and vice versa. Nevertheless,
because convergence of an infinite series is defined in terms of convergence of
its sequence of partial sums, any result about sequences contains a result about
infinite series. The following three theorems illustrate this principle.

6.8 Theorem. [THE CAUCHY CRITERION].
Let {ax} be a real sequence. Then the infinite series Y - | ax converges if and
only if for every ¢ > O there is an N € N such that

m
D a
k=n

m>n>N imply < e&.

Proof. Let s, represent the sequence of partial sums of Y 2, a; and set
so = 0. By Cauchy’s Theorem (Theorem 2.29), s, converges if and only if
given ¢ > 0 there is an N € N such that m,n > N imply |s,, — s,—1| < €. Since

m
Sm — Sn—1 = Zak
k=n

for all integers m > n > 1, the proof is complete. |

6.9 Corollary. Let {ai} be a real sequence. Then the infinite series Y p- | ai con-
verges if and only if given ¢ > O there is an N € N such that

00
D@
k=n

6.10 Theorem. Let {ai} and {by} be real sequences. If y ;- ax and Y j=, by are
convergent series, then

n> N implies < €.

o0 o o0
Y ac+b) = ar+ Y b
k=1 k=1

k=1

and

oo oo

Z(aak) = azak

k=1 k=1
forany a € R.

Proof. Both identities are corollaries of Theorem 2.12; we provide the details
only for the first identity.
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Let s, represent the partial sums of ) o, ax and #, represent the partial
sums of Y 72 | by. Since real addition is commutative, we have

> (a +br) = su + ta, neN.
k=1

Taking the limit of this identity as n — oo, we conclude by Theorem 2.12 that
0 o0 o
Z(“k + b)) = nlgIolo Sn + nlglolo ty = kX:ak + Zbk- u

EXERCISES

6.1.0. Let {a;} and {b;} be real sequences. Decide which of the following state-
ments are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) If ay is strictly decreasing and ax — 0 as k — oo, then > ;2 | ax con-
verges.

b) If ax # by for all k € N and if Y ;2 (ax + bx) converges, then either
> ke ak converges or y_po | by converges.

¢) Suppose that > ;2 (ax + bi) converges. Then ) 2, a; converges if
and only if Y ;| by converges.

d) Ifa — a as k — oo, then

o0
Z(ak —ax42) = a; +ax — 2a.
k=1

6.1.1. Prove that each of the following series converges and find its value.

00 ( 1)k+1

a)Z

b>z(n§k

4k+l

C) ngl

00 5k+1+( 3)k
O L

6.1.2. Represent each of the following series as a telescopic series and find
its value.

2) Zlk(k+1)

12
®) Zl (k+2)(k+3)
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6.1.3.

6.1.4.

6.1.5.

6.1.6.

6.1.7.

Infinite Series of Real Numbers

© k(k +2)
9 kgzlog <(k + 1)2>

o o (l_ L b,
SsiIm|{ —— — ) COS | — ——
= kK k+1 kK k+1

Prove that each of the following series diverges.
x 1
a) kgl cos (k_z)

b) ki::l (1 - %>k

5 %":k—l—l

i1 k2

Let ag, a1, . .. be a sequence of real numbers. If ¢y — L as k — oo, does

oo
> (akp1 — 2ak + ag—1)
k=1

converge? If so, what is its value?
Find all x € R for which

k=1

converges. For each such x, find the value of this series.

a) Prove thatif ) ;2 ax converges, then its partial sums s, are bounded.
b) Show that the converse of part a) is false. Namely, show that a series
Yt ax may have bounded partial sums and still diverge.

Suppose that [ is a closed interval and x¢ € I. Suppose further that f is
differentiable on R, that f/(a) # 0 for some a € R, that the function

fx)

f(a)

satisfies F(I) € I, and that there is a number 0 < r < 1 such that
f'x)/f' (@) € [1 —r,1]forall x € I.

a) Prove that |[F(x) — F(y)| <r|x — y|forallx,y € I.

b) Ifx, := F(x,—1) for n € N, prove that |x,+| — x,| < r"|x; — x| for all

n € N.
c) If x, =xy,—1 — f(xn—1)/f'(a) for n € N, prove that

F(x) :=x—

b:= lim x,
n—oo

exists, belongs to 7, and is a root of f; that is, that f(b) = 0.



6.1.8.

6.1.9.

6.1.10.

6.1.11.
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a) Suppose that {a;} is a decreasing sequence of real numbers. Prove
that if Z,fil ax converges, then kay — 0 as k — oo.

b) Lets, = > }_;(—=D*T!/k for n € N. Prove that sy, is strictly increas-
ing, so,41 is strictly decreasing, and sy, 1 — s2, — 0 asn — oo.

c) Prove that part a) is false if decreasing is removed.

Let {bi} be a real sequence and b € R.

a) Suppose that there are M, N € Nsuch that |b—by| < M forallk > N.
Prove that

N
<Y bk —bl+M@n—N)
k=1

nb — ibk
kzl

foralln > N.
b) Prove thatif by — b as k — oo, then

bi+by+---+by
n

— b

asn — oo.
c¢) Show that the converse of b) is false.

A series ) o a is said to be Cesdro summable to an L € Rif and only if

n—1 k
Opi= Z (l — ;) ay

k=0
converges to L asn — oo.

a) Lets, = Y ', ax. Prove that

sl+"'+Sn
op=—""—"—"

for each n € N.

b) Prove that if ¢y € Rand Y ;2 ax = L converges, then Y oo, ak is
Cesaro summable to L.

c¢) Prove that Z,fio(—l)k is Cesaro summable to 1/2; hence the converse
of b) is false.

d) [TauBer’s THEOREM]. Prove that if ax > 0 for k € N and ) ;2 ax is
Cesaro summable to L, then Z,fozo ar = L.

Suppose that a; > 0 for k large and that Y2, ax/k converges. Prove that

o0
. ag
lim E =0.
j k=1j +k
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6.1.12. If Y} _, kax = (n + 1)/(n + 2) for n € N, prove that

6.2 SERIES WITH NONNEGATIVE TERMS

Although we obtained exact values in the preceding section for telescopic series
and geometric series, finding exact values of a given series is frequently difficult,
if not impossible. Fortunately, for many applications it is not as important to
be able to find the value of a series as it is to know that the series converges.
When it does converge, we can use its partial sums to approximate its value as
accurately as we wish (up to the limitations of whatever computing device we
are using). Therefore, much of this chapter is devoted to establishing tests which
can be used to decide whether a given series converges or whether it diverges.

The partial sums of a divergent series may be bounded [like 32, (—1)¥] or
unbounded [like ) 72, 1/k]. When the terms of a divergent series are nonnega-
tive, the former cannot happen.

6.11 Theorem. Suppose that ai > 0 for large k. Then Y ;2 | ar converges if and
only if its sequence of partial sums {s,} is bounded; that is, if and only if there
exists a finite number M > 0 such that

n
D a

k=1

< M foralln € N.

Proof. Sets, =Y j_,axforn € N. If Y 22, ax converges, then s, converges as
n — oo. Since every convergent sequence is bounded (Theorem 2.8), Y72 | ax
has bounded partial sums.

Conversely, suppose that |s,| < M for n € N. Recall from Section 2.1
that a; > 0 for large k means that there is an N € N such that ¢, > 0 for
k > N. It follows that s, is an increasing sequence when n > N. Hence by the
Monotone Convergence Theorem (Theorem 2.19), s, converges. [ |

If a; > Ofor large k, we shall write Z,fi 1 ax < oo when the series is convergent
and ) oo, ax = oo when the series is divergent.

In some cases, integration can be used to test convergence of a series. The
idea behind this test is that

0 oo k+1 00
/1 fode=) | f@ydex)fk)
k k=1

1 vk

when f is almost constant on each interval [k, k 4 1]. This will surely be the case
for large k if f(k) | 0 as k — oo (see Figure 6.1). This observation leads us to
the following result.
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1 2 3 4 5...

=

FIGURE 6.1

6.12 Theorem. [INTEGRAL TEST].

Suppose that f : [1,00) — R is positive and decreasing on [1,00). Then
Y ie, f (k) converges if and only if f is improperly integrable on [1, 00); that
is, if and only if

/Oof(x)dx < 0.
1

Proof. Lets, = Y j_, f(k) and 1, = [ f(x)dx for n € N. Since f is
decreasing, f islocally integrable on [1, co) (see Exercise 5.1.8) and f(k+1) <
fx) < f(k) for all x € [k, k + 1]. Hence, by the Comparison Theorem for
Integrals,

k+1
Fk+1) < / F)dx < £
k

for k € N. Summing over k = 1,...,n — 1, we obtain

n n n—1
5= =Y f0 = [ fwdx =62 Y f6) =5, - )
k=2 ! k=1
for alln > N. In particular,

f@) SZf(k)—/nf(x)dxff(l) forn € N. 3)
k=1 1
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By (3) it is clear that {s,} is bounded if and only if {z,} is. Since f(x) > 0
implies that both s, and ¢, are increasing sequences, it follows from the Mono-
tone Convergence Theorem that s, converges if and only if 7, converges, as
n — oo. |

This test works best on series for which the integral of f can be easily com-
puted or estimated. For example, to find out whether Y72, 1/(1 +k?) converges

or diverges, let f(x) = 1/(1 + x?) and observe that f is positive on [1, 0o). Since

fl(x) = =2x/(1 +x>)?is negative on [1, 00), it is also clear that f is decreasing.
Since
> dx 0o T
—— = arctanx |] = — —arctan(1) < oo,
1 1+x2 2

it follows from the Integral Test that 322, 1/(1 + k%) converges.
The Integral Test is most widely used in the following special case.

6.13 Corollary. [p- SERIES TEST]. The series
o0
1
Zk_ﬁ 4)
k=1
converges if and only if p > 1.
Proof. If p = 1 or p < 0, the series diverges. If p > 0 and p # 1, set

f(x) = x~P and observe that f’(x) = —px~P?~! < 0forall x € [1, o0). Hence,
f is nonnegative and decreasing on [1, co). Since

— = lim = lim
xP n—>ool—p n— 00 l—p

/oodx oxter o onltr -1
1

has a finite limit if and only if 1 — p < 0, it follows from the Integral Test that
(4) converges if and only if p > 1. |

The Integral Test, which requires f to satisfy some very restrictive hypothe-
ses, has limited applications. The following test can be used in a much broader
context.

6.14 Theorem. [COMPARISON TEST].
Suppose that 0 < ay < by for large k.

i) If Y72 b < oo, then Y 2, ax < oo.

i) If Y 2o, ak = oo, then Y po | by = oc.
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Proof. By hypothesis, choose N € N so large that 0 < a; < by for k > N.
Sets, = > j_jakandt, =Y ;_ bx, n € N. Then0 < s, — sy < 1, — ty for
all » > N. Since N is fixed, it follows that s,, is bounded when 1, is, and ¢, is
unbounded when s, is. Apply Theorem 6.11 and the proof of the theorem is
complete. |

The Comparison Test is used to compare one series with another whose con-
vergence property is already known (e.g., a p-series or a geometric series).
Frequently, the inequalities |sinx| < |x| for all x € R (see Appendix B) and
|log x| < x* for each @ > 0 provided x is sufficiently large (see Exercise 4.4.6)
are helpful in this regard. Although there is no simple algorithm for this process,
the idea is to examine the terms of the given series, ignoring the superfluous fac-
tors, and dominating the more complicated factors by simpler ones. Here is a
typical example.

6.15 EXAMPLE.

Determine whether the series

o0
3k log k
S 5)
k:lk +k k

converges or diverges.

Solution. The kth term of this series can be written by using three factors:

1 3k [logk
kk+1 k

The factor 3k/(k + 1) is dominated by 3. Since logk < Vk for large k, the factor

J/log k/k satisfies
[log k - vk 1
kK~ N &k Yk

for large k. Therefore, the terms of (5) are dominated by 3/k>/4. Since
> 52, 3/k>/* converges by the p-Series Test, it follows from the Comparison
Test that (5) converges. |

The Comparison Test may not be easy to apply to a given series, even when
we know which series it should be compared with, because the process of com-
parison often involves use of delicate inequalities. For situations like this, the
following test is usually more efficient.
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6.16 Theorem. [LIMIT COMPARISON TEST].
Suppose that a; > 0, that by, > 0 for large k, and that L := lim,,_, o a, /by, exists
as an extended real number.

i) If0 < L < oo, then Y ;2| ax converges if and only if Y p | by converges.
ii) If L =0and Y ;2 by converges, then y ;- ax converges.

iii) If L = ocoand Y ;2 by diverges, then Y =, ai diverges.

Proof. i) If L is finite and nonzero, then there is an N € N such that
L 3L
—=b —b
5Ok < ak < —-bk

for k > N. Hence, part i) follows immediately from the Comparison Test
and Theorem 6.10. Similar arguments establish parts ii) and iii) —see Exer-
cise 6.2.6. |

In general, the Limit Comparison Test is used to replace a series Y ;- ax by
Z,‘:‘;l by when a; =~ Cby for k large and some absolute fixed constant C. For
example, to determine whether or not the series

Z«/4k4 + k2 4+ 5k

converges, notice that its terms are approximately 1/(2k) for k large. This leads
us to compare S with the harmonic series Y 7o, 1/k. Since the harmonic series
diverges and since

k/(Vak* + k2 + 5k) k> L] 0
- >
1/k VA TR + 5k 72

as k — oo, it follows from the Limit Comparison Test that S diverges.
Here is another application of the Limit Comparison Test.

6.17 EXAMPLE.

Let af — 0 as k — oco. Prove that ) 2, sin|ax| converges if and only if
> 52, lax| converges.

Proof. By I’'Hopital’s Rule,

sin |ag| lim sin x _1

k—oo |ag] x—>0+ X

Hence, by the Limit Comparison Test, Z,fozl sin |ag| converges if and only if
> 52, lak| converges. -
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EXERCISES

6.2.0. Let {a;} and {b;} be real sequences. Decide which of the following state-
ments are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) If Y72, ax converges and ax/by — 0 as k — oo, then Y oo, bk
converges.

b) Suppose that 0 < a < 1. If ¢y > 0 and ¥ax < a for all k € N, then
Y ke ak converges.

c) Suppose that gy — 0 as k — oo. If @ > 0 and ,/ar{1 < a; for all
k € N, then ) 2, ax converges.

d) Suppose that ay = f (k) for some continuous function f : [1, c0) —
[0, o0) which satisfies f(x) — 0asx — oo. If Z,fozl aj converges,
then [ f(x)dx converges.

6.2.1. Prove that each of the following series converges.

x 2k + 5
AP e s

X k-1
b) > —r
o k2k
X logk
= kP

c)

6.2.2. Prove that each of the following series diverges.

© 3k3+k—4
a N —
),; Sk — k241

= Ui

=)
N—"
-
i
~|

=~

g

—_

(@}
~
(gf

N
=~
— |+
—_
N——
e

d) p=1

klogl k’
6.2.3. If ax > 0is a bounded sequence, prove that

~
||
IS

o0

Ak
P (k+1)?

converges for all p > 1.
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6.2.4. Find all p > 0 such that the following series converges:

o]

1
Zklog”(k +1)

k=1

6.2.5. If Y 72 |ax| converges, prove that

[e.¢]
o]
o K
converges for all p > 0. What happens if p < 0?
6.2.6. Prove Theorem 6.16ii and iii.
6.2.7. Suppose that a; and by are nonnegative for all k € N. Prove that if
> vy ar and Y oo by converge, then Y 2, axby also converges.
6.2.8. Suppose that a, b € Rsatisfy b/a € R\Z. Find all ¢ > 0 such that

e.¢]

1

2 (ak + b)gF
converges.
6.2.9. Suppose that ax — 0. Prove that ) ¢, a; converges if and only if the

series Y _po (aok + azk+1) converges.
6.2.10. Find all p € R such that

o]

1
2 (log(log k))Plogk

k=2

converges.

6.3 ABSOLUTE CONVERGENCE

In this section we investigate what happens to a convergent series when its terms
are replaced by their absolute values. We begin with some terminology.

6.18 Definition.

Let S =) 72, ax be an infinite series.

i) Sissaid to converge absolutely if and only if Y 2, |ax| < oo.
ii) S is said to converge conditionally if and only if S converges but not abso-
lutely.

The Cauchy Criterion gives us the following test for absolute convergence.
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6.19 Remark. A series Y ;2| ax converges absolutely if and only if for every
¢ > O thereis an N € N such that

m>n>N implies Z lax| < e. (6)
k=n

As was the case for improper integrals, absolute convergence is stronger than
convergence.

6.20 Remark. If > 72, ar converges absolutely, then Y ;2| ay converges, but
not conversely. In particular, there exist conditionally convergent series.

Proof. Suppose that Y 2, ax converges absolutely. Given ¢ > 0, choose
N € N so that (6) holds. Then

m
D>
k=n

m
<Y lal<e
k=n

form > n > N. Hence, by the Cauchy Criterion, ) 2, ai converges.

We shall finish the proof by showing that § := > 72, (—1)¥/k converges
conditionally. Since the harmonic series diverges, S does not converge abso-
lutely. On the other hand, the tails of S look like

. (—=1)/ e 1 1 1
P e + = +...).
prll k k+1 k+2 k+3

By grouping pairs of terms together, it is easy to see that the sum inside the
parentheses is greater than 0 but less than 1/k; that is,

o0

) (—?)" _ %

= 7

Hence Y 72, (—1)*/k converges by Corollary 6.9. |

We shall see below that it is important to be able to identify absolutely con-
vergent series. Since every result about series with nonnegative terms can be
applied to the series Y -, lax|, we already have three tests for absolute con-
vergence (the Integral Test, the Comparison Test, and the Limit Comparison
Test). We now develop two additional tests for absolute convergence which are
arguably the most practical tests presented in this chapter.

Before we state these tests, we need to introduce another concept. (If you
covered Section 2.5, you may proceed directly to Theorem 6.23.)

199



200

200 Chapter 6 Infinite Series of Real Numbers

6.21 Definition.

The limit supremum of a sequence of real numbers {x;} is defined to be

limsup x4 := lim <supxk> .
n—oo

k— o0 k>n

NOTE: Unlike the limit, the limit supremum of a sequence always exists as
an extended real number. Indeed, let s, := sup;., xx. If s, = oo for all n,
then s, — oo as n — o0, so, by definition, the limit supremum of x; is co. On
the other hand, if s, is finite for some »n, the Monotone Property for Suprema
implies that the sequence s, is decreasing. Hence, by the Monotone Conver-
gence Theorem, lim,,_, s, exists. (It might be —oo, e.g., when x; = —k.)

In practice, the limit supremum of a sequence is usually easy to find by
inspection. For example, since (— 1)¥ is 1 when k is even and —1 when & is odd, it
is clear that sup,_,(—1)* = 1 for all n € N. Hence the limit supremum of (—1)k
is 1. Similarly,

k k
lim sup(3 + (—l)k) =4 and limsup M =

k— 00 k— 00 k

The only thing we need to know about limits supremum (for now) is the
following result.

6.22 Remark. Let x € R and {x;} be a real sequence.

i) Iflimsup,_, o Xk < X, then x; < x for large k.
ii) Iflimsup,_, o, Xk > x, then x; > x for infinitely many k’s.
iii) If xx — x as k — oo, then limsup;_, ., xx = x.

Proof. Let s := limsup,_ ., xx and s, := sup;.,xx and recall by Defini-
tion 6.21 that s, — s as n — oo.

i) If s < x, then there is an N € N such that sy < x. In particular, x; < x
forallk > N.

i) If s > x, then s, > x for all n (because s, is decreasing). Since s; > x,
there is a k1 > 1 such that x;, > x. Suppose that k; has been chosen so that
Xk; > X. Since Sk; > X, thereis a kj 1 > k; such that Xkjpq > X. In particular,
there is an increasing sequence of positive integers k; such that x;; > x for all
J € N. It follows that x; > x for infinitely many &’s.

iii) If x; converges to x, given ¢ > 0 there is an N € N such that k > N
implies |xx — x| < €. In particular, for anyn > N, xx > x — ¢ fork > n.

Taking the supremum of this last inequality over k > n, we see that s, >
x — ¢ for n > N. Hence, the limit of the s,,’s satisfies s > x —¢. Thus s > x. A
similar argument proves that s < x. |

The limit supremum gives a very useful and efficient test for absolute
convergence.
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6.23 Theorem. [ROOT TEST].

Let a; € Rand r := limsup,_, o, |ax|'/*.

i) Ifr <1, then Y 2, ax converges absolutely.

ii) Ifr > 1, then Y ;2| ax diverges.

Proof. i) Suppose that r < 1. Let r < x < 1 and notice that the geometric
series Y 7 | x* converges. By Remark 6.22i (or by Exercise 2.5.3),

| < x
for large k. Hence, |ax| < x* for large k and it follows from the Comparison
Test that ) .2, |ax| converges.

ii) Suppose that r > 1. By Remark 6.22ii (or by Exercise 2.5.3),

Jag|'* > 1
for infinitely many £ € N. Hence, |ax| > 1 for infinitely many k and it follows
from the Divergence Test that ) -, ax diverges. |

Note by Remark 6.22iii or Theorem 2.36 that if r := limy_, o lag|V/* exists,
then (by the Root Test) > 7o | ax converges absolutely when r < 1 and diverges
whenr > 1.

The following test is weaker than the Root Test (see Exercise 6.3.8) but is
easier to use when the terms of ) -, ax are made up of products (e.g., of
factorials).

6.24 Theorem. [RATIO TEST].
Let ar € Rwith ay # 0 for large k and suppose that

. akygl
r = lim
k— 00 |ak|

exists as an extended real number.

i) Ifr <1, then Y "2 | ax converges absolutely.

it) If r > 1, then Y ;2 ay diverges.

Proof. 1f r > 1, then |ag41| > |ak| for k large and thus g, cannot converge to

zero. Hence, by the Divergence Test, Y ;- ax diverges.
If r < 1, then observe for any x € (r, 1) that

|ag41] xhFt

la| xk
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for k large. Hence, the sequence |ax|/x* is decreasing for large k and thus
bounded. In particular, there is an M > 0 such that |a;| < Mx* for all k € N.
Since x < 1, it follows from the Comparison Test that Y ;- |ax| converges. B

6.25 Remark. The Root and Ratio Tests are inconclusive whenr = 1.

For example, apply the Root and Ratio Tests to > ;2 1/k and ) oo 1/ k2. In
all four cases, r = 1. Nevertheless, the first series diverges whereas the second
converges absolutely.

How should we proceed when the Root and Ratio Tests are inconclusive (e.g.,
when r = 1)? We can always try to use one of the Comparison Tests. Since this
can be technically daunting, there are other ways to cope with the case r = 1.
If the ratios of terms of a series converge to 1 rapidly enough, then the series
converges. (For three tests of this type, see the results and exercises of Sec-
tion 6.6.) If the terms of a series have k! as a factor, then there is a very useful
asymptotic estimate of k! (called Stirling’s Formula—see Theorem 12.73) that
can be used in conjunction with the Comparison Test (e.g., see Exercises 6.3.3f
and 6.6.2¢).

It is natural to assume that the usual laws of algebra hold for infinite series
(e.g., associativity and commutativity). Is this assumption warranted? We have
“inserted parentheses” (i.e., grouped terms together) to aid evaluation of some
series [e.g., to evaluate some telescopic series and to prove that Y 22, (—D*/k
converges conditionally]. This is valid for convergent series (absolutely or con-
ditionally) because if the sequence of partial sums s, converges to s, then any
subsequence s,,, also converges to s. The situation is more complicated when
we start changing the order of the terms (compare Theorem 6.27 with Theo-
rem 6.29). To describe what happens, we introduce the following terminology.

6.26 Definition.

A series ) 72, b; is called a rearrangement of a series y_;2 ay if and only if
there is a 1-1 function f from N onto N such that

brxy = ai, k € N.

The following result demonstrates why absolutely convergent series are so
important.

6.27 Theorem. If) 72, ax converges absolutely and Z;’il bj is any rearrange-
ment of Y 72| ak, then ) 72 b; converges and
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Proof. Lete > 0.Sets, =Y (_ak, S= pey ak, and 1, :Z’};l bj,n,m € N.
Since Y 72 | ax converges absolutely, we can choose N € N (see Corollary 6.9)
such that

o0

&
D lad <3 9)
k=N+1
Thus
(0.¢] (0.¢] &
sy —sl=| D a| = X lal < 5. (10)
k=N+1 k=N+1

Let f be a 1-1 function from N onto N which satisfies
bruy = ay, keN
and set M = max{f (1), ..., f(N)}. Notice that
{ai,...,an} S {b1,..., by}

Let m > M. Then ¢, — sy contains only a;’s whose indices satisfy k > N.
Thus, it follows from (9) that

(o.¢]
&
tn = vl < D0 el < 5.
k=N+1
Hence, by (10),
o — 5| < |1 |+ <242
— — —_ < — - =&

m S = |lm SN SN k) > >

for m > M. Therefore,
o0
s=Y _bj. ]
j=1

The rest of this section, which is used nowhere else in this book, is optional.

We now show that Theorem 6.27 fails in a catastrophic way for conditionally
convergent series (see Theorem 6.29 below). To facilitate our discussion, recall
(see Exercise 1.2.3) that the positive and negative parts of an a € R are defined by

a+'_|a|—|-a_{a a=>0

2 0 0

and
__lal—a 0 a>0
2 T | -a a<0
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Notice that
at >0, a >0, (7)
and
a=a"—a", la| =at +a~ (8)
foralla € R.
*6.28 Lemma.
Suppose that a; € R for k € N.
i) If Y72, ax converges absolutely, then so do Y i, a;” and Y32 a; . In fact,
o o.¢] o [o¢] o o
Zlakl = Za,:r + Zak_ and Zak = Za: — Zak_.
k=1 k=1 k=1 k=1 k=1 k=1

it) If Y 2o, ak converges conditionally, then

00 00
§ + _ § - _

ak = ak =0
k=1 k=1

Proof. By definition, a,j = (lax| + ax)/2. Since both Y 72 |ax| and Y72 | ax
converge, it follows from Theorem 6.10 that

o0

T e I
Zak = Eglakl + E;ak

k=1
converges. Similarly,

> =Y~ 33
k=1 k=1 k=1
converges. This proves part i).

Suppose that part ii) is false. By symmetry we may suppose that Y -, a,j
converges. Since Y p-; ax converges, it follows from (8) that

oo [e.¢] o0

- +
D ar = 4 =) ak
k=1 k=1 k=1

converges. Thus,
oo oo oo
+ —
Dkl =D + ) a
k=1 k=1 k=1

converges, a contradiction. [ |
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We are prepared to show that Theorem 6.27 is false if the hypothesis “abso-
lutely convergent” is dropped. In fact, as the following result shows, rearrange-
ments of conditionally convergent series can converge to anything one wishes
(see also Exercise 6.3.10).

*6.29 Theorem. [RIEMANN].
Letx € R If Y 72, ai is conditionally convergent, then there is a rearrangement
of Y re.| ak which converges to x.

STrRATEGY: The idea behind the proof is simple. Since Y oo af = Y2,
a, = oo by Lemma 6.28, begin by adding enough a,j’s until the resulting par-

tial sum is > x. Then subtract enough a, ’s until the resulting partial sum is < x,
and continue adding and subtracting. Since ay — 0 as k — oo, the resulting
partial sums should be getting closer to x. We now make this precise.

Proof. Since ;2 a,': = 00, let k1 be the smallest integer which satisfies a1+ +

a;'—{-- . -+a,j; > x. Since kj is least,a?'—k- . -—|—a,j‘l_1 < x,soai"—{-ai“—k . o—|-a]j'l <

X+ a;“l. Set rp = 0 and observe that sg, 4, 1= a]Jr + -+ aZHO <x+ a,:rl.
Suppose for some j > 1 that integers ro < r1 < .-+ < rj_j and k; <

ky < --- < k; have been chosen such that a partial sum Skjs of a,j s and a; s,
satisfies

Skj+rj_) <X+ ag. (11)

Since Y% . a; = oo, let r; > r;_; be the smallest integer which satisfies
k=1% j J
Sk; —ar_jiH_l — ~--—ar_j <x. Forkj+rj_1 <n <kj+rj, sets, = Sk; —
N It is easy to see that Skjtri 1 = Skjtrj 1 = 000 = Skjtr-
Since r; is least, we also have s;.4,, = sk,or,—1 —a.. > x —a,_. It follows from
J jtri jtri r T

(11) that
|sp — x| Smax{a;,ag} for kj+rj_1<n<k;+r;. (12)

Similarly, if we let k;; 1 be the smallest integer which satisfies

+

> X
kj+|

+
skj+rj+akj+1+---+a
) + +
and set s, 1= Sk;+r +akj+] + -~-+an_rj,forkj +rj <n <kjq +rj,then
-+
lsp — x| < max{a,j,akjﬂ} for kj+rj<n=<kj+r;. (13)

Let ¢ > 0. Since each a,j and —q, is either g, or 0, it is clear (after deleting
the zero terms) that the s,’s are partial sums of a rearrangement of » 2 ax.
Moreover, since a; — 0 as k — oo, we can choose an N so large that j > N
implies that a, and a,; are both less than . We conclude by (12) and (13)

thatif n > ky + ry, then |s, — x| < ¢; that is, that s, — x asn — o0. |
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EXERCISES

6.3.0. Let {a;} and {b;} be real sequences. Decide which of the following state-
ments are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) Suppose that 0 < o < oco. If lak|®’* — ag, where ay < 1, then
Y re, ay is absolutely convergent.
b) If > 72, ai is absolutely convergent and ax | 0 as k — oo, then

lim sup |ak|1/k < 1.
k— 00

c) If ax < by forall k € N and Y ;2 by is absolutely convergent, then
> oo ak converges.

d) If 372, ax is absolutely convergent, then Y 3, a? is absolutely con-
vergent.

6.3.1. Prove that each of the following series converges.

&
M8

~
Il
—

N2
8

»
Il
I

= - ==

N
18

o~
Il
—_

3

K\
d -

6.3.2. Decide, using results covered so far in this chapter, which of the follow-
ing series converge and which diverge.

00 k3
) L G r Dok
R
< (k+1\F
) k§<2k+3)
< 1.3.---2k—=1)
d
)k; (2k)!
x ((k— DN
©) k§<k'+1)
o (34 (=D
0 Z( : ))
k=1
© (3 — (=Dhk
g)Z( (k))
k=1 T
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6.3.3. For each of the following, find all values of p € R for which the given
series converges absolutely.

2) Z klogpk

x® 1

k=2 log’ k
kP
Xt

d
) f(kp m
e) Z(vkzp—{— —k?)

00 2kpkv

) X
k=1

S—

6.3.4. Suppose that g; > 0 and that a,i/ ¥ aask — oco. Prove that S arxk

converges absolutely for all |x| < 1/aifa # 0 and for allx € Rifa = 0.
6.3.5. Define g recursively by a; = 1 and

1 _1
ax = (—1)k <1 + k sin <E>) ag—1, k>1.

Prove that ) -, ax converges absolutely.
6.3.6. Suppose that a;; > 0 for k, j € N. Set

00
Ar = Zakj

j=1

for each k € N, and suppose that > ;2 | Ay converges.

a) Prove that

b) Show that

207
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6.3.7.

6.3.8.

6.3.9.

*6.3.10.

6.3.11.

Infinite Series of Real Numbers

c) Prove that b) may not hold if a;; has both positive and negative
values.
Hint: Consider

1 j=k
a={-1 j=k+1
0 otherwise.

a) Suppose that ) 2, ax converges absolutely. Prove that Y 22, |ax|”
converges for all p > 1.

b) Suppose that Y 2, a; converges conditionally. Prove that Y 72 | k”ax
diverges for all p > 1.

For any real sequence {xt}, define

liminf x; := lim (inf xk) .

k—o00 n—o0 \k>n

a) Prove that if lim infy_, o xx > x for some x € R, then x; > x for
k large.

b) Prove that if x; — x as k — oo, for some x € R, then lim inf;_,
Xp = X.

c) Ifa; > Oforall k € N, prove that

Ak+1

N/ 2% .. . .
lim inf =+ < liminf ¥a; < limsup &a; < limsup .
n—oo  dg n—00 k— 00 k—oo Ak

d) Prove that if b, € R\ {0} and |b,+1/b,| — r as n — oo, for some
r > 0, then |b,|'/" — r asn — oo.

Given that > 22, 1/k* = n%/6 (see Exercise 14.3.7), find the exact
value of
o

1
Z(2k—1)2'

k=1

Let x < y be any pair of extended real numbers. Prove that if ) 72 | ax
is conditionally convergent, then there is a rearrangement Z;’O:l bj of

> r2, ar whose partial sums s, satisfy

liminfs, =x and limsups, = y.
n—>00 n—00

a) Using Exercise 4.4.4, prove that
00 (_ 1 )kx2k+l

=2 T
- Ck+ D!

for all x € [0, 7 /2].
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b) Prove that

S (— l)kak
(2k)!

COSX =
k=0

for x € [0, /2].

6.4 ALTERNATING SERIES

We have identified many tests for absolute convergence but have said little
about conditionally convergent series. In this section we derive two tests to
use on series whose terms have mixed signs.

Both tests rely on the following algebraic observation. (This result will also
be used in Chapter 7 to prove that limits of power series are continuous.)

6.30 Theorem. [ABEL’S FORMULA].
Let {ag}ren and {bi}ren be real sequences, and for each pair of integers n >

m > 1 set
n
Apm = Z ay.
k=m
Then
n n—1
> axbe = Apmby =Y Akm(birr — bi)
k=m k=m

for all integers n > m > 1.

Proof. Since Ay — A—1),m = ax for k > m and A, ,, = a,,, we have

n n
> by = awbn + Y (Akm — Ag—1).m)bk

k=m k=m+1
n n—1
= ambn + Y Atmbi— ) Ambiti
k=m+1 k=m
n—1 n—1
= ambm + Z Ak,mbk + An,mbn - Z Ak,mbk—i-l - Am,mbm—i-l
k=m+1 k=m+1

n—1
= Anmbn = Apm it —bn) = Y Arm(bisr —by)
k=m+1
n—1

= An,mbn - Z Ak,m(bk-H - bk)- |

k=m

209
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This result is somewhat easier to remember using the following analogy. If
f :[1, N] > R forsome N € N, then the summation Z,i\’;ll f (k) is an approxi-
mation to le f (x)dx and the finite difference f(k + 1) — f (k) is an approxima-
tion to f'(k) fork =1,2,..., N — 1. In particular, summation is an analogue of
integration and finite difference is an analogue of differentiation. In this con-
text, Abel’s Formula can be interpreted as a discrete analogue of integration
by parts.

Our first application of Abel’s Formula is the following test. (Notice that it
does not require that the a;’s be nonnegative.)

6.31 Theorem. [DIRICHLET’S TEST].
Let ax, b € R for k € N. If the sequence of partial sums s, = Y j_, a is
bounded and by |, 0 as k — o0, then Z,foz | axbi converges.

Proof. Choose M > 0 such that

. M
= < — .
I8 kEZIak =5 neN
By the triangle inequality,
Z" M M
|An,m|: k:mak =|Sn—sm—1|§7+?=M

forn >m > 1.
Let ¢ > 0 and choose N € N so that |by| < ¢/M for k > N. Since {b;} is
decreasing and nonnegative, we find, by Abel’s Formula, the choice of M, and

by telescoping that
n n—1
Y axbi| < |Apml bl + D 1Akml (b — biy1)
k=m k=m
= Mbn +M(bm _bn) = Mbm <é&
foralln >m > N. [ |

The following special case of Dirichlet’s Test is widely used.

6.32 Corollary. [ALTERNATING SERIES TEST]. Ifa; | 0 as k — oo, then

Y (=D
k=1

converges.

210
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Proof. Since the partial sums of Z,fi] (—=1)* are bounded, Z,fil (—1)*a; con-
verges by Dirichlet’s Test. |

We note that the series Z,fi 1(—1)" /k, used in Remark 6.20, is an alternating
series. Here is another example.

6.33 EXAMPLE.
Prove that Z,fozl (—DF/logk converges.

Proof. Since 1/logk | 0 as k — oo, this follows immediately from the Alter-
nating Series Test. |

The Dirichlet Test can be used for more than just alternating series.

*6.34 EXAMPLE.

Prove that S(x) = Y 72, sin(kx)/k converges for each x € R.
Proof. Since ¢ (x) = sin(kx) is periodic of period 2r [i.e., ¢ (x + 27) = ¢ (x)
for all x € R] and has value identically zero when x = 0 or 27, we need only

show that S(x) converges for each x € (0, 27). By Dirichlet’s Test, it suffices
to show that

Dy(x):=) sin(kx), neN (14)

k=1

is a bounded sequence for each fixed x € (0, 27).

This proof, originally discovered by Dirichlet, involves a clever trick which
leads to a formula for D,. Indeed, applying a sum angle formula (see
Appendix B) and telescoping, we have

231n< )D x) = Z2sm< )sin(kx)

({2 (+4)9)
—cos (5) —eos((n+3) ).

_ cos (%) — COoS <<n + %) x) |
B I R 6

for alln € N. [}
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REVIEW. We have introduced more than a dozen tests for conver-
gence/divergence. With such a wealth of options, students can sometimes be
overwhelmed. Here is one suggestion for an order in which to apply these tests
to aseries S 1= oo dk-

i) Try (but not too hard) to find L = limg_ o ax. If L # 0 or L doesn’t exist,
S diverges by the Divergence Test. If L = 0 or L is too hard to find, continue.
i) If ax is geometric or a p-series, use Theorem 6.7 or Corollary 6.13 to deter-
mine convergence properties of > 7 | ax. If a; looks a lot like some geo-
metric or a p-series b, use the Limit Comparison Test, replace ay by by, and
apply 6.7 and 6.13 to by.
iii) Try to find

r = lim k1] or r = lim sup |ak|1/k.
k—oo |ak| k—00
If » < 1, then S converges absolutely. If » > 1, then S diverges. If »r = 1 or
these limits are too hard to evaluate, continue.

iv) If the series “alternates” [has factors that oscillate between positive and neg-
ative values, i.e. (—1)X, sink or cos(2k+1)], try to use the Alternating Series,
the Dirichlet, or Abel’s Test (see Exercise 6.4.4).

v) If |ax| =~ by, where by is some nonnegative sequence such that the con-
vergence property of Y ;2 by is known, try the Limit Comparison Test or
the Comparison Test. If |a| is “integrable with respect to k,” try the Inte-
gral Test.

As long as you don’t spend too much time on any one step, you should con-
verge (no pun intended) to an answer fairly quickly. If you get to the end of the
process and still haven’t arrived at a conclusion, repeat the steps again, trying a
little harder this time. Most series, especially the ones that come up in practice,
will succumb to this process sooner rather than later.

EXERCISES

6.4.0. Let {ax} and {by} be real sequences. Decide which of the following state-
ments are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) If ax | 0, as k — oo, and ) ;2 by converges conditionally, then
> re, axby converges.

b) If gt — 0, as k — oo, then Z,fil(—l)kak converges.

c) If gy — 0,as k — oo, and ax > 0 for all k € N, then Y 72, (—D¥a
converges.

d) If a4 — 0, as k — oo, and Z,fi](—l)kak converges, then a; | 0 as
k — oo.

6.4.1. Prove that each of the following series converges.

x (=D
a) Y. , p>0
k=1 kP



6.4.2.

6.4.3.

6.4.4.

6.4.5.
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> sin(kx)

b) kgl kp

X 1 —cos(l/k)
) LT

o0 (—1)k+1k
I kgo 3k

xeR, p=>0

e) é(—nk (% _ arctan k)

For each of the following, find all values x € R for which the given series
converges.

=~

X
a) —
k§1 k
0o 3k
b) —
kgl 2k
o 3 G
=1 VEk2+1
x (x +2)F
d > —F—
=1 kvk+1

Using any test covered in this chapter so far, find out which of the follow-
ing series converge absolutely, which converge conditionally, and which
diverge.

© (—DH

2) k; k+1)!
(—1)(=3) ... (1 = 2k)
Z T 14...36k—2)
2 (k+ DF

55> ( )

= PRk
00 (—1)k+1ﬁ

d
)kgl k+1

© (=D /K +1
) kgl Vi k¥

[ABEL’s TEsT| Suppose that ) ;2 ; ax converges and that by | bask — ooc.
Prove that Y 72, axby converges.
Show that under the hypotheses of Dirichlet’s Test,

> e

o o0
Zakbk = Zsk(bk — bit1).
k=1

k=1
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6.4.6.

6.4.7.

*6.4.8.

*6.4.9.

Infinite Series of Real Numbers

Suppose that {ax} and {b;} are real sequences such that ¢z — 0 as
k — oo,

o n

Z|ak+1 — ag| < o0, and | Zbk |§ M n € N.

k=1 k=1

Prove that Y 2, axby converges.
Suppose that Y ;2 ax converges. Prove that if by 1 oo and Y ;2 axbi
converges, then

o
by, Z ar — 0
k=m
asm — oo.
Prove that

[e.¢]
Zak cos(kx)
k=1

converges for every x € (0, 2m) and every a; | 0. What happens when
x =0?
Suppose that a; | 0 as k — oco. Prove that

Zak sin((2k + 1)x)

k=1

converges for all x € R.

*6.5 ESTIMATION OF SERIES

In practice, one estimates a convergent series by truncation (i.e., by adding
finitely many terms of the given series). In this section we show how to esti-
mate the error associated with such a truncation.

The

proofs of several of our earlier tests actually contain estimates of the

truncation error. Here is what we can get from the Integral Test.

6.35 Theorem. Suppose that f : [1,00) — R is positive and decreasing on

[1, 00).

Then

f(n)SZf(k)—/; f(x)dx < f(1) forn e N.
k=1

Moreover, if Y 72, f (k) converges, then

0=Y s+ [ ferdr=Y 1 < oo
k=1 n k=1

foralln € N.
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Proof. The first set of inequalities has already been verified [see (3) in the
proof of Theorem 6.12]. To establish the second set, let u; = s — # for k € N,
and observe, since f is decreasing, that

k+1
0<up —uks1 = A f)ydx — fk+1) < flk) — f(k+ 1.

Summing these inequalities over k > n and telescoping, we have

0= up— lim uj =3 (= wer) < D (fK) = flk+1) = f ).
k=n k=n

Since u; — Y ey fk) — floo f(x)dx as j — oo, we conclude that

0= fh+ [ fwdx=Yof6 < fon. .
k=1 n k=1

The following example shows how to use this result to estimate the accuracy
of a truncation of a series to which the Integral Test applies.

6.36 EXAMPLE.

Prove that ) 22, ke X’ converges and estimate its value to three decimal places.

Proof. Let f(x) = xe=*". Since flx) = e"‘z(l —2x?) <Oforx > 1, fis
decreasing on [1, o). Since

= —x2 1 > —u 1
xe ™t dx == e "du=— < o0,
1 2 )i 2e

it follows from the Integral Test that ) ;2 , ke™** converges.

By Theorem 6.35, the error of replacing s by Y ;_, f(k) + fnoo f(x)dx
is dominated by f(n). By the rounding process, this estimate to s will be
accurate to three decimal places if the error f(n) is < 0.0005. Since f(2) =
0.036631 and f(3) = 0.000370, it follows that we should use n = 3. Since

3 00
1 2 3 1
Y ke ¥+ f xe ™V dx = — + S 4 54 5 ~ 04049427,
P 3 e e e 2e
we conclude that a three-place estimate to s is given by 0.405. |

The next example shows that Theorem 6.35 can be used to estimate divergent
series as well.

215



216

216 Chapter 6 Infinite Series of Real Numbers

6.37 EXAMPLE.

Prove that there exist numbers C,, € (0, 1] such that

n

1
E - =1 Cy
X ogn +
k=1

for alln € N.

Proof. Clearly, f(x) = 1/x is positive, decreasing, and locally integrable on
[1, c0). Hence, by Theorem 6.35,

1
§_E—1;dx=zg—logn§1. |

Next, we see what the Alternating Series Test has to say about truncation
error.

6.38 Theorem. Suppose that ax | 0 ask — oo. Ifs = Y po,(—D*ay and
su= > q_1(—=D¥ay, then 0 < |s — s,| < ay41 foralln e N.

Proof. Suppose first that n is even, say n = 2m. Then

0> (—agmy1 + azmi2) + (—a2my3 + azpya) + - -

= Y (Da=s-s,

k=2m+1
= —aypy1 + (@omy2 — 2m13) + (@2mya — a2pys) + -
= —Wm+1;

thatis, 0 > s — s, > —a,41. A similar argument proves that 0 < s — s, < a@,41
when n is odd. n

This result can be used to estimate the error of a truncation of any alternating
series.

6.39 EXAMPLE.

For each @ > 0, prove that the series Z,fil (—l)kk/ (k% + a) converges. If s, rep-
resents its nth partial sum and s its value, find an n so large that s, approximates
s to two decimal places.

Proof. Let f(x) = x/(x2 + «) and note that f(x) — 0 asx — oo. Since
f'(x) = (@ — x%) /(x> + a)?is negative for x > /[a], it follows that k/(k*>4-a) |
0 as k — oo. Hence, the given series converges by the Alternating Series Test.
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By Theorem 6.38, s, will estimate s to two decimal places if f(n) < 0.005
(i.e.,if n> —200n + o > 0). When o > 10, this last quadratic has no real roots;
hence, the inequality is always satisfied and we may choose n = 1. When
a < 10%, the quadratic has roots 100 & +/10* — «. Hence, choose any n which

satisfies n > 100 + /10 — «. [ |

Finally, we examine what information the proofs of the Root and Ratio Tests
contain about accuracy of truncations.

6.40 Theorem. Suppose that Y ;- ai converges absolutely and that s is the
value of Y72, lax!.

1) If there exist numbers x € (0, 1) and N € N such that
x| < x

forallk > N, then

n Xl
0<s—) lal <
1 —x
k=1

foralln > N.
i) If there exist numbers x € (0, 1) and N € N such that
lak+1] <x
lax|
fork > N, then
n
|aN|xn—N+1
0<s— <"
<s ]; larl = ——

foralln > N.

Proof. Letn > N. Since |a;| < xk for k > N, we have, by summing a geomet-
ric series, that

n o o xn+1
Oss—) lal= ) lal= Y x =1
k=1 k=n+1 k=n+1 -X

for all n > N. This proves part i). The proof of part ii) is left as an exercise. B

6.41 EXAMPLE.

Prove that 3" | k% /(3k* + k)* converges absolutely. If s, represents its nth par-
tial sum and s its value, find an n so large that s, approximates s to an accuracy
of 1072,

217



218

218 Chapter 6

Infinite Series of Real Numbers

Solution. Since

e A\VE e g
I = < —
((3k2+k)k> 3k2+k ~ 3

for all k > N := 1, the series converges absolutely by the Root Test. Since
(1/3)"*1/(1 —1/3) < 1072 for n > 4, we conclude by Theorem 6.40i that it
takes at most four terms to approximate the value of this series to an accuracy
of 1072 [

EXERCISES

6.5.1. For each of the following series, let s, represent its partial sums and s its

6.5.2.

6.5.3.

6.5.4.

value. Prove that s is finite and find an » so large that s, approximates s
to an accuracy of 1072,

sk (E
a) kgl( 1) (2 arctank)

- 2
2 (—DF 2-4.--(2)

0L @ T3 ko)

a) Find all p > 0 such that the following series converges:

o0

1
I;klog”(k +1

b) For each such p, prove that the partial sums of this series s, and its

value s satisfy
< n+p—1 ( 1 >
n(p—1) \log?~'(n)
for all n > 2.

For each of the following series, let s, represent its partial sums, and let
s represent its value. Prove that s is finite and find an » so large that s,
approximates s to three decimal places.
x 1
a J—
) kgl k!
S|
b —
) kg Kk
oo ok

P
d)

Kk \F
K 1(k+1)

Prove Theorem 6.40ii.

ls — snl

3
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*6.6 ADDITIONAL TESTS

If the Ratio or Root Test yields a value » = 1, then no conclusion can be made.
There are some tests designed to handle just that situation (see Exercise 6.6.3).
We cover two of them in this section (see also Exercises 6.6.4 and 6.6.5).

The first test compares the growth of the terms of a series with the growth of
the logarithm function.

6.42 Theorem. [THE LOGARITHMIC TEST].
Suppose that a; # 0 for large k and that

log(1/]ax!)
p= lim —————=
k— 00 logk

exists as an extended real number. If p > 1, then ) ;- | ar converges absolutely.
If p < 1, then Y32 | |ax| diverges.

Proof. Suppose that p > 1. Fixq € (1, p) and choose N € Nso thatk > N
implies log(1/|ax|) > glogk = log(k?). Since the logarithm function is mono-
tone increasing, it follows that 1/|ax| > k7; that is, that |ax| < k=9 for k > N.
Hence, by the Comparison Test, ) ;- |ax| converges.

Similarly, if p < 1, then |ax| > 1/k for large k. Hence, by the Comparison
Test, > oo lax| diverges. [ |

Our final test works by examining how rapidly the ratios of ax/a; converge
tor = 1 (see also Exercise 6.6.5 below). Its proof uses Bernoulli’s Inequality.

*6.43 Theorem. [RAABE’S TEST].
Suppose that there is a constant C and a parameter p such that

Ak+1
Ak

<1--2 (15)

forlarge k. If p > 1, then Y ;< ax converges absolutely.

Proof. Set xy =k + C — 1 for k € N and choose N € N such that x; > 1 and
(15) hold for k > N. By the p-Series Test and the Limit Comparison Test,

oo
Z x "< o0 (16)
k=N

By (15) and Bernoulli’s Inequality,

Ag+1
aj
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Hence, the sequence {|ax |fo }ro y is decreasing and bounded above. In partic-

ular, there is an M > 0 such that |a;| < Mx, " for k > N. We conclude by (16)
that > 72 | ax converges. [ |

EXERCISES

6.6.1. Using any test covered in this chapter, find out which of the follow-
ing series converge absolutely, which converge conditionally, and which

diverge.
X 3.5---(2k+1
DD e ST}
X 1-3- (2k—1)
b
)k§5-7 -2k +3)
x 1
) 2

(IOg k)log log k

k=2 .
00 \/z_l
d)k§1< ﬁ)

6.6.2. For each of the following, find all values of p € R for which the given
series converges absolutely, for which it converges conditionally, and for
which it diverges.

(e8]
a) Z ke=kp
? Zz (log o
(pk)k
9y
k=1
*6.6.3. a) Prove that the Root Test applied to the series
i 1
logk
& (loghe

yields r = 1. Use the Logarithmic Test to prove that this series
converges.
b) Prove that the Ratio Test applied to the series

il k=1
4.6 (2k+2)

yields r = 1. Use Raabe’s Test to prove that this series converges.



6.6.4.

6.6.5.
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Suppose that f : R — (0, oo) is differentiable, that f(x) — 0 as x — oo,
and that

oxf()
o = lim

=00 f(x)

exists. If « < —1, prove that > 7 | f (k) converges.
Suppose that {a;} is a sequence of nonzero real numbers and that

)

exists as an extended real number. Prove that ) -, ax converges abso-
lutely when p > 1.

Ak+1
ag

p = lim k(l—

k—00
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CHAPTER 7

Infinite Series of Functions

7.1 UNIFORM CONVERGENCE OF SEQUENCES

You are familiar with what it means for a sequence of numbers to converge. In
this section we examine what it means for a sequence of functions to converge.
It turns out there are several different ways to define convergence of a sequence
of functions. We begin with the simplest way.

7.1 Definition.

Let E be a nonempty subset of R. A sequence of functions f, : E — R is said
to converge pointwise on E (notation: f, — f pointwise on E as n — 00) if
and only if f(x) = lim,_, » f,(x) exists for each x € E.

Because { f,,} converges pointwise on a set E if and only if the sequence of real
numbers { f,(x)} converges for each x € E, every result about convergence of
real numbers contains a result about pointwise convergence of functions. Here
is a typical example.

7.2 Remark. Let E be a nonempty subset of R. Then a sequence of functions f,
converges pointwise on E, as n — oo, if and only if for every ¢ > 0 and x € E
there is an N € N (which may depend on x as well as ¢) such that

n> N implies |fu,(x)— f(x)| <e.

Proof. By Definition 7.1, f,, — f pointwise on E if and only if f,,(x) — f(x)
for all x € E. This occurs, by Definition 2.1, if and only if for every ¢ > 0 and
x € E thereisan N € Nsuch that n > N implies | f,,(x) — f(x)| < &. |

If f, — f pointwise on [a, b], it is natural to ask, What does f inherit from
fu? The next four remarks show that, in general, the answer to this question is
“not much.”

7.3 Remark. The pointwise limit of continuous (respectively, differentiable)
functions is not necessarily continuous (respectively, differentiable).

Proof. Let f,(x) = x" and set

0 0<x<l1
fx) = -
1 x =1.

From Chapter 7 of Introduction to Analysis, Fourth Edition. William R. Wade.
Copyright © 2010 by Pearson Education, Inc. All rights reserved.
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Then f, — f pointwise on [0, 1] (see Example 2.20), each f, is continuous
and differentiable on [0, 1], but f is neither differentiable nor continuous at
x=1 |

7.4 Remark. The pointwise limit of integrable functions is not necessarily inte-

grable.
Proof. Set
1 x = p/m € Q, written in reduced form, where m < n
Sa(x) = .
0 otherwise,

forn € Nand

)1 xeQ
fx) = {O otherwise.

Then f, — f pointwise on [0, 1], each f, is integrable on [0, 1] (with integral
zero), but f is not integrable on [0, 1] (see Example 5.11). |

7.5 Remark. There exist differentiable functions f, and f such that f, — f
pointwise on [0, 1] but

Jim, £ # (Jim ,00) 0
for x = 1.

Proof. Let f,(x) = x"/n and set f(x) = 0. Then f, — f pointwise on [0, 1],
each f, is differentiable with f/(x) = x"~'. Thus the left side of (1) is 1 at
x = 1 but the right side of (1) is zero. |

7.6 Remark. There exist continuous functions f, and f such that f, — f point-
wise on [0, 1] but

1

1
im [ fo(x) dx # / (lim fn(x)> dx. )
n—oo O 0 n—>oo

Proof. Let fi(x) =1 and, forn > 1, let f,, be a sequence of functions whose
graphs are triangles with bases 2/n and altitudes n (see Figure 7.1). By the
point-slope form, formulas for these f,’s can be given by

n’x O0<x<l1/n
fu(x) =1{2n —n%x 1/n<x<2/n
0 2/n<x <1.
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FIGURE 7.1

Then f, — 0 pointwise on [0, 1] and, since the area of a triangle is one-half

base times altitude, fol fu(x)dx = 1for all n € N. Thus, the left side of (2) is 1
but the right side is zero. |

In view of the preceding examples, it is clear that pointwise convergence is
of limited value for the calculus of limits of sequences. It turns out that the fol-
lowing concept, discovered independently by Stokes, Cauchy, and Weierstrass
around 1850, is much more useful in this context.

7.7 Definition.

Let E be a nonempty subset of R. A sequence of functions f, : E — R is said
to converge uniformly on E to a function f (notation: f;, — f uniformly on E
asn — o0) if and only if for every ¢ > 0 there is an N € N such that

n >N implies |f,(x)— f(x)|<e

forallx € E.

Comparing Definition 7.7 with Remark 7.2 above, we see that the only dif-
ference between uniform convergence and pointwise convergence is that, for
uniform convergence, the integer N must be chosen independently of x (see
Figure 7.2). Notice that this is similar to the difference between uniform conti-
nuity and continuity (see the discussion following Example 3.36).

By definition, if f, converges uniformly on E, then f, converges pointwise
on E. The following example shows that the converse of this statement is false.
[This example also shows how to prove that f;, — f uniformly on a set E:
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FIGURE 7.2

dominate | f;,(x) — f(x)| by constants b,, independent of x € E, which converge
to zero as n — 00.]

7.8 EXAMPLE.

Prove that x* — 0 uniformly on [0, ] for any b < 1, and pointwise, but not
uniformly, on [0, 1).

Proof. By Example 2.20, x" — 0 pointwise on [0, 1). Let b < 1. Given ¢ > 0,
choose N € N such that n > N implies b" < ¢. Then x € [0,b] and n > N
imply [x"| < b" < ¢; thatis, x" — 0 uniformly for x € [0, b].

Does x" converge to 0 uniformly on [0, 1)? If it does, then given 0 < ¢ <
1/2, there is an N € N such that |xV| < ¢ for all x € [0, 1). But xV¥ — 1 as
x — 1— so we can choose an xo € (0, 1) such that x(’)V > ¢ (see Figure 7.3).
Thus ¢ < xév < g, a contradiction. |

The next several results show that if f, — f or f, — f’ uniformly, then f
inherits much from f,.

7.9 Theorem. Let E be a nonempty subset of R and suppose that f,, — f uni-
formly on E, as n — oo. If each f, is continuous at some xy € E, then fis
continuous at xo € E.

Proof. Lete > 0and choose N € N such that

n>N and xecE imply |fn(x)—f(x)|<§.
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AY

FIGURE 7.3

Since fy is continuous at xo € E, choose § > 0 such that

Ix —xol <8 and xeE imply |fyv(x)— fy(xo) < g

Suppose that |x — x¢| < § and that x € E. Then
[fx) = fOol = 1fx) = v+ [ fv(x) — fv (o)l + [ fav (xo) — fxo)| < e.
Thus f is continuous at xg € E. ]

(For a generalization of this result, see Exercise 7.1.6. For a converse of this
result when the sequence f, is pointwise monotone, see Theorem 9.40.)

Here is an important theorem about interchanging a limit sign and an integral
sign (compare with Remark 7.6).

7.10 Theorem. Suppose that f,, — f uniformly on a closed interval [a, b]. If
each f, is integrable on [a, b], then so is f and

b b
Tim f Fux) dx = f (lim fu(0)) dx.

In fact, lim,,_, o f; fu(t)dt = f; f () dt uniformly for x € [a, b].
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Proof. By Exercise 7.1.3, f is bounded on [a, b]. To prove that f is integrable,
let & > 0 and choose N € N such that

n>N implies |f(x)— fu(x)| < 3(b —a) ®

for all x € [a, b]. Using this inequality for n = N, we see that by the definition
of upper and lower sums,

U(f—fn.P)< 3 and L(f_fN,P)E—g

W ™

for any partition P of [a, b]. Since fy is integrable, choose a partition P such
that

U(fn, P) — L(fy, P) < g

It follows that
U(f,P)—L(f,P) <U(f—fn,P)+U(fn,P)—L(fn,P)—L(f — fn., P)
e & ¢
<3T3t3=s

that is, f is integrable on [a, b]. We conclude by Theorem 5.22 and (3) that

(t) dt — / f(@) dt

e(x —a)
/ | fu(2) — (t)ldt§3(b D ¢

forall x € [a,b]and n > N. ]
Here is a Cauchy Criterion for uniform convergence.

711 Lemma. [UNIFORM CAUCHY CRITERION].

Let E be a nonempty subset of R and let f,, : E — R be a sequence of functions.

Then f, converges uniformly on E if and only if for every ¢ > 0 there is an
N € N such that

n,m >N imply |fu(x)— fu(x)] <e “4)
forall x € E.

Proof. Suppose first that f,, — f uniformly on E asn — oo. Let ¢ > 0 and
choose N € N such that

n>N implies |fu(x) — f(x)] < %

forx € E. Since | fu(x) — fn(X)] < [fu(x) — fFO| + | f(x) — fin(x)], it is clear
that (4) holds for all x € E.
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Conversely, if (4) holds for x € E, then {f,,(x)},en is Cauchy for each x € E.
Hence, by Cauchy’s Theorem for sequences (Theorem 2.29),

f@) = lim (o)

exists for each x € E. Take the limit of the second inequality in (4) as m — oo.
We obtain |f,(x) — f(x)] < ¢/2 < eforalln > N and x € E. Hence, by
definition, f, — f uniformly on E. |

Here is a result about interchanging a limit sign and the derivative sign (com-

pare with Remark 7.5). The proof presented here comes from Apostol [1].

712 Theorem. Let (a,b) be a bounded interval and suppose that f, is a
sequence of functions which converges at some xo € (a,b). If each f, is dif-
ferentiable on (a, b), and f, converges uniformly on (a,b) as n — oo, then f,
converges uniformly on (a, b) and

s 510 = (i )

foreach x € (a, b).

Proof. Fix c € (a, b) and define

Sa(x) = fulc)

gn(x) = xX—c x#e
fn(©) x=c
for n € N. Clearly,
fn(x) = fn(c)+(x_c)gn(x) (5)

forn e Nand x € (a, b).

We claim that for any ¢ € (a, b), the sequence g, converges uniformly on
(a,b). Lete > 0, n,m € N, and x € (a, b) with x # c. By the Mean Value
Theorem, there is a € between x and ¢ such that

en(X) — gm(x) = Jn(X) = fin(x) = (fu(c) = fm(c)) _ f,;(é) _ fy:,(g)

X —cC

Since f, converges uniformly on (a, b), it follows that there is an N € N
such that

n,m > N implies |g,(x) —gn(x)| <¢

for x € (a,b) with x # c¢. This implication also holds for x = ¢ because
gn(c) = f,(c) for all n € N. This proves the claim.

To show that f,, converges uniformly on (a, b), notice that by the claim,
gn converges uniformly as n — oo and (5) holds for ¢ = x¢. Since f;,(xo)
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converges as n — oo by hypothesis, it follows from (5) and b — a < oo that f,
converges uniformly on (a, b) as n — oo.

Fix ¢ € (a, b). Define f, g on (a, b) by f(x) := lim,_« fn(x) and g(x) :=
lim;,_ 50 gn(x). We need to show that

f©) = Tim_f(). (6)

Since each g, is continuous at ¢, the claim implies g is continuous at c. Since
gn(c) = fl(c), it follows that the right side of (6) can be written as

lim fr(c) = lim g,(c) = g(c) = lim g(x).
n—o00 n—oo X—>c
On the other hand, if x # ¢ we have by definition that

fO =@ _ o @) = fue) _

lim g, (x) = g(x).
X —C n—o0 X —cC n—o0

Therefore, the left side of (6) also reduces to

£ = tim 292 71O i e,
x—c X —cC x—c
This verifies (6), and the proof of the theorem is complete. |
EXERCISES
7.1.1. a) Prove that x/n — 0 uniformly, as n — oo, on any closed interval
[a, b].
b) Prove that 1/(nx) — 0 pointwise but not uniformly on (0, 1) as
n— oo.

7.1.2. Prove that the following limits exist and evaluate them.

) li 3 nx99 + 5
a m ———F%¢
n—o00 1 x3 + nx66

b) lim, Jo €/ dx

c) nlgrolofo3 /sin%+x+1dx

7.1.3. A sequence of functions f;, is said to be uniformly bounded on a set E if
and only if there is an M > 0 such that | f;,(x)| < M for all x € E and all
n e N.
Suppose that for eachn € N, f, : E — Ris bounded. If f, — f
uniformly on E, as n — N, prove that {f,} is uniformly bounded on E
and f is a bounded function on E.
7.1.4. Let [a, b] be a closed bounded interval, f : [a,b] — R be bounded,
and g : [a,b] — R be continuous with g(a) = g(b) = 0. Let f, be a

dx
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7.1.5.

7.1.6.

7.1.7.

7.1.8.

7.1.9.

7.1.10.

7.1.11.

Infinite Series of Functions

uniformly bounded sequence of functions on [a, b] (see Exercise 7.1.3).
Prove that if f, — f uniformly on all closed intervals [c,d] C (a, b),
then f,g — fg uniformly on [a, b].

Suppose that f, — f and g, — g, as n — oo, uniformly on some set
E CR.

a) Prove that f, + g, — f + g and of,, — «f, as n — oo, uniformly on
E forall« € R.

b) Prove that f,,g, — fg pointwise on E.

c) Prove thatif f and g are bounded on E, then f,g, — fg uniformly
onE.

d) Show that c) may be false when g is unbounded.

Suppose that E is a nonempty subset of R and that f, — f uniformly
on E. Prove that if each f, is uniformly continuous on E, then f is
uniformly continuous on E.

Suppose that f is uniformly continuous on R. If y, — 0 as n — oo and
fn(x) := f(x + y,) for x € R, prove that f;, converges uniformly on R.
Suppose that b > a > 0. Prove that

lim b(l-l—;—c)ne_xdx:b—a.

n—o0 a

Let f, g be continuous on a closed bounded interval [a, b] with |g(x)| > 0
for x € [a, b]. Suppose that f, — f and g, — g as n — oo, uniformly
on [a, b].

a) Prove that 1/g, is defined for large n and f,, /g, — f/g uniformly on
[a, b] as n — oo.
b) Show that a) is false if [a, b] is replaced by (a, b).

Let E be a nonempty subset of R and f be a real-valued function defined
on E. Suppose that f, is a sequence of bounded functions on E which
converges to f uniformly on E. Prove that

Si) -+ fux)
—
n

f(x)

uniformly on E as n — oo (compare with Exercise 6.1.9).
Let f, be integrable on [0, 1] and f,, — f uniformly on [0, 1]. Show that
if b, 1 1 asn — oo, then

by, 1
lim fon(x)dx = / f(x)dx.
0

n—od 0

7.2 UNIFORM CONVERGENCE OF SERIES

In this section we extend the concepts introduced in Section 7.1 from sequences
to series.
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7.13 Definition.

Let fx be a sequence of real functions defined on some set £ and set

Sp(x) ::ka(x), x € E, neN.

k=1

i) The series Y ;= fx is said to converge pointwise on E if and only if the
sequence s, (x) converges pointwise on E as n — 00.
ii) The series Y ;- fi is said to converge uniformly on E if and only if the
sequence s, (x) converges uniformly on E as n — oo.
iii) The series Y po; fx is said to converge absolutely (pointwise) on E if and
only if Z,fozl | fi(x)| converges for each x € E.

Since convergence of series is defined in terms of convergence of sequences of
partial sums, every result about convergence of sequences of functions contains
a result about convergence of series of functions. For example, the following
result is an immediate consequence of Theorems 7.9, 7.10, and 7.12.

7.14 Theorem. Let E be a nonempty subset of R and let { f;} be a sequence of
real functions defined on E.

i) Suppose that xo € E and that each f is continuous atxo € E. If f =Y 7 fi
converges uniformly on E, then fis continuous at xo € E.

ii) [TERM-BY-TERM INTEGRATION]. Suppose that E = [a, b] and that each f is
integrable on [a, D). If f = 212021 fix converges uniformly on [a, b), then fis
integrable on [a, b] and

b o 00 b

f Y filx) dx = Z/ fe(x) dx.

4 k=1 k=14

iii) [TERM-BY-TERM DIFFERENTIATION]. Suppose that E is a bounded, open interval
and that each fy is differentiable on E. If Y ;2| fi converges at some xo €

E, and Y ;2| f| converges uniformly on E, then f := Y ;2| fi converges
uniformly on E, fis differentiable on E, and

(kaoc)) = fi)
k=1 k=1
forx € E.

Here are two much-used tests for uniform convergence of series. (The second
test, and its example, is optional because we do not use it elsewhere in this text.)
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715 Theorem. [WEIERSTRASS M-TEST].

Let E be a nonempty subset of R, let fi : E — R, k € N, and suppose that
My > 0 satisfies Y o My < oo. If | fi(x)| < My for k € Nand x € E, then
Y e fi converges absolutely and uniformly on E.

Proof. Let ¢ > 0 and use the Cauchy Criterion to choose N € N such that
m >n > N implies ) ;. My < ¢. Thus, by hypothesis,

> fix)
k=n

m m
<Y IA@ISY Mi<e
k=n k=n

form > n > N and x € E. Hence, the partial sums of Z,fil fx are uniformly
Cauchy and the partial sums of Y 2, | fx(x)| are Cauchy foreachx ¢ E. N

*7.16 Theorem. [DIRICHLET’S TEST FOR UNIFORM CONVERGENCE].
Let E be a nonempty subset of R and suppose that fi, gr : E — R, k € N. If

> S

k=1

<M <o

forn e Nand x € E, and if gk | 0 uniformly on E as k — oo, then Y 1o, fi&k
converges uniformly on E.

Proof. Let

n
Fam(x) =Y filx), mmneN, nzm xek

k=m

and fix integers n > m > 0. By Abel’s Formula and hypothesis,

n—1
Fomn()gn(x) + Y Frm (0)(8k(x) = gk41(x))

k=m

> fe)gx)

k=m

n—1
< 2Mgu(x) +2M ) (8 (x) — giy1 (X))
k=m

= 2Mgm(x)

for all x € E. Since g,,(x) — O uniformly on E, as m — oo, it follows from the
uniform Cauchy Criterion that Z}:‘;l Jfx(x) gk (x) converges uniformly on E.H

Here is a typical application of Dirichlet’s Test.
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*7117 EXAMPLE.

Prove that if ax | 0 as k — oo, then Y ;- ax cos kx converges uniformly on any
closed subinterval [a, b] of (0, 27).

Proof. Let fi(x) = coskx and g (x) = a; for k € N. By the technique used in
Example 6.34, we can show that

n sin (g) + sin ((n + %)x)
D, (x) ::kX:(:)coskx: zsin(§>

forn € Nand x € (0, 2). Hence the partial sums of > ;2 fx(x) satisfy

sin <)—C) + sin (<n + l)x)
2 2 1
Dy ()| = — < —
2sin (3) sin (3)]
for x € (0, 27). If § = min{27 — b, a} and x € [a, b], then sin(x/2) > sin(5/2)

(see Figure 7.4). Therefore, > 72 | ax cos kx converges uniformly on [a, b] by
Dirichlet’s Test. |

This example can be used to show that uniform convergence of a
series alone is not sufficient for term-by-term differentiation. Indeed, although
Yt coskx/k converges uniformly on [7/2, 37/2], its term-by-term derivative
Y ie(—sinkx) converges at only one point in [ /2, 37 /2].

y = sin (3)

FIGURE 7.4
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A double series is a series of numbers or functions of the form
o0 o0
2| 2
k=1 \ j=1

Such a double series is said to converge if and only if Zjil ayj converges for
each k € N and

00 00

>3 m Y (S
. N—>oo

k=1 j=1

exists and is finite.

When working with double series, one frequently wants to be able to change
the order of summation. We already know that the order of summation can be
changed when a;; > 0 (see Exercise 6.3.6). We now prove a more general result.
(The elegant proof given here, which comes from Rudin [11],! uses uniform
convergence.)

7.18 Theorem. Leta;; € R fork, j € Nand suppose that

o0
Aj = Z|akj| < 00
k=1

foreach j € N. IfZ _1 Aj converges (i.e., the double sum converges absolutely),
then

>3 =3 Y

k=1 j=I j=lk=1

Proof. LetE ={0,1,3 5 %, ...}. For each j € N, define a function f; on E by

£i0) = Zak,, f,() Zak], neN.

By hypothesis, f;(0) exists and by the definition of series convergence,

1
lim f]( > = f;(0);

n—oo

IWalter Rudin, Principles of Mathematical Analysis, 3rd ed. (New York: McGraw-Hill Book
Co., 1976). Reprinted with permission of McGraw-Hill Book Co.
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that is, f; is continuous at 0 € E for each j € N. Moreover, since | f;(x)| < A;
forall x € E and j € N, the Weierstrass M-Test implies that

)= fix)

j=1

converges uniformly on E. Thus f is continuous at 0 € E by Theorem 7.9.
It follows from the sequential characterization of continuity (Theorem 3.21)
that f(1/n) — f(0) as n — oo. Therefore,

x o0 n o o0 n
33— Jin 3w - fim Y
k=1 j=1 k=1 j=1 j=1k=1
=m0 (5) = fim s (1) = r0 =3 S
=1 j=1k=1
EXERCISES

7.2.1. a) Prove that Y {2, sin(x/k?) converges uniformly on any bounded
interval in R.

b) Prove that > ;2 e ** converges uniformly on any closed subinterval
of (0, 00).

7.2.2. Prove that the geometric series

> 1
k _
Zx_l—x

k=0

converges uniformly on any closed interval [a, b] C (—1, 1).
72.3. Let E(x) = > 22 x*/kL.

a) Prove that the series defining E (x) converges uniformly on any closed
interval [a, b].
b) Prove that

b
/ E(x)dx = E(b) — E(a)

foralla, b € R.
c¢) Prove that the function y = E(x) satisfies the initial value problem

y—y=0,  y0=1.

[We shall see in Section 7.4 that E(x) = e*.]
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7.2.4.

7.2.5.

7.2.6.

7.2.7.

7.2.8.

*7.2.9.

Infinite Series of Functions

Suppose that

> cos(kx)

fx) = ZT

k=1

Prove that
0 k
(=1)
dx
/ Fx) Z(2k+ e

Show that

converges, pointwise on R and uniformly on each bounded interval in R,
to a differentiable function f which satisfies

|fG)l < lx| and [f'(0)] =<1

for all x € R.
Prove that
oo
Z (1 —cos(1/k))| < 2.
k=1
Suppose that f = Y 2, fx converges uniformly on aset E C R. If g; is

bounded on E and gi(x) > gg+1(x) > Oforall x € E and k € N, prove
that Y 22, figk converges uniformly on E.

Let n > 0 be a fixed nonnegative integer and recall that 0! := 1. The
Bessel function of order n is the function defined by

'_°° (- X\ n+2k
B0 =Y i ()

a) Show that B,(x) converges pointwise on R and uniformly on any
closed interval [a, b].
b) Prove that y = B, (x) satisfies the differential equation

x? vy 4+ xy +(x —n)y—O

for x e R.
c) Prove that
(x" B, (x)) = x"By—1(x)

forn e Nand x € R.
Suppose that ax | 0 as k — oco. Prove that ) -, ak sinkx converges
uniformly on any closed interval [a, b] C (0, 27).
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7.2.10. Suppose that fi, f>, ... are continuous real functions defined on a closed,
bounded interval [a, b]. If 0 < fi(x) < fr+1(x) forallk € Nand x €
[a, b], and if f; — f uniformly on [a, b], prove that

b /o 1/
Jim [ (ka"(X)>
4 \k=1

n

b
dx = / f(x)dx.

7.3 POWER SERIES

Polynomials are functions of the form P(x) = ) j_, apx®, where a; € R and
n > 0. In this section we investigate a natural generalization of polynomials,
namely, series of the form Z/?io agxk.

Actually, we shall consider a slightly more general class of series. A power

series (centered at xg) is a series of the form

S(x) =Y ar(x — xo)*,

k=0

where we use the convention that (x —xg)° = 1. In fact, although 0%isin general
indeterminate, when dealing with power series we always interpret 0° = 1.

Since S(x) is identically ap when x = xo, it is clear that every power series
converges at at least one point. The following result shows that this may be the
only point.

7.19 Remark. There exist power series which converge only at one point.

Proof. For each x # 0, (k*|x|*)1/* = k|x| - oo as k — oo. Therefore, by the
Root Test, the series Y ;o ; k*x* diverges when x # 0. [

In general, a series of functions can converge at several isolated points. [For
example, the series ) - sin(kx) converges only when x = nx for some n € Z.]
We shall see (Theorem 7.21 below) that this cannot happen for power series.
Hence, we introduce the following concept.

7.20 Definition.

An extended real number R is said to be the radius of convergence of a power
series S(x) := Z/?io ar(x — xp)¥ if and only if S(x) converges absolutely for
|x —xo| < R and S(x) diverges for |x — xo| > R.

The extreme cases are R = 0 and R = co. When R = 0, the power series S(x)
converges only when x = x9o. When R = oo, the power series S(x) converges
absolutely for every x € R.

The next result shows that every power series S has a radius of convergence
which can be computed using roots of the coefficients of S.
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7.21 Theorem. Let S(x) = Z,fio ar(x — xo)k be a power series centered at xo. If
R =1/lim supk_)oolakll/k, with the convention that 1/o0c = 0 and 1/0 = oo, then
R is the radius of convergence of S. In fact,

1) S(x) converges absolutely for each x € (xo — R, xo + R),
i) S(x) converges uniformly on any closed interval [a, b] C (xg — R, xo + R),
iii) and (when R is finite), S(x) diverges for each x ¢ [xo — R, xo + R].

Proof. Fixx € R, x # xp,and set p := 1/lim supk_>oo|ak|1/k, with the conven-
tion that 1/00 = 0 and 1/0 = co. To apply the Root Test to S(x), consider

r(x) :=limsup |ax (x — x0)*|"/* = |x — xo| - lim sup |ag|'/*.

k— 00 k— o0

Case 1. p = 0. By our convention, p = 0 implies r(x) = oo > 1, so by
the Root Test, S(x) does not converge for any x # xo. Hence, the radius of
convergence of Sis R =0 = p.

Case 2. p = oo. Then r(x) = 0 < 1, so by the Root Test, S(x) converges
absolutely for all x € R. Hence, the radius of convergence of Sis R = oo = p.

Case 3. p € (0,00). Then r(x) = |x — xo|/p. Since r(x) < 1 if and only
if |x — xo| < p, it follows from the Root Test that S(x) converges absolutely
when x € (xo — p, xo + p). Similarly, since r(x) > 1 if and only if |x — xg| > p,
we also have that S(x) diverges when x ¢ [xo — p, xo + p]. This proves that p
is the radius of convergence of §, and that parts i) and iii) hold.

To prove partii), let [a, b] C (xo— R, xo+R). Choose an x| € (xo—R, xo+R)
such that x € [a,b] implies |x — xo| < |x1 — xo| (see Figure 7.5). Set
My = lag||x1 — xo|* and observe by part i) that Y ;o My converges. Since
lak(x — x0)K| < My for x € [a,b] and k € N, it follows from the Weierstrass

M-Test that S(x) converges uniformly on [a, b]. |
( Py L ] AY
C ® T 1 1 ] g
xg-R X a Xy b Xy + R
FIGURE 7.5

The following result, which is weaker than Theorem 7.21 (see Exercise 6.3.8),
provides another way to compute the radius of convergence of some power
series (see also Exercise 7.3.8). This way is easier when a; contains products
(e.g., factorials).

7.22 Theorem. Ifthe limit

. dag
R = lim k|
k=00 |aj+1]
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exists as an extended real number, then R is the radius of convergence of the power
series S(x) = Y poq ax(x — xo)*.

Proof. Repeat the proof of Theorem 7.21, using the Ratio Test instead of the
Root Test, to find that S(x) converges absolutely on (xo — R, xp + R) and
diverges for each x ¢ [xo — R, xo + R]. By Definition 7.20, R must be the
radius of convergence of S(x). [ |

7.23 Definition.

The interval of convergence of a power series S(x) is the largest interval on
which S(x) converges.

By Theorem 7.21, for a given power series S = Y po, ax(x — xo)¥, there are
only three possibilities:

i) R = oo, in which case the interval of convergence of S is (—o0, 00),
ii) R = 0, in which case the interval of convergence of S is {xp}, and
iii) 0 < R < o0, in which case the interval of convergence of § is
(xo—R,xg+ R), [xo— R, x90+ R), (xo — R, x9+ R],or [xo — R, xg + R].

To find the interval of convergence of a power series, therefore, one needs to
compute the radius of convergence R first. If 0 < R < 0o, one must also check
both endpoints, xo — R and x¢ + R, to see whether the interval of convergence
is closed, open, or half open/closed. Notice once and for all that the Ratio and
Root Tests cannot be used to test the endpoints, since it was the Ratio and Root
Tests which gave us R to begin with.

7.24 EXAMPLE.
Find the interval of convergence of S(x) = Y 72, x*/Vk.

Solution. By Theorem 7.22,

k+1 k+1
R = lim vk =\/lim L:l
k— o0 \/E k—oco k
Thus, the interval of convergence has endpoints 1 and —1. S(x) diverges at
x = 1 by the p-Series Test and converges at x = —1 by the Alternating Series
Test. Thus, the interval of convergence of S(x) is [—1, 1). |

7.25 Remark. The interval of convergence may contain none, one, or both its
endpoints.

Proof. By Theorem 7.22, the radius of convergence of each of the series

o0 . o Lk %k
25 X X
k=1 k=1 k=1
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is 1, but by the Divergence Test, the Alternating Series Test, and the p-Series
Test, the intervals of convergence of these series are (—1,1), [—1, 1), and
[—1, 1], respectively. [ |

We now pass from convergence properties of power series to the calculus of
power series. The next several results answer the question, What properties
(e.g., continuity, differentiability, integrability) does the limit of a power series
satisfy?

7.26 Theorem. If f(x) =) ;o ar(x— xo)K is a power series with positive radius
of convergence R, then f is continuous on (xo — R, xo + R).

Proof. Letx € (xo — R, xo + R) and choose a, b € R such that x € (a, b) and
la,b] C (xo — R, x0 + R). By Theorems 7.21ii and 7.14i, f is continuous on
(a, b) and hence at x. [ |

The following result shows that continuity of the limit extends to the end-
points when they belong to the interval of convergence.

7.27 Theorem. [ABEL’S THEOREM].
Suppose that [a, b] is nondegenerate. If f(x) 1= Y ooy ax(x — x0)* converges
on [a, b], then f(x) is continuous and converges uniformly on [a, b].

Proof. By Theorems 7.21ii and 7.26, we may suppose that f has a positive,
finite radius of convergence R, and, by symmetry, that a = xg and b = xg + R.
Thus, suppose that f(x) converges at x = xo + R and fix x; € (xg, xo + R].
Set by = @ R* and ¢, = (x; — x0)¥/R* for k € N. By hypothesis, > 72, bx
converges. Hence, given ¢ > 0, there is an integer N > 1 such that

k
k>m> N 1imply ij <e.
j=m

Since 0 < x; — x9 < R, the sequence {cx} is decreasing. Applying Abel’s
Formula and telescoping, we have

n
k
Zakm — Xo)
k=m

n
Zbkck
k=m
n n—1 k
=lon ) b+ D (ke —cr) ) b;
k=m k=m j=m

< cpe + (Cy — Cp)e = cp€.
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Since ¢;; < ¢1 < R/R =1, it follows that

Zak(m — xo)*

k=m

<é&

for all x; € (xg,xo + R]. Since this inequality also holds for x; = xp, we
conclude that Z/?io ag(x — xo)¥ converges uniformly on [xg, xg + R]. |

7.28 Remark. If a power series S(x) = Z/?io ar(x — xo)¥ converges at some
X1 > Xxo, then S(x) converges uniformly on [xg, x1] and absolutely on [xg, x1).
It might not converge absolutely at x = x.

Proof. By Theorems 7.21 and 7.27, S(x) converges uniformly on [xg, x;] and
absolutely on [xg, x;). The power series > 22, (—x)¥/k converges uniformly
on [0, 1] but not absolutely at x = 1. |

To discuss differentiability of the limit of a power series, we first show that
the radius of convergence of a power series is not changed by term-by-term
differentiation (compare with Exercise 2.5.6).

729 Lemma.
Ifa, € R forn € N, then

lim sup(n|a, )/ = lim sup |a,|'/".
n—00 n—oo

Proof. Let e > 0. Since n'/" > 1 asn — oo, choose N € Nsothatn > N
implies | — ¢ < n!/" <1+ g; that is,

(1 —&)lan|"" < (nla D™ < (14 &)|an)'/".

It follows that if n > N, then sup,_,, (klax|)'/* < (1 + &) sup;.,, lax|'/*. Taking
the limit of this last inequality, as n — oo, we have by definition that

x = limsup(n|a, )" < (1 + &) limsup |a,|"/" =: (1 +&)y.

n—odo n—oo

Taking the limit of this inequality as ¢ — 0, we obtain x < y. A similar
argument, using (1 — ¢) in place of (1 + ¢), proves that x > y. We conclude
that x = y as promised. |

We use this result to prove that each power series with a positive radius of
convergence is term-by-term differentiable.

7.30 Theorem. If f(x) = Z/fio ar(x —xo)¥ isa power series with positive radius
of convergence R, then f'(x) =Y po | kax(x — x0)k~! for x € (xo — R, xo + R).
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Proof. Let I := (xo — R, xo + R) and suppose that a, b € R satisfy [a, b] C .
By Lemma 7.29 and hypothesis, the radius of convergence of the series
g(x) = > 72 kar(x — x0)¥ is R. Thus g converges absolutely on 7 and uni-
formly on [a, b].

Consider the derived series S*(x) := Zz‘; L kag(x — x0)¥~1. Since §*(xo) has
only one nonzero term, the series $*(xg) converges absolutely. If x € I'\{xp},
then S*(x) = g(x)/(x — xp), so again, S*(x) converges absolutely. It follows
that the radius of convergence of S* is at least R. Hence, by Theorems 7.21
and 7.14iii (term-by-term differentiation), f is differentiable on [a, b] and
S*(x) = f’'(x) for all x € [a, b]. Since any x € I belongs to some [a,b] C I,
we conclude that f/(x) = $*(x) forall x € I. |

NOTE: A similar proof shows that $* diverges for all x ¢ [xo — R, xo + R], so
the radius of convergence of S* is exactly R.

Recall that for each nonempty, open interval (a, b), C*(a, b) represents the set
of functions f such that f® exists and is continuous on (a, b) for all k € N. The
following result generalizes Theorem 7.30.

7.31 Corollary. If f(x) = > 72, ax(x — x0)* has a positive radius of convergence
R, then f € C*(x9 — R, xo + R) and

(o.¢]

FO = Z k),an(x — x0)" (7)

k

forx € (xo — R, xo + R) and k € N.

Proof. The proof is by induction on k. By Theorem 7.30 and the fact that
0! := 1, (7) holds for k = 1 and x € (xo — R, xo + R). If (7) holds for some
ke Nandall x € (xo — R, xo + R), then f® isa power series with radius of
convergence R. It follows from Theorem 7.30 that

oo | !
A0 = (FP ) = (Z#an(x - xo)”"‘>

= Z EE— (x — xp)" !
(n—k—
n=k+1
for all x € (xo — R, x0 + R). Hence, (7) holds for k£ 4 1 in place of k. [ |

The following result shows that each power series with a positive radius of
convergence can also be integrated term by term.
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7.32 Theorem. Let f(x) = Z/ﬁio ar(x — xo)* be a power series and let a, b € R
witha < b.

i) If f(x) converges on [a, b, then fis integrable on [a, b] and

b 00 b
/ f(x)dx:Zak/ (x — x0)* dx.
“ k=0 a

*ii) If f(x) converges on [a, b) and if 3 72 o ar(b — x0)* T /(k + 1) converges, then
fis improperly integrable on [a, b) and

b 00 b
/ f(x)dx:Zak/ (x — x0)* dx.
a k=0 a

Proof. 1) By Abel’s Theorem, f(x) converges uniformly on [a, b]. Hence, by
Theorem 7.14ii, f(x) is term-by-term integrable on [a, b].
i) Leta <t <bandset A =) 72 ar(a — x0)**1/(k + 1). By part i),

t o0 ¢ 00
/a f(x)dx:];ak/t;(X_XO)kdx:kajl—(l(t_xo)k_Fl_A'

=0

The leftmost term of this last difference is a power series which by hypothesis
converges at r = b. Thus, by the definition of improper integration and Abel’s
Theorem,

b t
/ fx)dx = hr;? f(x)dx
a t=>0—=Jq

o0
. 9k k+1
=1 - —A
HH?_Z:/CH( x0)
() a [ b
=Z k (b—xo)kH—A:Zak/ (x—xo)kdx. |
k:Ok+1 k=0 a

The following result shows that the product of two power series is a power
series. (For a result on the division of power series, see Taylor [13], p. 619.)

7.33 Theorem. If f(x) = Y 2oax’ and g(x) = Y72, bex* converge on
(—=r,r) and

k
= ajb—j. k=01,
j=0

then Y 2, cxxk converges on (—r, r) and converges to f(x)g(x).

243



244 Chapter7 Infinite Series of Functions

Proof. Fix x € (—r,r) and for each n € N, set
n n n
H) =) axt, gux) =) bt and hy(x) =) axt.
k=0 k=0 k=0

By changing the order of summation, we see that
n k n n
hy(x) = Z Zajbk_jx]xkﬂ = Zajxf Z bk_jxkfj
k=0 j=0 j=0 k=j

=Y ajxgn_j(x) = g(0) fu¥) + > ajx’ (gn—j(x) — g(x)).

j=0 Jj=0

Thus, it suffices to show that

nli)n;ozajxj(gnfj(x) —g) =0.
j=0

Lete > 0. Since f(x) converges absolutely and g, (x) converges as n — o0,
choose M > 0 such that 332 laxx*¥| < M and

lgn—j(x) —gx)| <M

for all integers n > j > 0. Similarly, choose N € N such that

o
L e . &
£> N implies |ge(x) —gx)| < o and | ENH lajx’| < M
j=

Letn > 2N. Then

> ajxd (guj(x) — g(x))

j=0
N n
=Y a;x) (gnj(x) — gD+ D ajx)(gnj(x) — g(x))
j=0 j=N+1
& N . " . & &
<m2|ajx1|+M Z |ajxf|<§+§=8. [ ]
j=0 j=N+1
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7.34 Corollary. Suppose that ay,by € R and that ¢, = Z];:() ajbi_; for
k=0,1, .... Ifeither

i) Y rooarand Y p2 b both converge, and at least one of them converges abso-
lutely,

i) on if Y 2o ar, Y peobk, and Y ;2 ck all converge,

then

k=0
Proof. 1) Repeat the proof of Theorem 7.33 with x = 1.

ii) By hypothesis, the radii of convergence of Y 7o, arxk, S22, bex*, and
00 o ckxk are all at least 1; hence, by Theorem 7.33,

Z cpx = (Z akxk) <Z bkxk> 9)
k=0 k=0 k=0

for x € (—1,1). But by Abel’s Theorem (Theorem 7.27), the limit of (9) as
x 1 1is (8). |

The hypotheses of Corollary 7.34 cannot be relaxed.

*7.35 EXAMPLE.
If ax = by = (—1)¥//k for k € Nand ag = by = 0, then Y32, cx diverges.

Proof. 1f Z/fio ¢ converges, then ¢y — 0 as k — oo. But for £ > 1 odd,

k—1 (k—1)/2 1
|Ck| = = =2 =
;ﬁx/k—J ; Vivk—j

k—1 1 1
2 JE=D2)\J& -1
Thus ¢ cannot converge to zero, a contradiction. |

We close this section with some optional material on finding exact values of
convergent power series. Namely, we show how term-by-term differentiation
and integration can be used in conjunction with the geometric series to obtain
simple formulas for certain kinds of power series. Such formulas are called
closed forms.
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*7.36 EXAMPLE.

Find a closed form of the power series

fx) = ka

Solution. Since the interval of convergence of this power series is (—1, 1), we
have by Theorems 7.32 and 6.7 (the Geometric Series) that

&d —Zk/ Hd::ixkz
k:1

for each x € (—1,1). [Note that f(x)/x is defined at x = 0 and has value 1.]
Hence, by the Fundamental Theorem of Calculus,

f(X)_< x )’_ 1
x  \l—x) (1=x)2

and it follows that

fx) = xe(—1,1). [ ]

X
(1 —x)?
*7.37 EXAMPLE.
Find a closed form of the power series

o k

X
gy =y ——.
k:0k+1

Solution. Since the interval of convergence of this power series is [—1, 1), we
have by Theorem 7.30 that

skt
r_ —
(xg(x)) = Z<k+1) Zx

k=0

for x € (-1, 1). Hence, by the Fundamental Theorem of Calculus,
*odt
xg) = [ = —log(l —x)
o 1—1

for x € (—1,1). Since g(—1) exists and log(1 — x) is continuous at x = —1, we

conclude by Abel’s Theorem that

g(x):—log(lx—_x), xe[=1,1)\{0}, and g(0)=1. n
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EXERCISES

7.3.1.

7.3.2.

7.3.3.

7.3.4.

7.3.5.

7.3.6.

d) >

Find the interval of convergence of each of the following power series.
x kxk
a) —_—
i=o 2k + 1)?
o0
b) > 2+ (=D
k=0
o
c) > 3K k2
k=0
X2 3
d) > Kk xk
k=0
Find the interval of convergence of each of the following power series.
oo yk
=
o0
b) Y (=DF+3) (= D
k=0
2 k+1
c) Y log ( + ) x*
k=1 k
s 1-3...(2k—1)x2k

=1 (k+ D!

Suppose that 322, axx* has radius of convergence R € (0, 00).

a) Find the radius of convergence of Y 32, axx .

b) Find the radius of convergence of Y 5o aZx*.

Suppose that |ax| < |by| for large k. Prove that if Y2, bxx* converges
on an open interval 1, then Y _j, axx* also converges on 1. Is this result
true if open is omitted?

Suppose that {a;};, is a bounded sequence of real numbers. Prove that

fx) = Z akxk
k=0

has a positive radius of convergence.

A series ) o ax is said to be Abel summable to L if and only if
oo
li F=L
Jim 2

a) Prove that if ) ;2 ax converges to L, then ) 2 ax is Abel
summable to L.
b) Find the Abel sum of Y 32, (—D*.
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*7.3.7. Find a closed form for each of the following series and the largest set
on which this formula is valid.

00
a) Z 3y 3k-1
k=1

o0
b) Y kxk?
k=2
© 2k
c —— (1—x)k
) k§1 k+1 ( .
0o 3k
d
) LT
*7.3.8. If Z,filakxk has radius of convergence R and a; # O for large k,
prove that
lim inf < R < limsup .
k—oo | Ag41 k—oo | Ak+1

*7.3.9. Prove that

00 k
X
f<x):2<(—1>k+4)

k=0
is differentiable on (—3, 3) and

, 3
[ f ()] < m

for0 <x < 3.
7.3.10. Suppose that a; | 0 as k — oo. Prove that given ¢ > 0 thereisad > 0
such that

Yo Dfat -y <6

k=0

for all x, y € [0, 1] which satisfy |x — y| < 4.
*7.3.11. a) Prove the following weak form of Stirling’s Formula (compare with
Theorem 12.73):
n' nn+l

<n! < .
enfl enfl

b) Find all x € R for which the power series
o 1k

k

k!

k=0

converges absolutely.
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7.4 ANALYTIC FUNCTIONS

In this section we study functions which can be represented by power series.
(For a discussion of how to represent functions by trigonometric series instead
of power series, see Chapter 14.) We begin with the following definition.

7.38 Definition.

A real-valued function f is said to be (real) analytic on a nonempty, open
interval (a, b) if and only if given xo € (a, b) there is a power series centered
at xo which converges to f near xo; that is, if and only if there exist coefficients
{ar}72, and points ¢, d € (a, b) such that ¢ < xo < d and

) =) ax —xo)*
k=0

for all x € (¢, d).

We shall develop several techniques for showing that a given function is
analytic. To simplify statements of results, we continue to use the conventions
FO.= fand0!:=1.

First, it is important to realize that if f is analytic on an open interval 7, then
for each center xg there is one and only one power series that represents f near
X0, and that power series has the same coefficients that the Taylor polynomi-
als have.

7.39 Theorem. [UNIQUENESS].

Let ¢, d be extended real numbers with ¢ < d, let xo € (c, d), and suppose that
fied) = R Iff(x) = Y2 ar(x — x0)k for x € (c,d), then f € C®(c,d)
and

I ARED)

ay = X

k=01,

Proof. Clearly, f(x9) = ap. Fix k € N. By hypothesis, the radius of con-
vergence R of the power series Z/fio ar(x — xp)¥ is positive and (c,d) C
(xo — R, xo + R). Hence, by Corollary 7.31, f € C*(c, d) and

o0

|
FOm =Y " —x) (10)
’; (n —k)!

for x € (c,d). Apply this to x = xo. The terms on the right side of (10)
are zero when n > k and klay when n = k. Hence, f® (xq) = klay for
each k € N. [ |

This “locally unique” power series has a name.
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7.40 Definition.

Let f € C*®(a, b) and let xo € (a, b). The Taylor expansion (or Taylor series)
of f centered at xy is the series

o S ® (x0)
k!

(x — xo)~.

k=0

(No convergence is implied or assumed.) The Taylor expansion of f centered
at xo = 0 is usually called the Maclaurin expansion (or Maclaurin series) of f.

Theorem 7.39 not only says that the power series representation of an ana-
lytic function is locally unique. It also says that every analytic function is a C*
function. The next remark shows that the converse of this statement is false.

7.41 Remark. [CAUCHY]. The function

e~ 1/% x#0
fx) = 0 =0

belongs to C*°(—o00, 00) but is not analytic on any interval which contains x = 0.

Proof. 1tis easy to see (Exercise 4.4.7) that f € C®°(—o0, o) and f®(0) =0
for all k € N. Thus the Taylor expansion of f about the point xo = 0 is
identically zero but f(x) = 0 only when x = 0. |

One of our aims in this section is to prove that many of the classical C*®
functions used in elementary calculus are analytic on their domain. Since, by
Theorem 7.39, a C* function f is analytic on an open interval [ if and only if its
Taylor expansion at each xo € I converges to f near xg, the following concept is
useful in this regard.

7.42 Definition.

Let f € C®(a, b) and x¢ € (a, b). The remainder term of order n of the Taylor
expansion of f centered at xg is the function

n—1 k)
Ra(x) = R{™ () :=f () = Y f—f’“”(x — xo).

P k!

In fact, by Theorem 7.39 and Definition 7.42, a function f € C*®(a, b) is analytic
on (a, b) if and only if for each x¢ € (a, b) there is an interval (c, d) containing
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xo such that R,{’x" — 0, as n — oo, for every x € (c,d). We shall use this
observation frequently below.

By Taylor’s Formula (Theorem 4.24) the remainder term of an f € C*(a, b)
satisfies

F™ ()

R () = *—
n:

(x —xp)"

for some ¢ between xg and x (note the index shift from n + 1 to n.) Therefore, it
should come as no surprise that there are several results that state the following:
If the nth derivative of f satisfies a certain condition, then f is analytic on (a, b).
Here is a particularly simple but useful result of this type.

7.43 Theorem. Let f € C®(a,b). If thereis an M > 0 such that
| f™M @) |< M”

forall x € (a,b) and n € N, then f is analytic on (a, b). In fact, for each xo €
(a, D),

O (k)
Fo) = ,;f kfm (x — x0)*

holds for all x € (a, b).

Proof. Fix xy € (a,b) and set C = max{M|a — xgo|, M|b — x¢|}. By Taylor’s
Formula,

IR (x)| = lx — xo" < —|x —xo|" < —

n! n!

| £ (c)] M" c"
n!

foralln € N. But C"/n! — 0 asn — oo for any C € R (being terms of
a convergent series by the Ratio Test). Thus, by the Squeeze Theorem, the

remainder term R,{ 0 (x) converges to zero for every x € (a, b). |

Here are three examples of Theorem 7.43 in practice.

744 EXAMPLE.

Prove that sin x and cos x are analytic on R and have Maclaurin expansions

o (—1)k)62k+1 o0 (_l)kx2k

sinx = ZW, COSX = ZW (11)

k=0 k=0

Proof. In Example 4.26 [see (19) there], we proved that the Taylor series
of f(x) := sinx centered at xo = 0 is S(x) := Y poq(—DFxk+1/2k + D).
Since £ (x) is & sinx or & cosx, it is clear that | f")(x)| < I for all x € R.
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Therefore, it follows from Theorem 7.43 that sin x is analytic on R and that
the left side of (11) holds everywhere on R. A similar argument proves the
right side of (11). u

7.45 EXAMPLE.

Prove that ¢* is analytic on R and has Maclaurin expansion

o = Z%. (12)

Proof. In Example 4.25 [see (18) there], we proved that the Taylor series of
f(x) := e* centered at xg = 01is S(x) := Y poq x¥/k!.

Fix C > 0 and notice that | f™ (x)| = |¢*| < ¢€ =: M < M" foralln € N and
x € [—C, C]. It follows from Theorem 7.43 that ¢* is analytic on [-C, C] and
that S(x) converges to e* everywhere on [—C, C]. Since C > 0 was arbitrary,
we conclude that (12) holds for all x € R. [

Sometimes, it is impractical to get the kind of global estimates on the deriva-
tives of f necessary to apply Theorem 7.43. The following result, which shows
that the center of a power series can be changed within its interval of conver-
gence, is sometimes used to circumvent this problem.

7.46 Theorem. Suppose that I is an open interval centered at c and that
o
f(x):Zak(x—c)k, x el
k=0

If xo € I and r > 0 satisfy (xo —r,xo +r) C I, then

X £(k)
fo =31 kfx()) (x —x0)*
k=0 )

forall x € (xo —r, xo +r). In particular, if f is a C* function whose Taylor series
expansion converges to [ on some open interval J, then f is analytic on J.

Proof. 1t suffices to prove the first statement. By making the change of vari-
ables w = x — ¢, we may suppose that ¢ = 0 and I = (—R, R); that is, that
fx) = Z/fozo arxk, forall x € (—R, R). Suppose that (xo—r, xo+7) € (—R, R)
and fix x € (xo — r, xo + r). By hypothesis and the Binomial Formula,

[e9) 00 [e's] k
fO=Y ax* =" an(x —xo) +x0) =) ar Y (’;) x5 Y —x0). (13)
k=0 k=0 k=0  j=0
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Since Z}:O:O agy* converges absolutely at y := |x — xp| + |x9| < R, we have
00 k k
>l 3o ()37 | < z el z ( ) bt ol
k=0| j=0

o0
k
= laxl(lx — xol + |xo)* < oc.
k=0

Hence, by (13), Theorem 7.18, and Corollary 7.31,

7.47 EXAMPLE.
Prove that arctan x is analytic on (—1, 1) and has Maclaurin expansion
o (— 1)kx2k+l

t =y — —1,1).
arctan x 2 T x €( )

Proof. For each 0 < x < 1, the geometric series Y oo, (—1)¥#?* converges
uniformly on [—x, x] to 1/(1 + 12). Thus, by Theorem 7.32,

( l)k 2k+1

_ NS DR
arctan x _/(;1+t2 /Z( )t Z T

k=0

By uniqueness, this is the Maclaurin expansion of arctan x. Since this expan-
sion converges on (—1, 1), it follows from Theorem 7.46 that arctan x is analytic
on(—1,1). |

In Examples 7.44 and 7.45, we found the Taylor expansion of a given f by
computing the derivatives of f and estimating the remainder term. In the
preceding example, we found the Taylor expansion of arctan x without comput-
ing its derivatives. This can be done in general, using term-by-term differenti-
ation or integration or products of power series, when the function in question
can be written as an integral or derivative or product of functions whose Taylor
series are known. Here are two more examples of this type.
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748 EXAMPLE.

Find the Maclaurin expansion of arctan x /(1 — x).

Proof. By Theorem 7.33 and Example 7.47, for each |x| < 1,

arctanx) S I (—1)kx2k+1
( 1 —x >_<I§)x)(z 2%k + 1

k=0
D/
_Z Z( ) N3
k=0 \jeAx J
where Ay :={j e N: 0 < j < (k—1)/2}. |

749 EXAMPLE.

Show that the Taylor expansion of log x centered at xop = 1 is

o0

logx = Z(

k=1

_])k-‘rl

x—D  xe(,2).

Proof. By Theorem 7.32, for each x € (0, 2),

/" dt /x dt
logx = — = _—
1 1 1—(1—t)

(-1 )k+l

=/] 2(1 nkdr = Z . (x — Dk |

In some situations it is useful to have an integral form of the remainder term.
This requires a slightly stronger hypothesis than Taylor’s Formula but can yield
a sharper estimate.

7.50 Theorem. [LAGRANGE].
Letn e N. If f € C"(a, b), then

Ry(x) :=R}™(x) = ( / - " W @) dr
X0

!
forall x, xg € (a, b).

Proof. The proof is by induction on n. If n = 1, the formula holds by the
Fundamental Theorem of Calculus.
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Suppose that the formula holds for some n € N. Since

(n)
Rn—i—l(x) = Rn(x) - f n('XO) (x - xO)n and
(x — xo)" _ 1 /x(x _ t)n—l dt,
n! (n—1!Jy,

it follows that
1 * n— n n
Ru1 (0= o, / =" (FO0 - 1P 00) dr.

Letu = f™(t) — f™(xg), dv = (x — t)"~! and integrate the right side of the
identity above by parts. Since u(xp) = 0 and v(x) = 0, we have

Ry1(x) = — / C W) di = % / S 0y 0D )

X0

(n—1)!
Hence, the formula holds for n + 1. |

The rest of this section contains some additional (but optional) material on
analytic functions.

In order to generalize the Binomial Formula from integer exponents to real
exponents (compare Theorem 1.26 with Theorem 7.52 below), we introduce the
following notation. Let « € R and k be a nonnegative integer. The generalized
binomial coefficient o over k is defined by

alg—1)...(a—k+1)

(Z) = k! k#0
1 k = 0.

Notice that when o € N, these generalized binomial coefficients coincide with

o
k> =0fork > «a.

the usual binomial coefficients, because in this case (

*7.51 Lemma.
Suppose that o, B € R. Then

k

B(0)(0)=(1) e

J
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Proof. The formula holds for k = 0 and k = 1. If it holds for some k > 1, then
by the inductive hypothesis and the definition of the generalized binomial
coefficients,

) =5 0)+ (59) () (64)
() 2 () () () ()
=f§<k+‘i‘_,-)(f)- -

With this ugly calculation out of the way, we are prepared to generalize the
Binomial Formula.

*7.52 Theorem. [THE BINOMIAL SERIES].
If « € Rand |x| < 1, then

A+x0*=>" (Z‘) Xk
k=0

In particular, (1 + x)% is analyticon (—1, 1) forall« € R.

Proof. Fix |x| < 1 and consider the series F(a) := ) joq (Z) x*. Since

o k+1
(k + 1) *

= lim x| =x| <1
k—oo |k +1

is independent of «, it follows from the proof of the Ratio Test that F con-
verges absolutely and uniformly on R. Hence, F is continuous. Moreover, by
Theorem 7.33 and Lemma 7.51,
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F@F@B) =) <‘Z> A+ (’2) xk
k=0

k=0

0§)<ng) (?)xk

(“Zﬁ>x — F(a + B).

M

k

~

o

k=0

Hence, it follows from Exercise 3.3.9 that F(«) = F(1)“. Since
F(l) = i(l)xk =1+x
k=0 k ’
we conclude that F(«) = (1 + x)% for all x| < 1. |

Lagrange’s Theorem gives us another condition on the derivatives of f suffi-
cient to conclude that f is analytic.

*7.53 Theorem. [BERNSTEIN].
If f € C®(a,b) and f™ (x) > 0 for all x € (a,b) and n € N, then f is analytic
on (a, b). In fact, if xy € (a, b) and F(x) > 0 for x € [xg, b) and n € N, then

(k)
f()—Zf L0) (1 — ot (14)

for all x € [xo, D).

Proof. Fix xo < x < band n € N. Use Lagrange’s Theorem and a change of
variables t = (x — xo)u + xo to write

Ra(x) = RI™(x) = % / (A=) O ((x = xo)u + x0) du.  (15)

Since f™ > 0, (15) implies R, (x) > 0. On the other hand, by definition and
hypothesis,

f(")( 0)

Ry(x) = f(x )—Z (x —x0)* < f(x).

Therefore,
0<R,(x) < f(x) (16)

for all x € (xo, b).
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Let by € (xp, b) and notice that it suffices to verify (14) for xo < x < bo.
(We introduce the parameter by in order to handle the cases » € Rand b = co
simultaneously.) Since R,(xg) = 0 for all n € N, we need only show that
R,(x) — 0asn — oo for each x € (xg, by).

By hypothesis, f®**1 () > 0 for ¢ € [xo, b), so f® is increasing on [xq, b).
Since x < by < b, we have by (15) and (16) that

0<Ry(x) = % f (1 —uw)" ' £ ((x — xo)u + x0) du

- (x —xo)" / (1 —uw)" ' FD ((by — x0)u + x0) du
(n—1!

_(x—x0
_(bo—XO> Ry (bo).

Since (x — xg)/(bg — x9) < 1 and, by (16), R, (bg) < f(bg), we conclude by the
Squeeze Theorem that R, (x) — 0 asn — oo. [ |

*1.54 EXAMPLE.

Prove that a* is analytic on R for each a > 0.

Proof. First suppose that a > 1. Since f (x) = (loga)" -a* > 0 forallx € R
and n € N, a* is analytic on R by Bernstein’s Theorem. If 0 < a < 1, then by
what we just proved and a change of variables,

k

o log"(a™")(—x) logha-x
x __ IN—x __ —
coes kg(:) k! - kg(:) k! ‘

Hence by Theorem 7.46, a* is analytic on R. |

Our final theorem shows that an analytic function cannot be extended in an
arbitrary way to produce another analytic function. We first prove the following
special case.

*1.55 Lemma.

Suppose that f, g are analytic on an open interval (c,d) and that xy € (c,d). If
f(x) = g(x) for x € (c, xp), then there is a § > 0 such that f(x) = g(x) for all
x € (xg — 6, xo + 9).

Proof. By Theorem 7.39 and Definition 7.38, there is a § > 0 such that

X r(k) (k)
Foo =3 LB G and g = Zg (O)x—xw" (17)

k!
k=0
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for all x € (xg — 8, xo + 8). By hypothesis, f, g are continuous at xg and

foo) = lim fx) = lim g(x) = g(xo). (18)

Similarly, f® (xo) = g® (xo) for k € N. We conclude from (17) that f(x) =
g(x) for all x € (xg — 8, xg + 9). [ |

*7.56 Theorem. [ANALYTIC CONTINUATION].

Suppose that I and J are open intervals, that f is analytic on I, that g is analytic
on J, and that a < b are pointsin I N J. If f(x) = g(x) for x € (a, b), then
fx)=gx) forallx e INJ.

Proof. We assume for simplicity that I and J are bounded intervals. Since
INJ # @, choose c,d € Rsuch that I N J = (¢, d) (see Figure 7.6).

I 1 1

| |

| |

: fe——J—1
| |

| | |

| | |

| | |

|
|
|
yé |
N U

c a b d

FIGURE 7.6

Consider the set E = {t € (a,d) : f(x) = g(x) for all x € (a,t)}. By
our assumption, d < oo and by hypothesis b € E. Thus E is bounded and
nonempty. Let xo = supE. If xo < d, then by Lemma 7.55 thereisa § > 0
such that f(x) = g(x) for all x € (x9 — 8, xo + 8). This contradicts the choice
of xg. Therefore, xo = d; thatis, f(x) = g(x) for all x € (a,d). A similar
argument proves that f(x) = g(x) for all x € (c, b). |

EXERCISES

7.4.1. Prove that each of the following functions is analytic on R and find its
Maclaurin expansion.
a) x2 + cos(2x)
b) x23*
c) cos?x —sin® x

X
1
d) &

X

7.4.2. Prove that each of the following functions is analytic on (—1, 1) and find
its Maclaurin expansion.

a)

X
x5 41
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ex

b
)1+x

9 ot (1))

*d) arcsinx

7.4.3. For each of the following functions, find its Taylor expansion centered
at xo = 1 and determine the largest interval on which it converges.

a) e*
b) log,(x%)
c) x> —x+5
*d) Vx
7.4.4. Prove that if P is a polynomial of degree n and x¢ € R, then there are
numbers By € R such that

P(x) = Bo+ B1(x —x0) + - + Bulx — x0)"
for all x € R.
7.4.5 Leta > 0 and suppose that f € C*(—a, a).

a) If f is odd [i.e., if f(—x) = —f(x) for all x € (—a, a)], then the
Maclaurin series of f contains only odd powers of x.

b) If f is even [i.e., if f(—x) = f(x) for all x € (—a,a)], then the
Maclaurin series of f contains only even powers of x.

7.4.6. Suppose that f € C*°(—o0, 00) and that
1 a
lim —/ X" DG —x)dx =0
n—oo n! 0

for all a € R. Prove that f is analytic on (—oo, c0) and

© &) (0
f(X)=ka'( )xk,

k=0

e R.

7.4.7. a) Prove that

n—1

L, 1
X
dx — -
/Oe * Z(2k+1)k!

k=0

<
~ n!

forn € N.
b) Show that

1
2.9253 < f e dx < 2.9254.
—1

7.4.8. Let f € C*(a, b). Prove that f is analytic on (a, b) if and only if f’ is
analytic on (a, b).
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7.4.9. Suppose that [ is a nonempty open interval and that f is bounded and
C*® on I. If there is an M > 0 such that | f® (x)| < Mk for all x € I
and all positive integers k sufficiently large, and if there exist a,b € I
such that

b
/ fx)x"dx=0

forn=0,1,2, ..., then prove that f is zero on [a, b].
*7.4.10. Suppose that f is analytic on (—oo, co) and that

b
f (o) dx = 0

for some a # b in R. Prove that f(x) = 0 for all x € R.
*7.4.11. Prove that

o0 1/ o
<Z|ak|ﬂ> <Y lal
k=1 k=1

forallar e Rand all 8 > 1.

*7.5 APPLICATIONS

This section uses no material from any other enrichment section.

The theory of infinite series is a potent tool for both pure and applied mathe-
matics. In this section we give several examples to back up this claim.

We begin with a nontrivial theorem from number theory. Recall that an
integer n > 2 is called prime if the only factors of n in N are 1 and n. Also recall
that given n € N there are primes pi, pa, ..., pr and exponents oy, oy, ..., A
such that

o1 o o
n=Dp; Py - Py -

7.57 Theorem. [EUcCLID’S THEOREM; EULER’S PROOF].
There are infinitely many primes in N.

Proof. Suppose to the contrary that pi, pa, ..., pi represent all the primes
in N. Fix N € N and set « = sup{«1, ..., o}, where this supremum is taken
over all «;’s which satisfy n = p{'p3?... p{* for some n < N. Since every
integer j € [1, N] must have the form j = p{'...p;* for some choice of

integers 0 < ¢; < «, we have

1 1 1 1 1 1
1%———'+"'+'—E 14———'+"'+-—E - 1+———-+"'+'—g
D1 P P2 Py Pk Pr
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On the other hand, for each integer i € [1, k], we have by Theorem 6.7 that

1 1 & /1) ;
1+—+---+—Q§Z(—_> = 2
i

pl_l.

Consequently,

i} <P1—1> ' (Pkpi1>=M<oo.

Jj=1

Taking the limit of this inequality as N — oo, we conclude that Z?‘;l 1/j <
M < oo, a contradiction. [ |

Our next application, a result used to approximate roots of twice differen-
tiable functions, shows that if an initial guess x( is close enough to a root of a
suitably well-behaved function f, then the sequence x, generated by (19) con-
verges to a root of f.

7.58 Theorem. [NEWTON-RAPHSON].
Suppose that f : [a, b] — Ris continuous on [a, b] and that f(c) = 0 for some
¢ € (a,b). If f” exists and is bounded on (a, b) and there is an g9 > 0 such
that | f'(x)| > €o for all x € (a, b), then there is a closed interval I < (a,b)
containing c such that given xg € I, the sequence {x,}, N defined by

n €N, (19)

satisfies x, € I and x, — c as n — oo.

Proof. Choose M > Osuch that|f”(x)| < M for x € (a, b). Choose ry € (0, 1)
so small that I = [¢c — rg, ¢ + rg] is a subinterval of (a,b) and ro < go/M.
Suppose that xo € I and define the sequence {x,} by (19). Set r := roM /g9
and observe by the choice of ry that r < 1. Thus it suffices to show that

X, —cl < r"|xo — ¢l (20)
and

|Xn —cl <o (21)

hold for all n € N.
The proof is by induction on n. Clearly, (20) and (21) hold for n = 0. Fix
n € N and suppose that

X1 — | <" Hxg — ¢ (22)
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and that
|Xp—1 — ¢| < ro. (23)

Use Taylor’s Formula to choose a point & between ¢ and x,,_; such that

1
—fGin—1) = f(©) = f(n=1) = f'(n—1)(c = xu-1) + Ef”(é)(c — Xn1)’

Since (19) implies — f (x,—1) = f'(xp—1)(xy — xp—1), it follows that

/ 1 " 2
fn—)(xp —c) = Ef &) (c—xp-1)".
Solving this equation for x;,, — ¢, we have by the choice of M and ¢y that

J"®)
2f"(xn-1)

Since M /ey < 1/rp, it follows from (24) and (23) that

M
X, —c| = ’ n1 —c)? < —xp_1 —c|*. (24)
280

M 2_ 1 o
|xp —cl = —|xp—1 —c|” = —Irol” = ro.
€0 ro
This proves (21). Again, by (24), (22), and the choice of r, we have

M r
Xy — | < 8—(r”—1|xo —c])? = r—(FZ"_ZIXO —c]®) < xg —cl.
0 0

Since r < 1 and 2n — 1 > n imply r2"=1 < p"_we conclude that |x, — ¢| <
r2"_1|x0—c| < r'|xp — c|. |

Notice if x,,— and x, satisty (19), then x, is the x-intercept of the tangent line
toy = f(x) at the point (x,—1, f(x,—1)) (see Exercise 7.5.4). Thus, Newton’s
method is based on a simple geometric principle (see Figure 7.7). Also notice
that, by (24), this method converges very rapidly. Indeed, the number of decimal
places of accuracy nearly doubles with each successive approximation.

As a general rule, it is extremely difficult to show that a given nonalgebraic
number is irrational. The next result shows how to use infinite series to give an
easy proof that certain kinds of numbers are irrational.

7.59 Theorem. [EULER].
The number e is irrational.

Proof. Suppose to the contrary that e = p/q for some p,q € N. By Exam-
ple 7.45,

o0

qa 1 _ (—DF
o=y C

k=0
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Y

FIGURE 7.7

Breaking this sum into two pieces and multiplying by (—1)?*!p!, we have

x i=(—1)PT! (q(p - Xp:(—l)kp!) iy i (_1)k+p+1p_!.
k!

k!
k=0 k:p-‘rl

Since p!/k! € N for all integers k < p, the number x must be an integer. On
the other hand,

1 1 1
S0l i DetD  GrDrIr i3

y

lies between 1/(p + 1) and 1/(p + 1) — 1/(p + 1)(p + 2). Therefore, y is a
number which satisfies 0 < y < 1. In particular, x # y, a contradiction. |

We know that a continuous function can fail to be differentiable at one point
[e.g., f(x) = |x|]. Hence, it is not difficult to see that, given any finite set of
points E, there is a continuous function which fails to be differentiable at every
point in E. We shall now show that there is a continuous function which fails to
be differentiable at all points in R. Once again, here is a clear indication that,
although we use sketches to motivate proofs and to explain results, we cannot
rely on sketches to give a complete picture of the general situation.

7.60 Theorem. [WEIERSTRASS].
There is a function f continuous on R which is not differentiable at any point
in R.

(Note: Such functions are called nowhere differentiable.)

264
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AY
y =fox)
| >
1 1 x
2
FIGURE 7.8
Proof. Let
X O0<x<1/2
for=1,_ 12<x<1

and extend fp to R by periodicity of period 1, that is, so that fo(x) = fo(x +1)
for all x € R (see Figure 7.8). Set fi(x) = fo(2¥x)/2* for x € Rand k € N and
consider the function

f® =) fikx), xeR
k=0

Normalizing fi by 2% has two consequences. First, since fj(y) = %1 for each
y which satisfies 2y ¢ Z, it is easy to see that

f{(y) ==+1 for each y which satisfies 2¢*1y ¢ Z. (25)

Second, by the Weierstrass M-Test, f converges uniformly and, hence, is con-
tinuous on R.

Since f is periodic of period 1, it suffices to show that f is not differentiable
at any x € [0,1). Suppose to the contrary that f is differentiable at some
x € [0, 1). For each n € N, choose p € Z such that x € [«,, B,) for a, = p/2"
and 8, = (p + 1)/2". Since each f; is linear on [ag41, Br+1] and [y, By] <
[@k+1, Brr1] for n > k, it is clear that

o Ji(Bn) — Ji(an)
Ccp ="

Bn —an

depends only on k and not on n when n > k. Moreover, by (25), it is also clear
that each ¢, = £1. Therefore, Z/fio cr cannot be convergent.
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On the other hand, since f is differentiable at x,

J(Bn) — flan)

n — On

(26)

fe = lin,

(see Exercise 7.5.7). However, since fo(y) = 0 if and only if y € Z, we also

have fi(B,) = fi(a,) = 0 for k > n. It follows that f(B,) = Z’,:;(I) fr(Bp) and
flay) = ZZ;(I) S (o). We conclude from (26) that

n—1

Y a=lim > ¢ = lim SB) = flaw) _ £ (x)
k=0 n—>ook:0

n—00 ,Bn — oy

is convergent, a contradiction. |

EXERCISES

7.5.1. Using a calculator and Theorem 7.58, approximate all real roots of f(x) =
x3 +3x2 4 4x + 1 to five decimal places.
7.5.2. a) Using the proof of Theorem 7.58, prove that (20) holds if r/2
replaces r.

Use part a) to estimate the difference |x4 — 7|, where xg = 3, f(x) =
sinx, and x, is defined by (19). Evaluate x4 directly, and verify that x4
is actually closer than the theory predicts.

7.5.3. Prove that given any n € N, there is a function f € C"(R) such that
f@*+D(x) does not exist for any x € R.

7.5.4. Prove that if x,,_1, x,, satisfy (19), then x, is the x-intercept of the tangent
line to y = f(x) at the point (x,_1, f(x,—1))-

7.5.5. Prove that cos(1) is irrational.

7.5.6. Suppose that f : R — R. If f” exists and is bounded on R, and there is
an gy > 0 such that |f/(x)| > ¢ for all x € R, prove that there exists a
8 > 0 such that if | f(xg)| < 8 for some xo € R, then f has a root; that is,
that f(c) = 0 for some c € R.

7.5.7. Letx € [0, 1) and «,, B, be defined as in Theorem 7.60.

a) If f:[0,1) - Rand y € R, prove that

JBn) = flan) _(f(ﬂn)—f(x)_ )(ﬂn—X)
Bn — an r= Bn —x Y Bn — an

+(f(X)—f(an)_y)<x—an>'
X — oy Bn — oy

b) If f is differentiable at x, prove that (26) holds.




CHAPTER 8

Euclidean Spaces

The world we live in is at least four dimensional: three spatial dimensions
together with the time dimension. Moreover, certain problems from engineer-
ing, physics, chemistry, and economics force us to consider even higher dimen-
sions. For example, guidance systems for missiles frequently require as many
as 100 variables (longitude, latitude, altitude, velocity, time after launch, pitch,
yaw, fuel on board, etc.). Another example, the state of a gas in a closed
container, can best be described by a function of 6m variables, where m is
the number of molecules in the system. (Six enters the picture because each
molecule of gas is described by three space variables and three momentum vari-
ables.) Thus, there are practical reasons for studying functions of more than one
variable.

8.1 ALGEBRAIC STRUCTURE

For each n € N, let R" denote the n-fold cartesian product of R with itself;
that is,

R":={(x1,x2,...,x,) 1 x; e Rfor j =1,2,...,n}.

By a Euclidean space we shall mean R” together with the “Euclidean inner prod-
uct” defined in Definition 8.1 below. The integer » is called the dimension of
R”, elements x = (x1, x2, ..., x,) of R" are called points or vectors or ordered
n-tuples, and the numbers x; are called coordinates, or components, of x. Two
vectors X, y are said to be equal if and only if their components are equal;
that is, if and only if x; = y; for j = 1,2,...,n. The zero vector is the vec-
tor whose components are all zero; that is, 0 := (0,0,...,0). Whenn = 2
(respectively, n = 3), we usually denote the components of x by x, y (respec-
tively, by x, y, z).

You have already encountered the sets R” for small n. R! = Riis the real line;
we shall call its elements scalars. R? is the xy-plane used to graph functions of
the form y = f(x). And R3 is the xyz-space used to graph functions of the form
2= fx,y).

We have called elements of R” points and vectors. In general, we make no
distinction between points and vectors, but in each situation we adopt the inter-
pretation which proves most useful.

In earlier courses, vectors were (most likely) directed line segments, but our
vectors look like points in R”. What is going on? When we callana € R" a
vector, we are thinking of the directed line segment which starts at the origin
and ends at the point a.

From Chapter 8 of Introduction to Analysis, Fourth Edition. William R. Wade.
Copyright © 2010 by Pearson Education, Inc. All rights reserved.

267



268

268 Chapter 8 Euclidean Spaces

What about directed line segments which begin at arbitrary points? Two
arbitrary directed line segments are said to be equivalent if and only if they
have the same length and same direction. Thus every directed line segment
V is equivalent to a directed line segment in standard position; that is, one
which points in the same direction as V, has the same length as V/, but whose
“tail” sits at the origin and whose “head,” a, is a point in R". If we identify V
with a, then we can represent any arbitrary directed line segment in R” by a
point in R".

Identifying arbitrary vectors in R" with vectors in standard position and, in
turn, with points in R” may sound confusing and sloppy, but it is no different
from letting 1/2 represent 2/4, 3/6, 4/8, and so on. (In both cases, there is an
underlying equivalence relation, and we are using one member of an equiva-
lence class to represent all of its members. For vectors, we are using the repre-
sentative which lies in standard position; for rational numbers, we are using the
representative which is in reduced form.)

We began our study of functions of one variable by examining the algebraic
structure of R. In this section we begin our study of functions of several variables
by examining the algebraic structure of R”. That structure is described in the
following definition.

8.1 Definition.

Letx=(x1,...,x,), Yy=0O1,...,yn) € R", and @ € R.
i) The sum of the vectors x and y is the vector

X+y =@ +y,x2+y2,..0 X0+ V).
ii) The difference of the vectors x and y is the vector
X—y = (X1 = Y1, X2 = Y2, -+ oy Xn — Yn)-
iii) The product of the scalar & and the vector x is the vector
ax = (axy, axp, ..., 0qx,).

iv) The (Euclidean) dot product (or scalar product or inner product) of the
vectors x and y is the scalar

X-y :=x1y1+x2y2+--+ XnYn-

These algebraic operations are analogues of addition, subtraction, and multi-
plication on R. It is natural to ask, Do the usual laws of algebra hold in R"? An
answer to this question is contained in the following result.
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8.2 Theorem. Letx,y,ze€ R"and o, € R. Then

x0=0, 0x=0, 0.-x=0, Ix=%x, 0+x=%x, x—x=0,
a(Bx) = B(ax) = (ef)x, a(x-y) = (ax) -y =x-(ay),
X+y=y+x, x+(y+z=x+y +z X y=y-x
ax+y) =ax+ay, and x-(y+zZ)=X-y+X-Z

Proof. These properties are direct consequences of Definition 8.1 and corre-
sponding properties of real numbers. We will prove that vector addition is
associative, and leave the proof of the rest of these properties as an exercise.

By definition and associativity of addition on R (see Postulate 1 in
Section 1.2),

X+ +2) =0, x)+O1+21 -0, Y+ 20)
=@ +O1+z21), . X0+ On +20)
=((x1+yD+z1,.-., ntyn)+z0) =x+Yy) +2z. [ |

Thus (with the exception of the closure of the dot product and the existence
of the multiplicative identity and multiplicative inverses), R" satisfies the same
algebraic laws, listed in Postulate 1, that R does. This means one can use instincts
developed in high school algebra to compute with these vector operations. For
example, just as (x — y)> = x> —2xy+ y? holds for real numbers x and y, even so,

X—y) - X—y) =x-X—2X-y+y-y (1)

holds for any vectors x, y € R".

In the first four chapters, we used algebra together with the absolute value to
define convergence of sequences and functions in R. Is there an analogue of the
absolute value for R"? The following definition illustrates the fact that there are
many such analogues.

8.3 Definition.

Letx € R”.

i) The (Euclidean) norm (or magnitude) of x is the scalar

n
Ixfl== | > il
k=1

ii) The ¢'-norm (read L-one-norm) of x is the scalar

n
Ixfl:=) " el
k=1
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8.3 Definition. (Continued)

iii) The sup-norm of x is the scalar
[Xlloo:=max{|xi], ..., [xnl}.
iv) The (Euclidean) distance between two points a, b € R” is the scalar

dist(a,b) := ||la—Db|.

(Note: For relationships between these three norms, see Remark 8.7 below. The
subscript oo is frequently used for supremum norms because the supremum of
a continuous function on an interval [a, b] can be computed by taking the limit

of (fab | f(x)|Pdx)!/P as p — co—see Exercise 5.2.8.)

Since ||x|| = ||x|li = ||x]lcc = |x|, when n = 1, each norm defined above is an
extension of the absolute value from R to R”. The most important, and in some
senses the most natural, of these norms is the Euclidean norm. This is true for
at least two reasons. First, by definition,

Ix|>?=x-x forall xeR".

(This aids in many calculations; see, for example, the proofs of Theorems 8.5
and 8.6 below.) Second, if A is the triangle in R? with vertices (0, 0), x := (a, b),
and (a, 0), then by the Pythagorean Theorem, the hypotenuse of A, +a? + b2,
is exactly the norm of x. In particular, the Euclidean norm of a vector has a
simple geometric interpretation in R2.

The algebraic structure of R” also has a simple geometric interpretation in
R? which gives us another very useful way to think about vectors. To describe
it, fix vectors a = (ay, a2) and b = (b1, b2) and let P(a, b) denote parallelogram
associated with a and b (i.e., the parallelogram whose sides are given by a and b).
(We are assuming that this parallelogram is not degenerate—see Figure 8.1.)
Then the vector sum of a and b, (a; + by, ay + b2), is evidently the diagonal
of P(a, b); that is, a + b is the vector which begins at the origin and ends at
the opposite vertex of P(a, b). Similarly, the difference a — b can be identified
with the other diagonal of P(a, b) (see Figure 8.1). The scalar product of ¢ and
a, (tay, tay), evidently stretches or compresses the vector a, but leaves it in the
same straight line which passes through 0 and a. Indeed, if + > 0, then ra has
the same direction as a, but its magnitude, |¢| ||a|, is > or < the magnitude of
a, depending on whether ¢+ > 1 or + < 1. When ¢ is negative, ra points in the
opposite direction from a but is again stretched or compressed depending on
the size of [¢].
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FIGURE 8.1

Using R? as a guide, we can extend concepts from R? to R”. Here are five

examples.

1)

2)

3)

Every (a,b) € R? can be written as (a, b) = a(1, 0) + b(0, 1). Using this as a
guide, we define the usual basis of R" to be the collection {ey, ..., e,}, where
e; is the point in R” whose jth coordinate is 1, and all other coordinates
are 0. Notice by definition that each x = (x1, ..., x,) € R" can be written as
a linear combination of the e;’s:

n
X = E xjej.
j=1

We shall not discuss other bases of R” or the more general concept of “vec-
tor spaces,” which can be introduced using postulates similar in spirit to
Postulate 1 in Chapter 1. Instead, we have introduced just enough alge-
braic machinery in R” to develop the calculus of multivariable functions.
For more information about R” and abstract vector spaces, see Noble and
Daniel [9].

Note: In R? or R?, e; is denoted by i, ey is denoted by j, and, in R3, e3is
denoted by k. Thus, in R3, i:=(1,0,0), j:=10,1,0),and k := (0,0, 1).
Letr € Rand a, b € R? with b nonzero. By the geometric interpretation of
vector addition, ¢ (¢) := a + rb is a point on the line passing through a in the
direction of b. Using this as a guide, we define the straight line in R" which
passes through a point a € R” in the direction b € R"\{0} to be the set of
points

La(b) :={a+1tb:t eR}.

In particular, it is easy to see that the parallelogram P(a, b) determined by
nonzero vectors a and b in R” can be described as

P(a;b) :={ua+vb:u,v e[0,1]}.

Fix a#bin R?, and set ¢ () := (1 —t)a+tb, for r € R. Since (1) =a+t(b—a),
it is evident that i describes the line £,(b — a). This line passes through the
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points ¥(0) = a and ¢ (1) = b. In fact, by the geometric interpretation
of vector subtraction, as ¢ ranges from 0 to 1, the points ¥ (¢) trace out the
diagonal of P(a, b) that does not contain the origin (see Figure 8.1). It begins
at a and ends at b. Using this as a guide, we define the line segment from
a e R" tob € R” to be the set of points

L@ b):={(1—ta+tb:tel0,1]).

4) The angle between two nonzero vectors a, b € R? can be computed by the
following process. If A is the triangle determined by the points 0, a, and b,
then the sides of A have length ||a||, ||b||, and |la—b||. If we let # be the angle
between a and b [i.e., the angle in A at the vertex (0, 0)], then by the Law of
Cosines (see Appendix B),

la—b|I? = |la||* + |b]|* — 2]|al| [b]| cos 6.

Since Theorem 8.2 implies [a—b|?> = (a—b)-(a—b) = |a|> —2a-b+ |b|?,
it follows that —2a - b = —2||a|| ||b|| cos 6. Since neither a nor b is zero, we
conclude that
b
p= 2 )
lall lIbl

Using this as a guide, we define the angle between two nonzero vectors
a,b € R” (for any n € N) to be the number 6 € [0, 7] determined by (2).
(Our next result, the Cauchy—Schwarz Inequality, shows that the right side
of (2) always belongs to the interval [—1, 1]. Hence, for each pair of nonzero
vectors a, b € R”, there is a unique angle 6 € [0, ] which satisfies (2).)

5) Two vectors in R? are parallel when one is a multiple of the other, and
orthogonal when the angle, 6, between them is n/2; that is, whena - b =
cosf|all ||b] = 0. Using this as a guide, we make the following definition
in R".

8.4 Definition.

Let a and b be nonzero vectors in R”.

i) a and b are said to be parallel if and only if there is a scalar # € R such that
a=th.
ii) a and b are said to be orthogonal if and only ifa - b = 0.

Notice that the usual basis {e;} consists of pairwise orthogonal vectors; that
is, e; - ¢, = 0 when j # k. In particular, the usual basis is an orthogonal basis.

We note in passing that Definition 8.4 is consistent with formula (2)—see
Exercise 8.1.4b. Indeed, if 0 is the angle between two nonzero vectors a and
b in R”, then a and b are parallel if and only if 6 = 0 or = 7, and a and b are
orthogonal if and only if 6 = 7 /2.

We shall see below that in addition to suggesting definitions for R”, the geom-
etry of R? can also be used to help suggest proof strategies in R".
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Let’s return to the analogy between R and R”. Surely, if we are going to
develop a calculus of several variables, we need to know more about the
Euclidean norm on R*. The next two results answer the question, How many
properties do the absolute value and the Euclidean norm share?

Although the norm is not multiplicative, the following fundamental inequality
can be used as a replacement for the multiplicative property in most proofs.
(Some authors call this the Cauchy-Schwarz-Bunyakovsky Inequality.)

8.5 Theorem. [CAUCHY-SCHWARZ INEQUALITY].
Ifx,y € R", then

Ix -yl < lIxIl {lyll.

StrATEGY: Using the fact that the dot product of a vector with itself is the
square of the norm of the vector and the square of any real number is nonnega-
tive, identity (1) becomes 0 < ||x—y||*> = |x||> —2x-y+ [ly||>. We could solve this
inequality to get an estimate of the dot product of x - y, but this estimate might
be very crude if |x — y|| were much larger than zero. But x — y is only one point
on the line £x(y). We might get a better estimate of the dot product x -y by using
the inequality

0<|x—1yl>=x—1ty) - x—ty) = |x|* = 2t(x-y) + 2|lyl? 3)

for other values of ¢. In fact, if we draw a picture in R? (see Figure 8.2), we
see that the norm of ||x — zy|| is smallest for the value of + which makes x — ¢ty
orthogonal to y; that is, when

0=(x—ty)-y=x-y—ty-y=x-y—t|yl*

This suggests using r = x - y/||y||> when y # 0. It turns out that this value of  is
exactly the one which reproduces the Cauchy-Schwarz Inequality. Here are the
details.

FIGURE 8.2
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Proof. The Cauchy-Schwarz Inequality is trivial wheny = 0. If y # 0, substi-
tute r = (x - y)/|ly||? into (3) to obtain

x-y)?
Iyl? -

0 < [x|I> —r(x-y) = |Ix||* —

It follows that 0 < ||x||> — (x - y)?/|lyl|>. Solving this inequality for (x - y)?, we
conclude that

x-y)? < IxI%lyl*. ]

The analogy between the absolute value and the Euclidean norm is further
reinforced by the following result (compare with Theorem 1.7). (See also Exer-
cise 8.1.10.)

8.6 Theorem. Letx,y € R". Then

i) x|l > 0 with equality only when x = 0,
i) |lax|| = |a||x|| for all scalars o,
iii) [TRIANGLE INEQUALITIES]. ||x + | < |Ix|| + |ly]l and ||x —y| = x|l — |I¥]l-

Proof. Statements i) and ii) are easy to verify.
To prove iii), observe that by Definition 8.3, Theorem 8.2, and the Cauchy-
Schwarz Inequality,

Ix+ylIP=x+y) - X+y) =x-X+2x-y+y-y
= Ix[1> +2x -y + IylI? < IxI? + 20/ Iyl + Iy1? = (] + [lyID>

This establishes the first inequality in iii). By modifying the proof of Theorem
1.7, we can also establish the second inequality in iii). |

Notice that the Triangle Inequality has a simple geometric interpretation.
Indeed, since |x|| is the magnitude of the vector x, the inequality ||x + y|| <
x|l 4+ |ly|l states that the length of one side of a triangle (namely, the triangle
whose vertices are 0, X, and x + y) is less than or equal to the sum of the lengths
of its other two sides.

For some estimates, it is convenient to relate the Euclidean norm to the
¢'-norm and the sup-norm.

8.7 Remark. Letx € R". Then

i) xloo < Xl < V7 lIXlloc, and
if) Il < Ixlli < Vi,



Section 8.1 Algebraic Structure 275

Proof. i) Let 1 < j < n. By definition,

2
12 < 2_ .2, ... 2 _ 2.
lejl® < X" =xf+---+x, <n (1??; WI) n |1X[|5;
that is, |x;| < [x|| and [|x|| < /n|X|leo. Taking the supremum of the first of
these inequalities, over all 1 < j < n, we also have ||x||c < [X]|.
i) Let A={G,j):1=<ij<nandi < j}. To verify the first inequality,
observe by algebra that

n 2 n
||x||%=<2|x,-|) =Y P42 Y gl =P +2 ) bllxl

i=1 i=1 (i,j)eA (i,j)eA

Since Y ; jyea lxillxj| = 0, it follows that ||x]|* < |Ix|].

On the other hand,
n
0< > (ul—ID*=)_—=Dlx> =2 > |xllxl
(i,j)eA i=1 (i,j)eA

n

2 2 2 2

= n|lx||” — E lxi|” +2 E il i ) = nlixI™ — lIx]I7.
i=1

(i,/)eA
This proves the second inequality. |

Since x-y is a scalar, the dot product in R” does not satisfy the closure property
for any n > 1. Here is another product, defined only on R3, which does satisfy
the closure property. (As we shall see below, this product allows us to exploit
the geometry of R3 in several unique ways.)

8.8 Definition.

The cross product of two vectors x = (x1, x2, x3) andy = (y1, y2, y3) in R3 is
the vector defined by

X XYy = (x2y3 — X3¥2, X3y1 — X1Y3, X1¥2 — X2)1).

Using the usual basisi = eq, j = ez, k = e3, and the determinant oper-
ator (see Appendix C), we can give the cross product a more easily remem-
bered form:

i j k
Xxxy=det|x; x2 x3
yroy2 y3
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The following result shows that the cross product satisfies some, but not all,
of the usual laws of algebra. (Specifically, notice that although the cross product
satisfies the distributive property, it satisfies neither the commutative property
nor the associative property.)

8.9 Theorem. Letx,y,z € R3 be vectors and «a be a scalar. Then

i) xxx=0, XXYy=-y XX,
i1) (@x) X y=a(x xXy) =x x (ay),
iii) XX (Y+2) = (XX y) + (X X 2),
X1 X2 X3
iv) xxy)-z=x-(yxz)y=det|y1 y y3|,
21 22 23
V) XX (yxz)=(Xx-2)y — (X y)z,
and
vi) Ix x ylI* = x- 0 -y) - x-y)°.

vii)  Moreover, if x X y # 0, then the vector X X y is orthogonal to x and y.

Proof. These properties follow immediately from the definitions. We will
prove properties iv), v), and vii) and leave the rest as an exercise.
iv) Notice that by definition,

(X xXy)-z=(x2y; —x3y2)21 + (Xx3y1 — X1y3)22 + (X1Y2 — X2¥1)23
= x1(y223 — ¥322) + x2(¥321 — y123) + x3(y122 — y221).

Since this last expression is both the scalar x- (y x z) and the value of the deter-
minant on the right side of iv) (expanded along the first row), this verifies iv).

v) Since x x (y x z) = (x1, X2, ¥3) X (¥223 — Y322, Y321 — Y123, Y122 — Y221),
the first component of x x (y x z) is

XoY122—X2Y221 —X3Y321+X3y123 = (X121 +X222+Xx323) y1 — (X1 y1 +X2Y2+X3Y3)Z1.

This proves that the first components of x x (y x z) and (x - z)y — (x - y)z are
equal. A similar argument shows that the second and third components are
also equal.

vii) By partsi) and iv), X X y) - x = —(y X X)X = -y - (xxx) = —-y-0=0.
Thus x x y is orthogonal to x. A similar calculation shows that x x y is orthog-
onal toy. |

Part vii) is illustrated in Figure 8.3. Notice that x x y satisfies the “right-hand”

rule. Indeed, if one puts the fingers of the right hand along x and the palm of
the right hand along y, then the thumb points in the direction of x x y.
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FIGURE 8.3

By (2), there is a close connection between dot products and cosines. The
following result shows that there is a similar connection between cross products
and sines.

8.10 Remark. Letx,y be nonzero vectors in R and 6 be the angle between x and
y. Then

Ix <yl = x|/ [lyll sin6.

Proof. By Theorem 8.9vi and (2),

Ix x yIIZ = (Ixll lyID* — (I [[y]l cos 6)?
= (|Ix] [lyIH*(1 — cos®6) = (|Ix]| llyl)?* sin® . ]

This observation can be used to establish a connection between cross products
and area or volume (see Exercise 8.2.7).

EXERCISES
8.1.1. Letx,y,z e R".

a) If |x —z|| <2 and ||y — z|| < 3, prove that ||x —y| < 5.

b) If |x|| <2, |yl <3,and |z] < 4, prove that [x-y —x-z| < 14.

c) If|x—y| <2and |z| <3,