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C H A P T E R 1

The Real Number System

You have already had several calculus courses in which you evaluated limits,
differentiated functions, and computed integrals. You may even remember
some of the major results of calculus, such as the Chain Rule, the Mean Value
Theorem, and the Fundamental Theorem of Calculus. Although you are proba-
bly less familiar with multivariable calculus, you have taken partial derivatives,
computed gradients, and evaluated certain line and surface integrals.

In view of all this, you must be asking: Why another course in calculus? The
answer to this question is twofold. Although some proofs may have been pre-
sented in earlier courses, it is unlikely that the subtler points (e.g., completeness
of the real numbers, uniform continuity, and uniform convergence) were cov-
ered. Moreover, the skills you acquired were mostly computational; you were
rarely asked to prove anything yourself. This course develops the theory of cal-
culus carefully and rigorously from basic principles and gives you a chance to
learn how to construct your own proofs. It also serves as an introduction to
analysis, an important branch of mathematics which provides a foundation for
numerical analysis, functional analysis, harmonic analysis, differential equations,
differential geometry, real analysis, complex analysis, and many other areas of
specialization within mathematics.

1.1 INTRODUCTION

Every rigorous study of mathematics begins with certain undefined concepts,
primitive notions on which the theory is based, and certain postulates, properties
which are assumed to be true and given no proof. Our study will be based on
the primitive notions of real numbers and sets, which will be discussed in this
section.

We shall use standard notation for sets and real numbers. For example, R or
(−∞,∞) represents the set of real numbers, ∅ represents the empty set (the set
with no elements), a ∈ A means that a is an element of A, and a /∈ A means that
a is not an element of A. We can represent a given finite set in two ways. We can
list its elements directly, or we can describe it using sentences or equations. For
example, the set of solutions to the equation x2 = 1 can be written as

{1,−1} or {x : x2 = 1}.
A set A is said to be a subset of a set B (notation: A ⊆ B) if and only if every

element of A is also an element of B. If A is a subset of B but there is at least
one element b ∈ B that does not belong to A, we shall call A a proper subset of
B (notation: A ⊂ B). Two sets A and B are said to be equal (notation: A = B)

From Chapter 1 of Introduction to Analysis, Fourth Edition. William R. Wade. 
Copyright © 2010 by Pearson Education, Inc. All rights reserved.
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2 Chapter 1 The Real Number System

if and only if A ⊆ B and B ⊆ A. If A and B are not equal, we write A �= B.
A set A is said to be nonempty if and only if A �= ∅.

The union of two sets A and B (notation: A ∪ B) is the set of elements x such
that x belongs to A or B or both. The intersection of two sets A and B (notation:
A ∩ B) is the set of elements x such that x belongs to both A and B. The com-
plement of B relative to A (notation: A \ B, sometimes Bc if A is understood)
is the set of elements x such that x belongs to A but does not belong to B. For
example,

{−1, 0, 1} ∪ {1, 2} = {−1, 0, 1, 2}, {−1, 0, 1} ∩ {1, 2} = {1},
{1, 2} \ {−1, 0, 1} = {2} and {−1, 0, 1} \ {1, 2} = {−1, 0}.

Let X and Y be sets. The Cartesian product of X and Y is the set of ordered
pairs defined by

X × Y := {(x, y) : x ∈ X, y ∈ Y }.
(The symbol := means “equal by definition” or “is defined to be.”) Two points
(x, y), (z, w) ∈ X × Y are said to be equal if and only if x = z and y = w.

Let X and Y be sets. A relation on X × Y is any subset of X × Y . Let R be a
relation on X × Y . The domain of R is the collection of x ∈ X such that (x, y)
belongs to R for some y ∈ Y . The range of R is the collection of y ∈ Y such
that (x, y) belongs to R for some x ∈ X . When (x, y) ∈ R, we shall frequently
write xRy.

A function f from X into Y (notation: f : X → Y ) is a relation on X ×Y whose
domain is X (notation: Dom( f ) := X) such that for each x ∈ X there is a unique
(one and only one) y ∈ Y that satisfies (x, y) ∈ f . If (x, y) ∈ f , we shall call y
the value of f at x (notation: y = f (x) or f : x �−→ y) and call x a preimage
of y under f . We said a preimage because, in general, a point in the range
of f might have more than one preimage. For example, since sin(kπ) = 0 for
k = 0,±1,±2, . . . , the value 0 has infinitely many preimages under f (x) = sin x .

If f is a function from X into Y , we will say that f is defined on X and call Y
the codomain of f . The range of f is the collection of all values of f ; that is, the
set Ran( f ) := {y ∈ Y : f (x) = y for some x ∈ X}. In general, then, the range
of a function is a subset of its codomain and each y ∈ Ran( f ) has one or more
preimages. If Ran( f ) = Y and each y ∈ Y has exactly one preimage, x ∈ X ,
under f , then we shall say that f : X → Y has an inverse, and shall define the
inverse function f −1 : Y → X by f −1(y) := x , where x ∈ X satisfies f (x) = y.

At this point it is important to notice a consequence of defining a function
to be a set of ordered pairs. By the definition of equality of ordered pairs, two
functions f and g are equal if and only if they have the same domain, and same
values; that is, f, g : X → Y , and f (x) = g(x) for all x ∈ X . If they have
different domains, they are different functions.

For example, let f (x) = g(x) = x2. Then f : [0, 1) → [0, 1) and g : (−1, 1) →
[0, 1) are two different functions. They both have the same range, [0, 1), but each
y ∈ (0, 1) has exactly one preimage under f , namely

√
y, and two preimages

under g, namely ±√
y. In particular, f has an inverse function, f −1(x) = √

x ,

2



Section 1.1 Introduction 3

but g does not. Making distinctions like this will actually make our life easier
later in the course.

For the first half of this course, most of the concrete functions we consider
will be real-valued functions of a real variable (i.e., functions whose domains and
ranges are subsets of R). We shall often call such functions simply real functions.

You are already familiar with many real functions.

1) The exponential function ex : R → (0,∞) and its inverse function, the natu-
ral logarithm

log x :=
∫ x

1

dt

t
,

defined and real-valued for each x ∈ (0,∞). (Although this last function is
denoted by ln x in elementary calculus texts, most analysts denote it, as we
did just now, by log x . We will follow this practice throughout this text. For a
more constructive definition, see Exercise 4.5.5.)

2) The trigonometric functions (whose formulas are) represented by sin x, cos x,
tan x, cot x, sec x , and csc x , and the inverse trigonometric functions arcsin x,
arccos x , and arctan x whose ranges are, respectively, [−π/2, π/2], [0, π], and
(−π/2, π/2).

3) The power functions xα , which can be defined constructively (see
Appendix A.10 and Exercise 3.3.11) or by using the exponential function:

xα := eα log x , x > 0, α ∈ R.

We assume that you are familiar with the various algebraic laws and identities
that these functions satisfy. A list of the most widely used trigonometric identi-
ties can be found in Appendix B. The most widely used properties of the power
functions are x0 = 1 for all x �= 0; xn = x · . . . · x (there are n factors here) when
n = 1, 2, . . . and x ∈ R; xα > 0, xα · xβ = xα+β , and (xα)β = xα·β for all x > 0
and α, β ∈ R; xα = m

√
x when α = 1/m for some m ∈ N and the indicated root

exists and is real; and 0α := 0 for all α > 0. (The symbol 00 is left undefined
because it is indeterminate [see Example 4.31].)

We also assume that you can differentiate algebraic combinations of these
functions using the basic formulas (sin x)′ = cos x, (cos x)′ = − sin x , and (ex )′ =
ex , for x ∈ R; (log x)′ = 1/x and (xα)′ = αxα−1, for x > 0 and α ∈ R; and

(tan x)′ = sec2 x for x �= (2n + 1)π

2
, n ∈ Z.

(You will have an opportunity to develop some of these rules in the exercises,
e.g., see Exercises 4.2.9, 4.4.6, 4.5.3, 5.3.7, and 5.3.8.) Even with these assump-
tions, we shall repeat some material from elementary calculus.

We mentioned postulates in the opening paragraph. In the next two sections,
we will introduce three postulates (containing a total of 13 different properties)
which characterize the set of real numbers. Although you are probably already
familiar with all but the last of these properties, we will use them to prove other

3



4 Chapter 1 The Real Number System

equally familiar properties (e.g., in Example 1.4 we will prove that if a �= 0, then
a2 > 0).

Why would we assume some properties and prove others? At one point,
mathematicians thought that all laws about real numbers were of equal weight.
Gradually, during the late 1800s, we discovered that many of the well-known
laws satisfied by R are in fact consequences of others. The net result of this
research is that the 13 properties listed below are considered to be fundamental
properties describing R. All other laws satisfied by real numbers are secondary
in the sense that they can be proved using these fundamental properties.

Why would we prove a law that is well known, perhaps even “obvious”? Why
not just assume all known properties about R and proceed from there? We
want this book to be reasonably self-contained, because this will make it easier
for you to begin to construct your own proofs. We want the first proofs you
see to be easily understood, because they deal with familiar properties that are
unobscured by new concepts. But most importantly, we want to form a habit of
proving all statements, even seemingly “obvious” statements.

The reason for this hard-headed approach is that some “obvious” statements
are false. For example, divide an 8 × 8-inch square into triangles and trapezoids
as shown on the left side of Figure 1.1. Since the 3-inch sides of the triangles
perfectly match the 3-inch sides of the trapezoids, it is “obvious” that these tri-
angles and trapezoids can be reassembled into a rectangle (see the right side of
Figure 1.1). Or is it? The area of the square is 8 × 8 = 64 square inches but the
area of the rectangle is 5 × 13 = 65 square inches. Since you cannot increase
area by reassembling pieces, what looked right was in fact wrong. By comput-
ing slopes, you can verify that the rising diagonal on the right side of Figure 1.1
is, in fact, four distinct line segments that form a long narrow diamond which
conceals that extra one square inch.

NOTE: Reading a mathematics book is different from reading any other kind
of book. When you see phrases like “you can verify” or “it is easy to see,” you
should use pencil and paper to do the calculations to be sure what we’ve said is
correct.

Here is another example. Grab a calculator and graph the functions y =
log x and y = 100

√
x . It is easy to see, using calculus, that log x and 100

√
x are

both increasing and concave downward on [0,∞). Looking at the graphs (see
Figure 1.2), it’s “obvious” that log x is much larger than 100

√
x no matter how big

x is. Or is it? Let’s evaluate each function at e1000: log(e1000) = 1000 log e = 1000
is much smaller than 100

√
e1000 = e10 ≈ 22, 000. Evidently, the graph of y = 100

√
x

8

8 5

5
335

5

3

FIGURE 1.1
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Section 1.2 Ordered Field Axioms 5
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eventually crosses that of y = log x . With a little calculus, you can prove that
log x < 100

√
x forever after that (see Exercise 4.4.6a).

What can be learned from these examples? We cannot always trust what
we think we see. We must, as above, find some mathematical way of testing
our perception, either verifying that it is correct, or rejecting it as wrong. This
type of phenomenon is not a rare occurrence. You will soon encounter several
other plausible statements that are, in fact, false. In particular, you must harbor
a skepticism that demands proofs of all statements not assumed in postulates,
even the “obvious” ones.

What, then, are you allowed to use when solving the exercises? You may use
any property of real numbers (e.g., 2 + 3 = 5, 2 < 7, or

√
2 is irrational) without

reference or proof. You may use any algebraic property of real numbers involv-
ing equal signs [e.g., (x + y)2 = x2 + 2xy + y2 or (x + y)(x − y) = x2 − y2]
and the techniques of calculus to find local maxima or minima of a given func-
tion without reference or proof. After completing the exercises in Section 1.2,
you may also use any algebraic property of real numbers involving inequalities
(e.g., 0 < a < b implies 0 < ax < bx for all x > 0) without reference or proof.

1.2 ORDERED FIELD AXIOMS

In this section we explore the algebraic structure of the real number system. We
shall assume that the set of real numbers, R, is a field (i.e., that R satisfies the
following postulate).

Postulate 1. [FIELD AXIOMS]. There are functions + and ·, defined on R2 :=
R × R, which satisfy the following properties for every a, b, c ∈ R:
Closure Properties. a + b and a · b belong to R.
Associative Properties. a + (b + c) = (a + b)+ c and a · (b · c) = (a · b) · c.
Commutative Properties. a + b = b + a and a · b = b · a.
Distributive Law. a · (b + c) = a · b + a · c.

5



6 Chapter 1 The Real Number System

Existence of the Additive Identity. There is a unique element 0 ∈ R such that
0 + a = a for all a ∈ R.
Existence of the Multiplicative Identity. There is a unique element 1 ∈ R such
that 1 �= 0 and 1 · a = a for all a ∈ R.
Existence of Additive Inverses. For every x ∈ R there is a unique element
−x ∈ R such that

x + (−x) = 0.

Existence of Multiplicative Inverses. For every x ∈ R \ {0} there is a unique
element x−1 ∈ R such that

x · (x−1) = 1.

We note in passing that the word unique can be dropped from the statements
in Postulate 1 (see Appendix A).

We shall usually denote a + (−b) by a − b, a · b by ab, a−1 by 1
a or 1/a, and

a · b−1 by a
b or a/b. Notice that by the existence of additive and multiplicative

inverses, the equation x + a = 0 can be solved for each a ∈ R, and the equation
ax = 1 can be solved for each a ∈ R provided that a �= 0.

From these few properties (i.e., from Postulate 1), we can derive all the usual
algebraic laws of real numbers, including the following:

(−1)2 = 1, (1)
0 · a = 0, −a = (−1) · a, −(−a) = a, a ∈ R, (2)

−(a − b) = b − a, a, b ∈ R, (3)

and

a, b ∈ R and ab = 0 imply a = 0 or b = 0. (4)

We want to keep our attention sharply focused on analysis. Since the proofs
of algebraic laws like these lie more in algebra than analysis (see Appendix A),
we will not present them here. In fact, with the exception of the absolute value
and the Binomial Formula, we will assume all material usually presented in a
high school algebra course (including the quadratic formula and graphs of the
conic sections).

Postulate 1 is sufficient to derive all algebraic laws of R, but it does not com-
pletely describe the real number system. The set of real numbers also has an
order relation (i.e., a concept of “less than”).

Postulate 2. [ORDER AXIOMS]. There is a relation < on R × R that has the
following properties:
Trichotomy Property. Given a, b ∈ R, one and only one of the following state-
ments holds:

a < b, b < a, or a = b.

Transitive Property. For a, b, c ∈ R,

a < b and b < c imply a < c.

6



Section 1.2 Ordered Field Axioms 7

The Additive Property. For a, b, c ∈ R,

a < b and c ∈ R imply a + c < b + c.

The Multiplicative Properties. For a, b, c ∈ R,

a < b and c > 0 imply ac < bc

and

a < b and c < 0 imply bc < ac.

By b > a we shall mean a < b. By a ≤ b and b ≥ a we shall mean a < b or
a = b. By a < b < c we shall mean a < b and b < c. In particular, 2 < x < 1
makes no sense at all.

WARNING. There are two Multiplicative Properties, so every time you multiply
an inequality by an expression, you must carefully note the sign of that expression
and adjust the inequality accordingly. For example, x < 1 does NOT imply that
x2 < x unless x > 0. If x < 0, then by the Second Multiplicative Property, x < 1
implies x2 > x .

We shall call a number a ∈ R nonnegative if a ≥ 0 and positive if a > 0.
Postulate 2 has a slightly simpler formulation using the set of positive elements
as a primitive concept (see Exercise 1.2.11). We have introduced Postulate 2 as
above because these are the properties we use most often.

The real number system R contains certain special subsets: the set of natural
numbers

N := {1, 2, . . . },
obtained by beginning with 1 and successively adding 1s to form 2 := 1+1, 3 :=
2 + 1, and so on; the set of integers

Z := {. . . ,−2,−1, 0, 1, 2, . . . }

(Zahl is German for number); the set of rationals (or fractions or quotients)

Q :=
{m

n
: m, n ∈ Z and n �= 0

}
;

and the set of irrationals

Qc = R \ Q.

Equality in Q is defined by

m

n
= p

q
if and only if mq = np.

7



8 Chapter 1 The Real Number System

Recall that each of the sets N, Z, Q, and R is a proper subset of the next; that is,

N ⊂ Z ⊂ Q ⊂ R.

For example, every rational is a real number (because m/n := mn−1 is a real
number by Postulate 1), but

√
2 is an irrational.

Since we did not really define N and Z, we must make certain assumptions
about them. If you are interested in the definitions and proofs, see Appendix A.

1.1 Remark. We will assume that the sets N and Z satisfy the following
properties.

i) If n,m ∈ Z, then n + m, n − m, and mn belong to Z.
ii) If n ∈ Z, then n ∈ N if and only if n ≥ 1.

iii) There is no n ∈ Z that satisfies 0 < n < 1.

Using these properties, we can prove that Q satisfies Postulate 1 (see Exer-
cise 1.2.9).

We notice in passing that none of the other special subsets of R satisfies Postu-
late 1. N satisfies all but three of the properties in Postulate 1: N has no additive
identity (since 0 /∈ N), N has no additive inverses (e.g., −1 /∈ N), and only one
of the nonzero elements of N (namely, 1) has a multiplicative inverse. Z sat-
isfies all but one of the properties in Postulate 1: Only two nonzero elements
of Z have multiplicative inverses (namely, 1 and −1). Qc satisfies all but four
of the properties in Postulate 1: Qc does not have an additive identity (since
0 /∈ R \ Q), does not have a multiplicative identity (since 1 /∈ R \ Q), and does
not satisfy either closure property. Indeed, since

√
2 is irrational, the sum of

irrationals may be rational (
√

2+(−√
2) = 0) and the product of irrationals may

be rational (
√

2 · √
2 = 2).

Notice that any subset of R satisfies Postulate 2. Thus Q satisfies both Pos-
tulates 1 and 2. The remaining postulate, introduced in Section 1.3, identifies a
property that Q does not possess. In particular, Postulates 1 through 3 distin-
guish R from each of its special subsets N, Z, Q, and Qc. These postulates actu-
ally characterize R; that is, R is the only set that satisfies Postulates 1 through 3.
(Such a set is called a complete Archimedean ordered field. We may as well
admit a certain arbitrariness in choosing this approach. R has been developed
axiomatically in at least five other ways [e.g., as a one-dimensional continuum
or as a set of binary decimals with certain arithmetic operations]. The decision
to present R using Postulates 1 through 3 is based partly on economy and partly
on personal taste.)

Postulates 1 and 2 can be used to derive all identities and inequalities which
are true for real numbers [e.g., see implications (5) through (9) below]. Since
arguments based on inequalities are of fundamental importance to analysis, we
begin to supply details of proofs at this stage.

What is a proof? Every mathematical result (for us this includes examples,
remarks, lemmas, and theorems) has hypotheses and a conclusion. There are
three main methods of proof: mathematical induction, direct deduction, and
contradiction.

8



Section 1.2 Ordered Field Axioms 9

Mathematical induction, a special method for proving statements that depend
on positive integers, will be covered in Section 1.4.

To construct a deductive proof, we assume the hypotheses to be true and pro-
ceed step by step to the conclusion. Each step is justified by a hypothesis, a
definition, a postulate, or a mathematical result that has already been proved.
(Actually, this is usually the way we write a proof. When constructing your own
proofs, you may find it helpful to work forward from the hypotheses as far as
you can and then work backward from the conclusion, trying to meet in the
middle.)

To construct a proof by contradiction, we assume the hypotheses to be true,
the conclusion to be false, and work step by step deductively until a contra-
diction occurs; that is, a statement that is obviously false or that is contrary to
the assumptions made. At this point the proof by contradiction is complete. The
phrase “suppose to the contrary” always indicates a proof by contradiction (e.g.,
see the proof of Theorem 1.9).

What about false statements? How do we “prove” that a statement is false?
We can show that a statement is false by producing a single, concrete example
(called a counterexample) that satisfies the hypotheses but not the conclusion
of that statement. For example, to show that the statement “x > 1 implies
x2 − x − 2 �= 0” is false, we need only observe that x = 2 is greater than 1 but
22 − 2 − 2 = 0.

Here are some examples of deductive proofs. (Note: The symbol � indicates
that the proof or solution is complete.)

1.2 EXAMPLE.

If a ∈ R, prove that

a �= 0 implies a2 > 0. (5)

In particular, −1 < 0 < 1.

Proof. Suppose that a �= 0. By the Trichotomy Property, either a > 0 or
a < 0.

Case 1. a > 0. Multiply both sides of this inequality by a, using the First
Multiplicative Property. We obtain a2 = a · a > 0 · a. Since (by (2)), 0 · a = 0
we conclude that a2 > 0.

Case 2. a < 0. Multiply both sides of this inequality by a. Since a < 0, it
follows from the Second Multiplicative Property that a2 = a · a > 0 · a = 0.
This proves that a2 > 0 when a �= 0.

Since 1 �= 0, it follows that 1 = 12 > 0. Adding −1 to both sides of this
inequality, we conclude that 0 = 1 − 1 > 0 − 1 = −1. �

1.3 EXAMPLE.

If a ∈ R, prove that

0 < a < 1 implies 0 < a2 < a and a > 1 implies a2 > a. (6)

9



10 Chapter 1 The Real Number System

Proof. Suppose that 0 < a < 1. Multiply both sides of this inequality by a
using the First Multiplicative Property. We obtain 0 = 0 · a < a2 < 1 · a = a.
In particular, 0 < a2 < a.

On the other hand, if a > 1, then a > 0 by Example 1.2 and the Transitive
Property. Multiplying a > 1 by a, we conclude that a2 = a · a > 1 · a = a. �

Similarly (see Exercise 1.2.2), we can prove that

0 ≤ a < b and 0 ≤ c < d imply ac < bd, (7)

0 ≤ a < b implies 0 ≤ a2 < b2 and 0 ≤ √
a <

√
b, (8)

and

0 < a < b implies
1

a
>

1

b
> 0. (9)

Much of analysis deals with estimation (of error, of growth, of volume, etc.)
in which these inequalities and the following concept play a central role.

1.4 Definition.

The absolute value of a number a ∈ R is the number

|a| :=
{

a a ≥ 0
−a a < 0.

When proving results about the absolute value, we can always break the proof
up into several cases, depending on when the parameters are positive, negative,
or zero. Here is a typical example.

1.5 Remark. The absolute value is multiplicative; that is, |ab| = |a| |b| for all
a, b ∈ R.

Proof. We consider four cases.
Case 1. a = 0 or b = 0. Then ab = 0, so by definition, |ab| = 0 = |a| |b|.
Case 2. a > 0 and b > 0. By the First Multiplicative Property, ab > 0·b = 0.

Hence by definition, |ab| = ab = |a| |b|.
Case 3. a > 0 and b < 0, or, b > 0 and a < 0. By symmetry, we may

suppose that a > 0 and b < 0. (That is, if we can prove it for a > 0 and b < 0,
then by reversing the roles of a and b, we can prove it for a < 0 and b > 0.)
By the Second Multiplicative Property, ab < 0. Hence by Definition 1.4, (2),
associativity, and commutativity,

|ab| = −(ab) = (−1)(ab) = a((−1)b) = a(−b) = |a| |b|.

10
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Case 4. a < 0 and b < 0. By the Second Multiplicative Property, ab > 0.
Hence by Definition 1.4,

|ab| = ab = (−1)2(ab) = (−a)(−b) = |a| |b|. �

We shall soon see that there are more efficient ways to prove results about
absolute values than breaking the argument into cases.

The following result is useful when solving inequalities involving absolute
value signs.

1.6 Theorem. [FUNDAMENTAL THEOREM OF ABSOLUTE VALUES].
Let a ∈ R and M ≥ 0. Then |a| ≤ M if and only if −M ≤ a ≤ M .

Proof. Suppose first that |a| ≤ M . Multiplying by –1, we also have −|a|≥−M .
Case 1. a ≥ 0. By Definition 1.4, |a| = a. Thus by hypothesis,

−M ≤ 0 ≤ a = |a| ≤ M.

Case 2. a < 0. By Definition 1.4, |a| = −a. Thus by hypothesis,

−M ≤ −|a| = a < 0 ≤ M.

This proves that −M ≤ a ≤ M in either case.
Conversely, if −M ≤ a ≤ M , then a ≤ M and −M ≤ a. Multiplying the

second inequality by −1, we have −a ≤ M . Consequently, |a| = a ≤ M if
a ≥ 0, and |a| = −a ≤ M if a < 0. �

NOTE: In a similar way we can prove that |a| < M if and only if −M < a < M .

Here is another useful result about absolute values.

1.7 Theorem. The absolute value satisfies the following three properties.

i) [Positive Definite] For all a ∈ R, |a| ≥ 0 with |a| = 0 if and only if a = 0.
ii) [Symmetric] For all a, b ∈ R, |a − b| = |b − a|.

iii) [Triangle Inequalities] For all a, b ∈ R,

|a + b| ≤ |a| + |b| and
∣∣ |a| − |b| ∣∣≤ |a − b|.

Proof. i) If a ≥ 0, then |a| = a ≥ 0. If a < 0, then by Definition 1.4 and the
Second Multiplicative Property, |a| = −a = (−1)a > 0. Thus |a| ≥ 0 for all
a ∈ R.

If |a| = 0, then by definition a = |a| = 0 when a ≥ 0 and a = −|a| = 0
when a < 0. Thus |a| = 0 implies that a = 0. Conversely, |0| = 0 by definition.

ii) By Remark 1.5, |a − b| = | − 1| |b − a| = |b − a|.

11



12 Chapter 1 The Real Number System

iii) To prove the first inequality, notice that |x | ≤ |x | holds for any x ∈ R.
Thus Theorem 1.6 implies that −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|. Adding
these inequalities (see Exercise 1.2.1), we obtain

−(|a| + |b|) ≤ a + b ≤ |a| + |b|.
Hence by Theorem 1.6 again, |a + b| ≤ |a| + |b|.

To prove the second inequality, apply the first inequality to (a − b)+ b. We
obtain

|a| − |b| = |a − b + b| − |b| ≤ |a − b| + |b| − |b| = |a − b|.
By reversing the roles of a and b and applying part ii), we also obtain

|b| − |a| ≤ |b − a| = |a − b|.
Multiplying this last inequality by −1 and combining it with the preceding one
verifies

−|a − b| ≤ |a| − |b| ≤ |a − b|.
We conclude by Theorem 1.6 that

∣∣ |a| − |b| ∣∣ ≤ |a − b|. �

Notice once and for all that this last inequality implies that |a| − |b| ≤ |a − b|
for all a, b ∈ R. We will use this inequality several times.

WARNING. Some students mistakenly mix absolute values and the Additive
Property to conclude that b < c implies |a + b| < |a + c|. It is important from the
beginning to recognize that this implication is false unless both a + b and a + c
are nonnegative. For example, if a = 1, b = −5, and c = −1, then b < c but
|a + b| = 4 is not less than |a + c| = 0.

A correct way to estimate using absolute value signs usually involves one of
the triangle inequalities.

1.8 EXAMPLE.

Prove that if −2 < x < 1, then |x2 − x | < 6.

Proof. By hypothesis, |x | < 2. Hence by the triangle inequality and
Remark 1.5,

|x2 − x | ≤ |x |2 + |x | < 4 + 2 = 6. �

The following result (which is equivalent to the Trichotomy Property) will be
used many times in this and subsequent chapters.

1.9 Theorem. Let x, y, a ∈ R.
i) x < y + ε for all ε > 0 if and only if x ≤ y.

ii) x > y − ε for all ε > 0 if and only if x ≥ y.
iii) |a| < ε for all ε > 0 if and only if a = 0.

12



Section 1.2 Ordered Field Axioms 13

Proof. i) Suppose to the contrary that x < y + ε for all ε > 0 but x > y.
Set ε0 = x − y > 0 and observe that y + ε0 = x . Hence by the Trichotomy
Property, y + ε0 cannot be greater than x . This contradicts the hypothesis for
ε = ε0. Thus x ≤ y.

Conversely, suppose that x ≤ y and ε > 0 is given. Either x < y or x = y.
If x < y, then x +0 < y +0 < y + ε by the Additive and Transitive Properties.
If x = y, then x < y + ε by the Additive Property. Thus x < y + ε for all ε > 0
in either case. This completes the proof of part i).

ii) Suppose that x > y − ε for all ε > 0. By the Second Multiplicative
Property, this is equivalent to −x < −y + ε, hence by part i), equivalent to
−x ≤ −y. By the Second Multiplicative Property, this is equivalent to x ≥ y.

iii) Suppose that |a| < ε = 0 + ε for all ε > 0. By part i), this is equivalent to
|a| ≤ 0. Since it is always the case that |a| ≥ 0, we conclude by the Trichotomy
Property that |a| = 0. Therefore, a = 0 by Theorem 1.7i. �

Let a and b be real numbers. A closed interval is a set of the form

[a, b] := {x ∈ R : a ≤ x ≤ b}, [a,∞) := {x ∈ R : a ≤ x},
(−∞, b] := {x ∈ R : x ≤ b}, or (−∞,∞) := R,

and an open interval is a set of the form

(a, b) := {x ∈ R : a < x < b}, (a,∞) := {x ∈ R : a < x},
(−∞, b) := {x ∈ R : x < b}, or (−∞,∞) := R.

By an interval we mean a closed interval, an open interval, or a set of the form

[a, b) := {x ∈ R : a ≤ x < b} or (a, b] := {x ∈ R : a < x ≤ b}.

Notice, then, that when a < b, the intervals [a, b], [a, b), (a, b], and (a, b) cor-
respond to line segments on the real line, but when b < a, these “intervals” are
all the empty set.

An interval I is said to be bounded if and only if it has the form [a, b], (a, b),
[a, b), or (a, b] for some −∞ < a ≤ b < ∞, in which case the numbers a, b
will be called the endpoints of I . All other intervals will be called unbounded.
An interval with endpoints a, b is called degenerate if a = b and nondegenerate
if a < b. Thus a degenerate open interval is the empty set, and a degenerate
closed interval is a point.

Analysis has a strong geometric flavor. Geometry enters the picture because
the real number system can be identified with the real line in such a way that
a < b if and only if a lies to the left of b (see Figures 1.2, 2.1, and 2.2). This
gives us a way of translating analytic results on R into geometric results on the
number line, and vice versa. We close with several examples.

The absolute value is closely linked to the idea of length. The length of a
bounded interval I with endpoints a, b is defined to be |I | := |b − a|, and the
distance between any two points a, b ∈ R is defined by |a − b|.

13



14 Chapter 1 The Real Number System

Inequalities can be interpreted as statements about intervals. By Theorem 1.6,
|a| ≤ M if and only if a belongs to the closed interval [−M,M]; and by Theo-
rem 1.9, a belongs to the open interval (−ε, ε) for all ε > 0 if and only if a = 0.

We will use this point of view in Chapters 2 through 5 to give geomet-
ric interpretations to the calculus of functions defined on R, and in Chap-
ters 11 through 13 to extend this calculus to functions defined on the Euclidean
spaces Rn .

EXERCISES

In each of the following exercises, verify the given statement carefully, proceeding
step by step. Validate each step that involves an inequality by using some statement
found in this section.

1.2.0 Let a, b, c, d ∈ R and consider each of the following statements. Decide
which are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) If a < b and c < d < 0, then ac > bd.
b) If a ≤ b and c > 1, then |a + c| ≤ |b + c|.
c) If a ≤ b and b ≤ a + c, then |a − b| ≤ c.
d) If a < b − ε for all ε > 0, then a < 0.

1.2.1. Suppose that a, b, c ∈ R and a ≤ b.

a) Prove that a + c ≤ b + c.
b) If c ≥ 0, prove that a · c ≤ b · c.

1.2.2. Prove (7), (8), and (9). Show that each of these statements is false if the
hypothesis a ≥ 0 or a > 0 is removed.

1.2.3. This exercise is used in Section 6.3. The positive part of an a ∈ R is
defined by

a+ := |a| + a

2
and the negative part by

a− := |a| − a

2
.

a) Prove that a = a+ − a− and |a| = a+ + a−.
b) Prove that

a+ =
{

a a ≥ 0
0 a ≤ 0

and a− =
{

0 a ≥ 0
−a a ≤ 0.

1.2.4. Solve each of the following inequalities for x ∈ R.

a) |2x + 1| < 7
b) |2 − x | < 2

14



Section 1.2 Ordered Field Axioms 15

c) |x3 − 3x + 1| < x3

d)
x

x − 1
< 1

e)
x2

4x2 − 1
<

1

4

1.2.5. Let a, b ∈ R.

a) Prove that if a > 2 and b = 1 + √
a − 1, then 2 < b < a.

b) Prove that if 2 < a < 3 and b = 2 + √
a − 2, then 0 < a < b.

c) Prove that if 0 < a < 1 and b = 1 − √
1 − a, then 0 < b < a.

d) Prove that if 3 < a < 5 and b = 2 + √
a − 2, then 3 < b < a.

1.2.6. The arithmetic mean of a, b ∈ R is A(a, b) = (a+b)/2, and the geometric
mean of a, b ∈ [0,∞) is G(a, b) = √

ab. If 0 ≤ a ≤ b, prove that
a ≤ G(a, b) ≤ A(a, b) ≤ b. Prove that G(a, b) = A(a, b) if and only if
a = b.

1.2.7. Let x ∈ R.

a) Prove that |x | ≤ 2 implies |x2 − 4| ≤ 4|x − 2|.
b) Prove that |x | ≤ 1 implies |x2 + 2x − 3| ≤ 4|x − 1|.
c) Prove that −3 ≤ x ≤ 2 implies |x2 + x − 6| ≤ 6|x − 2|.
d) Prove that −1 < x < 0 implies |x3 − 2x + 1| < 1.26|x − 1|.

1.2.8. For each of the following, find all values of n ∈ N that satisfy the given
inequality.

a)
1 − n

1 − n2
< 0.01

b)
n2 + 2n + 3

2n3 + 5n2 + 8n + 3
< 0.025

c)
n − 1

n3 − n2 + n − 1
< 0.002

1.2.9. a) Interpreting a rational m/n as m · n−1 ∈ R, use Postulate 1 to
prove that

m

n
+ p

q
= mq + np

nq
,

m

n
· p

q
= mp

nq
, −m

n
= −m

n
, and

(
�

n

)−1

= n

�

for m, n, p, q, � ∈ Z and n, q, � �= 0.
b) Using Remark 1.1, Prove that Postulate 1 holds with Q in place of R.
c) Prove that the sum of a rational and an irrational is always irrational.

What can you say about the product of a rational and an irrational?
d) Let m/n, p/q ∈ R with n, q > 0. Prove that

m

n
<

p

q
if and only if mq < np.

(Restricting this observation to Q gives a definition of “<” on Q.)

15



16 Chapter 1 The Real Number System

1.2.10. Prove that

(ab + cd)2 ≤ (a2 + c2)(b2 + d2)

for all a, b, c, d ∈ R.

1.2.11. a) Let R+ represent the collection of positive real numbers. Prove that
R+ satisfies the following two properties.
i) For each x ∈ R, one and only one of the following holds:

x ∈ R+, −x ∈ R+, or x = 0.

ii) Given x, y ∈ R+, both x + y and x · y belong to R+.
b) Suppose that R contains a subset R+ (not necessarily the set of pos-

itive numbers) which satisfies properties i) and ii). Define x ≺ y by
y − x ∈ R+. Prove that Postulate 2 holds with ≺ in place of <.

1.3 COMPLETENESS AXIOM

In this section we introduce the last of three postulates that describe R. To
formulate this postulate, which distinguishes Q from R, we need the following
concepts.

1.10 Definition.

Let E ⊂ R be nonempty.

i) The set E is said to be bounded above if and only if there is an M ∈ R such
that a ≤ M for all a ∈ E , in which case M is called an upper bound of E .

ii) A number s is called a supremum of the set E if and only if s is an upper
bound of E and s ≤ M for all upper bounds M of E . (In this case we shall
say that E has a finite supremum s and write s = sup E .)

NOTE: Because French mathematicians (e.g., Borel, Jordan, and Lebesgue)
did fundamental work on the connection between analysis and set theory, and
ensemble is French for set, analysts frequently use E to represent a general set.

By Definition 1.10ii, a supremum of a set E (when it exists) is the smallest (or
least) upper bound of E . By definition, then, in order to prove that s = sup E
for some set E ⊂ R, we must show two things: s is an upper bound, AND s is
the smallest upper bound. Here is a typical example.

1.11 EXAMPLE.

If E = [0, 1], prove that sup E = 1.

Proof. By the definition of interval, 1 is an upper bound of E . Let M be any
upper bound of E ; that is, M ≥ x for all x ∈ E . Since 1 ∈ E , it follows that
M ≥ 1. Thus 1 is the smallest upper bound of E . �

16



Section 1.3 Completeness Axiom 17

The following two remarks answer the question: How many upper bounds
and suprema can a given set have?

1.12 Remark. If a set has one upper bound, it has infinitely many upper bounds.

Proof. If M0 is an upper bound for a set E , then so is M for any M > M0. �

1.13 Remark. If a set has a supremum, then it has only one supremum.

Proof. Let s1 and s2 be suprema of the same set E . Then both s1 and s2 are
upper bounds of E , whence by Definition 1.10ii, s1 ≤ s2 and s2 ≤ s1. We
conclude by the Trichotomy Property that s1 = s2. �

NOTE: This proof illustrates a general principle. When asked to prove a = b, it
is often easier to verify that a ≤ b and b ≤ a separately.

The next result, a fundamental property of suprema, shows that the supremum
of a set E can be approximated by a point in E (see Figure 1.3 for an illustration).

1–
8

1–
4

1–
2

1

0

0. . .

1–
2

2–
3

3–
4

1

points in A

points in B

. . .

FIGURE 1.3

1.14 Theorem. [APPROXIMATION PROPERTY FOR SUPREMA].
If E has a finite supremum and ε > 0 is any positive number, then there is a
point a ∈ E such that

sup E − ε < a ≤ sup E .

Proof. Suppose that the theorem is false. Then there is an ε0 > 0 such that no
element of E lies between s0 := sup E − ε0 and sup E . Since sup E is an upper
bound for E , it follows that a ≤ s0 for all a ∈ E ; that is, s0 is an upper bound
of E . Thus, by Definition 1.10ii, sup E ≤ s0 = sup E − ε0. Adding ε0 − sup E
to both sides of this inequality, we conclude that ε0 ≤ 0, a contradiction. �

The Approximation Property can be used to show that the supremum of any
subset of integers is itself an integer.

17



18 Chapter 1 The Real Number System

1.15 Theorem. If E ⊂ Z has a supremum, then sup E ∈ E . In particular, if the
supremum of a set, which contains only integers, exists, that supremum must be
an integer.

Proof. Suppose that s := sup E and apply the Approximation Property to
choose an x0 ∈ E such that s − 1 < x0 ≤ s. If s = x0, then s ∈ E , as promised.
Otherwise, s − 1 < x0 < s and we can apply the Approximation Property
again to choose x1 ∈ E such that x0 < x1 < s.

Subtract x0 from this last inequality to obtain 0 < x1 − x0 < s − x0. Since
−x0 < 1−s, it follows that 0 < x1−x0 < s+(1−s) = 1. Thus x1−x0 ∈ Z∩(0, 1),
a contradiction by Remark 1.1iii. We conclude that s ∈ E . �

The existence of suprema is the last assumption about R we make.

Postulate 3. [COMPLETENESS AXIOM]. If E is a nonempty subset of R that
is bounded above, then E has a finite supremum.

We shall use Completeness Axiom many times. Our first two applications deal
with the distribution of integers (Theorem 1.16) and rationals (Theorem 1.18)
among real numbers.

1.16 Theorem. [ARCHIMEDEAN PRINCIPLE].
Given real numbers a and b, with a > 0, there is an integer n ∈ N such that
b < na.

Strategy: The idea behind the proof is simple. By the Completeness Axiom
and Theorem 1.15, any nonempty subset of integers that is bounded above has
a “largest” integer. If k0 is the largest integer that satisfies k0a ≤ b, then n =
(k0 + 1) (which is larger than k0) must satisfy na > b. In order to justify this
application of the Completeness Axiom, we have two details to attend to: (1) Is
the set E := {k ∈ N : ka ≤ b} bounded above? (2) Is E nonempty? The
answer to the second question depends on whether b < a or not. Here are the
details.

Proof. If b < a, set n = 1. If a ≤ b, consider the set E = {k ∈ N : ka ≤ b}. E is
nonempty since 1 ∈ E . Let k ∈ E (i.e., ka ≤ b). Since a > 0, it follows from
the First Multiplicative Property that k ≤ b/a. This proves that E is bounded
above by b/a. Thus, by the Completeness Axiom and Theorem 1.15, E has a
finite supremum s that belongs to E , in particular, s ∈ N.

Set n = s + 1. Then n ∈ N and (since n is larger than s), n cannot belong to
E . Thus na > b. �

Notice in Example 1.11 and Theorem 1.15 that the supremum of E belonged
to E . The following result shows that this is not always the case.

1.17 EXAMPLE.

Let A = {1, 1
2 ,

1
4 ,

1
8 , . . .} and B = { 1

2 ,
2
3 ,

3
4 , . . .}. Prove that sup A = sup B = 1.

18



Section 1.3 Completeness Axiom 19

Proof. It is clear that 1 is an upper bound of both sets. It remains to see that
1 is the smallest upper bound of both sets. For A, this is trivial. Indeed, if
M is any upper bound of A, then M ≥ 1 (since 1 ∈ A). On the other hand,
if M is an upper bound for B, but M < 1, then 1 − M > 0. In particular,
1/(1 − M) ∈ R.

Choose, by the Archimedean Principle, an n ∈ N such that n > 1/(1−M). It
follows (do the algebra) that x0 := 1−1/n > M . Since x0 ∈ B, this contradicts
the assumption that M is an upper bound of B (see Figure 1.3). �

The next proof shows how the Archimedean Principle is used to establish
scale.

1.18 Theorem. [DENSITY OF RATIONALS].
If a, b ∈ R satisfy a < b, then there is a q ∈ Q such that a < q < b.

Strategy: To find a fraction q = m/n such that a < q < b, we must specify
both numerator m and denominator n. Let’s suppose first that a > 0 and that
the set E := {k ∈ N : k/n ≤ a} has a supremum, k0. Then m := k0 + 1, being
greater than the supremum of E , cannot belong to E . Thus m/n > a. Is this the
fraction we look for? Is m/n < b? Not unless n is large enough. To see this, look
at a concrete example: a = 2/3 and b = 1. If n = 1, then E has no supremum,
When n = 2, k0 = 1 and when n = 3, k0 = 2. In both cases (k0 + 1)/n = 1 is
too big. However, when n = 4, k0 = 2 so (k0 + 1)/4 = 3/4 is smaller than b, as
required.

How can we prove that for each fixed a < b there always is an n large enough
so that if k0 is chosen as above, then (k0 +1)/n < b? By the choice of k0, k0/n ≤
a. Let’s look at the worst case scenario: a = k0/n. Then b > (k0 + 1)/n means

b >
k0 + 1

n
= k0

n
+ 1

n
= a + 1

n

(i.e., b − a > 1/n). Such an n can always be chosen by the Archimedean Princi-
ple.

What about the assumption that sup E exists? This requires that E be
nonempty and bounded above. Once n is fixed, E will be bounded above by
na. But the only way that E is nonempty is that at the very least, 1 ∈ E (i.e., that
1/n ≤ a). This requires a second restriction on n. We begin our formal proof at
this point.

Proof. Suppose first that a > 0. Since b − a > 0, use the Archimedean
Principle to choose an n ∈ N that satisfies

n > max

{
1

a
,

1

b − a

}
,

and observe that both 1/n < a and 1/n < b − a.
Consider the set E = {k ∈ N : k/n ≤ a}. Since 1 ∈ E, E is nonempty. Since

n > 0, E is bounded above by na. Hence, by Theorem 1.15, k0 := sup E exists

19



20 Chapter 1 The Real Number System

and belongs to E , in particular, to N. Set m = k0 + 1 and q = m/n. Since k0 is
the supremum of E, m /∈ E . Thus q > a. On the other hand, since k0 ∈ E , it
follows from the choice of n that

b = a + (b − a) ≥ k0

n
+ (b − a) >

k0

n
+ 1

n
= m

n
= q.

Now suppose that a ≤ 0. Choose, by the Archimedean Principle, an integer
k ∈ N such that k > −a. Then 0 < k + a < k + b, and by the case already
proved, there is an r ∈ Q such that k + a < r < k + b. Therefore, q := r − k
belongs to Q and satisfies the inequality a < q < b. �

For some applications, we also need the following concepts.

1.19 Definition.

Let E ⊂ R be nonempty.

i) The set E is said to be bounded below if and only if there is an m ∈ R such
that a ≥ m for all a ∈ E , in which case m is called a lower bound of the
set E .

ii) A number t is called an infimum of the set E if and only if t is a lower
bound of E and t ≥ m for all lower bounds m of E . In this case we shall say
that E has an infimum t and write t = inf E .

iii) E is said to be bounded if and only if it is bounded both above and below.

When a set E contains its supremum (respectively, its infimum) we shall fre-
quently write max E for sup E (respectively, min E for inf E).

(Some authors call the supremum the least upper bound and the infimum the
greatest lower bound. We will not use this terminology because it is somewhat
old fashioned and because it confuses some students, since the least upper bound
of a given set is always greater than or equal to the greatest lower bound.)

To relate suprema to infima, we define the reflection of a set E ⊆ R by

−E := {x : x = −a for some a ∈ E }.

For example, −(1, 2] = [−2,−1).
The following result shows that the supremum of a set is the same as the

negative of its reflection’s infimum. This can be used to prove an Approximation
Property and a Completeness Property for Infima (see Exercise 1.3.6).

1.20 Theorem. [REFLECTION PRINCIPLE].
Let E ⊆ R be nonempty.
i) E has a supremum if and only if −E has an infimum, in which case

inf(−E) = − sup E .

20



Section 1.3 Completeness Axiom 21

ii) E has an infimum if and only if −E has a supremum, in which case

sup(−E) = − inf E .

Proof. The proofs of these statements are similar. We prove only the first
statement.

Suppose that E has a supremum s and set t = −s. Since s is an upper bound
for E, s ≥ a for all a ∈ E , so −s ≤ −a for all a ∈ E . Therefore, t is a lower
bound of −E . Suppose that m is any lower bound of −E . Then m ≤ −a for
all a ∈ E , so −m is an upper bound of E . Since s is the supremum of E , it
follows that s ≤ −m (i.e., t = −s ≥ m). Thus t is the infimum of −E and
sup E = s = −t = − inf(−E).

Conversely, suppose that −E has an infimum t . By definition, t ≤ −a for
all a ∈ E . Thus −t is an upper bound for E . Since E is nonempty, E has a
supremum by the Completeness Axiom. �

Theorem 1.20 allows us to obtain information about infima from results about
suprema, and vice versa (see the proof of the next theorem).

We shall use the following result many times.

1.21 Theorem. [MONOTONE PROPERTY].
Suppose that A ⊆ B are nonempty subsets of R.
i) If B has a supremum, then sup A ≤ sup B.

ii) If B has an infimum, then inf A ≥ inf B.

Proof. i) Since A ⊆ B, any upper bound of B is an upper bound of A. There-
fore, sup B is an upper bound of A. It follows from the Completeness Axiom
that sup A exists, and from Definition 1.10ii that sup A ≤ sup B.

ii) Clearly, −A ⊆ −B. Thus by part i), Theorem 1.20, and the Second
Multiplicative Property,

inf A = − sup(−A) ≥ − sup(−B) = inf B. �

It is convenient to extend the definition of suprema and infima to all subsets
of R. To do this we expand the definition of R as follows. The set of extended real
numbers is defined to be R := R

⋃{±∞}. Thus x is an extended real number if
and only if either x ∈ R, x = +∞, or x = −∞.

Let E ⊆ R be nonempty. We shall define sup E = +∞ if E is unbounded
above and inf E = −∞ if E is unbounded below. Finally, we define sup ∅ = −∞
and inf ∅ = +∞. Notice, then, that the supremum of a subset E of R (respec-
tively, the infimum of E) is finite if and only if E is nonempty and bounded
above (respectively, nonempty and bounded below). Moreover, under the con-
vention −∞ < a and a < ∞ for all a ∈ R, the Monotone Property still holds
for this extended definition; that is, if A and B are subsets of R and A ⊆ B, then
sup A ≤ sup B and inf A ≥ inf B, provided we use the convention that −∞ < ∞.
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22 Chapter 1 The Real Number System

EXERCISES

1.3.0. Decide which of the following statements are true and which are false.
Prove the true ones and give counterexamples to the false ones.

a) If A and B are nonempty, bounded subsets of R, then sup(A ∩ B) ≤
sup A.

b) Let ε be a positive real number. If A is a nonempty, bounded subset
of R and B = {εx : x ∈ A}, then sup(B) = ε sup(A).

c) If A + B := {a + b : a ∈ A and b ∈ B}, where A and B are nonempty,
bounded subsets of R, then sup(A + B) = sup(A)+ sup(B).

d) If A − B := {a − b : a ∈ A and b ∈ B}, where A and B are nonempty,
bounded subsets of R, then sup(A − B) = sup(A)− sup(B)

1.3.1. Find the infimum and supremum of each of the following sets.

a) E = {x ∈ R : x2 + 2x = 3}
b) E = {x ∈ R : x2 − 2x + 3 > x2 and x > 0}
c) E = {p/q ∈ Q : p2 < 5q2 and p, q > 0}
d) E = {x ∈ R : x = 1 + (−1)n/n for n ∈ N}
e) E = {x ∈ R : x = 1/n + (−1)n for n ∈ N}
f) E = {2 − (−1)n/n2 : n ∈ N}

1.3.2. Prove that for each a ∈ R and each n ∈ N there exists a rational rn such
that |a − rn| < 1/n.

1.3.3 . [Density of Irrationals] This exercise is used in Section 3.3. Prove
that if a < b are real numbers, then there is an irrational ξ ∈ R such that
a < ξ < b.

1.3.4. Prove that a lower bound of a set need not be unique but the infimum
of a given set E is unique.

1.3.5. Show that if E is a nonempty bounded subset of Z, then inf E exists and
belongs to E .

1.3.6 . This exercise is used in many sections, including 2.2 and 5.1. Use the
Reflection Principle and analogous results about suprema to prove the
following results.

a) [Approximation Property for Infima] Prove that if a set E ⊂ R has
a finite infimum and ε > 0 is any positive number, then there is a
point a ∈ E such that inf E + ε > a ≥ inf E .

b) [Completeness Property for Infima] If E ⊆ R is nonempty and
bounded below, then E has a (finite) infimum.

1.3.7. a) Prove that if x is an upper bound of a set E ⊆ R and x ∈ E , then x is
the supremum of E .

b) Make and prove an analogous statement for the infimum of E .
c) Show by example that the converse of each of these statements is

false.

1.3.8. Suppose that E, A, B ⊂ R and E = A ∪ B. Prove that if E has a supre-
mum and both A and B are nonempty, then sup A and sup B both exist,
and sup E is one of the numbers sup A or sup B.
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1.3.9. A dyadic rational is a number of the form k/2n for some k, n ∈ Z. Prove
that if a and b are real numbers and a < b, then there exists a dyadic
rational q such that a < q < b.

1.3.10. Let xn ∈ R and suppose that there is an M ∈ R such that |xn| ≤ M
for n ∈ N. Prove that sn = sup{xn, xn+1, . . .} defines a real number for
each n ∈ N and that s1 ≥ s2 ≥ · · · . Prove an analogous result about
tn = inf{xn, xn+1, . . .}.

1.3.11. If a, b ∈ R and b − a > 1, then there is at least one k ∈ Z such that
a < k < b.

1.4 MATHEMATICAL INDUCTION

In this section we introduce the method of Mathematical Induction and use it
to prove the Binomial Formula, a result that shows how to expand powers of a
binomial expression (i.e., an expression of the form a + b).

We begin by obtaining another consequence of the Completeness Axiom,
the Well-Ordering Principle, which is a statement about the existence of least
elements of subsets of N.

1.22 Theorem. [WELL-ORDERING PRINCIPLE].
If E is a nonempty subset of N, then E has a least element (i.e., E has a finite
infimum and inf E ∈ E).

Proof. Suppose that E ⊆ N is nonempty. Then −E is bounded above, by
−1, so by the Completeness Axiom sup(−E) exists, and by Theorem 1.15,
sup(−E) ∈ −E . Hence by Theorem 1.20, inf E = − sup(−E) exists, and
inf E ∈ −(−E) = E . �

Our first application of the Well-Ordering Principle is called the Principle of
Mathematical Induction or the Axiom of Induction (which, under mild assump-
tions, is equivalent to the Well-Ordering Principle—see Appendix A).

1.23 Theorem. Suppose for each n ∈ N that A(n) is a proposition (i.e., a verbal
statement or formula) which satisfies the following two properties:

i) A(1) is true.
ii) For every n ∈ N for which A(n) is true, A(n + 1) is also true.

Then A(n) is true for all n ∈ N.

Proof. Suppose that the theorem is false. Then the set E = {n ∈ N : A(n)
is false} is nonempty. Hence by the Well-Ordering Principle, E has a least
element, say x .

Since x ∈ E ⊆ N ⊂ Z, we have by Remark 1.1ii that x ≥ 1. Since x ∈ E ,
we have by hypothesis i) that x �= 1. In particular, x − 1 > 0. Hence, by
Remark 1.1i and iii, x − 1 ≥ 1 and x − 1 ∈ N.

Since x − 1 < x and x is a least element of E , the statement A(x − 1) must
be true. Applying hypothesis ii) to n = x − 1, we see that A(x) = A(n + 1)
must also be true; that is, x /∈ E , a contradiction. �
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24 Chapter 1 The Real Number System

Recall that if x0, x1, . . . , xn are real numbers and 0 ≤ j ≤ n, then

n∑
k= j

xk := x j + x j+1 + · · · + xn

denotes the sum of the xk ’s as k ranges from j to n. The following examples
illustrate the fact that the Principle of Mathematical Induction can be used to
prove a variety of statements involving integers.

1.24 EXAMPLE.

Prove that
n∑

k=1

(3k − 1)(3k + 2) = 3n3 + 6n2 + n

for n ∈ N.

Proof. Let A(n) represent the statement

n∑
k=1

(3k − 1)(3k + 2) = 3n3 + 6n2 + n.

For n = 1 the left side of this equation is 2 · 5 and the right side is 3 + 6 + 1.
Therefore, A(1) is true. Suppose that A(n) is true for some n ≥ 1. Then

n+1∑
k=1

(3k − 1)(3k + 2) = (3n + 2)(3n + 5)+
n∑

k=1

(3k − 1)(3k + 2)

= (3n + 2)(3n + 5)+ 3n3+ 6n2+ n

= 3n3 + 15n2+ 22n +10.

On the other hand, a direct calculation reveals that

3(n + 1)3 + 6(n + 1)2 + (n + 1) = 3n3 + 15n2 + 22n + 10.

Therefore, A(n + 1) is true when A(n) is. We conclude by induction that A(n)
holds for all n ∈ N. �

Two formulas encountered early in an algebra course are the perfect square
and cube formulas:

(a + b)2 = a2 + 2ab + b2 and (a + b)3 = a3 + 3a2b + 3ab2 + b3.

Our next application of the Principle of Mathematical Induction generalizes
these formulas from n = 2 and 3 to arbitrary n ∈ N.
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Section 1.4 Mathematical Induction 25

Recall that Pascal’s triangle is the triangular array of integers whose rows
begin and end with 1s with the property that an interior entry on any row is
obtained by adding the two numbers in the preceding row immediately above
that entry. Thus the first few rows of Pascal’s triangle are as below.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Notice that the third and fourth rows are precisely the coefficients that appeared
in the perfect square and cube formulas above.

We can write down a formula for each entry in each row of the Pascal triangle.
The first (and only) entry in the first row is(

0

0

)
:= 1.

Using the notation 0! := 1 and n! := 1 · 2 · · · (n − 1) · n for n ∈ N, define the
binomial coefficient n choose k by(

n

k

)
:= n!

(n − k)!k!
for 0 ≤ k ≤ n and n = 0, 1, . . . .

Since
(

n
0

)
=
(

n
n

)
= 1 for all n ∈ N, the following result shows that the

binomial coefficient n over k does produce the (k + 1)st entry in the (n + 1)st
row of Pascal’s triangle.

1.25 Lemma.
If n, k ∈ N and 1 ≤ k ≤ n, then(

n + 1

k

)
=
(

n

k − 1

)
+
(

n

k

)
.

Proof. By definition,(
n

k − 1

)
+
(

n

k

)
= n! k

(n − k + 1)!k! + n!(n − k + 1)

(n − k + 1)!k!
= n!(n + 1)

(n − k + 1)!k! =
(

n + 1

k

)
. �
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26 Chapter 1 The Real Number System

Binomial coefficients can be used to expand the nth power of a sum of
two terms.

1.26 Theorem. [BINOMIAL FORMULA].
If a, b ∈ R, n ∈ N, and 00 is interpreted to be 1, then

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk .

Proof. The proof is by induction on n. The formula is obvious for n = 1.
Suppose that the formula is true for some n ∈ N. Then by the inductive
hypothesis and Postulate 1,

(a + b)n+1 = (a + b)(a + b)n

= (a + b)

(
n∑

k=0

(
n

k

)
an−kbk

)

=
(

n∑
k=0

(
n

k

)
an−k+1bk

)
+
(

n∑
k=0

(
n

k

)
an−kbk+1

)

=
(

an+1 +
n∑

k=1

(
n

k

)
an−k+1bk

)
+
(

bn+1 +
n−1∑
k=0

(
n

k

)
an−kbk+1

)

= an+1 +
n∑

k=1

((
n

k

)
+
(

n

k − 1

))
an−k+1bk + bn+1.

Hence it follows from Lemma 1.25 that

(a + b)n+1 = an+1 +
n∑

k=1

(
n + 1

k

)
an+1−kbk + bn+1 =

n+1∑
k=0

(
n + 1

k

)
an+1−kbk;

that is, the formula is true for n+1. We conclude by induction that the formula
holds for all n ∈ N. �

We close this section with two optional, well-known results that further
demonstrate the power of the Completeness Axiom and its consequences.

∗1.27 Remark. If x > 1 and x /∈ N, then there is an n ∈ N such that n < x <
n + 1.

Proof. By the Archimedean Principle, the set E = {m ∈ N : x < m} is
nonempty. Hence by the Well-Ordering Principle, E has a least element,
say m0.

Set n = m0 − 1. Since m0 ∈ E, n + 1 = m0 > x . Since m0 is least,
n = m0 −1 ≤ x . Since x /∈ N, we also have n �= x . Therefore, n < x < n +1. �
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Section 1.4 Mathematical Induction 27

Using this last result, we can prove that the set of irrationals is nonempty.

∗1.28 Remark. If n ∈ N is not a perfect square (i.e., if there is no m ∈ N such
that n = m2), then

√
n is irrational.

Proof. Suppose to the contrary that n ∈ N is not a perfect square but
√

n ∈ Q;
that is,

√
n = p/q for some p, q ∈ N. Choose by Remark 1.27 an integer

m0 ∈ N such that

m0 <
√

n < m0 + 1. (10)

Consider the set E := {k ∈ N : k
√

n ∈ Z}. Since q
√

n = p, we know that E
is nonempty. Thus by the Well-Ordering Principle, E has a least element, say
n0.

Set x = n0(
√

n −m0). By (10), 0 <
√

n −m0 < 1. Multiplying this inequality
by n0, we find that

0 < x < n0. (11)

Since n0 is a least element of E , it follows from (11) that x /∈ E . On the
other hand,

x
√

n = n0(
√

n − m0)
√

n = n0n − m0n0
√

n ∈ Z

since n0 ∈ E . Moreover, since x > 0 and x = n0
√

n − n0m0 is the difference
of two integers, x ∈ N. Thus x ∈ E , a contradiction. �

EXERCISES

1.4.0. Decide which of the following statements are true and which are false.
Prove the true ones and give counterexamples to the false ones.

a) If a ≥ 0 and b �= 0, then (a + b)n ≥ bn for all n ∈ N.
b) If a < 0 < b, then (a + b)n ≤ bn for all n ∈ N.
c) If n ∈ N is even and both a and b are negative, then (a + b)n >

an + nan−1b.
d) If a �= 0, then

1

2n
=

n∑
k=0

(
n

k

)
(a − 2)n−k

an2n−k

for all n ∈ N.

1.4.1. a) Prove that if x1 > 2 and xn+1 = 1 + √
xn − 1 for n ∈ N, then 2 <

xn+1 < xn holds for all n ∈ N.
b) Prove that if 2 < x1 < 3 and xn+1 = 2 + √

xn − 2 for n ∈ N, then
0 < xn < xn+1 holds for all n ∈ N.

c) Prove that if 0 < x1 < 1 and xn+1 = 1 − √
1 − xn for n ∈ N, then

0 < xn+1 < xn holds for all n ∈ N.
d) Prove that if 3 < x1 < 5 and xn+1 = 2 + √

xn − 2, then 3 < xn+1 < xn
holds for all n ∈ N.
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28 Chapter 1 The Real Number System

1.4.2. Use the Binomial Formula or the Principle of Induction to prove each
of the following.

a)
∑n

k=0(−1)k
(

n
k

)
= 0 for all n ∈ N.

b) (a + b)n ≥ an + bn for all n ∈ N and a, b ≥ 0.
c) (1 + 1/n)n ≥ 2 for all n ∈ N.

d)
∑n

k=1

(
n
k

)
= ∑n−1

k=0 2k for all n ∈ N.

1.4.3. Prove each of the following statements.

a) 2n + 1 < 2n for n = 3, 4, . . . .
b) n < 2n for n = 1, 2, . . . .
c) n2 ≤ 2n + 1 for n = 1, 2, . . . .
d) n3 ≤ 3n for n = 1, 2, . . . .

1.4.4 . Parts a) and c) of this exercise are used in Sections 2.4 and 5.1.
Prove that the following formulas hold for all n ∈ N.

a)
n∑

k=1
k = n(n + 1)

2

b)
n∑

k=1
k2 = n(n + 1)(2n + 1)

6

c)
n∑

k=1

a − 1

ak
= 1 − 1

an
, a �= 0

d)
n∑

k=1
(2k − 1)2 = n(4n2 − 1)

3

1.4.5 . This exercise is used in Section 2.3. Prove that 0 ≤ a < b implies 0 ≤
an < bn and 0 ≤ n

√
a < n

√
b for all n ∈ N.

1.4.6. Prove that 2n + 3n is a multiple of 5 for all odd n ∈ N.
1.4.7. Prove that 2n ≤ n! + 2 for n ∈ N.
1.4.8. Prove that

2n >
n(n − 1)(n − 2)

6

for n ∈ N.

1.4.9. a) Using Remark 1.28, prove that the square root of an integer m is
rational if and only if m = k2 for some k ∈ N.

b) Prove that
√

n + 3 + √
n is rational for some n ∈ N if and only if

n = 1.
c) Find all n ∈ N such that

√
n + 7 + √

n is rational.

1.4.10. Let a0 = 3, b0 = 4, and c0 = 5.

a) Let ak = ak−1 + 2, bk = 2ak−1 + bk−1 + 2, and ck = 2ak−1 + ck−1 + 2
for k ∈ N. Prove that ck − bk is constant for all k ∈ N.
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Section 1.5 Inverse Functions and Images 29

b) Prove that the numbers defined in part a) satisfy

a2
k + b2

k = c2
k

for all k ∈ N.

1.5 INVERSE FUNCTIONS AND IMAGES

Let f : X → Y (i.e., suppose that f is a function from one set X to another
set Y ). In this section, we obtain simple conditions for when f has an inverse,
introduce images and inverse images induced by f , and explore how they inter-
act with the algebra of sets.

First, recall from Section 1.1 that a function f : X → Y has an inverse function
if and only if Ran( f ) = Y and each y ∈ Y has a unique preimage x ∈ X , in
which case we define the inverse function f −1 by f −1(y) := x . In particular, if
f : X → Y has an inverse function, then

f −1( f (x)) = x and f ( f −1(y)) = y (12)

for all x ∈ X and y ∈ Y .
We introduce the following concepts in order to answer the question, “Is there

an easy way to recognize when f has an inverse?”

1.29 Definition.

Let X and Y be sets and f : X → Y .

i) f is said to be 1–1 (one-to-one or an injection) if and only if

x1, x2 ∈ X and f (x1) = f (x2) imply x1 = x2.

ii) f is said to be onto (or a surjection) if and only if for each y ∈ Y there is
an x ∈ X such that y = f (x).

iii) f is called a bijection if and only if it is both 1–1 and onto.
Sometimes, to emphasize the domain and range of f , we shall say that a

bijection f : X → Y is 1–1 from X onto Y .

For example, the function f (x) = x2 is 1–1 from [0,∞) onto [0,∞) but not
1–1 on any open interval containing 0.

We shall now prove that bijections always have inverse functions and that (12)
characterizes those inverses.

1.30 Theorem. Let X and Y be sets and f : X → Y . Then the following three
statements are equivalent.

i) f has an inverse;
ii) f is 1–1 from X onto Y;

29



30 Chapter 1 The Real Number System

iii) There is a function g : Y → X such that

g( f (x)) = x for all x ∈ X (13)

and

f (g(y)) = y for all y ∈ Y . (14)

Moreover, for each f : X → Y , there is only one function g that satisfies (13) and
(14). It is the inverse function f −1.

Proof. i) implies ii). By definition, if f has an inverse, then Ran( f ) = Y
(so f takes X onto Y ) and each y ∈ Y has a unique preimage in X [so, if
f (y1) = f (y2), then y1 = y2, i.e., f is 1–1 on X ].

ii) implies iii). The proof that i) implies ii) also shows that if f : X → Y
is 1–1 and onto, then f has an inverse. In particular, g(y) := f −1(y) satisfies
(13) and (14) by (12).

iii) implies i). Suppose that there is a function g : Y → X which satisfies
(13) and (14). If some y ∈ Y has two preimages, say x1 �= x2 in X , then
f (x1) = y = f (x2). It follows from (13) that x1 = g( f (x1)) = g( f (x2)) = x2,
a contradiction. On the other hand, given y ∈ Y , set x = g(y). Then f (x) =
f (g(y)) = y by (14), so Ran( f ) = Y .

Finally, suppose that h is another function which satisfies (13) and (14), and
fix y ∈ Y . By ii), there is an x ∈ X such that f (x) = y. Hence by (13),

h(y) = h( f (x)) = x = g( f (x)) = g(y);

that is, h = g on Y . It follows that the function g is unique. �

There are two ways to show that a given function f is 1–1 on a set X . We can
suppose that f (x1) = f (x2) for some x1, x2 ∈ X , and prove (using algebra, for
example) that x1 = x2. If X is an interval in R and f is differentiable, there is an
easier way to prove that f is 1–1 on X .

1.31 Remark. Let I be an interval and let f : I → R. If the derivative of f is
either always positive on I, or always negative on I, then f is 1–1 on I.

Proof. By symmetry, we may suppose that the derivative f ′ of f satisfies
f ′(x) > 0 for all x ∈ I . We will use a result that almost everyone who has
studied one variable calculus remembers (for a proof, see Theorem 4.17): If
f ′ > 0 on an interval I , then f is strictly increasing on I ; that is, x1, x2 ∈ I and
x1 < x2 imply that f (x1) < f (x2).

To see why this implies that f is 1–1, suppose that f (x1) = f (x2) for some
x1, x2 in X . If x1 �= x2, then it follows from the trichotomy property that either
x1 < x2 or x2 < x1. Since f is strictly increasing on I , either f (x1) < f (x2)

or f (x2) < f (x1). Both of these conclusions contradict the assumption that
f (x1) = f (x2). �
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Section 1.5 Inverse Functions and Images 31

By Theorem 1.30, f : X → Y has an inverse function f −1 if and only if
f −1( f (x)) = x for all x ∈ X and f ( f −1(y)) = y for all y ∈ Y . This suggests that
we can find a formula for f −1 if y = f (x) can be solved for x .

∗1.32 EXAMPLE.

Prove that f (x) = ex − e−x is 1–1 on R and find a formula for f −1 on Ran( f ).

Solution. Since f ′(x) = ex + e−x > 0 for all x ∈ R, f is 1–1 on R by
Remark 1.31.

Let y = ex − e−x . Multiplying this equation by ex and collecting all nonzero
terms on one side of the equation, we have

e2x − yex − 1 = 0,

a quadratic in ex . By the quadratic formula,

ex = y ±√
y2 + 4

2
. (15)

Since ex is always positive, the minus sign must be discarded. Taking the loga-
rithm of this last identity, we obtain x = log(y +√

y2 + 4)− log 2. Therefore,

f −1(x) = log(x +
√

x2 + 4)− log 2. �

The following concepts greatly simplify the general theory of continuity (see
Theorem 9.26, for example).

1.33 Definition.

Let X and Y be sets and f : X → Y . The image of a set E ⊆ X under f is the
set

f (E) := {y ∈ Y : y = f (x) for some x ∈ E}.
The inverse image of a set E ⊆ Y under f is the set

f −1(E) := {x ∈ X : f (x) = y for some y ∈ E}. (16)

When E is an interval, we will sometimes drop the extra parentheses; for
example, write f (a, b] for f ((a, b]) and f −1(a, b] for f −1((a, b]).
1.34 EXAMPLE.

Find the images and inverse images of the sets I = (−1, 0) and J = (0, 1] under
the function f (x) = x2 + x .

Solution. Since “find” doesn’t mean “prove,” we look at the graph y = x2 + x .
By definition, f (I ) consists of the y-values of f (x) as x ranges over I = (−1, 0).
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32 Chapter 1 The Real Number System

Since f has roots at x = 0,−1 and has a minimum of −0.25 at x = −0.5, it is
clear by looking at the graph that f (I ) = [−0.25, 0). Since f −1(I ) consist of the
x-values whose images belong to I = (−1, 0), and the graph of f lies below the
x-axis only when −1 < x < 0, it is also clear that f −1(I ) = (−1, 0). Similarly,
f (J ) = (0, 2] and

f −1(J ) =
[

−1 − √
5

2
,−1

)⋃(
0,

−1 + √
5

2

]
.

(Be sure to look at the graph of y = x2 + x and understand how these numbers
were obtained.) �

WARNING. Unfortunately, there are now three meanings to f −1: (1) f −1(x) =
1/ f (x), the reciprocal of f which exists when f is real-valued and f (x) �= 0;
(2) f −1(x), the inverse function of f which exists when f is 1–1 and onto; (3)
f −1(E), the inverse image of E under f , which always exists. Context will usu-
ally indicate which meaning we are using.

Notice that Definition 1.33 contains an asymmetry: y ∈ f (E) means that
y = f (x) for some x ∈ E , but x ∈ f −1(E) does NOT mean that x = f −1(y) for
some y ∈ E . For example, let f (x) = sin x . Since sin(kπ) = 0 for all k ∈ Z, the
inverse image of {0} under f is f −1({0}) = {kπ : k ∈ Z}, but since the range of
arcsin x is [−π/2, π/2], the image of {0} under f −1 is arcsin{0} = {0}.

Before we give an account of how images and inverse images interact with set
algebra (specifically, what the image and inverse image of a union, an intersec-
tion, and a complement of sets are), we need to expand the algebra of sets to
include unions and intersections of infinitely many sets. We need these concepts
for some of the deeper results in the second half of this book because many of
the proofs involve associating a set Eα with each α in a set A. With this end in
mind, we introduce the following terminology.

A collection of sets E is said to be indexed by a set A if and only if there is a
function F from A onto E (i.e., each α ∈ A is associated with one and only one
set in E). In this case we shall call A the index set of E , say that E is indexed by A,
and represent F(α) by Eα . In particular, E is indexed by A means E = {Eα}α∈A.

1.35 Definition.

Let E = {Eα}α∈A be a collection of sets.

i) The union of the collection E is the set

⋃
α∈A

Eα := {x : x ∈ Eα for some α ∈ A}.
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Section 1.5 Inverse Functions and Images 33

ii) The intersection of the collection E is the set

⋂
α∈A

Eα := {x : x ∈ Eα for all α ∈ A}.

For example,

⋃
x∈(0,1]

[0, x) = [0, 1) and
⋂

x∈(0,1]
[0, x) = {0}.

The following important, often used result shows that there is an easy way to
get from unions to intersections, and vice versa.

1.36 Theorem. [DEMORGAN’S LAWS].
Let X be a set and {Eα}α∈A be a collection of subsets of X. If for each E ⊆ X
the symbol Ec represents the set X\E , then

(⋃
α∈A

Eα

)c

=
⋂
α∈A

Ec
α (17)

and (⋂
α∈A

Eα

)c

=
⋃
α∈A

Ec
α. (18)

Proof. Suppose that x belongs to the left side of (17); that is, x ∈ X and
x /∈ ⋃

α∈A Eα . By definition, x ∈ X and x /∈ Eα for all α ∈ A. Hence, x ∈ Ec
α

for all α ∈ A; that is, x belongs to the right side of (17). These steps are
reversible. This verifies (17). A similar argument verifies (18). �

The following result, which plays a prominent role in Chapters 9 and 12,
describes images and inverse images of unions and intersections of sets.

1.37 Theorem. Let X and Y be sets and f : X → Y .

i) If {Eα}α∈A is a collection of subsets of X, then

f

(⋃
α∈A

Eα

)
=
⋃
α∈A

f (Eα) and f

(⋂
α∈A

Eα

)
⊆
⋂
α∈A

f (Eα).

ii) If B and C are subsets of X, then f (C\B) ⊇ f (C)\ f (B).
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34 Chapter 1 The Real Number System

iii) If {Eα}α∈A is a collection of subsets of Y, then

f −1

(⋃
α∈A

Eα

)
=
⋃
α∈A

f −1(Eα) and f −1

(⋂
α∈A

Eα

)
=
⋂
α∈A

f −1(Eα).

iv) If B and C are subsets of Y, then f −1(C\B) = f −1(C)\ f −1(B).
v) If E ⊆ f (X), then f ( f −1(E)) = E , but if E ⊆ X , then f −1( f (E)) ⊇ E .

Proof. i) By definition, y ∈ f (∪α∈A Eα) if and only if y = f (x) for some x ∈
Eα and α ∈ A. This is equivalent to y ∈ ∪α∈A f (Eα). Similarly, y ∈ f (∩α∈A Eα)
if and only if y = f (x) for some x ∈ ∩α∈A Eα . This implies that for all α ∈ A
there is an xα ∈ Eα such that y = f (xα). Therefore, y ∈ ∩α∈A f (Eα).

ii) If y ∈ f (C)\ f (B), then y = f (c) for some c ∈ C but y �= f (b) for any
b ∈ B. It follows that y ∈ f (C\B). Similar arguments prove parts iii), iv),
and v). �

It is important to recognize that the set inequalities in parts i), ii), and v)
can be strict unless f is 1–1 (see Exercises 1.5.6 and 1.5.7). For example, if
f (x) = x2, E1 = {1}, and E2 = {−1}, then f (E1 ∩ E2) = ∅ is a proper subset of
f (E1) ∩ f (E2) = {1}.

EXERCISES

1.5.0. Decide which of the following statements are true and which are false.
Prove the true ones and give counterexamples to the false ones.

a) Let f (x) = sin x . Then the function

f :
[
π

2
,

3π

2

]
→ [−1, 1]

is a bijection, and its inverse function is arcsin x .
b) Suppose that A, B, and C are subsets of some set X and that f :

X → X . If A ∩ B �= ∅, then f (A) ∩ f (B ∪ C) �= ∅.
c) Suppose that A and B are subsets of some set X . Then (A\B)c =

B\A.
d) If f takes [−1, 1] onto [−1, 1], then f −1( f ({0})) = {0}.

1.5.1. a) For each of the following, prove that f is 1–1 on E and find f (E).

α) f (x) = 3x − 7, E = R
β) f (x) = e1/x , E = (0,∞)

γ ) f (x) = tan x, E = (π/2, 3π/2)
δ) f (x) = x2 + 2x − 5, E = (−∞,−6]
ε) f (x) = 3x − |x | + |x − 2|, E = R
ζ ) f (x) = x/(x2 + 1), E = [−1, 1]

∗b) Find an explicit formula for f −1 on f (E).
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1.5.2. Find f (E) and f −1(E) for each of the following.

a) f (x) = 2 − 3x, E = (−1, 2)
b) f (x) = x2 + 1, E = (−1, 2]
c) f (x) = 2x − x2, E = [−2, 2)
d) f (x) = log(x2 − 2x + 2), E = (0, 3]
e) f (x) = cos x, E = [0,∞)

1.5.3. Give a simple description of each of the following sets.

a)
⋃

x∈[0,1]
[x − 2, x + 1]

b)
⋂

x∈[0,1]
(x − 1, x + 1]

c)
⋂

k∈N

[
− 1

k ,
1
k

]
d)

⋃
k∈N

[
− 1

k , 0
]

e)
⋃

k∈N

[
−k, 1

k

)
f)

⋂
k∈N

[
k−1

k , k+1
k

]
1.5.4. Prove (18).
1.5.5. Prove Theorem 1.37iii, iv, and v.
1.5.6. Let f (x) = x2.

a) Find subsets B and C of R such that f (C\B) �= f (C)\ f (B).
b) Find a subset E of R such that f −1( f (E)) �= E .

1.5.7 . This exercise is used several times in Chapter 12. Let X, Y be sets and
f : X → Y . Prove that the following are equivalent.

a) f is 1–1 on X .
b) f (A\B) = f (A)\ f (B) for all subsets A and B of X .
c) f −1( f (E)) = E for all subsets E of X .
d) f (A ∩ B) = f (A) ∩ f (B) for all subsets A and B of X .

1.6 COUNTABLE AND UNCOUNTABLE SETS

In this section we will show how to use bijections to “count” infinite sets. We
begin by examining what it means to count a finite set. When we count a
finite set E , we assign consecutive numbers in N to the elements of E ; that
is, we construct a function f from {1, 2, . . . , n} to E , where n is the num-
ber of elements in E . For example, if E has three objects, then the “count-
ing” function, f , takes {1, 2, 3} to E . Now in order to count E properly,
we must be careful to avoid two pitfalls. We must not count any element of
E more than once (i.e., f must be 1–1), and we cannot miss any element of
E (i.e., f must take {1, 2, 3} onto E). Accordingly, we make the following
definition.
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36 Chapter 1 The Real Number System

1.38 Definition.

Let E be a set.

i) E is said to be finite if and only if either E = ∅ or there exists a 1–1 function
which takes {1, 2, . . . , n} onto E , for some n ∈ N.

ii) E is said to be countable if and only if there exists a 1–1 function which
takes N onto E .

iii) E is said to be at most countable if and only if E is either finite or countable.
iv) E is said to be uncountable if and only if E is neither finite nor countable.

Loosely speaking, a set is countable if it has the same number of elements as
N, finite if it has less, and uncountable if it has more.

To show that a set E is countable, it suffices to exhibit a 1–1 function f from
N onto E . For example, the set of even integers E = {2, 4, . . .} is countable
because f (k) := 2k is 1–1 from N onto E . Thus, two infinite sets can have the
same number of elements even though one is a proper subset of the other. (In
fact, this property can be used as a definition of “infinite set.”)

The following result shows that not every infinite set is countable.

1.39 Remark. [CANTOR’S DIAGONALIZATION ARGUMENT]. The open
interval (0, 1) is uncountable.

Strategy: Suppose to the contrary that (0, 1) is countable. Then by def-
inition, there is a function f on N such that f (1), f (2), . . . exhausts the ele-
ments of (0, 1). We could reach a contradiction if we could find a new number
x ∈ (0, 1) that is different from all the f (k)’s. How can we determine whether
two numbers are different? One easy way is to look at their decimal expansions.
For example, 0.1234 �= 0.1254 because they have different decimal expansions.
Thus, we could find an x that has no preimage under f by making the deci-
mal expansion of x different by at least one digit from the decimal expansion of
EVERY f (k).

There is a flaw in this approach that we must fix. Decimal expansions are
unique except for finite decimals, which always have an alternative expansion
that terminates in 9s (e.g., 0.5 = 0.4999 . . . and 0.24 = 0.23999 . . .) (see Exer-
cise 2.2.10). Hence, when specifying the decimal expansion of x , we must avoid
decimals that terminate in 9s.

Proof. Suppose that there is a 1–1 function f that takes N onto the interval
(0, 1). Write the numbers f ( j), j ∈ N, in decimal notation, using the finite
expansion when possible, that is,

f (1) = 0.α11α12 . . . ,

f (2) = 0.α21α22 . . . ,

f (3) = 0.α31α32 . . . ,

. . . ,
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where αi j represents the jth digit in the decimal expansion of f (i) and none
of these expansions terminates in 9s. Let x be the number whose decimal
expansion is given by 0.β1β2 . . . , where

βk :=
{
αkk + 1 if αkk ≤ 5
αkk − 1 if αkk > 5.

Clearly, x is a number in (0, 1) whose decimal expansion does not contain
one 9, much less terminate in 9s. Since f is onto, there is a j ∈ N such that
f ( j) = x . Since we have avoided 9s, the decimal expansions of f ( j) and
x must be identical (e.g., α j j = β j := α j j ± 1). It follows that 0 = ±1, a
contradiction. �

It is natural to ask about the countability of the sets Z, Q, and R. To answer
these questions, we prove several preliminary results. First, to show that a set
E is at most countable, we do not need to construct a ONE-TO-ONE function
which takes N onto E .

1.40 Lemma.
A nonempty set E is at most countable if and only if there is a function g from
N onto E.

Proof. If E is countable, then by Definition 1.38ii there is a (1–1) function f
from N onto E , so g := f takes N onto E . If E is finite, then there is an n ∈ N
and a 1–1 function f that takes {1, 2, . . . , n} onto E . Hence

g( j) :=
{

f ( j) j ≤ n
f (1) j > n

takes N onto E .
Conversely, suppose that g takes N onto E . We need to construct a function

f that is 1–1 from some subset of N onto E . We will do this by eliminating the
duplication in g. To this end, let k1 = 1. If the set E1 := {k ∈ N : g(k) �= g(k1)}
is empty, then E = {g(k1)}, thus evidently at most countable. Otherwise, let
k2 be the least element in E1 and notice that k2 > k1.

Set E2 := {k ∈ N : g(k) ∈ E\{g(k1), g(k2)}}. If E2 is empty, then E =
{g(k1), g(k2)} is finite, hence at most countable. Otherwise, let k3 be the least
element in E2. Since g(k3) ∈ E\{g(k1), g(k2)}, we have g(k3) �= g(k2) and
g(k3) �= g(k1). Since g is a function, the first condition implies k3 �= k2. Since
k2 is least in E1, the second condition implies k2 < k3. Hence, k1 < k2 < k3.

Continue this process. If it ever terminates, then some

E j := {k ∈ N : g(k) ∈ E \ {g(k1), . . . , g(k j )}}
is empty, so E is finite, hence at most countable. If this process never ter-
minates, then we generate integers k1 < k2 < · · · such that k j+1 is the least
element of E j for j = 1, 2, . . . .
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38 Chapter 1 The Real Number System

Set f ( j) = g(k j ), j ∈ N. To show that f is 1–1, notice that j �= � implies
that k j �= k�, say k j < k�. Then k j ≤ k�−1, so by construction

g(k�) ∈ E \ {g(k1), . . . , g(k j ), . . . , g(k�−1)} ⊆ E \ {g(k1), . . . , g(k j )}.
In particular, g(k�) �= g(k j ); that is, f (�) �= f ( j).

To show that f is onto, let x ∈ E . Since g is onto, choose � ∈ N such that
g(�) = x . Since by construction j ≤ k j , use the Archimedean Principle to
choose a j ∈ N such that k j > �. Since k j is the least element in E j−1, it
follows that g(�) cannot belong to E\{g(k1), . . . , g(k j−1)}; that is, g(�) = g(kn)

for some n ∈ [1, j − 1]. In particular, f (n) = g(kn) = x . �

Next, we show how set containment affects countability and use it to answer
the question about countability of R.

1.41 Theorem. Suppose that A and B are sets.

i) If A ⊆ B and B is at most countable, then A is at most countable.
ii) If A ⊆ B and A is uncountable, then B is uncountable.

iii) R is uncountable.

Proof. i) Since B is at most countable, choose by Lemma 1.40 a function g
which takes N onto B. We may suppose that A is nonempty, hence fix an
a0 ∈ A. Then

f (n) :=
{

g(n) g(n) ∈ A
a0 g(n) /∈ A

takes N onto A. Hence by Lemma 1.40, A is at most countable.
ii) If B were at most countable, then by part i), A would also be at most

countable, a contradiction.
iii) By Remark 1.39, the interval (0, 1) is an uncountable subset of R. Thus,

by part ii), R is uncountable. �

The following result shows that the Cartesian product of two countable sets is
countable, and that a countable union of countable sets is countable.

1.42 Theorem. Let A1, A2, . . . be at most countable sets.
i) Then A1 × A2 is at most countable.

ii) If

E =
∞⋃
j=1

A j :=
⋃
j∈N

A j := {x : x ∈ A j for some j ∈ N},

then E is at most countable.

Proof. i) By Lemma 1.40, there exist functions φ (respectively, ψ) which take
N onto A1 (respectively, onto A2). Hence f (n,m) := (φ(n), ψ(m)) takes N×N
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Section 1.6 Countable and Uncountable Sets 39

onto A1 × A2. If we can construct a function g which takes N onto N×N, then
by Exercise 1.6.5a, f ◦g takes N onto A1 × A2. Hence by Lemma 1.40, A1 × A2
is at most countable.

To construct the function g, plot the points of N×N in the plane. Notice that
we can connect these lattice points with a series of parallel backward-slanted
lines; for example, the first line passes through (1, 1), the second line passes
through (1, 2) and (2, 1), and the third line passes through (1, 3), (2, 2), and
(3, 1). This suggests a method for constructing g. Set g(1) = (1, 1), g(2) =
(1, 2), g(3) = (2, 1), g(4) = (3, 1), . . . .

If you wish to see an explicit formula for g, observe that the nth line passes
through the set of lattice points

(1, n), (2, n − 1), (3, n − 2), . . . , (n − 1, 2), (n, 1);

that is, through the set of lattice points (k, j) which satisfy k + j = n + 1.
Since the sum of integers 1 + 2 + · · · + (n − 1) is given by (n − 1)n/2 (see
Exercise 1.4.4a), there are (n − 1)n/2 elements in the first n − 1 slanted lines.
Hence a function which takes N onto the nth slanted line is given by

g( j) = (�, n + 1 − �), (19)

where j = � + (n − 1)n/2. This function is defined on all of N because given
j ∈ N, we can use the Archimedean Principle and the Well-Ordering Principle
to choose n least such that j ≤ n(n + 1)/2; that is, such that j = �+ (n − 1)n/2
for some � ∈ [1, n]. Thus g takes N onto N × N.

ii) By Lemma 1.40, choose functions f j that take N onto A j , j ∈ N. Clearly,
the function h(k, j) := fk( j) takes N × N onto E . Hence the function h ◦ g,
where g is defined by (19), takes N onto E . We conclude by Lemma 1.40 that
E is at most countable. �

1.43 Remark. The sets Z and Q are countable, but the set of irrationals is
uncountable.

Proof. Z = N ∪ (−N) ∪ {0} and Q = ⋃∞
n=1{p/n : p ∈ Z} are both countable

by Theorem 1.42ii.
If R\Q were countable, then R = (R\Q) ∪ Q would also be countable, a

contradiction of Theorem 1.41iii. �

EXERCISES

1.6.0. Decide which of the following statements are true and which are false.
Prove the true ones and give counterexamples to the false ones.

a) Suppose that E is a set. If there exists a function f from E onto N,
then E is at most countable.

b) A dyadic rational is a point x ∈ R such that x = n/2m for some n ∈ Z
and m ∈ N. The set of dyadic rationals is uncountable.
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40 Chapter 1 The Real Number System

c) Suppose that A and B are sets and that f : A → B is 1–1. If A is
uncountable, then B is uncountable.

d) If E1, E2, . . . are finite sets, and

E := E1 × E2 × · · · := {(x1, x2, . . . ) : x j ∈ E j for all j ∈ N },
then E is countable.

1.6.1. Prove that the set of odd integers {1, 3, . . .} is countable.
1.6.2. Prove that set of rational lattice points in space—that is, the set Q3 :=

{(x, y, z) : x, y, z ∈ Q}—is countable.
1.6.3. Suppose that A and B are sets and that B is uncountable. If there exists a

function which takes A onto B, prove that A is uncountable.
1.6.4. Suppose that A is finite and f is 1–1 from A onto B. Prove that B is finite.
1.6.5. Let f : A → B and g : B → C and define g ◦ f : A → C by (g ◦ f )(x) :=

g( f (x)).

a) Show that if f, g are 1–1 (respectively, onto), then g ◦ f is 1–1 (respec-
tively, onto).

b) Prove that if f is 1–1 from A into B and B0 := {y : y = f (x) for some
x ∈ A}, then f −1 is 1–1 from B0 onto A.

c) Suppose that g is 1–1 from B onto C . Prove that f is 1–1 on A (respec-
tively, onto B) if and only if g ◦ f is 1–1 on A (respectively, onto C).

1.6.6. Suppose that n ∈ N and φ : {1, 2, . . . , n} → {1, 2, . . . , n}.
a) Prove that φ is 1–1 if and only if φ is onto.
b) [Pigeonhole Principle] Suppose that E is a finite set and that f : E →

E . Prove that f is 1–1 on E if and only if f takes E onto E .

1.6.7. A number x0 ∈ R is called algebraic of degree n if it is the root of a poly-
nomial P(x) = anxn + · · · + a1x + a0, where a j ∈ Z, an �= 0, and n is
minimal. A number x0 that is not algebraic is called transcendental.

a) Prove that if n ∈ N and q ∈ Q, then nq is algebraic.
b) Prove that for each n ∈ N the collection of algebraic numbers of

degree n is countable.
c) Prove that the collection of transcendental numbers is uncountable.

(Two famous transcendental numbers are π and e. For more informa-
tion on transcendental numbers and their history, see Kline [5].)
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C H A P T E R 2

Sequences in R

2.1 LIMITS OF SEQUENCES

An infinite sequence (more briefly, a sequence) is a function whose do-
main is N. A sequence f whose terms are xn := f (n) will be denoted by
x1, x2, . . . or {xn}n∈N or {xn}∞n=1, or {xn}. Thus 1, 1/2, 1/4, 1/8, . . . represents the
sequence {1/2n−1}n∈N; −1, 1,−1, 1, . . . represents the sequence {(−1)n}n∈N; and
1, 2, 3, 4, . . . represents the sequence {n}n∈N.

It is important not to confuse a sequence {xn}n∈N with the set {xn : n ∈ N};
these are two entirely different concepts. For example, as sequences,
1, 2, 3, 4, . . . is different from 2, 1, 3, 4, . . ., but as sets, {1, 2, 3, 4, . . .} is identi-
cal with {2, 1, 3, 4, . . .}. Again, the sequence 1,−1, 1,−1, . . . is infinite, but the
set {(−1)n : n ∈ N} has only two points.

The limit concept is one of the fundamental building blocks of analysis. Recall
from elementary calculus that a sequence of real numbers {xn} converges to a
number a if xn gets near a (i.e., the distance between a and xn gets small) as n
gets large. Thus, given ε > 0 (no matter how small), if n is large enough, |xn − a|
is smaller than ε. This leads us to a formal definition of the limit of a sequence.

2.1 Definition.

A sequence of real numbers {xn} is said to converge to a real number a ∈ R if
and only if for every ε > 0 there is an N ∈ N (which in general depends on ε)
such that

n ≥ N implies |xn − a| < ε.

We shall use the following phrases and notation interchangeably:

a) {xn} converges to a; b) xn converges to a; c) a = limn→∞ xn ; d) xn → a as
n → ∞; e) the limit of {xn} exists and equals a.

When xn → a as n → ∞, you can think of xn as a sequence of approximations
to a, and ε as an upper bound for the error of these approximations. The number
N in Definition 2.1 is chosen so that the error is less than ε when n ≥ N . In
general, the smaller ε gets, the larger N must be. (See, for example, Figure 2.1.)

Notice by definition that xn converges to a if and only if |xn − a| → 0 as
n → ∞. In particular, xn → 0 if and only if |xn| → 0 as n → ∞.

According to Definition 2.1, to prove that a particular limit exists, given an
arbitrary ε > 0, no matter how small, we must describe how to choose an N such
that n ≥ N implies |xn − a| < ε. In particular, ε is usually introduced BEFORE

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 2 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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FIGURE 2.1

N is specified, and N often is defined to depend on ε. Since |xn − a| < ε for all
n ≥ N , N CANNOT depend on n.

Before we actually prove that some concrete limits exist, we introduce addi-
tional terminology. Let Pn be a property indexed by N. We shall say that Pn
holds for large n if there is an N ∈ N such that Pn is true for all n ≥ N . Hence a
loose summary of Definition 2.1 is that xn converges to a if and only if |xn − a|
is small for large n. What we mean by this is that given any prescribed positive
quantity ε (no matter how small), we can choose N large enough so that |xn − a|
is less than ε for all n ≥ N .

2.2 EXAMPLE.

i) Prove that 1/n → 0 as n → ∞.
ii) If xn → 2, prove that (2xn + 1)/xn → 5/2 as n → ∞.

Proof. i) Let ε > 0. Use the Archimedean Principle to choose N ∈ N such
that N > 1/ε. By taking the reciprocal of this inequality, we see that n ≥ N
implies 1/n ≤ 1/N < ε. Since 1/n are all positive, it follows that |1/n| < ε for
all n ≥ N .

Strategy for ii): By definition, we must show that

2xn + 1

xn
− 5

2
= 2 − xn

2xn

is small for large n. The numerator of this last fraction will be small for large n
since xn → 2, as n → ∞. What about the denominator? Since xn → 2, xn will
be greater than 1 for large n, so 2xn will be greater than 2 for large n. Since
we made n large twice, we will make two restrictions to determine the N that
corresponds to ε in Definition 2.1. Let’s try to write all this down carefully to
be sure that it works out.

ii) Let ε > 0. Since xn → 2, apply Definition 2.1 to this ε > 0 to choose
N1 ∈ N such that n ≥ N1 implies |xn − 2| < ε. Next, apply Definition 2.1 with
ε = 1 to choose N2 such that n ≥ N2 implies |xn −2| < 1. By the Fundamental
Theorem of Absolute Values, we have n ≥ N2 implies xn > 1 (i.e., 2xn > 2).

Set N = max{N1, N2} and suppose that n ≥ N . Since n ≥ N1, we have
|2 − xn| = |xn − 2| < ε. Since n ≥ N2, we have 0 < 1/(2xn) < 1/2 < 1. It
follows that ∣∣∣∣2xn + 1

xn
− 5

2

∣∣∣∣ = |2 − xn|
2xn

<
ε

2xn
< ε

for all n ≥ N . �

42



Section 2.1 Limits of Sequences 43

Notice that in the proof of Remark 2.1 we forced two properties that held for
n ≥ N j , j = 1, 2, to hold for n ≥ N by setting N equal to the maximum of N1 and
N2. It is clear that by this same process, if N1, . . . , Nq have been chosen so that
for each j a property P j holds when n ≥ N j and if N = max{N1, . . . , Nq}, then
all q properties P1, . . . ,Pq hold simultaneously when n ≥ N . We shall use this
device frequently below, but rarely write N explicitly as a maximum of integers
N j again.

The following two results show that a given sequence can have no limits or
one limit, but no more.

2.3 EXAMPLE.

The sequence {(−1)n}n∈N has no limit.

Proof. Suppose that (−1)n → a as n → ∞ for some a ∈ R. Given ε = 1,
there is an N ∈ N such that n ≥ N implies |(−1)n − a| < ε. For n odd this
implies |1 + a| = |− 1 − a| < 1, and for n even this implies |1 − a| < 1. Hence,

2 = |1 + 1| ≤ |1 − a| + |1 + a| < 1 + 1 = 2;

that is, 2 < 2, a contradiction. �

2.4 Remark. A sequence can have at most one limit.

Proof. Suppose that {xn} converges to both a and b. By definition, given
ε > 0, there is an integer N such that n ≥ N implies |xn − a| < ε/2 and
|xn − b| < ε/2. Thus it follows from the triangle inequality that

|a − b| ≤ |a − xn| + |xn − b| < ε;

that is, |a − b| < ε for all ε > 0. We conclude, by Theorem 1.9, that a = b. �

We shall use the following concept many times.

2.5 Definition.

By a subsequence of a sequence {xn}n∈N, we shall mean a sequence of the form
{xnk }k∈N, where each nk ∈ N and n1 < n2 < · · · .

Thus a subsequence xn1, xn2, . . . of x1, x2, . . . is obtained by “deleting” from
x1, x2, . . . all xn’s except those such that n = nk for some k. For example, 1, 1, . . .
is a subsequence of (−1)n obtained by deleting every other term (set nk = 2k),
and 1/2, 1/4, . . . is a subsequence of 1/n obtained by deleting all nondyadic frac-
tions; that is, deleting 1/3, 1/5, 1/6, 1/7, . . . (set nk = 2k).
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44 Chapter 2 Sequences in R

Subsequences are sometimes used to correct a sequence that behaves badly or
to speed up convergence of another that converges slowly. For example, {1/n}
converges much more slowly to zero than its subsequence {1/2n}, and {(−1)n}
does not converge at all (see Example 2.3 above), but its subsequence 1, 1, . . .
converges to 1 immediately.

If xn → a as n → ∞, then the xn’s get near a as n gets large. Since nk gets
large as k does, it comes as no surprise that any subsequence of a convergent
sequence also converges.

2.6 Remark. If {xn}n∈N converges to a and {xnk }k∈N is any subsequence of
{xn}n∈N, then xnk converges to a as k → ∞.

Proof. Let ε > 0 and choose N ∈ N such that n ≥ N implies |xn − a| < ε.
Since nk ∈ N and n1 < n2 < · · · , it is easy to see by induction that nk ≥ k for
all k ∈ N. Hence, k ≥ N implies |xnk − a| < ε; that is, xnk → a as k → ∞. �

The following concepts also play an important role for the theory of
sequences.

2.7 Definition.

Let {xn} be a sequence of real numbers.

i) The sequence {xn} is said to be bounded above if and only if the set {xn :
n ∈ N} is bounded above.

ii) The sequence {xn} is said to be bounded below if and only if the set {xn :
n ∈ N} is bounded below.

iii) {xn} is said to be bounded if and only if it is bounded both above and below.

Combining Definitions 2.7 and 1.10, we see that {xn} is bounded above
(respectively, below) if and only if there is an M ∈ R such that xn ≤ M for
all n ∈ N (respectively, if and only if there is an m ∈ R such that xn ≥ m for all
n ∈ N). It is easy to check (see Exercise 2.1.4) that {xn} is bounded if and only if
there is a C > 0 such that |xn| ≤ C for all n ∈ N. In this case we shall say that
{xn} is bounded, or dominated, by C .

Is there a relationship between convergent sequences and bounded
sequences?

2.8 Theorem. Every convergent sequence is bounded.

Strategy: The idea behind the proof is simple (see Figure 2.1). Suppose that
xn → a as n → ∞. By definition, for large N the sequence xN , xN+1, . . . must
be close to a, hence bounded. Since the finite sequence x1, . . . , xN−1 is also
bounded, it should follow that the whole sequence is bounded. We now make
this precise.
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Proof. Given ε = 1, there is an N ∈ N such that n ≥ N implies |xn − a| < 1.
Hence by the triangle inequality, |xn| < 1 + |a| for all n ≥ N . On the other
hand, if 1 ≤ n ≤ N , then

|xn| ≤ M := max{|x1|, |x2|, . . . , |xN |}.

Therefore, {xn} is dominated by max{M, 1 + |a|}. �

Notice that by Example 2.3, the converse of Theorem 2.8 is false.

EXERCISES

2.1.0. Decide which of the following statements are true and which are false.
Prove the true ones and provide a counterexample for the false ones.

a) If xn converges, then xn/n also converges.
b) If xn does not converge, then xn/n does not converge.
c) If xn converges and yn is bounded, then xn yn converges.
d) If xn converges to zero and yn > 0 for all n ∈ N, then xn yn converges.

2.1.1. Using the method of Example 2.2i, prove that the following limits exist.

a) 2 − 1/n → 2 as n → ∞.
b) 1 + π/

√
n → 1 as n → ∞.

c) 3(1 + 1/n) → 3 as n → ∞.
d) (2n2 + 1)/(3n2) → 2/3 as n → ∞.

2.1.2. Suppose that xn is a sequence of real numbers that converges to 1 as
n → ∞. Using Definition 2.1, prove that each of the following limits
exists.

a) 1 + 2xn → 3 as n → ∞.
b) (πxn − 2)/xn → π − 2 as n → ∞.
c) (x2

n − e)/xn → 1 − e as n → ∞.

2.1.3. For each of the following sequences, find two convergent subsequences
that have different limits.

a) 3 − (−1)n

b) (−1)3n + 2
c) (n − (−1)nn − 1)/n

2.1.4. Suppose that xn ∈ R.

a) Prove that {xn} is bounded if and only if there is a C > 0 such that
|xn| ≤ C for all n ∈ N.

b) Suppose that {xn} is bounded. Prove that xn/nk → 0, as n → ∞, for
all k ∈ N.

2.1.5. Let C be a fixed, positive constant. If {bn} is a sequence of nonnegative
numbers that converges to 0, and {xn} is a real sequence that satisfies |xn −
a| ≤ Cbn for large n, prove that xn converges to a.
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46 Chapter 2 Sequences in R

2.1.6. Let a be a fixed real number and define xn := a for n ∈ N. Prove that the
“constant” sequence xn converges.

2.1.7. a) Suppose that {xn} and {yn} converge to the same real number. Prove
that xn − yn → 0 as n → ∞.

b) Prove that the sequence {n} does not converge.
c) Show that there exist unbounded sequences xn �= yn which satisfy the

conclusion of part (a).
2.1.8. Suppose that {xn} is a sequence in R. Prove that xn converges to a if and

only if EVERY subsequence of xn also converges to a.

2.2 LIMIT THEOREMS

One of the biggest challenges we face (both for theory and applications) is decid-
ing whether or not a given sequence converges. Once we know that it converges,
we can often use other techniques to approximate or evaluate its limit.

One way to identify convergent sequences is by comparing a sequence whose
convergence is in doubt with another whose convergence property is already
known (see Example 2.10). The following result is the first of many theorems
that addresses this issue.

2.9 Theorem. [SQUEEZE THEOREM].
Suppose that {xn}, {yn}, and {wn} are real sequences.

i) If xn → a and yn → a (the SAME a) as n → ∞, and if there is an N0 ∈ N
such that

xn ≤ wn ≤ yn for n ≥ N0,

then wn → a as n → ∞.
ii) If xn → 0 as n → ∞ and {yn} is bounded, then xn yn → 0 as n → ∞.

Proof. i) Let ε > 0. Since xn and yn converge to a, use Definition 2.1 and
Theorem 1.6 to choose N1, N2 ∈ N such that n ≥ N1 implies −ε < xn − a < ε

and n ≥ N2 implies −ε < yn − a < ε. Set N = max{N0, N1, N2}. If n ≥ N , we
have by hypothesis and the choice of N1 and N2 that

a − ε < xn ≤ wn ≤ yn < a + ε;

that is, |wn − a| < ε for n ≥ N . We conclude that wn → a as n → ∞.
ii) Suppose that xn → 0 and that there is an M > 0 such that |yn| ≤ M for

n ∈ N. Let ε > 0 and choose an N ∈ N such that n ≥ N implies |xn| < ε/M .
Then n ≥ N implies

|xn yn| < M
ε

M
= ε.

We conclude that xn yn → 0 as n → ∞. �

The following example shows how to use the Squeeze Theorem to find the
limit of a complicated sequence by ignoring its “less important” factors.
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2.10 EXAMPLE.

Find limn→∞ 2−n cos(n3 − n2 + n − 13).

Solution. The factor cos(n3−n2+n−13) looks intimidating, but it is superfluous
for finding the limit of this sequence. Indeed, since | cos x | ≤ 1 for all x ∈ R,
the sequence {2−n cos(n3 − n2 + n − 13)} is dominated by 2−n . Since 2n > n,
it is clear by Example 2.2i and the Squeeze Theorem that both 2−n → 0 and
2−n cos(n3 − n2 + n − 13) → 0 as n → ∞. �

The Squeeze Theorem can also be used to construct convergent sequences
with certain properties. To illustrate how this works, we now establish a result
that connects suprema and infima with convergent sequences.

2.11 Theorem. Let E ⊂ R. If E has a finite supremum (respectively, a finite
infimum), then there is a sequence xn ∈ E such that xn → sup E (respectively, a
sequence yn ∈ E such that yn → inf E) as n → ∞.

Proof. Suppose that E has a finite supremum. For each n ∈ N, choose (by
the Approximation Property for Suprema) an xn ∈ E such that sup E − 1/n <
xn ≤ sup E . Then by the Squeeze Theorem and Example 2.2i, xn → sup E as
n → ∞. Similarly, there is a sequence yn ∈ E such that yn → inf E . �

Here is another result that helps to evaluate limits of specific sequences. This
one works by viewing complicated sequences in terms of simpler components.

2.12 Theorem. Suppose that {xn} and {yn} are real sequences and that α ∈ R. If
{xn} and {yn} are convergent, then

i) lim
n→∞(xn + yn) = lim

n→∞ xn + lim
n→∞ yn,

ii) lim
n→∞(αxn) = α lim

n→∞ xn,

and

iii) lim
n→∞(xn yn) = ( lim

n→∞ xn)( lim
n→∞ yn).

If, in addition, yn �= 0 and limn→∞ yn �= 0, then

iv)
lim

n→∞
xn

yn
= limn→∞ xn

limn→∞ yn
.

(In particular, all these limits exist.)

47



48 Chapter 2 Sequences in R

Proof. Suppose that xn → x and yn → y as n → ∞.

i) Let ε > 0 and choose N ∈ N such that n ≥ N implies |xn − x | < ε/2 and
|yn − y| < ε/2. Thus n ≥ N implies

|(xn + yn)− (x + y)| ≤ |xn − x | + |yn − y| < ε

2
+ ε

2
= ε.

ii) It suffices to show that αxn − αx → 0 as n → ∞. But xn − x → 0 as
n → ∞, hence by the Squeeze Theorem, α(xn − x) → 0 as n → ∞.

iii) By Theorem 2.8, the sequence {xn} is bounded. Hence by the Squeeze
Theorem the sequences {xn(yn − y)} and {(xn − x)y} both converge to 0. Since

xn yn − xy = xn(yn − y)+ (xn − x)y,

it follows from part i) that xn yn → xy as n → ∞. A similar argument estab-
lishes part iv) (see Exercise 2.2.4). �

Theorem 2.12 can be used to evaluate limits of sums, products, and quotients.
Here is a typical example.

2.13 EXAMPLE.

Find limn→∞(n3 + n2 − 1)/(1 − 3n3).

Solution. Multiplying the numerator and denominator by 1/n3, we find that

n3 + n2 − 1

1 − 3n3
= 1 + (1/n)− (1/n3)

(1/n3)− 3
.

By Example 2.2i and Theorem 2.12iii, 1/nk = (1/n)k → 0, as n → ∞, for any
k ∈ N. Thus by Theorem 2.12i, ii, and iv,

lim
n→∞

n3 + n2 − 1

1 − 3n3
= 1 + 0 − 0

0 − 3
= −1

3
. �

The sequence {log n}n∈N fails to converge in a different way than {n(−1)n}n∈N
does. Indeed, the terms log n get steadily larger as n → ∞, but the terms n(−1)n

bounce back and forth between large positive values and large negative values.
It is sometimes convenient to emphasize this difference by generalizing limits to
include extended real numbers.

2.14 Definition.

Let {xn} be a sequence of real numbers.

i) {xn} is said to diverge to +∞ (notation: xn → +∞ as n → ∞ or limn→∞ xn
= +∞) if and only if for each M ∈ R there is an N ∈ N such that

n ≥ N implies xn > M.
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ii) {xn} is said to diverge to −∞ (notation: xn → −∞ as n → ∞ or limn→∞ xn
= −∞) if and only if for each M ∈ R there is an N ∈ N such that

n ≥ N implies xn < M.

Notice by Definition 2.14i that xn → +∞ if and only if given M ∈ R, xn
is greater than M for sufficiently large n; that is, eventually xn exceeds every
number M (no matter how large and positive M is). Similarly, xn → −∞ if
and only if xn eventually is less than every number M (no matter how large and
negative M is).

It is easy to see that the Squeeze Theorem can be extended to infinite limits
(see Exercise 2.2.7). The following is an extension of Theorem 2.12.

2.15 Theorem. Suppose that {xn} and {yn} are real sequences such that xn →
+∞ (respectively, xn → −∞) as n → ∞.

i) If yn is bounded below (respectively, yn is bounded above), then

lim
n→∞(xn + yn) = +∞ (respectively, lim

n→∞(xn + yn) = −∞).

ii) If α > 0, then

lim
n→∞(αxn) = +∞ (respectively, lim

n→∞(αxn) = −∞).

iii) If yn > M0 for some M0 > 0 and all n ∈ N, then

lim
n→∞(xn yn) = +∞ (respectively, lim

n→∞(xn yn) = −∞).

iv) If {yn} is bounded and xn �= 0, then

lim
n→∞

yn

xn
= 0.

Proof. We suppose for simplicity that xn → +∞ as n → ∞.

i) By hypothesis, yn ≥ M0 for some M0 ∈ R. Let M ∈ R and set M1 = M − M0.
Since xn → +∞, choose N ∈ N such that n ≥ N implies xn > M1. Then
n ≥ N implies xn + yn > M1 + M0 = M .

ii) Let M ∈ R and set M1 = M/α. Choose N ∈ N such that n ≥ N implies
xn > M1. Since α > 0, we conclude that αxn > αM1 = M for all n ≥ N .

iii) Let M ∈ R and set M1 = M/M0. Choose N ∈ N such that n ≥ N implies
xn > M1. Then n ≥ N implies xn yn > M1 M0 = M .

iv) Let ε > 0. Choose M0 > 0 such that |yn| ≤ M0 and M1 > 0 so large that
M0/M1 < ε. Choose N ∈ N such that n ≥ N implies xn > M1. Then n ≥ N
implies ∣∣∣∣ yn

xn

∣∣∣∣ = |yn|
xn

<
M0

M1
< ε. �
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50 Chapter 2 Sequences in R

If we adopt the conventions

x + ∞ = ∞, x − ∞ = −∞, x ∈ R,
x · ∞ = ∞, x · (−∞) = −∞, x > 0,

x · ∞ = −∞, x · (−∞) = ∞, x < 0,

∞ + ∞ = ∞, −∞ − ∞ = −∞,

∞ · ∞ = (−∞) · (−∞) = ∞, and ∞ · (−∞) = (−∞) · ∞ = −∞,

then Theorem 2.15 contains the following corollary.

2.16 Corollary. Let {xn}, {yn} be real sequences and α, x, y be extended real num-
bers. If xn → x and yn → y, as n → ∞, then

lim
n→∞(xn + yn) = x + y

provided that the right side is not of the form ∞ − ∞, and

lim
n→∞(αxn) = αx, lim

n→∞(xn yn) = xy

provided that none of these products is of the form 0 · ±∞.

We have avoided the cases ∞ − ∞ and 0 · ±∞ because they are “inde-
terminate.” For a discussion of indeterminate forms, see l’Hôpital’s Rule in
Section 4.4.

Theorems 2.12 and 2.15 show how the limit sign interacts with the algebraic
structure of R. (Namely, the limit of a sum (product, quotient) is the sum (prod-
uct, quotient) of the limits.) The following theorem shows how the limit sign
interacts with the order structure of R.

2.17 Theorem. [COMPARISON THEOREM].
Suppose that {xn} and {yn} are convergent sequences. If there is an N0 ∈ N such
that

xn ≤ yn for n ≥ N0, (1)

then

lim
n→∞ xn ≤ lim

n→∞ yn.

In particular, if xn ∈ [a, b] converges to some point c, then c must belong to
[a, b].
Proof. Suppose that the first statement is false; that is, that (1) holds but x :=
limn→∞ xn is greater than y := limn→∞ yn . Set ε = (x − y)/2. Choose N1 > N0
such that |xn − x | < ε and |yn − y| < ε for n ≥ N1. Then for such an n,

xn > x − ε = x −
(

x − y

2

)
= y +

(
x − y

2

)
= y + ε > yn,
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which contradicts (1). This proves the first statement.
We conclude by noting that the second statement follows from the first,

since a ≤ xn ≤ b implies a ≤ c ≤ b. �

One way to remember this result is that it says the limit of an inequality is
the inequality of the limits, provided these limits exist. We shall call this process
“taking the limit of an inequality.” Since xn < yn implies xn ≤ yn , the Compar-
ison Theorem contains the following corollary: If {xn} and {yn} are convergent
real sequences, then

xn < yn, n ≥ N0, imply lim
n→∞ xn ≤ lim

n→∞ yn.

It is important to notice that this result is false if ≤ is replaced by <; that is,

xn < yn, n ≥ N0, does NOT imply that lim
n→∞ xn < lim

n→∞ yn.

For example, 1/n2 < 1/n, but the limits of these sequences are equal.

EXERCISES

2.2.0. Determine which of the following statements are true and which are
false. Prove the true ones and provide counterexamples for the false
ones.

a) If xn → ∞ and yn → −∞, then xn + yn → 0 as n → ∞.
b) If xn → −∞, then 1/xn → 0 as n → ∞.
c) If xn → 0, then 1/xn → ∞ as n → ∞.
d) If xn → ∞, then (1/2)xn → 0 as n → ∞.

2.2.1. Prove that each of the following sequences converges to zero.

a) xn = sin(log n + n5 + en2
)/n

b) xn = 2n/(n2 + π)

c) xn = (
√

2n + 1)/(n + √
2)

d) xn = n/2n

2.2.2. Use Definition 2.14 to prove that each of the following sequences
diverges to +∞ or to −∞.

a) xn = n2 − n
b) xn = n − 3n2

c) xn = n2 + 1

n
d) xn = n2(2 + sin(n3 + n + 1))

2.2.3. Find the limit (if it exists) of each of the following sequences.

a) xn = (2 + 3n − 4n2)/(1 − 2n + 3n2)

b) xn = (n3 + n − 2)/(2n3 + n − 2)
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52 Chapter 2 Sequences in R

c) xn = √
3n + 2 − √

n
d) xn = (

√
4n + 1 − √

n − 1)/(
√

9n + 1 − √
n + 2)

2.2.4. a) Prove Theorem 2.12iv.
b) Prove Corollary 2.16.

2.2.5. Suppose that x ∈ R, xn ≥ 0, and xn → x as n → ∞. Prove that√
xn → √

x as n → ∞. [For the case x = 0, use inequality (8) in
Section 1.2.]

2.2.6. Prove that given x ∈ R there is a sequence rn ∈ Q such that rn → x as
n → ∞.

2.2.7. Suppose that x and y are extended real numbers and that {xn}, {yn}, and
{wn} are real sequences.

a) [Squeeze Theorem for R]. If xn → x and yn → x , as n → ∞, and
xn ≤ wn ≤ yn for n ∈ N, prove that wn → x as n → ∞.

b) [Comparison Theorem for R]. If xn → x and yn → y, as n → ∞,
and xn ≤ yn for n ∈ N, prove that x ≤ y.

2.2.8. Using the result in Exercise 2.2.5, prove the following results.

a) Suppose that 0 ≤ x1 ≤ 1 and xn+1 = 1−√
1 − xn for n ∈ N. If xn → x

as n → ∞, then x = 0 or 1.
b) Suppose that x1 > 3 and xn+1 = 2 + √

xn − 2 for n ∈ N. If xn → x as
n → ∞, then x = 3.

(c) Suppose that x1 ≥ 0 and xn+1 = √
2 + xn for n ∈ N. If xn → x as

n → ∞, then x = 2. What happens if x1 > −2?

2.2.9 . This exercise was used in Section 1.6.

a) Suppose that 0 ≤ y < 1/10n for some integer n ≥ 0. Prove that there
is an integer 0 ≤ w ≤ 9 such that

w

10n+1
≤ y <

w

10n+1
+ 1

10n+1
.

b) Prove that given x ∈ [0, 1) there exist integers 0 ≤ xk ≤ 9 such that
for all n ∈ N,

n∑
k=1

xk

10k
≤ x <

n∑
k=1

xk

10k
+ 1

10n
.

c) Prove that given x ∈ [0, 1) there exist integers 0 ≤ xk ≤ 9, k ∈ N,
such that

x = lim
n→∞

n∑
k=1

xk

10k
.

d) Using part c), prove that 0.5 = 0.4999 . . . and 1 = 0.999 . . ..

NOTE: The numbers xk are called digits of x , and 0.x1x2 . . . is called a decimal
expansion of x . Unless x is a rational number whose denominator is of the form
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2i 5 j for some integers i ≥ 0, j ≥ 0, this expansion is unique; that is, there is
only one sequence of integers {xk} that satisfies part (c). On the other hand, if
x is a rational number whose denominator is of the form 2i 5 j , then there are
two sequences {xk} that satisfy part (c), one that satisfies xk = 0 for large k and
one that satisfies xk = 9 for large k (see part d). We shall identify the second
sequence by saying that it terminates in 9s.

2.3 BOLZANO–WEIERSTRASS THEOREM

Notice that although the sequence {(−1)n} does not converge, it has conver-
gent subsequences. In this section we shall prove that this is a general principle.
Namely, we shall establish the Bolzano–Weierstrass Theorem, which states that
every bounded sequence has a convergent subsequence.

We begin with a special case (monotone sequences) for which the Bolzano–
Weierstrass Theorem is especially transparent. Afterward, we shall use this spe-
cial case to obtain the general result.

2.18 Definition.

Let {xn}n∈N be a sequence of real numbers.

i) {xn} is said to be increasing (respectively, strictly increasing) if and only if
x1 ≤ x2 ≤ · · · (respectively, x1 < x2 < · · · ).

ii) {xn} is said to be decreasing (respectively, strictly decreasing) if and only if
x1 ≥ x2 ≥ · · · (respectively, x1 > x2 > · · · ).

iii) {xn} is said to be monotone if and only if it is either increasing or
decreasing.

(Some authors call decreasing sequences nonincreasing and increasing
sequences nondecreasing.)

If {xn} is increasing (respectively, decreasing) and converges to a, we shall
write xn ↑ a (respectively, xn ↓ a), as n → ∞. Clearly, every strictly increas-
ing sequence is increasing, and every strictly decreasing sequence is decreasing.
Also, {xn} is increasing if and only if the sequence {−xn} is decreasing.

By Theorem 2.8, any convergent sequence is bounded. We now establish the
converse of this result for monotone sequences. (For an extension to extended
real numbers, see Exercise 2.3.6.)

2.19 Theorem. [MONOTONE CONVERGENCE THEOREM].
If {xn} is increasing and bounded above, or if {xn} is decreasing and bounded
below, then {xn} converges to a finite limit.

Proof. Suppose first that {xn} is increasing and bounded above. By the Com-
pleteness Axiom, the supremum a := sup{xn : n ∈ N} exists and is finite. Let
ε > 0. By the Approximation Property for Suprema, choose N ∈ N such that

a − ε < xN ≤ a.
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Since xN ≤ xn for n ≥ N and xn ≤ a for all n ∈ N, it follows that a−ε < xn ≤ a
for all n ≥ N . In particular, xn ↑ a as n → ∞.

If {xn} is decreasing with infimum b := inf{xn : n ∈ N}, then {−xn} is
increasing with supremum −b (see Theorem 1.20). Hence, by the first case
and Theorem 2.12ii,

b = −(−b) = − lim
n→∞(−xn) = lim

n→∞ xn. �

The Monotone Convergence Theorem is used most often to show that a limit
exists. Once existence has been established, it is often easy to find the value
of that limit by using Theorems 2.9 and 2.12. The following examples illustrate
this fact.

2.20 EXAMPLE.

If |a| < 1, then an → 0 as n → ∞.

Proof. It suffices to prove that |a|n → 0 as n → ∞. First, we notice that |a|n
is monotone decreasing since by the Multiplicative Property, |a| < 1 implies
|a|n+1 < |a|n for all n ∈ N. Next, we observe that |a|n is bounded below (by
0). Hence by the Monotone Convergence Theorem, L := limn→∞ |a|n exists.

Take the limit of the algebraic identity |a|n+1 = |a| · |a|n , as n → ∞. By
Remark 2.6 and Theorem 2.12, we obtain L = |a| · L . Thus either L = 0 or
|a| = 1. Since |a| < 1 by hypothesis, we conclude that L = 0. �

2.21 EXAMPLE.

If a > 0, then a1/n → 1 as n → ∞.

Proof. We consider three cases.
Case 1. a = 1. Then a1/n = 1 for all n ∈ N, and it follows that a1/n → 1 as

n → ∞.
Case 2. a > 1. We shall apply the Monotone Convergence Theorem. To

show that {a1/n} is decreasing, fix n ∈ N and notice that a > 1 implies an+1 >

an . Taking the n(n + 1)st root of this inequality, we obtain a1/n > a1/(n+1);
that is, a1/n is decreasing. Since a > 1 implies a1/n > 1, it follows that a1/n

is decreasing and bounded below. Hence, by the Monotone Convergence
Theorem, L := limn→∞ a1/n exists. To find its value, take the limit of the
identity (a1/(2n))2 = a1/n as n → ∞. We obtain L2 = L ; that is, L = 0 or 1.
Since a1/n > 1, the Comparison Theorem shows that L ≥ 1. Hence L = 1.

Case 3. 0 < a < 1. Then 1/a > 1. It follows from Theorem 2.12 and Case
2 that

lim
n→∞ a1/n = lim

n→∞
1

1/a1/n
= 1

limn→∞(1/a)1/n
= 1. �

Next, we introduce a monotone property for sequences of sets.
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2.22 Definition.

A sequence of sets {In}n∈N is said to be nested if and only if

I1 ⊇ I2 ⊇ · · · .

In Chapters 3, 8, and 9, we shall use this concept to study continuous func-
tions. Here, we use it to establish the Bolzano–Weierstrass Theorem. All of
these applications depend in a fundamental way on the following result.

2.23 Theorem. [NESTED INTERVAL PROPERTY].
If {In}n∈N is a nested sequence of nonempty closed bounded intervals, then E :=⋂∞

n=1 In is nonempty. Moreover, if the lengths of these intervals satisfy |In| → 0
as n → ∞, then E is a single point.

Proof. Let In = [an, bn]. Since {In} is nested, the real sequence {an} is increas-
ing and bounded above by b1, and {bn} is decreasing and bounded below by a1
(see Figure 2.2). Thus by Theorem 2.19, there exist a, b ∈ R such that an ↑ a
and bn ↓ b as n → ∞. Since an ≤ bn for all n ∈ N, it also follows from the
Comparison Theorem that an ≤ a ≤ b ≤ bn . Hence, a number x belongs to
In for all n ∈ N if and only if a ≤ x ≤ b; that is, if and only if x ∈ [a, b]. In
particular, any x ∈ [a, b] belongs to all the In’s.

a1 a2 a3 a4. . . a b. . . b4 b3 b2 b1

FIGURE 2.2

We have proved that there is exactly one number that belongs to all the In’s
if and only if a = b. But if |In| → 0 as n → ∞, then bn − an → 0 as n → ∞.
Hence, by Theorem 2.12, a does equal b when |In| → 0 as n → ∞. �

The next two results show that neither of the hypotheses of Theorem 2.23 can
be relaxed.

2.24 Remark. The Nested Interval Property might not hold if “closed” is
omitted.

Proof. The intervals In = (0, 1/n), n ∈ N, are bounded and nested but not
closed. If there were an x ∈ In for all n ∈ N, then 0 < x < 1/n; that is, n < 1/x
for all n ∈ N. Since this contradicts the Archimedean Principle, it follows that
the intervals In have no point in common. �

2.25 Remark. The Nested Interval Property might not hold if “bounded” is
omitted.
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Proof. The intervals In = [n,∞), n ∈ N are closed and nested but not
bounded. Again, they have no point in common. �

We are now prepared to establish the main result of this section.

2.26 Theorem. [BOLZANO–WEIERSTRASS THEOREM].
Every bounded sequence of real numbers has a convergent subsequence.

Proof. We begin with a general observation. Let {xn} be any sequence. If
E = A ∪ B are sets and E contains xn for infinitely many values of n, then at
least one of the sets A or B also contains xn for infinitely many values of n. (If
not, then E contains xn for only finitely many n, a contradiction.)

Let {xn} be a bounded sequence. Choose a, b ∈ R such that xn ∈ [a, b] for
all n ∈ N, and set I0 = [a, b]. Divide I0 into two halves, say I ′ = [a, (a + b)/2]
and I ′′ = [(a + b)/2, b]. Since I0 = I ′ ∪ I ′′, at least one of these half-intervals
contains xn for infinitely many n. Call it I1, and choose n1 > 1 such that
xn1 ∈ I1. Notice that |I1| = |I0|/2 = (b − a)/2.

Suppose that closed intervals I0 ⊃ I1 ⊃ . . . ⊃ Im and natural numbers
n1 < n2 < . . . < nm have been chosen such that for each 0 ≤ k ≤ m,

|Ik | = b − a

2k
, xnk ∈ Ik, and xn ∈ Ik for infinitely many n. (2)

To choose Im+1, divide Im = [am, bm] into two halves, say I ′ = [am, (am +
bm)/2] and I ′′ = [(am+bm)/2, bm]. Since Im = I ′∪I ′′, at least one of these half-
intervals contains xn for infinitely many n. Call it Im+1, and choose nm+1 > nm
such that xnm+1 ∈ Im+1. Since

|Im+1| = |Im |
2

= b − a

2m+1
,

it follows by induction that there is a nested sequence {Ik}k∈N of nonempty
closed bounded intervals that satisfy (2) for all k ∈ N.

By the Nested Interval Property, there is an x ∈ R that belongs to Ik for all
k ∈ N. Since x ∈ Ik , we have by (2) that

0 ≤ |xnk − x | ≤ |Ik | ≤ b − a

2k

for all k ∈ N. Hence by the Squeeze Theorem, xnk → x as k → ∞. �

EXERCISES

2.3.0. Decide which of the following statements are true and which are
false. Prove the true ones and provide counterexamples for the false
ones.

a) If xn is strictly decreasing and 0 ≤ xn < 1/2, then xn → 0 as n → ∞.
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b) If

xn = (n − 1) cos(n2 + n + 1)

2n − 1
,

then xn has a convergence subsequence.
c) If xn is a strictly increasing sequence and

|xn| < 1 + 1

n

for n = 1, 2, . . ., then xn → 1 as n → ∞.
d) If xn has a convergent subsequence, then xn is bounded.

2.3.1. Suppose that x0 ∈ (−1, 0) and xn = √
xn−1 + 1 − 1 for n ∈ N. Prove that

xn ↑ 0 as n → ∞. What happens when x0 ∈ [−1, 0]?
2.3.2. Suppose that 0 ≤ x1 < 1 and xn+1 = 1 − √

1 − xn for n ∈ N. Prove
that xn ↓ 0 as n → ∞ and xn+1/xn → 1/2, as n → ∞. (Exercise 4.3 in
Apostol [1].)

2.3.3. Suppose that x0 ≥ 2 and xn = 2 + √
xn−1 − 2 for n ∈ N. Use the Mono-

tone Convergence Theorem to prove that either xn → 2 or xn → 3 or as
n → ∞.

2.3.4. Suppose that x0 ∈ R and xn = (1+ xn−1)/2 for n ∈ N. Use the Monotone
Convergence Theorem to prove that xn → 1 as n → ∞.

2.3.5. Prove that

lim
n→∞ x1/(2n−1) =

⎧⎪⎨
⎪⎩

1 x > 0
0 x = 0
−1 x < 0.

2.3.6 . This result is used in Section 6.3 and elsewhere.

a) Suppose that {xn} is a monotone increasing sequence in R (not neces-
sarily bounded above). Prove that there is an extended real number
x such that xn → x as n → ∞.

b) State and prove an analogous result for decreasing sequences.

2.3.7. Suppose that E ⊂ R is a nonempty bounded set and that sup E /∈ E .
Prove that there exists a strictly increasing sequence {xn} that converges
to sup E such that xn ∈ E for all n ∈ N.

2.3.8. Let 0 < y1 < x1 and set

xn+1 = xn + yn

2
and yn+1 = √

xn yn, n ∈ N.

a) Prove that 0 < yn < xn for all n ∈ N.
b) Prove that yn is increasing and bounded above, and that xn is decreas-

ing and bounded below.
c) Prove that 0 < xn+1 − yn+1 < (x1 − y1)/2n for n ∈ N.

57
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d) Prove that limn→∞ xn = limn→∞ yn . (This common value is called
the arithmetic-geometric mean of x1 and y1.)

2.3.9. Suppose that x0 = 1, y0 = 0,

xn = xn−1 + 2yn−1, and yn = xn−1 + yn−1

for n ∈ N. Prove that x2
n − 2y2

n = ±1 for n ∈ N and

xn

yn
→ √

2 as n → ∞.

2.3.10. [Archimedes] Suppose that x0 = 2
√

3, y0 = 3,

xn = 2xn−1 yn−1

xn−1 + yn−1
,

and

yn = √
xn yn−1

for n ∈ N.
a) Prove that xn ↓ x and yn ↑ y, as n → ∞, for some x, y ∈ R.
b) Prove that x = y and

3.14155 < x < 3.14161.

(The actual value of x is π .)

2.4 CAUCHY SEQUENCES

In this section we introduce an extremely powerful and widely used concept.
By definition, if {xn} is a convergent sequence, then there is a point a ∈ R such

that xn is near a for large n. If the xn’s are near a, they are certainly near each
other. This leads us to the following concept.

2.27 Definition.

A sequence of points xn ∈ R is said to be Cauchy (in R) if and only if for every
ε > 0 there is an N ∈ N such that

n,m ≥ N imply |xn − xm | < ε. (3)

The next two results show how this concept is related to convergence.

2.28 Remark. If {xn} is convergent, then {xn} is Cauchy.
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Proof. Suppose that xn → a as n → ∞. Then by definition, given ε > 0 there
is an N ∈ N such that |xn − a| < ε/2 for all n ≥ N . Hence if n,m ≥ N , it
follows from the triangle inequality that

|xn − xm | ≤ |xn − a| + |xm − a| < ε

2
+ ε

2
= ε. �

The following result shows that the converse of Remark 2.28 is also true (for
real sequences).

2.29 Theorem. [CAUCHY].
Let {xn} be a sequence of real numbers. Then {xn} is Cauchy if and only if {xn}
converges (to some point a in R).

Strategy: By Remark 2.28 we need only show that every Cauchy sequence
converges. Suppose that {xn} is Cauchy. Since the xn’s are near each other, the
sequence {xn} should be bounded. Hence, by the Bolzano–Weierstrass Theo-
rem, {xn} has a convergent subsequence, say xnk . This means that for large k,
the xnk ’s are near some point a ∈ R. But since {xn} is Cauchy, the xn’s should
be near the xnk ’s for large n, hence also near a. Thus the full sequence should
converge to that same point a. Here are the details.

Proof. Suppose that {xn} is Cauchy. Given ε = 1, choose N ∈ N such that
|xN − xm | < 1 for all m ≥ N . By the triangle inequality,

|xm | < 1 + |xN | for m ≥ N .

Therefore, {xn} is bounded by M = max{|x1|, |x2|, . . . , |xN−1|, 1 + |xN |}.
By the Bolzano–Weierstrass Theorem, {xn} has a convergent subsequence,

say xnk → a as k → ∞. Let ε > 0. Since xn is Cauchy, choose N1 ∈ N such that

n,m ≥ N1 imply |xn − xm | < ε

2
.

Since xnk → a as k → ∞, choose N2 ∈ N such that

k ≥ N2 implies |xnk − a| < ε

2
.

Fix k ≥ N2 such that nk ≥ N1. Then

|xn − a| ≤ |xn − xnk | + |xnk − a| < ε

for all n ≥ N1. Thus xn → a as n → ∞. �

This result is extremely useful because it is often easier to show that a
sequence is Cauchy than to show that it converges. The reason for this, as the
following example shows, is that we can prove that a sequence is Cauchy even
when we have no idea what its limit is.
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2.30 EXAMPLE.

Prove that any real sequence {xn} that satisfies

|xn − xn+1| ≤ 1

2n
, n ∈ N,

is convergent.

Proof. If m > n, then

|xn − xm | = |xn − xn+1 + xn+1 − xn+2 + · · · + xm−1 − xm |
≤ |xn − xn+1| + |xn+1 − xn+2| + · · · + |xm−1 − xm |
≤ 1

2n
+ · · · + 1

2m−1

= 1

2n−1

m−n∑
k=1

1

2k
= 1

2n−1

(
1 − 1

2m−n

)
.

(The last step uses Exercise 1.4.4c, for a = 2.) It follows that |xn − xm | <
1/2n−1 for all integers m > n ≥ 1. But given ε > 0, we can choose N ∈ N so
large that n ≥ N implies 1/2n−1 < ε. We have proved that {xn} is Cauchy. By
Theorem 2.29, therefore, it converges to some real number. �

The following result shows that a sequence is not necessarily Cauchy just
because xn is near xn+1 for large n.

2.31 Remark. A sequence that satisfies xn+1 − xn → 0 is not necessarily Cauchy.

Proof. Consider the sequence xn := log n. By basic properties of logarithms
(see Exercise 5.3.7),

xn+1 − xn = log(n + 1)− log n = log((n + 1)/n) → log 1 = 0

as n → ∞. {xn} cannot be Cauchy, however, because it does not converge; in
fact, it diverges to +∞ as n → ∞. �

EXERCISES

2.4.0. Decide which of the following statements are true and which are false.
Prove the true ones and provide a counterexample for the false ones.

a) If {xn} is Cauchy and {yn} is bounded, then {xn yn} is Cauchy.
b) If {xn} and {yn} are Cauchy and yn �= 0 for all n ∈ N, then {xn/yn} is

Cauchy.
c) If {xn} and {yn} are Cauchy and xn + yn > 0 for all n ∈ N, then {1/(xn +

yn) cannot converge to zero.
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d) If {xn} is a sequence of real numbers that satisfies x2k − x2k−1 → 0 as
k → ∞ and if xn = 0 for all n �= 2k, k ∈ N, then {xn} is Cauchy.

2.4.1. Prove that if {xn} is a sequence that satisfies

|xn| ≤ 2n2 + 3

n3 + 5n2 + 3n + 1

for all n ∈ N, then {xn} is Cauchy.
2.4.2. Suppose that xn ∈ Z for n ∈ N. If {xn} is Cauchy, prove that xn is eventu-

ally constant; that is, that there exist numbers a ∈ Z and N ∈ N such that
xn = a for all n ≥ N .

2.4.3. Suppose that xn and yn are Cauchy sequences in R and that a ∈ R.

a) Without using Theorem 2.29, prove that axn is Cauchy.
b) Without using Theorem 2.29, prove that xn + yn is Cauchy.
c) Without using Theorem 2.29, prove that xn yn is Cauchy.

2.4.4. Let {xn} be a sequence of real numbers. Suppose that for each ε > 0 there
is an N ∈ N such that m ≥ n ≥ N implies

∣∣∑m
k=n xk

∣∣ < ε. Prove that

lim
n→∞

n∑
k=1

xk

exists and is finite.
2.4.5. Prove that limn→∞

∑n
k=1(−1)k/k exists and is finite.

2.4.6. Let {xn} be a sequence. Suppose that there is an a ∈ (0, 1) such that

|xn+1 − xn| ≤ an

for all n ∈ N. Prove that xn → x for some x ∈ R.
2.4.7. a) Let E be a subset of R. A point a ∈ R is called a cluster point of E if

E ∩ (a −r, a +r) contains infinitely many points for every r > 0. Prove
that a is a cluster point of E if and only if for each r > 0, E ∩ (a −
r, a + r)\{a} is nonempty.

b) Prove that every bounded infinite subset of R has at least one clus-
ter point.

2.4.8 a) A subset E of R is said to be sequentially compact if and only if every
sequence xn ∈ E has a convergent subsequence whose limit belongs to
E . Prove that every closed bounded interval is sequentially compact.

b) Prove that there exist bounded intervals in R that are not sequentially
compact.

c) Prove that there exist closed intervals in R that are not sequentially
compact.

∗2.5 LIMITS SUPREMUM AND INFIMUM

This section uses no material from any other enrichment section.

61
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In some situations (e.g., the Root Test in Section 6.3), we shall use the follow-
ing generalization of limits.

2.32 Definition.

Let {xn} be a real sequence. Then the limit supremum of {xn} is the extended
real number

lim sup
n→∞

xn := lim
n→∞(sup

k≥n
xk), (4)

and the limit infimum of {xn} is the extended real number

lim inf
n→∞ xn := lim

n→∞( inf
k≥n

xk).

Before we proceed, we must show that the limits in Definition 2.32 exist as
extended real numbers. To this end, let {xn} be a sequence of real numbers and
consider the sequences

sn = sup
k≥n

xk := sup{xk : k ≥ n} and tn = inf
k≥n

xk := inf{xk : k ≥ n}.

Each sn and tn is an extended real number, and by the Monotone Property, sn is
a decreasing sequence and tn an increasing sequence of extended real numbers.
In particular, there exist extended real numbers s and t such that sn ↓ s and
tn ↑ t as n → ∞ (see Exercise 2.3.6). These extended real numbers are, by
Definition 2.32, the limit infimum and limit supremum of the sequence {xn}.

Here are two examples of how to compute limits supremum and limits
infimum.

2.33 EXAMPLE.

Find lim supn→∞ xn and lim infn→∞ xn if xn = (−1)n .

Solution. Since supk≥n(−1)k = 1 for all n ∈ N, it follows from Definition 2.32
that lim supn→∞ xn = 1. Similarly, lim infn→∞ xn = −1. �

2.34 EXAMPLE.

Find lim supn→∞ xn and lim infn→∞ xn if xn = 1 + 1/n.

Solution. Since supk≥n(1 + 1/k) = 1 + 1/n for all n ∈ N, lim supn→∞ xn = 1.
Since infk≥n(1 + 1/k) = 1 for all n ∈ N, lim infn→∞ xn = 1. �

These examples suggest that there is a connection among limits supremum,
limits infimum, and convergent subsequences. The next several results make
this connection clear.
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2.35 Theorem. Let {xn} be a sequence of real numbers, s = lim supn→∞ xn , and
t = lim infn→∞ xn . Then there are subsequences {xnk }k∈N and {x� j } j∈N such that
xnk → s as k → ∞ and x� j → t as j → ∞.

Proof. We will prove the result for the limit supremum. A similar argument
establishes the result for the limit infimum. Let sn = supk≥n xk and observe
that sn ↓ s as n → ∞.

Case 1. s = ∞. Then by definition sn = ∞ for all n ∈ N. Since s1 = ∞, there
is an n1 ∈ N such that xn1 > 1. Since sn1+1 = ∞, there is an n2 ≥ n1 + 1 > n1
such that xn2 > 2. Continuing in this manner, we can choose a subsequence
{xnk } such that xnk > k for all k ∈ N. Hence, it follows from the Squeeze
Theorem for R (see Exercise 2.2.7) that xnk → ∞ = s as k → ∞.

Case 2. s = −∞. Since sn ≥ xn for all n ∈ N and sn → −∞ as n → ∞, it
follows from the Squeeze Theorem for R that xn → −∞ = s as n → ∞.

Case 3. −∞ < s < ∞. Set n0 = 0. By Theorem 1.14 (the Approximation
Property for Suprema), there is an integer n1 ∈ N such that sn0+1 − 1 < xn1 ≤
sn0+1. Similarly, there is an integer n2 ≥ n1 + 1 > n1 such that sn1+1 − 1/2 <
xn2 ≤ sn1+1. Continuing in this manner, we can choose integers n1 < n2 < · · ·
such that

snk−1+1 − 1

k
< xnk ≤ snk−1+1 (5)

for k ∈ N. Since snk−1+1 → s as k → ∞, we conclude by the Squeeze Theorem
that xnk → s as k → ∞. �

This observation leads directly to a characterization of limits in terms of limits
infimum and limits supremum.

2.36 Theorem. Let {xn} be a real sequence and x be an extended real number.
Then xn → x as n → ∞ if and only if

lim sup
n→∞

xn = lim inf
n→∞ xn = x . (6)

Proof. Suppose that xn → x as n → ∞. Then xnk → x as k → ∞ for
all subsequences {xnk }. Hence, by Theorem 2.35, lim supn→∞ xn = x and
lim infn→∞ xn = x ; that is, (6) holds.

Conversely, suppose that (6) holds.
Case 1. x = ±∞. By considering ±xn we may suppose that x = ∞. Thus

given M ∈ R there is an N ∈ N such that infk≥N xk > M . It follows that
xn > M for all n ≥ N ; that is, xn → ∞ as n → ∞.

Case 2. −∞ < x < ∞. Let ε > 0. Choose N ∈ N such that

sup
k≥N

xk − x <
ε

2
and x − inf

k≥N
xk <

ε

2
.
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Let n,m ≥ N and suppose for simplicity that xn > xm . Then

|xn − xm | = xn − xm ≤ sup
k≥N

xk − x + x − inf
k≥N

xk <
ε

2
+ ε

2
= ε.

Thus {xn} is Cauchy and converges to some finite real number. But by Theo-
rem 2.35, some subsequence of {xn} converges to x . We conclude that xn → x
as n → ∞. �

Theorem 2.35 also leads to the following geometric interpretation of limits
supremum and limits infimum.

2.37 Theorem. Let {xn} be a sequence of real numbers. Then lim supn→∞ xn
(respectively, lim infn→∞ xn) is the largest value (respectively, the smallest value)
to which some subsequence of {xn} converges. Namely, if xnk → x as k → ∞,
then

lim inf
n→∞ xn ≤ x ≤ lim sup

n→∞
xn. (7)

Proof. Suppose that xnk → x as k → ∞. Fix N ∈ N and choose K so large
that k ≥ K implies nk ≥ N . Clearly,

inf
j≥N

x j ≤ xnk ≤ sup
j≥N

x j

for all k ≥ K . Taking the limit of this inequality as k → ∞, we obtain

inf
j≥N

x j ≤ x ≤ sup
j≥N

x j .

Taking the limit of this last inequality as N → ∞ and applying Definition 2.32,
we obtain (7). �

We close this section with several other properties of limits supremum and
limits infimum.

2.38 Remark. If {xn} is any sequence of real numbers, then

lim inf
n→∞ xn ≤ lim sup

n→∞
xn.

Proof. Since infk≥n xk ≤ supk≥n xk for all n ∈ N, this inequality follows from
Theorem 2.17 (the Comparison Theorem). �

The following result is an immediate consequence of Definition 2.32, the
Comparison Theorem, and the Monotone Convergence Theorem.

2.39 Remark. A real sequence {xn} is bounded above if and only if
lim supn→∞ xn < ∞, and is bounded below if and only if lim infn→∞ xn > −∞.
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The following result shows that we can take limits supremum and limits infi-
mum of inequalities.

2.40 Theorem. If xn ≤ yn for n large, then

lim sup
n→∞

xn ≤ lim sup
n→∞

yn and lim inf
n→∞ xn ≤ lim inf

n→∞ yn. (8)

Proof. If xk ≤ yk for k ≥ N , then supk≥n xk ≤ supk≥n yk and infk≥n xk ≤
infk≥n yk for any n ≥ N . Taking the limit of these inequalities as n → ∞, we
obtain (8). �

EXERCISES

2.5.1. Find the limit infimum and the limit supremum of each of the following
sequences.

a) xn = 3 − (−1)n

b) xn = cos (nπ/2)
c) xn = (−1)n+1 + (−1)n/n
d) xn = √

1 + n2/(2n − 5)
e) xn = yn/n, where {yn} is any bounded sequence
f) xn = n(1 + (−1)n)+ n−1((−1)n − 1)
g) xn = (n3 + n2 − n + 1)/(n2 + 2n + 5)

2.5.2. Suppose that {xn} is a real sequence. Prove that

− lim sup
n→∞

xn = lim inf
n→∞ (−xn)

and

− lim inf
n→∞ xn = lim sup

n→∞
(−xn).

2.5.3. Let {xn} be a real sequence and r ∈ R.

a) Prove that

lim sup
n→∞

xn < r implies xn < r

for n large.
b) Prove that

lim sup
n→∞

xn > r implies xn > r

for infinitely many n ∈ N.
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2.5.4. Suppose that {xn} and {yn} are real sequences.

a) Prove that

lim inf
n→∞ xn + lim inf

n→∞ yn ≤ lim inf
n→∞ (xn + yn)

≤ lim sup
n→∞

xn + lim inf
n→∞ yn

≤ lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn,

provided that none of these sums is of the form ∞ − ∞.
b) Show that if limn→∞ xn exists, then

lim inf
n→∞ (xn + yn) = lim

n→∞ xn + lim inf
n→∞ yn

and

lim sup
n→∞

(xn + yn) = lim
n→∞ xn + lim sup

n→∞
yn.

c) Show by examples that each of the inequalities in part (a) can be strict.

2.5.5. Let {xn} and {yn} be real sequences.

a) Suppose that xn ≥ 0 and yn ≥ 0 for each n ∈ N. Prove that

lim sup
n→∞

(xn yn) ≤ (lim sup
n→∞

xn)(lim sup
n→∞

yn),

provided that the product on the right is not of the form 0 · ∞. Show
by example that this inequality can be strict.

b) Suppose that xn ≤ 0 ≤ yn for n ∈ N. Prove that

(lim inf
n→∞ xn)(lim sup

n→∞
yn) ≤ lim inf

n→∞ (xn yn),

provided that none of these products is of the form 0 · ∞.

2.5.6. Suppose that xn ≥ 0 and yn ≥ 0 for all n ∈ N. Prove that if xn → x as
n → ∞ (x may be an extended real number), then

lim sup
n→∞

(xn yn) = x lim sup
n→∞

yn,

provided that none of these products is of the form 0 · ∞.
2.5.7. Prove that

lim sup
n→∞

xn = inf
n∈N

(
sup
k≥n

xk

)
and lim inf

n→∞ xn = sup
n∈N

(
inf
k≥n

xk

)

for any real sequence {xn}.
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2.5.8. Suppose that xn ≥ 0 for n ∈ N. Under the interpretation 1/0 = ∞ and
1/∞ = 0, prove that

lim sup
n→∞

1

xn
= 1

lim infn→∞ xn
and lim inf

n→∞
1

xn
= 1

lim supn→∞ xn
.

2.5.9. Let xn ∈ R. Prove that xn → 0 as n → ∞ if and only if

lim sup
n→∞

|xn| = 0.

67



C H A P T E R 3

Functions on R

3.1 TWO-SIDED LIMITS

In the preceding chapter we studied limits of real sequences. In this chapter we
examine limits of real functions; that is, functions whose domains and ranges are
subsets of R. To distinguish such functions from functions whose ranges include
∞ and/or −∞, we shall sometimes refer to real functions as finite valued.

Recall from elementary calculus that a function f (x) converges to a limit L ,
as x approaches a, if f (x) is near L when x is near a. Here is a precise definition
of this concept.

3.1 Definition.

Let a ∈ R, let I be an open interval which contains a, and let f be a real
function defined everywhere on I except possibly at a. Then f (x) is said to
converge to L, as x approaches a, if and only if for every ε > 0 there is a δ > 0
(which in general depends on ε, f, I, and a) such that

0 < |x − a| < δ implies | f (x)− L| < ε. (1)

In this case we write

L = lim
x→a

f (x) or f (x) → L as x → a,

and call L the limit of f (x) as x approaches a.

As was the case for sequences, ε represents the maximal error allowed in the
approximation f (x) to L . In practice, the number δ represents the tolerance
allowed in the measurement x of a which will produce an approximation f (x)
which is acceptably close to the value L .

According to Definition 3.1, to show that a function has a limit, we must begin
with a general ε > 0 and describe how to choose a δ which satisfies (1).

3.2 EXAMPLE.

Suppose that f (x) = mx + b, where m, b ∈ R. Prove that

f (a) = lim
x→a

f (x)

for all a ∈ R.

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 3 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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Proof. If m = 0, there is nothing to prove. Otherwise, given ε > 0, set δ =
ε/|m|. If |x − a| < δ, then

| f (x)− f (a)| = |mx + b − (ma + b)| = |m| |x − a| < |m|δ = ε.

Thus by definition, f (x) → f (a) as x → a. �

Sometimes, in order to determine δ, we must break f (x)− L into two factors,
replacing the less important factor by an upper bound.

3.3 EXAMPLE.

If f (x) = x2 + x − 3, prove that f (x) → −1 as x → 1.

Proof. Let ε > 0 and set L = −1. Notice that

f (x)− L = x2 + x − 2 = (x − 1)(x + 2).

If 0 < δ ≤ 1, then |x − 1| < δ implies 0 < x < 2, so by the triangle inequality,
|x + 2| ≤ |x | + 2 < 4. Set δ = min{1, ε/4}. It follows that if |x − 1| < δ, then

| f (x)− L| = |x − 1| |x + 2| < 4|x − 1| < 4δ ≤ ε.

Thus by definition, f (x) → L as x → 1. �

Before continuing, we would like to draw your attention to two features of
Definition 3.1: Assumption 1. The interval I is open; Assumption 2. 0 < |x − a|.
If I = (c, d) is an open interval and δ0 := min{a − c, d − a}, then |x − a| < δ0
implies x ∈ I . Hence, Assumption 1 guarantees that for δ > 0 sufficiently small,
f (x) is defined for all x �= a satisfying |x − a| < δ (i.e., on BOTH sides of a).
Since |x − a| > 0 is equivalent to x �= a, Assumption 2 guarantees that f can
have a limit at a without being defined at a. (This will be crucial for defining
derivatives later.)

The next result shows that even when a function f is defined at a, the value
of the limit of f at a is, in general, independent of the value f (a).

3.4 Remark. Let a ∈ R, let I be an open interval which contains a, and let f,g be
real functions defined everywhere on I except possibly at a. If f (x) = g(x) for all
x ∈ I \ {a} and f (x) → L as x → a, then g(x) also has a limit as x → a, and

lim
x→a

g(x) = lim
x→a

f (x).

Proof. Let ε > 0 and choose δ > 0 small enough so that (1) holds and |x−a| <
δ implies x ∈ I . Suppose that 0 < |x − a| < δ. We have f (x) = g(x) by
hypothesis and | f (x)− L| < ε by (1). It follows that |g(x)− L| < ε. �

Thus to prove that a function f has a limit, we may begin by simplifying f
algebraically, even when that algebra is invalid at finitely many points.
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70 Chapter 3 Functions on R

3.5 EXAMPLE.

Prove that

g(x) = x3 + x2 − x − 1

x2 − 1

has a limit as x → 1.

Proof. Set f (x) = x +1 and observe by Example 3.2 that f (x) → 2 as x → 1.
Since

g(x) = x3 + x2 − x − 1

x2 − 1
= (x + 1)(x2 − 1)

x2 − 1
= f (x)

for x �= ±1, it follows from Remark 3.4 that g(x) has a limit as x → 1 (and
that limit is 2). �

There is a close connection between limits of functions and limits of
sequences.

3.6 Theorem. [SEQUENTIAL CHARACTERIZATION OF LIMITS].
Let a ∈ R, let I be an open interval which contains a, and let f be a real function
defined everywhere on I except possibly at a. Then

L = lim
x→a

f (x)

exists if and only if f (xn) → L as n → ∞ for every sequence xn ∈ I \ {a} which
converges to a as n → ∞.

Proof. Suppose that f converges to L as x approaches a. Then given ε > 0
there is a δ > 0 such that (1) holds. If xn ∈ I \ {a} converges to a as n → ∞,
then choose an N ∈ N such that n ≥ N implies |xn − a| < δ. Since xn �= a, it
follows from (1) that | f (xn)− L| < ε for all n ≥ N . Therefore, f (xn) → L as
n → ∞.

Conversely, suppose that f (xn) → L as n → ∞ for every sequence xn ∈ I \
{a} which converges to a. If f does not converge to L as x approaches a, then
there is an ε > 0 (call it ε0) such that the implication “0 < |x − a| < δ implies
| f (x)− L| < ε0” does not hold for any δ > 0. Thus, for each δ = 1/n, n ∈ N,
there is a point xn ∈ I which satisfies two conditions: 0 < |xn − a| < 1/n
and | f (xn) − L| ≥ ε0. Now the first condition and the Squeeze Theorem
(Theorem 2.9) imply that xn �= a and xn → a so by hypothesis, f (xn) → L ,
as n → ∞. In particular, | f (xn) − L| < ε0 for n large, which contradicts the
second condition. �

Thus to show that the limit of a function f does not exist as x → a, we need
only find two sequences converging to a whose images under f have different
limits.
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3.7 EXAMPLE.

Prove that

f (x) =
⎧⎨
⎩sin

1

x
x �= 0

0 x = 0

has no limit as x → 0.

1

–1

1—
2  

2—
3  

1–
  

2–
  

1 2 3
x

y

FIGURE 3.1

Proof. By examining the graph of y = f (x) (see Figure 3.1), we are led to
consider two extremes:

an := 2

(4n + 1)π
and bn := 2

(4n + 3)π
, n ∈ N.

Clearly, both an and bn converge to 0 as n → ∞. On the other hand, since
f (an) = 1 and f (bn) = −1 for all n ∈ N, f (an) → 1 and f (bn) → −1 as
n → ∞. Thus by Theorem 3.6, the limit of f (x), as x → 0, cannot exist. �

Theorem 3.6 also allows us to translate results about limits of sequences
to results about limits of functions. The next three theorems illustrate this
principle.

Before stating these results, we introduce an algebra of functions. Suppose
that f, g : E → R. For each x ∈ E , the pointwise sum, f + g, of f and g is
defined by

( f + g)(x) := f (x)+ g(x),
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72 Chapter 3 Functions on R

the scalar product, α f , of a scalar α ∈ R with f , by

(α f )(x) := α f (x),

the pointwise product, f g, of f and g, by

( f g)(x) := f (x)g(x),

and (when g(x) �= 0) the pointwise quotient, f/g, of f and g, by(
f

g

)
(x) := f (x)

g(x)
.

The following result is a function analogue of Theorem 2.12.

3.8 Theorem. Suppose that a ∈ R, that I is an open interval which contains a,
and that f,g are real functions defined everywhere on I except possibly at a. If f (x)
and g(x) converge as x approaches a, then so do ( f + g)(x), ( f g)(x), (α f )(x),
and ( f/g)(x) (when the limit of g(x) is nonzero). In fact,

lim
x→a

( f + g) (x) = lim
x→a

f (x)+ lim
x→a

g(x),

lim
x→a

(α f ) (x) = α lim
x→a

f (x),

lim
x→a

( f g) (x) = lim
x→a

f (x) lim
x→a

g(x),

and (when the limit of g(x) is nonzero)

lim
x→a

(
f

g

)
(x) = limx→a f (x)

limx→a g(x)
.

Proof. Let

L := lim
x→a

f (x) and M := lim
x→a

g(x).

If xn ∈ I \{a} converges to a, then by Theorem 3.6, f (xn) → L and g(xn) → M
as n → ∞. By Theorem 2.12i, f (xn)+ g(xn) → L + M as n → ∞. Since this
holds for any sequence xn ∈ I \ {a} which converges to a, we conclude by
Theorem 3.6 that

lim
x→a

( f + g) (x) = L + M = lim
x→a

f (x)+ lim
x→a

g(x).

The other rules follow in an analogous way from Theorem 2.12ii through
2.12iv. �

Similarly, the Sequential Characterization of Limits can be combined with
the Squeeze and Comparison Theorems for sequences to establish the following
results.
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Section 3.1 Two-Sided Limits 73

3.9 Theorem. [SQUEEZE THEOREM FOR FUNCTIONS].
Suppose that a ∈ R, that I is an open interval which contains a, and that f,g,h
are real functions defined everywhere on I except possibly at a.

i) If g(x) ≤ h(x) ≤ f (x) for all x ∈ I \ {a}, and

lim
x→a

f (x) = lim
x→a

g(x) = L ,

then the limit of h(x) exists, as x → a, and

lim
x→a

h(x) = L .

ii) If |g(x)| ≤ M for all x ∈ I \ {a} and f (x) → 0 as x → a, then

lim
x→a

f (x)g(x) = 0.

The preceding result is illustrated in Figure 3.2.

x

y

a

L

y = f (x)

y = h(x)

y = g(x)

FIGURE 3.2

3.10 Theorem. [COMPARISON THEOREM FOR FUNCTIONS].
Suppose that a ∈ R, that I is an open interval which contains a, and that f,g are
real functions defined everywhere on I except possibly at a. If f and g have a
limit as x approaches a and f (x) ≤ g(x) for all x ∈ I \ {a}, then

lim
x→a

f (x) ≤ lim
x→a

g(x).

We shall refer to this last result as taking the limit of an inequality.

73



74 Chapter 3 Functions on R

The limit theorems (Theorems 3.8, 3.9, and 3.10) allow us to prove that limits
exist without resorting to ε’s and δ’s.

3.11 EXAMPLE.

Prove that

lim
x→1

x − 1

3x + 1
= 0.

Proof. By Example 3.2, x − 1 → 0 and 3x + 1 → 4 as x → 1. Hence, by
Theorem 3.8, (x − 1)/(3x + 1) → 0/4 = 0 as x → 1. �

EXERCISES

3.1.0. Let a ∈ R and let f and g be real functions defined at all points x in
some open interval containing a except possibly at x = a. Decide which
of the following statements are true and which are false. Prove the true
ones and give counterexamples for the false ones.

a) For each n ∈ N, the function (x − a)nsin( f (x)(x − a)−n) has a limit
as x → a.

b) Suppose that {xn} is a sequence converging to a with xn �= a. If
f (xn) → L as n → ∞, then f (x) → L as x → a.

c) If f and g are finite valued on the open interval (a − 1, a + 1) and
f (x) → 0 as x → a, then f (x)g(x) → 0 as x → a.

d) If limx→a f (x) does not exist and f (x) ≤ g(x) for all x in some open
interval I containing a, then limx→a g(x) doesn’t exist either.

3.1.1. Using Definition 3.1, prove that each of the following limits exist.

a) lim
x→2

x2 + 2x − 5 = 3

b) lim
x→1

x2 + x − 2

x − 1
= 3

c) lim
x→1

x3 + 2x + 1 = 4

d) lim
x→0

x3 sin(ex2
) = 0

3.1.2. Decide which of the following limits exist and which do not. Prove that
your answer is correct. (You can use well-known facts about the values
of tan x, cos x , and log x , e.g., that log x → −∞ as x → 0+.)

a) lim
x→0

tan

(
1

x

)
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b) lim
x→0

x cos

(
x2 + 1

x3

)

c) lim
x→1

1

log x

3.1.3. Evaluate the following limits using results from this section. (You may
assume that sin x, 1 − cos x, tan x , and 3

√
x converge to 0 as x → 0.)

a) lim
x→1

x2 + 2x − 3

x3 − x

b) lim
x→1

xn − 1

x − 1
, n ∈ N

c) lim
x→1

3
√

x4 − 1

cos(1 − x)

d) lim
x→0

2 sin2 x + 2x − 2x cos2 x

1 − cos2(2x)

e) lim
x→0

tan x sin

(
1

x2

)

3.1.4. Prove Theorem 3.9.
3.1.5. Prove Theorem 3.10.
3.1.6. Suppose that f is a real function.

a) Prove that if

L = lim
x→a

f (x)

exists, then | f (x)| → |L| as x → a.
b) Show that there is a function such that, as x → a, | f (x)| → |L| but

the limit of f (x) does not exist.

3.1.7 . This exercise is used in Sections 3.2 and 5.2. For each real function f ,
define the positive part of f by

f +(x) = | f (x)| + f (x)

2
, x ∈ Dom ( f )

and the negative part of f by

f −(x) = | f (x)| − f (x)

2
, x ∈ Dom ( f ).
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a) Prove that f +(x) ≥ 0, f −(x) ≥ 0, f (x) = f +(x) − f −(x), and
| f (x)| = f +(x) + f −(x) all hold for every x ∈ Dom ( f ). (Compare
with Exercise 1.2.3.)

b) Prove that if

L = lim
x→a

f (x)

exists, then f +(x) → L+ and f −(x) → L− as x → a.

3.1.8 . This exercise is used in Sections 3.2 and 5.2. Let f, g be real functions
and for each x ∈ Dom ( f ) ∩ Dom (g) define

( f ∨ g)(x) := max{ f (x), g(x)} and ( f ∧ g)(x) := min{ f (x), g(x)}.

a) Prove that

( f ∨ g)(x) = ( f + g)(x)+ |( f − g)(x)|
2

and

( f ∧ g)(x) = ( f + g)(x)− |( f − g)(x)|
2

for all x ∈ Dom ( f ) ∩ Dom (g).
b) Prove that if

L = lim
x→a

f (x) and M = lim
x→a

g(x)

exist, then ( f ∨ g)(x) → L ∨ M and ( f ∧ g)(x) → L ∧ M as x → a.

3.1.9. Suppose that a ∈ R and I is an open interval which contains a. If f :
I → R satisfies f (x) → f (a), as x → a, and if there exist numbers M
and m such that m < f (a) < M , prove that there exist positive numbers
ε and δ such that

m + ε < f (x) < M − ε

for all x ’s which satisfy |x − a| < δ.

3.2 ONE-SIDED LIMITS AND LIMITS AT INFINITY

In the preceding section we defined the limit of a real function. In this section
we expand that definition to handle more general situations.

What is the limit of f (x) := √
x − 1 as x → 1? A reasonable answer is that

the limit is zero. This function, however, does not satisfy Definition 3.1 because
it is not defined on an OPEN interval containing a = 1. Indeed, f is only defined
for x ≥ 1. To handle such situations, we introduce “one-sided” limits.
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3.12 Definition.

Let a ∈ R and f be a real function.

i) f (x) is said to converge to L as x approaches a from the right if and only if f
is defined on some open interval I with left endpoint a and for every ε > 0
there is a δ > 0 (which in general depends on ε, f, I , and a) such that

a + δ ∈ I and a < x < a + δ imply | f (x)− L| < ε. (2)

In this case we call L the right-hand limit of f at a, and denote it by

f (a+) := L =: lim
x→a+ f (x).

ii) f (x) is said to converge to L as x approaches a from the left if and only if
f is defined on some open interval I with right endpoint a and for every
ε > 0 there is a δ > 0 (which in general depends on ε, f, I , and a) such
that a − δ ∈ I and a − δ < x < a imply | f (x)− L| < ε. In this case we call
L the left-hand limit of f at a and denote it by

f (a−) := L =: lim
x→a− f (x).

It is easy to check that when two-sided limits are replaced with one-sided
limits, all the limit theorems from the preceding section hold. We shall use them
as the need arises without further comment.

Existence of a one-sided limit can be established by these limit theorems or
by appealing directly to the definition.

3.13 EXAMPLES.

i) Prove that

f (x) =
{

x + 1 x ≥ 0
x − 1 x < 0

has one-sided limits at a = 0 but limx→0 f (x) does not exist.
ii) Prove that

lim
x→0+

√
x = 0.

Proof. i) Let ε > 0 and set δ = ε. If 0 < x < δ, then | f (x)− 1| = |x | < δ = ε.
Hence limx→0+ f (x) exists and equals 1. Similarly, limx→0− f (x) exists and
equals −1. However, xn = (−1)n/n → 0 but f (xn) = (−1)n(1 + 1/n) does
not converge as n → ∞. Hence by the Sequential Characterization of Limits,
limx→0 f (x) does not exist.

ii) Let ε > 0 and set δ = ε2. If 0 < x < δ, then | f (x)| = √
x <

√
δ = ε. �
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Not every function has one-sided limits (see Example 3.7). Examples 3.13
show that even when a function has one-sided limits, it may not have a two-
sided limit. The following result, however, shows that if both one-sided limits,
at a point a, exist and are EQUAL, then the two-sided limit at a exists.

3.14 Theorem. Let f be a real function. Then the limit

lim
x→a

f (x)

exists and equals L if and only if

L = lim
x→a+ f (x) = lim

x→a− f (x). (3)

Proof. If the limit L of f (x) exists as x → a, then given ε > 0 choose δ > 0
such that 0 < |x − a| < δ implies | f (x) − L| < ε. Since any x which satisfies
a < x < a + δ or a − δ < x < a also satisfies 0 < |x − a| < δ, it is clear that
both the left and right limits of f (x) exist as x → a and satisfy (3).

Conversely, suppose that (3) holds. Then given ε > 0 there exists a δ1 > 0
(respectively, a δ2 > 0) such that a < x < a + δ1 (respectively, a − δ2 < x < a)
implies | f (x) − L| < ε. Set δ = min{δ1, δ2}. Then 0 < |x − a| < δ implies
a < x < a + δ1 or a − δ2 < x < a (depending on whether x is to the right or
to the left of a). Hence (1) holds; that is, f (x) → L as x → a. �

The definition of limits of real functions can be expanded to include extended
real numbers.

3.15 Definition.

Let a, L ∈ R and let f be a real function.

i) f (x) is said to converge to L as x → ∞ if and only if there exists a c > 0
such that (c,∞) ⊂ Dom( f ) and given ε > 0 there is an M ∈ R such that
x > M implies | f (x)− L| < ε, in which case we shall write

lim
x→∞ f (x) = L or f (x) → L as x → ∞.

Similarly, f (x) is said to converge to L as x → −∞ if and only if there exists
a c > 0 such that (−∞,−c) ⊂ Dom( f ) and given ε > 0 there is an M ∈ R
such that x < M implies | f (x)− L| < ε, in which case we shall write

lim
x→∞ f (x) = L or f (x) → L as x → ∞.

ii) The function f (x) is said to converge to ∞ as x → a if and only if there is
an open interval I containing a such that I \{a} ⊂ Dom( f ) and given M ∈ R
there is a δ > 0 such that 0 < |x − a| < δ implies f (x) > M , in which case
we shall write

lim
x→a

f (x) = ∞ or f (x) → ∞ as x → a.
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Similarly, f (x) is said to converge to −∞ as x → a if and only if there is an
open interval I containing a such that I \ {a} ⊂ Dom( f ) and given M ∈ R
there is a δ > 0 such that 0 < |x − a| < δ implies f (x) < M , in which case
we shall write

lim
x→a

f (x) = −∞ or f (x) → −∞ as x → a.

Obvious modifications of Definition 3.15, which we leave to the reader, can
be made to define f (x) → ±∞ as x → a+ and x → a−, and f (x) → ±∞ as
x → ±∞.

3.16 EXAMPLES.

i) Prove that 1/x → 0 as x → ∞.
ii) Prove that

lim
x→1− f (x) := lim

x→1−
x + 2

2x2 − 3x + 1
= −∞.

Proof. i) Given ε > 0, set M = 1/ε. If x > M , then |1/x | = 1/x < 1/M = ε.
Thus 1/x → 0 as x → ∞.

ii) Let M ∈ R. We must show that f (x) < M for x near but to the left of 1
(no matter how large and negative M is). Without loss of generality, assume
that M < 0. As x converges to 1 from the left, 2x2 − 3x + 1 is negative and
converges to 0. (Observe that 2x2 − 3x + 1 is a parabola opening upward with
roots 1/2 and 1.) Therefore, choose δ ∈ (0, 1) such that 1 − δ < x < 1 implies
2/M < 2x2 − 3x + 1 < 0; that is, −1/(2x2 − 3x + 1) > −M/2 > 0. Since 0 <
x < 1 also implies 2 < x +2 < 3, it follows that −(x +2)/(2x2 −3x +1) > −M ;
that is,

f (x) = x + 2

2x2 − 3x + 1
< M

for all 1 − δ < x < 1. �

In order to unify the presentation of one-sided, two-sided, and infinite limits,
we introduce the following notation. Let a be an extended real number, and let
I be a nondegenerate open interval which either contains a or has a as one of its
endpoints. Suppose further that f is a real function defined on I except possibly
at a. If a is finite and I contains a, then

lim
x→a

x∈I

f (x) (4)

will denote limx→a f (x) (when it exists); if a is a finite left endpoint of I , then
(4) will denote limx→a+ f (x) (when it exists); if a is a finite right endpoint of I ,
then (4) will denote limx→a− f (x) (when it exists); if a = ±∞ is an endpoint of
I , then (4) will denote limx→±∞ f (x) (when each exists).

Using this notation, we can state a Sequential Characterization of Limits valid
for two-sided, one-sided, and infinite limits.
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3.17 Theorem. Let a be an extended real number, and let I be a nondegenerate
open interval which either contains a or has a as one of its endpoints. Suppose
further that f is a real function defined on I except possibly at a. Then

lim
x→a

x∈I

f (x)

exists and equals L if and only if f (xn) → L for all sequences xn ∈ I which satisfy
xn �= a and xn → a as n → ∞.

Proof. Since we have already proved this for two-sided limits, we must show
it for the remaining eight cases which notation (4) represents. Since the proofs
are similar, we shall give the details for only one of these cases, namely the
case when a belongs to I and L = ∞. Thus we must prove that f (x) → ∞ as
x → a if and only if f (xn) → ∞ for any sequence xn ∈ I which converges to
a and satisfies xn �= a for n ∈ N.

Suppose first that f (x) → ∞ as x → a. If xn ∈ I, xn → a as n → ∞,
and xn �= a, then given M ∈ R there is a δ > 0 such that 0 < |x − a| < δ

implies f (x) > M , and there is an N ∈ N such that n ≥ N implies |xn −a| < δ.
Consequently, n ≥ N implies f (xn) > M ; that is, f (xn) → ∞ as n → ∞ as
required.

Conversely, suppose to the contrary that f (xn) → ∞ for any sequence
xn ∈ I which converges to a and satisfies xn �= a but f (x) does NOT converge
to ∞ as x → a. By the definition of “convergence” to ∞ there are numbers
M0 ∈ R and xn ∈ I such that |xn − a| < 1/n and f (xn) ≤ M0 for all n ∈ N.
The first condition implies xn → a but the second condition implies that f (xn)

does not converge to ∞ as n → ∞. This contradiction proves Theorem 3.17
in the case a ∈ I and L = ∞. �

Using Theorem 3.17, we can prove limit theorems that are function analogues
of Theorem 2.15 and Corollary 2.16. We leave this to the reader and will use
these results as the need arises.

These limit theorems can be used to evaluate infinite limits and limits at ±∞.

3.18 EXAMPLE.

Prove that

lim
x→∞

2x2 − 1

1 − x2
= −2.

Proof. Since the limit of a product is the product of the limits, we have by
Example 3.16i that 1/xm → 0 as x → ∞ for any m ∈ N. Multiplying numera-
tor and denominator of the expression above by 1/x2, we obtain

lim
x→∞

2x2 − 1

1 − x2
= lim

x→∞
2 − 1/x2

−1 + 1/x2
= limx→∞(2 − 1/x2)

limx→∞(−1 + 1/x2)
= 2

−1
= −2. �
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EXERCISES

3.2.0. Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) If f (x) → ∞ as x → ∞ and g(x) > 0, then g(x)/ f (x) → 0 as
x → ∞.

b) If f (x) → 0 as x → a+ and g(x) ≥ 1 for all x ∈ R, then g(x)/ f (x) →
∞ as x → a+.

c) If f (x) → ∞ as x → ∞, then sin(x2 + x + 1)/ f (x) → 0 as x → ∞.
d) If P and Q are polynomials such that the degree of P is less than or

equal to the degree of Q (see Exercise 3.2.3), then there is an L ∈ R
such that

lim
x→∞

P(x)

Q(x)
= lim

x→−∞
P(x)

Q(x)
= L .

3.2.1. For each of the following, use definitions (rather than limit theorems)
to prove that the limit exists. Identify the limit in each case.

a) lim
x→0−

√
x2

x

b) lim
x→∞

sin x

x2

c) lim
x→−1+

1

x2 − 1

d) lim
x→1+

x − 3

3 − x − 2x2

e) lim
x→−∞

cos(tan x)

x + 1

3.2.2. Assuming that ex → ea, sin x → sin a, and cos x → cos a as x → a for
any a ∈ R, evaluate the following limits when they exist.

a) lim
x→2−

x3 − x2 − 4

x2 − 4

b) lim
x→∞

5x2 + 3x − 2

3x2 − 2x + 1

c) lim
x→−∞ e−1/x2
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d) lim
x→0+

ex2+2x−1

sin x

e) lim
x→0−

sin(x + π/2)
3
√

cos x − 1

f) lim
x→0+

√
1 − cos x

sin x

3.2.3 . This exercise is used many places. Recall that a polynomial of degree n
is a function of the form

P(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where a j ∈ R for j = 0, 1, . . . , n and an �= 0.

a) Prove that limx→a xn = an for n = 0, 1, · · · and a ∈ R.
b) Prove that if P is a polynomial, then

lim
x→a

P(x) = P(a)

for every a ∈ R.

3.2.4. Prove the following comparison theorems for real functions f and g,
and a ∈ R.

a) If f (x) ≥ g(x) and g(x) → ∞ as x → a, then f (x) → ∞ as x → a.
b) If f (x) ≤ g(x) ≤ h(x) and

L := lim
x→∞ f (x) = lim

x→∞ h(x),

then g(x) → L as x → ∞.

3.2.5. Prove the following special case of Theorem 3.17: Suppose that a ∈ R
and f : [a,∞) → R for some a ∈ R. Then f (x) → L as x → ∞ if and
only if f (xn) → L for any sequence xn ∈ (a,∞) which converges to ∞
as n → ∞.

3.2.6. Suppose that f : [0, 1] → R and f (a) = limx→a f (x) for all a ∈ [0, 1].
Prove that f (q) = 0 for all q ∈ Q ∩ [0, 1] if and only if f (x) = 0 for all
x ∈ [0, 1].

3.2.7. Suppose that P is a polynomial and that P(a) > 0 for a fixed a ∈ R.
Prove that P(x)/(x − a) → ∞ as x → a+, P(x)/(x − a) → −∞ as
x → a−, but

lim
x→a

P(x)

x − a

does not exist.
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3.2.8. [Cauchy] Suppose that f : N → R. If

lim
n→∞ f (n + 1)− f (n) = L ,

prove that limn→∞ f (n)/n exists and equals L .

3.3 CONTINUITY

In elementary calculus, a function is called continuous at a if a ∈ Dom f and
f (x) → f (a) as x → a. In particular, it is tacitly assumed that f is defined
on BOTH sides of a. Here, we introduce a more general concept of continuity
which includes functions, such as

√
x at a = 0, which are defined on only one

side of some point in their domain.

3.19 Definition.

Let E be nonempty subset of R and f : E → R.

i) f is said to be continuous at a point a ∈ E if and only if given ε > 0 there is
a δ > 0 (which in general depends on ε, f , and a) such that

|x − a| < δ and x ∈ E imply | f (x)− f (a)| < ε. (5)

ii) f is said to be continuous on E (notation: f : E → R is continuous) if and
only if f is continuous at every x ∈ E .

The following result shows that if E is an open interval which contains a, then
“ f is continuous at a ∈ E” means “ f (x) → f (a) as x → a.” Therefore, we shall
abbreviate “ f is continuous at a ∈ E” by “ f is continuous at a” when E is an
open interval.

3.20 Remark. Let I be an open interval which contains a point a and f : I → R.
Then f is continuous at a ∈ I if and only if

f (a) = lim
x→a

f (x).

Proof. Suppose that I = (c, d) and set δ0 := min{|c − a|, |d − a|}. If δ < δ0,
then |x − a| < δ implies x ∈ I . Therefore, condition (5) is identical to (1)
when f (a) = L , E = I , and δ < δ0. It follows that f is continuous at a ∈ I if
and only if f (x) → f (a) as x → a. �

By repeating the proof of Theorem 3.6, we can establish a sequential charac-
terization of continuity which is valid on any nonempty set.

3.21 Theorem. Suppose that E is a nonempty subset of R, that a ∈ E , and that
f : E → R. Then the following statements are equivalent:

i) f is continuous at a ∈ E .
ii) If xn converges to a and xn ∈ E , then f (xn) → f (a) as n → ∞.
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In particular,
√

x is continuous on I = [0,∞) by Exercise 2.2.5.
By combining Theorem 3.21 with Theorem 2.12, we obtain the following result.

3.22 Theorem. Let E be a nonempty subset of R and f, g : E → R. If f,g are
continuous at a point a ∈ E (respectively, continuous on the set E), then so are
f + g, f g, and α f (for any α ∈ R). Moreover, f g is continuous at a ∈ E when
g(a) �= 0 (respectively, on E when g(x) �= 0 for all x ∈ E).

It follows from Exercises 3.1.6, 3.1.7, and 3.1.8 that if f,g are continuous at a
point a ∈ E or on a set E , then so are | f |, f +, f −, f ∨ g, and f ∧ g. We also
notice by Exercise 3.2.3 that every polynomial is continuous on R.

Many complicated functions can be broken into simpler pieces, using sums,
products, quotients, and the following operation.

3.23 Definition.

Suppose that A and B are subsets of R, that f : A → R and g : B → R. If
f (A) ⊆ B for every x ∈ A, then the composition of g with f is the function
g ◦ f : A → R defined by

(g ◦ f )(x) := g( f (x)), x ∈ A.

The following result contains information about when a limit sign and some-
thing else (in this case, the evaluation of a function) can be interchanged. We
shall return to this theme many times, identifying conditions under which we
can interchange any two of the following objects: limits, integrals, derivatives,
infinite summations, and computation of a function (see especially Sections 7.1,
7.2, and 11.1, and the entry “interchange the order of” in the Index).

3.24 Theorem. Suppose that A and B are subsets of R, that f : A → R and
g : B → R, and that f (x) ∈ B for every x ∈ A.

i) If A := I \ {a}, where I is a nondegenerate interval which either contains a or
has a as one of its endpoints, if

L := lim
x→a

x∈I

f (x)

exists and belongs to B, and if g is continuous at L ∈ B, then

lim
x→a

x∈I

(g ◦ f )(x) = g

(
lim
x→a

x∈I

f (x)

)
.

ii) If f is continuous at a ∈ A and g is continuous at f (a) ∈ B, then g ◦ f is
continuous at a ∈ A.
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Proof. Suppose that xn ∈ I \ {a} and that xn → a as n → ∞. Since
f (A) ⊆ B, f (xn) ∈ B. Also, by the Sequential Characterization of Limits
(Theorem 3.17), f (xn) → L as n → ∞. Since g is continuous at L ∈ B, it
follows from Theorem 3.21 that g ◦ f (xn) := g( f (xn)) → g(L) as n → ∞.
Hence by Theorem 3.17, g ◦ f (x) → g(L) as x → a in I . This proves i). A
similar proof establishes part ii). �

For many applications, it is important to be able to find the maximum or min-
imum of a given function. As a first step in this direction, we introduce the
following concept.

3.25 Definition.

Let E be a nonempty subset of R. A function f : E → R is said to be bounded
on E if and only if there is an M ∈ R such that | f (x)| ≤ M for all x ∈ E , in
which case we shall say that f is dominated by M on E .

Notice that whether a function f is bounded or not on a set E depends on
E as well as on f . For example, f (x) = 1/x is dominated by 1 on [1,∞) but
unbounded on (0,2). Again, the function f (x) = x2 is dominated by 4 on (−2, 2)
but unbounded on [0,∞).

The following result, which will be used often, shows that a continuous func-
tion on a closed, bounded interval is always bounded.

3.26 Theorem. [EXTREME VALUE THEOREM].
If I is a closed, bounded interval and f : I → R is continuous on I, then f is
bounded on I. Moreover, if

M = sup
x∈I

f (x) and m = inf
x∈I

f (x),

then there exist points xm, xM ∈ I such that

f (xM ) = M and f (xm) = m. (6)

Proof. Suppose first that f is not bounded on I . Then there exist xn ∈ I
such that

| f (xn)| > n, n ∈ N. (7)

Since I is bounded, we know (by the Bolzano–Weierstrass Theorem) that {xn}
has a convergent subsequence, say xnk → a as k → ∞. Since I is closed,
we also know (by the Comparison Theorem) that a ∈ I . In particular,
f (a) ∈ R. On the other hand, substituting nk for n in (7) and taking the limit
of this inequality as k → ∞, we have | f (a)| = ∞, a contradiction. Hence, the
function f is bounded on I .

We have proved that both M and m are finite real numbers. To show that
there is an xM ∈ I such that f (xM ) = M , suppose to the contrary that f (x) <
M for all x ∈ I . Then the function
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g(x) = 1

M − f (x)

is continuous, hence bounded on I . In particular, there is a C > 0 such that
|g(x)| = g(x) ≤ C . It follows that

f (x) ≤ M − 1

C
(8)

for all x ∈ I . Taking the supremum of (8) over all x ∈ I , we obtain M ≤ M −
1/C < M , a contradiction. Hence, there is an xM ∈ I such that f (xM ) = M .
A similar argument proves that there is an xm ∈ I such that f (xm) = m. �

We shall sometimes refer to (6) by saying that the supremum and infimum
of f are attained on I . We shall also call the value M (respectively, m) the
maximum (respectively, the minimum) of f on I .

Neither of the hypotheses on the interval I in Theorem 3.26 can be relaxed.

3.27 Remark. The Extreme Value Theorem is false if either “closed” or
“bounded” is dropped from the hypotheses.

Proof. The interval (0,1) is bounded but not closed, and the function f (x) =
1/x is continuous and unbounded on (0,1). The interval [0,∞) is closed
but not bounded, and the function f (x) = x is continuous and unbounded
on [0,∞). �

What more can be said about continuous functions? One useful conceptual-
ization of functions which are continuous on an interval is that their graphs have
no holes or jumps (see Theorem 3.29 below). Our proof of this fact is based on
the following elementary observation.

3.28 Lemma.
Suppose that a < b and that f : [a, b) → R. If f is continuous at a point
x0 ∈ [a, b) and f (x0) > 0, then there exist a positive number ε and a point
x1 ∈ [a, b) such that x1 > x0 and f (x) > ε for all x ∈ [x0, x1].
Strategy: The idea behind the proof is simple. If f (x0) > 0, then f (x) >

f (x0)/2 for x near x0. Here are the details.

Proof. Let ε = f (x0)/2. Since x0 < b, it is easy to see that δ0 := (b − x0)/2
is positive and that a ≤ x < x0 + δ0 implies x ∈ [a, b). Use Definition 3.19 to
choose 0 < δ < δ0 such that x ∈ [a, b) and |x−x0| < δ imply | f (x)− f (x0)| < ε.

Fix x1 ∈ (x0, x0 + δ) and suppose that x ∈ [x0, x1]. By the choice of ε and δ,
it is clear that

− f (x0)

2
< f (x)− f (x0) <

f (x0)

2
.

Solving the left-hand inequality for f (x), we conclude that f (x) > f (x0)/2 =
ε, as promised. �
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A real number y0 is said to lie between two numbers c and d if and only if
c < y0 < d or d < y0 < c.

3.29 Theorem. [INTERMEDIATE VALUE THEOREM].
Suppose that a < b and that f : [a, b] → R is continuous. If y0 lies between
f (a) and f (b), then there is an x0 ∈ (a, b) such that f (x0) = y0.

Proof. We may suppose that f (a) < y0 < f (b). Consider the set E =
{x ∈ [a, b] : f (x) < y0} (see Figure 3.3). Since a ∈ E and E ⊆ [a, b], E
is a nonempty, bounded subset of R. Hence, by the Completeness Axiom,
x0 := sup E is a finite real number. It remains to prove that x0 ∈ (a, b) and
f (x0) = y0.

f(b)

y

f(a)

y0

x0a b x

FIGURE 3.3

Choose by Theorem 2.11 a sequence xn ∈ E such that xn → x0 as n → ∞.
Since E ⊆ [a, b], it follows from Theorem 2.17 that x0 ∈ [a, b]. Moreover,
by the continuity of f and the definition of E , we have f (x0) = limn→∞
f (xn) ≤ y0.

To show that f (x0) = y0, suppose to the contrary that f (x0) < y0. Then
y0 − f (x) is a continuous function on the interval [a, b) whose value at x = x0
is positive. Hence, by Lemma 3.28, we can choose an ε and an x1 > x0 such
that y0 − f (x1) > ε > 0. In particular, x1 ∈ E and x1 > sup E , a contradiction.

We have shown that x0 ∈ [a, b] and y0 = f (x0). In view of our opening
assumption, f (a) < y0 < f (b), it follows that x0 cannot equal a or b. We
conclude that x0 ∈ (a, b). �

Thus, if f is continuous on [a, b] and f (a) ≤ y0 ≤ f (b), then there is an
x0 ∈ [a, b] such that f (x0) = y0.

If f fails to be continuous at a point a, we say that f is discontinuous at a
and call a a point of discontinuity of f . How badly can a function behave near
a point of discontinuity? The following examples can be interpreted as answers
to this question. (See also Exercise 9.6.9.)
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3.30 EXAMPLE.

Prove that the function

f (x) =
⎧⎨
⎩

|x |
x

x �= 0

1 x = 0

is continuous on (−∞, 0) and [0,∞), discontinuous at 0, and that both f (0+)
and f (0−) exist.

Proof. Since f (x) = 1 for x ≥ 0, it is clear that f (0+) = 1 exists and
f (x) → f (a) as x → a for any a > 0. In particular, f is continuous on
[0,∞). Similarly, f (0−) = −1 and f is continuous on (−∞, 0). Finally, since
f (0+) �= f (0−), the limit of f (x) as x → 0 does not exist by Theorem 3.14.
Therefore, f is not continuous at 0. �

3.31 EXAMPLE.

Assuming that sin x is continuous on R, prove that the function

f (x) =
⎧⎨
⎩sin

1

x
x �= 0

1 x = 0

is continuous on (−∞, 0) and (0,∞), discontinuous at 0, and neither f (0+) nor
f (0−) exists. (See Figure 3.1.)

Proof. The function 1/x is continuous for x �= 0 by Theorem 3.8. Hence,
by Theorem 3.24, f (x) = sin(1/x) is continuous on (−∞, 0) and (0,∞). To
prove that f (0+) does not exist, let xn = 2/((2n + 1)π), and observe (see
Appendix B) that sin(1/xn) = (−1)n, n ∈ N. Since xn ↓ 0 but (−1)n does not
converge, it follows from Theorem 3.21 (the Sequential Characterization of
Continuity) that f (0+) does not exist. A similar argument proves that f (0−)
does not exist. �

3.32 EXAMPLE.

The Dirichlet function is defined on R by

f (x) :=
{

1 x ∈ Q
0 x /∈ Q.

Prove that every point x ∈ R is a point of discontinuity of f . (Such functions
are called nowhere continuous.)

Proof. By Theorem 1.18 and Exercise 1.3.3 (Density of Rationals and Irra-
tionals), given any a ∈ R and δ > 0 we can choose x1 ∈ Q and x2 ∈ R \ Q such
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that |xi − a| < δ for i = 1, 2. Since f (x1) = 1 and f (x2) = 0, f cannot be
continuous at a. �

3.33 EXAMPLE.

Prove that the function

f (x) =
⎧⎨
⎩

1

q
x = p

q
∈ Q (in reduced form)

0 x /∈ Q

is continuous at every irrational in the interval (0,1) but discontinuous at every
rational in (0,1).

Proof. Let a be a rational in (0,1) and suppose that f is continuous at a. If
xn is a sequence of irrationals which converges to a, then f (xn) → f (a); that
is, f (a) = 0. But f (a) �= 0 by definition. Hence, f is discontinuous at every
rational in (0,1).

Let a be an irrational in (0,1). We must show that f (xn) → f (a) for every
sequence xn ∈ (0, 1) which satisfies xn → a as n → ∞. We may suppose that
xn ∈ Q. For each n ∈ N, write xn = pn/qn in reduced form. Since f (a) = 0,
it suffices to show that qn → ∞ as n → ∞. Suppose to the contrary that
there exist integers n1 < n2 < . . . such that |qnk | ≤ M < ∞ for k ∈ N. Since
xnk ∈ (0, 1), it follows that the set

E :=
{

xnk = pnk

qnk

: k ∈ N
}

contains only a finite number of points. Hence, the limit of any sequence in E
must belong to E , a contradiction since a is such a limit and is irrational. �

To see how counterintuitive Example 3.33 is, try to draw a graph of y = f (x).
Stranger things can happen.

3.34 Remark. The composition of two functions g ◦ f can be nowhere continu-
ous, even though f is discontinuous only on Q and g is discontinuous at only one
point.

Proof. Let f be the function given in Example 3.33 and set

g(x) =
{

1 x �= 0
0 x = 0.

Clearly,

(g ◦ f )(x) =
{

1 x ∈ Q
0 x /∈ Q.

Hence, g◦ f is the Dirichlet function, nowhere continuous by Example 3.32. �
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In view of Example 3.33 and Remark 3.34, we must be skeptical of proofs
which rely exclusively on geometric intuition. And although we shall use ge-
ometric intuition to suggest methods of proof for many results in subsequent
chapters, these suggestions will always be followed by a careful rigorous proof
which contains no fuzzy reasoning based on pictures or sketches no matter how
plausible they seem.

EXERCISES

For these exercises, assume that sin x, cos x , and ex are continuous on R.

3.3.0. Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) If f is continuous on [a,b] and J := f ([a, b]), then J is a closed,
bounded interval.

b) If f and g are continuous on [a,b], if f (a) < g(a) and f (b) > g(b),
then there is a c ∈ [a, b] such that f (c) = g(c).

c) Suppose that f and g are defined and finite valued on an open inter-
val I which contains a, that f is continuous at a, and that f (a) �= 0.
Then g is continuous at a if and only if f g is continuous at a.

d) Suppose that f and g are defined and finite valued on R. If f and
g ◦ f are continuous on R, then g is continuous on R.

3.3.1. Use limit theorems to show that the following functions are continuous
on [0,1].

a) f (x) = ex2√
sin x

cos x

b) f (x) =
⎧⎨
⎩

x2 + x − 2

x − 1
x �= 1

3 x = 1

c) f (x) =
{

e−1/x x �= 0
0 x = 0

d) f (x) =
⎧⎨
⎩

√
x sin

1

x
x �= 0

0 x = 0

3.3.2. For each of the following, prove that there is at least one x ∈ R which
satisfies the given equation.

a) ex = x3

b) ex = 2 cos x + 1
c) 2x = 2 − 3x
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Section 3.3 Continuity 91

3.3.3. If f : [a, b] → R is continuous, prove that supx∈[a,b] | f (x)| is finite.
3.3.4. If f : [a, b] → [a, b] is continuous, then f has a fixed point; that is, there

is a c ∈ [a, b] such that f (c) = c.
3.3.5. If f is a real function which is continuous at a ∈ R and if f (a) < M for

some M ∈ R, prove that there is an open interval I containing a such
that f (x) < M for all x ∈ I .

3.3.6. Show that there exist nowhere continuous functions f and g whose sum
f + g is continuous on R. Show that the same is true for the product of
functions.

3.3.7. Suppose that a ∈ R, that I is an open interval containing a, that f, g :
I → R, and that f is continuous at a. Prove that g is continuous at a if
and only if f + g is continuous at a.

3.3.8. Suppose that f : R → R satisfies f (x + y) = f (x) + f (y) for each
x, y ∈ R.

a) Show that f (nx) = n f (x) for all x ∈ R and n ∈ Z.
b) Prove that f (qx) = q f (x) for all x ∈ R and q ∈ Q.
c) Prove that f is continuous at 0 if and only if f is continuous on R.
d) Prove that if f is continuous at 0, then there is an m ∈ R such that

f (x) = mx for all x ∈ R.

3.3.9 . This exercise is used in Section 7.4. Suppose that f : R → (0,∞)

satisfies f (x + y) = f (x) f (y). Modifying the outline in Exercise 3.3.8,
show that if f is continuous at 0, then there is an a ∈ (0,∞) such that
f (x) = ax for all x ∈ R. (You may assume that the function ax is
continuous on R.)

3.3.10. If f : R → R is continuous and

lim
x→∞ f (x) = lim

x→−∞ f (x) = ∞,

prove that f has a minimum on R; that is, there is an xm ∈ R such that

f (xm) = inf
x∈R

f (x) < ∞.

3.3.11. Let a > 1. Assume that a p+q = a paq and (a p)q = a pq for all p, q ∈ Q,
and that a p < aq for all p, q ∈ Q which satisfy p < q. (This is easy,
but tedious, to prove using algebra, induction, and the definitions a0 =
1, a−n = 1/an , and am/n = n

√
am for n ∈ N and m ∈ Z. The hard part is

proving that n
√

am exists, and this requires the Completeness Axiom—
see Appendix A.10.)

For each x ∈ R, define

A(x) := sup{aq : q ∈ Q and q ≤ x}.
a) Prove that A(x) exists and is finite for all x ∈ R, and that A(p) = a p

for all p ∈ Q. Thus ax := A(x) extends the “power of a” function
from Q to R.
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92 Chapter 3 Functions on R

b) If x, y ∈ R with x < y, prove that ax < ay .
c) Use Example 2.21 to prove that the function ax is continuous on R.
d) Prove that ax+y = ax ay, (ax )y = axy , and a−x = 1/ax for all x,

y ∈ R.
e) For 0 < b < 1, define bx = (1/b)−x . Prove that c) and d) hold for

b in place of a. State and prove an analogue of b) for bx and by in
place of ax and ay .

3.4 UNIFORM CONTINUITY

The following concept is very important and will be used many times in the rest
of the book.

3.35 Definition.

Let E be a nonempty subset of R and f : E → R. Then f is said to be
uniformly continuous on E (notation: f : E → R is uniformly continuous) if
and only if for every ε > 0 there is a δ > 0 such that

|x − a| < δ and x, a ∈ E imply | f (x)− f (a)| < ε. (9)

Notice that the δ in Definition 3.35 depends on ε and f , but not on a
and x . This issue needs to be addressed when we prove that a given func-
tion is uniformly continuous on a specific set (e.g., by determining δ before a
is mentioned).

3.36 EXAMPLE.

Prove that f (x) = x2 is uniformly continuous on the interval (0,1).

Proof. Given ε > 0, set δ = ε/2. If x, a ∈ (0, 1), then |x + a| ≤ |x | + |a| ≤ 2.
Therefore, if x, a ∈ (0, 1) and |x − a| < δ, then

| f (x)− f (a)| = |x2 − a2| = |x − a| |x + a| ≤ 2|x − a| < 2δ = ε. �

The definitions of continuity and uniform continuity are very similar. In
fact, the only difference is that for a continuous function, the parameter δ may
depend on a, whereas for a uniformly continuous function, δ must be chosen
independently of a. In particular, every function uniformly continuous on E is
also continuous on E . The following example shows that the converse of this
statement is false unless some restriction is made on E .

3.37 EXAMPLE.

Show that f (x) = x2 is not uniformly continuous on R.

Proof. Suppose to the contrary that f is uniformly continuous on R. Then
there is a δ > 0 such that |x − a| < δ implies | f (x)− f (a)| < 1 for all x, a ∈ R.
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Section 3.4 Uniform Continuity 93

By the Archimedean Principle, choose n ∈ N so large that nδ > 1. Set a = n
and x = n + δ/2. Then |x − a| < δ and

1 > | f (x)− f (a)| = |x2 − a2| = nδ + δ2

4
> nδ > 1.

This contradiction proves that f is not uniformly continuous on R. �

Here is a key which unlocks the difference between continuity and uniform
continuity.

3.38 Lemma.
Suppose that E ⊆ R and that f : E → R is uniformly continuous. If xn ∈ E is
Cauchy, then f (xn) is Cauchy.

Proof. Let ε > 0 and choose δ > 0 such that (9) holds. Since {xn} is Cauchy,
choose N ∈ N such that n,m ≥ N implies |xn − xm | < δ. Then n,m ≥ N
implies | f (xn)− f (xm)| < ε. �

Notice that f (x) = 1/x is continuous on (0,1) and xn = 1/n is Cauchy but
f (xn) is not. In particular, 1/x is continuous but not uniformly continuous on
the open interval (0,1). Notice how the graph of y = 1/x corroborates this fact.
Indeed, as a gets closer to 0, the value of δ gets smaller (compare δ1 to δ0 in
Figure 3.4) and hence cannot be chosen independently of a.

f(x0) +   

f(x0) –   

f(x1) +   

f(x1) –   

x1

y

x
0 x0 1

FIGURE 3.4
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94 Chapter 3 Functions on R

Thus on an open interval, continuity and uniform continuity are different,
even if the interval is bounded. The following result shows that this is not the
case for closed, bounded intervals. (This result is extremely important because
uniform continuity is so strong. Indeed, we shall use it dozens of times before
this book is finished.)

3.39 Theorem. Suppose that I is a closed, bounded interval. If f : I → R is
continuous on I, then f is uniformly continuous on I.

Proof. Suppose to the contrary that f is continuous but not uniformly con-
tinuous on I . Then there is an ε0 > 0 and points xn, yn ∈ I such that
|xn − yn| < 1/n and

| f (xn)− f (yn)| ≥ ε0, n ∈ N. (10)

By the Bolzano–Weierstrass Theorem and the Comparison Theorem, the
sequence {xn} has a subsequence, say xnk , which converges, as k → ∞, to
some x ∈ I . Similarly, the sequence {ynk }k∈N has a convergent subsequence,
say ynk j

, which converges, as j → ∞, to some y ∈ I . Since xnk j
→ x as

j → ∞ and f is continuous, it follows from (10) that | f (x)− f (y)| ≥ ε0; that
is, f (x) �= f (y). But |xn − yn| < 1/n for all n ∈ N so Theorem 2.9 (the Squeeze
Theorem) implies x = y. Therefore, f (x) = f (y), a contradiction. �

Our first application of this result is a useful but simple characterization of
uniform continuity on bounded open intervals. (This result does NOT work for
unbounded intervals.)

3.40 Theorem. Suppose that a < b and that f : (a, b) → R. Then f is uniformly
continuous on (a, b) if and only if f can be continuously extended to [a, b]; that is,
if and only if there is a continuous function g : [a, b] → R which satisfies

f (x) = g(x), x ∈ (a, b). (11)

Proof. Suppose that f is uniformly continuous on (a, b). Let xn ∈ (a, b) con-
verge to b as n → ∞. Then {xn} is Cauchy; hence, by Lemma 3.38, so is
{ f (xn)}. In particular,

g(b) := lim
n→∞ f (xn)

exists. This value does not change if we use a different sequence to approxi-
mate b. Indeed, let yn ∈ (a, b) be another sequence which converges to b as
n → ∞. Given ε > 0, choose δ > 0 such that (9) holds for E = (a, b). Since
xn − yn → 0, choose N ∈ N so that n ≥ N implies |xn − yn| < δ. By (9),
then, | f (xn) − f (yn)| < ε for all n ≥ N . Taking the limit of this inequality as
n → ∞, we obtain ∣∣ lim

n→∞ f (xn)− lim
n→∞ f (yn)

∣∣ ≤ ε
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Section 3.4 Uniform Continuity 95

for all ε > 0. It follows from Theorem 1.9 that

lim
n→∞ f (xn) = lim

n→∞ f (yn).

Thus, g(b) is well defined. A similar argument defines g(a).
Set g(x) = f (x) for x ∈ (a, b). Then g is defined on [a, b], satisfies (11), and

is continuous on [a, b] by the Sequential Characterization of Limits. Thus, f
can be “continuously extended” to g as required.

Conversely, suppose that there is a function g continuous on [a, b] which
satisfies (11). By Theorem 3.39, g is uniformly continuous on [a, b]; hence, g
is uniformly continuous on (a, b). We conclude that f is uniformly continuous
on (a, b). �

Let f be continuous on a bounded, open, nondegenerate interval (a, b).
Notice that f is continuously extendable to [a, b] if and only if the one-sided
limits of f exist at a and b. Indeed, when they exist, we can always define g at
a and b to be the values of these limits. In particular, we can prove that f is
uniformly continuous without using ε’s and δ’s.

3.41 EXAMPLE.

Prove that f (x) = (x − 1)/ log x is uniformly continuous on (0,1).

Proof. It is clear that f (x) → 0 as x → 0+. Moreover, by l’Hôpital’s Rule
(see Theorem 4.27),

lim
x→1− f (x) = lim

x→1−
1

1/x
= 1.

Hence f is continuously extendable to [0,1], so by Theorem 3.40, f is uni-
formly continuous on (0,1). �

EXERCISES

3.4.0. Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) If f is uniformly continuous on (0,∞) and g is positive and bounded
on (0,∞), then f g is uniformly continuous on (0,∞).

b) The function x log(1/x) is uniformly continuous on (0,1).
c) The function

cos x

mx + b

is uniformly continuous on (0,1) for all nonzero m, b ∈ R.
d) If f,g are uniformly continuous on an interval [a, b] and g(x) �= 0 for

x ∈ [a, b], then f/g is uniformly continuous on [a, b].
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96 Chapter 3 Functions on R

3.4.1. Using Definition 3.35, prove that each of the following functions is uni-
formly continuous on (0,1).

a) f (x) = x2 + x
b) f (x) = x3 − x + 2
c) f (x) = x sin 2x

3.4.2. Prove that each of the following functions is uniformly continuous on
(0,1). (You may use l’Hôpital’s Rule and assume that sin x and log x are
continuous on their domains.)

a) f (x) = sin x

x

b) f (x) = x cos
1

x2

c) f (x) = x log x

d) f (x) = (1 − x2)1/x

3.4.3. Assuming that sin x is continuous on R, find all real α such that xα sin(1/x)
is uniformly continuous on the open interval (0,1).

3.4.4. a) Suppose that f : [0,∞) → R is continuous and that there is an L ∈ R
such that f (x) → L as x → ∞. Prove that f is uniformly continuous
on [0,∞).

b) Prove that f (x) = 1/(x2 + 1) is uniformly continuous on R.

3.4.5. Suppose that α ∈ R, that E is a nonempty subset of R, and that f, g : E →
R are uniformly continuous on E .

a) Prove that f + g and α f are uniformly continuous on E .
b) Suppose that f,g are bounded on E . Prove that fg is uniformly contin-

uous on E .
c) Show that there exist functions f,g uniformly continuous on R such

that fg is not uniformly continuous on R.
d) Suppose that f is bounded on E and that there is a positive constant ε0

such that g(x) ≥ ε0 for all x ∈ E . Prove that f/g is uniformly continuous
on E .

e) Show that there exist functions f,g, uniformly continuous on the inter-
val (0,1), with g(x) > 0 for all x ∈ (0, 1), such that f/g is not uniformly
continuous on (0,1).

3.4.6. a) Let I be a bounded interval. Prove that if f : I → R is uniformly
continuous on I , then f is bounded on I .

b) Prove that a) may be false if I is unbounded or if f is merely
continuous.
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3.4.7. Suppose that f is continuous on [a, b]. Prove that given ε > 0 there exist
points x0 = a < x1 < · · · < xn = b such that if Ek := {y : f (x) = y for
some x ∈ [xk−1, xk]}, then sup Ek − inf Ek < ε for k = 1, 2, . . . , n.

3.4.8. Let E ⊆ R. A function f : E → R is said to be increasing on E if and
only if x1, x2 ∈ E and x1 < x2 imply f (x1) ≤ f (x2). Suppose that f is
increasing and bounded on an open, bounded, nonempty interval (a, b).

a) Prove that f (a+) and f (b−) both exist and are finite.
b) Prove that f is continuous on (a, b) if and only if f is uniformly con-

tinuous on (a, b).
c) Show that b) is false if f is unbounded. Indeed, find an increasing

function g : (0, 1) → R which is continuous on (0,1) but not uniformly
continuous on (0,1).

3.4.9. Prove that a polynomial of degree n is uniformly continuous on R if and
only if n = 0 or 1.
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C H A P T E R 4

Differentiability on R

4.1 THE DERIVATIVE

For many applications, we need to compute the slope of a tangent line to a curve.
The following concept is useful in this regard.

4.1 Definition.

A real function f is said to be differentiable at a point a ∈ R if and only if f is
defined on some open interval I containing a and

f ′(a) : = lim
h→0

f (a + h)− f (a)

h
(1)

exists. In this case f ′(a) is called the derivative of f at a.

The assumption that f be defined on an open interval containing a is made so
that the quotients in (1) are defined for all h �= 0 sufficiently small.

You may recall that the graph of y = f (x) has a non-vertical tangent line at
the point (a, f (a)) if and only if f has a derivative at a, in which case the slope
of that tangent line is f ′(a). To see why this connection makes sense, let us
consider a geometric interpretation of (1). Suppose that f is differentiable at a.
A secant line of the graph y = f (x) is a line passing through at least two points
on the graph, and a chord is a line segment which runs from one point on the
graph to another. Let x = a + h, and observe that the slope of the chord passing
through the points (x, f (x)) and (a, f (a)) is given by ( f (x)− f (a))/(x −a). Now,
since x = a + h, (1) becomes

f ′(a) = lim
x→a

f (x)− f (a)

x − a
.

Hence, as x → a the slopes of the chords through (x, f (x)) and (a, f (a))
approximate the slope of the tangent line of y = f (x) at x = a (see Figure 4.1),
and in the limit, the slope of the tangent line to y = f (x) at x = a is precisely
f ′(a). Thus, we shall say that the graph of y = f (x) has a unique tangent line at
a point (a, f (a)) if and only if f ′(a) exists.

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 4 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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y

xa x2 x1

Tangent

Chords

y = f (x)

FIGURE 4.1

If f is differentiable at each point in a set E , then f ′ is a function on E . This
function is denoted several ways:

Dx f = d f

dx
= f (1) = f ′.

When y = f (x), we shall also use the notation dy/dx or y′ for f ′. Higher-order
derivatives are defined recursively; that is, if n ∈ N, then f (n+1)(a) := ( f (n))′(a),
provided these derivatives exist. Higher-order derivatives are also denoted
several ways, including Dn

x f, dn f/dxn, f (n), and by dn y/dxn and y(n) when
y = f (x). The second derivatives f (2) (respectively, y(2)) are usually written
as f ′′ (respectively, y′′), and when they exist at some point a, we shall say that f
is twice differentiable at a.

Here are two characterizations of differentiability which we shall use to study
derivatives. The first one, which characterizes the derivative in terms of the
“chord function”

F(x) := f (x)− f (a)

x − a
x �= a, (2)

will be used to establish the Chain Rule in Section 4.2.

4.2 Theorem. A real function f is differentiable at some point a ∈ R if and only
if there exist an open interval I and a function F : I → R such that a ∈ I, f is
defined on I, F is continuous at a, and

f (x) = F(x)(x − a)+ f (a) (3)

holds for all x ∈ I , in which case F(a) = f ′(a).
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100 Chapter 4 Differentiability on R

Proof. Notice once and for all that for x ∈ I \ {a}, (2) and (3) are equivalent.
Suppose that f is differentiable at a. Then f is defined on some open interval
I containing a, and the limit in (1) exists. Define F on I by (2) if x �= a, and
by F(a) := f ′(a). Then (3) holds for all x ∈ I , and F is continuous at a by (2)
since f ′(a) exists.

Conversely, if (3) holds, then (2) holds for all x ∈ I, x �= a. Taking the limit
of (2) as x → a, bearing in mind that F is continuous at a, we conclude that
F(a) = f ′(a). �

The second characterization of differentiability, in terms of linear approxi-
mations [i.e., how well f (a + h) − f (a) can be approximated by a straight line
through the origin] will be used in Chapter 11 to define the derivative of a func-
tion of several variables.

4.3 Theorem. A real function f is differentiable at a if and only if there is a
function T of the form T (x) := mx such that

lim
h→0

f (a + h)− f (a)− T (h)

h
= 0. (4)

Proof. Suppose that f is differentiable, and set m := f ′(a). Then by (1),

f (a + h)− f (a)− T (h)

h
= f (a + h)− f (a)

h
− f ′(a) → 0

as h → 0.
Conversely, if (4) holds for T (x) := mx and h �= 0, then

f (a + h)− f (a)

h
= m + f (a + h)− f (a)− mh

h

= m + f (a + h)− f (a)− T (h)

h
.

By (4), the limit of this last expression is m. It follows that ( f (a + h) −
f (a))/h → m, as h → 0; that is, that f ′(a) exists and equals m. �

Our first application of Theorem 4.2 answers the question: Are differentiabil-
ity and continuity related?

4.4 Theorem. If f is differentiable at a, then f is continuous at a.

Proof. Suppose that f is differentiable at a. By Theorem 4.2, there is an open
interval I and a function F , continuous at a, such that f (x) = f (a) + F(x)
(x − a) for all x ∈ I . Taking the limit of this last expression as x → a, we
see that

lim
x→a

f (x) = f (a)+ F(a) · 0 = f (a).

In particular, f (x) → f (a) as x → a; that is, f is continuous at a. �
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Section 4.1 The Derivative 101

Thus any function which fails to be continuous at a cannot be differentiable
at a. The following example shows that the converse of Theorem 4.4 is false.

4.5 EXAMPLE.

Show that f (x) = |x | is continuous at 0 but not differentiable there.

Proof. Since x → 0 implies |x | → 0, f is continuous at 0. On the other hand,
since |h| = h when h > 0 and |h| = −h when h < 0, we have

lim
h→0+

f (h)− f (0)

h
= 1 and lim

h→0−
f (h)− f (0)

h
= −1.

Since a limit exists if and only if its one-sided limits exist and are equal
(Theorem 3.14), it follows that the limit in (1) does not exist when a = 0
and f (x) = |x |. Therefore, f is not differentiable at 0. �

This example reflects the conventional wisdom about the difference between
differentiable and continuous functions. Since a function differentiable at a
always has a unique tangent line at (a, f (a)), the graph of a differentiable
function on an interval is “smooth” with no corners, cusps, or kinks. On the con-
trary, although the graph of a continuous function on an interval is unbroken
(has no holes or jumps), it may well have corners, cusps, or kinks. In particular,
f (x) = |x | is continuous but not differentiable at x = 0 and the graph of y = |x |
is unbroken but has a corner at the point (0, 0) (see Figure 4.2).

y

x

y =|x|

FIGURE 4.2

By Definition 4.1, if f is differentiable at a, then f must be defined on an
open interval containing a (i.e., on both sides of a). As with the theory of limits,
it is convenient to define “one-sided” derivatives to deal with functions whose
domains are closed intervals (see Example 4.7 below). Here is a brief discus-
sion of what it means for a real function to be differentiable on an interval (as
opposed to being differentiable at every point in an interval). This concept will
be used in Sections 5.3, 5.6, and 11.1.
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102 Chapter 4 Differentiability on R

4.6 Definition.

Let I be a nondegenerate interval.
i) A function f : I → R is said to be differentiable on I if and only if

f ′
I (a):= lim

x→a
x∈I

f (x)− f (a)

x − a

exists and is finite for every a ∈ I .
ii) f is said to be continuously differentiable on I if and only if f ′

I exists and is
continuous on I .

Notice that when a is not an endpoint of I, f ′
I (a) is the same as f ′(a). Because

of this, we usually drop the subscript on f ′
I . In particular, if f is differentiable

on [a, b], then

f ′(a):= lim
h→0+

f (a + h)− f (a)

h
and f ′(b):= lim

h→0−
f (b + h)− f (b)

h
.

The following example shows that Definition 4.6 enlarges the collection of
differentiable functions.

4.7 EXAMPLE.

The function f (x) = x3/2 is differentiable on [0,∞) and f ′(x) = 3
√

x/2 for all
x ∈ [0,∞).

Proof. By the Power Rule (see Exercise 4.2.7), f ′(x) = 3
√

x/2 for all x ∈
(0,∞). And by definition,

f ′(0) = lim
h→0+

h3/2 − 0

h
= lim

h→0+
√

h = 0. �

Here is notation widely used in conjunction with Definition 4.6. Let I be
a nondegenerate interval. For each n ∈ N, define the collection of functions
Cn(I ) by

Cn(I ) := { f : f : I → R and f (n) exists and is continuous on I }.

We shall denote the collection of f which belong to Cn(I ) for all n ∈ N by C∞(I ).
Notice that C1(I ) is precisely the collection of real functions which are continu-
ously differentiable on I . When dealing with specific intervals, we shall drop the
outer set of parentheses; for example, we shall write Cn[a, b] for Cn([a, b]).

By modifying the proof of Theorem 4.4, we can show that if f is differentiable
on I , then f is continuous on I . Thus, C∞(I ) ⊂ Cm(I ) ⊂ Cn(I ) for all integers
m > n > 0.
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Section 4.1 The Derivative 103

The following example shows that not every function which is differentiable
on R belongs to C1(R).

4.8 EXAMPLE.

The function

f (x) =
{

x2 sin(1/x) x �= 0
0 x = 0

is differentiable on R but not continuously differentiable on any interval which
contains the origin.

Proof. By definition,

f ′(0) = lim
h→0

h sin

(
1

h

)
= 0 and f ′(x) = 2x sin

(
1

x

)
− cos

(
1

x

)

for x �= 0. Thus f is differentiable on R but limx→0 f ′(x) does not exist. In
particular, f ′ is not continuous on any interval which contains the origin. �

It is important to notice that a function which is differentiable on two sets is
not necessarily differentiable on their union.

4.9 Remark. f (x) = |x | is differentiable on [0, 1] and on [−1, 0] but not on
[−1, 1].

Proof. Since f (x) = x when x > 0 and = −x when x < 0, it is clear that f is
differentiable on [−1, 0) ∪ (0, 1] [with f ′(x) = 1 for x > 0 and f ′(x) = −1 for
x < 0]. By Example 4.5, f is not differentiable at x = 0. However,

f ′[0,1](0) = lim
h→0+

|h|
h

= 1 and f ′[−1,0](0) = lim
h→0−

|h|
h

= −1.

Therefore, f is differentiable on [0, 1] and on [−1, 0]. �

EXERCISES

4.1.0. Suppose that f, g : [a, b] → R. Decide which of the following state-
ments are true and which are false. Prove the true ones and provide
counterexamples for the false ones.

a) If f = g2 and f is differentiable on [a, b], then g is differentiable on
(a, b).

b) If f is differentiable on [a, b], then f is uniformly continuous on
[a, b].

103



104 Chapter 4 Differentiability on R

c) If f is differentiable on (a, b) and f (a) = f (b) = 0, then f is uni-
formly continuous on [a, b].

d) If f is differentiable on (a, b] and f (x)/(x − a) → 1 as x → a+, then
f is uniformly continuous on (a, b].

4.1.1. For each of the following real functions, use Definition 4.1 directly to
prove that f ′(a) exists.

a) f (x) = x2 + x, a ∈ R
b) f (x) = √

x, a > 0
c) f (x) = 1/x, a �= 0

4.1.2 . This exercise is used in Section 4.2.

a) Prove that (xn)′ = nxn−1 for every n ∈ N and every x ∈ R.
b) Prove that (xn)′ = nxn−1 for every n ∈ −N∪{0} and every x ∈ (0,∞).

4.1.3. Suppose that

fα(x) =
⎧⎨
⎩|x |α sin

1

x
x �= 0

0 x = 0.

Show that fα(x) is continuous at x = 0 when α > 0 and differentiable at
x = 0 when α > 1. Graph these functions for α = 1 and α = 2 and give
a geometric interpretation of your results.

4.1.4. Let I be an open interval which contains 0 and f : I → R. If there
exists an α > 1 such that | f (x)| ≤ |x |α for all x ∈ I , prove that f is
differentiable at 0. What happens when α = 1?

4.1.5. a) Find all points (a, b) on the curve C , given by y = x + sin x , so that
the tangent lines to C at (a, b) are parallel to the line y = x + 15.

b) Find all points (a, b) on the curve C , given by y = 3x2 +2, so that the
tangent lines to C at (a, b) pass through the point (−1,−7).

4.1.6. Define f on R by

f (x) :=
{

x3 x ≥ 0
0 x < 0.

Find all n ∈ N such that f (n) exists on all of R.
4.1.7. Suppose that f : (0,∞) → R satisfies f (x) − f (y) = f (x/y) for all

x, y ∈ (0,∞) and f (1) = 0.

a) Prove that f is continuous on (0,∞) if and only if f is continuous
at 1.

b) Prove that f is differentiable on (0,∞) if and only if f is differen-
tiable at 1.

c) Prove that if f is differentiable at 1, then f ′(x) = f ′(1)/x for all
x ∈ (0,∞).

[Note: If f ′(1) = 1, then f (x) = log x .]
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4.1.8. Let I be an open interval, f : I → R, and c ∈ I . The function f is said
to have a local maximum at c if and only if there is a δ > 0 such that
f (c) ≥ f (x) holds for all |x − c| < δ.

a) If f has a local maximum at c, prove that

f (c + u)− f (c)

u
≤ 0 and

f (c + t)− f (c)

t
≥ 0

for u > 0 and t < 0 sufficiently small.
b) If f is differentiable at c and has a local maximum at c, prove that

f ′(c) = 0.
c) Make and prove analogous statements for local minima.
d) Show by example that the converses of the statements in parts b) and

c) are false. Namely, find an f such that f ′(0) = 0 but f has neither
a local maximum nor a local minimum at 0.

4.1.9. Suppose that I = (−a, a) for some a > 0. A function f : I → R is said
to be even if and only if f (−x) = f (x) for all x ∈ I , and said to be odd
if and only if f (−x) = − f (x) for all x ∈ I .

a) Prove that if f is odd and differentiable on I , then f ′ is even on I .
b) Prove that if f is even and differentiable on I , then f ′ is odd on I .

4.2 DIFFERENTIABILITY THEOREMS

In this section we prove several familiar results about derivatives.

4.10 Theorem. Let f and g be real functions and α ∈ R. If f and g are differen-
tiable at a, then f + g, α f, f · g, and [when g(a) �= 0] f/g are all differentiable
at a. In fact,

( f + g)′(a) = f ′(a)+ g′(a), (5)

(α f )′(a) = α f ′(a), (6)

( f · g)′(a) = g(a) f ′(a)+ f (a)g′(a), (7)(
f

g

)′
(a) = g(a) f ′(a)− f (a)g′(a)

g2(a)
. (8)

Proof. The proofs of these rules are similar. We provide the details only
for (7). By adding and subtracting f (a)g(x) in the numerator of the left side
of the following expression, we can write

f (x)g(x)− f (a)g(a)

x − a
= g(x)

f (x)− f (a)

x − a
+ f (a)

g(x)− g(a)

x − a
.
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This last expression is a product of functions. Since g is continuous (see The-
orem 4.4), it follows from Definition 4.1 and Theorem 3.8 that

lim
x→a

f (x)g(x)− f (a)g(a)

x − a
= g(a) f ′(a)+ f (a)g′(a). �

Formula (5) is called the Sum Rule, (6) is sometimes called the Homogeneous
Rule, (7) is called the Product Rule, and (8) is called the Quotient Rule.

Next, we show what the derivative does to a composition of two functions.

4.11 Theorem. [CHAIN RULE].
Let f and g be real functions. If f is differentiable at a and g is differentiable at
f (a), then g ◦ f is differentiable at a with

(g ◦ f )′(a) = g′( f (a)) f ′(a). (9)

Proof. By Theorem 4.2, there exist open intervals I and J , and functions F :
I → R, continuous at a, and G : J → R, continuous at f (a), such that
F(a) = f ′(a), G( f (a)) = g′( f (a)),

f (x) = F(x)(x − a)+ f (a), x ∈ I, (10)

and

g(y) = G(y)(y − f (a))+ g( f (a)), y ∈ J. (11)

Since f is continuous at a, we may assume (by making I smaller if necessary)
that f (x) ∈ J for all x ∈ I .

Fix x ∈ I . Apply (11) to y = f (x) and (10) to x to write

(g ◦ f )(x) = g( f (x)) = G( f (x))( f (x)− f (a))+ g( f (a))

= G( f (x))F(x)(x − a)+ (g ◦ f )(a).

Set H(x) = G( f (x))F(x) for x ∈ I . Since F is continuous at a and G is
continuous at f (a), it is clear that H is continuous at a. Moreover,

H(a) = G( f (a))F(a) = g′( f (a)) f ′(a).

It follows from Theorem 4.2, therefore, that (g ◦ f )′(a) = g′( f (a)) f ′(a). �

EXERCISES

4.2.0. Suppose that I is an open interval containing a, and that f, g, h : I → R.
Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) If f, g, and h are differentiable at a, then

( f gh)′(a) = f ′(a)g(a)h(a)+ f (a)g′(a)h(a)+ f (a)g(a)h′(a).
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b) If f is twice differentiable at a and g is twice differentiable at f (a),
then

(g ◦ f )′′(a) = g′( f (a)) f ′′(a)+ g′′( f (a))( f ′(a))2.

c) If the nth-order derivatives f (n)(a) and g(n)(a) exist, then

( f + g)(n)(a) = f (n)(a)+ g(n)(a).

d) If the nth-order derivatives f (n)(a) and g(n)(a) exist and are
nonzero, then

(
f

g

)(n)
(a) = g(a) f (n)(a)+ (−1)n f (a)g(n)(a)

gn+1(a)
.

4.2.1. Suppose that f and g are differentiable at 2 and 3 with f ′(2) =
a, f ′(3) = b, g′(2) = c, and g′(3) = d. If f (2) = 1, f (3) = 2, g(2) = 3,
and g(3) = 4, evaluate each of the following derivatives.

a) ( f g)′(2)
b) ( f/g)′(3)
c) (g ◦ f )′(3)
d) ( f ◦ g)′(2)

4.2.2. Suppose that f is differentiable at 2 and 4 with f (2) = 2, f (4) = 3,
f ′(2) = π , and f ′(4) = e.

a) If g(x) = x f (x2), find the value of g′(2).
b) If g(x) = f 2(

√
x), find the value of g′(4).

c) If g(x) = x/ f (x3), find the value of g′( 3
√

2).

4.2.3. [Power Rule] Assume that (ex )′ = ex for x ∈ R and (log x)′ = 1/x for
x > 0. Use xα := eα log x to prove that (xα)′ = αxα−1 for all x > 0 and
all α ∈ R.

4.2.4. Using Exercise 4.1.2, prove that every polynomial belongs to C∞(R).
4.2.5. Suppose that f is differentiable at a and f (a) �= 0.

a) Show that for h sufficiently small, f (a + h) �= 0.
b) [Reciprocal Rule] Using Definition 4.1 directly, prove that 1/ f (x)

is differentiable at x = a and

(
1

f

)′
(a) = − f ′(a)

f 2(a)
.

c) Use the Product Rule and the Reciprocal Rule to prove the Quotient
Rule directly.
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108 Chapter 4 Differentiability on R

4.2.6. Suppose that n ∈ N and f, g are real functions of a real variable
whose nth derivatives f (n), g(n) exist at a point a. Prove Leibniz’s
generalization of the Product Rule:

( f g)(n)(a) =
n∑

k=0

(
n
k

)
f (k)(a)g(n−k)(a).

4.2.7 . This exercise is used in Section 5.3.

a) Prove that if q = n/m for n ∈ Z and m ∈ N, then

xn − an = (xq − aq)(xq(m−1) + xq(m−2)a + · · · + xaq(m−2) + aq(m−1))

for every x, a ∈ (0,∞).
b) [Power Rule] Use Exercise 4.1.2 and part a) to prove that xq is

differentiable on (0,∞) for every q ∈ Q and that (xq)′ = qxq−1.

4.2.8. Assuming that ex is differentiable on R, prove that

f (x) =
{ x

1 + e1/x
x �= 0

0 x = 0

is differentiable on [0,∞). Is f differentiable at 0?
4.2.9. Using elementary geometry and the definition of sin x, cos x , we can

show that for every x, y ∈ R (see Appendix B)

i) | sin x | ≤ 1, | cos x | ≤ 1, sin(0) = 0, cos(0) = 1,

ii) sin(−x) = − sin x, cos(−x) = cos x,

iii) sin2 x + cos2 x = 1, cos x = 1 − 2 sin2
( x

2

)
,

iv) sin(x ± y) = sin x cos y ± cos x sin y.

Moreover, if x is measured in radians, then

v) cos x = sin
(
π
2 − x

)
, sin x = cos

(
π
2 − x

)
,

and

vi) 0 < x cos x < sin x < x, 0 < x ≤ π

2
.

Using these properties, prove each of the following statements.

a) The functions sin x and cos x are continuous at 0.
b) The functions sin x and cos x are continuous on R.
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c) The limits

lim
x→0

sin x

x
= 1 and lim

x→0

1 − cos x

x
= 0

exist.
d) The function sin x is differentiable on R with (sin x)′ = cos x .
e) The functions cos x and tan x := sin x/ cos x are differentiable on R

with (cos x)′ = − sin x and (tan x)′ = sec2 x .

4.3 THE MEAN VALUE THEOREM

The Mean Value Theorem makes a precise statement about the relationship
between the derivative of a function and the slope of one of its chords. It
was discovered by the following geometric reasoning. Suppose that f is
differentiable on (a, b). Since the graph of f on (a, b) has a tangent at each
of its points, it seems likely that the slope of the chord through the points
(a, f (a)) and (b, f (b)) equals the slope f ′(c) for some value of c ∈ (a, b)
(see Figure 4.3).

y

xc

Tangent

Chord

y = f (x)

a b

FIGURE 4.3

We begin with a special case.

4.12 Lemma. [ROLLE’S THEOREM].
Suppose that a, b ∈ R with a < b. If f is continuous on [a, b], differentiable on
(a, b), and if f (a) = f (b), then f ′(c) = 0 for some c ∈ (a, b).
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110 Chapter 4 Differentiability on R

Proof. By the Extreme Value Theorem, f has a finite maximum M and a
finite minimum m on [a, b]. If M = m, then f is constant on (a, b) and f ′(x) =
0 for all x ∈ (a, b).

Suppose that M �= m. Since f (a) = f (b), f must assume one of the values
M or m at some point c ∈ (a, b). By symmetry, we may suppose that f (c) =
M . [That is, if we can prove the theorem when f (c) = M , then a similar proof
establishes the theorem when f (c) = m.] Since M is the maximum of f on
[a, b], we have

f (c + h)− f (c) ≤ 0

for all h which satisfy c + h ∈ (a, b). In the case h > 0 this implies

f ′(c) = lim
h→0+

f (c + h)− f (c)

h
≤ 0,

and in the case h < 0 this implies

f ′(c) = lim
h→0−

f (c + h)− f (c)

h
≥ 0.

It follows that f ′(c) = 0. �

Notice once and for all that the proof of Rolle’s Theorem proves a well-known
result: The extreme values of a differentiable function on an open interval occur
at critical points (i.e., at points where f ′ is zero).

4.13 Remark. The continuity hypothesis in Rolle’s Theorem cannot be relaxed
at even one point in [a, b].

Proof. The function

f (x) =
{

x x ∈ [0, 1)
0 x = 1

is continuous on [0, 1), differentiable on (0, 1), and f (0) = f (1) = 0, but f ′(x)
is never zero. �

4.14 Remark. The differentiability hypothesis in Rolle’s Theorem cannot be
relaxed at even one point in (a, b).

Proof. The function f (x) = |x | is continuous on [−1, 1], differentiable on
(−1, 1) \ {0}, and f (−1) = f (1), but f ′(x) is never zero. �

We shall use Rolle’s Theorem to obtain several useful results. The first is a
pair of “Mean Value Theorems.”
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4.15 Theorem. Suppose that a, b ∈ R with a < b.

i) [Generalized Mean Value Theorem] If f, g are continuous on [a, b] and
differentiable on (a, b), then there is a c ∈ (a, b) such that

g′(c)( f (b)− f (a)) = f ′(c)(g(b)− g(a)).

ii) [Mean Value Theorem] If f is continuous on [a, b] and differentiable on
(a, b), then there is a c ∈ (a, b) such that

f (b)− f (a) = f ′(c)(b − a).

Proof. i) Set h(x) = f (x)(g(b) − g(a)) − g(x)( f (b) − f (a)). Since h′(x) =
f ′(x)(g(b) − g(a)) − g′(x)( f (b) − f (a)), it is clear that h is continuous on
[a, b], differentiable on (a, b), and h(a) = h(b). Thus, by Rolle’s Theorem,
h′(c) = 0 for some c ∈ (a, b).

ii) Set g(x) = x and apply part i). (For a geometric interpretation of this
result, see the opening paragraph of this section and Figure 4.3.) �

The Generalized Mean Value Theorem is also called Cauchy’s Mean Value
Theorem. It is usually essential when comparing derivatives of two functions
simultaneously, using higher-order derivatives to approximate functions, and
studying certain kinds of generalized derivatives (e.g., see Taylor’s Formula and
l’Hôpital’s Rule in the next section, and Remark 14.32).

The Mean Value Theorem is most often used to extract information about
f from f ′ (see, e.g., Exercises 4.3.4, 4.3.5, and 4.3.9). Perhaps the best known
result of this type is the criterion for deciding when a differentiable function
increases. To prove this result, we begin with the following nomenclature.

4.16 Definition.

Let E be a nonempty subset of R and f : E → R.

i) f is said to be increasing (respectively, strictly increasing) on E if and only
if x1, x2 ∈ E and x1 < x2 imply f (x1) ≤ f (x2) [respectively, f (x1) < f (x2)].

ii) f is said to be decreasing (respectively, strictly decreasing) on E if and only
if x1, x2 ∈ E and x1 < x2 imply f (x1) ≥ f (x2) [respectively, f (x1) > f (x2)].

iii) f is said to be monotone (respectively, strictly monotone) on E if and only if
f is either decreasing or increasing (respectively, either strictly decreasing
or strictly increasing) on E .

Thus, although f (x) = x2 is strictly monotone on [0, 1], and on [−1, 0], it is
not monotone on [−1, 1].

Monotone functions are important from both a theoretical and a practical
point of view (e.g., see Theorem 5.34). Thus it will come as no surprise that the
following result is very important and widely used.
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4.17 Theorem. Suppose that a, b ∈ R, with a < b, that f is continuous on [a, b],
and that f is differentiable on (a, b).

i) If f ′(x) > 0 [respectively, f ′(x) < 0] for all x ∈ (a, b), then f is strictly
increasing (respectively, strictly decreasing) on [a, b].

ii) If f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].
iii) If g is continuous on [a, b] and differentiable on (a, b), and if f ′(x) = g′(x)

for all x ∈ (a, b), then f – g is constant on [a, b].

Proof. Let a ≤ x1 < x2 ≤ b. By the Mean Value Theorem, there is a c ∈ (a, b)
such that f (x2)− f (x1) = f ′(c)(x2 − x1). Thus, f (x2) > f (x1) when f ′(c) > 0
and f (x2) < f (x1) when f ′(c) < 0. This proves part i).

To prove part ii), notice that if f ′ = 0, then by the proof of part i), f is
both increasing and decreasing, and hence constant on [a, b]. Finally, part iii)
follows from part ii) applied to f – g. �

Theorem 4.17i is a great result. It makes checking a differentiable function
for monotonicity a routine activity. However, there are many nondifferentiable
functions which are monotone. For example, the greatest integer function,

f (x) = [x] := n, n ≤ x < n + 1, n ∈ Z,

is increasing on R but not even continuous, much less differentiable.
How badly can these nondifferentiable, monotone functions behave? The

following result shows that, just like the greatest integer function, any function
which is monotone on an interval always has left and right limits (contrast with
Examples 3.31 and 3.32). This is a function analogue of the Monotone Conver-
gence Theorem.

4.18 Theorem. Suppose that f is increasing on [a, b].
i) If c ∈ [a, b), then f (c+) exists and f (c) ≤ f (c+).

ii) If c ∈ (a, b], then f (c−) exists and f (c−) ≤ f (c).

Proof. By symmetry it suffices to show that f (c−) exists and satisfies f (c−) ≤
f (c) for any fixed c ∈ (a, b]. Set E = f ((a, c)) and s = sup E . Since f is
increasing, f (c) is an upper bound of E . Hence, s is a finite real number
which satisfies s ≤ f (c). Given ε > 0, choose by the Approximation Property
an x0 ∈ (a, c) such that s − ε < f (x0) ≤ s. Since f is increasing,

s − ε < f (x0) ≤ f (x) ≤ s

for all x0 < x < c. Therefore, f (c−) exists and satisfies f (c−) = s ≤ f (c). �

We have seen (Example 3.32) that a function can be nowhere continuous
(i.e., can have uncountably many points of discontinuity). How many points
of discontinuity can a monotone function have?
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∗4.19 Theorem. If f is monotone on an interval I, then f has at most countably
many points of discontinuity on I.

Proof. Without loss of generality, we may suppose that f is increasing. Since
the countable union of at most countable sets is at most countable (Theorem
1.42ii), it suffices to show that the set of points of discontinuity of f can be
written as a countable union of at most countable sets. Since R is the union of
closed intervals [−n, n], n ∈ N, we may suppose that I is a closed, bounded
interval [a, b].

Let E represent the set of points of discontinuity of f on (a, b). By Theo-
rem 4.18, f (x−) ≤ f (x) ≤ f (x+) for all x ∈ (a, b). Thus, f is discontinuous
at such an x if and only if f (x+)− f (x−) > 0. It follows that

E =
∞⋃
j=1

A j ,

where for each j ∈ N, A j := {x ∈ (a, b) : f (x+) − f (x−) ≥ 1/j}. We will
complete the proof by showing that each A j is finite.

Suppose to the contrary that A j0 is infinite for some j0. Set y0 := j0( f (b)−
f (a)) and observe that since f is finite valued on I, y0 is a finite real number.
On the other hand, since A j0 is infinite, then by symmetry we may suppose
that there exist x1 < x2 < . . . in [a, b] such that f (xk+) − f (xk−) ≥ 1/j0 for
k ∈ N. Since f is monotone, it follows that

f (b)− f (a) ≥
n∑

k=1

( f (xk+)− f (xk−)) ≥ n

j0
;

that is, y0 = j0( f (b) − f (a)) ≥ n for all n ∈ N. Taking the limit of this last
inequality as n → ∞, we see that y0 = +∞. With this contradiction, the proof
of the theorem is complete. �

Theorem 4.17i can be used for less mundane tasks than finding intervals on
which a given function is increasing. The following example shows how to use it
to compare one function with another.

4.20 EXAMPLE.

Prove that 1 + x < ex for all x > 0.

Proof. Let f (x) = ex − x , and observe that f ′(x) = ex − 1 > 0 for all x > 0.
It follows from Theorem 4.17i that f (x) is strictly increasing on (0,∞). Thus
ex − x = f (x) > f (0) = 1 for x > 0. In particular, ex > x + 1 for x > 0. �

We close this section with some optional results which further explore the
mean value concept.

Our first result shows how (1 + x)α is related to 1 + αx .
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∗4.21 Theorem. [BERNOULLI’S INEQUALITY].
Let α be a positive real number. If 0 < α ≤ 1, then (1 + x)α ≤ 1 + αx for all
x ∈ [−1,∞), and if α ≥ 1, then (1 + x)α ≥ 1 + αx for all x ∈ [−1,∞).

Proof. The proofs of these inequalities are similar. We present the details
only for the case 0 < α ≤ 1. Fix x ≥ −1 and let f (t) = tα, t ∈ [0,∞). Since
f ′(t) = αtα−1, it follows from the Mean Value Theorem (applied to a = 1 and
b = 1 + x) that

f (1 + x)− f (1) = αxcα−1 (12)

for some c between 1 and 1 + x .
Case 1. x > 0. Then c > 1. Since 0 < α ≤ 1 implies α − 1 ≤ 0, it follows

that cα−1 ≤ 1, hence xcα−1 ≤ x . Therefore, we have by (12) that

(1 + x)α = f (1 + x) = f (1)+ αxcα−1 ≤ f (1)+ αx = 1 + αx (13)

as required.
Case 2. −1 ≤ x ≤ 0. Then c ≤ 1 so cα−1 ≥ 1. But since x ≤ 0, it follows that

xcα−1 ≤ x as before and we can repeat (13) to obtain the same conclusion. �

We will now use Bernoulli’s Inequality to show once again that vague reason-
ing can produce wrong conclusions. To see why, assuming that

lim
n→∞

(
1 + 1

n

)n

exists, what do you think its limit is? Vague reasoning that well over half your
class would agree with: Since 1 + 1/n gets near 1 and 1α = 1 for all α ∈ R, the
limit should be 1, right? Absolutely not.

∗4.22 EXAMPLE.

Prove that the sequence (1 + 1/n)n is increasing, as n → ∞, and its limit L
satisfies 2 < L ≤ 3. (The limit L turns out to be an irrational number, the
natural base e = 2.718281828459 · · · .)

Proof. The sequence (1 + 1/n)n is increasing, since by Bernoulli’s Inequality,

(
1 + 1

n

)n/(n+1)

≤
(

1 + 1

n + 1

)
.

To prove that this sequence is bounded above, observe by the Binomial For-
mula that (

1 + 1

n

)n

=
n∑

k=0

(
n
k

)(
1

n

)k

.
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Now, (
n
k

)(
1

n

)k

= n(n − 1) . . . (n − k + 1)

nk
· 1

k! ≤ 1

k! ≤ 1

2k−1

for all k ∈ N. It follows from Exercise 1.4.4c that

2 =
(

1 + 1

1

)
<

(
1 + 1

n

)n

≤ 1 + 1 +
n−1∑
k=1

1

2k
= 3 − 1

2n−1
< 3

for n > 1. Hence, by the Monotone Convergence Theorem, the limit L exists
and satisfies 2 < L ≤ 3. �

The last result in this section shows that although a differentiable function
might not be continuously differentiable, its derivative does satisfy an interme-
diate value theorem. (This result is sometimes called Darboux’s Theorem.)

∗4.23 Theorem. [INTERMEDIATE VALUE THEOREM FOR
DERIVATIVES].
Suppose that f is differentiable on [a, b] with f ′(a) �= f ′(b). If y0 is a real
number which lies between f ′(a) and f ′(b), then there is an x0 ∈ (a, b) such
that f ′(x0) = y0.

Strategy: Let F(x) := f (x) − y0x . We must find an x0 ∈ (a, b) such that
F ′(x0) := f ′(x0) − y0 = 0. Since local extrema of a differentiable function
F occur only where the derivative of F is zero (e.g., see the proof of Rolle’s
Theorem), it suffices to show that F has a local extremum at some x0 ∈ (a, b).

Proof. Suppose that y0 lies between f ′(a) and f ′(b). By symmetry, we may
suppose that f ′(a) < y0 < f ′(b). Set F(x) = f (x) − y0x for x ∈ [a, b],
and observe that F is differentiable on [a, b]. Hence, by the Extreme Value
Theorem, F has an absolute minimum, say F(x0), on [a, b]. Now F ′(a) =
f ′(a) − y0 < 0, so F(a + h) − F(a) < 0 for h > 0 sufficiently small. Hence
F(a) is NOT the absolute minimum of F on [a, b]. Similarly, F(b) is not the
absolute minimum of F on [a, b]. Hence, the absolute minimum F(x0) must
occur on (a, b); that is, x0 ∈ (a, b) and F ′(x0) = 0. �

EXERCISES

4.3.0. Suppose that f, g : [a, b] → R. Decide which of the following state-
ments are true and which are false. Prove the true ones and provide
counterexamples for the false ones.

a) If f and g are increasing on [a, b], then f + g is increasing on [a, b].
b) If f and g are increasing on [a, b], then f g is increasing on [a, b].
c) If f is differentiable on (a, b) and limx→a+ f (x) exists and is finite,

then for each x ∈ (a, b) there is a c between a and x such that f (x)−
f (a+) = f ′(c)(x − a).

d) If f and g are differentiable on [a, b] and | f ′(x)| ≤ 1 ≤ |g′(x)| for
all x ∈ (a, b), then | f (x)− f (a)| ≤ |g(x)− g(a)| for all x ∈ [a, b].
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4.3.1. Prove that each of the following inequalities holds.

a) 2x + 0.7 < ex for all x ≥ 1.
b) log x <

√
x − 0.6 for all x ≥ 4.

c) sin2 x ≤ 2|x | for all x ∈ R.
d) 1 − sin x ≤ ex for all x ≥ 0.

4.3.2. Suppose that I = (0, 2), that f is continuous at x = 0 and x = 2, and
that f is differentiable on I . If f (0) = 1 and f (2) = 3, prove that
1 ∈ f ′(I ).

4.3.3. Let f be a real function and recall that an r ∈ R is called a root of
a function f if and only if f (r) = 0. Show that if f is differentiable
on R, then its derivative f ′ has at least one root between any two
roots of f .

4.3.4. Suppose that a < b are extended real numbers and that f is differen-
tiable on (a, b). If f ′ is bounded on (a, b), prove that f is uniformly
continuous on (a, b).

4.3.5. Suppose that f is differentiable on R. If f (0) = 1 and | f ′(x)| ≤ 1 for
all x ∈ R, prove that | f (x)| ≤ |x | + 1 for all x ∈ R.

4.3.6. Suppose that f is differentiable on (a, b), continuous on [a, b], and
that f (a) = f (b) = 0. Prove that if f (c) �= 0 for some c ∈ (a, b),
then there exist x1, x2 ∈ (a, b) such that f ′(x1) is positive and f ′(x2) is
negative.

4.3.7. Suppose that f is continuous on [a, b] and that

F(x) := sup f ([a, x]).

Prove that F is continuous on [a, b].
4.3.8. Suppose that f is twice differentiable on (a, b) and that there are points

x1 < x2 < x3 in (a, b) such that f (x1) > f (x2) and f (x3) > f (x2). Prove
that there is a point c ∈ (a, b) such that f ′′(c) > 0.

4.3.9. Suppose that f is differentiable on (0,∞). If L = limx→∞ f ′(x) and
limn→∞ f (n) both exist and are finite, prove that L = 0.

4.3.10. Suppose that (a, b) is an open interval, that f : (a, b) → R is differ-
entiable on (a, b), and that x0 ∈ (a, b) is a proper local maximum of f
(see Exercise 4.1.8).

a) Prove that given δ > 0, there exist x1 < x0 < x2 such that f ′(x1) >

0, f ′(x2) < 0, and |x j − x0| < δ for j = 1, 2.
b) Make and prove an analogous statement for a proper local mini-

mum.

4.3.11. Suppose that f : [a, b] → R is continuous and increasing. Prove that
sup f (E) = f (sup E) for every nonempty set E ⊆ [a, b].

∗4.3.12. Suppose that f is differentiable at every point in a closed, bounded
interval [a, b]. Prove that if f ′ is increasing on (a, b), then f ′ is contin-
uous on (a, b).
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4.4 TAYLOR’S THEOREM AND l’HÔPITAL’S RULE

In this section we use the Generalized Mean Value Theorem to obtain informa-
tion about approximation.

To motivate the first result, notice by the Mean Value Theorem that if f is
differentiable on (a, b), then for any points x, x0 ∈ (a, b), there is a c between x
and x0 such that

f (x) = f (x0)+ f ′(c)(x − x0), x ∈ (a, b).

Thus we have precise information about how closely f (x) can be approximated
by the constant function y = f (x0). Clearly, the values f (x) of a function
whose graph bends at the point (x0, f (x0)) cannot be closely approximated by
a constant function unless x is near x0. But a constant function is a polyno-
mial of degree 0. If we used polynomials of higher degree (whose graphs do
curve), might we be able to approximate f (x) even when x is not so close to x0?
In fact, the next result contains precise information about how closely f (x) can
be approximated by a certain polynomial of degree n. (To understand how Tay-
lor discovered this result, see the proof of Theorem 7.39.)

4.24 Theorem. [TAYLOR’S FORMULA].
Let n ∈ N and let a, b be extended real numbers with a < b. If f : (a, b) → R,
and if f (n+1) exists on (a, b), then for each pair of points x, x0 ∈ (a, b) there is
a number c between x and x0 such that

f (x) = f (x0)+
n∑

k=1

f (k)(x0)

k! (x − x0)
k + f (n+1)(c)

(n + 1)! (x − x0)
n+1.

Proof. Without loss of generality, suppose that x0 < x . Define

F(t) := (x − t)n+1

(n + 1)! and G(t) := f (x)− f (t)−
n∑

k=1

f (k)(t)

k! (x − t)k

for each t ∈ (a, b), and observe that the theorem will be proved if we can
show that there is a c between x and x0 such that

G(x0) = F(x0) · f (n+1)(c). (14)

This looks like a job for the Generalized Mean Value Theorem.
To verify that F and G satisfy the hypotheses of the Generalized Mean

Value Theorem, notice that

d

dt

(
f (k)(t)

k! (x − t)k
)

= f (k+1)(t)

k! (x − t)k − f (k)(t)

(k − 1)! (x − t)k−1
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for t ∈ (a, b) and k ∈ N. Telescoping, we obtain

G ′(t) = − f (n+1)(t)

n! (x − t)n

for t ∈ (a, b). On the other hand, by the Chain Rule

F ′(t) = − (x − t)n

n!
for t ∈ R. Thus F and G are differentiable on (x0, x), continuous on [x0, x],
and satisfy

G ′(t)
F ′(t)

= f (n+1)(t), t �= x . (15)

By the Generalized Mean Value Theorem, there is a number c ∈ (x0, x)
such that

(F(x)− F(x0))G
′(c) = (G(x)− G(x0))F

′(c). (16)

Since F(x) = G(x) = 0 and x �= c, it follows that −F(x0)G ′(c) =
−G(x0)F ′(c); that is, G(x0) = F(x0) · G ′(c)/F ′(c). We conclude by (15) that
(14) holds, as promised. �

We shall use this result in Chapter 7 to show that most of the functions
you’ve used in calculus classes before are very nearly polynomials themselves.
To lay some ground work for these results, we introduce some additional
notation.

Define 0! = 1 and f (0)(x) = f (x), and notice that f (x0) = f (0)(x0)/0!. We
shall call

P f,x0
n (x) :=

n∑
k=0

f (k)(x0)

k! (x − x0)
k

the Taylor polynomial of order n generated by f centered at x0. Clearly, for each
f ∈ C∞(a, b), Taylor’s Formula gives us an estimate of how well Taylor polyno-
mials approximate f . In fact, since Taylor’s Formula implies

| f (x)− P f,x0
n (x)| ≤

∣∣∣∣∣ f (n+1)(c)

(n + 1)! (x − x0)
n+1

∣∣∣∣∣ , (17)

for some c between x and x0 and the fraction 1/(n + 1)! gets smaller as n gets
larger, we see that when the derivatives of f are bounded, the higher-order
Taylor polynomials approximate f better than the lower-order ones do.

Let’s look at two specific examples to see how this works out in practice.

118



Section 4.4 Taylor’s Theorem and l’Hôpital’s Rule 119

4.25 EXAMPLE.

Let f (x) = ex and n ∈ N.

a) Find the Taylor polynomial Pn := P f,0
n .

b) Prove that if x ∈ [−1, 1], then

|ex − Pn(x)| ≤ 3

(n + 1)! .

c) Find an n so large that Pn approximates ex on [−1, 1] to four decimal places.

Proof. a) Since f (k)(x) = ex for all x ∈ R and k = 0, 1, . . . , it is clear that
f (k)(0) = 1 for all k ≥ 0; that is, that

Pex ,0
n (x) =

n∑
k=0

xk

k! . (18)

b) Let c, x ∈ [−1, 1]. Clearly, |ec| ≤ e1 < 3 and |xn| ≤ 1 for all n ∈ N.
But if c lies between x and 0, then c ∈ [−1, 1]. Thus it follows from (17) that
|ex − Pn(x)| ≤ |ecxn+1|/(n + 1)! < 3/(n + 1)!.

c) To get four-place accuracy, we want |ex − Pn(x)| ≤ .00005. By part b),
this will hold when 3/(n + 1)! < 0.00005; that is, when (n + 1)! ≥ 60, 000.
According to my calculator, this occurs when n + 1 ≥ 9, so set n = 8. �

4.26 EXAMPLE.

Let f (x) = sin x and n ∈ N.

a) Find the Taylor polynomial P2n+1 := P f,0
2n+1.

b) Prove that if x ∈ [−1, 1], then

| sin x − P2n+1(x)| ≤ 1

(2n + 2)! .

c) Find an n so large that P2n+1 approximates sin x on [−1, 1] to three decimal
places.

Proof. a) Observe that f (x) = sin x, f ′(x) = cos x, f ′′(x) = − sin x,
f (3)(x) = − cos x , and f (4)(x) = sin x , right back where we started from.
Thus it is clear that f (2k)(x) = (−1)k sin x and f (2k+1)(x) = (−1)k cos x for
k = 0, 1, . . . . It follows that f (2k)(0) = 0 and f (2k+1)(0) = (−1)k for k ≥ 0;
that is, that

Psin x,0
2n+1 (x) =

n∑
k=0

(−1)k x2k+1

(2k + 1)! . (19)

b) Let c, x ∈ [−1, 1]. Clearly, | f 2n+2(c)| ≤ 1 and |x2n+2| ≤ 12n+2 = 1 for all
n ∈ N. Thus it follows from (17) that | sin x − P2n+1(x)| ≤ 1/(2n + 2)!.
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c) To get three-place accuracy, we want | sin x − P2n+2(x)| ≤ .0005. By
part b), this will hold when 1/(2n+2)! < 0.0005; that is, when (2n+2)! ≥ 2000.
According to my calculator, this occurs when 2n + 2 ≥ 7, so set n = 3. �

The next result is a widely known technique for evaluating limits of the form
0/0 or ∞/∞. Since it involves using information about derivatives to draw con-
clusions about the functions themselves, it should come as no surprise that the
proof uses the Mean Value Theorem. (Notice that our statement is general
enough to include one-sided limits and limits at infinity.)

4.27 Theorem. [L’HÔPITAL’S RULE].
Let a be an extended real number and I be an open interval which either con-
tains a or has a as an endpoint. Suppose that f and g are differentiable on I\{a}
and that g(x) �= 0 �= g′(x) for all x ∈ I\{a}. Suppose further that

A:= lim
x→a

x∈I

f (x) = lim
x→a

x∈I

g(x)

is either 0 or ∞. If

B:= lim
x→a

x∈I

f ′(x)
g′(x)

exists as an extended real number, then

lim
x→a

x∈I

f (x)

g(x)
= lim

x→a
x∈I

f ′(x)
g′(x)

.

Proof. Let xk ∈ I be distinct points with xk → a as k → ∞ such that either
xk < a or xk > a for all k ∈ N. By the Sequential Characterization of Limits
and by the characterization of two-sided limits in terms of one-sided limits, it
suffices to show that f (xk)/g(xk) → B as k → ∞.

We suppose for simplicity that B ∈ R. (For the cases B = ±∞, see Exer-
cise 4.4.10.) Notice once and for all, since g′ is never zero on I , that by Mean
Value Theorem the differences g(x)− g(y) are never zero for x, y ∈ I, x �= y,
provided either x, y > a or x, y < a. Hence, we can divide by these differ-
ences at will.

Case 1. A = 0 and a ∈ R. Extend f and g to I ∪ {a} by f (a) := 0 =: g(a).
By hypothesis, f and g are continuous on I ∪ {a} and differentiable on I\{a}.
Hence by the Generalized Mean Value Theorem, there is a ck between xk and
y := a such that

f (xk)− f (y)

g(xk)− g(y)
= f ′(ck)

g′(ck)
. (20)

Since f (y) = g(y) = 0, it follows that

f (xk)

g(xk)
= f (xk)− f (y)

g(xk)− g(y)
= f ′(ck)

g′(ck)
. (21)
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Let k → ∞. Since ck lies between xk and a, ck also converges to a as k → ∞.
Hence hypothesis and (21) imply f (xk)/g(xk) → B as k → ∞.

Case 2. A = ±∞ and a ∈ R. We suppose by symmetry that A = +∞. For
each k, n ∈ N, apply the Generalized Mean Value Theorem to choose a ck,n
between xk and xn such that (20) holds for xn in place of y and ck,n in place of
ck . Thus

f (xn)

g(xn)
− f (xk)

g(xn)
= f (xn)− f (xk)

g(xn)
= 1

g(xn)
· (g(xn)− g(xk)) · f ′(ck,n)

g′(ck,n)

=
(

1 − g(xk)

g(xn)

)
f ′(ck,n)

g′(ck,n)
;

that is,

f (xn)

g(xn)
= f (xk)

g(xn)
− g(xk)

g(xn)
· f ′(ck,n)

g′(ck,n)
+ f ′(ck,n)

g′(ck,n)
. (22)

Since A = ∞, it is clear that 1/g(xn) → 0 as n → ∞, and since ck,n lies
between xk and xn , it is also clear that ck,n → a, as k, n → ∞. Thus (22)
and hypothesis should imply that f (xn)/g(xn) ≈ 0 − 0 + B = B for large
n and k. Specifically, let 0 < ε < 1. Since ck,n → a as k, n → ∞, choose
an N0 so large that n ≥ N0 implies | f ′(cN0,n)/g′(cN0,n) − B| < ε/3. Since
g(xn) → ∞, choose an N > N0 such that | f (xN0)/g(xn)| and the product
|g(xN0)/g(xn)| · | f ′(cN0,n)/g′(cN0,n)| are both less than ε/3 for all n ≥ N . It
follows from (22) that for any n ≥ N ,∣∣∣∣ f (xn)

g(xn)
− B

∣∣∣∣ ≤
∣∣∣∣ f (xN0)

g(xn)

∣∣∣∣+
∣∣∣∣g(xN0)

g(xn)

f ′(cN0,n)

g′(cN0,n)

∣∣∣∣+
∣∣∣∣ f ′(cN0,n)

g′(cN0,n)
− B

∣∣∣∣ < ε.

Hence, f (xn)/g(xn) → B as n → ∞.
Case 3. a = ±∞. We suppose by symmetry that a = +∞. Choose c > 0

such that I ⊃ (c,∞). For each y ∈ (0, 1/c), set φ(y) = f (1/y) and ψ(y) =
g(1/y). Notice that by the Chain Rule,

φ′(y)
ψ ′(y)

= f ′(1/y)(−1/y2)

g′(1/y)(−1/y2)
= f ′(1/y)

g′(1/y)
.

Thus, for x = 1/y ∈ (c,∞), f ′(x)/g′(x) = φ′(y)/ψ ′(y). Since x → ∞ if and
only if y = 1/x → 0+, it follows that φ andψ satisfy the hypotheses of Cases 1
or 2 for a = 0 and I = (0, 1/c). In particular,

lim
x→∞

f ′(x)
g′(x)

= lim
y→0+

φ′(y)
ψ ′(y)

= lim
y→0+

φ(y)

ψ(y)
= lim

x→∞
f (x)

g(x)
. �

L’Hôpital’s Rule can be used to compare the relative rates of growth of two
functions. For example, the next result shows that as x → ∞, ex converges to
∞ much faster than x2 does.
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4.28 EXAMPLE.

Prove that limx→∞ x2/ex = 0.

Proof. Since the limits of x2/ex and x/ex are of the form ∞/∞, we apply
l’Hôpital’s Rule twice to verify

lim
x→∞

x2

ex
= lim

x→∞
2x

ex
= lim

x→∞
2

ex
= 0. �

For each subsequent application of l’Hôpital’s Rule, it is important to check
that the hypotheses still hold. For example,

lim
x→0

x2

x2 + sin x
= lim

x→0

2x

2x + cos x
= 0 �= 1 = lim

x→0

2

2 − sin x
.

Notice that the middle limit is not of the form 0/0.
l’Hôpital’s Rule can be used to evaluate limits of the form 0 · ∞ = −0(−∞).

4.29 EXAMPLE.

Find limx→0+ x log x .

Solution. By writing x as 1/(1/x), we see that the limit in question is of the form
∞/∞. Hence, by l’Hôpital’s Rule,

lim
x→0+ x log x = lim

x→0+
log x

1/x
= lim

x→0+
1/x

−1/x2
= 0. �

The next two examples show that l’Hôpital’s Rule can also be used to evaluate
limits of the form 1∞ and 00.

4.30 EXAMPLE.

Find L = limx→0+(1 + 3x)1/x .
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Solution. If the limit exists, then by a law of logarithms and the fact that log x
is continuous, we have log L = limx→0+ log(1 + 3x)/x . Thus it follows from
l’Hôpital’s Rule and the Chain Rule that

log L = lim
x→0+

log(1 + 3x)

x
= lim

x→0+
3/(1 + 3x)

1
= 3.

In particular, the limit exists by l’Hôpital’s Rule and L = elog L = e3. �

4.31 EXAMPLE.

Find L = limx→1+(log x)1−x .

Solution. If the limit L > 0 exists, then log L = limx→1(1 − x) log log x is of the
form 0 · ∞. Hence, by l’Hôpital’s Rule,

log L = lim
x→1

log log x

1/(1 − x)
= lim

x→1

1/(x log x)

1/(1 − x)2
= lim

x→1

−2(1 − x)

1 + log x
= 0.

Therefore, the limit exists by l’Hôpital’s Rule and L = e0 = 1. �

EXERCISES

4.4.0. Decide which of the following statements are true and which are false.
Prove the true ones and provide counterexamples for the false ones.

a) x/ log x → 0 as x → 0.
b) If n ∈ N, then sin(1/x)/xn → 0 as x → ∞.
c) x log x → 0 as x → 0+.
d) If there is a β > 0 such that f ′(x) ≥ β for all x ∈ (0,∞), then

x2/ f (x) → ∞ as x → ∞.

4.4.1. Let f (x) = cos x and n ∈ N.

a) Find the Taylor polynomial P2n := P f,0
2n .

b) Prove that if x ∈ [−1, 1], then

| cos x − P2n(x)| ≤ 1

(2n + 1)! .

c) Find an n so large that P2n approximates cos x on [−1, 1] to seven
decimal places.

4.4.2. Let f (x) = log x and n ∈ N.

a) Find the Taylor polynomial Pn := P f,1
n .

b) Prove that if x ∈ [1, 2], then

| log x − Pn(x)| ≤ 1

n + 1
.
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c) Find an n so large that Pn approximates log x on [1, 2] to three decimal
places.

4.4.3. Prove that

1 + x + x2

2! + · · · + xn

n! < ex

for every x > 0 and every n ∈ N.
4.4.4. Prove that

x − x3

3! + x5

5! − · · · − x4n−1

(4n − 1)! < sin x < x − x3

3! + x5

5! − · · · + x4n+1

(4n + 1)!

for every n ∈ N and x ∈ (0, π).
4.4.5. Evaluate the following limits.

a) limx→0
sin2(5x)

x2

b) limx→0+
cos x − ex

log(1 + x2)

c) limx→0

( x

sin x

)1/x2

d) limx→0+(1 − x2)1/x

e) limx→1
log x

sin(πx)
f) limx→0+ | log x |x

g) limx→∞
√

x2 + 2 − √
x2

√
2x2 − 1 − √

2x2

h) limx→∞
√

x + 4 − √
x + 1√

x + 3 − √
x + 1

4.4.6 . This exercise is used in Sections 5.4, 6.3, and elsewhere. Let α > 0 and
recall that (xα)′ = αxα−1 and (log x)′ = 1/x for all x > 0.

a) Prove that log x ≤ xα for x large. Prove that there exists a constant
Cα such that log x ≤ Cαxα for all x ∈ [1,∞), Cα → ∞ as α → 0+,
and Cα → 0 as α → ∞.

b) Obtain an analogue of part a) valid for ex and xα in place of log x and
xα .

124



Section 4.5 Inverse Function Theorems 125

4.4.7 . This exercise is used in Sections 7.4 and 12.5. Assume that ex is differen-
tiable on R with (ex )′ = ex .

a) Show that the following function is differentiable on R with
f ′(0) = 0:

f (x) =
{

e−1/x2
x �= 0

0 x = 0.

b) Do analogous statements hold for f (n)(x) when n = 2, 3, . . .?

4.4.8. Suppose that n ∈ N is odd and f (n) exists on [a, b]. If f (k)(a) =
f (k)(b)= 0 for all k = 0, 1, . . . , n − 1 and f (c) �= 0 for some c ∈ (a, b),
prove that there exist x1, x2 ∈ (a, b) such that f (n)(x1) is positive and
f (n)(x2) is negative.

4.4.9. a) Prove that |δ + sin(δ + π)| ≤ δ3/3! for all 0 < δ ≤ 1.
b) Prove that if |x − π | ≤ δ ≤ 1, then |x + sin x − π | ≤ δ3/3!.

4.4.10. Prove l’Hôpital’s Rule for the case |B| = ∞ by first proving that
g(x)/ f (x) → 0 when f (x)/g(x) → ±∞, as x → a.

4.4.11. Suppose that f and g are differentiable on an open interval I and that
a ∈ R either belongs to I or is an endpoint of I . Suppose further that g
and g′ are never zero on I \ {a} and that

lim
x→a

f (x)

g(x)

is of the form 0/0. If there is an M ∈ R such that | f ′(x)/g′(x)| ≤ M for
all x ∈ I \ {a}, prove that | f (x)/g(x)| ≤ M for all x ∈ I \ {a}.

Is this result true if the limit of f (x)/g(x) is of the form ∞/∞?

4.5 INVERSE FUNCTION THEOREMS

In this section, we explore the continuity and differentiability of inverse
functions.

Recall that f : X → Y has an inverse function f −1 if and only if f is 1–1
and onto (Theorem 1.30), in which case f −1( f (x)) = x for all x ∈ X and
f ( f −1(y)) = y for all y ∈ Y . Since (x, f (x)) = ( f −1(y), y), this means that
the graph of y = f −1(x) is a reflection of the graph of y = f (x) about the line
y = x (see Figure 4.4). In particular, it is not difficult to imagine that f −1 is as
smooth as f . This is the subject of the next two results.

4.32 Theorem. Let I be a nondegenerate interval and suppose that f : I → R is
1–1. If f is continuous on I, then J := f (I ) is an interval, f is strictly monotone on
I, and f −1 is continuous and strictly monotone on J.

Proof. Since f is 1–1 from I onto J , Theorem 1.30 implies that f −1 exists and
takes J onto I .
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y = f –1 (x)

y = f (x)

x

y

FIGURE 4.4

To show that J is an interval, since I contains at least two points, so does J .
Let c, d ∈ J with c < d. By the definition of an interval, it suffices to prove
that every y0 ∈ (c, d) belongs to J . Since f takes I onto J , there exist points
a, b ∈ I such that f (a) = c and f (b) = d. Since y0 lies between f (a) and
f (b), we can use the Intermediate Value Theorem to choose an x0 between a
and b such that y0 = f (x0). Since x0 ∈ I and f takes I onto J, y0 = f (x0)

must belong to J , as required.
Suppose that f is not strictly monotone on I . Then there exist points

a, b, c ∈ I such that a < c < b but f (c) does not lie between f (a) and
f (b). Since f is 1–1, f (a) �= f (b), so by symmetry we may suppose that
f (a) < f (b). Since f (c) does not lie between f (a) and f (b), it follows that
either f (c) < f (a) < f (b) or f (a) < f (b) < f (c). Hence by the Interme-
diate Value Theorem, there is an x1 ∈ (a, b) such that either f (x1) = f (a) or
f (x1) = f (b). Since f is 1–1, we conclude that either x1 = a or x1 = b, both
contradictions. Therefore, f is strictly monotone on I .

By symmetry, suppose that f is strictly increasing on I . To prove that f −1 is
strictly increasing on J , suppose to the contrary that there exist y1, y2 ∈ J such
that y1 < y2 but f −1(y1) ≥ f −1(y2). Then x1 := f −1(y1) and x2 := f −1(y2)

satisfy x1 ≥ x2 and x1, x2 ∈ I . Since f is strictly increasing on I , it follows
that y1 = f (x1) ≥ f (x2) = y2, a contradiction. Thus, f −1 is strictly increasing
on J .

It remains to prove that f −1 is continuous from the left and from the right
at each y0 ∈ J . We will provide the details for continuity from the right. To
this end, suppose that f −1 is not continuous from the right at some y0 ∈ J ;
that is, that there exist yn ∈ J such that yn > y0, yn → y0 as n → ∞,
but that

f −1(yn) ≥ a0 > f −1(y0) (23)

for some number a0. Since I is an interval and f −1 takes J onto I , it follows
that a0 belongs to I and there is a b0 ∈ J such that a0 = f −1(b0). Substituting
this into (23), we see that f −1(yn) ≥ f −1(b0) > f −1(y0). Since f is strictly
increasing, we conclude that yn ≥ b0 > y0; that is, yn cannot converge to y0,
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Section 4.5 Inverse Function Theorems 127

a contradiction. A similar argument verifies that f −1 is continuous from the
left at each y0 ∈ J . Thus f −1 is continuous on J . �

Our final result addresses the differentiability of an inverse function.

4.33 Theorem. [INVERSE FUNCTION THEOREM].
Let I be an open interval and f : I → R be 1–1 and continuous. If b = f (a)
for some a ∈ I and if f ′(a) exists and is nonzero, then f −1 is differentiable at b
and ( f −1)′(b) = 1/ f ′(a).

Proof. By Theorem 4.32, f is strictly monotone, say strictly increasing on I ,
and f −1 exists and is both continuous and strictly increasing on the range
f (I ). Moreover, since a := f −1(b) ∈ I and I is open, we can choose c, d ∈ R
such that a ∈ (c, d) ⊂ I .

Let E0 be the range of f on (c, d); that is, E0 = f ((c, d)). By Theorem 4.32,
E0 must be an interval. Since f is strictly increasing, it follows that E0 =
( f (c), f (d)). Hence, we can choose δ > 0 so small that 0 < |h| < δ implies
b + h ∈ E0. In particular, f −1(b + h) is defined for all 0 < |h| < δ.

Fix such an h and set x = f −1(b+h). Observe that f (x)− f (a)= b+h−b = h.
Since f −1 is continuous, x → a if and only if h → 0. Therefore, by direct
substitution, we conclude that

lim
h→0

f −1(b + h)− f −1(b)

h
= lim

x→a

x − a

f (x)− f (a)
= 1

f ′(a)
. �

This theorem is usually presented in elementary calculus texts in a form more
easily remembered: If y = f (x) and x = f −1(y), then

dx

dy
= 1

dy/dx
.

Notice that, by using this formula, we do not need to solve explicitly for f −1 to
be able to compute ( f −1)′.

4.34 EXAMPLE.

If f (x) = x5 + x4 + x3 + x2 + x + 1, prove that f −1(x) exists at x = 6 and find a
value for ( f −1)′(6).

Solution. Observe that f (1) = 6 and f ′(x) > 0 for all x > 0. Thus f is strictly
increasing on (0,∞), and hence 1–1 there.

Let I = (0, 2), a = 1, and b = 6. Then f (a) = b and f ′(a) = 15 �= 0. Hence, it
follows from the Inverse Function Theorem that ( f −1)′(6) = 1/ f ′(1) = 1/15. �
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128 Chapter 4 Differentiability on R

EXERCISES

4.5.0. Decide which of the following statements are true and which are
false. Prove the true ones and provide counterexamples for the
false ones.

a) Suppose that I ⊆ R is nonempty. If f : I → R is 1–1 and continuous,
then f is strictly monotone on I .

b) Suppose that I is an open interval which contains 0 and that f :
I → R is 1–1 and differentiable. If f and f ′ are never zero on I ,
then the derivative of f −1 has at least one root in f (I ); that is, there
is an a ∈ I such that ( f −1)′(a) = 0.

c) Suppose that f and g are 1–1 on R. If f and g ◦ f are continuous on
R, then g is continuous on R.

d) Suppose that I is an open interval and that a ∈ I . Suppose further
that f : I → R and g : f (I ) → R are both 1–1 and continuous and
that b := f (a). If f ′(a) and g′(b) both exist and are nonzero, then
(g ◦ f )−1(x) is differentiable at x = g(b), and ((g ◦ f )−1)′(g(b)) =
( f ′(a) · g′(b))−1.

4.5.1. Suppose that f and g are 1–1 and continuous on R. If f (0)= 2,
g(1)= 2, f ′(0) = π , and g′(1) = e, compute the following derivatives.

a) ( f −1)′(2)
b) (g−1)′(2)
c) ( f −1 · g−1)′(2)

4.5.2. Let f (x) = x2ex2
, and assume that (ex )′ = ex for all x ∈ R.

a) Show that f −1 exists and is differentiable on (0,∞).
b) Compute ( f −1)′(e).

4.5.3. Using the Inverse Function Theorem, prove that (arcsin x)′ = 1/
√

1 − x2

for x ∈ (−1, 1) and (arctan x)′ = 1/(1 + x2) for x ∈ (−∞,∞).
4.5.4. Suppose that f ′ exists and is continuous on a nonempty, open interval

(a, b) with f ′(x) �= 0 for all x ∈ (a, b).

a) Prove that f is 1–1 on (a, b) and takes (a, b) onto some open interval
(c, d).

b) Show that f −1 ∈ C1(c, d).
c) Using the function f (x) = x3, show that b) is false if the assumption

f ′(x) �= 0 fails to hold for some x ∈ (a, b).
d) Sketch the graphs of y = tan x and y = arctan x to see that c and d in

part b) might be infinite.

4.5.5. Suppose that a := limx→∞(1 + 1/x)x exists and is greater than 1 (see
Example 4.22). Assume that ax : R → (0,∞) is onto, continuous,
strictly increasing, and satisfies ax ay = ax+y and (ax )y = axy for all
x, y ∈ R (see Exercise 3.3.11). Let L(x) denote the inverse function
of ax .
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a) Prove that t L(1 + 1/t) → 1 as t → ∞.
b) Prove that (ah − 1)/h → 1 as h → 0.
c) Prove that ax is differentiable on R and (ax )′ = ax for all x ∈ R.
d) Prove that L ′(x) = 1/x for all x > 0.

[Note: a is the natural base e and L(x) is the natural logarithm log x .]
4.5.6. Suppose that I is a nondegenerate interval, that f : I → R is differen-

tiable, and that f ′(x) �= 0 for all x ∈ I .

a) Prove that f −1 exists and is differentiable on f (I ).
b) Suppose further that I is a closed, bounded interval and that f ′ is

continuous. Prove that ( f −1)′ is bounded on f (I ).

4.5.7. Suppose that f : [a, b] → [c, d] is differentiable and onto. If f ′ is never
zero on [a, b] and d − c ≥ 2, prove that for every x ∈ [c, d] there exist
x1 ∈ [a, b] and x2 ∈ [c, d] such that | f ′(x1)( f −1(x)− f −1(x2))| = 1.

4.5.8. Suppose that f is differentiable on a closed, bounded interval [a, b].
If f [a, b] = [a, b] and f ′ is never zero on [a, b], prove that for every
x ∈ [a, b] there exist x1, x2 ∈ (a, b) such that

f (x) = f ′(x1) f ′(x2)( f −1(x)− f −1(a))+ f (a).

4.5.9. Let [a, b] be a closed, bounded, nondegenerate interval. Find all func-
tions f which satisfy the following conditions for some fixed α > 0 : f
is continuous and 1–1 on [a, b], f ′(x) �= 0 and f ′(x) = α( f −1)′( f (x))
for all x ∈ (a, b).

4.5.10. Suppose that f is C1 on an interval (a, b). If f ′(x0) �= 0 for some x0 ∈
(a, b), prove that there exist intervals I and J such that f is 1–1 from I
onto J and f −1 is continuously differentiable on J .

∗4.5.11. Suppose that f is differentiable at every point in a closed, bounded
interval [a, b]. Prove that if f ′ is 1–1 on [a, b], then f ′ is strictly mono-
tone on [a, b].
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C H A P T E R 5

Integrability on R

5.1 THE RIEMANN INTEGRAL

In this chapter we shall study integration of real functions. We begin our discus-
sion by introducing the following terminology.

5.1 Definition.

Let a, b ∈ R with a < b.

i) A partition of the interval [a, b] is a set of points P = {x0, x1, . . . xn} such
that

a = x0 < x1 < · · · < xn = b.

ii) The norm of a partition P = {x0, x1, . . . xn} is the number

‖P‖ = max
1≤ j≤n

|x j − x j−1|.

iii) A refinement of a partition P = {x0, x1, . . . xn} is a partition Q of [a, b]
which satisfies Q ⊇ P . In this case we say that Q is finer than P .

5.2 EXAMPLE. [THE DYADIC PARTITION].

Prove that for each n ∈ N, Pn = { j/2n : j = 0, 1, . . . , 2n} is a partition of the
interval [0, 1], and Pm is finer than Pn when m > n.

Proof. Fix n ∈ N. If x j = j/2n , then 0 = x0 < x1 < · · · < x2n = 1. Thus,
Pn is a partition of [0, 1]. Let m > n and set p = m − n. If 0 ≤ j ≤ 2n , then
j/2n = j2p/2m and 0 ≤ j2p ≤ 2m . Thus Pm is finer than Pn . �

It is clear that by definition, if P and Q are partitions of [a, b], then P ∪ Q is
finer than both P and Q. (Note that finer does not rule out the possibility that
P ∪ Q = Q, which would be the case if Q were a refinement of P .) And if Q is
a refinement of P , then ‖Q‖ ≤ ‖P‖. We shall use these observations often.

Let f be nonnegative on an interval [a, b]. You may recall that the integral of
f over [a, b] (when this integral exists) is the area of the region bounded by the
curves y = f (x), y = 0, x = a, and x = b. This area, A, can be approximated
by rectangles whose bases lie in [a, b] and whose heights approximate f (see
Figure 5.1). If the tops of these rectangles lie above the curve y = f (x), the
resulting approximation is larger than A. If the tops of these rectangles lie below

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 5 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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x

y

a x1 x2 x3 x4 x5 b

y = f (x)

FIGURE 5.1

the curve y = f (x), the resulting approximation is smaller than A. Hence, we
make the following definition.

5.3 Definition.

Let a, b ∈ R with a < b, let P = {x0, x1, . . . xn} be a partition of the interval
[a, b], set�x j := x j − x j−1 for j = 1, 2, . . . , n, and suppose that f : [a, b] → R
is bounded.

i) The upper Riemann sum of f over P is the number

U ( f, P) :=
n∑

j=1

M j ( f ) �x j ,

where

M j ( f ) := sup f ([x j−1, x j ]) := sup
t∈[x j−1,x j ]

f (t).

ii) The lower Riemann sum of f over P is the number

L( f, P) :=
n∑

j=1

m j ( f ) �x j ,

where

m j ( f ) := inf f ([x j−1, x j ]) := inf
t∈[x j−1,x j ]

f (t).

(Note: Since we assumed that f is bounded, the numbers M j ( f ) and m j ( f )
exist and are finite.)

Some specific upper and lower Riemann sums can be evaluated with the help
of the following elementary observation.
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132 Chapter 5 Integrability on R

5.4 Remark. If g : N → R, then

n∑
k=m

(g(k + 1)− g(k)) = g(n + 1)− g(m)

for all n ≥ m in N.

Proof. The proof is by induction on n. The formula holds for n = m. If it
holds for some n − 1 ≥ m, then

n∑
k=m

(g(k + 1)− g(k)) = (g(n)− g(m))+ (g(n + 1)− g(n)) = g(n + 1)− g(m).

�

We shall refer to this algebraic identity by saying the sum telescopes to
g(n + 1) − g(m). In particular, if P = {x0, x1, . . . , xn} is a partition of [a, b],
the sum

∑n
j=1�x j telescopes to xn − x0 = b − a.

Before we define what it means for a function to be integrable, we make
several elementary observations concerning upper and lower sums.

5.5 Remark. If f (x) = α is constant on [a, b], then

U ( f, P) = L( f, P) = α(b − a)

for all partitions P of [a, b].

Proof. Since M j ( f ) = m j ( f ) = α for all j , the sums U ( f, P) and L( f, P)
telescope to α(b − a). �

5.6 Remark. L( f, P) ≤ U ( f, P) for all partitions P and all bounded functions f.

Proof. By definition, m j ( f ) ≤ M j ( f ) for all j . �

The next result shows that as the partitions get finer, the upper and lower
Riemann sums get nearer each other.

5.7 Remark. If P is any partition of [a, b] and Q is a refinement of P, then

L( f, P) ≤ L( f, Q) ≤ U ( f, Q) ≤ U ( f, P).

Proof. Let P = {x0, x1, . . . xn} be a partition of [a, b]. Since Q is finer than P,
Q can be obtained from P in a finite number of steps by adding one point at
a time. Hence it suffices to prove the inequalities above for the special case
Q = {c}⋃ P for some c ∈ (a, b). Moreover, by symmetry and Remark 5.6,
we need only show U ( f, Q) ≤ U ( f, P).
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We may suppose that c /∈ P . Hence, there is a unique index j0 such that
x j0−1 < c < x j0 . By definition, it is clear that

U ( f, Q)− U ( f, P) = M (�)(c − x j0−1)+ M (r)(x j0 − c)− M �x j0,

where

M (�) = sup f ([x j0−1, c]), M (r) = sup f ([c, x j0]), and
M = sup f ([x j0−1, x j0]).

By the Monotone Property of Suprema, M (�) and M (r) are both less than or
equal to M . Therefore,

U ( f, Q)− U ( f, P) ≤ M(c − x j0−1)+ M(x j0 − c)− M �x j0 = 0. �

5.8 Remark. If P and Q are any partitions of [a, b], then

L( f, P) ≤ U ( f, Q).

Proof. Since P ∪ Q is a refinement of P and Q, it follows from Remark 5.7
that

L( f, P) ≤ L( f, P ∪ Q) ≤ U ( f, P ∪ Q) ≤ U ( f, Q)

for any pair of partitions P, Q, whether Q is a refinement of P or not. �

We now use the connection between area and integration to motivate the
definition of integrable. Suppose that f (x) is nonnegative on [a, b] and that the
region bounded by the curves y = f (x), y = 0, x = a, and x = b has a
well-defined area A. By Definition 5.3, every upper Riemann sum is an over-
estimate of A, and every lower Riemann sum is an underestimate of A (see
Figure 5.1). Since the estimates U ( f, P) and L( f, P) should get nearer to A as
P gets finer, the differences U ( f, P) − L( f, P) should get smaller. [The shaded
area in Figure 5.2 represents the difference U ( f, P) − L( f, P) for a particular
P .] This leads us to the following definition (see also Exercise 5.1.9).

x

y

a x1 x2 x3 x4 x5 b

y = f (x)

FIGURE 5.2
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5.9 Definition.

Let a, b ∈ R with a < b. A function f : [a, b] → R is said to be (Riemann)
integrable on [a, b] if and only if f is bounded on [a, b], and for every ε > 0
there is a partition P of [a, b] such that U ( f, P)− L( f, P) < ε.

Notice that this definition makes sense whether or not f is nonnegative.
The connection between nonnegative functions and area was only a convenient
vehicle to motivate Definition 5.9. Also notice that, by Remark 5.6, U ( f, P) −
L( f, P) = |U ( f, P)− L( f, P)| for all partitions P . Hence, U ( f, P)− L( f, P) < ε

is equivalent to |U ( f, P)− L( f, P)| < ε.
This section provides a good illustration of how mathematics works. The con-

nection between area and integration leads directly to Definition 5.9. This defi-
nition, however, is not easy to apply in concrete situations. Thus, we search for
conditions which imply integrability and are easy to apply. In view of Figure 5.2,
it seems reasonable that a function is integrable if its graph does not jump
around too much (so that it can be covered by thinner and thinner rectan-
gles). Since the graph of a continuous function does not jump at all, we are
led to the following simple criterion that is sufficient (but not necessary) for
integrability.

5.10 Theorem. Suppose that a, b ∈ R with a < b. If f is continuous on the
interval [a, b], then f is integrable on [a, b].

Proof. Let ε > 0. Since f is uniformly continuous on [a, b], choose δ > 0
such that

|x − y| < δ implies | f (x)− f (y)| < ε

b − a
. (1)

Let P = {x0, x1, . . . , xn} be any partition of [a, b] which satisfies ‖P‖ < δ. Fix
an index j and notice, by the Extreme Value Theorem, that there are points
xm and xM in [x j−1, x j ] such that

f (xm) = m j ( f ) and f (xM ) = M j ( f ).

Since ‖P‖ < δ, we also have |xM − xm | < δ. Hence by (1), M j ( f )− m j ( f ) <
ε/(b − a). In particular,

U ( f, P)− L( f, P) =
n∑

j=1

(M j ( f )− m j ( f )) �x j <
ε

b − a

n∑
j=1

�x j = ε.

(The last step comes from telescoping.) �

Although the converse of Theorem 5.10 is false (see Example 5.12 and
Exercises 5.1.3, 5.1.6, and 5.1.8), there is a close connection between integra-
bility and continuity. Indeed, we shall see (Theorem 9.49) that a function
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is integrable if and only if it has relatively few discontinuities. This princi-
ple is illustrated by the following examples. The nonintegrable function in
Example 5.11 is nowhere continuous (hence has many discontinuities) but the
integrable function in Example 5.12 has only one discontinuity (hence has few
discontinuities).

5.11 EXAMPLE.

The Dirichlet function

f (x) =
{

1 x ∈ Q
0 x /∈ Q

is not Riemann integrable on [0, 1].
Proof. Clearly, f is bounded on [0, 1]. By Theorem 1.18 and Exercise 1.3.3
(Density of Rationals and Irrationals), the supremum of f over any nonde-
generate interval is 1, and the infimum of f over any nondegenerate interval
is 0. Therefore, U ( f, P) − L( f, P) = 1 − 0 = 1 for any partition P of the
interval [0, 1]; that is, f is not integrable on [0, 1]. �

5.12 EXAMPLE.

The function

f (x) =
{

0 0 ≤ x < 1/2
1 1/2 ≤ x ≤ 1

is integrable on [0, 1].
Proof. Let ε > 0. Choose 0 < x1 < 0.5 < x2 < 1 such that x2 − x1 < ε.
The set

P := {0, x1, x2, 1}
is a partition of [0, 1]. Since m1( f ) = 0 = M1( f ), m2( f ) = 0 < 1 = M2( f ),

and m3( f ) = 1 = M3( f ), it is easy to see that U ( f, P)− L( f, P) = x2 −x1 < ε.
Therefore, f is integrable on [0, 1]. �

We have defined integrability, but not the value of the integral. We remedy
this situation by using the Riemann sums U ( f, P) and L( f, P) to define upper
and lower integrals.

5.13 Definition.

Let a, b ∈ R with a < b, and f : [a, b] → R be bounded.

i) The upper integral of f on [a, b] is the number

(U )
∫ b

a
f (x) dx := inf{U ( f, P) : P is a partition of [a, b]}.
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5.13 Definition. (Continued)

ii) The lower integral of f on [a, b] is the number

(L)
∫ b

a
f (x) dx := sup{L( f, P) : P is a partition of [a, b]}.

iii) If the upper and lower integrals of f on [a, b] are equal, we define the
integral of f on [a, b] to be the common value

∫ b

a
f (x) dx := (U )

∫ b

a
f (x) dx = (L)

∫ b

a
f (x) dx .

This defines integration over nondegenerate intervals. Motivated by the inter-
pretation of integration as area, we define the integral of any bounded function
f on [a, a] to be zero; that is,

∫ a

a
f (x) dx := 0.

Although a bounded function might not be integrable (see Example 5.11
above), the following result shows that the upper and lower integrals of a
bounded function always exist.

5.14 Remark. If f : [a, b] → R is bounded, then its upper and lower integrals
exist and are finite, and satisfy

(L)
∫ b

a
f (x) dx ≤ (U )

∫ b

a
f (x) dx .

Proof. By Remark 5.8, L( f, P) ≤ U ( f, Q) for all partitions P and Q of [a, b].
Taking the supremum of this inequality over all partitions P of [a, b], we have

(L)
∫ b

a
f (x) dx ≤ U ( f, Q);

that is, the lower integral exists and is finite. Taking the infimum of this last
inequality over all partitions Q of [a, b], we conclude that the upper integral
is also finite and greater than or equal to the lower integral. �

Suppose that f is bounded and nonnegative on [a, b]. Since the upper and
lower sums of f approximate the “area” of the region bounded by the curves
y = f (x), y = 0, x = a, and x = b, we guess that f is integrable if and only
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if the upper and lower integrals of f are equal. The following result shows that
this guess is true whether or not f is nonnegative.

5.15 Theorem. Let a, b ∈ R with a < b, and f : [a, b] → R be bounded. Then f
is integrable on [a, b] if and only if

(L)
∫ b

a
f (x) dx = (U )

∫ b

a
f (x) dx . (2)

Proof. Suppose that f is integrable. Let ε > 0 and choose a partition P of
[a, b] such that

U ( f, P)− L( f, P) < ε. (3)

By definition, (U )
∫ b

a f (x)dx ≤ U ( f, P) and the opposite inequality holds
for the lower integral and the lower sum L( f, P). Therefore, it follows from
Remark 5.14 and (3) that

∣∣∣∣(U )
∫ b

a
f (x) dx − (L)

∫ b

a
f (x) dx

∣∣∣∣ = (U )
∫ b

a
f (x) dx − (L)

∫ b

a
f (x) dx

≤ U ( f, P)− L( f, P) < ε.

Since this is valid for all ε > 0, (2) holds as promised.
Conversely, suppose that (2) holds. Let ε > 0 and choose, by the Approxi-

mation Property, partitions P1 and P2 of [a, b] such that

U ( f, P1) < (U )
∫ b

a
f (x) dx + ε

2

and

L( f, P2) > (L)
∫ b

a
f (x) dx − ε

2
.

Set P = P1 ∪ P2. Since P is a refinement of both P1 and P2, it follows from
Remark 5.7, the choices of P1 and P2, and (2) that

U ( f, P)− L( f, P) ≤ U ( f, P1)− L( f, P2)

≤ (U )
∫ b

a
f (x) dx + ε

2
− (L)

∫ b

a
f (x) dx + ε

2
= ε. �

Since the integral has been defined only on intervals [a, b], we have tacitly
assumed that a ≤ b. We shall use the convention

∫ a

b
f (x) dx = −

∫ b

a
f (x) dx
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to extend the integral to the case a > b. In particular, if f (x) is integrable
and nonpositive on [a, b], then the area of the region bounded by the curves
y = f (x), y = 0, x = a, and x = b is given by

∫ a
b f (x)dx .

In the next section we shall use the machinery of upper and lower sums to
prove several familiar theorems about the Riemann integral. We close this sec-
tion with one more result which reinforces the connection between integration
and area.

5.16 Theorem. If f (x) = α is constant on [a, b], then

∫ b

a
f (x) dx = α(b − a).

Proof. By Theorem 5.10, f is integrable on [a, b]. Hence, it follows from
Theorem 5.15 and Remark 5.5 that

∫ b

a
f (x) dx = (U )

∫ b

a
f (x) dx = inf

P
U ( f, P) = α(b − a). �

EXERCISES

5.1.0. Suppose that a < b < c. Decide which of the following statements are
true and which are false. Prove the true ones and give counterexamples
for the false ones.

a) If f is Riemann integrable on [a, b], then f is continuous on [a, b].
b) If | f | is Riemann integrable on [a, b], then f is Riemann integrable

on [a, b].
c) For all bounded functions f : [a, b] → R,

(L)
∫ b

a
f (x) dx ≤

∫ b

a
f (x) dx ≤ (U )

∫ b

a
f (x) dx .

d) If f is continuous on [a, b) and on [b, c], then f is Riemann inte-
grable on [a, c].

5.1.1. For each of the following, compute U ( f, P), L( f, P), and
∫ 2

0 f (x)dx ,
where

P =
{

0,
1

2
, 1, 2

}
.

Find out whether the lower sum or the upper sum is a better approxi-
mation to the integral. Graph f and explain why this is so.

a) f (x) = x3

b) f (x) = 3 − x2

c) f (x) = sin(x/5)
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5.1.2. a) Prove that for each n ∈ N,

Pn :=
{

j

n
: j = 0, 1, . . . , n

}

is a partition of [0, 1].
b) Prove that a bounded function f is integrable on [0, 1] if

(∗) I0 := lim
n→∞ L( f, Pn) = lim

n→∞ U ( f, Pn),

in which case
∫ 1

0 f (x)dx equals I0.
c) For each of the following functions, use Exercise 1.4.4 to find for-

mulas for the upper and lower sums of f on Pn , and use them to
compute the value of

∫ 1
0 f (x)dx .

α) f (x) = x

β) f (x) = x2

γ ) f (x) =
{

0 0 ≤ x < 1/2
1 1/2 ≤ x ≤ 1

5.1.3. Let E = {1/n : n ∈ N}. Prove that the function

f (x) =
{

1 x ∈ E
0 otherwise

is integrable on [0, 1]. What is the value of
∫ 1

0 f (x)dx?

5.1.4 . This exercise is used in Section ∗14.2. Suppose that a < b and that
f : [a, b] → R is bounded.

a) Prove that if f is continuous at x0 ∈ [a, b] and f (x0) �= 0, then

(L)
∫ b

a
| f (x)| dx > 0.

b) Show that if f is continuous on [a, b], then
∫ b

a | f (x)|dx = 0 if and
only if f (x) = 0 for all x ∈ [a, b].

c) Does part b) hold if the absolute values are removed? If it does,
prove it. If it does not, provide a counterexample.

5.1.5. Suppose that a < b and that f : [a, b] → R is continuous. Show that∫ c

a
f (x) dx = 0
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for all c ∈ [a, b] if and only if f (x) = 0 for all x ∈ [a, b]. (Compare with
Exercise 5.1.4, and notice that f need not be nonnegative here.)

5.1.6. Let f be integrable on [a, b] and E be a finite subset of [a, b]. Show that
if g is a bounded function which satisfies g(x) = f (x) for all x ∈ [a, b]\E ,
then g is integrable on [a, b] and

∫ b

a
g(x) dx =

∫ b

a
f (x) dx .

5.1.7 . This exercise is used in Section 12.3. Let f, g be bounded on [a, b].
a) Prove that

(U )
∫ b

a
( f (x)+ g(x)) dx ≤ (U )

∫ b

a
f (x) dx + (U )

∫ b

a
g(x) dx

and

(L)
∫ b

a
( f (x)+ g(x)) dx ≥ (L)

∫ b

a
f (x) dx + (L)

∫ b

a
g(x) dx .

b) Prove that

(U )
∫ b

a
f (x) dx = (U )

∫ c

a
f (x) dx + (U )

∫ b

c
f (x) dx

and

(L)
∫ b

a
f (x) dx = (L)

∫ c

a
f (x) dx + (L)

∫ b

c
f (x) dx

for a < c < b.

5.1.8 . This exercise is used in Sections ∗5.5, 6.2, and ∗7.5.

a) If f is increasing on [a, b] and P = {x0, . . . , xn} is any partition of
[a, b], prove that

n∑
j=1

(M j ( f )− m j ( f )) �x j ≤ ( f (b)− f (a)) ‖P‖.

b) Prove that if f is monotone on [a, b], then f is integrable on [a, b].
[Note: By Theorem 4.19, f has at most countably many (i.e., relatively
few) discontinuities on [a, b]. This has nothing to do with the proof of
part b), but points out a general principle which will be discussed in
Section 9.6.]
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5.1.9. Let a < b and 0 < c < d be real numbers and f : [a, b] → [c, d]. If f is
Riemann integrable on [a, b], prove that

√
f is Riemann integrable on

[a, b].
5.1.10. Let f be bounded on a nondegenerate interval [a, b]. Prove that f is

integrable on [a, b] if and only if given ε > 0 there is a partition Pε of
[a, b] such that

P ⊇ Pε implies |U ( f, P)− L( f, P)| < ε.

5.2 RIEMANN SUMS

There is another definition of the Riemann integral frequently found in elemen-
tary calculus texts.

5.17 Definition.

Let f : [a, b] → R.

i) A Riemann sum of f with respect to a partition P = {x0, . . . , xn} of [a, b]
generated by samples t j ∈ [x j−1, x j ] is a sum

S( f, P, t j ) :=
n∑

j=1

f (t j ) �x j .

ii) The Riemann sums of f are said to converge to I ( f ) as ‖P‖ → 0 if and
only if given ε > 0 there is a partition Pε of [a, b] such that

P = {x0, . . . , xn} ⊇ Pε implies
∣∣S( f, P, t j )− I ( f )

∣∣ < ε

for all choices of t j ∈ [x j−1, x j ], j = 1, 2, . . . , n. In this case we shall use
the notation

I ( f ) = lim‖P‖→0
S( f, P, t j ) := lim‖P‖→0

n∑
j=1

f (t j ) �x j .

The following result shows that this definition of the Riemann integral is the
same as the one using upper and lower integrals.

5.18 Theorem. Let a, b ∈ R with a < b, and suppose that f : [a, b] → R. Then
f is Riemann integrable on [a, b] if and only if

I ( f ) = lim‖P‖→0

n∑
j=1

f (t j ) �x j

exists, in which case I ( f ) = ∫ b
a f (x)dx .
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Proof. Suppose that f is integrable on [a, b] and that ε > 0. By the Approxi-
mation Property, there is a partition Pε of [a, b] such that

L( f, Pε) >
∫ b

a
f (x) dx − ε and U ( f, Pε) <

∫ b

a
f (x) dx + ε. (4)

Let P = {x0, x1, . . . , xn} ⊇ Pε. Then (4) holds with P in place of Pε. But
m j ( f ) ≤ f (t j ) ≤ M j ( f ) for any choice of t j ∈ [x j−1, x j ]. Hence,∫ b

a
f (x) dx − ε < L( f, P) ≤

n∑
j=1

f (t j ) �x j ≤ U ( f, P) <
∫ b

a
f (x) dx + ε;

that is, −ε <∑n
j=1 f (t j ) �x j − ∫ b

a f (x)dx < ε. We conclude that∣∣∣∣∣∣
n∑

j=1

f (t j ) �x j −
∫ b

a
f (x) dx

∣∣∣∣∣∣ < ε

for all partitions P ⊇ Pε and all choices of t j ∈ [x j−1, x j ], j = 1, 2, . . . , n.
Conversely, suppose that the Riemann sums of f converge to I ( f ). Let

ε > 0 and choose a partition P = {x0, x1, . . . , xn} of [a, b] such that∣∣∣∣∣∣
n∑

j=1

f (t j ) �x j − I ( f )

∣∣∣∣∣∣ <
ε

3
(5)

for all choices of t j ∈ [x j−1, x j ]. Since f is bounded on [a, b] (see
Exercise 5.2.11), use the Approximation Property to choose t j , u j ∈ [x j−1, x j ]
such that f (t j )− f (u j ) > M j ( f )−m j ( f )−ε/(3(b−a)). By (5) and telescoping,
we have

U ( f, P)− L( f, P) =
n∑

j=1

(M j ( f )− m j ( f )) �x j

<

n∑
j=1

( f (t j )− f (u j )) �x j + ε

3(b − a)

n∑
j=1

�x j

≤
∣∣∣∣∣∣

n∑
j=1

f (t j ) �x j − I ( f )

∣∣∣∣∣∣
+
∣∣∣∣∣∣I ( f )−

n∑
j=1

f (u j ) �x j

∣∣∣∣∣∣+
ε

3(b − a)

n∑
j=1

�x j

<
2ε

3
+ ε

3
= ε.

Therefore, f is integrable on [a, b]. �
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The next two results show that Riemann integrals of complicated functions
can be broken into simpler pieces.

5.19 Theorem. [LINEAR PROPERTY].
If f, g are integrable on [a, b] and α ∈ R, then f + g and α f are integrable on
[a, b]. In fact,

∫ b

a
( f (x)+ g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx (6)

and ∫ b

a
(α f (x)) dx = α

∫ b

a
f (x) dx . (7)

Proof. Let ε > 0 and choose Pε such that for any partition P = {x0, x1, . . . ,

xn} ⊇ Pε of [a, b] and any choice of t j ∈ [x j−1, x j ], we have

∣∣∣∣∣∣
n∑

j=1

f (t j ) �x j −
∫ b

a
f (x) dx

∣∣∣∣∣∣ <
ε

2

and ∣∣∣∣∣∣
n∑

j=1

g(t j ) �x j −
∫ b

a
g(x) dx

∣∣∣∣∣∣ <
ε

2
.

By the Triangle Inequality,∣∣∣∣∣∣
n∑

j=1

f (t j )�x j +
n∑

j=1

g(t j )�x j −
∫ b

a
f (x) dx −

∫ b

a
g(x) dx

∣∣∣∣∣∣ < ε

for any choice of t j ∈ [x j−1, x j ]. Hence, (6) follows directly from Theo-
rem 5.18.

To prove (7), we may suppose that α �= 0. Choose Pε such that if P =
{x0, . . . , xn} is finer than Pε, then∣∣∣∣∣∣

n∑
j=1

f (t j ) �x j −
∫ b

a
f (x) dx

∣∣∣∣∣∣ <
ε

|α|

for any choice of t j ∈ [x j−1, x j ]. Multiplying this inequality by |α|, we obtain

∣∣∣∣∣∣
n∑

j=1

α f (t j ) �x j − α

∫ b

a
f (x) dx

∣∣∣∣∣∣ < |α| ε|α| = ε
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for any choice of t j ∈ [x j−1, x j ]. We conclude by Theorem 5.18 that (7)
holds. �

5.20 Theorem. If f is integrable on [a, b], then f is integrable on each subinterval
[c, d] of [a, b]. Moreover,

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx (8)

for all c ∈ (a, b).

Proof. We may suppose that a < b. Let ε > 0 and choose a partition P of
[a, b] such that

U ( f, P)− L( f, P) < ε. (9)

Let P ′ = P ∪ {c} and P1 = P ′ ∩ [a, c]. Since P1 is a partition of [a, c] and P ′ is
a refinement of P , we have by (9) that

U ( f, P1)− L( f, P1) ≤ U ( f, P ′)− L( f, P ′) ≤ U ( f, P)− L( f, P) < ε.

Therefore, f is integrable on [a, c]. A similar argument proves that f is inte-
grable on any subinterval [c, d] of [a, b].

To verify (8), suppose that P is any partition of [a, b]. Let P0 = P ∪
{c}, P1 = P0 ∩[a, c], and P2 = P0 ∩[c, b]. Then P0 = P1 ∪ P2 and by definition

U ( f, P) ≥ U ( f, P0) = U ( f, P1)+ U ( f, P2)

≥ (U )
∫ c

a
f (x) dx + (U )

∫ b

c
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

(This last equality follows from the fact that f is integrable on both [a, c] and
[c, b].) Taking the infimum of

U ( f, P) ≥
∫ c

a
f (x) dx +

∫ b

c
f (x) dx

over all partitions P of [a, b], we obtain

∫ b

a
f (x) dx = (U )

∫ b

a
f (x) dx ≥

∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

A similar argument using lower integrals shows that

∫ b

a
f (x) dx ≤

∫ c

a
f (x) dx +

∫ b

c
f (x) dx . �
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Using the conventions

∫ b

a
f (x) dx = −

∫ a

b
f (x) dx and

∫ a

a
f (x) dx = 0,

it is easy to see that (8) holds whether or not c lies between a and b, provided f
is integrable on the union of these intervals (see Exercise 5.2.4).

5.21 Theorem. [COMPARISON THEOREM FOR INTEGRALS].
If f, g are integrable on [a, b] and f (x) ≤ g(x) for all x ∈ [a, b], then

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx .

In particular, if m ≤ f (x) ≤ M for x ∈ [a, b], then

m(b − a) ≤
∫ b

a
f (x) dx ≤ M(b − a).

Proof. Let P be a partition of [a, b]. By hypothesis, M j ( f ) ≤ M j (g) whence
U ( f, P) ≤ U (g, P). It follows that

∫ b

a
f (x) dx = (U )

∫ b

a
f (x) dx ≤ U (g, P)

for all partitions P of [a, b]. Taking the infimum of this inequality over all
partitions P of [a, b], we obtain

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx .

If m ≤ f (x) ≤ M , then (by what we just proved and by Theorem 5.16)

m(b − a) =
∫ b

a
m dx ≤

∫ b

a
f (x) dx ≤

∫ b

a
M dx = M(b − a). �

We shall use the following result nearly every time we need to estimate an
integral.

5.22 Theorem. If f is (Riemann) integrable on [a, b], then | f | is integrable on
[a, b] and ∣∣∣∣

∫ b

a
f (x) dx

∣∣∣∣ ≤
∫ b

a
| f (x)| dx .

Proof. Let P = {x0, x1, . . . , xn} be a partition of [a, b]. We claim that

M j (| f |)− m j (| f |) ≤ M j ( f )− m j ( f ) (10)
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holds for j = 1, 2, . . . , n. Indeed, let x, y ∈ [x j−1, x j ]. If f (x), f (y) have the
same sign, say both are nonnegative, then

| f (x)| − | f (y)| = f (x)− f (y) ≤ M j ( f )− m j ( f ).

If f (x), f (y) have opposite signs, say f (x) ≥ 0 ≥ f (y), then m j ( f ) ≤ 0
and, hence,

| f (x)| − | f (y)| = f (x)+ f (y) ≤ M j ( f )+ 0 ≤ M j ( f )− m j ( f ).

Thus in either case, | f (x)| ≤ M j ( f ) − m j ( f ) + | f (y)|. Taking the supremum
of this last inequality for x ∈ [x j−1, x j ] and then the infimum as y ∈ [x j−1, x j ],
we see that (10) holds, as promised.

Let ε > 0 and choose a partition P of [a, b] such that U ( f, P)−L( f, P) < ε.
Since (10) implies U (| f |, P)− L(| f |, P) ≤ U ( f, P)− L( f, P), it follows that

U (| f |, P)− L(| f |, P) < ε.

Thus | f | is integrable on [a, b]. Since −| f (x)| ≤ f (x) ≤ | f (x)| holds for any
x ∈ [a, b], we conclude by Theorem 5.21 that

−
∫ b

a
| f (x)| dx ≤

∫ b

a
f (x) dx ≤

∫ b

a
| f (x)| dx . �

By Theorem 5.19, the sum of integrable functions is integrable. What about
the product?

5.23 Corollary. If f and g are (Riemann) integrable on [a, b], then so is fg.

Proof. Suppose for a moment that the square of any integrable function is
integrable. Then, by hypothesis, f 2, g2, and ( f + g)2 are integrable on
[a, b]. Since

f g = ( f + g)2 − f 2 − g2

2
,

it follows from Theorem 5.19 that fg is integrable on [a, b].
It remains to prove that f 2 is integrable on [a, b]. Let P be a partition of

[a, b]. Since M j ( f 2) = (M j (| f |))2 and m j ( f 2) = (m j (| f |))2, it is clear that

M j ( f 2)− m j ( f 2) = (M j (| f |))2 − (m j (| f |))2
= (M j (| f |)+ m j (| f |))(M j (| f |)− m j (| f |))
≤ 2M(M j (| f |)− m j (| f |)),

where M = sup | f |([a, b]); that is, | f (x)| ≤ M for all x ∈ [a, b]. Multiplying
the displayed inequality by �x j and summing over j = 1, 2, . . . , n, we have

U ( f 2, P)− L( f 2, P) ≤ 2M(U (| f |, P)− L(| f |, P)).
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Hence, it follows from Theorem 5.22 that f 2 is integrable on [a, b]. �

We close this section with two integral analogues of the Mean Value
Theorem.

5.24 Theorem. [FIRST MEAN VALUE THEOREM FOR INTEGRALS].
Suppose that f and g are integrable on [a, b] with g(x) ≥ 0 for all x ∈ [a, b]. If

m = inf f [a, b] and M = sup f [a, b],
then there is a number c ∈ [m,M] such that

∫ b

a
f (x)g(x) dx = c

∫ b

a
g(x) dx .

In particular, if f is continuous on [a, b], then there is an x0 ∈ [a, b] which
satisfies ∫ b

a
f (x)g(x) dx = f (x0)

∫ b

a
g(x) dx .

Proof. Since g ≥ 0 on [a, b], Theorem 5.21 implies

m
∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤ M

∫ b

a
g(x) dx .

If
∫ b

a g(x)dx = 0, then
∫ b

a f (x)g(x)dx = 0 and there is nothing to prove.
Otherwise, set

c =
∫ b

a f (x)g(x) dx∫ b
a g(x) dx

and note that c ∈ [m,M]. If f is continuous, then (by the Intermediate Value
Theorem) we can choose x0 ∈ [a, b] such that f (x0) = c. �

Before we state the Second Mean Value Theorem, we introduce an idea that
will be used in the next section to prove the Fundamental Theorem of Calculus.
If f is integrable on [a, b], then f can be used to define a new function

F(x) :=
∫ x

a
f (t) dt, x ∈ [a, b].

5.25 EXAMPLE.

Find F(x) = ∫ x
0 f (t) dt if

f (x) =
{

1 x ≥ 0
−1 x < 0.
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Solution. By Theorem 5.16,

F(x) =
∫ x

0
f (t) dt =

{
x x ≥ 0
−x x < 0.

Hence, F(x) = |x |. �

Notice in Example 5.25 that the integral F of f is continuous even though f
itself is not. The following result shows that this is a general principle.

5.26 Theorem. If f is (Riemann) integrable on [a, b], then F(x) = ∫ x
a f (t) dt

exists and is continuous on [a, b].
Proof. By Theorem 5.20, F(x) exists for all x ∈ [a, b]. To prove that F is
continuous on [a, b], it suffices to show that F(x+) = F(x) for all x ∈ [a, b)
and F(x−) = F(x) for all x ∈ (a, b]. Fix x0 ∈ [a, b). By definition, f is
bounded on [a, b]. Thus, choose M ∈ R such that | f (t)| ≤ M for all t ∈ [a, b].
Let ε > 0 and set δ = ε/M . If 0 ≤ x − x0 < δ, then by Theorem 5.22,

|F(x)− F(x0)| =
∣∣∣∣
∫ x

x0

f (t) dt

∣∣∣∣ ≤
∫ x

x0

| f (t)| dt ≤ M |x − x0| < ε.

Hence, F(x0+) = F(x0). A similar argument shows that F(x0−) = F(x0) for
all x0 ∈ (a, b]. �

5.27 Theorem. [SECOND MEAN VALUE THEOREM FOR INTEGRALS].
Suppose that f, g are integrable on [a, b], that g is nonnegative on [a, b], and that
m, M are real numbers which satisfy m ≤ inf f ([a, b]) and M ≥ sup f ([a, b]).
Then there is an c ∈ [a, b] such that∫ b

a
f (x)g(x) dx = m

∫ c

a
g(x) dx + M

∫ b

c
g(x) dx .

In particular, if f is also nonnegative on [a, b], then there is an c ∈ [a, b] which
satisfies ∫ b

a
f (x)g(x) dx = M

∫ b

c
g(x) dx .

Proof. The second statement follows from the first since we may use m = 0
when f ≥ 0. To prove the first statement, set

F(x) = m
∫ x

a
g(t) dt + M

∫ b

x
g(t) dt

for x ∈ [a, b], and observe by Theorem 5.26 that F is continuous on [a, b].
Since g is nonnegative, we also have mg(t) ≤ f (t)g(t) ≤ Mg(t) for all t ∈
[a, b]. Hence, it follows from the Comparison Theorem (Theorem 5.21) that
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F(b) = m
∫ b

a
g(t) dt ≤

∫ b

a
f (t)g(t) dt ≤ M

∫ b

a
g(t) dt = F(a).

Since F is continuous, we conclude by the Intermediate Value Theorem that
there is an c ∈ [a, b] such that

F(c) =
∫ b

a
f (t)g(t) dt.

�

When g(x) = 1 and f (x) ≥ 0, these mean value theorems have simple geo-
metric interpretations. Indeed, let A represent the area bounded by the curves
y = f (x), y = 0, x = a, and x = b. By the First Mean Value Theorem, there
is a c ∈ [m,M] such that the area of the rectangle of height c and base b − a
equals A (see Figure 5.3). And by the Second Mean Value Theorem, if M is the
maximum value of f on [a, b], then there is an c ∈ [a, b] such that the area of
the rectangle of height M and base b − c equals A (see Figure 5.4).

x

y

y = f (x)

a b

c

FIGURE 5.3

x

y

y = f (x)

a c b

M

FIGURE 5.4
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EXERCISES

5.2.0. Suppose that a < b. Decide which of the following statements are true
and which are false. Prove the true ones and give counterexamples for
the false ones.

a) If f and g are Riemann integrable on [a, b], then f − g is Riemann
integrable on [a, b].

b) If f is Riemann integrable on [a, b] and P is any polynomial on R,
then P ◦ f is Riemann integrable on [a, b].

c) If f and g are nonnegative real functions on [a, b], with f continuous
and g Riemann integrable on [a, b], then there exist x0, x1 ∈ [a, b]
such that ∫ b

a
f (x)g(x) dx = f (x0)

∫ b

x1

g(x) dx .

d) If f and g are Riemann integrable on [a, b] and f is continuous, then
there is an x0 ∈ [a, b] such that∫ b

a
f (x)g(x) dx = f (x0)

∫ b

a
g(x) dx .

5.2.1. Using the connection between integrals and area, evaluate each of the
following integrals.

a)
∫ 2

−2
|x + 1| dx

b)
∫ 2

−2
(|x + 1| + |x |) dx

c)
∫ a

−a

√
a2 − x2 dx, a > 0

d)
∫ 2

0
(5 +

√
2x + x2) dx

5.2.2. a) Suppose that a < b and n ∈ N is even. If f is continuous on [a, b] and∫ b
a f (x)xndx = 0, prove that f (x) = 0 for at least one x ∈ [a, b].

b) Show that part a) might not be true if n is odd.
c) Prove that part a) does hold for odd n when a + b �= 0.

5.2.3. Use Taylor polynomials with three or four nonzero terms to verify the
following inequalities.

a) 0.3095 <
∫ 1

0
sin(x2) dx < 0.3103

(The value of this integral is approximately 0.3102683.)
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b) 1.4571 <
∫ 1

0
ex2

dx < 1.5704

(The value of this integral is approximately 1.4626517.)

5.2.4. Suppose that f : [0,∞) → [0,∞) is integrable on every closed interval
[a, b] ⊂ [0,∞). If

F(x) :=
∫ x

0
e−y2

f (y) dy, x ∈ [0,∞),

then there is a function g : [0,∞) → [0,∞) such that F(x) =∫ x
g(x) f (y) dy for all x ∈ [0,∞).

5.2.5. Prove that if f is integrable on [0, 1] and β > 0, then

lim
n→∞ nα

∫ 1/nβ

0
f (x) dx = 0

for all α < β.
5.2.6. a) Suppose that gn ≥ 0 is a sequence of integrable functions which

satisfies

lim
n→∞

∫ b

a
gn(x) dx = 0.

Show that if f : [a, b] → R is integrable on [a, b], then

lim
n→∞

∫ b

a
f (x)gn(x) dx = 0.

b) Prove that if f is integrable on [0, 1], then

lim
n→∞

∫ 1

0
xn f (x) dx = 0.

5.2.7. Suppose that f is integrable on [a, b], that x0 = a, and that xn is a
sequence of numbers in [a, b] such that xn ↑ b as n → ∞. Prove that

∫ b

a
f (x) dx = lim

n→∞

n∑
k=0

∫ xk+1

xk

f (x) dx .

5.2.8. Let f be continuous on a closed, nondegenerate interval [a, b] and set

M = sup
x∈[a,b]

| f (x)|.
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a) Prove that if M > 0 and p > 0, then for every ε > 0 there is a
nondegenerate interval I ⊂ [a, b] such that

(M − ε)p|I | ≤
∫ b

a
| f (x)|p dx ≤ M p(b − a).

b) Prove that

lim
p→∞

(∫ b

a
| f (x)|p dx

)1/p

= M.

5.2.9. Let f : [a, b] → R, a = x0 < x1 < · · · < xn = b, and suppose that
f (xk+) exists and is finite for k = 0, 1, . . . , n −1 and f (xk−) exists and is
finite for k = 1, . . . , n. Show that if f is continuous on each subinterval
(xk−1, xk), then f is integrable on [a, b] and∫ b

a
f (x) dx =

n∑
k=1

∫ xk

xk−1

f (x) dx .

5.2.10. Prove that if f and g are integrable on [a, b], then so are f ∨ g and f ∧ g
(see Exercise 3.1.8).

5.2.11. Suppose that f : [a, b] → R.

a) If f is not bounded above on [a, b], then given any partition P of
[a, b] and M > 0, there exist t j ∈ [x j−1, x j ] such that S( f, P, t j ) > M .

b) If the Riemann sums of f converge to a finite number I ( f ), as ‖P‖
→ 0, then f is bounded on [a, b].

5.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Let f be integrable on [a, b] and F(x) = ∫ x
a f (t) dt . By Theorem 5.26, F is

continuous on [a, b]. The next result shows that if f is continuous, then F is
continuously differentiable. Thus “indefinite integration” improves the behav-
ior of the function.

5.28 Theorem. [FUNDAMENTAL THEOREM OF CALCULUS].
Let [a, b] be nondegenerate and suppose that f : [a, b] → R.

i) If f is continuous on [a, b] and F(x) = ∫ x
a f (t) dt , then F ∈ C1[a, b] and

d

dx

∫ x

a
f (t) dt := F ′(x) = f (x)

for each x ∈ [a, b].
ii) If f is differentiable on [a, b] and f ′ is integrable on [a, b], then∫ x

a
f ′(t) dt = f (x)− f (a)

for each x ∈ [a, b].
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Proof. i) For x ∈ [a, b], set F(x) = ∫ x
a f (t) dt . By symmetry, it suffices to

show that if f (x0+) = f (x0) for some x0 ∈ [a, b), then

lim
h→0+

F(x0 + h)− F(x0)

h
= f (x0) (11)

(see Definition 4.6). Let ε > 0 and choose a δ > 0 such that x0 ≤ t < x0 + δ

implies | f (t)− f (x0)| < ε. Fix 0 < h < δ. Notice that by Theorem 5.20,

F(x0 + h)− F(x0) =
∫ x0+h

x0

f (t) dt

and that by Theorem 5.16,

f (x0) = 1

h

∫ x0+h

x0

f (x0) dt.

Therefore,

F(x0 + h)− F(x0)

h
− f (x0) = 1

h

∫ x0+h

x0

( f (t)− f (x0)) dt.

Since 0 < h < δ, it follows from Theorem 5.22 and the choice of δ that

∣∣∣∣ F(x0 + h)− F(x0)

h
− f (x0)

∣∣∣∣ ≤ 1

h

∫ x0+h

x0

| f (t)− f (x0)| dt ≤ ε.

This verifies (11) and the proof of part i) is complete.
ii) We may suppose that x = b. Let ε > 0. Since f ′ is integrable, choose a

partition P = {x0, x1, . . . , xn} of [a, b] such that

∣∣∣∣∣∣
n∑

j=1

f ′(t j ) �x j −
∫ b

a
f ′(t) dt

∣∣∣∣∣∣ < ε

for any choice of points t j ∈ [x j−1, x j ]. Use the Mean Value Theorem to
choose points t j ∈ [x j−1, x j ] such that f (x j ) − f (x j−1) = f ′(t j ) �x j . It
follows by telescoping that

∣∣∣∣ f (b)− f (a)−
∫ b

a
f ′(t) dt

∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

( f (x j )− f (x j−1))−
∫ b

a
f ′(t) dt

∣∣∣∣∣∣ < ε.

�
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5.29 Remark. The hypotheses of the Fundamental Theorem of Calculus cannot
be relaxed.

Proof. i) Define f on [−1, 1] by

f (x) =
{

−1 x < 0
1 x ≥ 0;

then f is integrable on [−1, 1], but F(x) := ∫ x
−1 f (x) dx = |x | − 1 is not

differentiable at x = 0.
ii) Define f on [0, 1] by f (x) := x2 sin(1/x2) when x �= 0 and f (0) = 0.

Then f is differentiable on [0, 1], but

f ′(x) = 2x sin

(
1

x2

)
− 2

x
· cos

(
1

x2

)
, x �= 0,

is not even bounded on (0, 1], much less integrable on [0, 1]. �

By the Fundamental Theorem of Calculus, integration is the inverse of differ-
entiation in the following sense. If f ′ is integrable, then

∫ b

a
f ′(x) dx = f (x)

∣∣b
a := f (b)− f (a).

In particular, ∫ b

a
xα dx = xα+1

α + 1

∣∣b
a

for each α ≥ 0, and for each α < 0, provided α �= −1 and [a, b] is a subset
of (0,∞) (see Exercises 4.2.3 and 5.3.7). This result is sometimes called the
Power Rule.

These observations can be used to evaluate many integrals.

5.30 EXAMPLES.

i) Find
∫ 1

0 (3x − 2)2 dx .

ii) Find
∫ π/2

0 (1 + sin x) dx .

Solution. i) Since (3x − 2)2 = 9x2 − 12x + 4, we have by the Power Rule that

∫ 1

0
(3x − 2)2 dx = 3x3 − 6x2 + 4x

∣∣1
0= 1.

ii) Since (cos x)′ = − sin x , we have by the Fundamental Theorem of Calcu-
lus that ∫ π/2

0
(1 + sin x) dx = x − cos x

∣∣π/2
0 = π

2
+ 1. �
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Combining the Product Rule and the Fundamental Theorem of Calculus, we
have another tool for evaluating integrals.

5.31 Theorem. [INTEGRATION BY PARTS].
Suppose that f, g are differentiable on [a, b] with f ′, g′ integrable on [a, b]. Then

∫ b

a
f ′(x)g(x) dx = f (b)g(b)− f (a)g(a)−

∫ b

a
f (x)g′(x) dx .

Proof. By the Product Rule, ( f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x) for x ∈
[a, b]. Since f, g are continuous on [a, b] and f ′, g′ are integrable on [a, b],
it follows that ( f g)′ is a sum of products of integrable functions and, hence,
integrable on [a, b]. Thus, by the Fundamental Theorem of Calculus,

f (b)g(b)− f (a)g(a) =
∫ b

a
f ′(x)g(x) dx +

∫ b

a
f (x)g′(x) dx . �

This rule is sometimes abbreviated as

∫
u dv = uv −

∫
v du,

where it is understood that if w = h(x) for some differentiable function h, then
the Leibnizian differential dw is defined by dw = h′(x) dx .

Integration by parts can be used to reduce the exponent n on an expression
of the form (ax + b)n f (x) when f is integrable.

5.32 EXAMPLE.

Find
∫ π/2

0 x sin x dx .

Solution. Let u = x and dv = sin x dx . Then du = dx and v = − cos x . Hence,
by parts,

∫ π/2

0
x sin x dx = −x cos x

∣∣π/2
0 −

∫ π/2

0
(− cos x) dx = sin x

∣∣π/2
0 = 1. �

Integration by parts is also very effective on integrals involving products of
polynomials and logarithms.
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5.33 EXAMPLE.

Find
∫ 3

1 log x dx .

Solution. Let u = log x and dv = dx . Then du = dx/x and v = x . Hence, by
parts, ∫ 3

1
log x dx = x log x

∣∣3
1 −

∫ 3

1
dx = 3 log 3 − 2. �

Complicated problems can frequently be reduced to simpler ones by changing
variables. The following result shows how to change variables in a Riemann
integral on R.

5.34 Theorem. [CHANGE OF VARIABLES].
Let φ be continuously differentiable on a closed, nondegenerate interval
[a, b]. If

φ′ is nonzero on [a, b], (12)

and if

f is integrable on [c, d] := φ[a, b], (13)

then f ◦ φ · |φ′| is integrable on [a, b], and

∫ d

c
f (t) dt =

∫ b

a
f (φ(x)) · |φ′(x)| dx . (14)

Strategy: By the Mean Value Theorem, hypothesis (12) implies that φ is 1–1
on [a, b]. Hence by Theorem 4.32, φ is strictly monotone on [a, b] and [c, d] :=
φ[a, b] is a closed interval.

Suppose that φ is strictly increasing on [a, b]; that is, |φ′| = φ′ and [c, d] =
[φ(a), φ(b)]. By Theorem 4.32, φ−1 is increasing on [c, d]. Thus if P = {t0,
t1, . . . , tn} is a partition of [c, d] and x j = φ−1(t j ), then P̃ := {x0, x1, . . . , xn} is a
partition of [a, b]. A Riemann sum of the right side of (14) looks like

S( f ◦ φ · |φ′|, P, s j ) =
n∑

j=1

f (φ(s j ))|φ′(s j )| �t j . (15)

On the other hand, a typical term of a Riemann sum of the left side of (14)
looks like

f (u j ) �x j = f (u j )(φ(t j )− φ(t j−1)).

Since φ′, hence φ, is continuous, we can use the Intermediate Value Theorem to
choose s j ∈ [x j−1, x j ] such that u j = φ(s j ), and the Mean Value Theorem to
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choose c j ∈ [x j−1, x j ] such that φ(x j ) − φ(x j−1) = φ′(c j )�x j . It follows that a
Riemann sum the left side of (14) looks like

S( f, P̃, u j ) =
n∑

j=1

f (φ(s j ))φ
′(c j ) �x j .

The only difference between this last sum and (15) is that s j has been replaced
by c j . Since c j and s j both belong to the interval [x j−1, x j ] and φ′ is continuous,
making this replacement should not change S much if the norm of P is small
enough. Hence, a Riemann sum of the left side of (14) is approximately equal
to a Riemann sum of the right side of (14). This means the integrals in (14)
should be equal. Here are the details.

Case 1. Suppose that φ is strictly increasing on [a, b]. Let ε > 0. Since f is
bounded, choose M ∈ (0,∞) such that | f (x)| ≤ M for all x ∈ [c, d]. Since φ′ is
uniformly continuous on [a, b], choose δ > 0 such that

|φ′(s j )− φ′(c j )| < ε

2M(b − a)
;

that is,

| f (φ(s j ))(φ
′(s j )− φ′(c j ))| < ε

2(b − a)
(16)

for all s j , c j ∈ [a, b] with |s j − c j | < δ.
Next, use the Inverse Function Theorem to verify that φ−1 is continuously

differentiable on [c, d]. Thus there is an η > 0 such that if s, c ∈ [c, d] and
|s − c| < η, then |φ−1(s)− φ−1(c)| < δ.

Finally, since f is integrable on [c, d] = [φ(a), φ(b)], choose a partition P =
{t0, t1, . . . tn} of [c, d] such that ‖P‖ < η and

∣∣∣∣∣S( f, P, u j )−
∫ φ(b)

φ(a)
f (t) dt

∣∣∣∣∣ < ε

2
(17)

holds for any choice of u j ∈ [t j−1, t j ].
Set x j = φ−1(t j ) and observe (by the choice of η) that P̃ := {x0, . . . , xn} is a

partition of [a, b] which satisfies ‖P̃‖ < δ.
Let s j ∈ [x j−1, x j ], set u j = φ(s j ), and apply the Mean Value Theorem to

choose c j ∈ [x j−1, x j ] such that φ(x j ) − φ(x j−1) = φ′(c j ) �x j . Then, by the
choices of c j , u j , and t j , we have u j ∈ [t j−1, t j ] and

f (φ(s j ))φ
′(c j ) �x j = f (u j )(φ(x j )− φ(x j−1)) = f (u j )(t j − t j−1).
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Hence, it follows from (16) and (17) that

∣∣∣∣∣∣
n∑

j=1

f (φ(s j ))φ
′(s j ) �x j −

∫ φ(b)

φ(a)
f (t) dt

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

n∑
j=1

f (φ(s j ))(φ
′(s j )− φ′(c j )) �x j

∣∣∣∣∣∣
+
∣∣∣∣∣∣

n∑
j=1

f (u j )(t j − t j−1)−
∫ φ(b)

φ(a)
f (t) dt

∣∣∣∣∣∣
<

ε

2(b − a)

n∑
j=1

�x j + ε

2
< ε.

We obtained this estimate for the fixed partition P of [a, b], but the same steps
also verify this estimate for any partition finer than P . We conclude by Theo-
rem 5.18 that ( f ◦ φ) · |φ′| is integrable on [a, b] and (14) holds.

Case 2. φ is strictly decreasing on [a, b]. Repeat the proof in case 1. The only
changes are P̃ = {φ−1(xn), . . . , φ

−1(x0)} and |φ′| = −φ′. Thus the Mean Value
Theorem implies that

φ(x j−1)− φ(x j ) = φ′(c j )(x j−1 − x j ) = |φ′(c j )| �x j .

Estimating the Riemann sums as above, we again conclude that∫ d

c
f (t) dt =

∫ b

a
f (φ(x)) · |φ′(t)| dt. �

The proof of Theorem 5.34 also establishes the following more familiar form
of the Change of Variables Formula: If φ is C1 on [a, b], if φ′ is never zero on
[a, b], and if f is integrable on φ[a, b], then∫ φ(b)

φ(a)
f (t) dt =

∫ b

a
f (φ(x))φ′(x) dx .

The difficult part of Theorem 5.34 was verifying that f ◦ φ · |φ′| is integrable on
[a, b] when f is integrable on [c, d]. If we assume that f is continuous, the proof
is a lot easier.

5.35 Theorem. [CHANGE OF VARIABLES FOR CONTINUOUS
INTEGRANDS].
If φ is continuously differentiable on a closed, nondegenerate interval [a, b] and
f is continuous on φ([a, b]), then∫ φ(b)

φ(a)
f (t) dt =

∫ b

a
f (φ(x))φ′(x) dx .
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Proof. Set

G(x) :=
∫ x

a
f (φ(t))φ′(t) dt, x ∈ [a, b], and

F(u) :=
∫ u

φ(a)
f (t) dt, u ∈ φ([a, b]),

and observe that if m is the infimum of φ([a, b]), then F(u) = ∫ u
m f (t)dt −∫ φ(a)

m f (t)dt . It follows from the Fundamental Theorem of Calculus that
G ′(x) = f (φ(x))φ′(x) and F ′(u) = f (u). Hence, by the Chain Rule,

d

dx
(G(x)− F(φ(x))) = 0

for all x ∈ [a, b]. It follows from Theorem 4.17ii that G(x) − F(φ(x)) is con-
stant on [a, b]. Evaluation at x = a shows that this constant is zero. Thus
G(x) = F(φ(x)) for all x ∈ [a, b], in particular, when x = b. �

These Change of Variables Formulas can be remembered as a substitution if
we use the Leibnizian differentials introduced above: u = φ(x) implies du =
φ′(x)dx .

Besides the usual applications to finding exact values for integrals of com-
positions of functions, the Change of Variables Formula can also be used to
estimate the value of an integral. Since energy, power, force, and many other
physical quantities can be computed by integration, this technique has practical
implications. For example, it sometimes allows one to use data from a particu-
lar prototype to estimate what would happen if the prototype were redesigned,
without going to the expense of building another prototype.

5.36 EXAMPLE.

Suppose that f is an unknown function which is nonnegative and continuous on
[2, 5]. If data are collected that can be interpreted as

∫ 5
2 f (x)dx = 3, find an

upper bound for the integral

I :=
∫ 2

1
f (x2 + 1) dx .

Solution. Let u = x2 + 1. Then du = 2x dx . Unlike textbook-style problems,
we do not have a du term already in I . However, since x ∈ [1, 2] implies x ≥ 1,
and since f is nonnegative, it is clear that f (x2 + 1) ≤ 2x f (x2 + 1)/2. Therefore,

I =
∫ 2

1
f (x2 + 1) dx ≤ 1

2

∫ 2

1
2x f (x2 + 1) dx = 1

2

∫ 5

2
f (u) du = 3

2
. �
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EXERCISES

5.3.0. Suppose that a < b. Decide which of the following statements are true
and which are false. Prove the true ones and give counterexamples for
the false ones.

a) If f is continuous and nonnegative on [a, b] and g : [a, b] → [a, b] is
differentiable and increasing on [a, b], then

F(x) :=
∫ g(x)

a
f (t) dt

is increasing on [a, b].
b) If f and g are differentiable on [a, b], if f ′ and g′ are Riemann inte-

grable on [a, b], and if f (a) = 0 but g is never zero on [a, b], then

f (x) =
∫ x

a
g(t)

(
f (t)

g(t)

)′
dt +

∫ x

a

f (t)g′(t)
g(t)

dt

for all x ∈ [a, b].
c) If f and g are differentiable on [a, b], and if f ′ and g′ are Riemann

integrable on [a, b], then

∫ b

a
f ′(x)g(x) dx +

∫ b

a
f (x)g′(x) dx = 0

if and only if f (a)g(a) = f (b)g(b).
d) If f and g are continuously differentiable on [a, b], and if h is contin-

uous on [a, b], then

∫ g( f (b))

g( f (a))
h(x) dx =

∫ b

a
h(g( f (x)))g′( f (x)) f ′(x) dx .

5.3.1. If f : R → R is continuous, find F ′(x) for each of the following func-
tions.

a) F(x) =
∫ 1

x2
f (t) dt

b) F(x) =
∫ x3

x2
f (t) dt

c) F(x) =
∫ x cos x

0
t f (t) dt

d) F(x) =
∫ x

0
f (t − x) dt
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Section 5.3 The Fundamental Theorem of Calculus 161

5.3.2. Suppose that f is nonnegative and continuous on [1, 2] and that∫ 2
1 xk f (x)dx = 5 + k2 for k = 0, 1, 2. Prove that each of the follow-

ing statements is correct.

a)
∫ 4

1
f (

√
x) dx ≤ 20

b)
∫ 1

√
2/2

f

(
1

x2

)
dx ≤ 5

2

c)
∫ 1

0
x2 f (x + 1) dx = 2

5.3.3. Suppose that f is integrable on [0.5, 2] and that

∫ 1

0.5
xk f (x) dx =

∫ 2

1
xk f (x) dx + 2k2 = 3 + k2

for k = 0, 1, 2. Compute the exact values of each of the following
integrals.

a)
∫ 1

0
x3 f (x2 + 1) dx

b)
∫ √

3/2

0

x3

√
1 − x2

f
(√

1 − x2
)

dx

5.3.4. Suppose that f and g are differentiable on [0, e] and that f ′ and g′ are
integrable on [0, e].
a) If

∫ e
1 f (x)/x dx < f (e), prove that

∫ e

1
f ′(x) log x dx > 0.

b) If f (0) = f (1) = 0, prove that

∫ 1

0
ex ( f (x)+ f ′(x)) dx = 0.

c) If 0 ∈ { f (0), g(0)} ∩ { f (e), g(e)}, prove that

∫ e

0
f (x)g′(x) dx = −

∫ e

0
g(x) f ′(x) dx .
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162 Chapter 5 Integrability on R

5.3.5. Use the First Mean Value Theorem for Integrals to prove the following
version of the Mean Value Theorem for Derivatives. If f ∈ C1[a, b],
then there is an x0 ∈ [a, b] such that

f (b)− f (a) = (b − a) f ′(x0).

5.3.6. If f is continuous on [a, b] and there exist numbers α �= β such that

α

∫ c

a
f (x) dx + β

∫ b

c
f (x) dx = 0

holds for all c ∈ (a, b), prove that f (x) = 0 for all x ∈ [a, b].
5.3.7 . This exercise is used in Sections 5.4 and 6.1. Define L : (0,∞) → R by

L(x) =
∫ x

1

dt

t
.

a) Prove that L is differentiable and strictly increasing on (0,∞), with
L ′(x) = 1/x and L(1) = 0.

b) Prove that L(x) → ∞ as x → ∞ and L(x) → −∞ as x → 0+. (You
may wish to prove

L(2n) =
n∑

k=1

∫ 2k

2k−1

dt

t
>

n∑
k=1

2−k
(

2k − 2k−1
)

= n

2

for all n ∈ N.)
c) Using the fact that (xq)′ = qxq−1 for x > 0 and q ∈ Q (see Exer-

cise 4.2.7), prove that L(xq) = q L(x) for all q ∈ Q and x > 0.
d) Prove that L(xy) = L(x)+ L(y) for all x, y ∈ (0,∞).
e) Suppose that e = limn→∞(1 + 1/n)n exists. (It does—see Exam-

ple 4.22.) Use l’Hôpital’s Rule to show that L(e) = 1. [L(x) is the
natural logarithm function log x .]

5.3.8 . This exercise was used in Section 4.3. Let E = L−1, where L is defined
in Exercise 5.3.7.

a) Use the Inverse Function Theorem to show that E is differentiable
and strictly increasing on R with E ′(x)= E(x), E(0)=1, and E(1)=e.

b) Prove that E(x) → ∞ as x → ∞ and E(x) → 0 as x → −∞.
c) Prove that E(xq) = (E(x))q and E(q) = eq for all q ∈ Q and x ∈ R.
d) Prove that E(x + y) = E(x)E(y) for all x, y ∈ R.
e) For each α ∈ R define eα = E(α). Let x > 0 and define xα =

eα log x := E(αL(x)). Prove that 0 < x < y implies xα < yα for α > 0
and xα > yα for α < 0. Also prove that

xα+β = xαxβ, x−α = 1

xα
, and (xα)′ = αxα−1

for all α, β ∈ R and x > 0.
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Section 5.4 Improper Riemann Integration 163

5.3.9. Suppose that f : [a, b] → R is continuously differentiable and 1–1 on
[a, b]. Prove that

∫ b

a
f (x) dx +

∫ f (b)

f (a)
f −1(x) dx = b f (b)− a f (a).

5.3.10. Suppose that φ is C1 on [a, b] and f is integrable on [c, d] := φ[a, b]. If
φ′ is never zero on [a, b], prove that f ◦ φ is integrable on [a, b].

5.3.11. Let q ∈ Q. Suppose that a < b, 0 < c < d, and that f : [a, b] → [c, d].
If f is integrable on [a, b], then prove that

(∫ x

a
f q(t) dt

)′
= f q(x)

for all x ∈ [a, b].
5.3.12. For each n ∈ N, define

an :=
(
(2n)!
n!nn

)1/n

.

Prove that an → 4/e.

5.4 IMPROPER RIEMANN INTEGRATION

To extend the Riemann integral to unbounded intervals or unbounded func-
tions, we begin with an elementary observation.

5.37 Remark. If f is integrable on [a, b], then

∫ b

a
f (x) dx = lim

c→a+

(
lim

d→b−

∫ d

c
f (x) dx

)
.

Proof. By Theorem 5.26,

F(x) =
∫ x

a
f (t) dt

is continuous on [a, b]. Thus

∫ b

a
f (x) dx = F(b)− F(a) = lim

c→a+( lim
d→b−(F(d)− F(c)))

= lim
c→a+

(
lim

d→b−

∫ d

c
f (x) dx

)
. �

This leads to the following generalization of the Riemann integral.
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164 Chapter 5 Integrability on R

5.38 Definition.

Let (a, b) be a nonempty, open (possibly unbounded) interval and f : (a, b)
→ R.

i) f is said to be locally integrable on (a, b) if and only if f is integrable on
each closed subinterval [c, d] of (a, b).

ii) f is said to be improperly integrable on (a, b) if and only if f is locally
integrable on (a, b) and

∫ b

a
f (x) dx := lim

c→a+

(
lim

d→b−

∫ d

c
f (x) dx

)
(18)

exists and is finite. This limit is called the improper (Riemann) integral of f
over (a, b).

5.39 Remark. The order of the limits in (18) does not matter. In particular, if the
limit in (18) exists, then

∫ b

a
f (x) dx = lim

d→b−

(
lim

c→a+

∫ d

c
f (x) dx

)
.

Proof. Let x0 ∈ (a, b) be fixed. By Theorems 5.20 and 3.8,

lim
c→a+

(
lim

d→b−

∫ d

c
f (x) dx

)
= lim

c→a+

(∫ x0

c
f (x) dx + lim

d→b−

∫ d

x0

f (x) dx

)

= lim
c→a+

∫ x0

c
f (x) dx + lim

d→b−

∫ d

x0

f (x) dx

= lim
d→b−

(
lim

c→a+

∫ d

c
f (x) dx

)
.

�

Thus we shall use the notation

lim
c→a+
d→b−

∫ d

c
f (x) dx

to represent the limit in (18). If the integral is not improper at one of the
endpoints—for example, if f is Riemann integrable on closed subintervals of
(a, b]—we shall say that f is improperly integrable on (a, b] and simplify the
notation even further by writing

∫ b

a
f (x) dx = lim

c→a+

∫ b

c
f (x) dx .
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Section 5.4 Improper Riemann Integration 165

The following example shows that an improperly integrable function need not
be bounded.

5.40 EXAMPLE.

Show that f (x) = 1/
√

x is improperly integrable on (0, 1].
Solution. By definition,

∫ 1

0

1√
x

dx = lim
a→0+

∫ 1

a

1√
x

dx = lim
a→0+(2 − 2

√
a) = 2. �

The following example shows that a function can be improperly integrable on
an unbounded interval.

5.41 EXAMPLE.

Show that f (x) = 1/x2 is improperly integrable on [1,∞).

Solution. By definition,

∫ ∞

1

1

x2
dx = lim

d→∞

∫ d

1

1

x2
dx = lim

d→∞

(
1 − 1

d

)
= 1. �

Because an improper integral is a limit of Riemann integrals, many of the
results we proved earlier in this chapter have analogues for the improper
integral. The next two results illustrate this principle.

5.42 Theorem. If f, g are improperly integrable on (a, b) and α, β ∈ R, then
α f + βg is improperly integrable on (a, b) and

∫ b

a
(α f (x)+ βg(x)) dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx .

Proof. By Theorem 5.19 (the Linear Property for Riemann Integrals),

∫ d

c
(α f (x)+ βg(x)) dx = α

∫ d

c
f (x) dx + β

∫ d

c
g(x) dx

for all a < c < d < b. Taking the limit as c → a+ and d → b− finishes the
proof. �

5.43 Theorem. [COMPARISON THEOREM FOR IMPROPER INTEGRALS].
Suppose that f, g are locally integrable on (a, b). If 0 ≤ f (x) ≤ g(x) for x ∈
(a, b), and g is improperly integrable on (a, b), then f is improperly integrable
on (a, b) and ∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx .
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166 Chapter 5 Integrability on R

Proof. Fix c ∈ (a, b). Let F(d) = ∫ d
c f (x)dx and G(d) = ∫ d

c g(x)dx for d ∈
[c, b). By the Comparison Theorem for Integrals, F(d) ≤ G(d). Since f ≥ 0,
the function F is increasing on [c, b]; hence F(b−) exists (see Theorem 4.18).
Thus, by definition, f is improperly integrable on (c, b) and

∫ b

c
f (x) dx = F(b−) ≤ G(b−) =

∫ b

c
g(x) dx .

A similar argument works for the case c → a+. �

This test is frequently used in conjunction with the following inequalities:
| sin x | ≤ |x | for all x ∈ R (see Appendix B); for every α > 0 there exists a
constant Bα > 1 such that | log x | ≤ xα for all x ≥ Bα (see Exercise 4.4.6). Here
are two typical examples.

5.44 EXAMPLE.

Prove that f (x) = sin x/
√

x3 is improperly integrable on (0, 1].

Proof. Since f is continuous on (0, 1], f is locally integrable there as well.
Since f is nonnegative on (0, 1], it is clear that 0 ≤ f (x) = | sin x/

√
x3| ≤

|x |/x3/2 = 1/
√

x on (0, 1]. Since this last function is improperly integrable
on (0, 1] by Example 5.40, it follows from the Comparison Test that f (x) is
improperly integrable on (0, 1]. �

5.45 EXAMPLE.

Prove that f (x) = log x/
√

x5 is improperly integrable on [1,∞).

Proof. Since f is continuous on (0,∞), f is integrable on [1,C] for any
C ∈ [1,∞). By Exercise 4.4.6, there is a constant C > 1 such that 0 ≤ f (x) =
log x/

√
x5 ≤ x1/2/x5/2 = 1/x2 for x ≥ C . Since this last function is improp-

erly integrable on [1,∞) by Example 5.41, it follows from the Comparison
Theorem that f (x) is improperly integrable on [1,∞). �

Although improperly integrable functions are not closed under multiplication
(see Exercise 5.4.5), the Comparison Theorem can be used to show that some
kinds of products are improperly integrable.

5.46 Remark. If f is bounded and locally integrable on (a, b) and |g| is improp-
erly integrable on (a, b), then | f g| is improperly integrable on (a, b).

Proof. Let M = supx∈(a,b) | f (x)|. Then 0 ≤ | f (x)g(x)| ≤ M |g(x)| for all
x ∈ (a, b). Hence, by Theorem 5.43, | f g| is improperly integrable on (a, b). �

For the Riemann integral, we proved that | f | is integrable when f is (see
Theorem 5.22). This is not the case for the improper integral (see Example 5.49
below). For this reason we introduce the following concepts.
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Section 5.4 Improper Riemann Integration 167

5.47 Definition.

Let (a, b) be a nonempty, open interval and f : (a, b) → R.

i) f is said to be absolutely integrable on (a, b) if and only if f is locally inte-
grable and | f | is improperly integrable on (a, b).

ii) f is said to be conditionally integrable on (a, b) if and only if f is improperly
integrable but not absolutely integrable on (a, b).

The following result, an analogue of Theorem 5.22 for absolute integrable
functions, shows that absolute integrability implies improper integrability.

5.48 Theorem. If f is absolutely integrable on (a, b), then f is improperly inte-
grable on (a, b) and ∣∣∣∣

∫ b

a
f (x) dx

∣∣∣∣ ≤
∫ b

a
| f (x)| dx .

Proof. Since 0 ≤ | f (x)| + f (x) ≤ 2| f (x)|, we have by Theorem 5.43 that
| f | + f is improperly integrable on [a, b]. Hence, by Theorem 5.42, so is
f = (| f | + f )− | f |. Moreover,

∣∣∣∣
∫ d

c
f (x) dx

∣∣∣∣ ≤
∫ d

c
| f (x)| dx

for every a < c < d < b. We finish the proof by taking the limit of this last
inequality as c → a+ and d → b−. �

The converse of Theorem 5.48, however, is false.

5.49 EXAMPLE.

Prove that the function sin x/x is conditionally integrable on [1,∞).

Proof. Integrating by parts, we have

∫ d

1

sin x

x
dx = −cos x

x

∣∣d
1 −

∫ d

1

cos x

x2
dx

= cos(1)− cos d

d
−
∫ d

1

cos x

x2
dx .

Since 1/x2 is absolutely integrable on [1,∞), it follows from Remark 5.46 that
cos x/x2 is absolutely integrable on [1,∞). Therefore, sin x/x is improperly
integrable on [1,∞) and

∫ ∞

1

sin x

x
dx = cos(1)−

∫ ∞

1

cos x

x2
dx .
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168 Chapter 5 Integrability on R

To show that sin x/x is not absolutely integrable on [1,∞), notice that

∫ nπ

1

| sin x |
x

dx ≥
n∑

k=2

∫ kπ

(k−1)π

| sin x |
x

dx

≥
n∑

k=2

1

kπ

∫ kπ

(k−1)π
| sin x | dx

=
n∑

k=2

2

kπ
= 2

π

n∑
k=2

1

k

for each n ∈ N. Since

n∑
k=2

1

k
≥

n∑
k=2

∫ k+1

k

1

x
dx =

∫ n+1

2

1

x
dx = log(n + 1)− log 2 → ∞

as n → ∞, it follows from the Squeeze Theorem that

lim
n→∞

∫ nπ

1

| sin x |
x

dx = ∞.

Thus, sin x/x is not absolutely integrable on [1,∞). �

EXERCISES

5.4.0. Suppose that a < b. Decide which of the following statements are true
and which are false. Prove the true ones and give counterexamples for
the false ones.

a) If f is bounded on [a, b], if g is absolutely integrable on (a, b), and
if | f (x)| ≤ g(x) for all x ∈ (a, b), then f is absolutely integrable on
(a, b).

b) Suppose that h is absolutely integrable on (a, b). If f is continuous on
(a, b), if g is continuous and never zero on [a, b], and if | f (x)| ≤ h(x)
for all x ∈ [a, b], then f/g is absolutely integrable on (a, b).

c) If f : (a, b) → [0,∞) is continuous and absolutely integrable on
(a, b) for some a, b ∈ R, then

√
f is absolutely integrable on (a, b).

d) If f and g are absolutely integrable on (a, b), then max{ f, g} and
min{ f, g} are both absolutely integrable on (a, b).

5.4.1. Evaluate the following improper integrals.

a)
∫ ∞

1

1 + x

x3
dx

b)
∫ 0

−∞
x2ex3

dx

168



Section 5.4 Improper Riemann Integration 169

c)
∫ π/2

0

cos x
3
√

sin x
dx

d)
∫ 1

0
log x dx

5.4.2. For each of the following, find all values of p ∈ R for which f is improp-
erly integrable on I .

a) f (x) = 1/x p, I = (1,∞)

b) f (x) = 1/x p, I = (0, 1)
c) f (x) = 1/(x logp x), I = (e,∞)

d) f (x) = 1/(1 + x p), I = (0,∞)

e) f (x) = loga x/x p, where a > 0 is fixed, and I = (1,∞)

5.4.3. Let p > 0. Show that sin x/x p is improperly integrable on [1,∞) and
that cos x/ logp x is improperly integrable on [e,∞).

5.4.4. Decide which of the following functions are improperly integrable on I .

a) f (x) = sin x, I = (0,∞)

b) f (x) = 1/x2, I = [−1, 1]
c) f (x) = x−1 sin(x−1), I = (1,∞)

d) f (x) = log(sin x), I = (0, 1)
e) f (x) = (1 − cos x)/x2, I = (0,∞)

5.4.5. Use the examples provided by Exercise 5.4.2b to show that the product
of two improperly integrable functions might not be improperly inte-
grable.

5.4.6. Suppose that f, g are nonnegative and locally integrable on [a, b)
and that

L := lim
x→b−

f (x)

g(x)

exists as an extended real number.

a) Show that if 0 ≤ L < ∞ and g is improperly integrable on [a, b), then
so is f .

b) Show that if 0 < L ≤ ∞ and g is not improperly integrable on [a, b),
then neither is f .

5.4.7. a) Suppose that f is improperly integrable on [0,∞). Prove that if L =
limx→∞ f (x) exists, then L = 0.

b) Let

f (x) =
{

1 n ≤ x < n + 2−n, n ∈ N
0 otherwise.

Prove that f is improperly integrable on [0,∞) but limx→∞ f (x)
does not exist.

169



170 Chapter 5 Integrability on R

5.4.8. Prove that if f is absolutely integrable on [1,∞), then

lim
n→∞

∫ ∞

1
f (xn) dx = 0.

5.4.9. Assuming e = limn→∞
∑n

k=0 1/k! (see Example 7.45), prove that

lim
n→∞

(
1

n!
∫ ∞

1
xne−x dx

)
= 1.

5.4.10. a) Prove that ∫ π/2

0
e−a sin x dx ≤ 2

a

for all a > 0.
b) What happens if cos x replaces sin x?

∗5.5 FUNCTIONS OF BOUNDED VARIATION

This section uses no material from any other enrichment section.
In this section we study functions which do not wiggle too much. These

functions, which play a prominent role in the theory of Fourier series (see
Sections ∗14.3 and ∗14.4) and probability theory, are important tools for
theoretical as well as applied mathematics.

Let φ : [a, b] → R. To measure how much φ wiggles on an interval [a, b], set

V (φ, P) =
n∑

j=1

|φ(x j )− φ(x j−1)|

for each partition P = {x0, x1, . . . , xn} of [a, b]. The variation of φ is defined by

Var(φ) := sup{V (φ, P) : P is a partition of [a, b]}. (19)

5.50 Definition.

Let [a, b] be a closed, nondegenerate interval and φ : [a, b] → R. Then φ is
said to be of bounded variation on [a, b] if and only if Var(φ) < ∞.

The following three remarks show how the collection of functions of bounded
variation is related to other collections of functions we have studied.

5.51 Remark. If φ ∈ C1[a, b], then φ is of bounded variation on [a, b]. However,
there exist functions of bounded variation which are not continuously differen-
tiable.

Proof. Let P = {x0, x1, . . . , xn} be a partition of [a, b]. By the Extreme Value
Theorem, there is an M > 0 such that |φ′(x)| ≤ M for all x ∈ [a, b]. Therefore,
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it follows from the Mean Value Theorem that for each k between 1 and n there
is a point ck between xk−1 and xk such that

|φ(xk)− φ(xk−1)| = |φ′(ck)|(xk − xk−1) ≤ M(xk − xk−1).

By telescoping, we obtain V (φ, P) ≤ M(b − a) for any partition P of [a, b].
Therefore,

Var(φ) ≤ M(b − a).

On the other hand, x2 sin(1/x) is of bounded variation on [0, 1] (see Exer-
cise 5.5.2) but does not belong to C1[0, 1] (see Example 4.8). �

5.52 Remark. If φ is monotone on [a, b], then φ is of bounded variation on [a, b].
However, there exist functions of bounded variation which are not monotone.

Proof. Let φ be increasing on [a, b] and P = {x0, x1, . . . , xn} be a partition of
[a, b]. Then, by telescoping,

n∑
j=1

|φ(x j )− φ(x j−1)| =
n∑

j=1

(φ(x j )− φ(x j−1))

= φ(xn)− φ(x0) = φ(b)− φ(a) =: M < ∞.

Thus, Var( f ) = M . On the other hand, by Remark 5.51, φ(x) = x2 is of
bounded variation on [−1, 1]. �

5.53 Remark. If φ is of bounded variation on [a, b], then φ is bounded on [a, b].
However, there exist bounded functions which are not of bounded variation.

Proof. Let x ∈ [a, b] and note by definition that

|φ(x)− φ(a)| ≤ |φ(x)− φ(a)| + |φ(b)− φ(x)| ≤ Var(φ).

Hence, by the Triangle Inequality,

|φ(x)| ≤ |φ(a)| + Var(φ).

To find a bounded function which is not of bounded variation, consider

φ(x) :=
{

sin(1/x) x �= 0
0 x = 0.

Clearly, φ is bounded by 1. On the other hand, if

x j =
⎧⎨
⎩

0 j = 0
2

(n − j + 1)π
1 ≤ j ≤ n,
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then
n∑

j=1

|φ(x j )− φ(x j−1)| = n → ∞

as n → ∞. Thus φ is not of bounded variation on [0, 2/π]. �

The following result and Exercise 5.5.3 are partial answers to the question, Is
the class of functions of bounded variation preserved by algebraic operations?

5.54 Theorem. If φ and ψ are of bounded variation on a closed interval [a, b],
then so are φ + ψ and φ − ψ .

Proof. Let a = x0 < x1 < · · · < xn = b. Then

n∑
j=1

|φ(x j )± ψ(x j ) − (φ(x j−1)± ψ(x j−1))|

≤
n∑

j=1

|φ(x j )− φ(x j−1)| +
n∑

j=1

|ψ(x j )− ψ(x j−1)|

≤ Var(φ)+ Var(ψ).

Therefore, Var(φ ± ψ) ≤ Var(φ)+ Var(ψ). �

It turns out that there is a close connection between functions of bounded
variation and monotone functions (see Corollary 5.57 below). To make this
connection clear, we introduce the following concept.

5.55 Definition.

Let φ be of bounded variation on a closed interval [a, b]. The total variation of
φ is the function Φ defined on [a, b] by

Φ(x) := sup

⎧⎨
⎩

k∑
j=1

|φ(x j )− φ(x j−1)| : {x0, x1, . . . , xk} is a partition of [a, x]
⎫⎬
⎭ .

5.56 Theorem. Let φ be of bounded variation on [a, b] and Φ be its total varia-
tion. Then

i) |φ(y)− φ(x)| ≤ Φ(y)−Φ(x) for all a ≤ x < y ≤ b,
ii) Φ and Φ − φ are increasing on [a, b], and

iii) Var(φ) ≤ Var(Φ).
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Proof. i) Let x < y belong to [a, b] and {x0, x1, . . . , xk} be a partition of
[a, x]. Then {x0, x1, . . . , xk, y} is a partition of [a, y], and we have by Defi-
nition 5.55 that

k∑
j=1

|φ(x j )− φ(x j−1)| ≤
k∑

j=1

|φ(x j )− φ(x j−1)| + |φ(y)− φ(x)| ≤ Φ(y).

Taking the supremum of this inequality over all partitions {x0, x1, . . . , xk} of
[a, x], we obtain

Φ(x) ≤ Φ(x)+ |φ(y)− φ(x)| ≤ Φ(y).

ii) By the Monotone Property of Suprema, Φ is increasing on [a, b]. To
show that Φ − φ also increases, suppose that a ≤ x < y ≤ b. By part i),

φ(y)− φ(x) ≤ |φ(y)− φ(x)| ≤ Φ(y)−Φ(x).

Therefore, Φ(x)− φ(x) ≤ Φ(y)− φ(y).
iii) Let P = {x0, x1, . . . , xn} be a partition of [a, b]. By part i) and Defini-

tion 5.50,

n∑
j=1

|φ(x j )− φ(x j−1)| ≤
n∑

j=1

|Φ(x j )−Φ(x j−1)| ≤ Var(Φ).

Taking the supremum of this inequality over all partitions P of [a, b], we
obtain Var(φ) ≤ Var(Φ). �

5.57 Corollary. Let [a, b] be a closed interval. Then φ is of bounded variation on
[a, b] if and only if there exist increasing functions f, g on [a, b] such that

φ(x) = f (x)− g(x), x ∈ [a, b].

Proof. Suppose that φ is of bounded variation and let Φ represent the total
variation of φ. Set f = Φ and g = Φ − φ. By Theorem 5.56, f and g are
increasing, and by construction, φ = f − g.

Conversely, suppose that φ = f − g for some increasing f, g on [a, b]. Then
by Remark 5.52 and Theorem 5.54, φ is of bounded variation on [a, b]. �

In particular, if f is of bounded variation on [a, b], then

i) f (x+) exists for each x ∈ [a, b) and f (x−) exists for each x ∈ (a, b] (see
Theorem 4.18),

ii) f has no more than countably many points of discontinuity in [a, b] (see
Theorem 4.19), and

iii) f is integrable on [a, b] (see Exercise 5.1.8).
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EXERCISES

5.5.1. a) Show that 4k/(4k2 − 1) > 1/k for k ∈ N.
b) Prove that

2n−1∑
k=1

1

k
>

∫ 2n

1

1

x
dx = log(2n)

for all n ∈ N.
c) Prove that

φ(x) =
⎧⎨
⎩x2 sin

1

x2
x �= 0

0 x = 0

is not of bounded variation on [0, 1].

5.5.2. a) Show that (8k2 + 2)/(4k2 − 1)2 < 1/k2 for k = 2, 3, . . . .
b) Prove that

n∑
k=1

1

k2
≤ 1 +

∫ n

1

1

x2
dx = 2 − 1

n

for n ∈ N.
c) Prove that

φ(x) =
⎧⎨
⎩x2 sin

1

x
x �= 0

0 x = 0

is of bounded variation on [0, 1].

5.5.3 . This exercise is used in Section ∗14.3. Suppose that φ and ψ are of
bounded variation on a closed interval [a, b].
a) Prove that αφ is of bounded variation on [a, b] for every α ∈ R.
b) Prove that φψ is of bounded variation on [a, b].
c) If there is an ε0 > 0 such that

φ(x) ≥ ε0, x ∈ [a, b],
prove that 1/φ is of bounded variation on [a, b].

5.5.4. Suppose that φ is of bounded variation on a closed, bounded interval
[a, b]. Prove that φ is continuous on (a, b) if and only if φ is uniformly
continuous on (a, b).

5.5.5. a) If φ is continuous on a closed nondegenerate interval [a, b], differ-
entiable on (a, b), and if φ′ is bounded on (a, b), prove that φ is of
bounded variation on [a, b].

b) Show that φ(x) = 3
√

x is of bounded variation on [−1, 1] but φ′ is
unbounded on (−1, 1).
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5.5.6. Let P be a polynomial of degree N .

a) Show that P is of bounded variation on any closed interval [a, b].
b) Obtain an estimate for Var(P) on [a, b], using values of the derivative

P ′(x) at no more than N points.

5.5.7. Let φ be a function of bounded variation on [a, b] and Φ be its total
variation function. Prove that if Φ is continuous at some point x0 ∈
(a, b), then φ is continuous at x0.

5.5.8 . This exercise is used in Section ∗14.4. If f is integrable on [a, b],
prove that

F(x) =
∫ x

a
f (t) dt

is of bounded variation on [a, b].
5.5.9. Suppose that f ′ exists and is integrable on [a, b]. Prove that f is of

bounded variation and

Var( f ) =
∫ b

a
| f ′(x)| dx .

If f ′ is bounded rather than integrable, how do the upper and lower
integrals of f ′ compare to the variation of f ?

∗5.6 CONVEX FUNCTIONS

The last two results of this section use enrichment Theorems 4.19 and 4.23.
In this section we examine another collection of functions which is impor-

tant for certain applications, especially for Fourier analysis, functional analysis,
numerical analysis, and probability theory.

5.58 Definition.

Let I be an interval and f : I → R.

i) f is said to be convex on I if and only if

f (αx + (1 − α)y) ≤ α f (x)+ (1 − α) f (y)

for all 0 ≤ α ≤ 1 and all x, y ∈ I .
ii) f is said to be concave on I if and only if − f is convex on I .

Notice that, by definition, a function f is convex on an interval I if and only
if f is convex on every closed subinterval of I .

It is easy to check that f (x) = mx + b is both convex and concave on any
interval (see also Exercise 5.6.3) but in general it is difficult to apply Defini-
tion 5.58 directly. For this reason, we include the following simple geometric
characterizations of convexity.
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x

y

x0

y = f (x)

dc

y0

f (x0)

FIGURE 5.5

5.59 Remark. Let I be an interval and f : I → R. Then f is convex on I if and
only if given any [c, d] ⊆ I , the chord through the points (c, f (c)), (d, f (d)) lies
on or above the graph of y = f (x) for all x ∈ [c, d]. (See Figure 5.5.)

Proof. Suppose that f is convex on I and that x0 ∈ [c, d]. Choose 0 ≤ α ≤ 1
such that x0 = αc + (1 − α)d. The chord from (c, f (c)) to (d, f (d)) has slope
( f (d) − f (c))/(d − c). Hence, the point on this chord which has the form
(x0, y0) must satisfy y0 = α f (c) + (1 − α) f (d). Since f is convex, it follows
that f (x0) ≤ y0; that is, the point (x0, y0) lies on or above the point (x0, f (x0)).
A similar argument establishes the reverse implication. �

Thus both f (x) = |x | and f (x) = x2 are convex on any interval.

5.60 Remark. A function f is convex on a nonempty, open interval (a, b) if and
only if the slope of the chord always increases on (a, b); that is, if and only if

a < c < x < d < b implies
f (x)− f (c)

x − c
≤ f (d)− f (x)

d − x
.

Proof. Fix a < c < x < d < b and let λ(x) be the equation of the chord to
f through the points (c, f (c)) and (d, f (d)). If f is convex, then f (x) ≤ λ(x)
(see Figure 5.6). Therefore,

f (x)− f (c)

x − c
≤ λ(x)− λ(c)

x − c
= λ(d)− λ(x)

d − x
≤ f (d)− f (x)

d − x
.
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x

y

x

y = f (x)

dc

y =   (x)

Chords

FIGURE 5.6

Conversely, if f is not convex, then λ(x) < f (x) for some x ∈ (c, d). It follows
that

f (x)− f (c)

x − c
>
λ(x)− λ(c)

x − c
= λ(d)− λ(x)

d − x
>

f (d)− f (x)

d − x
.

Therefore, the slope of the chord does not increase on (a, b). �

This leads us to a characterization of differentiable convex functions.

5.61 Theorem. Suppose that f is differentiable on a nonempty, open interval I.
Then f is convex on I if and only if f ′ is increasing on I.

Proof. Suppose that f is convex on I =: (a, b) and that c, d ∈ (a, b) satisfy
c < d. Choose h > 0 so small that c + h < d and d + h < b. Then by
Remark 5.60,

f (c + h)− f (c)

h
≤ f (d + h)− f (d)

h
.

In particular, f ′(c) ≤ f ′(d).
Conversely, suppose that f ′ is increasing on (a, b). Let a < c < x < d < b

and use the Mean Value Theorem to choose x0 (between c and x) and x1
(between x and d) such that

f (x)− f (c)

x − c
= f ′(x0) and

f (d)− f (x)

d − x
= f ′(x1).
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Since x0 < x1, it follows that f ′(x0) ≤ f ′(x1). In particular, we conclude by
Remark 5.60 that f is convex on (a, b). �

Combining Theorems 4.17 and 5.61, we obtain the usual convexity criterion
in terms of the second derivative: If f is twice differentiable on (a, b), then f
is convex on (a, b) if and only if f ′′(x) ≥ 0 for all x ∈ (a, b). In particular,
convexity is what elementary calculus texts call concave upward and concavity
is what elementary calculus texts call concave downward.

On open intervals, convex functions are always continuous. (The statements
and proofs of the next two results come from Zygmund [15].)

5.62 Theorem. If f is convex on some nonempty, open interval I, then f is con-
tinuous on I.

Proof. Let x0 ∈ I =: (a, b). By symmetry, it suffices to show that f (x) →
f (x0) as x → x0+. Let a < c < x0 < x < d < b, y = g(x) represent the
equation of the chord through (c, f (c)), (x0, f (x0)), and y = h(x) represent
the equation of the chord through (x0, f (x0)), (d, f (d)). Since f is convex, we
have by Remark 5.59 that f (x) ≤ h(x). Since f (x0) lies on or below the chord
from (c, f (c)) to (x, f (x)), we also have that g(x) ≤ f (x). Consequently,

g(x) ≤ f (x) ≤ h(x), x ∈ (x0, b).

Both chords y = g(x) and y = h(x) pass through the point (x0, f (x0)), so
g(x) → f (x0) and h(x) → f (x0) as x → x0+. Hence, it follows from the
Squeeze Theorem that f (x) → f (x0) as x → x0+. �

Theorem 5.62 does not hold for closed intervals [a, b]. Indeed, the function

f (x) :=
{

0 0 ≤ x < 1
1 x = 1

is convex on [0, 1] but not continuous there.
A function f is said to have a proper maximum (respectively, proper mini-

mum) at x0 if and only if there exists a δ > 0 such that f (x) < f (x0) [respec-
tively, f (x) > f (x0)] for all 0 < |x − x0| < δ. As far as proper extrema are
concerned, convex functions behave like strictly increasing functions.

5.63 Theorem.

i) If f is convex on a nonempty, open interval (a, b), then f has no proper maxi-
mum on (a, b).

ii) If f is convex on [0,∞) and has a proper minimum, then f (x) → ∞ as
x → ∞.

Proof. i) Suppose that x0 ∈ (a, b) and that f (x0) is a proper maximum of
f . Then there exist c < x0 < d such that f (x) < f (x0) for c < x < d. In

178



Section 5.6 Convex Functions 179

particular, the chord through (c, f (c)), (d, f (d))must lie below f (x0) for c, d
near x0, a contradiction.

ii) Suppose that x0 ∈ (a, b) and that f (x0) is a proper minimum of f . Fix
x1 > x0. Let y = g(x) represent the equation of the chord through (x0, f (x0))

and (x1, f (x1)). Since f (x0) is a proper minimum, f (x1) > f (x0); hence, g
has positive slope. Moreover, by the proof of Theorem 5.62, g(x) ≤ f (x) for
all x ∈ (x1,∞). Since g(x) → ∞ as x → ∞, we conclude that f (x) → ∞ as
x → ∞. �

Another important result about convex functions addresses the question,
What happens when we interchange the order of a convex function and an inte-
gral sign?

5.64 Theorem. [JENSEN’S INEQUALITY].
Let φ be convex on a closed interval [a, b] and f : [0, 1] → [a, b]. If f and φ ◦ f
are integrable on [0, 1], then

φ

(∫ 1

0
f (x) dx

)
≤
∫ 1

0
(φ ◦ f )(x) dx . (20)

Proof. Set

c =
∫ 1

0
f (x) dx

and observe that

φ

(∫ 1

0
f (x) dx

)
= φ(c)+ s

(∫ 1

0
f (x) dx − c

)
(21)

for all s ∈ R. (Note: Since a ≤ f (x) ≤ b for each x ∈ [0, 1], c must belong
to the interval [a, b] by the Comparison Theorem for Integrals. Thus φ(c) is
defined.)

Let

s = sup
x∈[a,c)

φ(c)− φ(x)

c − x
.

By Remark 5.60, s ≤ (φ(u)− φ(c))/(u − c) for all u ∈ (c, b]; that is,

φ(c)+ s(u − c) ≤ φ(u) (22)

for all u ∈ [c, b]. On the other hand, if u ∈ [a, c), we have by the definition of
s that

s ≥ φ(c)− φ(u)

c − u
.
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Thus (22) holds for all u ∈ [a, b]. Applying (22) to u = f (x), we obtain

φ(c)+ s( f (x)− c) ≤ (φ ◦ f )(x).

Integrating this inequality as x runs from 0 to 1, we obtain

φ(c)+ s

(∫ 1

0
f (x) dx − c

)
≤
∫ 1

0
(φ ◦ f )(x) dx .

Combining this inequality with (21), we conclude that (20) holds. �

What about differentiability of convex functions? To answer this question we
introduce the following concepts (compare with Definition 4.6).

5.65 Definition.

Let f : (a, b) → R and x ∈ (a, b).

i) f is said to have a right-hand derivative at x if and only if

DR f (x) := lim
h→0+

f (x + h)− f (x)

h
,

exists as an extended real number.
ii) f is said to have a left-hand derivative at x if and only if

DL f (x) := lim
h→0−

f (x + h)− f (x)

h
,

exists as an extended real number.

The following result is a simple consequence of the definition of differen-
tiability and the characterization of two-sided limits by one-sided limits (see
Theorem 3.14).

5.66 Remark. A real function f is differentiable at x if and only if both DR f (x)
and DL f (x) exist, are finite, and are equal, in which case f ′(x) = DR f (x) =
DL f (x).

The next result shows that the left-hand and right-hand derivatives of a con-
vex function are remarkably well-behaved.

5.67 Theorem. Let f be convex on an open interval (a, b). Then the left-hand
and right-hand derivatives of f exist, are increasing on (a, b), and satisfy

−∞ < DL f (x) ≤ DR f (x) < ∞
for all x ∈ (a, b).
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Proof. Let h < 0 and notice that the slope of the chord through the points
(x, f (x)) and (x + h, f (x + h)) is ( f (x + h)− f (x))/h. By Remark 5.60, these
slopes increase as h → 0−. Since increasing functions have a limit (which
may be +∞), it follows that DL f (x) exists and satisfies −∞ < DL f (x) ≤ ∞.
Similarly, DR f (x) exists and satisfies −∞ ≤ DR f (x) < ∞. Remark 5.60 also
implies

DL f (x) ≤ DR f (x). (23)

Hence, both numbers are finite, and by symmetry it remains to show that
DR f (x) is increasing on (a, b).

Let x1 < u < t < x2 be points which belong to (a, b). Then

f (u)− f (x1)

u − x1
≤ f (x2)− f (t)

x2 − t
.

Taking the limit of this inequality as u → x1+ and t → x2−, we conclude by
(23) that

DR f (x1) ≤ DL f (x2) ≤ DR f (x2). (24)

�

The next proof uses enrichment Theorem 4.19.

∗5.68 Corollary. If f is convex on an open interval (a, b), then f is differentiable
at all but countably many points of (a, b); that is, there is an at most countable set
E ⊂ (a, b) such that f ′(x) exists for all x ∈ (a, b) \ E .

Proof. Let E be the set where either DL f (x) or DR f (x) is discontinuous.
By Theorems 5.67 and 4.19, the set E is at most countable. Suppose that
x0 ∈ (a, b) \ E and that x < x0. By (24),

DR f (x) ≤ DL f (x0) ≤ DR f (x0).

Let x → x0. Since both DL f (x) and DR f (x) are continuous at x0, we obtain
DR f (x0) ≤ DL f (x0) ≤ DR f (x0). In particular, f ′(x0) exists for all x0 ∈
(a, b) \ E . �

How useful is a statement about f ′(x) which holds for all but countably many
points x? We address this question by proving a generalization of Theorem 4.17.
(The proof here uses enrichment Theorem 4.23.)

∗5.69 Theorem. Suppose that f is continuous on a closed interval [a, b] and dif-
ferentiable on (a, b). If f ′(x) ≥ 0 for all but countably many x ∈ (a, b), then f is
increasing on [a, b].

Proof. Suppose that f ′(x1) < 0 for some x1 ∈ (a, b) and let y ∈ ( f ′(x1), 0). By
Theorem 4.23 (the Intermediate Value Theorem for derivatives), there is an
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x = x(y) ∈ (a, b) such that f ′(x) = y < 0. It follows that if f ′(x) < 0 for one
x ∈ (a, b), then f ′(x) < 0 for uncountably many x ∈ (a, b), a contradiction.
Therefore, f ′(x) ≥ 0 for all x ∈ (a, b); hence, by Theorem 4.17, f is increasing
on (a, b). �

∗5.70 Corollary. If f is continuous on a closed interval [a, b] and differentiable
on (a, b) with f ′(x) = 0 for all but countably many x ∈ (a, b), then f is constant
on [a, b].
EXERCISES

5.6.1. Suppose that f, g are convex on an interval I . Prove that f + g and c f
are convex on I for any c ≥ 0.

5.6.2. Suppose that fn is a sequence of functions convex on an interval I
and that

f (x) = lim
n→∞ fn(x)

exists for each x ∈ I . Prove that f is convex on I .
5.6.3. Prove that a function f is both convex and concave on I if and only if

there exist m, b ∈ R such that f (x) = mx + b for x ∈ I .
5.6.4. Prove that f (x) = x p is convex on [0,∞) for p ≥ 1, and concave on

[0,∞) for 0 < p ≤ 1.
5.6.5. Show that if f is increasing on [a, b], then

F(x) =
∫ x

a
f (t) dt

is convex on [a, b]. (Recall that by Exercise 5.1.8, f is integrable on
[a, b].)

5.6.6. If f : [a, b] → R is integrable on [a, b], prove that∫ b

a
| f (x)| dx ≤ (b − a)1/2

(∫ b

a
f 2(x) dx

)1/2

.

5.6.7. Suppose that f : [0, 1] → [a, b] is integrable on [0, 1]. Assume that e f (x)

and | f (x)|p are integrable for all 0 < p < ∞ (see Exercise 12.2.11).

a) Prove that

e
∫ 1

0 f (x) dx ≤
∫ 1

0
e f (x) dx and

(∫ 1

0
| f (x)|r dx

)1/r

≤
∫ 1

0
| f (x)| dx

for all 0 < r ≤ 1.
b) If 0 < p < q, prove that(∫ 1

0
| f (x)|p dx

)1/p

≤
(∫ 1

0
| f (x)|q dx

)1/q

.

c) State and prove analogues of these results for improper integrals.
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∗5.6.8. Let f be continuous on a closed, bounded interval [a, b] and suppose
that DR f (x) exists for all x ∈ (a, b).

a) Show that if f (b) < y0 < f (a), then

x0 := sup{x ∈ [a, b] : f (x) > y0}
satisfies f (x0) = y0 and DR f (x0) ≤ 0.

b) Prove that if f (b) < f (a), then there are uncountably many points x
which satisfy DR f (x) ≤ 0.

c) Prove that if DR f (x) > 0 for all but countably many points x ∈ (a, b),
then f is increasing on [a, b].

d) Prove that if DR f (x) ≥ 0 and g(x) = f (x) + x/n for some n ∈ N,
then DRg(x) > 0.

e) Prove that if DR f (x) ≥ 0 for all but countably many points x ∈ (a, b),
then f is increasing on [a, b].
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Infinite Series of Real Numbers

Infinite series are one of the most widely used tools of analysis. They are used
to approximate numbers and functions. (Series of Ramanujan type have been
used to compute billions of digits of the decimal expansion of π .) They are
used to approximate solutions of differential equations. (You may have used
power series to solve ordinary differential equations with nonconstant coeffi-
cients.) They even form the basis for some very practical applications, including
pattern recognition (e.g., reading zip codes), image enhancement (e.g., removing
raindrop clutter from a radar scan), and data compression (e.g., transmission of
hundreds of TV programs through a single, photonic, fiber optic cable). Other
applications of infinite series can be found in Section 7.5. In view of the variety
of these applications, it should come as no surprise that the subject matter of
this chapter (and the next) is of fundamental importance.

6.1 INTRODUCTION

Let {ak}k∈N be a sequence of numbers. We shall call an expression of the form

∞∑
k=1

ak (1)

an infinite series with terms ak . (No convergence is assumed at this point. This is
merely a formal expression.)

6.1 Definition.

Let S = ∑∞
k=1 ak be an infinite series with terms ak .

i) For each n ∈ N, the partial sum of S of order n is defined by

sn:=
n∑

k=1

ak .

ii) S is said to converge if and only if its sequence of partial sums {sn} con-
verges to some s ∈ R as n → ∞; that is, if and only if for every ε > 0 there
is an N ∈ N such that n ≥ N implies |sn − s| < ε. In this case we shall write

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 6 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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∞∑
k=1

ak = s (2)

and call s the sum, or value, of the series
∑∞

k=1 ak .
iii) S is said to diverge if and only if its sequence of partial sums {sn} does

not converge as n → ∞. When sn diverges to +∞ as n → ∞, we shall
also write

∞∑
k=1

ak = ∞.

(We shall deal with series of functions in Chapter 7.)
You are already familiar with one type of infinite series, decimal expan-

sions. Every decimal expansion of a number x ∈ (0, 1) is a series of the form∑∞
k=1 xk/10k , where the xk ’s are integers in [0, 9]. For example, when we write

1/3 = 0.333 . . . we mean

1

3
=

∞∑
k=1

3

10k
.

In particular, the partial sums 0.3, 0.33, 0.333, . . . are approximations to 1/3
which get closer and closer to 1/3 as more terms of the decimal expansion
are taken.

One way to determine if a given series converges is to find a formula for its
partial sums simple enough so that we can decide whether or not they converge.
Here are two examples.

6.2 EXAMPLE.

Prove that
∑∞

k=1 2−k = 1.

Proof. By induction, we can show that the partial sums sn = ∑n
k=1 1/2k satisfy

sn = 1 − 2−n for n ∈ N. Thus sn → 1 as n → ∞. �

6.3 EXAMPLE.

Prove that
∑∞

k=1(−1)k diverges.

Proof. The partial sums sn = ∑n
k=1(−1)k satisfy

sn =
{

−1 if n is odd
0 if n is even.
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186 Chapter 6 Infinite Series of Real Numbers

Thus sn does not converge as n → ∞. �

Another way to show that a series diverges is to estimate its partial sums.

6.4 EXAMPLE. [THE HARMONIC SERIES].

Prove that the sequence 1/k converges but the series
∑∞

k=1 1/k diverges to +∞.

Proof. The sequence 1/k converges to zero (by Example 2.2i). On the other
hand, by the Comparison Theorem for Integrals,

sn =
n∑

k=1

1

k
≥

n∑
k=1

∫ k+1

k

1

x
dx =

∫ n+1

1

1

x
dx = log(n + 1).

We conclude that sn → ∞ as n → ∞. �

This example shows that the terms of a divergent series may converge. In
particular, a series does not converge just because its terms converge. On the
other hand, the following result shows that a series cannot converge if its terms
do not converge to zero.

6.5 Theorem. [DIVERGENCE TEST].
Let {ak}k∈N be a sequence of real numbers. If ak does not converge to zero, then
the series

∑∞
k=1 ak diverges.

Proof. Suppose to the contrary that
∑∞

k=1 ak converges to some s ∈ R. By
definition, the sequence of partial sums sn := ∑n

k=1 ak converges to s as
n → ∞. Therefore, ak = sk − sk−1 → s − s = 0 as k → ∞, a contradiction. �

The proof of this result establishes a property interesting in its own right: If∑∞
k=1 ak converges, then ak → 0 as k → ∞. It is important to realize from the

beginning that the converse of this statement is false; that is, Theorem 6.5 is a
test for divergence, not a test for convergence. Indeed, the harmonic series is a
divergent series whose terms converge to zero.

Finding the sum of a convergent series is usually difficult. The following two
results show that this is not the case for two special kinds of series.

6.6 Theorem. [TELESCOPIC SERIES].
If {ak} is a convergent real sequence, then

∞∑
k=1

(ak − ak+1) = a1 − lim
k→∞ ak .
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Proof. By telescoping, we have

sn:=
n∑

k=1

(ak − ak+1) = a1 − an+1.

Hence, sn → a1 − limk→∞ ak as n → ∞. �

It’s clear how to modify Definition 6.1 to accommodate series that start at
some index other than k = 1. We use this concept in the following very impor-
tant result.

6.7 Theorem. [GEOMETRIC SERIES].
Suppose that x ∈ R, that N ∈ {0, 1, . . .}, and that 00 is interpreted to be 1. Then
the series

∑∞
k=N xk converges if and only if |x | < 1, in which case

∞∑
k=N

xk = x N

1 − x
.

In particular,
∞∑

k=0

xk = 1

1 − x
, |x | < 1.

Proof. If |x | ≥ 1, then
∑∞

k=N xk diverges by the Divergence Test. If |x | < 1,
then set sn = ∑n

k=1 xk and observe by telescoping that

(1 − x)sn = (1 − x)(x + x2 + · · · + xn)

= x + x2 + · · · + xn − x2 − x3 − · · · − xn+1 = x − xn+1.

Hence,

sn = x

1 − x
− xn+1

1 − x

for all n ∈ N. Since xn+1 → 0 as n → ∞ for all |x | < 1 (see Example 2.20),
we conclude that sn → x/(1 − x) as n → ∞.

For general N , we may suppose that |x | < 1 and x �= 0. Hence,

n∑
k=N

xk = x N + · · · + xn = x N−1
n−N+1∑

k=1

xk .

Hence, it follows from Definition 6.1 and what we’ve already proved that

∞∑
k=N

xk = lim
n→∞

n∑
k=N

xk = lim
n→∞ x N−1

n−N+1∑
k=1

xk = x N

1 − x
. �
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In everyday speech, the words sequence and series are considered synonyms.
Example 6.4 shows that in mathematics, this is not the case. In particular, you
must not apply a result valid for sequences to series and vice versa. Nevertheless,
because convergence of an infinite series is defined in terms of convergence of
its sequence of partial sums, any result about sequences contains a result about
infinite series. The following three theorems illustrate this principle.

6.8 Theorem. [THE CAUCHY CRITERION].
Let {ak} be a real sequence. Then the infinite series

∑∞
k=1 ak converges if and

only if for every ε > 0 there is an N ∈ N such that

m ≥ n ≥ N imply

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε.

Proof. Let sn represent the sequence of partial sums of
∑∞

k=1 ak and set
s0 = 0. By Cauchy’s Theorem (Theorem 2.29), sn converges if and only if
given ε > 0 there is an N ∈ N such that m, n ≥ N imply |sm − sn−1| < ε. Since

sm − sn−1 =
m∑

k=n

ak

for all integers m ≥ n ≥ 1, the proof is complete. �

6.9 Corollary. Let {ak} be a real sequence. Then the infinite series
∑∞

k=1 ak con-
verges if and only if given ε > 0 there is an N ∈ N such that

n ≥ N implies

∣∣∣∣∣
∞∑

k=n

ak

∣∣∣∣∣ < ε.

6.10 Theorem. Let {ak} and {bk} be real sequences. If
∑∞

k=1 ak and
∑∞

k=1 bk are
convergent series, then

∞∑
k=1

(ak + bk) =
∞∑

k=1

ak +
∞∑

k=1

bk

and
∞∑

k=1

(αak) = α

∞∑
k=1

ak

for any α ∈ R.

Proof. Both identities are corollaries of Theorem 2.12; we provide the details
only for the first identity.

188



Section 6.1 Introduction 189

Let sn represent the partial sums of
∑∞

k=1 ak and tn represent the partial
sums of

∑∞
k=1 bk . Since real addition is commutative, we have

n∑
k=1

(ak + bk) = sn + tn, n ∈ N.

Taking the limit of this identity as n → ∞, we conclude by Theorem 2.12 that

∞∑
k=1

(ak + bk) = lim
n→∞ sn + lim

n→∞ tn =
∞∑

k=1

ak +
∞∑

k=1

bk . �

EXERCISES

6.1.0. Let {ak} and {bk} be real sequences. Decide which of the following state-
ments are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) If ak is strictly decreasing and ak → 0 as k → ∞, then
∑∞

k=1 ak con-
verges.

b) If ak �= bk for all k ∈ N and if
∑∞

k=1(ak + bk) converges, then either∑∞
k=1 ak converges or

∑∞
k=1 bk converges.

c) Suppose that
∑∞

k=1(ak + bk) converges. Then
∑∞

k=1 ak converges if
and only if

∑∞
k=1 bk converges.

d) If ak → a as k → ∞, then

∞∑
k=1

(ak − ak+2) = a1 + a2 − 2a.

6.1.1. Prove that each of the following series converges and find its value.

a)
∞∑

k=1

(−1)k+1

ek−1

b)
∞∑

k=0

(−1)k−1

π2k

c)
∞∑

k=2

4k+1

9k−1

d)
∞∑

k=0

5k+1 + (−3)k

7k+2

6.1.2. Represent each of the following series as a telescopic series and find
its value.

a)
∞∑

k=1

1

k(k + 1)

b)
∞∑

k=1

12

(k + 2)(k + 3)
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190 Chapter 6 Infinite Series of Real Numbers

c)
∞∑

k=2
log

(
k(k + 2)

(k + 1)2

)

d)
∞∑

k=1
2 sin

(
1

k
− 1

k + 1

)
cos

(
1

k
+ 1

k + 1

)

6.1.3. Prove that each of the following series diverges.

a)
∞∑

k=1
cos

(
1

k2

)

b)
∞∑

k=1

(
1 − 1

k

)k

c)
∞∑

k=1

k + 1

k2

6.1.4. Let a0, a1, . . . be a sequence of real numbers. If ak → L as k → ∞, does

∞∑
k=1

(ak+1 − 2ak + ak−1)

converge? If so, what is its value?
6.1.5. Find all x ∈ R for which

∞∑
k=1

(xk − xk−1)(xk + xk−1)

converges. For each such x , find the value of this series.

6.1.6. a) Prove that if
∑∞

k=1 ak converges, then its partial sums sn are bounded.
b) Show that the converse of part a) is false. Namely, show that a series∑∞

k=1 ak may have bounded partial sums and still diverge.

6.1.7. Suppose that I is a closed interval and x0 ∈ I . Suppose further that f is
differentiable on R, that f ′(a) �= 0 for some a ∈ R, that the function

F(x) := x − f (x)

f ′(a)
x ∈ R

satisfies F(I ) ⊆ I , and that there is a number 0 < r < 1 such that
f ′(x)/ f ′(a) ∈ [1 − r, 1] for all x ∈ I .

a) Prove that |F(x)− F(y)| ≤ r |x − y| for all x, y ∈ I .
b) If xn := F(xn−1) for n ∈ N, prove that |xn+1 − xn| ≤ rn|x1 − x0| for all

n ∈ N.
c) If xn = xn−1 − f (xn−1)/ f ′(a) for n ∈ N, prove that

b := lim
n→∞ xn

exists, belongs to I , and is a root of f ; that is, that f (b) = 0.
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6.1.8. a) Suppose that {ak} is a decreasing sequence of real numbers. Prove
that if

∑∞
k=1 ak converges, then kak → 0 as k → ∞.

b) Let sn = ∑n
k=1(−1)k+1/k for n ∈ N. Prove that s2n is strictly increas-

ing, s2n+1 is strictly decreasing, and s2n+1 − s2n → 0 as n → ∞.
c) Prove that part a) is false if decreasing is removed.

6.1.9. Let {bk} be a real sequence and b ∈ R.

a) Suppose that there are M, N ∈ N such that |b−bk | ≤ M for all k ≥ N .
Prove that ∣∣∣∣∣nb −

n∑
k=1

bk

∣∣∣∣∣ ≤
N∑

k=1

|bk − b| + M(n − N )

for all n > N .
b) Prove that if bk → b as k → ∞, then

b1 + b2 + · · · + bn

n
→ b

as n → ∞.
c) Show that the converse of b) is false.

6.1.10. A series
∑∞

k=0 ak is said to be Cesàro summable to an L ∈ R if and only if

σn:=
n−1∑
k=0

(
1 − k

n

)
ak

converges to L as n → ∞.

a) Let sn = ∑n−1
k=0 ak . Prove that

σn = s1 + · · · + sn

n

for each n ∈ N.
b) Prove that if ak ∈ R and

∑∞
k=0 ak = L converges, then

∑∞
k=0 ak is

Cesàro summable to L .
c) Prove that

∑∞
k=0(−1)k is Cesàro summable to 1/2; hence the converse

of b) is false.
d) [Tauber’s Theorem]. Prove that if ak ≥ 0 for k ∈ N and

∑∞
k=0 ak is

Cesàro summable to L , then
∑∞

k=0 ak = L .

6.1.11. Suppose that ak ≥ 0 for k large and that
∑∞

k=1 ak/k converges. Prove that

lim
j→∞

∞∑
k=1

ak

j + k
= 0.
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192 Chapter 6 Infinite Series of Real Numbers

6.1.12. If
∑n

k=1 kak = (n + 1)/(n + 2) for n ∈ N, prove that

∞∑
k=1

ak = 3

4
.

6.2 SERIES WITH NONNEGATIVE TERMS

Although we obtained exact values in the preceding section for telescopic series
and geometric series, finding exact values of a given series is frequently difficult,
if not impossible. Fortunately, for many applications it is not as important to
be able to find the value of a series as it is to know that the series converges.
When it does converge, we can use its partial sums to approximate its value as
accurately as we wish (up to the limitations of whatever computing device we
are using). Therefore, much of this chapter is devoted to establishing tests which
can be used to decide whether a given series converges or whether it diverges.

The partial sums of a divergent series may be bounded [like
∑∞

k=1(−1)k] or
unbounded [like

∑∞
k=1 1/k]. When the terms of a divergent series are nonnega-

tive, the former cannot happen.

6.11 Theorem. Suppose that ak ≥ 0 for large k. Then
∑∞

k=1 ak converges if and
only if its sequence of partial sums {sn} is bounded; that is, if and only if there
exists a finite number M > 0 such that

∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣ ≤ M for all n ∈ N.

Proof. Set sn = ∑n
k=1 ak for n ∈ N. If

∑∞
k=1 ak converges, then sn converges as

n → ∞. Since every convergent sequence is bounded (Theorem 2.8),
∑∞

k=1 ak
has bounded partial sums.

Conversely, suppose that |sn| ≤ M for n ∈ N. Recall from Section 2.1
that ak ≥ 0 for large k means that there is an N ∈ N such that ak ≥ 0 for
k ≥ N . It follows that sn is an increasing sequence when n ≥ N . Hence by the
Monotone Convergence Theorem (Theorem 2.19), sn converges. �

If ak ≥ 0 for large k, we shall write
∑∞

k=1 ak < ∞ when the series is convergent
and

∑∞
k=1 ak = ∞ when the series is divergent.

In some cases, integration can be used to test convergence of a series. The
idea behind this test is that

∫ ∞

1
f (x) dx =

∞∑
k=1

∫ k+1

k
f (x) dx ≈

∞∑
k=1

f (k)

when f is almost constant on each interval [k, k + 1]. This will surely be the case
for large k if f (k) ↓ 0 as k → ∞ (see Figure 6.1). This observation leads us to
the following result.
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x

y

1 2 3 4 5 . . .

FIGURE 6.1

6.12 Theorem. [INTEGRAL TEST].
Suppose that f : [1,∞) → R is positive and decreasing on [1,∞). Then∑∞

k=1 f (k) converges if and only if f is improperly integrable on [1,∞); that
is, if and only if ∫ ∞

1
f (x) dx < ∞.

Proof. Let sn = ∑n
k=1 f (k) and tn = ∫ n

1 f (x)dx for n ∈ N. Since f is
decreasing, f is locally integrable on [1,∞) (see Exercise 5.1.8) and f (k+1) ≤
f (x) ≤ f (k) for all x ∈ [k, k + 1]. Hence, by the Comparison Theorem for
Integrals,

f (k + 1) ≤
∫ k+1

k
f (x)dx ≤ f (k)

for k ∈ N. Summing over k = 1, . . . , n − 1, we obtain

sn − f (1) =
n∑

k=2

f (k) ≤
∫ n

1
f (x) dx = tn ≤

n−1∑
k=1

f (k) = sn − f (n)

for all n ≥ N . In particular,

f (n) ≤
n∑

k=1

f (k)−
∫ n

1
f (x) dx ≤ f (1) for n ∈ N. (3)
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By (3) it is clear that {sn} is bounded if and only if {tn} is. Since f (x) ≥ 0
implies that both sn and tn are increasing sequences, it follows from the Mono-
tone Convergence Theorem that sn converges if and only if tn converges, as
n → ∞. �

This test works best on series for which the integral of f can be easily com-
puted or estimated. For example, to find out whether

∑∞
k=1 1/(1+k2) converges

or diverges, let f (x) = 1/(1 + x2) and observe that f is positive on [1,∞). Since
f ′(x) = −2x/(1 + x2)2 is negative on [1,∞), it is also clear that f is decreasing.
Since ∫ ∞

1

dx

1 + x2
= arctan x

∣∣∞
1 = π

2
− arctan(1) < ∞,

it follows from the Integral Test that
∑∞

k=1 1/(1 + k2) converges.
The Integral Test is most widely used in the following special case.

6.13 Corollary. [p- SERIES TEST]. The series

∞∑
k=1

1

k p
(4)

converges if and only if p > 1.

Proof. If p = 1 or p ≤ 0, the series diverges. If p > 0 and p �= 1, set
f (x) = x−p and observe that f ′(x) = −px−p−1 < 0 for all x ∈ [1,∞). Hence,
f is nonnegative and decreasing on [1,∞). Since

∫ ∞

1

dx

x p
= lim

n→∞
x1−p

1 − p

∣∣n
1= lim

n→∞
n1−p − 1

1 − p

has a finite limit if and only if 1 − p < 0, it follows from the Integral Test that
(4) converges if and only if p > 1. �

The Integral Test, which requires f to satisfy some very restrictive hypothe-
ses, has limited applications. The following test can be used in a much broader
context.

6.14 Theorem. [COMPARISON TEST].
Suppose that 0 ≤ ak ≤ bk for large k.

i) If
∑∞

k=1 bk < ∞, then
∑∞

k=1 ak < ∞.

ii) If
∑∞

k=1 ak = ∞, then
∑∞

k=1 bk = ∞.
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Section 6.2 Series with Nonnegative Terms 195

Proof. By hypothesis, choose N ∈ N so large that 0 ≤ ak ≤ bk for k > N .
Set sn = ∑n

k=1 ak and tn = ∑n
k=1 bk, n ∈ N. Then 0 ≤ sn − sN ≤ tn − tN for

all n ≥ N . Since N is fixed, it follows that sn is bounded when tn is, and tn is
unbounded when sn is. Apply Theorem 6.11 and the proof of the theorem is
complete. �

The Comparison Test is used to compare one series with another whose con-
vergence property is already known (e.g., a p-series or a geometric series).
Frequently, the inequalities | sin x | ≤ |x | for all x ∈ R (see Appendix B) and
| log x | ≤ xα for each α > 0 provided x is sufficiently large (see Exercise 4.4.6)
are helpful in this regard. Although there is no simple algorithm for this process,
the idea is to examine the terms of the given series, ignoring the superfluous fac-
tors, and dominating the more complicated factors by simpler ones. Here is a
typical example.

6.15 EXAMPLE.

Determine whether the series

∞∑
k=1

3k

k2 + k

√
log k

k
(5)

converges or diverges.

Solution. The kth term of this series can be written by using three factors:

1

k

3k

k + 1

√
log k

k
.

The factor 3k/(k + 1) is dominated by 3. Since log k ≤ √
k for large k, the factor√

log k/k satisfies

√
log k

k
≤
√√

k

k
= 1

4
√

k

for large k. Therefore, the terms of (5) are dominated by 3/k5/4. Since∑∞
k=1 3/k5/4 converges by the p-Series Test, it follows from the Comparison

Test that (5) converges. �

The Comparison Test may not be easy to apply to a given series, even when
we know which series it should be compared with, because the process of com-
parison often involves use of delicate inequalities. For situations like this, the
following test is usually more efficient.
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6.16 Theorem. [LIMIT COMPARISON TEST].
Suppose that ak ≥ 0, that bk > 0 for large k, and that L := limn→∞ an/bn exists
as an extended real number.

i) If 0 < L < ∞, then
∑∞

k=1 ak converges if and only if
∑∞

k=1 bk converges.

ii) If L = 0 and
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.

iii) If L = ∞ and
∑∞

k=1 bk diverges, then
∑∞

k=1 ak diverges.

Proof. i) If L is finite and nonzero, then there is an N ∈ N such that

L

2
bk < ak <

3L

2
bk

for k ≥ N . Hence, part i) follows immediately from the Comparison Test
and Theorem 6.10. Similar arguments establish parts ii) and iii)—see Exer-
cise 6.2.6. �

In general, the Limit Comparison Test is used to replace a series
∑∞

k=1 ak by∑∞
k=1 bk when ak ≈ Cbk for k large and some absolute fixed constant C . For

example, to determine whether or not the series

S:=
∞∑

k=1

k√
4k4 + k2 + 5k

converges, notice that its terms are approximately 1/(2k) for k large. This leads
us to compare S with the harmonic series

∑∞
k=1 1/k. Since the harmonic series

diverges and since

k/(
√

4k4 + k2 + 5k)

1/k
= k2

√
4k4 + k2 + 5k

→ 1

2
> 0

as k → ∞, it follows from the Limit Comparison Test that S diverges.
Here is another application of the Limit Comparison Test.

6.17 EXAMPLE.

Let ak → 0 as k → ∞. Prove that
∑∞

k=1 sin |ak | converges if and only if∑∞
k=1 |ak | converges.

Proof. By l’Hôpital’s Rule,

lim
k→∞

sin |ak |
|ak | = lim

x→0+
sin x

x
= 1.

Hence, by the Limit Comparison Test,
∑∞

k=1 sin |ak | converges if and only if∑∞
k=1 |ak | converges. �
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EXERCISES

6.2.0. Let {ak} and {bk} be real sequences. Decide which of the following state-
ments are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) If
∑∞

k=1 ak converges and ak/bk → 0 as k → ∞, then
∑∞

k=1 bk
converges.

b) Suppose that 0 < a < 1. If ak ≥ 0 and k
√

ak ≤ a for all k ∈ N, then∑∞
k=1 ak converges.

c) Suppose that ak → 0 as k → ∞. If ak ≥ 0 and
√

ak+1 ≤ ak for all
k ∈ N, then

∑∞
k=1 ak converges.

d) Suppose that ak = f (k) for some continuous function f : [1,∞) →
[0,∞) which satisfies f (x) → 0 as x → ∞. If

∑∞
k=1 ak converges,

then
∫∞

1 f (x)dx converges.

6.2.1. Prove that each of the following series converges.

a)
∞∑

k=1

2k + 5

3k3 + 2k − 1

b)
∞∑

k=1

k − 1

k2k

c)
∞∑

k=1

log k

k p
, p > 1

d)
∞∑

k=1

k3 log2 k

ek

e)
∞∑

k=1

√
k + π

2 + 5
√

k8

f)
∞∑

k=1

1

klog k

6.2.2. Prove that each of the following series diverges.

a)
∞∑

k=1

3k3 + k − 4

5k4 − k2 + 1

b)
∞∑

k=1

k
√

k

k

c)
∞∑

k=1

(
k + 1

k

)k

d)
∞∑

k=2

1

k logp k
, p ≤ 1

6.2.3. If ak ≥ 0 is a bounded sequence, prove that
∞∑

k=1

ak

(k + 1)p

converges for all p > 1.
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6.2.4. Find all p ≥ 0 such that the following series converges:

∞∑
k=1

1

k logp(k + 1)
.

6.2.5. If
∑∞

k=1 |ak | converges, prove that

∞∑
k=1

|ak |
k p

converges for all p ≥ 0. What happens if p < 0?
6.2.6. Prove Theorem 6.16ii and iii.
6.2.7. Suppose that ak and bk are nonnegative for all k ∈ N. Prove that if∑∞

k=1 ak and
∑∞

k=1 bk converge, then
∑∞

k=1 akbk also converges.
6.2.8. Suppose that a, b ∈ R satisfy b/a ∈ R\Z. Find all q > 0 such that

∞∑
k=1

1

(ak + b)qk

converges.
6.2.9. Suppose that ak → 0. Prove that

∑∞
k=1 ak converges if and only if the

series
∑∞

k=1 (a2k + a2k+1) converges.
6.2.10. Find all p ∈ R such that

∞∑
k=2

1

(log(log k))p log k

converges.

6.3 ABSOLUTE CONVERGENCE

In this section we investigate what happens to a convergent series when its terms
are replaced by their absolute values. We begin with some terminology.

6.18 Definition.

Let S = ∑∞
k=1 ak be an infinite series.

i) S is said to converge absolutely if and only if
∑∞

k=1 |ak | < ∞.
ii) S is said to converge conditionally if and only if S converges but not abso-

lutely.

The Cauchy Criterion gives us the following test for absolute convergence.
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6.19 Remark. A series
∑∞

k=1 ak converges absolutely if and only if for every
ε > 0 there is an N ∈ N such that

m > n ≥ N implies
m∑

k=n

|ak | < ε. (6)

As was the case for improper integrals, absolute convergence is stronger than
convergence.

6.20 Remark. If
∑∞

k=1 ak converges absolutely, then
∑∞

k=1 ak converges, but
not conversely. In particular, there exist conditionally convergent series.

Proof. Suppose that
∑∞

k=1 ak converges absolutely. Given ε > 0, choose
N ∈ N so that (6) holds. Then

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ ≤
m∑

k=n

|ak | < ε

for m > n ≥ N . Hence, by the Cauchy Criterion,
∑∞

k=1 ak converges.
We shall finish the proof by showing that S := ∑∞

k=1 (−1)k/k converges
conditionally. Since the harmonic series diverges, S does not converge abso-
lutely. On the other hand, the tails of S look like

∞∑
j=k

(−1) j

j
= (−1)k

(
1

k
− 1

k + 1
+ 1

k + 2
− 1

k + 3
+ . . .

)
.

By grouping pairs of terms together, it is easy to see that the sum inside the
parentheses is greater than 0 but less than 1/k; that is,

∣∣∣∣∣∣
∞∑
j=k

(−1) j

j

∣∣∣∣∣∣ <
1

k
.

Hence
∑∞

k=1 (−1)k/k converges by Corollary 6.9. �

We shall see below that it is important to be able to identify absolutely con-
vergent series. Since every result about series with nonnegative terms can be
applied to the series

∑∞
k=1 |ak |, we already have three tests for absolute con-

vergence (the Integral Test, the Comparison Test, and the Limit Comparison
Test). We now develop two additional tests for absolute convergence which are
arguably the most practical tests presented in this chapter.

Before we state these tests, we need to introduce another concept. (If you
covered Section 2.5, you may proceed directly to Theorem 6.23.)
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6.21 Definition.

The limit supremum of a sequence of real numbers {xk} is defined to be

lim sup
k→∞

xk := lim
n→∞

(
sup
k>n

xk

)
.

NOTE: Unlike the limit, the limit supremum of a sequence always exists as
an extended real number. Indeed, let sn := supk>n xk . If sn = ∞ for all n,
then sn → ∞ as n → ∞, so, by definition, the limit supremum of xk is ∞. On
the other hand, if sn is finite for some n, the Monotone Property for Suprema
implies that the sequence sn is decreasing. Hence, by the Monotone Conver-
gence Theorem, limn→∞ sn exists. (It might be −∞, e.g., when xk = −k.)

In practice, the limit supremum of a sequence is usually easy to find by
inspection. For example, since (−1)k is 1 when k is even and −1 when k is odd, it
is clear that supk>n(−1)k = 1 for all n ∈ N. Hence the limit supremum of (−1)k

is 1. Similarly,

lim sup
k→∞

(3 + (−1)k) = 4 and lim sup
k→∞

2k + (−2)k

k
= ∞.

The only thing we need to know about limits supremum (for now) is the
following result.

6.22 Remark. Let x ∈ R and {xk} be a real sequence.

i) If lim supk→∞ xk < x , then xk < x for large k.
ii) If lim supk→∞ xk > x , then xk > x for infinitely many k’s.

iii) If xk → x as k → ∞, then lim supk→∞ xk = x .

Proof. Let s := lim supk→∞ xk and sn := supk>n xk and recall by Defini-
tion 6.21 that sn → s as n → ∞.

i) If s < x , then there is an N ∈ N such that sN < x . In particular, xk < x
for all k > N .

ii) If s > x , then sn > x for all n (because sn is decreasing). Since s1 > x ,
there is a k1 > 1 such that xk1 > x . Suppose that k j has been chosen so that
xk j > x . Since sk j > x , there is a k j+1 > k j such that xk j+1 > x . In particular,
there is an increasing sequence of positive integers k j such that xk j > x for all
j ∈ N. It follows that xk > x for infinitely many k’s.

iii) If xk converges to x , given ε > 0 there is an N ∈ N such that k ≥ N
implies |xk − x | < ε. In particular, for any n ≥ N , xk > x − ε for k > n.

Taking the supremum of this last inequality over k > n, we see that sn >

x − ε for n ≥ N . Hence, the limit of the sn’s satisfies s ≥ x − ε. Thus s ≥ x . A
similar argument proves that s ≤ x . �

The limit supremum gives a very useful and efficient test for absolute
convergence.
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6.23 Theorem. [ROOT TEST].
Let ak ∈ R and r := lim supk→∞ |ak |1/k .

i) If r < 1, then
∑∞

k=1 ak converges absolutely.

ii) If r > 1, then
∑∞

k=1 ak diverges.

Proof. i) Suppose that r < 1. Let r < x < 1 and notice that the geometric
series

∑∞
k=1 xk converges. By Remark 6.22i (or by Exercise 2.5.3),

|ak |1/k < x

for large k. Hence, |ak | < xk for large k and it follows from the Comparison
Test that

∑∞
k=1 |ak | converges.

ii) Suppose that r > 1. By Remark 6.22ii (or by Exercise 2.5.3),

|ak |1/k > 1

for infinitely many k ∈ N. Hence, |ak | > 1 for infinitely many k and it follows
from the Divergence Test that

∑∞
k=1 ak diverges. �

Note by Remark 6.22iii or Theorem 2.36 that if r := limk→∞ |ak |1/k exists,
then (by the Root Test)

∑∞
k=1 ak converges absolutely when r < 1 and diverges

when r > 1.
The following test is weaker than the Root Test (see Exercise 6.3.8) but is

easier to use when the terms of
∑∞

k=1 ak are made up of products (e.g., of
factorials).

6.24 Theorem. [RATIO TEST].
Let ak ∈ R with ak �= 0 for large k and suppose that

r = lim
k→∞

|ak+1|
|ak |

exists as an extended real number.

i) If r < 1, then
∑∞

k=1 ak converges absolutely.

ii) If r > 1, then
∑∞

k=1 ak diverges.

Proof. If r > 1, then |ak+1| ≥ |ak | for k large and thus ak cannot converge to
zero. Hence, by the Divergence Test,

∑∞
k=1 ak diverges.

If r < 1, then observe for any x ∈ (r, 1) that

|ak+1|
|ak | < x = xk+1

xk
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for k large. Hence, the sequence |ak |/xk is decreasing for large k and thus
bounded. In particular, there is an M > 0 such that |ak | ≤ Mxk for all k ∈ N.
Since x < 1, it follows from the Comparison Test that

∑∞
k=1 |ak | converges. �

6.25 Remark. The Root and Ratio Tests are inconclusive when r = 1.

For example, apply the Root and Ratio Tests to
∑∞

k=1 1/k and
∑∞

k=1 1/k2. In
all four cases, r = 1. Nevertheless, the first series diverges whereas the second
converges absolutely.

How should we proceed when the Root and Ratio Tests are inconclusive (e.g.,
when r = 1)? We can always try to use one of the Comparison Tests. Since this
can be technically daunting, there are other ways to cope with the case r = 1.
If the ratios of terms of a series converge to 1 rapidly enough, then the series
converges. (For three tests of this type, see the results and exercises of Sec-
tion 6.6.) If the terms of a series have k! as a factor, then there is a very useful
asymptotic estimate of k! (called Stirling’s Formula—see Theorem 12.73) that
can be used in conjunction with the Comparison Test (e.g., see Exercises 6.3.3f
and 6.6.2c).

It is natural to assume that the usual laws of algebra hold for infinite series
(e.g., associativity and commutativity). Is this assumption warranted? We have
“inserted parentheses” (i.e., grouped terms together) to aid evaluation of some
series [e.g., to evaluate some telescopic series and to prove that

∑∞
k=1(−1)k/k

converges conditionally]. This is valid for convergent series (absolutely or con-
ditionally) because if the sequence of partial sums sn converges to s, then any
subsequence snk also converges to s. The situation is more complicated when
we start changing the order of the terms (compare Theorem 6.27 with Theo-
rem 6.29). To describe what happens, we introduce the following terminology.

6.26 Definition.

A series
∑∞

j=1 b j is called a rearrangement of a series
∑∞

k=1 ak if and only if
there is a 1–1 function f from N onto N such that

b f (k) = ak, k ∈ N.

The following result demonstrates why absolutely convergent series are so
important.

6.27 Theorem. If
∑∞

k=1 ak converges absolutely and
∑∞

j=1 b j is any rearrange-
ment of

∑∞
k=1 ak , then

∑∞
j=1 b j converges and

∞∑
k=1

ak =
∞∑
j=1

b j .
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Proof. Let ε > 0. Set sn = ∑n
k=1 ak, s =∑∞

k=1 ak , and tm =∑m
j=1 b j , n,m ∈ N.

Since
∑∞

k=1 ak converges absolutely, we can choose N ∈ N (see Corollary 6.9)
such that

∞∑
k=N+1

|ak | < ε

2
. (9)

Thus

|sN − s| =
∣∣∣∣∣∣

∞∑
k=N+1

ak

∣∣∣∣∣∣ ≤
∞∑

k=N+1

|ak | < ε

2
. (10)

Let f be a 1–1 function from N onto N which satisfies

b f (k) = ak, k ∈ N

and set M = max{ f (1), . . . , f (N )}. Notice that

{a1, . . . , aN } ⊆ {b1, . . . , bM }.
Let m ≥ M . Then tm − sN contains only ak ’s whose indices satisfy k > N .
Thus, it follows from (9) that

|tm − sN | ≤
∞∑

k=N+1

|ak | < ε

2
.

Hence, by (10),

|tm − s| ≤ |tm − sN | + |sN − s| < ε

2
+ ε

2
= ε

for m ≥ M . Therefore,

s =
∞∑
j=1

b j . �

The rest of this section, which is used nowhere else in this book, is optional.
We now show that Theorem 6.27 fails in a catastrophic way for conditionally

convergent series (see Theorem 6.29 below). To facilitate our discussion, recall
(see Exercise 1.2.3) that the positive and negative parts of an a ∈ R are defined by

a+:=|a| + a

2
=
{

a a ≥ 0
0 a < 0

and

a−:=|a| − a

2
=
{

0 a ≥ 0
−a a < 0.
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Notice that

a+ ≥ 0, a− ≥ 0, (7)

and

a = a+ − a−, |a| = a+ + a− (8)

for all a ∈ R.

∗6.28 Lemma.
Suppose that ak ∈ R for k ∈ N.

i) If
∑∞

k=1 ak converges absolutely, then so do
∑∞

k=1 a+
k and

∑∞
k=1 a−

k . In fact,

∞∑
k=1

|ak | =
∞∑

k=1

a+
k +

∞∑
k=1

a−
k and

∞∑
k=1

ak =
∞∑

k=1

a+
k −

∞∑
k=1

a−
k .

ii) If
∑∞

k=1 ak converges conditionally, then

∞∑
k=1

a+
k =

∞∑
k=1

a−
k = ∞.

Proof. By definition, a+
k = (|ak | + ak)/2. Since both

∑∞
k=1 |ak | and

∑∞
k=1 ak

converge, it follows from Theorem 6.10 that

∞∑
k=1

a+
k = 1

2

∞∑
k=1

|ak | + 1

2

∞∑
k=1

ak

converges. Similarly,

∞∑
k=1

a−
k = 1

2

∞∑
k=1

|ak | − 1

2

∞∑
k=1

ak

converges. This proves part i).
Suppose that part ii) is false. By symmetry we may suppose that

∑∞
k=1 a+

k
converges. Since

∑∞
k=1 ak converges, it follows from (8) that

∞∑
k=1

a−
k =

∞∑
k=1

a+
k −

∞∑
k=1

ak

converges. Thus,
∞∑

k=1

|ak | =
∞∑

k=1

a+
k +

∞∑
k=1

a−
k

converges, a contradiction. �
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We are prepared to show that Theorem 6.27 is false if the hypothesis “abso-
lutely convergent” is dropped. In fact, as the following result shows, rearrange-
ments of conditionally convergent series can converge to anything one wishes
(see also Exercise 6.3.10).

∗6.29 Theorem. [RIEMANN].
Let x ∈ R. If

∑∞
k=1 ak is conditionally convergent, then there is a rearrangement

of
∑∞

k=1 ak which converges to x .

Strategy: The idea behind the proof is simple. Since
∑∞

k=1 a+
k = ∑∞

k=1
a−

k = ∞ by Lemma 6.28, begin by adding enough a+
k ’s until the resulting par-

tial sum is > x . Then subtract enough a−
k ’s until the resulting partial sum is < x ,

and continue adding and subtracting. Since ak → 0 as k → ∞, the resulting
partial sums should be getting closer to x . We now make this precise.

Proof. Since
∑∞

k=1 a+
k = ∞, let k1 be the smallest integer which satisfies a+

1 +
a+

2 +· · ·+a+
k1
> x . Since k1 is least, a+

1 +· · ·+a+
k1−1 ≤ x , so a+

1 +a+
2 +· · ·+a+

k1
≤

x + a+
k1

. Set r0 = 0 and observe that sk1+r0 := a+
1 + · · · + a+

k1+r0
≤ x + a+

k1
.

Suppose for some j ≥ 1 that integers r0 < r1 < · · · < r j−1 and k1 <

k2 < · · · < k j have been chosen such that a partial sum sk j , of a+
k ’s and a−

k ’s,
satisfies

sk j +r j−1 ≤ x + a+
k j
. (11)

Since
∑∞

k=1 a−
k = ∞, let r j > r j−1 be the smallest integer which satisfies

sk j − a−
r j−1+1 − · · · − a−

r j
< x . For k j + r j−1 < n ≤ k j + r j , set sn := sk j −

a−
r j−1+1 − · · · − a−

n−k j
. It is easy to see that sk j +r j−1 ≥ sk j +r j−1+1 ≥ · · · ≥ sk j +r j .

Since r j is least, we also have sk j +r j = sk j +r j −1 − a−
r j

≥ x − a−
r j

. It follows from
(11) that

|sn − x | ≤ max{a−
r j
, a+

k j
} for k j + r j−1 < n ≤ k j + r j . (12)

Similarly, if we let k j+1 be the smallest integer which satisfies

sk j +r j + a+
k j +1 + · · · + a+

k j+1
> x

and set sn := sk j +r j + a+
k j +1 + · · · + a+

n−r j
, for k j + r j < n ≤ k j+1 + r j , then

|sn − x | ≤ max{a−
r j
, a+

k j+1
} for k j + r j < n ≤ k j+1 + r j . (13)

Let ε > 0. Since each a+
k and −a−

k is either ak or 0, it is clear (after deleting
the zero terms) that the sn’s are partial sums of a rearrangement of

∑∞
k=1 ak .

Moreover, since ak → 0 as k → ∞, we can choose an N so large that j ≥ N
implies that a−

r j
and a+

k j
are both less than ε. We conclude by (12) and (13)

that if n > kN + rN , then |sn − x | < ε; that is, that sn → x as n → ∞. �
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EXERCISES

6.3.0. Let {ak} and {bk} be real sequences. Decide which of the following state-
ments are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) Suppose that 0 < α < ∞. If |ak |α/k → a0, where a0 < 1, then∑∞
k=1 aαk is absolutely convergent.

b) If
∑∞

k=1 ak is absolutely convergent and ak ↓ 0 as k → ∞, then

lim sup
k→∞

|ak |1/k < 1.

c) If ak ≤ bk for all k ∈ N and
∑∞

k=1 bk is absolutely convergent, then∑∞
k=1 ak converges.

d) If
∑∞

k=1 ak is absolutely convergent, then
∑∞

k=1 a2
k is absolutely con-

vergent.

6.3.1. Prove that each of the following series converges.

a)
∞∑

k=1

1

k!
b)

∞∑
k=1

1

kk

c)
∞∑

k=1

πk

k!

d)
∞∑

k=1

(
k

k + 1

)k2

6.3.2. Decide, using results covered so far in this chapter, which of the follow-
ing series converge and which diverge.

a)
∞∑

k=1

k3

(k + 1)log k

b)
∞∑

k=1

k100

ek

c)
∞∑

k=1

(
k + 1

2k + 3

)k

d)
∞∑

k=1

1 · 3 · · · (2k − 1)

(2k)!
e)

∞∑
k=1

(
(k − 1)!
k! + 1

)k

f)
∞∑

k=1

(
3 + (−1)k

5

)k

g)
∞∑

k=1

(3 − (−1)k)k

πk
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6.3.3. For each of the following, find all values of p ∈ R for which the given
series converges absolutely.

a)
∞∑

k=2

1

k logp k

b)
∞∑

k=2

1

logp k

c)
∞∑

k=1

k p

pk

d)
∞∑

k=2

1√
k(k p − 1)

e)
∞∑

k=0
(
√

k2p + 1 − k p)

∗f)
∞∑

k=1

2kpk!
kk

6.3.4. Suppose that ak ≥ 0 and that a1/k
k → a as k → ∞. Prove that

∑∞
k=1 ak xk

converges absolutely for all |x | < 1/a if a �= 0 and for all x ∈ R if a = 0.
6.3.5. Define ak recursively by a1 = 1 and

ak = (−1)k
(

1 + k sin

(
1

k

))−1

ak−1, k > 1.

Prove that
∑∞

k=1 ak converges absolutely.
6.3.6. Suppose that akj ≥ 0 for k, j ∈ N. Set

Ak =
∞∑
j=1

akj

for each k ∈ N, and suppose that
∑∞

k=1 Ak converges.

a) Prove that

∞∑
j=1

( ∞∑
k=1

akj

)
≤

∞∑
k=1

⎛
⎝ ∞∑

j=1

akj

⎞
⎠ .

b) Show that

∞∑
j=1

( ∞∑
k=1

akj

)
=

∞∑
k=1

⎛
⎝ ∞∑

j=1

akj

⎞
⎠ .
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c) Prove that b) may not hold if akj has both positive and negative
values.

Hint: Consider

akj =

⎧⎪⎨
⎪⎩

1 j = k
−1 j = k + 1
0 otherwise.

6.3.7. a) Suppose that
∑∞

k=1 ak converges absolutely. Prove that
∑∞

k=1 |ak |p

converges for all p ≥ 1.
b) Suppose that

∑∞
k=1 ak converges conditionally. Prove that

∑∞
k=1 k pak

diverges for all p > 1.

6.3.8. For any real sequence {xk}, define

lim inf
k→∞ xk := lim

n→∞

(
inf
k>n

xk

)
.

a) Prove that if lim infk→∞ xk > x for some x ∈ R, then xk > x for
k large.

b) Prove that if xk → x as k → ∞, for some x ∈ R, then lim infk→∞
xk = x .

c) If ak > 0 for all k ∈ N, prove that

lim inf
n→∞

ak+1

ak
≤ lim inf

n→∞
k
√

ak ≤ lim sup
k→∞

k
√

ak ≤ lim sup
k→∞

ak+1

ak
.

d) Prove that if bn ∈ R \ {0} and |bn+1/bn| → r as n → ∞, for some
r > 0, then |bn|1/n → r as n → ∞.

6.3.9. Given that
∑∞

k=1 1/k2 = π2/6 (see Exercise 14.3.7), find the exact
value of

∞∑
k=1

1

(2k − 1)2
.

∗6.3.10. Let x ≤ y be any pair of extended real numbers. Prove that if
∑∞

k=1 ak
is conditionally convergent, then there is a rearrangement

∑∞
j=1 b j of∑∞

k=1 ak whose partial sums sn satisfy

lim inf
n→∞ sn = x and lim sup

n→∞
sn = y.

6.3.11. a) Using Exercise 4.4.4, prove that

sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!

for all x ∈ [0, π/2].
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b) Prove that

cos x =
∞∑

k=0

(−1)k x2k

(2k)!
for x ∈ [0, π/2].

6.4 ALTERNATING SERIES

We have identified many tests for absolute convergence but have said little
about conditionally convergent series. In this section we derive two tests to
use on series whose terms have mixed signs.

Both tests rely on the following algebraic observation. (This result will also
be used in Chapter 7 to prove that limits of power series are continuous.)

6.30 Theorem. [ABEL’S FORMULA].
Let {ak}k∈N and {bk}k∈N be real sequences, and for each pair of integers n ≥
m ≥ 1 set

An,m :=
n∑

k=m

ak .

Then

n∑
k=m

akbk = An,mbn −
n−1∑
k=m

Ak,m(bk+1 − bk)

for all integers n > m ≥ 1.

Proof. Since Ak,m − A(k−1),m = ak for k > m and Am,m = am , we have

n∑
k=m

akbk = ambm +
n∑

k=m+1

(Ak,m − A(k−1),m)bk

= ambm +
n∑

k=m+1

Ak,mbk −
n−1∑
k=m

Ak,mbk+1

= ambm +
n−1∑

k=m+1

Ak,mbk + An,mbn −
n−1∑

k=m+1

Ak,mbk+1 − Am,mbm+1

= An,mbn − Am,m(bm+1 − bm)−
n−1∑

k=m+1

Ak,m(bk+1 − bk)

= An,mbn −
n−1∑
k=m

Ak,m(bk+1 − bk). �
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This result is somewhat easier to remember using the following analogy. If
f : [1, N ] → R for some N ∈ N, then the summation

∑N−1
k=1 f (k) is an approxi-

mation to
∫ N

1 f (x)dx and the finite difference f (k + 1) − f (k) is an approxima-
tion to f ′(k) for k = 1, 2, . . . , N − 1. In particular, summation is an analogue of
integration and finite difference is an analogue of differentiation. In this con-
text, Abel’s Formula can be interpreted as a discrete analogue of integration
by parts.

Our first application of Abel’s Formula is the following test. (Notice that it
does not require that the ak ’s be nonnegative.)

6.31 Theorem. [DIRICHLET’S TEST].
Let ak, bk ∈ R for k ∈ N. If the sequence of partial sums sn = ∑n

k=1 ak is
bounded and bk ↓ 0 as k → ∞, then

∑∞
k=1 akbk converges.

Proof. Choose M > 0 such that

|sn| =
∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣ ≤ M

2
, n ∈ N.

By the triangle inequality,

|An,m | =
∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣ = |sn − sm−1| ≤ M

2
+ M

2
= M

for n > m > 1.
Let ε > 0 and choose N ∈ N so that |bk | < ε/M for k ≥ N . Since {bk} is

decreasing and nonnegative, we find, by Abel’s Formula, the choice of M , and
by telescoping that

∣∣∣∣∣
n∑

k=m

akbk

∣∣∣∣∣ ≤ |An,m | |bn| +
n−1∑
k=m

|Ak,m | (bk − bk+1)

≤ Mbn + M(bm − bn) = Mbm < ε

for all n > m ≥ N . �

The following special case of Dirichlet’s Test is widely used.

6.32 Corollary. [ALTERNATING SERIES TEST]. If ak ↓ 0 as k → ∞, then

∞∑
k=1

(−1)kak

converges.
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Proof. Since the partial sums of
∑∞

k=1(−1)k are bounded,
∑∞

k=1(−1)kak con-
verges by Dirichlet’s Test. �

We note that the series
∑∞

k=1(−1)k/k, used in Remark 6.20, is an alternating
series. Here is another example.

6.33 EXAMPLE.

Prove that
∑∞

k=1(−1)k/ log k converges.

Proof. Since 1/ log k ↓ 0 as k → ∞, this follows immediately from the Alter-
nating Series Test. �

The Dirichlet Test can be used for more than just alternating series.

∗6.34 EXAMPLE.

Prove that S(x) = ∑∞
k=1 sin(kx)/k converges for each x ∈ R.

Proof. Since φ(x) = sin(kx) is periodic of period 2π [i.e., φ(x + 2π) = φ(x)
for all x ∈ R] and has value identically zero when x = 0 or 2π , we need only
show that S(x) converges for each x ∈ (0, 2π). By Dirichlet’s Test, it suffices
to show that

D̃n(x):=
n∑

k=1

sin(kx), n ∈ N (14)

is a bounded sequence for each fixed x ∈ (0, 2π).
This proof, originally discovered by Dirichlet, involves a clever trick which

leads to a formula for D̃n . Indeed, applying a sum angle formula (see
Appendix B) and telescoping, we have

2 sin
( x

2

)
D̃n(x) =

n∑
k=1

2 sin
( x

2

)
sin(kx)

=
n∑

k=1

(
cos

((
k − 1

2

)
x

)
− cos

((
k + 1

2

)
x

))

= cos
( x

2

)
− cos

((
n + 1

2

)
x

)
.

Therefore,

∣∣ D̃n(x)
∣∣=
∣∣∣∣∣∣∣∣
cos

( x

2

)
− cos

((
n + 1

2

)
x

)

2 sin
( x

2

)
∣∣∣∣∣∣∣∣
≤ 1∣∣∣sin

( x

2

)∣∣∣
for all n ∈ N. �
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REVIEW. We have introduced more than a dozen tests for conver-
gence/divergence. With such a wealth of options, students can sometimes be
overwhelmed. Here is one suggestion for an order in which to apply these tests
to a series S := ∑∞

k=1 ak .

i) Try (but not too hard) to find L = limk→∞ ak . If L �= 0 or L doesn’t exist,
S diverges by the Divergence Test. If L = 0 or L is too hard to find, continue.

ii) If ak is geometric or a p-series, use Theorem 6.7 or Corollary 6.13 to deter-
mine convergence properties of

∑∞
k=1 ak . If ak looks a lot like some geo-

metric or a p-series bk , use the Limit Comparison Test, replace ak by bk , and
apply 6.7 and 6.13 to bk .

iii) Try to find

r = lim
k→∞

|ak+1|
|ak | or r = lim sup

k→∞
|ak |1/k .

If r < 1, then S converges absolutely. If r > 1, then S diverges. If r = 1 or
these limits are too hard to evaluate, continue.

iv) If the series “alternates” [has factors that oscillate between positive and neg-
ative values, i.e. (−1)k, sin k or cos(2k+1)], try to use the Alternating Series,
the Dirichlet, or Abel’s Test (see Exercise 6.4.4).

v) If |ak | ≈ bk , where bk is some nonnegative sequence such that the con-
vergence property of

∑∞
k=1 bk is known, try the Limit Comparison Test or

the Comparison Test. If |ak | is “integrable with respect to k,” try the Inte-
gral Test.

As long as you don’t spend too much time on any one step, you should con-
verge (no pun intended) to an answer fairly quickly. If you get to the end of the
process and still haven’t arrived at a conclusion, repeat the steps again, trying a
little harder this time. Most series, especially the ones that come up in practice,
will succumb to this process sooner rather than later.

EXERCISES

6.4.0. Let {ak} and {bk} be real sequences. Decide which of the following state-
ments are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) If ak ↓ 0, as k → ∞, and
∑∞

k=1 bk converges conditionally, then∑∞
k=1 akbk converges.

b) If ak → 0, as k → ∞, then
∑∞

k=1(−1)kak converges.
c) If ak → 0, as k → ∞, and ak ≥ 0 for all k ∈ N, then

∑∞
k=1(−1)kak

converges.
d) If ak → 0, as k → ∞, and

∑∞
k=1(−1)kak converges, then ak ↓ 0 as

k → ∞.

6.4.1. Prove that each of the following series converges.

a)
∞∑

k=1

(−1)k

k p
, p > 0
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b)
∞∑

k=1

sin(kx)

k p
x ∈ R, p > 0

c)
∞∑

k=1

1 − cos(1/k)

(−1)k

d)
∞∑

k=0

(−1)k+1k

3k

e)
∞∑

k=1
(−1)k

(π
2

− arctan k
)

6.4.2. For each of the following, find all values x ∈ R for which the given series
converges.

a)
∞∑

k=1

xk

k

b)
∞∑

k=1

x3k

2k

c)
∞∑

k=1

(−1)k xk

√
k2 + 1

d)
∞∑

k=1

(x + 2)k

k
√

k + 1

6.4.3. Using any test covered in this chapter so far, find out which of the follow-
ing series converge absolutely, which converge conditionally, and which
diverge.

a)
∞∑

k=1

(−1)kk3

(k + 1)!
b)

∞∑
k=1

(−1)(−3) . . . (1 − 2k)

1 · 4 . . . (3k − 2)

c)
∞∑

k=1

(k + 1)k

pkk! , p > e

d)
∞∑

k=1

(−1)k+1
√

k

k + 1

e)
∞∑

k=1

(−1)k
√

k + 1√
k kk

6.4.4. [Abel’s Test] Suppose that
∑∞

k=1 ak converges and that bk ↓ b as k → ∞.
Prove that

∑∞
k=1 akbk converges.

6.4.5. Show that under the hypotheses of Dirichlet’s Test,

∞∑
k=1

akbk =
∞∑

k=1

sk(bk − bk+1).
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6.4.6. Suppose that {ak} and {bk} are real sequences such that ak → 0 as
k → ∞,

∞∑
k=1

|ak+1 − ak | < ∞, and
∣∣ n∑

k=1

bk
∣∣≤ M n ∈ N.

Prove that
∑∞

k=1 akbk converges.
6.4.7. Suppose that

∑∞
k=1 ak converges. Prove that if bk ↑ ∞ and

∑∞
k=1 akbk

converges, then

bm

∞∑
k=m

ak → 0

as m → ∞.
∗6.4.8. Prove that

∞∑
k=1

ak cos(kx)

converges for every x ∈ (0, 2π) and every ak ↓ 0. What happens when
x = 0?

∗6.4.9. Suppose that ak ↓ 0 as k → ∞. Prove that

∞∑
k=1

ak sin((2k + 1)x)

converges for all x ∈ R.

∗6.5 ESTIMATION OF SERIES

In practice, one estimates a convergent series by truncation (i.e., by adding
finitely many terms of the given series). In this section we show how to esti-
mate the error associated with such a truncation.

The proofs of several of our earlier tests actually contain estimates of the
truncation error. Here is what we can get from the Integral Test.

6.35 Theorem. Suppose that f : [1,∞) → R is positive and decreasing on
[1,∞). Then

f (n) ≤
n∑

k=1

f (k)−
∫ n

1
f (x) dx ≤ f (1) for n ∈ N.

Moreover, if
∑∞

k=1 f (k) converges, then

0 ≤
n∑

k=1

f (k)+
∫ ∞

n
f (x) dx −

∞∑
k=1

f (k) ≤ f (n)

for all n ∈ N.
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Proof. The first set of inequalities has already been verified [see (3) in the
proof of Theorem 6.12]. To establish the second set, let uk = sk − tk for k ∈ N,
and observe, since f is decreasing, that

0 ≤ uk − uk+1 =
∫ k+1

k
f (x) dx − f (k + 1) ≤ f (k)− f (k + 1).

Summing these inequalities over k ≥ n and telescoping, we have

0 ≤ un − lim
j→∞ u j =

∞∑
k=n

(uk − uk+1) ≤
∞∑

k=n

( f (k)− f (k + 1)) = f (n).

Since u j → ∑∞
k=1 f (k)− ∫∞

1 f (x)dx as j → ∞, we conclude that

0 ≤
n∑

k=1

f (k)+
∫ ∞

n
f (x) dx −

∞∑
k=1

f (k) ≤ f (n). �

The following example shows how to use this result to estimate the accuracy
of a truncation of a series to which the Integral Test applies.

6.36 EXAMPLE.

Prove that
∑∞

k=1 ke−k2
converges and estimate its value to three decimal places.

Proof. Let f (x) = xe−x2
. Since f ′(x) = e−x2

(1 − 2x2) ≤ 0 for x ≥ 1, f is
decreasing on [1,∞). Since

∫ ∞

1
xe−x2

dx = 1

2

∫ ∞

1
e−u du = 1

2e
< ∞,

it follows from the Integral Test that
∑∞

k=1 ke−k2
converges.

By Theorem 6.35, the error of replacing s by
∑n

k=1 f (k) + ∫∞
n f (x)dx

is dominated by f (n). By the rounding process, this estimate to s will be
accurate to three decimal places if the error f (n) is ≤ 0.0005. Since f (2) =
0.036631 and f (3) = 0.000370, it follows that we should use n = 3. Since

3∑
k=1

ke−k2 +
∫ ∞

3
x e−x2

dx = 1

e
+ 2

e4
+ 3

e9
+ 1

2e9
≈ 0.4049427,

we conclude that a three-place estimate to s is given by 0.405. �

The next example shows that Theorem 6.35 can be used to estimate divergent
series as well.
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216 Chapter 6 Infinite Series of Real Numbers

6.37 EXAMPLE.

Prove that there exist numbers Cn ∈ (0, 1] such that

n∑
k=1

1

k
= log n + Cn

for all n ∈ N.

Proof. Clearly, f (x) = 1/x is positive, decreasing, and locally integrable on
[1,∞). Hence, by Theorem 6.35,

1

n
≤

n∑
k=1

1

k
−
∫ n

1

1

x
dx =

n∑
k=1

1

k
− log n ≤ 1. �

Next, we see what the Alternating Series Test has to say about truncation
error.

6.38 Theorem. Suppose that ak ↓ 0 as k → ∞. If s = ∑∞
k=1(−1)kak and

sn = ∑n
k=1(−1)kak , then 0 ≤ |s − sn| ≤ an+1 for all n ∈ N.

Proof. Suppose first that n is even, say n = 2m. Then

0 ≥ (−a2m+1 + a2m+2)+ (−a2m+3 + a2m+4)+ · · ·

=
∞∑

k=2m+1

(−1)kak = s − sn

= −a2m+1 + (a2m+2 − a2m+3)+ (a2m+4 − a2m+5)+ · · ·
≥ −a2m+1;

that is, 0 ≥ s − sn ≥ −an+1. A similar argument proves that 0 ≤ s − sn ≤ an+1
when n is odd. �

This result can be used to estimate the error of a truncation of any alternating
series.

6.39 EXAMPLE.

For each α > 0, prove that the series
∑∞

k=1(−1)kk/(k2 + α) converges. If sn rep-
resents its nth partial sum and s its value, find an n so large that sn approximates
s to two decimal places.

Proof. Let f (x) = x/(x2 + α) and note that f (x) → 0 as x → ∞. Since
f ′(x) = (α− x2)/(x2 + α)2 is negative for x >

√|α|, it follows that k/(k2+α) ↓
0 as k → ∞. Hence, the given series converges by the Alternating Series Test.
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By Theorem 6.38, sn will estimate s to two decimal places if f (n) < 0.005
(i.e., if n2 −200n +α > 0). When α > 104, this last quadratic has no real roots;
hence, the inequality is always satisfied and we may choose n = 1. When
α ≤ 104, the quadratic has roots 100 ± √

104 − α. Hence, choose any n which
satisfies n > 100 + √

104 − α. �

Finally, we examine what information the proofs of the Root and Ratio Tests
contain about accuracy of truncations.

6.40 Theorem. Suppose that
∑∞

k=1 ak converges absolutely and that s is the
value of

∑∞
k=1 |ak |.

i) If there exist numbers x ∈ (0, 1) and N ∈ N such that

|ak |1/k ≤ x

for all k > N , then

0 ≤ s −
n∑

k=1

|ak | ≤ xn+1

1 − x

for all n ≥ N .
ii) If there exist numbers x ∈ (0, 1) and N ∈ N such that

|ak+1|
|ak | ≤ x

for k > N , then

0 ≤ s −
n∑

k=1

|ak | ≤ |aN |xn−N+1

1 − x

for all n ≥ N .

Proof. Let n ≥ N . Since |ak | ≤ xk for k > N , we have, by summing a geomet-
ric series, that

0 ≤ s −
n∑

k=1

|ak | =
∞∑

k=n+1

|ak | ≤
∞∑

k=n+1

xk = xn+1

1 − x

for all n ≥ N . This proves part i). The proof of part ii) is left as an exercise. �

6.41 EXAMPLE.

Prove that
∑∞

k=1 k2k/(3k2 +k)k converges absolutely. If sn represents its nth par-
tial sum and s its value, find an n so large that sn approximates s to an accuracy
of 10−2.
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Solution. Since (
k2k

(3k2 + k)k

)1/k

= k2

3k2 + k
≤ 1

3

for all k ≥ N := 1, the series converges absolutely by the Root Test. Since
(1/3)n+1/(1 − 1/3) ≤ 10−2 for n ≥ 4, we conclude by Theorem 6.40i that it
takes at most four terms to approximate the value of this series to an accuracy
of 10−2. �

EXERCISES

6.5.1. For each of the following series, let sn represent its partial sums and s its
value. Prove that s is finite and find an n so large that sn approximates s
to an accuracy of 10−2.

a)
∞∑

k=1
(−1)k

(π
2

− arctan k
)

b)
∞∑

k=1

(−1)kk2

2k

c)
∞∑

k=1

(−1)k

k2

2 · 4 · · · (2k)

1 · 3 · · · (2k − 1)

6.5.2. a) Find all p ≥ 0 such that the following series converges:

∞∑
k=1

1

k logp(k + 1)
.

b) For each such p, prove that the partial sums of this series sn and its
value s satisfy

|s − sn| ≤ n + p − 1

n(p − 1)

(
1

logp−1(n)

)

for all n ≥ 2.
6.5.3. For each of the following series, let sn represent its partial sums, and let

s represent its value. Prove that s is finite and find an n so large that sn
approximates s to three decimal places.

a)
∞∑

k=1

1

k!
b)

∞∑
k=1

1

kk

c)
∞∑

k=1

2k

k!

d)
∞∑

k=1

(
k

k + 1

)k2

6.5.4. Prove Theorem 6.40ii.
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∗6.6 ADDITIONAL TESTS

If the Ratio or Root Test yields a value r = 1, then no conclusion can be made.
There are some tests designed to handle just that situation (see Exercise 6.6.3).
We cover two of them in this section (see also Exercises 6.6.4 and 6.6.5).

The first test compares the growth of the terms of a series with the growth of
the logarithm function.

6.42 Theorem. [THE LOGARITHMIC TEST].
Suppose that ak �= 0 for large k and that

p = lim
k→∞

log(1/|ak |)
log k

exists as an extended real number. If p > 1, then
∑∞

k=1 ak converges absolutely.
If p < 1, then

∑∞
k=1 |ak | diverges.

Proof. Suppose that p > 1. Fix q ∈ (1, p) and choose N ∈ N so that k ≥ N
implies log(1/|ak |) > q log k = log(kq). Since the logarithm function is mono-
tone increasing, it follows that 1/|ak | > kq ; that is, that |ak | < k−q for k ≥ N .
Hence, by the Comparison Test,

∑∞
k=1 |ak | converges.

Similarly, if p < 1, then |ak | > 1/k for large k. Hence, by the Comparison
Test,

∑∞
k=1 |ak | diverges. �

Our final test works by examining how rapidly the ratios of ak+1/ak converge
to r = 1 (see also Exercise 6.6.5 below). Its proof uses Bernoulli’s Inequality.

∗6.43 Theorem. [RAABE’S TEST].
Suppose that there is a constant C and a parameter p such that

∣∣∣∣ak+1

ak

∣∣∣∣ ≤ 1 − p

k + C
(15)

for large k. If p > 1, then
∑∞

k=1 ak converges absolutely.

Proof. Set xk = k + C − 1 for k ∈ N and choose N ∈ N such that xk > 1 and
(15) hold for k ≥ N . By the p-Series Test and the Limit Comparison Test,

∞∑
k=N

x−p
k < ∞. (16)

By (15) and Bernoulli’s Inequality,

∣∣∣∣ak+1

ak

∣∣∣∣ ≤ 1 − p

xk+1
≤
(

1 − 1

xk+1

)p

= x p
k

x p
k+1

.

219



220 Chapter 6 Infinite Series of Real Numbers

Hence, the sequence {|ak |x p
k }∞k=N is decreasing and bounded above. In partic-

ular, there is an M > 0 such that |ak | ≤ Mx−p
k for k ≥ N . We conclude by (16)

that
∑∞

k=1 ak converges. �

EXERCISES

6.6.1. Using any test covered in this chapter, find out which of the follow-
ing series converge absolutely, which converge conditionally, and which
diverge.

a)
∞∑

k=1

3 · 5 · · · (2k + 1)

2 · 4 · · · 2k

b)
∞∑

k=1

1 · 3 · · · (2k − 1)

5 · 7 · · · (2k + 3)

c)
∞∑

k=2

1

(log k)log log k

d)
∞∑

k=1

(√
k − 1√

k

)k

6.6.2. For each of the following, find all values of p ∈ R for which the given
series converges absolutely, for which it converges conditionally, and for
which it diverges.

a)
∞∑

k=1
ke−kp

b)
∞∑

k=2

1

(log k)p log k

c)
∞∑

k=1

(pk)k

k!
∗6.6.3. a) Prove that the Root Test applied to the series

∞∑
k=2

1

(log k)log k

yields r = 1. Use the Logarithmic Test to prove that this series
converges.

b) Prove that the Ratio Test applied to the series

∞∑
k=1

1 · 3 · · · (2k − 1)

4 · 6 · · · (2k + 2)

yields r = 1. Use Raabe’s Test to prove that this series converges.
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6.6.4. Suppose that f : R → (0,∞) is differentiable, that f (x) → 0 as x → ∞,
and that

α := lim
x→∞

x f ′(x)
f (x)

exists. If α < −1, prove that
∑∞

k=1 f (k) converges.
6.6.5. Suppose that {ak} is a sequence of nonzero real numbers and that

p = lim
k→∞ k

(
1 −

∣∣∣∣ak+1

ak

∣∣∣∣
)

exists as an extended real number. Prove that
∑∞

k=1 ak converges abso-
lutely when p > 1.
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C H A P T E R 7

Infinite Series of Functions

7.1 UNIFORM CONVERGENCE OF SEQUENCES

You are familiar with what it means for a sequence of numbers to converge. In
this section we examine what it means for a sequence of functions to converge.
It turns out there are several different ways to define convergence of a sequence
of functions. We begin with the simplest way.

7.1 Definition.

Let E be a nonempty subset of R. A sequence of functions fn : E → R is said
to converge pointwise on E (notation: fn → f pointwise on E as n → ∞) if
and only if f (x) = limn→∞ fn(x) exists for each x ∈ E .

Because { fn} converges pointwise on a set E if and only if the sequence of real
numbers { fn(x)} converges for each x ∈ E , every result about convergence of
real numbers contains a result about pointwise convergence of functions. Here
is a typical example.

7.2 Remark. Let E be a nonempty subset of R. Then a sequence of functions fn
converges pointwise on E, as n → ∞, if and only if for every ε > 0 and x ∈ E
there is an N ∈ N (which may depend on x as well as ε) such that

n ≥ N implies | fn(x)− f (x)| < ε.

Proof. By Definition 7.1, fn → f pointwise on E if and only if fn(x) → f (x)
for all x ∈ E . This occurs, by Definition 2.1, if and only if for every ε > 0 and
x ∈ E there is an N ∈ N such that n ≥ N implies | fn(x)− f (x)| < ε. �

If fn → f pointwise on [a, b], it is natural to ask, What does f inherit from
fn? The next four remarks show that, in general, the answer to this question is
“not much.”

7.3 Remark. The pointwise limit of continuous (respectively, differentiable)
functions is not necessarily continuous (respectively, differentiable).

Proof. Let fn(x) = xn and set

f (x) =
{

0 0 ≤ x < 1
1 x = 1.
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Section 7.1 Uniform Convergence of Sequences 223

Then fn → f pointwise on [0, 1] (see Example 2.20), each fn is continuous
and differentiable on [0, 1], but f is neither differentiable nor continuous at
x = 1. �

7.4 Remark. The pointwise limit of integrable functions is not necessarily inte-
grable.

Proof. Set

fn(x) =
{

1 x = p/m ∈ Q, written in reduced form, where m ≤ n
0 otherwise,

for n ∈ N and

f (x) =
{

1 x ∈ Q
0 otherwise.

Then fn → f pointwise on [0, 1], each fn is integrable on [0, 1] (with integral
zero), but f is not integrable on [0, 1] (see Example 5.11). �

7.5 Remark. There exist differentiable functions fn and f such that fn → f
pointwise on [0, 1] but

lim
n→∞ f ′

n(x) �=
(

lim
n→∞ fn(x)

)′
(1)

for x = 1.

Proof. Let fn(x) = xn/n and set f (x) = 0. Then fn → f pointwise on [0, 1],
each fn is differentiable with f ′

n(x) = xn−1. Thus the left side of (1) is 1 at
x = 1 but the right side of (1) is zero. �

7.6 Remark. There exist continuous functions fn and f such that fn → f point-
wise on [0, 1] but

lim
n→∞

∫ 1

0
fn(x) dx �=

∫ 1

0

(
lim

n→∞ fn(x)
)

dx . (2)

Proof. Let f1(x) = 1 and, for n > 1, let fn be a sequence of functions whose
graphs are triangles with bases 2/n and altitudes n (see Figure 7.1). By the
point-slope form, formulas for these fn’s can be given by

fn(x) =

⎧⎪⎨
⎪⎩

n2x 0 ≤ x < 1/n
2n − n2x 1/n ≤ x < 2/n
0 2/n ≤ x ≤ 1.
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FIGURE 7.1

Then fn → 0 pointwise on [0, 1] and, since the area of a triangle is one-half
base times altitude,

∫ 1
0 fn(x) dx = 1 for all n ∈ N. Thus, the left side of (2) is 1

but the right side is zero. �

In view of the preceding examples, it is clear that pointwise convergence is
of limited value for the calculus of limits of sequences. It turns out that the fol-
lowing concept, discovered independently by Stokes, Cauchy, and Weierstrass
around 1850, is much more useful in this context.

7.7 Definition.

Let E be a nonempty subset of R. A sequence of functions fn : E → R is said
to converge uniformly on E to a function f (notation: fn → f uniformly on E
as n → ∞) if and only if for every ε > 0 there is an N ∈ N such that

n ≥ N implies | fn(x)− f (x)| < ε

for all x ∈ E .

Comparing Definition 7.7 with Remark 7.2 above, we see that the only dif-
ference between uniform convergence and pointwise convergence is that, for
uniform convergence, the integer N must be chosen independently of x (see
Figure 7.2). Notice that this is similar to the difference between uniform conti-
nuity and continuity (see the discussion following Example 3.36).

By definition, if fn converges uniformly on E , then fn converges pointwise
on E . The following example shows that the converse of this statement is false.
[This example also shows how to prove that fn → f uniformly on a set E :
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Section 7.1 Uniform Convergence of Sequences 225
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FIGURE 7.2

dominate | fn(x)− f (x)| by constants bn , independent of x ∈ E , which converge
to zero as n → ∞.]

7.8 EXAMPLE.

Prove that xn → 0 uniformly on [0, b] for any b < 1, and pointwise, but not
uniformly, on [0, 1).

Proof. By Example 2.20, xn → 0 pointwise on [0, 1). Let b < 1. Given ε > 0,
choose N ∈ N such that n ≥ N implies bn < ε. Then x ∈ [0, b] and n ≥ N
imply |xn| ≤ bn < ε; that is, xn → 0 uniformly for x ∈ [0, b].

Does xn converge to 0 uniformly on [0, 1)? If it does, then given 0 < ε <

1/2, there is an N ∈ N such that |x N | < ε for all x ∈ [0, 1). But x N → 1 as
x → 1− so we can choose an x0 ∈ (0, 1) such that x N

0 > ε (see Figure 7.3).
Thus ε < x N

0 < ε, a contradiction. �

The next several results show that if fn → f or f ′
n → f ′ uniformly, then f

inherits much from fn .

7.9 Theorem. Let E be a nonempty subset of R and suppose that fn → f uni-
formly on E, as n → ∞. If each fn is continuous at some x0 ∈ E , then f is
continuous at x0 ∈ E .

Proof. Let ε > 0 and choose N ∈ N such that

n ≥ N and x ∈ E imply | fn(x)− f (x)| < ε

3
.
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226 Chapter 7 Infinite Series of Functions
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Since fN is continuous at x0 ∈ E , choose δ > 0 such that

|x − x0| < δ and x ∈ E imply | fN (x)− fN (x0)| < ε

3
.

Suppose that |x − x0| < δ and that x ∈ E . Then

| f (x)− f (x0)| ≤ | f (x)− fN (x)| + | fN (x)− fN (x0)| + | fN (x0)− f (x0)| < ε.

Thus f is continuous at x0 ∈ E . �

(For a generalization of this result, see Exercise 7.1.6. For a converse of this
result when the sequence fn is pointwise monotone, see Theorem 9.40.)

Here is an important theorem about interchanging a limit sign and an integral
sign (compare with Remark 7.6).

7.10 Theorem. Suppose that fn → f uniformly on a closed interval [a, b]. If
each fn is integrable on [a, b], then so is f and

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a

(
lim

n→∞ fn(x)
)

dx .

In fact, limn→∞
∫ x

a fn(t) dt = ∫ x
a f (t) dt uniformly for x ∈ [a, b].
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Section 7.1 Uniform Convergence of Sequences 227

Proof. By Exercise 7.1.3, f is bounded on [a, b]. To prove that f is integrable,
let ε > 0 and choose N ∈ N such that

n ≥ N implies | f (x)− fn(x)| < ε

3(b − a)
(3)

for all x ∈ [a, b]. Using this inequality for n = N , we see that by the definition
of upper and lower sums,

U ( f − fN , P) ≤ ε

3
and L( f − fN , P) ≥ −ε

3

for any partition P of [a, b]. Since fN is integrable, choose a partition P such
that

U ( fN , P)− L( fN , P) <
ε

3
.

It follows that

U ( f, P)− L( f, P) ≤ U ( f − fN , P)+ U ( fN , P)− L( fN , P)− L( f − fN , P)

<
ε

3
+ ε

3
+ ε

3
= ε;

that is, f is integrable on [a, b]. We conclude by Theorem 5.22 and (3) that∣∣∣∣
∫ x

a
fn(t) dt −

∫ x

a
f (t) dt

∣∣∣∣ ≤
∫ x

a
| fn(t)− f (t)| dt ≤ ε(x − a)

3(b − a)
< ε

for all x ∈ [a, b] and n ≥ N . �

Here is a Cauchy Criterion for uniform convergence.

7.11 Lemma. [UNIFORM CAUCHY CRITERION].
Let E be a nonempty subset of R and let fn : E → R be a sequence of functions.
Then fn converges uniformly on E if and only if for every ε > 0 there is an
N ∈ N such that

n,m ≥ N imply | fn(x)− fm(x)| < ε (4)

for all x ∈ E .

Proof. Suppose first that fn → f uniformly on E as n → ∞. Let ε > 0 and
choose N ∈ N such that

n ≥ N implies | fn(x)− f (x)| < ε

2

for x ∈ E . Since | fn(x)− fm(x)| ≤ | fn(x)− f (x)| + | f (x)− fm(x)|, it is clear
that (4) holds for all x ∈ E .
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228 Chapter 7 Infinite Series of Functions

Conversely, if (4) holds for x ∈ E , then { fn(x)}n∈N is Cauchy for each x ∈ E .
Hence, by Cauchy’s Theorem for sequences (Theorem 2.29),

f (x) := lim
n→∞ fn(x)

exists for each x ∈ E . Take the limit of the second inequality in (4) as m → ∞.
We obtain | fn(x) − f (x)| ≤ ε/2 < ε for all n ≥ N and x ∈ E . Hence, by
definition, fn → f uniformly on E . �

Here is a result about interchanging a limit sign and the derivative sign (com-
pare with Remark 7.5). The proof presented here comes from Apostol [1].

7.12 Theorem. Let (a, b) be a bounded interval and suppose that fn is a
sequence of functions which converges at some x0 ∈ (a, b). If each fn is dif-
ferentiable on (a, b), and f ′

n converges uniformly on (a, b) as n → ∞, then fn
converges uniformly on (a, b) and

lim
n→∞ f ′

n(x) =
(

lim
n→∞ fn(x)

)′

for each x ∈ (a, b).

Proof. Fix c ∈ (a, b) and define

gn(x) =
⎧⎨
⎩

fn(x)− fn(c)

x − c
x �= c

f ′
n(c) x = c

for n ∈ N. Clearly,

fn(x) = fn(c)+ (x − c)gn(x) (5)

for n ∈ N and x ∈ (a, b).
We claim that for any c ∈ (a, b), the sequence gn converges uniformly on

(a, b). Let ε > 0, n,m ∈ N, and x ∈ (a, b) with x �= c. By the Mean Value
Theorem, there is a ξ between x and c such that

gn(x)− gm(x) = fn(x)− fm(x)− ( fn(c)− fm(c))

x − c
= f ′

n(ξ)− f ′
m(ξ).

Since f ′
n converges uniformly on (a, b), it follows that there is an N ∈ N

such that

n,m ≥ N implies |gn(x)− gm(x)| < ε

for x ∈ (a, b) with x �= c. This implication also holds for x = c because
gn(c) = f ′

n(c) for all n ∈ N. This proves the claim.
To show that fn converges uniformly on (a, b), notice that by the claim,

gn converges uniformly as n → ∞ and (5) holds for c = x0. Since fn(x0)
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Section 7.1 Uniform Convergence of Sequences 229

converges as n → ∞ by hypothesis, it follows from (5) and b − a < ∞ that fn
converges uniformly on (a, b) as n → ∞.

Fix c ∈ (a, b). Define f, g on (a, b) by f (x) := limn→∞ fn(x) and g(x) :=
limn→∞ gn(x). We need to show that

f ′(c) = lim
n→∞ f ′

n(c). (6)

Since each gn is continuous at c, the claim implies g is continuous at c. Since
gn(c) = f ′

n(c), it follows that the right side of (6) can be written as

lim
n→∞ f ′

n(c) = lim
n→∞ gn(c) = g(c) = lim

x→c
g(x).

On the other hand, if x �= c we have by definition that

f (x)− f (c)

x − c
= lim

n→∞
fn(x)− fn(c)

x − c
= lim

n→∞ gn(x) = g(x).

Therefore, the left side of (6) also reduces to

f ′(c) = lim
x→c

f (x)− f (c)

x − c
= lim

x→c
g(x).

This verifies (6), and the proof of the theorem is complete. �

EXERCISES

7.1.1. a) Prove that x/n → 0 uniformly, as n → ∞, on any closed interval
[a, b].

b) Prove that 1/(nx) → 0 pointwise but not uniformly on (0, 1) as
n → ∞.

7.1.2. Prove that the following limits exist and evaluate them.

a) lim
n→∞

∫ 3
1

nx99 + 5

x3 + nx66
dx

b) lim
n→∞

∫ 2
0 ex2/n dx

c) lim
n→∞

∫ 3
0

√
sin

x

n
+ x + 1 dx

7.1.3. A sequence of functions fn is said to be uniformly bounded on a set E if
and only if there is an M > 0 such that | fn(x)| ≤ M for all x ∈ E and all
n ∈ N.

Suppose that for each n ∈ N, fn : E → R is bounded. If fn → f
uniformly on E , as n → N, prove that { fn} is uniformly bounded on E
and f is a bounded function on E .

7.1.4. Let [a, b] be a closed bounded interval, f : [a, b] → R be bounded,
and g : [a, b] → R be continuous with g(a) = g(b) = 0. Let fn be a

229



230 Chapter 7 Infinite Series of Functions

uniformly bounded sequence of functions on [a, b] (see Exercise 7.1.3).
Prove that if fn → f uniformly on all closed intervals [c, d] ⊂ (a, b),
then fng → f g uniformly on [a, b].

7.1.5. Suppose that fn → f and gn → g, as n → ∞, uniformly on some set
E ⊆ R.

a) Prove that fn + gn → f + g and α fn → α f , as n → ∞, uniformly on
E for all α ∈ R.

b) Prove that fngn → f g pointwise on E .
c) Prove that if f and g are bounded on E , then fngn → f g uniformly

on E .
d) Show that c) may be false when g is unbounded.

7.1.6. Suppose that E is a nonempty subset of R and that fn → f uniformly
on E . Prove that if each fn is uniformly continuous on E , then f is
uniformly continuous on E .

7.1.7. Suppose that f is uniformly continuous on R. If yn → 0 as n → ∞ and
fn(x) := f (x + yn) for x ∈ R, prove that fn converges uniformly on R.

7.1.8. Suppose that b > a > 0. Prove that

lim
n→∞

∫ b

a

(
1 + x

n

)n
e−x dx = b − a.

7.1.9. Let f, g be continuous on a closed bounded interval [a, b] with |g(x)| > 0
for x ∈ [a, b]. Suppose that fn → f and gn → g as n → ∞, uniformly
on [a, b].
a) Prove that 1/gn is defined for large n and fn/gn → f/g uniformly on

[a, b] as n → ∞.
b) Show that a) is false if [a, b] is replaced by (a, b).

7.1.10. Let E be a nonempty subset of R and f be a real-valued function defined
on E . Suppose that fn is a sequence of bounded functions on E which
converges to f uniformly on E . Prove that

f1(x)+ · · · + fn(x)

n
→ f (x)

uniformly on E as n → ∞ (compare with Exercise 6.1.9).
7.1.11. Let fn be integrable on [0, 1] and fn → f uniformly on [0, 1]. Show that

if bn ↑ 1 as n → ∞, then

lim
n→∞

∫ bn

0
fn(x) dx =

∫ 1

0
f (x) dx .

7.2 UNIFORM CONVERGENCE OF SERIES

In this section we extend the concepts introduced in Section 7.1 from sequences
to series.
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Section 7.2 Uniform Convergence of Series 231

7.13 Definition.

Let fk be a sequence of real functions defined on some set E and set

sn(x) :=
n∑

k=1

fk(x), x ∈ E, n ∈ N.

i) The series
∑∞

k=1 fk is said to converge pointwise on E if and only if the
sequence sn(x) converges pointwise on E as n → ∞.

ii) The series
∑∞

k=1 fk is said to converge uniformly on E if and only if the
sequence sn(x) converges uniformly on E as n → ∞.

iii) The series
∑∞

k=1 fk is said to converge absolutely (pointwise) on E if and
only if

∑∞
k=1 | fk(x)| converges for each x ∈ E .

Since convergence of series is defined in terms of convergence of sequences of
partial sums, every result about convergence of sequences of functions contains
a result about convergence of series of functions. For example, the following
result is an immediate consequence of Theorems 7.9, 7.10, and 7.12.

7.14 Theorem. Let E be a nonempty subset of R and let { fk} be a sequence of
real functions defined on E.

i) Suppose that x0 ∈ E and that each fk is continuous at x0 ∈ E . If f = ∑∞
k=1 fk

converges uniformly on E, then f is continuous at x0 ∈ E .
ii) [Term-by-term integration]. Suppose that E = [a, b] and that each fk is

integrable on [a, b]. If f = ∑∞
k=1 fk converges uniformly on [a, b], then f is

integrable on [a, b] and

∫ b

a

∞∑
k=1

fk(x) dx =
∞∑

k=1

∫ b

a
fk(x) dx .

iii) [Term-by-term differentiation]. Suppose that E is a bounded, open interval
and that each fk is differentiable on E. If

∑∞
k=1 fk converges at some x0 ∈

E , and
∑∞

k=1 f ′
k converges uniformly on E, then f := ∑∞

k=1 fk converges
uniformly on E, f is differentiable on E, and

( ∞∑
k=1

fk(x)

)′
=

∞∑
k=1

f ′
k(x)

for x ∈ E .

Here are two much-used tests for uniform convergence of series. (The second
test, and its example, is optional because we do not use it elsewhere in this text.)
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232 Chapter 7 Infinite Series of Functions

7.15 Theorem. [WEIERSTRASS M-TEST].
Let E be a nonempty subset of R, let fk : E → R, k ∈ N, and suppose that
Mk ≥ 0 satisfies

∑∞
k=1 Mk < ∞. If | fk(x)| ≤ Mk for k ∈ N and x ∈ E , then∑∞

k=1 fk converges absolutely and uniformly on E.

Proof. Let ε > 0 and use the Cauchy Criterion to choose N ∈ N such that
m ≥ n ≥ N implies

∑m
k=n Mk < ε. Thus, by hypothesis,

∣∣∣∣∣
m∑

k=n

fk(x)

∣∣∣∣∣ ≤
m∑

k=n

| fk(x)| ≤
m∑

k=n

Mk < ε

for m ≥ n ≥ N and x ∈ E . Hence, the partial sums of
∑∞

k=1 fk are uniformly
Cauchy and the partial sums of

∑∞
k=1 | fk(x)| are Cauchy for each x ∈ E . �

∗7.16 Theorem. [DIRICHLET’S TEST FOR UNIFORM CONVERGENCE].
Let E be a nonempty subset of R and suppose that fk, gk : E → R, k ∈ N. If

∣∣∣∣∣
n∑

k=1

fk(x)

∣∣∣∣∣ ≤ M < ∞

for n ∈ N and x ∈ E , and if gk ↓ 0 uniformly on E as k → ∞, then
∑∞

k=1 fk gk
converges uniformly on E.

Proof. Let

Fn,m(x) =
n∑

k=m

fk(x), m, n ∈ N, n ≥ m, x ∈ E

and fix integers n > m > 0. By Abel’s Formula and hypothesis,

∣∣∣∣∣
n∑

k=m

fk(x)gk(x)

∣∣∣∣∣ =
∣∣∣∣∣Fn,m(x)gn(x)+

n−1∑
k=m

Fk,m(x)(gk(x)− gk+1(x))

∣∣∣∣∣
≤ 2Mgn(x)+ 2M

n−1∑
k=m

(gk(x)− gk+1(x))

= 2Mgm(x)

for all x ∈ E . Since gm(x) → 0 uniformly on E , as m → ∞, it follows from the
uniform Cauchy Criterion that

∑∞
k=1 fk(x)gk(x) converges uniformly on E .�

Here is a typical application of Dirichlet’s Test.
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Section 7.2 Uniform Convergence of Series 233

∗7.17 EXAMPLE.

Prove that if ak ↓ 0 as k → ∞, then
∑∞

k=0 ak cos kx converges uniformly on any
closed subinterval [a, b] of (0, 2π).

Proof. Let fk(x) = cos kx and gk(x) = ak for k ∈ N. By the technique used in
Example 6.34, we can show that

Dn(x) :=
n∑

k=0

cos kx =
sin
( x

2

)
+ sin

((
n + 1

2

)
x

)

2 sin
( x

2

)

for n ∈ N and x ∈ (0, 2π). Hence the partial sums of
∑∞

k=0 fk(x) satisfy

|Dn(x)| =

∣∣∣∣∣∣∣∣
sin
( x

2

)
+ sin

((
n + 1

2

)
x

)

2 sin
( x

2

)
∣∣∣∣∣∣∣∣
≤ 1∣∣∣sin

( x

2

)∣∣∣
for x ∈ (0, 2π). If δ = min{2π − b, a} and x ∈ [a, b], then sin(x/2) ≥ sin(δ/2)
(see Figure 7.4). Therefore,

∑∞
k=1 ak cos kx converges uniformly on [a, b] by

Dirichlet’s Test. �

This example can be used to show that uniform convergence of a
series alone is not sufficient for term-by-term differentiation. Indeed, although∑∞

k=1 cos kx/k converges uniformly on [π/2, 3π/2], its term-by-term derivative∑∞
k=1(− sin kx) converges at only one point in [π/2, 3π/2].

y

xa b 2

1
y = sin x––

2(  )

FIGURE 7.4
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234 Chapter 7 Infinite Series of Functions

A double series is a series of numbers or functions of the form

∞∑
k=1

⎛
⎝ ∞∑

j=1

akj

⎞
⎠ .

Such a double series is said to converge if and only if
∑∞

j=1 akj converges for
each k ∈ N and

∞∑
k=1

∞∑
j=1

akj := lim
N→∞

N∑
k=1

⎛
⎝ ∞∑

j=1

akj

⎞
⎠

exists and is finite.
When working with double series, one frequently wants to be able to change

the order of summation. We already know that the order of summation can be
changed when akj ≥ 0 (see Exercise 6.3.6). We now prove a more general result.
(The elegant proof given here, which comes from Rudin [11],1 uses uniform
convergence.)

7.18 Theorem. Let akj ∈ R for k, j ∈ N and suppose that

A j =
∞∑

k=1

|akj | < ∞

for each j ∈ N. If
∑∞

j=1 A j converges (i.e., the double sum converges absolutely),
then

∞∑
k=1

∞∑
j=1

akj =
∞∑
j=1

∞∑
k=1

akj .

Proof. Let E = {0, 1, 1
2 ,

1
3 , . . .}. For each j ∈ N, define a function f j on E by

f j (0) =
∞∑

k=1

akj , f j

(
1

n

)
=

n∑
k=1

akj , n ∈ N.

By hypothesis, f j (0) exists and by the definition of series convergence,

lim
n→∞ f j

(
1

n

)
= f j (0);

1Walter Rudin, Principles of Mathematical Analysis, 3rd ed. (New York: McGraw-Hill Book
Co., 1976). Reprinted with permission of McGraw-Hill Book Co.
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Section 7.2 Uniform Convergence of Series 235

that is, f j is continuous at 0 ∈ E for each j ∈ N. Moreover, since | f j (x)| ≤ A j
for all x ∈ E and j ∈ N, the Weierstrass M-Test implies that

f (x) :=
∞∑
j=1

f j (x)

converges uniformly on E . Thus f is continuous at 0 ∈ E by Theorem 7.9.
It follows from the sequential characterization of continuity (Theorem 3.21)
that f (1/n) → f (0) as n → ∞. Therefore,

∞∑
k=1

∞∑
j=1

akj = lim
n→∞

n∑
k=1

∞∑
j=1

akj = lim
n→∞

∞∑
j=1

n∑
k=1

akj

= lim
n→∞

∞∑
j=1

f j

(
1

n

)
= lim

n→∞ f

(
1

n

)
= f (0) =

∞∑
j=1

∞∑
k=1

akj . �

EXERCISES

7.2.1. a) Prove that
∑∞

k=1 sin(x/k2) converges uniformly on any bounded
interval in R.

b) Prove that
∑∞

k=0 e−kx converges uniformly on any closed subinterval
of (0,∞).

7.2.2. Prove that the geometric series

∞∑
k=0

xk = 1

1 − x

converges uniformly on any closed interval [a, b] ⊂ (−1, 1).
7.2.3. Let E(x) = ∑∞

k=0 xk/k!.
a) Prove that the series defining E(x) converges uniformly on any closed

interval [a, b].
b) Prove that ∫ b

a
E(x) dx = E(b)− E(a)

for all a, b ∈ R.
c) Prove that the function y = E(x) satisfies the initial value problem

y′ − y = 0, y(0) = 1.

[We shall see in Section 7.4 that E(x) = ex .]
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236 Chapter 7 Infinite Series of Functions

7.2.4. Suppose that

f (x) =
∞∑

k=1

cos(kx)

k2
.

Prove that ∫ π/2

0
f (x) dx =

∞∑
k=0

(−1)k

(2k + 1)3
.

7.2.5. Show that

f (x) =
∞∑

k=1

1

k
sin

(
x

k + 1

)

converges, pointwise on R and uniformly on each bounded interval in R,
to a differentiable function f which satisfies

| f (x)| ≤ |x | and | f ′(x)| ≤ 1

for all x ∈ R.
7.2.6. Prove that ∣∣∣∣∣

∞∑
k=1

(1 − cos(1/k))

∣∣∣∣∣ ≤ 2.

7.2.7. Suppose that f = ∑∞
k=1 fk converges uniformly on a set E ⊆ R. If g1 is

bounded on E and gk(x) ≥ gk+1(x) ≥ 0 for all x ∈ E and k ∈ N, prove
that

∑∞
k=1 fk gk converges uniformly on E .

7.2.8. Let n ≥ 0 be a fixed nonnegative integer and recall that 0! := 1. The
Bessel function of order n is the function defined by

Bn(x) :=
∞∑

k=0

(−1)k

(k!)(n + k)!
( x

2

)n+2k
.

a) Show that Bn(x) converges pointwise on R and uniformly on any
closed interval [a, b].

b) Prove that y = Bn(x) satisfies the differential equation

x2 y′′ + xy′ + (x2 − n2)y = 0

for x ∈ R.
c) Prove that

(xn Bn(x))
′ = xn Bn−1(x)

for n ∈ N and x ∈ R.
∗7.2.9. Suppose that ak ↓ 0 as k → ∞. Prove that

∑∞
k=1 ak sin kx converges

uniformly on any closed interval [a, b] ⊂ (0, 2π).
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7.2.10. Suppose that f1, f2, . . . are continuous real functions defined on a closed,
bounded interval [a, b]. If 0 ≤ fk(x) ≤ fk+1(x) for all k ∈ N and x ∈
[a, b], and if fk → f uniformly on [a, b], prove that

lim
n→∞

∫ b

a

(
n∑

k=1

f n
k (x)

)1/n

dx =
∫ b

a
f (x) dx .

7.3 POWER SERIES

Polynomials are functions of the form P(x) = ∑n
k=0 ak xk , where ak ∈ R and

n ≥ 0. In this section we investigate a natural generalization of polynomials,
namely, series of the form

∑∞
k=0 ak xk .

Actually, we shall consider a slightly more general class of series. A power
series (centered at x0) is a series of the form

S(x) :=
∞∑

k=0

ak(x − x0)
k,

where we use the convention that (x − x0)
0 = 1. In fact, although 00 is in general

indeterminate, when dealing with power series we always interpret 00 = 1.
Since S(x) is identically a0 when x = x0, it is clear that every power series

converges at at least one point. The following result shows that this may be the
only point.

7.19 Remark. There exist power series which converge only at one point.

Proof. For each x �= 0, (kk |x |k)1/k = k|x | → ∞ as k → ∞. Therefore, by the
Root Test, the series

∑∞
k=1 kk xk diverges when x �= 0. �

In general, a series of functions can converge at several isolated points. [For
example, the series

∑∞
k=1 sin(kx) converges only when x = nπ for some n ∈ Z.]

We shall see (Theorem 7.21 below) that this cannot happen for power series.
Hence, we introduce the following concept.

7.20 Definition.

An extended real number R is said to be the radius of convergence of a power
series S(x) := ∑∞

k=0 ak(x − x0)
k if and only if S(x) converges absolutely for

|x − x0| < R and S(x) diverges for |x − x0| > R.

The extreme cases are R = 0 and R = ∞. When R = 0, the power series S(x)
converges only when x = x0. When R = ∞, the power series S(x) converges
absolutely for every x ∈ R.

The next result shows that every power series S has a radius of convergence
which can be computed using roots of the coefficients of S.
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238 Chapter 7 Infinite Series of Functions

7.21 Theorem. Let S(x) = ∑∞
k=0 ak(x − x0)

k be a power series centered at x0. If
R = 1/lim supk→∞|ak |1/k , with the convention that 1/∞ = 0 and 1/0 = ∞, then
R is the radius of convergence of S. In fact,

i) S(x) converges absolutely for each x ∈ (x0 − R, x0 + R),
ii) S(x) converges uniformly on any closed interval [a, b] ⊂ (x0 − R, x0 + R),

iii) and (when R is finite), S(x) diverges for each x /∈ [x0 − R, x0 + R].

Proof. Fix x ∈ R, x �= x0, and set ρ := 1/lim supk→∞|ak |1/k , with the conven-
tion that 1/∞ = 0 and 1/0 = ∞. To apply the Root Test to S(x), consider

r(x) := lim sup
k→∞

|ak(x − x0)
k |1/k = |x − x0| · lim sup

k→∞
|ak |1/k .

Case 1. ρ = 0. By our convention, ρ = 0 implies r(x) = ∞ > 1, so by
the Root Test, S(x) does not converge for any x �= x0. Hence, the radius of
convergence of S is R = 0 = ρ.

Case 2. ρ = ∞. Then r(x) = 0 < 1, so by the Root Test, S(x) converges
absolutely for all x ∈ R. Hence, the radius of convergence of S is R = ∞ = ρ.

Case 3. ρ ∈ (0,∞). Then r(x) = |x − x0|/ρ. Since r(x) < 1 if and only
if |x − x0| < ρ, it follows from the Root Test that S(x) converges absolutely
when x ∈ (x0 − ρ, x0 + ρ). Similarly, since r(x) > 1 if and only if |x − x0| > ρ,
we also have that S(x) diverges when x /∈ [x0 − ρ, x0 + ρ]. This proves that ρ
is the radius of convergence of S, and that parts i) and iii) hold.

To prove part ii), let [a, b] ⊂ (x0−R, x0+R). Choose an x1 ∈ (x0−R, x0+R)
such that x ∈ [a, b] implies |x − x0| ≤ |x1 − x0| (see Figure 7.5). Set
Mk = |ak | |x1 − x0|k and observe by part i) that

∑∞
k=0 Mk converges. Since

|ak(x − x0)
k | ≤ Mk for x ∈ [a, b] and k ∈ N, it follows from the Weierstrass

M-Test that S(x) converges uniformly on [a, b]. �

(
b x0a x1 x0 – R  x0 + R

(

FIGURE 7.5

The following result, which is weaker than Theorem 7.21 (see Exercise 6.3.8),
provides another way to compute the radius of convergence of some power
series (see also Exercise 7.3.8). This way is easier when ak contains products
(e.g., factorials).

7.22 Theorem. If the limit

R = lim
k→∞

|ak |
|ak+1|
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Section 7.3 Power Series 239

exists as an extended real number, then R is the radius of convergence of the power
series S(x) = ∑∞

k=0 ak(x − x0)
k .

Proof. Repeat the proof of Theorem 7.21, using the Ratio Test instead of the
Root Test, to find that S(x) converges absolutely on (x0 − R, x0 + R) and
diverges for each x /∈ [x0 − R, x0 + R]. By Definition 7.20, R must be the
radius of convergence of S(x). �

7.23 Definition.

The interval of convergence of a power series S(x) is the largest interval on
which S(x) converges.

By Theorem 7.21, for a given power series S = ∑∞
k=0 ak(x − x0)

k , there are
only three possibilities:

i) R = ∞, in which case the interval of convergence of S is (−∞,∞),
ii) R = 0, in which case the interval of convergence of S is {x0}, and

iii) 0 < R < ∞, in which case the interval of convergence of S is
(x0 − R, x0 + R), [x0 − R, x0 + R), (x0 − R, x0 + R], or [x0 − R, x0 + R].

To find the interval of convergence of a power series, therefore, one needs to
compute the radius of convergence R first. If 0 < R < ∞, one must also check
both endpoints, x0 − R and x0 + R, to see whether the interval of convergence
is closed, open, or half open/closed. Notice once and for all that the Ratio and
Root Tests cannot be used to test the endpoints, since it was the Ratio and Root
Tests which gave us R to begin with.

7.24 EXAMPLE.

Find the interval of convergence of S(x) = ∑∞
k=1 xk/

√
k.

Solution. By Theorem 7.22,

R = lim
k→∞

√
k + 1√

k
=
√

lim
k→∞

k + 1

k
= 1.

Thus, the interval of convergence has endpoints 1 and −1. S(x) diverges at
x = 1 by the p-Series Test and converges at x = −1 by the Alternating Series
Test. Thus, the interval of convergence of S(x) is [−1, 1). �

7.25 Remark. The interval of convergence may contain none, one, or both its
endpoints.

Proof. By Theorem 7.22, the radius of convergence of each of the series

∞∑
k=1

xk,

∞∑
k=1

xk

k
,

∞∑
k=1

xk

k2
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240 Chapter 7 Infinite Series of Functions

is 1, but by the Divergence Test, the Alternating Series Test, and the p-Series
Test, the intervals of convergence of these series are (−1, 1), [−1, 1), and
[−1, 1], respectively. �

We now pass from convergence properties of power series to the calculus of
power series. The next several results answer the question, What properties
(e.g., continuity, differentiability, integrability) does the limit of a power series
satisfy?

7.26 Theorem. If f (x) = ∑∞
k=0 ak(x − x0)

k is a power series with positive radius
of convergence R, then f is continuous on (x0 − R, x0 + R).

Proof. Let x ∈ (x0 − R, x0 + R) and choose a, b ∈ R such that x ∈ (a, b) and
[a, b] ⊂ (x0 − R, x0 + R). By Theorems 7.21ii and 7.14i, f is continuous on
(a, b) and hence at x . �

The following result shows that continuity of the limit extends to the end-
points when they belong to the interval of convergence.

7.27 Theorem. [ABEL’S THEOREM].
Suppose that [a, b] is nondegenerate. If f (x) := ∑∞

k=0 ak(x − x0)
k converges

on [a, b], then f (x) is continuous and converges uniformly on [a, b].

Proof. By Theorems 7.21ii and 7.26, we may suppose that f has a positive,
finite radius of convergence R, and, by symmetry, that a = x0 and b = x0 + R.
Thus, suppose that f (x) converges at x = x0 + R and fix x1 ∈ (x0, x0 + R].
Set bk = ak Rk and ck = (x1 − x0)

k/Rk for k ∈ N. By hypothesis,
∑∞

k=1 bk
converges. Hence, given ε > 0, there is an integer N > 1 such that

k > m ≥ N imply

∣∣∣∣∣∣
k∑

j=m

b j

∣∣∣∣∣∣ < ε.

Since 0 < x1 − x0 ≤ R, the sequence {ck} is decreasing. Applying Abel’s
Formula and telescoping, we have

∣∣∣∣∣
n∑

k=m

ak(x1 − x0)
k

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=m

bkck

∣∣∣∣∣
=
∣∣∣∣∣∣cn

n∑
k=m

bk +
n−1∑
k=m

(ck − ck+1)

k∑
j=m

b j

∣∣∣∣∣∣
< cnε + (cm − cn)ε = cmε.
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Since cm ≤ c1 ≤ R/R = 1, it follows that∣∣∣∣∣
n∑

k=m

ak(x1 − x0)
k

∣∣∣∣∣ < ε

for all x1 ∈ (x0, x0 + R]. Since this inequality also holds for x1 = x0, we
conclude that

∑∞
k=0 ak(x − x0)

k converges uniformly on [x0, x0 + R]. �

7.28 Remark. If a power series S(x) = ∑∞
k=0 ak(x − x0)

k converges at some
x1 > x0, then S(x) converges uniformly on [x0, x1] and absolutely on [x0, x1).
It might not converge absolutely at x = x1.

Proof. By Theorems 7.21 and 7.27, S(x) converges uniformly on [x0, x1] and
absolutely on [x0, x1). The power series

∑∞
k=1(−x)k/k converges uniformly

on [0, 1] but not absolutely at x = 1. �

To discuss differentiability of the limit of a power series, we first show that
the radius of convergence of a power series is not changed by term-by-term
differentiation (compare with Exercise 2.5.6).

7.29 Lemma.
If an ∈ R for n ∈ N, then

lim sup
n→∞

(n|an|)1/n = lim sup
n→∞

|an|1/n.

Proof. Let ε > 0. Since n1/n → 1 as n → ∞, choose N ∈ N so that n ≥ N
implies 1 − ε < n1/n < 1 + ε; that is,

(1 − ε)|an|1/n < (n|an|)1/n < (1 + ε)|an|1/n.

It follows that if n ≥ N , then supk>n(k|ak |)1/k ≤ (1 + ε) supk>n |ak |1/k . Taking
the limit of this last inequality, as n → ∞, we have by definition that

x := lim sup
n→∞

(n|an|)1/n ≤ (1 + ε) lim sup
n→∞

|an|1/n =: (1 + ε)y.

Taking the limit of this inequality as ε → 0, we obtain x ≤ y. A similar
argument, using (1 − ε) in place of (1 + ε), proves that x ≥ y. We conclude
that x = y as promised. �

We use this result to prove that each power series with a positive radius of
convergence is term-by-term differentiable.

7.30 Theorem. If f (x) = ∑∞
k=0 ak(x − x0)

k is a power series with positive radius
of convergence R, then f ′(x) = ∑∞

k=1 kak(x − x0)
k−1 for x ∈ (x0 − R, x0 + R).
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Proof. Let I := (x0 − R, x0 + R) and suppose that a, b ∈ R satisfy [a, b] ⊂ I .
By Lemma 7.29 and hypothesis, the radius of convergence of the series
g(x) := ∑∞

k=0 kak(x − x0)
k is R. Thus g converges absolutely on I and uni-

formly on [a, b].
Consider the derived series S∗(x) := ∑∞

k=1 kak(x − x0)
k−1. Since S∗(x0) has

only one nonzero term, the series S∗(x0) converges absolutely. If x ∈ I\{x0},
then S∗(x) = g(x)/(x − x0), so again, S∗(x) converges absolutely. It follows
that the radius of convergence of S∗ is at least R. Hence, by Theorems 7.21
and 7.14iii (term-by-term differentiation), f is differentiable on [a, b] and
S∗(x) = f ′(x) for all x ∈ [a, b]. Since any x ∈ I belongs to some [a, b] ⊂ I ,
we conclude that f ′(x) = S∗(x) for all x ∈ I . �

NOTE: A similar proof shows that S∗ diverges for all x /∈ [x0 − R, x0 + R], so
the radius of convergence of S∗ is exactly R.

Recall that for each nonempty, open interval (a, b), C∞(a, b) represents the set
of functions f such that f (k) exists and is continuous on (a, b) for all k ∈ N. The
following result generalizes Theorem 7.30.

7.31 Corollary. If f (x) = ∑∞
k=0 ak(x − x0)

k has a positive radius of convergence
R, then f ∈ C∞(x0 − R, x0 + R) and

f (k)(x) =
∞∑

n=k

n!
(n − k)!an(x − x0)

n−k (7)

for x ∈ (x0 − R, x0 + R) and k ∈ N.

Proof. The proof is by induction on k. By Theorem 7.30 and the fact that
0! := 1, (7) holds for k = 1 and x ∈ (x0 − R, x0 + R). If (7) holds for some
k ∈ N and all x ∈ (x0 − R, x0 + R), then f (k) is a power series with radius of
convergence R. It follows from Theorem 7.30 that

f (k+1)(x) = ( f (k)(x))′ =
( ∞∑

n=k

n!
(n − k)!an(x − x0)

n−k

)′

=
∞∑

n=k+1

n!
(n − k − 1)!an(x − x0)

n−k−1

for all x ∈ (x0 − R, x0 + R). Hence, (7) holds for k + 1 in place of k. �

The following result shows that each power series with a positive radius of
convergence can also be integrated term by term.
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7.32 Theorem. Let f (x) = ∑∞
k=0 ak(x − x0)

k be a power series and let a, b ∈ R
with a < b.

i) If f (x) converges on [a, b], then f is integrable on [a, b] and

∫ b

a
f (x) dx =

∞∑
k=0

ak

∫ b

a
(x − x0)

k dx .

∗ii) If f (x) converges on [a, b) and if
∑∞

k=0 ak(b − x0)
k+1/(k + 1) converges, then

f is improperly integrable on [a, b) and

∫ b

a
f (x) dx =

∞∑
k=0

ak

∫ b

a
(x − x0)

k dx .

Proof. i) By Abel’s Theorem, f (x) converges uniformly on [a, b]. Hence, by
Theorem 7.14ii, f (x) is term-by-term integrable on [a, b].

ii) Let a < t < b and set A = ∑∞
k=0 ak(a − x0)

k+1/(k + 1). By part i),

∫ t

a
f (x) dx =

∞∑
k=0

ak

∫ t

a
(x − x0)

k dx =
∞∑

k=0

ak

k + 1
(t − x0)

k+1 − A.

The leftmost term of this last difference is a power series which by hypothesis
converges at t = b. Thus, by the definition of improper integration and Abel’s
Theorem,

∫ b

a
f (x) dx = lim

t→b−

∫ t

a
f (x) dx

= lim
t→b−

∞∑
k=0

ak

k + 1
(t − x0)

k+1 − A

=
∞∑

k=0

ak

k + 1
(b − x0)

k+1 − A =
∞∑

k=0

ak

∫ b

a
(x − x0)

k dx . �

The following result shows that the product of two power series is a power
series. (For a result on the division of power series, see Taylor [13], p. 619.)

7.33 Theorem. If f (x) = ∑∞
k=0 ak xk and g(x) = ∑∞

k=0 bk xk converge on
(−r, r) and

ck =
k∑

j=0

a j bk− j , k = 0, 1, . . . ,

then
∑∞

k=0 ck xk converges on (−r, r) and converges to f (x)g(x).
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Proof. Fix x ∈ (−r, r) and for each n ∈ N, set

fn(x) =
n∑

k=0

ak xk, gn(x) =
n∑

k=0

bk xk, and hn(x) =
n∑

k=0

ck xk .

By changing the order of summation, we see that

hn(x) =
n∑

k=0

k∑
j=0

a j bk− j x j xk− j =
n∑

j=0

a j x j
n∑

k= j

bk− j xk− j

=
n∑

j=0

a j x j gn− j (x) = g(x) fn(x)+
n∑

j=0

a j x
j (gn− j (x)− g(x)).

Thus, it suffices to show that

lim
n→∞

n∑
j=0

a j x
j (gn− j (x)− g(x)) = 0.

Let ε > 0. Since f (x) converges absolutely and gn(x) converges as n → ∞,
choose M > 0 such that

∑∞
k=0 |ak xk | < M and

|gn− j (x)− g(x)| ≤ M

for all integers n > j > 0. Similarly, choose N ∈ N such that

� ≥ N implies |g�(x)− g(x)| < ε

2M
and

∞∑
j=N+1

|a j x j | < ε

2M
.

Let n > 2N . Then

∣∣∣∣∣∣
n∑

j=0

a j x
j (gn− j (x)− g(x))

∣∣∣∣∣∣
=
∣∣∣∣∣∣

N∑
j=0

a j x j (gn− j (x)− g(x))+
n∑

j=N+1

a j x
j (gn− j (x)− g(x))

∣∣∣∣∣∣
<

ε

2M

N∑
j=0

|a j x j | + M
n∑

j=N+1

|a j x j | < ε

2
+ ε

2
= ε. �
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7.34 Corollary. Suppose that ak, bk ∈ R and that ck := ∑k
j=0 a j bk− j for

k = 0, 1, . . . . If either

i)
∑∞

k=0 ak and
∑∞

k=0 bk both converge, and at least one of them converges abso-
lutely,

ii) or, if
∑∞

k=0 ak,
∑∞

k=0 bk , and
∑∞

k=0 ck all converge,

then

∞∑
k=0

ck =
( ∞∑

k=0

ak

)( ∞∑
k=0

bk

)
. (8)

Proof. i) Repeat the proof of Theorem 7.33 with x = 1.
ii) By hypothesis, the radii of convergence of

∑∞
k=0 ak xk,

∑∞
k=0 bk xk , and∑∞

k=0 ck xk are all at least 1; hence, by Theorem 7.33,

∞∑
k=0

ck xk =
( ∞∑

k=0

ak xk

)( ∞∑
k=0

bk xk

)
(9)

for x ∈ (−1, 1). But by Abel’s Theorem (Theorem 7.27), the limit of (9) as
x ↑ 1 is (8). �

The hypotheses of Corollary 7.34 cannot be relaxed.

∗7.35 EXAMPLE.

If ak = bk = (−1)k/
√

k for k ∈ N and a0 = b0 = 0, then
∑∞

k=0 ck diverges.

Proof. If
∑∞

k=0 ck converges, then ck → 0 as k → ∞. But for k > 1 odd,

|ck | =
k−1∑
j=1

1√
j
√

k − j
= 2

(k−1)/2∑
j=1

1√
j
√

k − j

≥ 2

(
k − 1

2

)(
1√

(k − 1)/2

)(
1√

(k − 1)

)
= √

2.

Thus ck cannot converge to zero, a contradiction. �

We close this section with some optional material on finding exact values of
convergent power series. Namely, we show how term-by-term differentiation
and integration can be used in conjunction with the geometric series to obtain
simple formulas for certain kinds of power series. Such formulas are called
closed forms.

245



246 Chapter 7 Infinite Series of Functions

∗7.36 EXAMPLE.

Find a closed form of the power series

f (x) =
∞∑

k=1

kxk .

Solution. Since the interval of convergence of this power series is (−1, 1), we
have by Theorems 7.32 and 6.7 (the Geometric Series) that

∫ x

0

f (t)

t
dt =

∞∑
k=1

k
∫ x

0
tk−1 dt =

∞∑
k=1

xk = x

1 − x

for each x ∈ (−1, 1). [Note that f (x)/x is defined at x = 0 and has value 1.]
Hence, by the Fundamental Theorem of Calculus,

f (x)

x
=
(

x

1 − x

)′
= 1

(1 − x)2

and it follows that

f (x) = x

(1 − x)2
, x ∈ (−1, 1). �

∗7.37 EXAMPLE.

Find a closed form of the power series

g(x) =
∞∑

k=0

xk

k + 1
.

Solution. Since the interval of convergence of this power series is [−1, 1), we
have by Theorem 7.30 that

(xg(x))′ =
∞∑

k=0

(
xk+1

k + 1

)′
=

∞∑
k=0

xk = 1

1 − x

for x ∈ (−1, 1). Hence, by the Fundamental Theorem of Calculus,

xg(x) =
∫ x

0

dt

1 − t
= − log(1 − x)

for x ∈ (−1, 1). Since g(−1) exists and log(1 − x) is continuous at x = −1, we
conclude by Abel’s Theorem that

g(x) = − log(1 − x)

x
, x ∈ [−1, 1) \ {0}, and g(0) = 1. �
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EXERCISES

7.3.1. Find the interval of convergence of each of the following power series.

a)
∞∑

k=0

kxk

(2k + 1)2

b)
∞∑

k=0
(2 + (−1)k)k x2k

c)
∞∑

k=0
3k2

xk2

d)
∞∑

k=0
kk2

xk3

7.3.2. Find the interval of convergence of each of the following power series.

a)
∞∑

k=0

xk

2k

b)
∞∑

k=0
((−1)k + 3)k(x − 1)k

c)
∞∑

k=1
log

(
k + 1

k

)
xk

∗d)
∞∑

k=1

1 · 3 . . . (2k − 1)

(k + 1)! x2k

7.3.3. Suppose that
∑∞

k=0 ak xk has radius of convergence R ∈ (0,∞).

a) Find the radius of convergence of
∑∞

k=0 ak x2k .
b) Find the radius of convergence of

∑∞
k=0 a2

k xk .

7.3.4. Suppose that |ak | ≤ |bk | for large k. Prove that if
∑∞

k=0 bk xk converges
on an open interval I , then

∑∞
k=0 ak xk also converges on I . Is this result

true if open is omitted?
7.3.5. Suppose that {ak}∞k=0 is a bounded sequence of real numbers. Prove that

f (x) :=
∞∑

k=0

ak xk

has a positive radius of convergence.
7.3.6. A series

∑∞
k=0 ak is said to be Abel summable to L if and only if

lim
r→1−

∞∑
k=0

akrk = L .

a) Prove that if
∑∞

k=0 ak converges to L , then
∑∞

k=0 ak is Abel
summable to L .

b) Find the Abel sum of
∑∞

k=0(−1)k .
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∗7.3.7. Find a closed form for each of the following series and the largest set
on which this formula is valid.

a)
∞∑

k=1
3x3k−1

b)
∞∑

k=2
kxk−2

c)
∞∑

k=1

2k

k + 1
(1 − x)k

d)
∞∑

k=0

x3k

k + 1

∗7.3.8. If
∑∞

k=1 ak xk has radius of convergence R and ak �= 0 for large k,
prove that

lim inf
k→∞

∣∣∣∣ ak

ak+1

∣∣∣∣ ≤ R ≤ lim sup
k→∞

∣∣∣∣ ak

ak+1

∣∣∣∣ .
∗7.3.9. Prove that

f (x) =
∞∑

k=0

(
x

(−1)k + 4

)k

is differentiable on (−3, 3) and

| f ′(x)| ≤ 3

(3 − x)2

for 0 ≤ x < 3.
7.3.10. Suppose that ak ↓ 0 as k → ∞. Prove that given ε > 0 there is a δ > 0

such that ∣∣∣∣∣
∞∑

k=0

(−1)kak(x
k − yk)

∣∣∣∣∣ < ε

for all x, y ∈ [0, 1] which satisfy |x − y| < δ.
∗7.3.11. a) Prove the following weak form of Stirling’s Formula (compare with

Theorem 12.73):

nn

en−1
< n! < nn+1

en−1
.

b) Find all x ∈ R for which the power series

∞∑
k=0

kk

k! xk

converges absolutely.
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7.4 ANALYTIC FUNCTIONS

In this section we study functions which can be represented by power series.
(For a discussion of how to represent functions by trigonometric series instead
of power series, see Chapter 14.) We begin with the following definition.

7.38 Definition.

A real-valued function f is said to be (real) analytic on a nonempty, open
interval (a, b) if and only if given x0 ∈ (a, b) there is a power series centered
at x0 which converges to f near x0; that is, if and only if there exist coefficients
{ak}∞k=0 and points c, d ∈ (a, b) such that c < x0 < d and

f (x) =
∞∑

k=0

ak(x − x0)
k

for all x ∈ (c, d).

We shall develop several techniques for showing that a given function is
analytic. To simplify statements of results, we continue to use the conventions
f (0) := f and 0! := 1.

First, it is important to realize that if f is analytic on an open interval I , then
for each center x0 there is one and only one power series that represents f near
x0, and that power series has the same coefficients that the Taylor polynomi-
als have.

7.39 Theorem. [UNIQUENESS].
Let c, d be extended real numbers with c < d, let x0 ∈ (c, d), and suppose that
f : (c, d) → R. If f (x) = ∑∞

k=0 ak(x − x0)
k for x ∈ (c, d), then f ∈ C∞(c, d)

and

ak = f (k)(x0)

k! , k = 0, 1, · · · .

Proof. Clearly, f (x0) = a0. Fix k ∈ N. By hypothesis, the radius of con-
vergence R of the power series

∑∞
k=0 ak(x − x0)

k is positive and (c, d) ⊆
(x0 − R, x0 + R). Hence, by Corollary 7.31, f ∈ C∞(c, d) and

f (k)(x) =
∞∑

n=k

n!
(n − k)!an(x − x0)

n−k (10)

for x ∈ (c, d). Apply this to x = x0. The terms on the right side of (10)
are zero when n > k and k!ak when n = k. Hence, f (k)(x0) = k!ak for
each k ∈ N. �

This “locally unique” power series has a name.
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7.40 Definition.

Let f ∈ C∞(a, b) and let x0 ∈ (a, b). The Taylor expansion (or Taylor series)
of f centered at x0 is the series

∞∑
k=0

f (k)(x0)

k! (x − x0)
k .

(No convergence is implied or assumed.) The Taylor expansion of f centered
at x0 = 0 is usually called the Maclaurin expansion (or Maclaurin series) of f .

Theorem 7.39 not only says that the power series representation of an ana-
lytic function is locally unique. It also says that every analytic function is a C∞
function. The next remark shows that the converse of this statement is false.

7.41 Remark. [CAUCHY]. The function

f (x) =
{

e−1/x2
x �= 0

0 x = 0

belongs to C∞(−∞,∞) but is not analytic on any interval which contains x = 0.

Proof. It is easy to see (Exercise 4.4.7) that f ∈ C∞(−∞,∞) and f (k)(0) = 0
for all k ∈ N. Thus the Taylor expansion of f about the point x0 = 0 is
identically zero but f (x) = 0 only when x = 0. �

One of our aims in this section is to prove that many of the classical C∞
functions used in elementary calculus are analytic on their domain. Since, by
Theorem 7.39, a C∞ function f is analytic on an open interval I if and only if its
Taylor expansion at each x0 ∈ I converges to f near x0, the following concept is
useful in this regard.

7.42 Definition.

Let f ∈ C∞(a, b) and x0 ∈ (a, b). The remainder term of order n of the Taylor
expansion of f centered at x0 is the function

Rn(x) = R f,x0
n (x) := f (x)−

n−1∑
k=0

f (k)(x0)

k! (x − x0)
k .

In fact, by Theorem 7.39 and Definition 7.42, a function f ∈ C∞(a, b) is analytic
on (a, b) if and only if for each x0 ∈ (a, b) there is an interval (c, d) containing
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x0 such that R f,x0
n → 0, as n → ∞, for every x ∈ (c, d). We shall use this

observation frequently below.
By Taylor’s Formula (Theorem 4.24) the remainder term of an f ∈ C∞(a, b)

satisfies

R f,x0
n (x) = f (n)(c)

n! (x − x0)
n

for some c between x0 and x (note the index shift from n + 1 to n.) Therefore, it
should come as no surprise that there are several results that state the following:
If the nth derivative of f satisfies a certain condition, then f is analytic on (a, b).
Here is a particularly simple but useful result of this type.

7.43 Theorem. Let f ∈ C∞(a, b). If there is an M > 0 such that

∣∣ f (n)(x)
∣∣≤ Mn

for all x ∈ (a, b) and n ∈ N, then f is analytic on (a, b). In fact, for each x0 ∈
(a, b),

f (x) =
∞∑

k=0

f (k)(x0)

k! (x − x0)
k

holds for all x ∈ (a, b).

Proof. Fix x0 ∈ (a, b) and set C = max{M |a − x0|,M |b − x0|}. By Taylor’s
Formula,

|R f,x0
n (x)| = | f (n)(c)|

n! |x − x0|n ≤ Mn

n! |x − x0|n ≤ Cn

n!
for all n ∈ N. But Cn/n! → 0 as n → ∞ for any C ∈ R (being terms of
a convergent series by the Ratio Test). Thus, by the Squeeze Theorem, the
remainder term R f,x0

n (x) converges to zero for every x ∈ (a, b). �

Here are three examples of Theorem 7.43 in practice.

7.44 EXAMPLE.

Prove that sin x and cos x are analytic on R and have Maclaurin expansions

sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)! , cos x =
∞∑

k=0

(−1)k x2k

(2k)! . (11)

Proof. In Example 4.26 [see (19) there], we proved that the Taylor series
of f (x) := sin x centered at x0 = 0 is S(x) := ∑∞

k=0(−1)k x2k+1/(2k + 1)!.
Since f (n)(x) is ± sin x or ± cos x , it is clear that | f (n)(x)| ≤ 1 for all x ∈ R.
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Therefore, it follows from Theorem 7.43 that sin x is analytic on R and that
the left side of (11) holds everywhere on R. A similar argument proves the
right side of (11). �

7.45 EXAMPLE.

Prove that ex is analytic on R and has Maclaurin expansion

ex =
∞∑

k=0

xk

k! . (12)

Proof. In Example 4.25 [see (18) there], we proved that the Taylor series of
f (x) := ex centered at x0 = 0 is S(x) := ∑∞

k=0 xk/k!.
Fix C > 0 and notice that | f (n)(x)| = |ex | ≤ eC =: M ≤ Mn for all n ∈ N and

x ∈ [−C,C]. It follows from Theorem 7.43 that ex is analytic on [−C,C] and
that S(x) converges to ex everywhere on [−C,C]. Since C > 0 was arbitrary,
we conclude that (12) holds for all x ∈ R. �

Sometimes, it is impractical to get the kind of global estimates on the deriva-
tives of f necessary to apply Theorem 7.43. The following result, which shows
that the center of a power series can be changed within its interval of conver-
gence, is sometimes used to circumvent this problem.

7.46 Theorem. Suppose that I is an open interval centered at c and that

f (x) =
∞∑

k=0

ak(x − c)k, x ∈ I.

If x0 ∈ I and r > 0 satisfy (x0 − r, x0 + r) ⊆ I , then

f (x) =
∞∑

k=0

f (k)(x0)

k! (x − x0)
k

for all x ∈ (x0 − r, x0 + r). In particular, if f is a C∞ function whose Taylor series
expansion converges to f on some open interval J , then f is analytic on J .

Proof. It suffices to prove the first statement. By making the change of vari-
ables w = x − c, we may suppose that c = 0 and I = (−R, R); that is, that
f (x) = ∑∞

k=0 ak xk , for all x ∈ (−R, R). Suppose that (x0−r, x0+r) ⊆ (−R, R)
and fix x ∈ (x0 − r, x0 + r). By hypothesis and the Binomial Formula,

f (x)=
∞∑

k=0

ak xk =
∞∑

k=0

ak((x − x0)+ x0)
k =

∞∑
k=0

ak

k∑
j=0

(
k
j

)
xk− j

0 (x − x0)
j . (13)
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Since
∑∞

k=0 ak yk converges absolutely at y := |x − x0| + |x0| < R, we have

∞∑
k=0

∣∣∣∣∣∣ak

k∑
j=0

(
k
j

)
xk− j

0 (x − x0)
j

∣∣∣∣∣∣ ≤
∞∑

k=0

|ak |
k∑

j=0

(
k
j

)
|x0|k− j |x − x0| j

=
∞∑

k=0

|ak |(|x − x0| + |x0|)k < ∞.

Hence, by (13), Theorem 7.18, and Corollary 7.31,

f (x) =
∞∑

k=0

ak

k∑
j=0

(
k
j

)
xk− j

0 (x − x0)
j

=
∞∑
j=0

⎛
⎝ ∞∑

k= j

(
k
j

)
ak xk− j

0

⎞
⎠ (x − x0)

j

=
∞∑
j=0

⎛
⎝ ∞∑

k= j

k!
(k − j)!ak(x0 − 0)k− j

⎞
⎠ (x − x0)

j

j ! =
∞∑
j=0

f ( j)(x0)

j ! (x − x0)
j . �

7.47 EXAMPLE.

Prove that arctan x is analytic on (−1, 1) and has Maclaurin expansion

arctan x =
∞∑

k=0

(−1)k x2k+1

2k + 1
x ∈ (−1, 1).

Proof. For each 0 < x < 1, the geometric series
∑∞

k=0(−1)kt2k converges
uniformly on [−x, x] to 1/(1 + t2). Thus, by Theorem 7.32,

arctan x =
∫ x

0

dt

1 + t2
=
∫ x

0

∞∑
k=0

(−1)kt2k dt =
∞∑

k=0

(−1)k x2k+1

2k + 1
.

By uniqueness, this is the Maclaurin expansion of arctan x . Since this expan-
sion converges on (−1, 1), it follows from Theorem 7.46 that arctan x is analytic
on (−1, 1). �

In Examples 7.44 and 7.45, we found the Taylor expansion of a given f by
computing the derivatives of f and estimating the remainder term. In the
preceding example, we found the Taylor expansion of arctan x without comput-
ing its derivatives. This can be done in general, using term-by-term differenti-
ation or integration or products of power series, when the function in question
can be written as an integral or derivative or product of functions whose Taylor
series are known. Here are two more examples of this type.
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7.48 EXAMPLE.

Find the Maclaurin expansion of arctan x/(1 − x).

Proof. By Theorem 7.33 and Example 7.47, for each |x | < 1,

(
arctan x

1 − x

)
=
( ∞∑

k=0

xk

)( ∞∑
k=0

(−1)k x2k+1

2k + 1

)

=
∞∑

k=0

⎛
⎝∑

j∈Ak

(−1) j

2 j + 1

⎞
⎠ xk,

where Ak := { j ∈ N : 0 ≤ j ≤ (k − 1)/2}. �

7.49 EXAMPLE.

Show that the Taylor expansion of log x centered at x0 = 1 is

log x =
∞∑

k=1

(−1)k+1

k
(x − 1)k x ∈ (0, 2).

Proof. By Theorem 7.32, for each x ∈ (0, 2),

log x =
∫ x

1

dt

t
=
∫ x

1

dt

1 − (1 − t)

=
∫ x

1

∞∑
k=0

(1 − t)k dt =
∞∑

k=1

(−1)k+1

k
(x − 1)k . �

In some situations it is useful to have an integral form of the remainder term.
This requires a slightly stronger hypothesis than Taylor’s Formula but can yield
a sharper estimate.

7.50 Theorem. [LAGRANGE].
Let n ∈ N. If f ∈ Cn(a, b), then

Rn(x) :=R f,x0
n (x) = 1

(n − 1)!
∫ x

x0

(x − t)n−1 f (n)(t) dt

for all x, x0 ∈ (a, b).

Proof. The proof is by induction on n. If n = 1, the formula holds by the
Fundamental Theorem of Calculus.
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Suppose that the formula holds for some n ∈ N. Since

Rn+1(x) = Rn(x)− f (n)(x0)

n! (x − x0)
n and

(x − x0)
n

n! = 1

(n − 1)!
∫ x

x0

(x − t)n−1 dt,

it follows that

Rn+1(x) = 1

(n − 1)!
∫ x

x0

(x − t)n−1
(

f (n)(t)− f (n)(x0)
)

dt.

Let u = f (n)(t)− f (n)(x0), dv = (x − t)n−1 and integrate the right side of the
identity above by parts. Since u(x0) = 0 and v(x) = 0, we have

Rn+1(x) = − 1

(n − 1)!
∫ x

x0

u′(t)v(t) dt = 1

n!
∫ x

x0

(x − t)n f (n+1)(t) dt.

Hence, the formula holds for n + 1. �

The rest of this section contains some additional (but optional) material on
analytic functions.

In order to generalize the Binomial Formula from integer exponents to real
exponents (compare Theorem 1.26 with Theorem 7.52 below), we introduce the
following notation. Let α ∈ R and k be a nonnegative integer. The generalized
binomial coefficient α over k is defined by

(
α

k

)
:=
⎧⎨
⎩
α(α − 1) . . . (α − k + 1)

k! k �= 0

1 k = 0.

Notice that when α ∈ N, these generalized binomial coefficients coincide with

the usual binomial coefficients, because in this case
(
α

k

)
= 0 for k > α.

∗7.51 Lemma.
Suppose that α, β ∈ R. Then

k∑
j=0

(
α

k − j

)(
β

j

)
=
(
α + β

k

)
k = 0, 1, . . . .
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Proof. The formula holds for k = 0 and k = 1. If it holds for some k ≥ 1, then
by the inductive hypothesis and the definition of the generalized binomial
coefficients,

(
α + β

k + 1

)
=
(
α + β

k

)
α + β − k

k + 1

=
k∑

j=0

(
α

k − j

)(
β

j

)(
α − k + j

k + 1
+ β − j

k + 1

)

=
k∑

j=0

(
k − j + 1

k + 1

)(
α

k − j + 1

)(
β

j

)
+
(

j + 1

k + 1

)(
α

k − j

)(
β

j + 1

)

=
(

α

k + 1

)
+

k∑
j=1

(
k − j + 1

k + 1
+ j

k + 1

)(
α

k − j + 1

)(
β

j

)
+
(

β

k + 1

)

=
k+1∑
j=0

(
α

k + 1 − j

)(
β

j

)
. �

With this ugly calculation out of the way, we are prepared to generalize the
Binomial Formula.

∗7.52 Theorem. [THE BINOMIAL SERIES].
If α ∈ R and |x | < 1, then

(1 + x)α =
∞∑

k=0

(
α

k

)
xk .

In particular, (1 + x)α is analytic on (−1, 1) for all α ∈ R.

Proof. Fix |x | < 1 and consider the series F(α) := ∑∞
k=0

(
α

k

)
xk . Since

lim
k→∞

∣∣∣∣∣∣∣∣

(
α

k + 1

)
xk+1

(
α

k

)
xk

∣∣∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣α − k

k + 1

∣∣∣∣ |x | = |x | < 1

is independent of α, it follows from the proof of the Ratio Test that F con-
verges absolutely and uniformly on R. Hence, F is continuous. Moreover, by
Theorem 7.33 and Lemma 7.51,
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F(α)F(β) =
∞∑

k=0

(
α

k

)
xk

∞∑
k=0

(
β

k

)
xk

=
∞∑

k=0

k∑
j=0

(
α

k − j

)(
β

j

)
xk

=
∞∑

k=0

(
α + β

k

)
xk = F(α + β).

Hence, it follows from Exercise 3.3.9 that F(α) = F(1)α . Since

F(1) =
∞∑

k=0

(
1
k

)
xk = 1 + x,

we conclude that F(α) = (1 + x)α for all |x | < 1. �

Lagrange’s Theorem gives us another condition on the derivatives of f suffi-
cient to conclude that f is analytic.

∗7.53 Theorem. [BERNSTEIN].
If f ∈ C∞(a, b) and f (n)(x) ≥ 0 for all x ∈ (a, b) and n ∈ N, then f is analytic
on (a, b). In fact, if x0 ∈ (a, b) and f (n)(x) ≥ 0 for x ∈ [x0, b) and n ∈ N, then

f (x) =
∞∑

k=0

f (k)(x0)

k! (x − x0)
k (14)

for all x ∈ [x0, b).

Proof. Fix x0 < x < b and n ∈ N. Use Lagrange’s Theorem and a change of
variables t = (x − x0)u + x0 to write

Rn(x) = R f,x0
n (x) = (x − x0)

n

(n − 1)!
∫ 1

0
(1 − u)n−1 f (n)((x − x0)u + x0) du. (15)

Since f (n) ≥ 0, (15) implies Rn(x) ≥ 0. On the other hand, by definition and
hypothesis,

Rn(x) = f (x)−
n−1∑
k=0

f (k)(x0)

k! (x − x0)
k ≤ f (x).

Therefore,

0 ≤ Rn(x) ≤ f (x) (16)

for all x ∈ (x0, b).
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Let b0 ∈ (x0, b) and notice that it suffices to verify (14) for x0 ≤ x < b0.
(We introduce the parameter b0 in order to handle the cases b ∈ R and b = ∞
simultaneously.) Since Rn(x0) = 0 for all n ∈ N, we need only show that
Rn(x) → 0 as n → ∞ for each x ∈ (x0, b0).

By hypothesis, f (n+1)(t) ≥ 0 for t ∈ [x0, b), so f (n) is increasing on [x0, b).
Since x < b0 < b, we have by (15) and (16) that

0 ≤ Rn(x) = (x − x0)
n

(n − 1)!
∫ 1

0
(1 − u)n−1 f (n)((x − x0)u + x0) du

≤ (x − x0)
n

(n − 1)!
∫ 1

0
(1 − u)n−1 f (n)((b0 − x0)u + x0) du

=
(

x − x0

b0 − x0

)n

Rn(b0).

Since (x − x0)/(b0 − x0) < 1 and, by (16), Rn(b0) ≤ f (b0), we conclude by the
Squeeze Theorem that Rn(x) → 0 as n → ∞. �

∗7.54 EXAMPLE.

Prove that ax is analytic on R for each a > 0.

Proof. First suppose that a ≥ 1. Since f (n)(x) = (log a)n · ax ≥ 0 for all x ∈ R
and n ∈ N, ax is analytic on R by Bernstein’s Theorem. If 0 < a < 1, then by
what we just proved and a change of variables,

ax = (a−1)−x =
∞∑

k=0

logk(a−1)(−x)k

k! =
∞∑

k=0

logk a · xk

k! .

Hence by Theorem 7.46, ax is analytic on R. �

Our final theorem shows that an analytic function cannot be extended in an
arbitrary way to produce another analytic function. We first prove the following
special case.

∗7.55 Lemma.
Suppose that f, g are analytic on an open interval (c, d) and that x0 ∈ (c, d). If
f (x) = g(x) for x ∈ (c, x0), then there is a δ > 0 such that f (x) = g(x) for all
x ∈ (x0 − δ, x0 + δ).

Proof. By Theorem 7.39 and Definition 7.38, there is a δ > 0 such that

f (x) =
∞∑

k=0

f (k)(x0)

k! (x − x0)
k and g(x) =

∞∑
k=0

g(k)(x0)

k! (x − x0)
k (17)
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for all x ∈ (x0 − δ, x0 + δ). By hypothesis, f, g are continuous at x0 and

f (x0) = lim
x→x0−

f (x) = lim
x→x0−

g(x) = g(x0). (18)

Similarly, f (k)(x0) = g(k)(x0) for k ∈ N. We conclude from (17) that f (x) =
g(x) for all x ∈ (x0 − δ, x0 + δ). �

∗7.56 Theorem. [ANALYTIC CONTINUATION].
Suppose that I and J are open intervals, that f is analytic on I, that g is analytic
on J, and that a < b are points in I ∩ J . If f (x) = g(x) for x ∈ (a, b), then
f (x) = g(x) for all x ∈ I ∩ J .

Proof. We assume for simplicity that I and J are bounded intervals. Since
I ∩ J �= ∅, choose c, d ∈ R such that I ∩ J = (c, d) (see Figure 7.6).

( (
c a b d

I

J

FIGURE 7.6

Consider the set E = {t ∈ (a, d) : f (x) = g(x) for all x ∈ (a, t)}. By
our assumption, d < ∞ and by hypothesis b ∈ E . Thus E is bounded and
nonempty. Let x0 = sup E . If x0 < d, then by Lemma 7.55 there is a δ > 0
such that f (x) = g(x) for all x ∈ (x0 − δ, x0 + δ). This contradicts the choice
of x0. Therefore, x0 = d; that is, f (x) = g(x) for all x ∈ (a, d). A similar
argument proves that f (x) = g(x) for all x ∈ (c, b). �

EXERCISES

7.4.1. Prove that each of the following functions is analytic on R and find its
Maclaurin expansion.

a) x2 + cos(2x)
b) x23x

c) cos2 x − sin2 x

d)
ex − 1

x

7.4.2. Prove that each of the following functions is analytic on (−1, 1) and find
its Maclaurin expansion.

a)
x

x5 + 1
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260 Chapter 7 Infinite Series of Functions

b)
ex

1 + x

c) log

(
1

|x2 − 1|
)

∗d) arcsin x

7.4.3. For each of the following functions, find its Taylor expansion centered
at x0 = 1 and determine the largest interval on which it converges.

a) ex

b) log2(x
5)

c) x3 − x + 5
∗d)

√
x

7.4.4. Prove that if P is a polynomial of degree n and x0 ∈ R, then there are
numbers βk ∈ R such that

P(x) = β0 + β1(x − x0)+ · · · + βn(x − x0)
n

for all x ∈ R.
7.4.5 Let a > 0 and suppose that f ∈ C∞(−a, a).

a) If f is odd [i.e., if f (−x) = − f (x) for all x ∈ (−a, a)], then the
Maclaurin series of f contains only odd powers of x .

b) If f is even [i.e., if f (−x) = f (x) for all x ∈ (−a, a)], then the
Maclaurin series of f contains only even powers of x .

7.4.6. Suppose that f ∈ C∞(−∞,∞) and that

lim
n→∞

1

n!
∫ a

0
xn f (n+1)(a − x) dx = 0

for all a ∈ R. Prove that f is analytic on (−∞,∞) and

f (x) =
∞∑

k=0

f (k)(0)

k! xk, x ∈ R.

7.4.7. a) Prove that ∣∣∣∣∣
∫ 1

0
ex2

dx −
n−1∑
k=0

1

(2k + 1)k!

∣∣∣∣∣ ≤ 3

n!
for n ∈ N.

b) Show that

2.9253 <
∫ 1

−1
ex2

dx < 2.9254.

7.4.8. Let f ∈ C∞(a, b). Prove that f is analytic on (a, b) if and only if f ′ is
analytic on (a, b).
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Section 7.5 Applications 261

7.4.9. Suppose that I is a nonempty open interval and that f is bounded and
C∞ on I . If there is an M > 0 such that | f (k)(x)| ≤ Mk for all x ∈ I
and all positive integers k sufficiently large, and if there exist a, b ∈ I
such that ∫ b

a
f (x) xn dx = 0

for n = 0, 1, 2, . . . , then prove that f is zero on [a, b].
∗7.4.10. Suppose that f is analytic on (−∞,∞) and that

∫ b

a
| f (x)| dx = 0

for some a �= b in R. Prove that f (x) = 0 for all x ∈ R.
∗7.4.11. Prove that ( ∞∑

k=1

|ak |β
)1/β

≤
∞∑

k=1

|ak |

for all ak ∈ R and all β > 1.

∗7.5 APPLICATIONS

This section uses no material from any other enrichment section.
The theory of infinite series is a potent tool for both pure and applied mathe-

matics. In this section we give several examples to back up this claim.
We begin with a nontrivial theorem from number theory. Recall that an

integer n ≥ 2 is called prime if the only factors of n in N are 1 and n. Also recall
that given n ∈ N there are primes p1, p2, . . . , pk and exponents α1, α2, . . . , αk
such that

n = pα1
1 pα2

2 . . . pαk
k .

7.57 Theorem. [EUCLID’S THEOREM; EULER’S PROOF].
There are infinitely many primes in N.

Proof. Suppose to the contrary that p1, p2, . . . , pk represent all the primes
in N. Fix N ∈ N and set α = sup{α1, . . . , αk}, where this supremum is taken
over all α j ’s which satisfy n = pα1

1 pα2
2 . . . pαk

k for some n ≤ N . Since every
integer j ∈ [1, N ] must have the form j = pe1

1 . . . pek
k for some choice of

integers 0 ≤ ei ≤ α, we have

(
1 + 1

p1
+ · · · + 1

pα1

) (
1 + 1

p2
+ · · · + 1

pα2

)
. . .

(
1 + 1

pk
+ · · · + 1

pαk

)

=
∑

0≤ei ≤α
1 · 1

pe1
1

. . .
1

pek
k

≥
N∑

j=1

1

j
.
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262 Chapter 7 Infinite Series of Functions

On the other hand, for each integer i ∈ [1, k], we have by Theorem 6.7 that

1 + 1

pi
+ · · · + 1

pαi
≤

∞∑
�=1

(
1

pi

)�
= pi

pi − 1
.

Consequently,

N∑
j=1

1

j
≤
(

p1

p1 − 1

)
. . .

(
pk

pk − 1

)
= M < ∞.

Taking the limit of this inequality as N → ∞, we conclude that
∑∞

j=1 1/j ≤
M < ∞, a contradiction. �

Our next application, a result used to approximate roots of twice differen-
tiable functions, shows that if an initial guess x0 is close enough to a root of a
suitably well-behaved function f , then the sequence xn generated by (19) con-
verges to a root of f .

7.58 Theorem. [NEWTON-RAPHSON].
Suppose that f : [a, b] → R is continuous on [a, b] and that f (c) = 0 for some
c ∈ (a, b). If f ′′ exists and is bounded on (a, b) and there is an ε0 > 0 such
that | f ′(x)| ≥ ε0 for all x ∈ (a, b), then there is a closed interval I ⊆ (a, b)
containing c such that given x0 ∈ I , the sequence {xn}n∈N defined by

xn = xn−1 − f (xn−1)

f ′(xn−1)
, n ∈ N, (19)

satisfies xn ∈ I and xn → c as n → ∞.

Proof. Choose M > 0 such that | f ′′(x)| ≤ M for x ∈ (a, b). Choose r0 ∈ (0, 1)
so small that I = [c − r0, c + r0] is a subinterval of (a, b) and r0 < ε0/M .
Suppose that x0 ∈ I and define the sequence {xn} by (19). Set r := r0 M/ε0
and observe by the choice of r0 that r < 1. Thus it suffices to show that

|xn − c| ≤ rn|x0 − c| (20)

and

|xn − c| ≤ r0 (21)

hold for all n ∈ N.
The proof is by induction on n. Clearly, (20) and (21) hold for n = 0. Fix

n ∈ N and suppose that

|xn−1 − c| ≤ rn−1|x0 − c| (22)
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Section 7.5 Applications 263

and that

|xn−1 − c| ≤ r0. (23)

Use Taylor’s Formula to choose a point ξ between c and xn−1 such that

− f (xn−1) = f (c)− f (xn−1) = f ′(xn−1)(c − xn−1)+ 1

2
f ′′(ξ)(c − xn−1)

2.

Since (19) implies − f (xn−1) = f ′(xn−1)(xn − xn−1), it follows that

f ′(xn−1)(xn − c) = 1

2
f ′′(ξ)(c − xn−1)

2.

Solving this equation for xn − c, we have by the choice of M and ε0 that

|xn − c| =
∣∣∣∣ f ′′(ξ)
2 f ′(xn−1)

∣∣∣∣ |xn−1 − c|2 ≤ M

2ε0
|xn−1 − c|2. (24)

Since M/ε0 < 1/r0, it follows from (24) and (23) that

|xn − c| ≤ M

ε0
|xn−1 − c|2 ≤ 1

r0
|r0|2 = r0.

This proves (21). Again, by (24), (22), and the choice of r , we have

|xn − c| ≤ M

ε0
(rn−1|x0 − c|)2 = r

r0
(r2n−2|x0 − c|2) ≤ r2n−1|x0 − c|.

Since r < 1 and 2n − 1 ≥ n imply r2n−1 ≤ rn , we conclude that |xn − c| ≤
r2n−1|x0 − c| ≤ rn|x0 − c|. �

Notice if xn−1 and xn satisfy (19), then xn is the x-intercept of the tangent line
to y = f (x) at the point (xn−1, f (xn−1)) (see Exercise 7.5.4). Thus, Newton’s
method is based on a simple geometric principle (see Figure 7.7). Also notice
that, by (24), this method converges very rapidly. Indeed, the number of decimal
places of accuracy nearly doubles with each successive approximation.

As a general rule, it is extremely difficult to show that a given nonalgebraic
number is irrational. The next result shows how to use infinite series to give an
easy proof that certain kinds of numbers are irrational.

7.59 Theorem. [EULER].
The number e is irrational.

Proof. Suppose to the contrary that e = p/q for some p, q ∈ N. By Exam-
ple 7.45,

q

p
= e−1 =

∞∑
k=0

(−1)k

k! .
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264 Chapter 7 Infinite Series of Functions

x

y

 x2 . . . c x1 x0

y = f (x)

FIGURE 7.7

Breaking this sum into two pieces and multiplying by (−1)p+1 p!, we have

x :=(−1)p+1

(
q(p − 1)! −

p∑
k=0

(−1)k p!
k!

)
= y :=

∞∑
k=p+1

(−1)k+p+1 p!
k! .

Since p!/k! ∈ N for all integers k ≤ p, the number x must be an integer. On
the other hand,

y = 1

p + 1
− 1

(p + 1)(p + 2)
+ 1

(p + 1)(p + 2)(p + 3)
− . . .

lies between 1/(p + 1) and 1/(p + 1) − 1/(p + 1)(p + 2). Therefore, y is a
number which satisfies 0 < y < 1. In particular, x �= y, a contradiction. �

We know that a continuous function can fail to be differentiable at one point
[e.g., f (x) = |x |]. Hence, it is not difficult to see that, given any finite set of
points E , there is a continuous function which fails to be differentiable at every
point in E . We shall now show that there is a continuous function which fails to
be differentiable at all points in R. Once again, here is a clear indication that,
although we use sketches to motivate proofs and to explain results, we cannot
rely on sketches to give a complete picture of the general situation.

7.60 Theorem. [WEIERSTRASS].
There is a function f continuous on R which is not differentiable at any point
in R.
(Note: Such functions are called nowhere differentiable.)
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y

x1—
2

1

y = f0(x)

FIGURE 7.8

Proof. Let

f0(x) =
{

x 0 ≤ x < 1/2
1 − x 1/2 ≤ x < 1

and extend f0 to R by periodicity of period 1, that is, so that f0(x) = f0(x +1)
for all x ∈ R (see Figure 7.8). Set fk(x) = f0(2k x)/2k for x ∈ R and k ∈ N and
consider the function

f (x) =
∞∑

k=0

fk(x), x ∈ R.

Normalizing fk by 2k has two consequences. First, since f ′
0(y) = ±1 for each

y which satisfies 2y /∈ Z, it is easy to see that

f ′
k(y) = ±1 for each y which satisfies 2k+1 y /∈ Z. (25)

Second, by the Weierstrass M-Test, f converges uniformly and, hence, is con-
tinuous on R.

Since f is periodic of period 1, it suffices to show that f is not differentiable
at any x ∈ [0, 1). Suppose to the contrary that f is differentiable at some
x ∈ [0, 1). For each n ∈ N, choose p ∈ Z such that x ∈ [αn, βn) for αn = p/2n

and βn = (p + 1)/2n . Since each fk is linear on [αk+1, βk+1] and [αn, βn] ⊆
[αk+1, βk+1] for n > k, it is clear that

ck := fk(βn)− fk(αn)

βn − αn

depends only on k and not on n when n > k. Moreover, by (25), it is also clear
that each ck = ±1. Therefore,

∑∞
k=0 ck cannot be convergent.
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266 Chapter 7 Infinite Series of Functions

On the other hand, since f is differentiable at x ,

f ′(x) = lim
n→∞

f (βn)− f (αn)

βn − αn
(26)

(see Exercise 7.5.7). However, since f0(y) = 0 if and only if y ∈ Z, we also
have fk(βn) = fk(αn) = 0 for k ≥ n. It follows that f (βn) = ∑n−1

k=0 fk(βn) and
f (αn) = ∑n−1

k=0 fk(αn). We conclude from (26) that

∞∑
k=0

ck = lim
n→∞

n−1∑
k=0

ck = lim
n→∞

f (βn)− f (αn)

βn − αn
= f ′(x)

is convergent, a contradiction. �

EXERCISES

7.5.1. Using a calculator and Theorem 7.58, approximate all real roots of f (x) =
x3 + 3x2 + 4x + 1 to five decimal places.

7.5.2. a) Using the proof of Theorem 7.58, prove that (20) holds if r/2
replaces r .

Use part a) to estimate the difference |x4−π |, where x0 = 3, f (x) =
sin x , and xn is defined by (19). Evaluate x4 directly, and verify that x4
is actually closer than the theory predicts.

7.5.3. Prove that given any n ∈ N, there is a function f ∈ Cn(R) such that
f (n+1)(x) does not exist for any x ∈ R.

7.5.4. Prove that if xn−1, xn satisfy (19), then xn is the x-intercept of the tangent
line to y = f (x) at the point (xn−1, f (xn−1)).

7.5.5. Prove that cos(1) is irrational.
7.5.6. Suppose that f : R → R. If f ′′ exists and is bounded on R, and there is

an ε0 > 0 such that | f ′(x)| ≥ ε0 for all x ∈ R, prove that there exists a
δ > 0 such that if | f (x0)| ≤ δ for some x0 ∈ R, then f has a root; that is,
that f (c) = 0 for some c ∈ R.

7.5.7. Let x ∈ [0, 1) and αn, βn be defined as in Theorem 7.60.

a) If f : [0, 1) → R and γ ∈ R, prove that

f (βn)− f (αn)

βn − αn
− γ =

(
f (βn)− f (x)

βn − x
− γ

)(
βn − x

βn − αn

)

+
(

f (x)− f (αn)

x − αn
− γ

)(
x − αn

βn − αn

)
.

b) If f is differentiable at x , prove that (26) holds.
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C H A P T E R 8

Euclidean Spaces

The world we live in is at least four dimensional: three spatial dimensions
together with the time dimension. Moreover, certain problems from engineer-
ing, physics, chemistry, and economics force us to consider even higher dimen-
sions. For example, guidance systems for missiles frequently require as many
as 100 variables (longitude, latitude, altitude, velocity, time after launch, pitch,
yaw, fuel on board, etc.). Another example, the state of a gas in a closed
container, can best be described by a function of 6m variables, where m is
the number of molecules in the system. (Six enters the picture because each
molecule of gas is described by three space variables and three momentum vari-
ables.) Thus, there are practical reasons for studying functions of more than one
variable.

8.1 ALGEBRAIC STRUCTURE

For each n ∈ N, let Rn denote the n-fold cartesian product of R with itself;
that is,

Rn:={(x1, x2, . . . , xn) : x j ∈ R for j = 1, 2, . . . , n}.
By a Euclidean space we shall mean Rn together with the “Euclidean inner prod-
uct” defined in Definition 8.1 below. The integer n is called the dimension of
Rn , elements x = (x1, x2, . . . , xn) of Rn are called points or vectors or ordered
n-tuples, and the numbers x j are called coordinates, or components, of x. Two
vectors x, y are said to be equal if and only if their components are equal;
that is, if and only if x j = y j for j = 1, 2, . . . , n. The zero vector is the vec-
tor whose components are all zero; that is, 0 := (0, 0, . . . , 0). When n = 2
(respectively, n = 3), we usually denote the components of x by x, y (respec-
tively, by x, y, z).

You have already encountered the sets Rn for small n. R1 = R is the real line;
we shall call its elements scalars. R2 is the xy-plane used to graph functions of
the form y = f (x). And R3 is the xyz-space used to graph functions of the form
z = f (x, y).

We have called elements of Rn points and vectors. In general, we make no
distinction between points and vectors, but in each situation we adopt the inter-
pretation which proves most useful.

In earlier courses, vectors were (most likely) directed line segments, but our
vectors look like points in Rn . What is going on? When we call an a ∈ Rn a
vector, we are thinking of the directed line segment which starts at the origin
and ends at the point a.

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 8 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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268 Chapter 8 Euclidean Spaces

What about directed line segments which begin at arbitrary points? Two
arbitrary directed line segments are said to be equivalent if and only if they
have the same length and same direction. Thus every directed line segment
V is equivalent to a directed line segment in standard position; that is, one
which points in the same direction as V , has the same length as V , but whose
“tail” sits at the origin and whose “head,” a, is a point in Rn . If we identify V
with a, then we can represent any arbitrary directed line segment in Rn by a
point in Rn .

Identifying arbitrary vectors in Rn with vectors in standard position and, in
turn, with points in Rn may sound confusing and sloppy, but it is no different
from letting 1/2 represent 2/4, 3/6, 4/8, and so on. (In both cases, there is an
underlying equivalence relation, and we are using one member of an equiva-
lence class to represent all of its members. For vectors, we are using the repre-
sentative which lies in standard position; for rational numbers, we are using the
representative which is in reduced form.)

We began our study of functions of one variable by examining the algebraic
structure of R. In this section we begin our study of functions of several variables
by examining the algebraic structure of Rn . That structure is described in the
following definition.

8.1 Definition.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn , and α ∈ R.
i) The sum of the vectors x and y is the vector

x + y := (x1 + y1, x2 + y2, . . . , xn + yn).

ii) The difference of the vectors x and y is the vector

x − y := (x1 − y1, x2 − y2, . . . , xn − yn).

iii) The product of the scalar α and the vector x is the vector

αx := (αx1, αx2, . . . , αxn).

iv) The (Euclidean) dot product (or scalar product or inner product) of the
vectors x and y is the scalar

x · y := x1 y1 + x2 y2 + · · · + xn yn.

These algebraic operations are analogues of addition, subtraction, and multi-
plication on R. It is natural to ask, Do the usual laws of algebra hold in Rn? An
answer to this question is contained in the following result.

268



Section 8.1 Algebraic Structure 269

8.2 Theorem. Let x, y, z ∈ Rn and α, β ∈ R. Then

α 0 = 0, 0 x = 0, 0 · x = 0, 1 x = x, 0 + x = x, x − x = 0,
α(βx) = β(αx) = (αβ)x, α(x · y) = (αx) · y = x · (αy),

x + y = y + x, x + (y + z) = (x + y)+ z, x · y = y · x,
α(x + y) = αx + αy, and x · (y + z) = x · y + x · z.

Proof. These properties are direct consequences of Definition 8.1 and corre-
sponding properties of real numbers. We will prove that vector addition is
associative, and leave the proof of the rest of these properties as an exercise.

By definition and associativity of addition on R (see Postulate 1 in
Section 1.2),

x + (y + z) = (x1, . . . , xn)+ (y1 + z1, . . . , yn + zn)

= (x1 + (y1 + z1), . . . , xn + (yn + zn))

= ((x1 + y1)+ z1, . . . , (xn + yn)+ zn) = (x + y)+ z. �

Thus (with the exception of the closure of the dot product and the existence
of the multiplicative identity and multiplicative inverses), Rn satisfies the same
algebraic laws, listed in Postulate 1, that R does. This means one can use instincts
developed in high school algebra to compute with these vector operations. For
example, just as (x − y)2 = x2 −2xy + y2 holds for real numbers x and y, even so,

(x − y) · (x − y) = x · x − 2 x · y + y · y (1)

holds for any vectors x, y ∈ Rn .
In the first four chapters, we used algebra together with the absolute value to

define convergence of sequences and functions in R. Is there an analogue of the
absolute value for Rn? The following definition illustrates the fact that there are
many such analogues.

8.3 Definition.

Let x ∈ Rn .

i) The (Euclidean) norm (or magnitude) of x is the scalar

‖x‖:=
√√√√ n∑

k=1

|xk |2.

ii) The �1-norm (read L-one-norm) of x is the scalar

‖x‖1:=
n∑

k=1

|xk |.
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270 Chapter 8 Euclidean Spaces

8.3 Definition. (Continued)

iii) The sup-norm of x is the scalar

‖x‖∞:= max{|x1|, . . . , |xn|}.
iv) The (Euclidean) distance between two points a, b ∈ Rn is the scalar

dist(a, b) := ‖a − b‖.

(Note: For relationships between these three norms, see Remark 8.7 below. The
subscript ∞ is frequently used for supremum norms because the supremum of
a continuous function on an interval [a, b] can be computed by taking the limit
of (

∫ b
a | f (x)|pdx)1/p as p → ∞—see Exercise 5.2.8.)

Since ‖x‖ = ‖x‖1 = ‖x‖∞ = |x |, when n = 1, each norm defined above is an
extension of the absolute value from R to Rn . The most important, and in some
senses the most natural, of these norms is the Euclidean norm. This is true for
at least two reasons. First, by definition,

‖x‖2 = x · x for all x ∈ Rn.

(This aids in many calculations; see, for example, the proofs of Theorems 8.5
and 8.6 below.) Second, if � is the triangle in R2 with vertices (0, 0), x := (a, b),
and (a, 0), then by the Pythagorean Theorem, the hypotenuse of �,

√
a2 + b2,

is exactly the norm of x. In particular, the Euclidean norm of a vector has a
simple geometric interpretation in R2.

The algebraic structure of Rn also has a simple geometric interpretation in
R2 which gives us another very useful way to think about vectors. To describe
it, fix vectors a = (a1, a2) and b = (b1, b2) and let P(a, b) denote parallelogram
associated with a and b (i.e., the parallelogram whose sides are given by a and b).
(We are assuming that this parallelogram is not degenerate—see Figure 8.1.)
Then the vector sum of a and b, (a1 + b1, a2 + b2), is evidently the diagonal
of P(a, b); that is, a + b is the vector which begins at the origin and ends at
the opposite vertex of P(a, b). Similarly, the difference a − b can be identified
with the other diagonal of P(a, b) (see Figure 8.1). The scalar product of t and
a, (ta1, ta2), evidently stretches or compresses the vector a, but leaves it in the
same straight line which passes through 0 and a. Indeed, if t > 0, then ta has
the same direction as a, but its magnitude, |t | ‖a‖, is ≥ or < the magnitude of
a, depending on whether t ≥ 1 or t < 1. When t is negative, ta points in the
opposite direction from a but is again stretched or compressed depending on
the size of |t |.
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a + b

a – b

FIGURE 8.1

Using R2 as a guide, we can extend concepts from R2 to Rn . Here are five
examples.

1) Every (a, b) ∈ R2 can be written as (a, b) = a(1, 0) + b(0, 1). Using this as a
guide, we define the usual basis of Rn to be the collection {e1, . . . , en}, where
e j is the point in Rn whose jth coordinate is 1, and all other coordinates
are 0. Notice by definition that each x = (x1, . . . , xn) ∈ Rn can be written as
a linear combination of the e j ’s:

x =
n∑

j=1

x j e j .

We shall not discuss other bases of Rn or the more general concept of “vec-
tor spaces,” which can be introduced using postulates similar in spirit to
Postulate 1 in Chapter 1. Instead, we have introduced just enough alge-
braic machinery in Rn to develop the calculus of multivariable functions.
For more information about Rn and abstract vector spaces, see Noble and
Daniel [9].

Note: In R2 or R3, e1 is denoted by i, e2 is denoted by j, and, in R3, e3 is
denoted by k. Thus, in R3, i := (1, 0, 0), j := (0, 1, 0), and k := (0, 0, 1).

2) Let t ∈ R and a, b ∈ R2 with b nonzero. By the geometric interpretation of
vector addition, φ(t) := a + tb is a point on the line passing through a in the
direction of b. Using this as a guide, we define the straight line in Rn which
passes through a point a ∈ Rn in the direction b ∈ Rn\{0} to be the set of
points

�a(b) := {a + tb : t ∈ R}.
In particular, it is easy to see that the parallelogram P(a, b) determined by
nonzero vectors a and b in Rn can be described as

P(a; b) := {ua + vb : u, v ∈ [0, 1]}.
3) Fix a �=b in R2, and setψ(t) :=(1−t)a+tb, for t ∈ R. Sinceψ(t)=a+t(b−a),

it is evident that ψ describes the line �a(b − a). This line passes through the
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272 Chapter 8 Euclidean Spaces

points ψ(0) = a and ψ(1) = b. In fact, by the geometric interpretation
of vector subtraction, as t ranges from 0 to 1, the points ψ(t) trace out the
diagonal of P(a, b) that does not contain the origin (see Figure 8.1). It begins
at a and ends at b. Using this as a guide, we define the line segment from
a ∈ Rn to b ∈ Rn to be the set of points

L(a; b) := {(1 − t)a + tb : t ∈ [0, 1]}.
4) The angle between two nonzero vectors a, b ∈ R2 can be computed by the

following process. If � is the triangle determined by the points 0, a, and b,
then the sides of� have length ‖a‖, ‖b‖, and ‖a−b‖. If we let θ be the angle
between a and b [i.e., the angle in � at the vertex (0, 0)], then by the Law of
Cosines (see Appendix B),

‖a − b‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖ ‖b‖ cos θ.

Since Theorem 8.2 implies ‖a − b‖2 = (a − b) · (a − b) = ‖a‖2 − 2a · b + ‖b‖2,
it follows that −2a · b = −2‖a‖ ‖b‖ cos θ . Since neither a nor b is zero, we
conclude that

cos θ = a · b
‖a‖ ‖b‖ . (2)

Using this as a guide, we define the angle between two nonzero vectors
a, b ∈ Rn (for any n ∈ N) to be the number θ ∈ [0, π] determined by (2).
(Our next result, the Cauchy–Schwarz Inequality, shows that the right side
of (2) always belongs to the interval [−1, 1]. Hence, for each pair of nonzero
vectors a, b ∈ Rn , there is a unique angle θ ∈ [0, π] which satisfies (2).)

5) Two vectors in R2 are parallel when one is a multiple of the other, and
orthogonal when the angle, θ , between them is π/2; that is, when a · b =
cos θ‖a‖ ‖b‖ = 0. Using this as a guide, we make the following definition
in Rn .

8.4 Definition.

Let a and b be nonzero vectors in Rn .

i) a and b are said to be parallel if and only if there is a scalar t ∈ R such that
a = tb.

ii) a and b are said to be orthogonal if and only if a · b = 0.

Notice that the usual basis {e j } consists of pairwise orthogonal vectors; that
is, e j · ek = 0 when j �= k. In particular, the usual basis is an orthogonal basis.

We note in passing that Definition 8.4 is consistent with formula (2)—see
Exercise 8.1.4b. Indeed, if θ is the angle between two nonzero vectors a and
b in Rn , then a and b are parallel if and only if θ = 0 or θ = π , and a and b are
orthogonal if and only if θ = π/2.

We shall see below that in addition to suggesting definitions for Rn , the geom-
etry of R2 can also be used to help suggest proof strategies in Rn .
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Let’s return to the analogy between R and Rn . Surely, if we are going to
develop a calculus of several variables, we need to know more about the
Euclidean norm on Rn . The next two results answer the question, How many
properties do the absolute value and the Euclidean norm share?

Although the norm is not multiplicative, the following fundamental inequality
can be used as a replacement for the multiplicative property in most proofs.
(Some authors call this the Cauchy–Schwarz–Bunyakovsky Inequality.)

8.5 Theorem. [CAUCHY–SCHWARZ INEQUALITY].
If x, y ∈ Rn , then

|x · y| ≤ ‖x‖ ‖y‖.
Strategy: Using the fact that the dot product of a vector with itself is the

square of the norm of the vector and the square of any real number is nonnega-
tive, identity (1) becomes 0 ≤ ‖x−y‖2 = ‖x‖2 −2x ·y+‖y‖2. We could solve this
inequality to get an estimate of the dot product of x · y, but this estimate might
be very crude if ‖x − y‖ were much larger than zero. But x − y is only one point
on the line �x(y). We might get a better estimate of the dot product x ·y by using
the inequality

0 ≤ ‖x − ty‖2 = (x − ty) · (x − ty) = ‖x‖2 − 2t (x · y)+ t2‖y‖2 (3)

for other values of t . In fact, if we draw a picture in R2 (see Figure 8.2), we
see that the norm of ‖x − ty‖ is smallest for the value of t which makes x − ty
orthogonal to y; that is, when

0 = (x − ty) · y = x · y − ty · y = x · y − t‖y‖2.

This suggests using t = x · y/‖y‖2 when y �= 0. It turns out that this value of t is
exactly the one which reproduces the Cauchy–Schwarz Inequality. Here are the
details.

y

x – y

x

x – ty

y

x

FIGURE 8.2
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Proof. The Cauchy–Schwarz Inequality is trivial when y = 0. If y �= 0, substi-
tute t = (x · y)/‖y‖2 into (3) to obtain

0 ≤ ‖x‖2 − t (x · y) = ‖x‖2 − (x · y)2

‖y‖2
.

It follows that 0 ≤ ‖x‖2 − (x · y)2/‖y‖2. Solving this inequality for (x · y)2, we
conclude that

(x · y)2 ≤ ‖x‖2‖y‖2. �

The analogy between the absolute value and the Euclidean norm is further
reinforced by the following result (compare with Theorem 1.7). (See also Exer-
cise 8.1.10.)

8.6 Theorem. Let x, y ∈ Rn . Then

i) ‖x‖ ≥ 0 with equality only when x = 0,
ii) ‖αx‖ = |α|‖x‖ for all scalars α,

iii) [Triangle Inequalities]. ‖x + y‖ ≤ ‖x‖ + ‖y‖ and ‖x − y‖ ≥ ‖x‖ − ‖y‖.

Proof. Statements i) and ii) are easy to verify.
To prove iii), observe that by Definition 8.3, Theorem 8.2, and the Cauchy–

Schwarz Inequality,

‖x + y‖2 = (x + y) · (x + y) = x · x + 2x · y + y · y

= ‖x‖2 + 2x · y + ‖y‖2 ≤ ‖x‖2 + 2‖x‖ ‖y‖ + ‖y‖2 = (‖x‖ + ‖y‖)2.

This establishes the first inequality in iii). By modifying the proof of Theorem
1.7, we can also establish the second inequality in iii). �

Notice that the Triangle Inequality has a simple geometric interpretation.
Indeed, since ‖x‖ is the magnitude of the vector x, the inequality ‖x + y‖ ≤
‖x‖ + ‖y‖ states that the length of one side of a triangle (namely, the triangle
whose vertices are 0, x, and x + y) is less than or equal to the sum of the lengths
of its other two sides.

For some estimates, it is convenient to relate the Euclidean norm to the
�1-norm and the sup-norm.

8.7 Remark. Let x ∈ Rn . Then

i) ‖x‖∞ ≤ ‖x‖ ≤ √
n‖x‖∞, and

ii) ‖x‖ ≤ ‖x‖1 ≤ √
n‖x‖.
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Proof. i) Let 1 ≤ j ≤ n. By definition,

|x j |2 ≤ ‖x‖2 = x2
1 + · · · + x2

n ≤ n

(
max

1≤�≤n
|x�|

)2

= n ‖x‖2∞;

that is, |x j | ≤ ‖x‖ and ‖x‖ ≤ √
n‖x‖∞. Taking the supremum of the first of

these inequalities, over all 1 ≤ j ≤ n, we also have ‖x‖∞ ≤ ‖x‖.
ii) Let A = {(i, j) : 1 ≤ i, j ≤ n and i < j}. To verify the first inequality,

observe by algebra that

‖x‖2
1 =

(
n∑

i=1

|xi |
)2

=
n∑

i=1

|xi |2 + 2
∑

(i, j)∈A

|xi | |x j | = ‖x‖2 + 2
∑

(i, j)∈A

|xi | |x j |.

Since
∑
(i, j)∈A |xi ||x j | ≥ 0, it follows that ‖x‖2 ≤ ‖x‖2

1.
On the other hand,

0 ≤
∑

(i, j)∈A

(|xi | − |x j |)2 =
n∑

i=1

(n − 1)|xi |2 − 2
∑

(i, j)∈A

|xi | |x j |

= n‖x‖2 −
⎛
⎝ n∑

i=1

|xi |2 + 2
∑

(i, j)∈A

|xi | |x j |
⎞
⎠ = n‖x‖2 − ‖x‖2

1.

This proves the second inequality. �

Since x·y is a scalar, the dot product in Rn does not satisfy the closure property
for any n > 1. Here is another product, defined only on R3, which does satisfy
the closure property. (As we shall see below, this product allows us to exploit
the geometry of R3 in several unique ways.)

8.8 Definition.

The cross product of two vectors x = (x1, x2, x3) and y = (y1, y2, y3) in R3 is
the vector defined by

x × y := (x2 y3 − x3 y2, x3 y1 − x1 y3, x1 y2 − x2 y1).

Using the usual basis i = e1, j = e2, k = e3, and the determinant oper-
ator (see Appendix C), we can give the cross product a more easily remem-
bered form:

x × y = det

⎡
⎣ i j k

x1 x2 x3
y1 y2 y3

⎤
⎦ .
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276 Chapter 8 Euclidean Spaces

The following result shows that the cross product satisfies some, but not all,
of the usual laws of algebra. (Specifically, notice that although the cross product
satisfies the distributive property, it satisfies neither the commutative property
nor the associative property.)

8.9 Theorem. Let x, y, z ∈ R3 be vectors and α be a scalar. Then

i) x × x = 0, x × y = −y × x,

ii) (αx)× y = α(x × y) = x × (αy),

iii) x × (y + z) = (x × y)+ (x × z),

iv) (x × y) · z = x · (y × z) = det

⎡
⎣x1 x2 x3

y1 y2 y3
z1 z2 z3

⎤
⎦ ,

v) x × (y × z) = (x · z)y − (x · y)z,

and

vi) ‖x × y‖2 = (x · x)(y · y)− (x · y)2.

vii) Moreover, if x × y �= 0, then the vector x × y is orthogonal to x and y.

Proof. These properties follow immediately from the definitions. We will
prove properties iv), v), and vii) and leave the rest as an exercise.

iv) Notice that by definition,

(x × y) · z = (x2 y3 − x3 y2)z1 + (x3 y1 − x1 y3)z2 + (x1 y2 − x2 y1)z3

= x1(y2z3 − y3z2)+ x2(y3z1 − y1z3)+ x3(y1z2 − y2z1).

Since this last expression is both the scalar x·(y×z) and the value of the deter-
minant on the right side of iv) (expanded along the first row), this verifies iv).

v) Since x × (y × z) = (x1, x2, x3) × (y2z3 − y3z2, y3z1 − y1z3, y1z2 − y2z1),
the first component of x × (y × z) is

x2 y1z2−x2 y2z1−x3 y3z1+x3 y1z3 =(x1z1+x2z2+x3z3)y1−(x1 y1+x2 y2+x3 y3)z1.

This proves that the first components of x × (y × z) and (x · z)y − (x · y)z are
equal. A similar argument shows that the second and third components are
also equal.

vii) By parts i) and iv), (x × y) · x = −(y × x) · x = −y · (x × x) = −y · 0 = 0.
Thus x × y is orthogonal to x. A similar calculation shows that x × y is orthog-
onal to y. �

Part vii) is illustrated in Figure 8.3. Notice that x×y satisfies the “right-hand”
rule. Indeed, if one puts the fingers of the right hand along x and the palm of
the right hand along y, then the thumb points in the direction of x × y.
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x

xxy

y

FIGURE 8.3

By (2), there is a close connection between dot products and cosines. The
following result shows that there is a similar connection between cross products
and sines.

8.10 Remark. Let x, y be nonzero vectors in R3 and θ be the angle between x and
y. Then

‖x × y‖ = ‖x‖ ‖y‖ sin θ.

Proof. By Theorem 8.9vi and (2),

‖x × y‖2 = (‖x‖ ‖y‖)2 − (‖x‖ ‖y‖ cos θ)2

= (‖x‖ ‖y‖)2(1 − cos2 θ) = (‖x‖ ‖y‖)2 sin2 θ. �

This observation can be used to establish a connection between cross products
and area or volume (see Exercise 8.2.7).

EXERCISES

8.1.1. Let x, y, z ∈ Rn .

a) If ‖x − z‖ < 2 and ‖y − z‖ < 3, prove that ‖x − y‖ < 5.
b) If ‖x‖ < 2, ‖y‖ < 3, and ‖z‖ < 4, prove that |x · y − x · z| < 14.
c) If ‖x − y‖ < 2 and ‖z‖ < 3, prove that |x · (y − z)− y · (x − z)| < 6.
d) If ‖2x − y‖ < 2 and ‖y‖ < 1, prove that | ‖x − y‖2 − x · x| < 2.
e) If n = 3, ‖x − y‖ < 2, and ‖z‖ < 3, prove that ‖x × z − y × z‖ < 6.
f) If n = 3, ‖x‖ < 1, ‖y‖ < 2, and ‖z‖ < 3, prove that ‖x · (y × z)‖ < 6.
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8.1.2. Let B := {x ∈ Rn : ‖x‖ ≤ 1}.
a) If a, b, c ∈ B and

v := (a · b)c + (a · c)b + (c · b)a
3

,

prove that v belongs to B.
b) If a, b ∈ B, prove that

|a · c − b · d| ≤ ‖b − c‖ + ‖a − d‖
for all c, d ∈ Rn .

c) If a, b, c ∈ B and n = 3, prove that√
|a · (b × c)|2 + |a · b|2 ≤ 1.

8.1.3. Use the proof of Theorem 8.5 to show that equality in the Cauchy–
Schwarz Inequality holds if and only if x = 0, y = 0, or x is parallel
to y.

8.1.4. Let a and b be nonzero vectors in Rn .

a) If φ(t) = a + tb for t ∈ R, show that for each t0, t1, t2 ∈ R with
t1, t2 �= t0, the angle between φ(t1)− φ(t0) and φ(t2)− φ(t0) is 0 or π .

b) If θ is the angle between a and b, show that a and b are parallel
according to Definition 8.4 if and only if θ = 0 or π , and that a and b
are orthogonal according to Definition 8.4 if and only if θ = π/2.

8.1.5. The midpoint of a side of a triangle in R3 is the point that bisects that
side (i.e., that divides it into two equal pieces). Let � be a triangle in R3

with sides A, B, and C and let L denote the line segment between the
midpoints of A and B. Prove that L is parallel to C and that the length
of L is one-half the length of C .

8.1.6. a) Prove that (1, 2, 3), (4, 5, 6), and (0, 4, 2) are vertices of a right triangle
in R3.

b) Find all nonzero vectors orthogonal to (1,−1, 0) which lie in the
plane z = x .

c) Find all nonzero vectors orthogonal to the vector (3, 2,−5) whose
components sum to 4.

8.1.7. Let a < b be real numbers. The Cartesian product [a, b] × [a, b] is
obviously a square in R2. Define a cube Q in Rn to be the n-fold Carte-
sian product of [a, b] with itself; that is, Q := [a, b] × · · · × [a, b]. Find
a formula of the angle between the longest diagonal of Q and any of
its edges. Show that when n = 3, this angle is approximately 54.74
degrees.

8.1.8. a) Using Postulate 1 in Section 1.2 and Definition 8.1, prove Theo-
rem 8.2.

b) Prove Theorem 8.9, parts i) through iii) and vi).
c) Prove that if x, y ∈ R3, then ‖x × y‖ ≤ ‖x‖ ‖y‖.
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8.1.9. Suppose that {ak} and {bk} are sequences of real numbers which satisfy

∞∑
k=1

a2
k < ∞ and

∞∑
k=1

b2
k < ∞.

Prove that the infinite series
∑∞

k=1 akbk converges absolutely.
8.1.10. Prove that the �1-norm and the sup-norm also satisfy Theorem 8.6.

8.2 PLANES AND LINEAR TRANSFORMATIONS

A plane Π in R3 is a set of points that is “flat” in some sense. What do we mean
by flat? Any vector that lies in Π is orthogonal to a common direction, called
the normal, which we will denote by b. Fix a point a ∈ Π . Since the vector
x − a lies inΠ for all x ∈ Π and since two vectors are orthogonal when their dot
product is zero, we see that (x − a) · b = 0 for all x ∈ Π (see Figure 8.4).

Using this three-dimensional case as a guide, for any a, b ∈ Rn with b �= 0, we
call the set

Πb(a):={x ∈ Rn : (x − a) · b = 0}
the hyperplane in Rn passing through a point a ∈ Rn with normal b. (We call it a
plane when n = 3.) In particular, Πb(a) is the set of all points x such that x − a
is orthogonal to b.

There is nothing unique about “the normal” of a hyperplane: Any nonzero
vector c parallel to b will define the same hyperplane. Indeed, if b and c are
parallel, then, by definition, b = tc for some nonzero t ∈ R; hence (x − a) · b = 0
if and only if (x − a) · c = 0. Nevertheless, many properties of hyperplane can be

x

x

x x – a

x – a

x – a

b

a

IIb(a)

FIGURE 8.4
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determined by their normals. For example, the angle between two hyperplanes
with respective normals b and c is defined to be the angle between the normals
b and c.

By an equation of a hyperplane Π we mean an expression of the form
F(x) = 0, where F : Rn → R is a function determined by the following prop-
erty: A point x belongs to Π if and only if F(x) = 0. By definition, then, an
equation of the hyperplaneΠb(a) [i.e., the hyperplane passing through the point
a = (a1, . . . , an) with normal b = (b1, . . . , bn)] is given by

b · x = b · a.

This form is sometimes referred to as the point-normal form. It can also be
written in the form

b1x1 + b2x2 + · · · + bnxn = d,

where d = b1a1 + b2a2 + · · · + bnan is a constant determined by a and b (and
related to the distance from Πb(a) to the origin—see Exercise 8.2.8). In particu-
lar, planes in R3 have equations of the form

ax + by + cz = d.

Notice that a “hyperplane” in R2 is by definition a straight line. Just as straight
lines through the origin played a prominent role in characterizing differentia-
bility of functions of one variable (see Theorem 4.3), even so hyperplane-like
objects will play a crucial role in defining differentiability of functions of several
variables. Why hyperplane-like objects and not just hyperplanes themselves?
Equations of hyperplanes are by definition real valued and we do not want to
restrict our analysis of differentiable functions to the real-valued case.

What kind of hyperplane-like objects will be rich enough to develop a general
theory for differentiability of vector-valued functions? To answer this question,
we make the following observation about equations of straight lines through the
origin. (Here we use s for slope since m will be used for the dimension of the
range space Rm .)

8.11 Remark. Let T : R → R. Then T (x) = sx for some s ∈ R if and only if T
satisfies

T (x + y) = T (x)+ T (y) and T (αx) = αT (x) (4)

for all x, y, α ∈ R.

Proof. If T (x) = sx , then T satisfies (4) since the distributive and commu-
tative laws hold on R. Conversely, if T satisfies (4), set s := T (1). Then (let
α = x),

T (x) = T (x · 1) = xT (1) = sx

for all x ∈ R. �
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Accordingly, we introduce the following concept.

8.12 Definition.

A function T : Rn → Rm is said to be linear [notation: T ∈ L(Rn; Rm)] if and
only if it satisfies

T(x + y) = T(x)+ T(y) and T(αx) = αT(x)

for all x, y ∈ Rn and all scalars α.

When m = 1 (i.e., when the range of T is R), we shall often drop the boldface
notation (i.e., write T for T).

Notice once and for all that if T is a linear function, then

T(0) = 0. (5)

Indeed, by definition, T(0) = T(0+0) = T(0)+T(0). Hence (5) can be obtained
by subtracting T(0) from both sides of this last equation. Also notice that if
F(x) = 0 is the equation of a hyperplane passing through the origin, then F(x) =
a1x1 + · · · + anxn . In particular, F ∈ L(Rn; R).

Functions in L(Rn; Rm) are sometimes called linear transformations or linear
operators because of the fundamental role they play in the theory of change of
variables in Rn . We shall take up this connection in Chapter 12.

According to Remark 8.11, linear transformations of one variable [i.e., objects
T ∈ L(R; R)] can be identified with R by representing T by its slope s. Is there
an analogue of slope which can be used to represent linear transformations of
several variables? To answer this question, we use the following half page to
review some elementary linear algebra.

Recall that an m × n matrix B is a rectangular array which has m rows and n
columns:

B = [bi j ]m×n:=

⎡
⎢⎢⎣

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...

bm1 bm2 · · · bmn

⎤
⎥⎥⎦ .

For us, the entries bi j of a matrix B will usually be numbers or real-valued func-
tions. Let B = [bi j ]m×n and C = [cνk]p×q be such matrices. Recall that the
product of B and a scalar α is defined by

αB = [αbi j ]m×n,
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the sum of B and C is defined (when m = p and n = q) by

B + C = [bi j + ci j ]m×n,

and the product of B and C is defined (when n = p) by

BC =
[

n∑
ν=1

biνcν j

]
m×q

.

Also recall that most of the usual laws of algebra hold for addition and multipli-
cation of matrices (see Theorem C.1 in Appendix C). One glaring exception is
that matrix multiplication is not commutative.

We shall identify points x = (x1, x2, . . . , xn) ∈ Rn with 1 × n row matrices or
n × 1 column matrices by setting

[x] = [x1 x2 . . . xn] or [x] = [x1 x2 . . . xn]T :=

⎡
⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎦ ,

where BT represents the transpose of a matrix B (see Appendix C). Abusing
the notation slightly, we shall usually represent the product of an m ×n matrix B
and an n × 1 column matrix [x] by Bx. This notation is justified, as the following
result shows, since the function x 
−→ [x] takes vector addition to matrix addi-
tion, the dot product to matrix multiplication, and scalar multiplication to scalar
multiplication.

8.13 Remark. If x, y ∈ Rn and α is a scalar, then

[x + y] = [x] + [y], [x · y] = [x][y]T , and [αx] = α[x].

Proof. These laws follow immediately from the definitions of addition and
multiplication of matrices and vectors. For example,

[x + y] = [x1 + y1 x2 + y2 . . . xn + yn]
= [x1 x2 . . . xn] + [y1 y2 . . . yn] = [x] + [y]. �

The following result shows that each m×n matrix gives rise to a linear function
from Rn to Rm .

8.14 Remark. Let B = [bi j ] be an m × n matrix whose entries are real numbers
and let e1, . . . , en represent the usual basis of Rn . If

T(x) = Bx, x ∈ Rn, (6)
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then T is a linear function from Rn to Rm and the jth column of B can be obtained
by evaluating T at e j :

(b1 j , b2 j , . . . , bmj ) = T (e j ), j = 1, 2, . . . , n. (7)

Proof. Notice, first, that (7) holds by (6) and the definition of matrix multi-
plication. Next, observe by Remark 8.13 and the distributive law of matrix
multiplication (see Theorem C.1) that

T(x + y) = B[x + y] = B([x] + [y]) = B[x] + B[y] = T(x)+ T(y)

for all x, y ∈ Rn . Similarly, T(αx) = B[αx] = B(α[x]) = αB[x] = αT(x) for all
x ∈ Rn and α ∈ R. Thus T ∈ L(Rn; Rm). �

Remark 8.14 would barely be worth mentioning were it not the case that ALL
linear functions from Rn to Rm have this form. Here, then, is the multidimen-
sional analogue of Remark 8.11.

8.15 Theorem. For each T ∈ L(Rn; Rm) there is a matrix B = [bi j ]m×n such that
(6) holds. Moreover, the matrix B is unique. Specifically, for each fixed T there is
only one B which satisfies (6), and the columns of B are defined by (7).

Proof. Uniqueness has been established in Remark 8.14. To prove existence,
suppose that T ∈ L(Rn; Rm). Define B by (7). Then

T(x) = T

⎛
⎝ n∑

j=1

x j e j

⎞
⎠

=
n∑

j=1

x j T(e j ) =
n∑

j=1

x j (b1 j , b2 j , . . . , bmj )

=
⎛
⎝ n∑

j=1

x j b1 j ,

n∑
j=1

x j b2 j , . . . ,

n∑
j=1

x j bmj

⎞
⎠ = Bx. �

The unique matrix B which satisfies (6) is called the matrix which represents T.
In Chapter 11 we shall use this point of view to define what it means for a

function from Rn into Rm to be differentiable. At that point, we shall show that
many of the one-dimensional results about differentiation remain valid in the
multidimensional setting. Since the one-dimensional theory relied on estimates
using the absolute value of various functions, we expect the theory in Rn to rely
on estimates using the norms of various functions. Since some of those functions
will be linear, the following concept will be useful in this regard.
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8.16 Definition.

Let T ∈ L(Rn; Rm). The operator norm of T is the extended real number

‖T‖ := sup
‖x‖�=0

‖T(x)‖
‖x‖ .

One interesting corollary of Theorem 8.15 is that the operator norm of a linear
function is always finite.

8.17 Theorem. Let T ∈ L(Rn; Rm). Then the operator norm of T is finite and
satisfies

‖T(x)‖ ≤ ‖T‖ ‖x‖ (8)

for all x ∈ Rn .

Proof. Since T(0) = 0, (8) holds for x = 0. On the other hand, by Defi-
nition 8.16, (8) holds for x �= 0. It remains to prove that the extended real
number ‖T‖ is finite.

Let B be the m ×n matrix which represents T, and suppose that the rows of
T are given by b1, . . . , bm . By the definition of matrix multiplication and our
identification of Rm with m × 1 matrices,

T(x) = (b1 · x, . . . , bm · x).

If B = O , then ‖T‖ = 0 and (8) is an equality. If B �= O , then, by the Cauchy–
Schwarz Inequality, the square of the Euclidean norm of T(x) satisfies

‖T(x)‖2 = (b1 · x)2 + · · · + (bm · x)2

≤ (‖b1‖ ‖x‖)2 + · · · + (‖bm‖ ‖x‖)2
≤ m · max{‖b j‖2 : 1 ≤ j ≤ m} ‖x‖2 =: C ‖x‖2.

Therefore, the quotients ‖T(x)‖/‖x‖ are bounded (by
√

C). It follows from
the Completeness Axiom that ‖T‖ exists and is finite. �

Theorem 8.17, an analogue of the Cauchy–Schwarz Inequality, will be used to
estimate differentiable functions of several variables. If B is the matrix which
represents a linear transformation T, we will refer to the number ‖T‖ as the
operator norm of B, and denote it by ‖B‖. (For two other ways to calculate this
norm, see Exercise 8.2.11.)

We close this section with an optional result which shows that under the
identification of linear functions with matrices, function composition is taken
to matrix multiplication. This, in fact, is why matrix multiplication is defined the
way it is.
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∗8.18 Remark. If T : Rn → Rm and U : Rm → Rp are linear, then so is U ◦ T. In
fact, if B is the m × n matrix which represents T, and C is the p × m matrix which
represents U, then C B is the matrix which represents U ◦ T.

Proof. Let e1, . . . , en be the usual basis of Rn, u1, . . . , um be the usual basis
of Rm , and w1, . . . ,wp be the usual basis of Rp. If B = [bi j ]m×n represents T
and C = [cνk]p×m represents U, then, by Theorem 8.15,

m∑
k=1

bkj uk = (b1 j , . . . , bmj ) = T(e j ), j = 1, 2, . . . , n,

and
p∑
ν=1

cνkwν = (c1k, . . . , cpk) = U(uk), k = 1, 2, . . . ,m.

Hence

(U ◦ T)(e j ) = U(T(e j )) = U

(
m∑

k=1

bkj uk

)
=

m∑
k=1

bkj U(uk)

=
m∑

k=1

p∑
ν=1

bkj cνkwν =
(

m∑
k=1

bkj c1k, . . . ,

m∑
k=1

bkj cpk

)

for each 1 ≤ j ≤ n. Since this last vector is the jth column of the matrix C B,
it follows that C B is the matrix which represents U ◦ T. �

EXERCISES

8.2.1. Let a, b, c ∈ R3.

a) Prove that if a, b, and c do not all lie on the same line, then an
equation of the plane through these points is given by (x, y, z) · d =
a · d, where

d := (a − b)× (a − c).

b) Prove that if c does not lie on the line φ(t) = ta + b, t ∈ R, then an
equation of the plane that contains this line and the point c is given
by (x, y, z) · d = b · d, where d := a × (b − c).

8.2.2. a) Find an equation of the hyperplane through the points (1, 0, 0, 0),
(2, 1, 0, 0), (0, 1, 1, 0), and (0, 4, 0, 1).

b) Find an equation of the hyperplane that contains the lines φ(t) =
(t, t, t, 1) and ψ(t) = (1, t, 1 + t, t), t ∈ R.

c) Find an equation of the plane parallel to the hyperplane x1 + · · · +
xn = π passing through the point (1, 2, . . . , n).
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8.2.3. Find two lines in R3 which are not parallel but do not intersect.
8.2.4. Suppose that T ∈ L(Rn; Rm) for some n,m ∈ N.

a) Find the matrix representative of T if T(x, y, z, w) = (0, x + y,
x − z, x + y + w).

b) Find the matrix representative of T if T (x, y, z) = x − y + z.
c) Find the matrix representative of T if T(x1, x2, . . . , xn) = (x1 − xn,

xn − x1).

8.2.5. Suppose that T ∈ L(Rn; Rm) for some n,m ∈ N.

a) If T(1, 1) = (3, π, 0) and T(0, 1) = (4, 0, 1), find the matrix represen-
tative of T.

b) If T(1, 1, 0) = (e, π), T(0,−1, 1) = (1, 0), and T(1, 1,−1) = (1, 2),
find the matrix representative of T.

c) If T(0, 1, 1, 0) = (3, 5), T(0, 1,−1, 0) = (5, 3), and T(0, 0, 0,−1) =
(π, 3), find all possible matrix representatives of T.

d) If T(1, 1, 0, 0)= (5, 4, 1),T(0, 0, 1, 0)= (1, 2, 0), and T(0, 0, 0,−1)=
(π, 3,−1), find all possible matrix representatives of T.

8.2.6. Suppose that a, b, c ∈ R3 are three points which do not lie on the same
straight line and that Π is the plane which contains the points a, b, c.
Prove that an equation of Π is given by

det

⎡
⎣ x − a1 y − a2 z − a3

b1 − a1 b2 − a2 b3 − a3
c1 − a1 c2 − a2 c3 − a3

⎤
⎦ = 0.

8.2.7 . This exercise is used in Appendix E. Recall that the area of a parallel-
ogram with base b and altitude h is given by bh, and the volume of a
parallelepiped is given by the area of its base times its altitude.

a) Let a, b ∈ R3 be nonzero vectors and P represent the parallelogram

{(x, y, z) = ua + vb : u, v ∈ [0, 1]}.

Prove that the area of P is ‖a × b‖.
b) Let a, b, c ∈ R3 be nonzero vectors and P represent the paral-

lelepiped

{(x, y, z) = ta + ub + vc : t, u, v ∈ [0, 1]}.

Prove that the volume of P is |(a × b) · c|.
8.2.8. The distance from a point x0 = (x0, y0, z0) to a plane Π in R3 is defined

to be

dist (x0,Π):=
{

0 x0 ∈ Π
‖v‖ x0 /∈ Π,
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where v := (x0 − x1, y0 − y1, z0 − z1) for some (x1, y1, z1) ∈ Π , and v
is orthogonal to Π (i.e., parallel to its normal). Sketch Π and x0 for a
typical plane Π , and convince yourself that this is the correct definition.
Prove that this definition does not depend on the choice of v, by showing
that the distance from x0 = (x0, y0, z0) to the plane Π described by
ax + by + cz = d is

dist (x0,Π) = |ax0 + by0 + cz0 − d|√
a2 + b2 + c2

.

8.2.9 . [Rotations in R2]. This exercise is used in Section ∗15.1. Let

B =
[

cos θ − sin θ
sin θ cos θ

]

for some θ ∈ R.

a) Prove that ‖B(x, y)‖ = ‖(x, y)‖ for all (x, y) ∈ R2.
b) Let (x, y) ∈ R2 be a nonzero vector and ϕ represent the angle

between B(x, y) and (x, y). Prove that cosϕ = cos θ . Thus, show
that B rotates R2 through an angle θ . (When θ > 0, we shall call B
counterclockwise rotation about the origin through the angle θ .)

8.2.10. For each of the following functions f, find the matrix representative of a
linear transformation T ∈ L(R; Rm) which satisfies

lim
h→0

‖f(x + h)− f(x)− T(h)‖
h

= 0.

a) f(x) = (x2, sin x)
b) f(x) = (ex , 3

√
x, 1 − x2)

c) f(x) = (1, 2, 3, x2 + x, x2 − x)

8.2.11. Fix T ∈ L(Rn; Rm). Set

M1 := sup
‖x‖=1

‖T(x)‖ and

M2 := inf{C > 0 : ‖T(x)‖ ≤ C‖x‖ for all x ∈ Rn}.

a) Prove that M1 ≤ ‖T‖.
b) Using the linear property of T, prove that if x �= 0, then

‖T(x)‖
‖x‖ ≤ M1.

c) Prove that M1 = M2 = ‖T‖.
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8.3 TOPOLOGY OF Rn

If you want a more abstract introduction to the topology of Euclidean spaces, skip
the rest of this chapter and the next, and begin Chapter 10 now.
Topology, a study of geometric objects which emphasizes how they are put
together over their exact shape and proportion, is based on the fundamental
concepts of open and closed sets, a generalization of open and closed intervals.
In this section we introduce these concepts in Rn and identify their most basic
properties. In the next chapter, we shall explore how they can be used to charac-
terize limits and continuity without using distance explicitly. This additional step
in abstraction will yield powerful benefits, as we shall see in Section 9.4 and in
Chapter 11 when we begin to study the calculus of functions of several variables.

We begin with a natural generalization of intervals to Rn .

8.19 Definition.

Let a ∈ Rn .

i) For each r > 0, the open ball centered at a of radius r is the set of points

Br (a) := {x ∈ Rn : ‖x − a‖ < r}.
ii) For each r ≥ 0, the closed ball centered at a of radius r is the set of points

{x ∈ Rn : ‖x − a‖ ≤ r}.

Notice that when n = 1, the open ball centered at a of radius r is the open
interval (a − r, a + r), and the corresponding closed ball is the closed interval
[a − r, a + r ]. Also notice that the open ball (respectively, the closed ball) cen-
tered at a of radius r contains none of its (respectively, all of its) “boundary”
{x : ‖x − a‖ = r}. Accordingly, we will draw pictures of balls in R2 with the
following conventions: Open balls will be drawn with dashed “boundaries” and
closed balls will be drawn with solid “boundaries” (see Figure 8.5).

To generalize the concept of open and closed intervals even further, observe
that each element of an open interval I lies “inside” I (i.e., is surrounded by
other points in I ). On the other hand, although closed intervals do NOT sat-
isfy this property, their complements do. Accordingly, we make the following
definition.

8.20 Definition.

Let n ∈ N.

i) A subset V of Rn is said to be open (in Rn) if and only if for every a ∈ V
there is an ε > 0 such that Bε(a) ⊆ V .

ii) A subset E of Rn is said to be closed (in Rn) if and only if Ec := Rn\E is
open.
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x

a

Br (a)

⎢⎢x – a ⎢⎢
r

FIGURE 8.5

The following result shows that every “open” ball is open. (Closed balls are
also closed—see Exercise 8.3.2.)

8.21 Remark. For every x ∈ Br (a) there is an ε > 0 such that Bε(x) ⊆ Br (a).

Proof. Let x ∈ Br (a). Using Figure 8.5 for guidance, we set ε = r −
‖x − a‖. If y ∈ Bε(x), then by the Triangle Inequality, assumption, and the
choice of ε,

‖y − a‖ ≤ ‖y − x‖ + ‖x − a‖ < ε + ‖x − a‖ = r.

Thus, by definition, y ∈ Br (a). In particular, Bε(x) ⊆ Br (a). �

(Once again, drawing diagrams in R2 led us to a proof valid for all Euclidean
spaces.)

Here are more examples of open sets and closed sets.

8.22 Remark. If a ∈ Rn , then Rn\{a} is open and {a} is closed.

Proof. By Definition 8.20, it suffices to prove that the complement of every
singleton E := {a} is open. Let x ∈ Ec and set ε = ‖x−a‖. Then, by definition,
a /∈ Bε(x), so Bε(x) ⊆ Ec. Therefore, Ec is open by Definition 8.20. �

Students sometimes mistakenly believe that every set is either open or closed.
Some sets are neither open nor closed (like the interval [0, 1)). And, as the
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following result shows, every Euclidean space contains two special sets which
are both open and closed. (We shall see below that these are the only subsets of
Rn which are simultaneously open and closed in Rn .)

8.23 Remark. For each n ∈ N, the empty set ∅ and the whole space Rn are both
open and closed.

Proof. Since Rn = ∅c and ∅ = (Rn)c, it suffices by Definition 8.20 to prove
that ∅ and Rn are both open. Because the empty set contains no points,
“every” point x ∈ ∅ satisfies Bε(x) ⊆ ∅. (This is called the vacuous impli-
cation.) Therefore, ∅ is open. On the other hand, since Bε(x) ⊆ Rn for all
x ∈ Rn and all ε > 0, it is clear that Rn is open. �

It is important to recognize that open sets and closed sets behave very
differently with respect to unions and intersections. (In fact, these proper-
ties are so important that they form the basis of an axiomatic system which
describes all topological spaces, even those for which measurement of distance is
impossible.)

8.24 Theorem. Let n ∈ N.

i) If {Vα}α∈A is any collection of open subsets of Rn , then

⋃
α∈A

Vα

is open.
ii) If {Vk : k = 1, 2, . . . , p} is a finite collection of open subsets of Rn , then

p⋂
k=1

Vk :=
⋂

k∈{1,2,...,p}
Vk

is open.
iii) If {Eα}α∈A is any collection of closed subsets of Rn , then

⋂
α∈A

Eα

is closed.
iv) If {Ek : k = 1, 2, . . . , p} is a finite collection of closed subsets of Rn , then

p⋃
k=1

Ek :=
⋃

k∈{1,2,...,p}
Ek

is closed.
v) If V is open and E is closed, then V \E is open and E\V is closed.
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Proof. i) Let x ∈ ⋃α∈A Vα . Then x ∈ Vα for some α ∈ A. Since Vα is open, it
follows that there is an r > 0 such that Br (x) ⊆ Vα . Thus Br (x) ⊆ ⋃

α∈A Vα ;
that is, this union is open.

ii) Let x ∈ ⋂p
k=1 Vk . Then x ∈ Vk for k = 1, 2, . . . , p. Since each Vk is

open, it follows that there are numbers rk > 0 such that Brk (x) ⊆ Vk . Let
r = min{r1, . . . , rp}. Then r > 0 and Br (x) ⊆ Vk for all k = 1, 2, . . . , p; that
is, Br (x) ⊆ ⋂p

k=1 Vk . Hence, this intersection is open.
iii) By DeMorgan’s Law (Theorem 1.36) and part i),

(⋂
α∈A

Eα

)c

=
⋃
α∈A

Ec
α

is open, so
⋂
α∈A Eα is closed.

iv) By DeMorgan’s Law and part ii),

( p⋃
k=1

Ek

)c

=
p⋂

k=1

Ec
k

is open, so
⋃p

k=1 Ek is closed.
v) Since V \E = V ∩ Ec and E\V = E ∩ V c, the former is open by part ii),

and the latter is closed by part iii). �

The finiteness hypotheses in Theorem 8.24 are crucial, even for the case n = 1.

8.25 Remark. Statements ii) and iv) of Theorem 8.24 are false if arbitrary collec-
tions are used in place of finite collections.

Proof. In the Euclidean space R,

⋂
k∈N

(
−1

k
,

1

k

)
= {0}

is closed and ⋃
k∈N

[
1

k + 1
,

k

k + 1

]
= (0, 1)

is open. �

To see why open sets are so important to analysis, we reexamine the definition
of continuity using open sets. By Definition 3.19, a function f : E → R is
continuous at a ∈ E if and only if given ε > 0 there is a δ > 0 such that |x−a| < δ

and x ∈ E imply | f (x) − f (a)| < ε. Put in “ball language,” this says that f is
continuous at a ∈ E if and only if f (E ∩ Bδ(a)) ⊆ Bε( f (a)); that is, E ∩ Bδ(a) ⊆
f −1(Bε( f (a))). In particular, f is continuous at a ∈ E if and only if for all
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a ∈ R, the inverse image under f of every open ball centered at f (a) contains
the intersection of E and an open ball centered at a.

Intersecting the ball centered at a with E adds a complication. It would be
simpler if the inverse image of an open ball under a continuous function just
contained another open ball. Can we discard the set E like that? To answer
this question, we consider two functions, f (x) = 1/x and g(x) = 1 + √

x − 1,
and one open ball, (−1, 3), centered at 1. Notice that f −1(−1, 3) = (−∞,−1)∪
(1/3,∞) does contain an open ball centered at a = 1 but g−1(−1, 3) = [1, 5)
does not. It is merely the intersection of an open ball and the domain of g:
g−1(−1, 3) = [1, 5) = [1,∞)∩ (−5, 5). Evidently, we cannot discard the domain
E of a continuous function when restating the definition of continuity using open
balls, unless E is open (see Exercise 9.4.3).

Accordingly, we modify the definition of open and closed along the follow-
ing lines.

8.26 Definition.

Let E ⊆ Rn .

i) A set U ⊆ E is said to be relatively open in E if and only if there is an open
set A such that U = E ∩ A.

ii) A set C ⊆ E is said to be relatively closed in E if and only if there is a closed
set B such that C = E ∩ B.

We postpone using these concepts to study continuous functions on Rn until
Chapter 9. Meanwhile, we shall use relatively open sets to introduce connectiv-
ity, a concept which generalizes to Rn an important property of intervals which
played a role in the proof of the Intermediate Value Theorem, and which will
be used several times in our development of the calculus of functions of sev-
eral variables. First, we explore the analogy between relatively open sets and
open sets.

8.27 Remark. Let U ⊆ E ⊆ Rn .

i) Then U is relatively open in E if and only if for each a ∈ U there is an r > 0
such that Br (a) ∩ E ⊂ U .

ii) If E is open, then U is relatively open in E if and only if U is (plain old vanilla)
open (in the usual sense).

Proof. i) If U is relatively open in E , then U = E ∩ A for some open set A.
Since A is open, there is an r > 0 such that Br (a) ⊂ A. Hence, Br (a) ∩ E ⊂
A ∩ E = U .

Conversely, for each a ∈ U choose an r(a) > 0 such that Br(a)(a) ∩ E ⊂ U.
Then

⋃
a∈U Br(a)(a) ∩ E ⊆ U . Since the union is taken over all a ∈ U , the re-

verse set inequality is also true. Thus
⋃

a∈U Br(a)(a)∩ E = U . Since the union
of these open balls is open by Theorem 8.24, it follows that U is relatively
open in E .
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ii) Suppose that U is relatively open in E . If E and A are open, then U =
E ∩ A is open. Thus U is open in the usual sense. Conversely, if U is open, then
E ∩ U = U is open. Thus every open subset of E is relatively open in E . �

Next, we introduce connectivity.

8.28 Definition.

Let E be a subset of Rn .

i) A pair of sets U, V is said to separate E if and only if U and V are nonempty,
relatively open in E , E = U ∪ V , and U ∩ V = ∅.

ii) E is said to be connected if and only if E cannot be separated by any pair
of relatively open sets U, V .

Loosely speaking, a connected set is all in one piece (i.e., cannot be broken
into smaller, nonempty, relatively open pieces which do not share any common
points).

The empty set is connected, since it can never be written as the union of
nonempty sets. Every singleton E = {a} is also connected, since if E =
U ∪ V , where U ∩ V = ∅ and both U and V are nonempty, then E has
at least two points. More complicated connected sets can be found in the
exercises.

Notice that by Definitions 8.26 and 8.28, a set E is not connected if there are
open sets A, B such that E ∩ A, E ∩ B are nonempty, E = (E ∩ A) ∪ (E ∩ B),
and A ∩ B = ∅. Is this statement valid if we replace E = (E ∩ A) ∪ (E ∩ B) by
E ⊆ A ∪ B?

8.29 Remark. Let E ⊆ Rn . If there exists a pair of open sets A,B such that
E ∩ A �= ∅, E ∩ B �= ∅, E ⊆ A ∪ B, and A ∩ B = ∅, then E is not connected.

Proof. Set U = E ∩ A and V = E ∩ B. By hypothesis and Definition 8.26,
U and V are relatively open in E and nonempty. Since U ∩ V ⊆ A ∩ B = ∅,
it suffices by Definition 8.28 to prove that E = U ∪ V . But E is a subset of
A ∪ B, so E ⊆ U ∪ V . On the other hand, both U and V are subsets of E , so
E ⊇ U ∪ V . We conclude that E = U ∪ V . �

(The converse of this result is also true, but harder to prove—see Theorem
8.38 below.)

In practice, Remark 8.29 is often easier to apply than Definition 8.28. Here
are several examples. The set Q is not connected: set A = (−∞,

√
2) and B =

(
√

2,∞). The “bow-tie-shaped set” {(x, y) : −1 ≤ x ≤ 1 and −|x | < y < |x |}
is not connected (see Figure 8.6): set A = {(x, y) : x < 0} and B = {(x, y) :
x > 0}.

Is there a simple description of all connected subsets of R?
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8.30 Theorem. A subset E of R is connected if and only if E is an interval.

Proof. Suppose that E is a connected subset of R. If E is empty or if E con-
tains only one point c, then E is one of the intervals (c, c) or [c, c].

Suppose that E contains at least two points. Set a = inf E and b = sup E ,
and observe that −∞ ≤ a < b ≤ ∞. If a ∈ E set ak = a, and if b ∈ E
set bk = b, k ∈ N. Otherwise, use the Approximation Property to choose
ak, bk ∈ E such that ak ↓ a and bk ↑ b as k → ∞. Notice that in all cases,
E contains each [ak, bk]. Indeed, if not, say there is an x ∈ [ak, bk]\E , then
ak ∈ E ∩ (−∞, x), bk ∈ E ∩ (x,∞), and E ⊆ (−∞, x) ∪ (x,∞). Hence, by
Remark 8.29, E is not connected, a contradiction. Therefore, E ⊇ [ak, bk] for
all k ∈ N. It follows from construction that

E =
∞⋃

k=1

[ak, bk].

Since this last union is either (a, b), [a, b), (a, b], or [a, b], we conclude that
E is an interval.

Conversely, suppose that E is an interval which is not connected. Then
there are sets U, V , relatively open in E , which separate E (i.e., E = U ∪ V,
U ∩ V = ∅), and there exist points x1 ∈ U and x2 ∈ V . We may suppose that
x1 < x2. Since x1, x2 ∈ E and E is an interval, I0 := [x1, x2] ⊆ E . Define f on
I0 by

f (x) =
{

0 x ∈ U
1 x ∈ V .

Since U ∩ V = ∅, f is well defined. We claim that f is continuous on I0.
Indeed, fix x0 ∈ [x1, x2]. Since U ∪ V = E ⊇ I0, it is evident that x0 ∈ U
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or x0 ∈ V . We may suppose the former. Let yk ∈ I0 and suppose that yk → x0
as k → ∞. Since U is relatively open, there is an ε > 0 such that (x0 − ε, x0 +
ε) ∩ E ⊂ U . Since yk ∈ E and yk → x0, it follows that yk ∈ U for large k.
Hence f (yk) = 0 = f (x0) for large k. Therefore, f is continuous at x0 by the
Sequential Characterization of Continuity.

We have proved that f is continuous on I0. Hence by the Intermediate
Value Theorem (Theorem 3.29), f must take on the value 1/2 somewhere on
I0. This is a contradiction, since by construction, f takes on only the values 0
or 1. �

We shall use this result later to prove that a real function is continuous on
a closed, bounded interval if and only if its graph is closed and connected (see
Theorem 9.51).

EXERCISES

8.3.1. Sketch each of the following sets. Identify which of the following sets
are open, which are closed, and which are neither. Also discuss the con-
nectivity of each set.

a) E = {(x, y) : y �= 0}
b) E = {(x, y) : x2 + 4y2 ≤ 1}
c) E = {(x, y) : y ≥ x2, 0 ≤ y < 1}
d) E = {(x, y) : x2 − y2 > 1, −1 < y < 1}
e) E = {(x, y) : x2 − 2x + y2 = 0} ∪ {(x, 0) : x ∈ [2, 3]}

8.3.2. Let n ∈ N, let a ∈ Rn , let s, r ∈ R with s < r , and set

V = {x ∈ Rn : s < ‖x − a‖ < r} and E = {x ∈ Rn : s ≤ ‖x − a‖ ≤ r}.

Prove that V is open and E is closed.

8.3.3. a) Let a ≤ b and c ≤ d be real numbers. Sketch a graph of the rectangle

[a, b] × [c, d] := {(x, y) : x ∈ [a, b], y ∈ [c, d]},

and decide whether this set is connected. Explain your answers.
b) Sketch a graph of set

B1(−2, 0) ∪ B1(2, 0) ∪ {(x, 0) : −1 < x < 1},

and decide whether this set is connected. Explain your answers.

8.3.4. a) Set E1 := {(x, y) : y ≥ 0} and E2 := {(x, y) : x2 + 2y2 < 6}, and
sketch a graph of the set

U := {(x, y) : x2 + 2y2 < 6 and y ≥ 0}.
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b) Decide whether U is relatively open or relatively closed in E1.
Explain your answer.

c) Decide whether U is relatively open or relatively closed in E2.
Explain your answer.

8.3.5. a) Let E1 denote the closed ball centered at (0, 0) of radius 1 and E2 :=
B√

2(2, 0), and sketch a graph of the set

U := {(x, y) : x2 + y2 ≤ 1 and x2 − 4x + y2 + 2 < 0}.
b) Decide whether U is relatively open or relatively closed in E1.

Explain your answer.
c) Decide whether U is relatively open or relatively closed in E2.

Explain your answer.

8.3.6. Suppose that E ⊆ Rn and that C is a subset of E .

a) Prove that if E is closed, then C is relatively closed in E if and only if
C is (plain old vanilla) closed (in the usual sense).

b) Prove that C is relatively closed in E if and only if E\C is relatively
open in E .

8.3.7. a) If A and B are connected in Rn and A ∩ B �= ∅, prove that A ∪ B is
connected.

b) If {Eα}α∈A is a collection of connected sets in Rn and ∩α∈A Eα �= ∅,
prove that

E =
⋃
α∈A

Eα

is connected.
c) If A and B are connected in R and A ∩ B �= ∅, prove that A ∩ B is

connected.
d) Show that part c) is no longer true if R2 replaces R.

8.3.8. Let V be a subset of Rn .

a) Prove that V is open if and only if there is a collection of open balls
{Bα : α ∈ A} such that

V =
⋃
α∈A

Bα.

b) What happens to this result when open is replaced by closed?

8.3.9. Show that if E is closed in Rn and a �∈ E , then

inf
x∈E

‖x − a‖ > 0.

8.3.10. Graph generic open balls in R2 with respect to each of the “non-
Euclidean” norms ‖ · ‖1 and ‖ · ‖∞. What shape are they?
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8.4 INTERIOR, CLOSURE, AND BOUNDARY

To prove that every set contains a largest open set and is contained in a smallest
closed set, we introduce the following topological operations.

8.31 Definition.

Let E be a subset of a Euclidean space Rn .

i) The interior of E is the set

Eo :=
⋃

{V : V ⊆ E and V is open in Rn}.

ii) The closure of E is the set

E :=
⋂

{B : B ⊇ E and B is closed in Rn}.

Notice that every set E contains the open set ∅ and is contained in the closed
set Rn . Hence, the sets Eo and E are well defined. Also notice by Theorem 8.24
that the interior of a set is always open and the closure of a set is always closed.

The following result shows that Eo is the largest open set contained in E , and
E is the smallest closed set which contains E .

8.32 Theorem. Let E ⊆ Rn . Then

i) Eo ⊆ E ⊆ E ,
ii) if V is open and V ⊆ E , then V ⊆ Eo, and

iii) if C is closed and C ⊇ E , then C ⊇ E .

Proof. Since every open set V in the union defining Eo is a subset of E , it is
clear that the union of these V ’s is a subset of E . Thus Eo ⊆ E . A similar
argument establishes E ⊆ E . This proves i).

By Definition 8.31, if V is an open subset of E , then V ⊆ Eo, and if C is a
closed set containing E , then E ⊆ C . This proves ii) and iii). �

In particular, the interior of a bounded interval with endpoints a and b is
(a, b), and its closure is [a, b]. In fact, it is evident by parts ii) and iii) that
E = Eo if and only if E is open, and E = E if and only if E is closed. We shall
use this observation many times below.

Let us examine these concepts in the concrete setting R2.

8.33 EXAMPLES.

a) Find the interior and closure of the set E = {(x, y) : −1 ≤ x ≤ 1 and
−|x | < y < |x |}.

b) Find the interior and closure of the set E = B1(−2, 0) ∪ B1(2, 0) ∪ {(x, 0) :
−1 ≤ x ≤ 1}.
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Solution.

a) Graph y = |x | and x = ±1, and observe that E is a bow tie-shaped region
with “solid” vertical edges (see Figure 8.6). Now, by Definition 8.20, any
open set in R2 must contain a disk around each of its points. Since Eo is the
largest open set inside E , it is clear that

Eo = {(x, y) : −1 < x < 1 and − |x | < y < |x |}.

Similarly,

E = {(x, y) : −1 ≤ x ≤ 1 and − |x | ≤ y ≤ |x |}.
b) Draw a graph of this region. It turns out to be “dumbbell shaped”: two open

disks joined by a straight line. Thus Eo = B1(−2, 0) ∪ B1(2, 0), and

E = B1(−2, 0) ∪ B1(2, 0) ∪ {(x, 0) : −1 ≤ x ≤ 1}. �

These examples illustrate the fact that the interior of a nice enough set E in
R2 can be obtained by removing all its “edges,” and the closure of E by adding
all its “edges.”

One of the most important results from Chapter 5 is the Fundamental The-
orem of Calculus. It states that the behavior of a derivative f ′ on an interval
[a, b], as measured by its integral, is determined by the values of f at the end-
points of [a, b]. What shall we use for “endpoints” of an arbitrary set in Rn?
Notice that the endpoints a, b are the only points which lie near both [a, b]
and the complement of [a, b]. Using this as a cue, we introduce the following
concept.

8.34 Definition.

Let E ⊆ Rn . The boundary of E is the set

∂E := {x ∈ Rn : for all r > 0, Br (x) ∩ E �= ∅ and Br (x) ∩ Ec �= ∅}.
[We will refer to the last two conditions in the definition of ∂E by saying that
Br (x) intersects E and Ec.]

8.35 EXAMPLE.

Describe the boundary of the set

E = {(x, y) : x2 + y2 ≤ 9 and (x − 1)(y + 2) > 0}.

Solution. Graph the relations x2 + y2 = 9 and (x − 1)(y + 2) = 0 to see that
E is a region with solid curved edges and dashed straight edges (see Figure 8.7).
By definition, then, the boundary of E is the union of these curved and straight
edges (all made solid). Rather than describing ∂E analytically (which would
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involve solving for the intersection points of the straight lines x = 1, y = −2,
and the circle x2 + y2 = 9), it is easier to describe ∂E by using set algebra.

∂E = {(x, y) : x2 + y2 ≤ 9 and (x − 1)(y + 2) ≥ 0}
\ {(x, y) : x2 + y2 < 9 and (x − 1)(y + 2) > 0} �

It turns out that set algebra can be used to describe the boundary of any set.

8.36 Theorem. Let E ⊆ Rn . Then ∂E = E\Eo.

Proof. By Definition 8.34, it suffices to show that

x ∈ E if and only if Br (x) ∩ E �= ∅ for all r > 0, and (9)

x /∈ Eo if and only if Br (x) ∩ Ec �= ∅ for all r > 0. (10)

We will provide the details for (9) and leave the proof of (10) as an exercise.
Suppose that x ∈ E but that Br0(x) ∩ E = ∅ for some r0 > 0. Then (Br0(x))

c

is a closed set which contains E ; hence, by Theorem 8.32iii, E ⊆ (Br0(x))
c. It

follows that E ∩ Br0(x) = ∅ (e.g., x �∈ E), a contradiction.
Conversely, suppose that x �∈ E . Since (E)c is open, there is an r0 > 0

such that Br0(x) ⊆ (E)c. In particular, ∅ = Br0(x) ∩ E ⊇ Br0(x) ∩ E for
some r0 > 0. �

We have introduced topological operations (interior, closure, and boundary).
The following result answers the question, How do these operations interact
with the set operations (union and intersection)?
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300 Chapter 8 Euclidean Spaces

8.37 Theorem. Let A, B ⊆ Rn . Then

i) (A ∪ B)o ⊇ Ao ∪ Bo, (A ∩ B)o = Ao ∩ Bo,

ii) A ∪ B = A ∪ B, A ∩ B ⊆ A ∩ B,

iii) ∂(A ∪ B) ⊆ ∂A ∪ ∂B, and ∂(A ∩ B) ⊆ ∂A ∪ ∂B.

Proof. i) Since the union of two open sets is open, Ao ∪ Bo is an open subset
of A ∪ B. Hence, by Theorem 8.32ii, Ao ∪ Bo ⊆ (A ∪ B)o.

Similarly, (A∩ B)o ⊇ Ao ∩ Bo. On the other hand, if V ⊂ A∩ B, then V ⊂ A
and V ⊂ B. Thus (A ∩ B)o ⊆ Ao ∩ Bo.

ii) Since A ∪ B is closed and contains A ∪ B, it is clear that, by Theo-
rem 8.32iii, A ∪ B ⊆ A ∪ B. Similarly, A ∩ B ⊆ A ∩ B. To prove the reverse
inequality for union, suppose that x �∈ A ∪ B. Then, by Definition 8.31, there
is a closed set E which contains A ∪ B such that x �∈ E . Since E contains both
A and B, it follows that x �∈ A and x �∈ B. This proves part ii).

iii) Let x ∈ ∂(A∪ B); that is, suppose that Br (x) intersects A∪ B and (A∪ B)c

for all r > 0. Since (A ∪ B)c = Ac ∩ Bc, it follows that Br (x) intersects both
Ac and Bc for all r > 0. Thus Br (x) intersects A and Ac for all r > 0, or Br (x)
intersects B and Bc for all r > 0 (i.e., x ∈ ∂A ∪ ∂B). This proves the first set
inequality in part iii). A similar argument establishes the second inequality in
part iii). �

The second inequality in part iii) can be improved (see Exercise 8.4.10d).
Finally, we note (Exercise 8.4.11) that relatively open sets in E can be divided

into two kinds: those inside Eo, which contain none of their boundary, and those
which intersect ∂E , which contain only that part of their boundary which inter-
sects ∂E . (See Figures 15.3 and 15.4 for an illustration of both types.)

We close this section by showing that the converse of Remark 8.30 is also true.
This result is optional because we do not use it anywhere else.

∗8.38 Theorem. Let E ⊆ Rn . If there exist nonempty, relatively open sets U, V
which separate E , then there is a pair of open sets A, B such that A ∩ E �= ∅,
B ∩ E �= ∅, A ∩ B = ∅, and E ⊆ A ∪ B.

Proof. We first show that

U ∩ V = ∅. (11)

Indeed, since V is relatively open in E , there is a set �, open in Rn , such that
V = E ∩�. Since U ∩ V = ∅, it follows that U ⊂ �c. This last set is closed in
Rn . Therefore,

U ⊆ �c = �c;
that is, (11) holds.
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Next, we use (11) to construct the open set B. Set

δx := inf{‖x − u‖ : u ∈ U }, x ∈ V, and B =
⋃
x∈V

Bδx/2(x).

Clearly, B is open in Rn . Since δx > 0 for each x �∈ U (see Exercise 8.3.9),
B contains V ; hence B ∩ E ⊇ V . The reverse inequality also holds, since by
construction B ∩ U = ∅ and by hypothesis E = U ∪ V . Therefore, B ∩ E = V .
Similarly, we can construct an open set A such that A ∩ E = U by setting

εy := inf{‖v − y‖ : v ∈ V }, y ∈ U and A =
⋃
y∈U

Bεy/2(y).

In particular, A and B are nonempty open sets which satisfy E ⊆ A ∪ B.
It remains to prove that A ∩ B = ∅. Suppose, to the contrary, that there is a

point a ∈ A ∩ B. Then a ∈ Bδx/2(x) for some x ∈ V and a ∈ Bεy/2(y) for some
y ∈ U . We may suppose that δx ≤ εy. Then

‖x − y‖ ≤ ‖x − a‖ + ‖a − y‖ < δx

2
+ εy

2
≤ εy.

Therefore, ‖x − y‖ < inf{‖v − y‖ : v ∈ V }. Since x ∈ V , this is impossible. We
conclude that A ∩ B = ∅. �

EXERCISES

8.4.1. Find the interior, closure, and boundary of each of the following subsets
of R.

a) E = {1/n : n ∈ N}
b) E = ⋃∞

n=1

(
1

n + 1
,

1

n

)
c) E = ⋃∞

n=1(−n, n)
d) E = Q

8.4.2. For each of the following sets, sketch Eo, E , and ∂E .

a) E = {(x, y) : x2 + 4y2 ≤ 1}
b) E = {(x, y) : x2 − 2x + y2 = 0} ∪ {(x, 0) : x ∈ [2, 3]}
c) E = {(x, y) : y ≥ x2, 0 ≤ y < 1}
d) E = {(x, y) : x2 − y2 < 1, −1 < y < 1}

8.4.3 . This exercise is used in Section 12.1. Suppose that A ⊆ B ⊆ Rn .
Prove that

A ⊆ B and Ao ⊆ Bo.

8.4.4. Let E be a subset of Rn .
a) Prove that every subset A ⊆ E contains a set B which is the largest

subset of A that is relatively open in E .
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b) Prove that every subset A ⊆ E is contained in a set B which is the
smallest closed set containing A that is relatively closed in E .

8.4.5. Complete the proof of Theorem 8.36 by verifying (10).
8.4.6. Prove that if E ⊆ R is connected, then Eo is also connected. Show that

this is false if “R” is replaced by “R2.”
8.4.7. Suppose that E ⊂ Rn is connected and that E ⊆ A ⊆ E . Prove that A is

connected.
8.4.8. A set A is called clopen if and only if it is both open and closed.

a) Prove that every Euclidean space has at least two clopen sets.
b) Prove that a proper subset E of Rn is connected if and only if it con-

tains exactly two relatively clopen sets.
c) Prove that every nonempty proper subset of Rn has a nonempty

boundary.

8.4.9. Show that Theorem 8.37 is best possible in the following sense.

a) There exist sets A, B in R such that (A ∪ B)o �= Ao ∪ Bo.
b) There exist sets A, B in R such that A ∩ B �= A ∩ B.
c) There exist sets A, B in R such that ∂(A ∪ B) �= ∂A ∪ ∂B and ∂(A ∩

B) �= ∂A ∪ ∂B.

8.4.10. Let A and B be subsets of Rn .

a) Show that ∂(A ∩ B) ∩ (Ac ∪ (∂B)c) ⊆ ∂A.
b) Show that if x ∈ ∂(A∩B) and x �∈ (A∩∂B)∪(B∩∂A), then x ∈ ∂A∩∂B.
c) Prove that ∂(A ∩ B) ⊆ (A ∩ ∂B) ∪ (B ∩ ∂A) ∪ (∂A ∩ ∂B).
d) Show that even in R, there exist sets A and B such that ∂(A ∩ B) �=

(A ∩ ∂B) ∪ (B ∩ ∂A) ∪ (∂A ∩ ∂B).

8.4.11. Let E ⊆ Rn and U be relatively open in E .

a) If U ⊆ Eo, then U ∩ ∂U = ∅.
b) If U ∩ ∂E �= ∅, then U ∩ ∂U = U ∩ ∂E .
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C H A P T E R 9

Convergence in Rn

In this chapter we generalize the concepts of limits and continuity from R to Rn .
We begin, as we did in Chapter 2, with sequences.

9.1 LIMITS OF SEQUENCES

Using the analogy between the Euclidean norm and the absolute value, we can
define what it means for a sequence in Rn to be convergent, bounded, or Cauchy
in the following way.

9.1 Definition.

Let {xk} be a sequence of points in Rn .

i) {xk} is said to converge to some point a ∈ Rn (called the limit of xk) if and
only if for every ε > 0 there is an N ∈ N such that

k ≥ N implies ‖xk − a‖ < ε.

Notation: xk → a as k → ∞ or a = limk→∞ xk .
ii) {xk} is said to be bounded if and only if there is an M>0 such that ‖xk‖≤ M

for all k ∈ N.
iii) {xk} is said to be Cauchy if and only if for every ε > 0 there is an N ∈ N

such that

k,m ≥ N imply ‖xk − xm‖ < ε.

The following result shows that to evaluate the limit of a specific sequence in
Rn we need only take the limits of the component sequences.

9.2 Theorem. Let a = (a1, a2, . . . , an) ∈ Rn and {xk = (x (1)k , x (2)k , . . . , x (n)k )}k∈N
be a sequence in Rn . Then xk → a, as k → ∞, if and only if for each j ∈
{1, 2, . . . , n}, the component sequence x ( j)

k → a j as k → ∞.

Proof. Fix j ∈ {1, . . . , n}. By Remark 8.7,

|x ( j)
k − a j | ≤ ‖xk − a‖ ≤ √

n max
1≤�≤n

|x (�)k − a�|.

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 9 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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Hence, by the Squeeze Theorem, x ( j)
k → a j as k → ∞ if and only if ‖xk − a‖

→ 0 as k → ∞. Since ‖xk −a‖ → 0 if and only if xk → a, as k → ∞, the proof
of the theorem is complete. �

This result can be used to obtain the following analogue of the Density of
Rationals (Theorem 1.18).

9.3 Theorem. Let Qn := {x ∈ Rn : x j ∈ Q for j = 1, 2, . . . , n}. For each a ∈ Rn

there is a sequence xk ∈ Qn such that xk → a as k → ∞.

Proof. Let a := (a1, . . . , an) ∈ Rn . For each 1 ≤ j ≤ n, choose by
Theorem 1.18 sequences r ( j)

k ∈ Q such that r ( j)
k → a j (in R) as k → ∞.

By Theorem 9.2, xk := (r (1)k , . . . , r (n)k ) converges to a (in Rn) as k → ∞.
Moreover, xk ∈ Qn for each k ∈ N. �

A set E is said to be separable if and only if there exists an at most countable
subset Z of E such that to each a ∈ E there corresponds a sequence xk ∈ Z such
that xk → a as k → ∞. Since Qn is countable (just iterate Theorem 1.42i), it
follows from Theorem 9.3 that Rn is separable.

Theorem 9.3 illustrates a general principle. As long as we stay away from
results about monotone sequences (which have no analogue in Rn when n > 1),
we can extend most of the results found in Chapter 2 from R to Rn . Since the
proofs of these results require little more than replacing |x − y| in the real case
by ‖x − y‖ in the vector case, we will summarize what is true and leave most of
the details to the reader.

9.4 Theorem. Let n ∈ N.

i) A sequence in Rn can have at most one limit.
ii) If {xk}k∈N is a sequence in Rn which converges to a and {xk j } j∈N is any subse-

quence of {xk}k∈N, then xk j converges to a as j → ∞.
iii) Every convergent sequence in Rn is bounded, but not conversely.
iv) Every convergent sequence in Rn is Cauchy.
v) If {xk} and {yk} are convergent sequences in Rn and α ∈ R, then

lim
k→∞(xk + yk) = lim

k→∞ xk + lim
k→∞ yk,

lim
k→∞(αxk) = α lim

k→∞ xk,

and

lim
k→∞(xk · yk) = ( lim

k→∞ xk) · ( lim
k→∞ yk).

Moreover, when n = 3,

lim
k→∞(xk × yk) = ( lim

k→∞ xk)× ( lim
k→∞ yk).
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Notice once and for all that (since ‖xk‖2 = xk · xk), the penultimate equation
above contains the following corollary. If xk converges, then

lim
k→∞ ‖xk‖ = ‖ lim

k→∞ xk‖.

As in the real case, the converse of part iv) is also true. In order to prove that,
we need an n-dimensional version of the Bolzano–Weierstrass Theorem.

9.5 Theorem. [BOLZANO–WEIERSTRASS THEOREM FOR Rn].
Every bounded sequence in Rn has a convergent subsequence.

Proof. Let xk := (x (1)k , x (2)k , . . . , x (n)k ) be bounded in Rn . Then, by Remark

8.7i, the real sequence {x ( j)
k }k∈N is bounded in R for each j = 1, 2, . . . , n.

Let j = 1. By the one-dimensional Bolzano–Weierstrass Theorem, there is
a sequence of integers 1 ≤ k(1, 1) < k(1, 2) < · · · and a number a1 such that
x (1)k(1,ν) → a1 as ν → ∞.

Let j = 2. Again, since the sequence {x (2)k(1,ν)}ν∈N is bounded in R, there is a

subsequence {k(2, ν)}ν∈N of {k(1, ν)}ν∈N and a number a2 such that x (2)k(2,ν) →
a2 as ν → ∞. Since {k(2, ν)}ν∈N is a subsequence of {k(1, ν)}ν∈N, we also have
x (1)k(2,ν) → a1 as ν → ∞. Thus, x (�)k(2,ν) → a� as ν → ∞ for all 1 ≤ � ≤ j = 2.

Continuing this process until j = n, we choose a subsequence kν = k(n, ν)
and points a� such that

lim
ν→∞ x (�)kν

= a�

for 1 ≤ � ≤ j = n. Set a = (a1, a2, . . . , an). Then, by Theorem 9.2, xkν
converges to a as ν → ∞. �

Since the Bolzano–Weierstrass Theorem holds for Rn , we can modify proof
of Theorem 2.29 to establish the following result.

9.6 Theorem. A sequence {xk} in Rn is Cauchy if and only if it converges.

Thus sequences in Rn behave pretty much the same as sequences in R. We
now turn our attention to something new. How does the limit of sequences
interact with the topological structure of Rn? Answers to this question contain
a surprising bonus. The ε’s begin to disappear from the theory.

9.7 Theorem. Let xk ∈ Rn . Then xk → a as k → ∞ if and only if for every open
set V which contains a there is an N ∈ N such that k ≥ N implies xk ∈ V .

Proof. Suppose that xk → a and let V be an open set which contains a. By
Definition 8.20, there is an ε > 0 such that Bε(a) ⊆ V . Given this ε, use
Definition 9.1 to choose an N ∈ N such that k ≥ N implies xk ∈ Bε(a). By the
choice of ε, xk ∈ V for all k ≥ N .
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306 Chapter 9 Convergence in Rn

Conversely, let ε > 0 and set V = Bε(a). Then V is an open set which
contains a; hence, by hypothesis, there is an N ∈ N such that k ≥ N implies
xk ∈ V . In particular, ‖xk − a‖ < ε for all k ≥ N . �

This is a first step toward developing a “distance-less” theory of convergence.
The next result, which we shall use many times, shows that convergent sequences
characterize closed sets.

9.8 Theorem. Let E ⊆ Rn . Then E is closed if and only if E contains all its limit
points; that is, if and only if xk ∈ E and xk → x imply that x ∈ E .

Proof. The theorem is vacuously satisfied if E is the empty set.
Suppose that E 
= ∅ is closed but some sequence xk ∈ E converges to a

point x ∈ Ec. Since E is closed, Ec is open. Thus, by Theorem 9.7, there is an
N ∈ N such that k ≥ N implies xk ∈ Ec, a contradiction.

Conversely, suppose that E is a nonempty set which contains all its limit
points. If E is not closed, then, by Remark 8.23, E 
= Rn and by definition
Ec is nonempty and not open. Thus, there is at least one point x ∈ Ec such
that no ball Br (x) is contained in Ec. Let xk ∈ B1/k(x) ∩ E for k = 1, 2, . . . .
Then xk ∈ E and ‖xk − x‖ < 1/k for all k ∈ N. Now by the Squeeze Theorem,
‖xk − x‖ → 0 (i.e., xk → x as k → ∞). Thus, by hypothesis, x ∈ E , a
contradiction. �

EXERCISES

9.1.1. Using Definition 9.1i, prove that the following limits exist.

a) xk =
(

1

k
, 1 − 1

k2

)

b) xk =
(

k

k + 1
,

sin k3

k

)

c) xk =
(

log(k + 1)− log k, 2−k
)

9.1.2. Using limit theorems, find the limit of each of the following vector
sequences.

a) xk =
(

1

k
,

2k2 − k + 1

k2 + 2k − 1

)

b) xk =
(

1, sinπk, cos
1

k

)

c) xk =
(

k −
√

k2 + k, k1/k,
1

k

)
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9.1.3. Suppose that xk → 0 in Rn as k → ∞ and that yk is bounded in Rn .

a) Prove that xk · yk → 0 as k → ∞.
b) If n = 3, prove that xk × yk → 0 as k → ∞.

9.1.4. Suppose that a ∈ Rn , that xk → a, and that xk − yk → 0, as k → ∞. Prove
that yk → a as k → ∞.

9.1.5. a) Prove Theorem 9.4i and ii.
b) Prove Theorem 9.4iii and iv.
c) Prove Theorem 9.4v.
d) Prove Theorem 9.6.

9.1.6. Let E be a nonempty subset of Rn .

a) Show that a sequence xk ∈ E converges to some point a ∈ E if and
only if for every set U , which is relatively open in E and contains a,
there is an N ∈ N such that xk ∈ U for k ≥ N .

b) Prove that a set C ⊆ E is relatively closed in E if and only if the limit
of every sequence xk ∈ C which converges to a point in E satisfies
limk→∞ xk ∈ C .

9.1.7. a) A subset E of Rn is said to be sequentially compact if and only if every
sequence xk ∈ E has a convergent subsequence whose limit belongs to
E . Prove that every closed ball in Rn is sequentially compact.

b) Prove that Rn is not sequentially compact.

9.1.8. a) Let E be a subset of Rn . A point a ∈ Rn is called a cluster point of E if
E ∩ Br (a) contains infinitely many points for every r > 0. Prove that
a is a cluster point of E if and only if for each r > 0, E ∩ Br (a)\{a} is
nonempty.

b) Prove that every bounded infinite subset of Rn has at least one clus-
ter point.

9.2 HEINE–BOREL THEOREM

In this section, we use the theory of sequences developed above to prove the
Heine–Borel Theorem. It is difficult to overestimate the usefulness of this pow-
erful result, which allows us to extend local results to global ones in an almost
effortless manner (e.g., see Example 9.12).

We begin with the following “covering” lemma.

9.9 Lemma. [BOREL COVERING LEMMA].
Let E be a closed, bounded subset of Rn . If r is any function from E into (0,∞),
then there exist finitely many points y1, . . . , yN ∈ E such that

E ⊆
N⋃

j=1

Br(y j )(y j ).
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308 Chapter 9 Convergence in Rn

Strategy: Since r(y) > 0 and y ∈ Br(y)(y) for each y ∈ E , it is clear that
E ⊆ ⋃

y∈E Br(y)(y). By moving the centers a little bit, we might be able to
assume that the centers are rational; that is, that E ⊆ ⋃

y∈E∩Qn Br(y)(y). Since
Qn is countable (see Theorem 1.42i and Remark 1.43), it would follow that there
exist y j ∈ E ∩ Qn and r j := r(y j ) such that E ⊆ ⋃∞

j=1 Br j (y j ). Hence, if the

covering lemma is false, then there exist xk ∈ E such that xk /∈ ⋃k
j=1 Br j (y j )

for k = 1, 2, . . . . Since E is closed and bounded, it follows from the Bolzano–
Weierstrass Theorem and Theorem 9.8 that some subsequence xkν converges to
a point x ∈ E as ν → ∞. Since E is a subset of the union of balls Br j (y j ),
this x must belong to some Br j0

(y j0). Hence by Theorem 9.7, xkν ∈ Br j (y j ) for
large ν. But this contradicts the fact that if k ≥ j , then xk /∈ Br j (y j ). Here are
the details.

Proof. Step 1: Change the centers. Fix y0 ∈ E . By Theorem 9.3, choose a ∈ Qn

and ρ := ρ(y0, a) ∈ Q such that ‖y0 −a‖ < r(y0)/4 and r(y0)/4 < ρ < r(y0)/2.
Since ‖y0 − a‖ < r(y0)/4 < ρ, we have y0 ∈ Bρ(a). On the other hand,
y ∈ Bρ(a) implies ‖y0 − y‖ ≤ ‖y0 − a‖ + ‖a − y‖ < ρ + ρ < r(y0); that is,
Bρ(a) ⊂ Br(y0)(y0).

Step 2: Construct the sequence. We just proved that to each y0 ∈ E there
correspond a ∈ Qn and ρ(y0, a) ∈ Q such that y0 ∈ Bρ(y0,a)(a) ⊂ Br(y0)(y0).
Since Q and Qn are countable, it follows that there exist a j ∈ Qn and ρ j ∈ Q
such that

E ⊆
∞⋃
j=1

Bρ j (a j ).

Suppose for a moment that E is not a subset of any of the finite
unions

⋃k
j=1 Bρ j (a j ), k ∈ N. For each k, choose xk ∈ E\⋃k

j=1 Bρ j (a j ). By
Theorems 9.5, 9.8, and 9.7 there is a subsequence xkν and an index j0 such
that xkν ∈ Bρ j0

(a j0) for ν large. But by construction, if kν > j0, then xkν /∈⋃ j0
j=1 Bρ j (a j ); in particular, xkν cannot belong to Bρ j0

(a j0) for large ν. This
contradiction proves that there is an N ∈ N such that

E ⊆
N⋃

j=1

Bρ j (a j ).

Step 3: Finish the proof. By Step 1, given j ∈ N there is a point in E , say y j ,
such that Bρ j (a j ) ⊂ Br(y j )(y j ). We conclude by Step 2 that

E ⊆
N⋃

j=1

Bρ j (a j ) ⊂
N⋃

j=1

Br(y j )(y j ). �

In conjunction with this important result, we introduce the following con-
cepts. (For a more complete treatment, see Section 9.4.)
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9.10 Definition.

Let E be a subset of Rn .

i) An open covering of E is a collection of sets {Vα}α∈A such that each Vα is
open and

E ⊆
⋃
α∈A

Vα.

ii) The set E is said to be compact if and only if every open covering of E has
a finite subcovering; that is, if and only if given any open covering {Vα}α∈A
of E , there is a finite subset A0 = {α1, . . . , αN } of A such that

E ⊆
N⋃

j=1

Vα j .

This definition is sufficiently abstract to make students uneasy when first
introduced to it. And with good reason! It’s not obvious whether a particu-
lar open covering has a finite subcovering. Is there an easy way to recognize
when a set is compact?

For Euclidean spaces, the answer to this question is yes. In fact, we shall
use the Borel Covering Lemma to establish the following simple but important
characterization of compact sets.

9.11 Theorem. [HEINE–BOREL THEOREM].
Let E be a subset of Rn . Then E is compact if and only if E is closed and
bounded.

Proof. Suppose that E is compact. Since {Bk(0)}k∈N is an open covering of
Rn , hence of E , there is an N ∈ N such that

E ⊆
N⋃

k=1

Bk(0).

In particular, E is bounded by N .
To verify that E is closed, suppose not. Then E is nonempty and (by

Theorem 9.8) there is a convergent sequence xk ∈ E whose limit x does
not belong to E . For each y ∈ E , set r(y) := ‖x − y‖/2. Since x does not
belong to E, r(y) > 0. Thus each Br(y)(y) is open and contains y; that is,
{Br(y)(y) : y ∈ E} is an open covering of E . Since E is compact, we can choose
points y j and radii r j := r(y j ), for j = 1, 2, . . . ,M such that

E ⊆
M⋃

j=1

Br j (y j ).
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310 Chapter 9 Convergence in Rn

Set r := min{r1, . . . , rM }. (This is a finite set of positive numbers, so r is also
positive.) Since xk → x as k → ∞, xk ∈ Br (x) for large k. But xk ∈ Br (x) ∩ E
implies xk ∈ Br j (y j ) for some j ∈ N. Therefore, it follows from the choices of
r j and r , and from the Triangle Inequality, that

r j ≥ ‖xk − y j‖ ≥ ‖x − y j‖ − ‖xk − x‖
= 2r j − ‖xk − x‖ > 2r j − r ≥ 2r j − r j = r j ,

a contradiction.
Conversely, suppose that E is closed and bounded. Let {Vα}α∈A be an open

covering of E . Let x ∈ E . Since {Vα}α∈A is an open covering of E , there exists
an r(x) > 0 such that Br(x)(x) ⊂ Vα . Thus by the Borel Covering Lemma,
there exist finitely many points x1, . . . , xN and radii r j := r(x j ) such that

E ⊆
N⋃

j=1

Br j (x j ).

But by construction, for each j there is an index α j ∈ A such that Br j (x j ) ⊂
Vα j . We conclude that {Vα j }N

j=1 is a finite subcovering of E . �

It is important to recognize that the Heine–Borel Theorem no longer holds if
either closed or bounded is dropped from the hypothesis, even when n = 1 and
E is an interval. Indeed, (0, 1) is bounded but not closed and

(0, 1) =
⋃
n∈N

(
1

n
, 1 − 1

n

)

has no finite subcovering. And [1,∞) is closed but not bounded and

[1,∞) ⊂
⋃
n∈N

(
1 − 1

n
, n

)

has no finite subcovering.
As promised above, we can use the Heine–Borel Theorem to extend local

results to global ones.

9.12 EXAMPLE.

Suppose that E is a closed, bounded subset of R. If for every x ∈ E there exist a
nonnegative function f = fx and a number r = r(x) > 0 such that f is differen-
tiable on R, f (t) > 0 for t ∈ (x − r, x + r), and f (t) = 0 for t /∈ (x − 2r, x + 2r),
prove that there exist a differentiable function f and an open set V which contains
E such that f is nonzero and bounded on E and f (x) = 0 for x /∈ V .

Proof. For each x ∈ E , choose r = rx > 0 and fx ≥ 0 such that fx is dif-
ferentiable on R, fx (t) > 0 for t ∈ Ir (x) := (x − r, x + r), and fx (t) = 0 for
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Section 9.2 Heine–Borel Theorem 311

t /∈ Jr (x) := (x − 2r, x + 2r). Since {Ir (x)}x∈E covers E , which is compact by
the Heine–Borel Theorem, there exist finitely many x j ’s in E such that

E ⊂
N⋃

j=1

Ir j (x j )

for r j = r(x j ). Set f = ∑N
k=1 fx j and V = ⋃N

j=1 Jr j (x j ). Then f is differ-
entiable since it is a finite sum of differentiable functions. Clearly, V contains
E . V is open since it is a union of open intervals. If x ∈ E , then x ∈ Ir j (x j )

for some j , so fx j (x) > 0. Thus f (x) ≥ 0 + · · · + fx j (x) + · · · + 0 > 0 for all
x ∈ E . Moreover, since fxk is continuous on H := ⋃N

k=1[xk − rk, xk + rk], the
Extreme Value Theorem implies that there are constants Mk that | fxk | ≤ Mk
on H for all k. Thus | f (x)| ≤ M1 + · · · + MN =: M for all x ∈ H ⊃ E . Finally,
if x /∈ V , then x /∈ Jr j (x j ) for all j . Thus f (x) = 0 + 0 + · · · + 0 = 0. �

EXERCISES

9.2.1. Suppose that K is compact in Rn and E ⊆ K . Prove that E is compact if
and only if E is closed.

9.2.2. Suppose that E is a bounded noncompact subset of Rn and that f : E →
(0,∞). If there is a g : E → R such that g(x) > f (x) for all x ∈ E , then
prove that there exist x1, . . . , xN ∈ E such that

E ⊂
N⋃

j=1

Bg(x j )(x j ).

9.2.3. Suppose that E is a compact subset of R. If for every x ∈ E there exist a
nonnegative function f = fx and an r = r(x) > 0 such that f is C∞ on
R, f (t) = 1 for t ∈ (x − r, x + r), and f (t) = 0 for t /∈ (x − 2r, x + 2r),
prove that there exist a differentiable function f , a nonzero constant M ,
and a bounded, open set V which contains E such that 1 ≤ f (x) ≤ M for
all x ∈ E and f (x) = 0 for x /∈ V .

9.2.4. Suppose that K is compact in Rn and that for every x ∈ K there is an
r = r(x)> 0 such that Br (x) ∩ K = {x}. Prove that K is a finite set.

9.2.5. Let E be closed and bounded in R, and suppose that for each x ∈ E there
is a function fx , nonnegative, nonconstant, increasing, and C∞ on R, such
that fx (x) > 0 and f ′

x (y) = 0 for y /∈ E . Prove that there exists a nonneg-
ative, nonconstant, increasing C∞ function f on R such that f (y) > 0 for
all y ∈ E and f ′(y) = 0 for all y /∈ E .

9.2.6. Suppose that f : Rn → Rm and that a ∈ K , where K is a compact, con-
nected subset of Rn . Suppose further that for each x ∈ K there is a δx > 0
such that f(x) = f(y) for all y ∈ Bδx(x). Prove that f is constant on K ; that
is, if a ∈ K , then f(x) = f(a) for all x ∈ K .
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312 Chapter 9 Convergence in Rn

9.2.7. Define the distance between two nonempty subsets A and B of Rn by

dist(A, B) := inf{‖x − y‖ : x ∈ A and y ∈ B}.

a) Prove that if A and B are compact sets which satisfy A ∩ B = ∅, then
dist(A, B) > 0.

b) Show that there exist nonempty, closed sets A, B in R2 such that
A ∩ B = ∅ but dist(A, B) = 0.

9.2.8. Suppose that E and V are subsets of R with E bounded, V open, and
E ⊂ V . Prove that there is a C∞ function f : E → R such that f (x) > 0
for x ∈ E and f (x) = 0 for x /∈ V .

9.3 LIMITS OF FUNCTIONS

We now turn our attention to limits of functions. By a vector function (from n
variables to m variables) we shall mean a function f of the form f : A → Rm ,
where A ⊆ Rn and m, n are fixed positive integers. Since f(x) ∈ Rm for each
x ∈ A, there are functions f j : A → R (called the coordinate or component
functions of f) such that f(x) = ( f1(x), . . . , fm(x)) for each x ∈ A. When m = 1, f
has only one component and we shall call f real valued. Sometimes, to emphasize
the fact that a function is real valued (as opposed to vector valued), we will
denote real functions without boldface (i.e., f : Rn → R).

If f = ( f1, . . . , fm) is a vector function where the f j ’s have intrinsic domains
(e.g., the f j ’s might be defined by formulas), then the maximal domain of f is
defined to be the intersection of the domains of the f j ’s. The following examples
illustrate this idea.

9.13 EXAMPLES.

i) Find the maximal domain of

f(x, y) = (log(xy − y + 2x − 2),
√

9 − x2 − y2).

ii) Find the maximal domain of

g(x, y) = (
√

1 − x2, log(x2 − y2), sin x cos y).

Solution.

i) This function has two components: f1(x, y) = log(xy − y + 2x − 2) and
f2(x, y) = √

9 − x2 − y2. Since the logarithm is real valued only when its
argument is positive, the domain of f1 is the set of points (x, y) which satisfy

0 < xy − y + 2x − 2 = (x − 1)(y + 2).
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Since the square root function is real valued if and only if its argument
is nonnegative, the domain of f2 is the set of points (x, y) which satisfy
x2 + y2 ≤ 9. Thus the maximal domain of f is

{(x, y) : x2 + y2 ≤ 9 and (x − 1)(y + 2) > 0}.
(This set was shown in Figure 8.7.)

ii) This function has three component functions: g1(x, y) = √
1 − x2, g2(x, y) =

log(x2 − y2), and g3(x, y) = sin x cos y. g1 is real valued when 1 − x2 ≥ 0;
that is, −1 ≤ x ≤ 1. g2 is real valued when x2 − y2 > 0; that is, when
−|x | < y < |x |. The domain of g3 is all of R2. Thus the maximal domain
of g is

{(x, y) : −1 ≤ x ≤ 1 and − |x | < y < |x |}.
(This set was shown in Figure 8.6.) �

To set up notation for the algebra of vector functions, let E ⊆ Rn and suppose
that f, g : E → Rm . For each x ∈ E , the scalar product of an α ∈ R with f is
defined by

(αf)(x) := αf(x),

the sum of f and g is defined by

(f + g)(x) := f(x)+ g(x),

the (Euclidean) dot product of f and g is defined by

(f · g)(x) := f(x) · g(x),

and (when m = 3) the cross product of f and g is defined by

(f × g)(x) := f(x)× g(x).

(Notice that when m = 1, the dot product of two functions is the pointwise
product defined in Section 3.1.)

Here is the multivariable analogue of two-sided limits (compare with
Definition 3.1).

9.14 Definition.

Let n,m ∈ N and a ∈ Rn , let V be an open set which contains a, and suppose
that f : V \ {a} → Rm . Then f(x) is said to converge to L, as x approaches a, if
and only if for every ε > 0 there is a δ > 0 (which in general depends on ε, f,
V , and a) such that

0 < ‖x − a‖ < δ implies ‖f(x)− L‖ < ε.
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314 Chapter 9 Convergence in Rn

9.14 Definition. (Continued)

In this case we write f(x) → L as x → a or

L = lim
x→a

f(x)

and call L the limit of f(x) as x approaches a.

Using the analogy between the norm on Rn and the absolute value on R, we
can extend much of the theory of limits of functions developed in Chapter 3 to
the Euclidean space setting. Here is a brief summary of what is true.

9.15 Theorem. Let a ∈ Rn , let V be an open set which contains a, and suppose
that f, g : V \ {a} → Rm .

i) If f(x) = g(x) for all x ∈ V \ {a} and if f(x) has a limit as x → a, then g(x) has
a limit as x → a, and

lim
x→a

g(x) = lim
x→a

f(x).

ii) [Sequential Characterization of Limits]. L = limx→a f(x) exists if
and only if f(xk) → L as k → ∞ for every sequence xk ∈ V \ {a} which
converges to a as k → ∞.

iii) Suppose that α ∈ R. If f(x) and g(x) have limits, as x approaches a, then so
do (f + g)(x), (αf)(x), (f · g)(x), and ‖ f (x)‖. In fact,

lim
x→a

(f + g) (x) = lim
x→a

f(x)+ lim
x→a

g(x),

lim
x→a

(αf) (x) = α lim
x→a

f(x),

lim
x→a

(f · g) (x) =
(

lim
x→a

f(x)
)

·
(

lim
x→a

g(x)
)
,

and ∥∥∥ lim
x→a

f(x)
∥∥∥ = lim

x→a
‖f(x)‖.

Moreover, when m = 3,

lim
x→a

(f × g)(x) =
(

lim
x→a

f(x)
)

×
(

lim
x→a

g(x)
)
,

and when m = 1 and the limit of g is nonzero,

lim
x→a

f(x)/g(x) =
(

lim
x→a

f(x)
)
/
(

lim
x→a

g(x)
)
.

iv) [Squeeze Theorem for Functions]. Suppose that f, g, h : V \ {a} → R and
that g(x) ≤ h(x) ≤ f (x) for all x ∈ V \ {a}. If

lim
x→a

f (x) = lim
x→a

g(x) = L ,
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then the limit of h also exists, as x → a, and

lim
x→a

h(x) = L .

v) Suppose that U is open in Rm , that L ∈ U , and that h : U → Rp for some
p ∈ N. If L = limx→a g(x) and h is continuous at L. Then

lim
x→a

(h ◦ g)(x) = h(L).

How do we actually compute the limit of a given vector-valued function?
The following result shows that evaluation of such limits reduces to the real-
valued case (i.e., the case where the range is one dimensional). Consequently,
our examples will be almost exclusively real-valued.

9.16 Theorem. Let a ∈ Rn , let V be an open set which contains a, and suppose
that f = ( f1, . . . , fm) : V \ {a} → Rm . Then

lim
x→a

f(x) = L := (L1, L2, . . . , Lm) (1)

exists in Rm if and only if

lim
x→a

f j (x) = L j (2)

exists in R for each j = 1, 2, . . . ,m.

Proof. By the Sequential Characterization of Limits, we must show that for
all sequences xk ∈ V \ {a} which converge to a, f(xk) → L as k → ∞ if
and only if f j (xk) → L j , as k → ∞, for each 1 ≤ j ≤ n. But this last
statement is obviously true by Theorem 9.2. Therefore, (1) holds if and only if
(2) holds. �

Using Theorem 9.15, it is easy to see that if f j are real functions continuous
at points a j , for j = 1, 2, . . . , n, then F(x1, x2, . . . , xn) := f1(x1)+ f2(x2)+ · · · +
fn(xn) and G(x1, x2, . . . , xn) := f1(x1) f2(x2) · · · fn(xn) both have limits at the
point a := (a1, a2, . . . , an). In fact (see Exercise 9.3.6),

lim
x→a

F(x) = F(a) and lim
x→a

G(x) = G(a).

This observation is often used in conjunction with Theorem 9.16 to evaluate
simple limits.

9.17 EXAMPLES.

i) Find

lim
(x,y)→(0,0)

(3xy + 1, ey + 2).
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ii) Prove that the function

f (x, y) = 2 + x − y

1 + 2x2 + 3y2

has a limit as (x, y) → (0, 0).

Solution.

i) By Theorem 9.16, this limit is (0 + 1, e0 + 2) = (1, 3).
ii) The polynomial 2 + x − y (respectively, 1 + 2x2 + 3y2) converges to 2

(respectively, to 1) as (x, y) → (0, 0). Hence, by Theorem 9.15,

lim
(x,y)→(0,0)

2 + x − y

1 + 2x2 + 3y2
= 2

1
= 2. �

The application of Theorem 9.15 in Example 9.17ii is legitimate because the
limit quotient was not of the form 0/0. For the multidimensional case, l’Hôpital’s
Rule does not work (see the paragraph following Example 9.19). Hence, prov-
ing that a limit of the form 0/0 exists in several variables often involves showing
that the absolute value of the function minus its supposed limit, | f (x) − L|, is
dominated by (i.e., less than or equal to) some nonnegative function g which
satisfies g(x) → 0 as x → a. Here is a typical example.

9.18 EXAMPLE.

Prove that

f (x, y) = 3x2 y

x2 + y2

converges as (x, y) → (0, 0).

Proof. Since the numerator is a polynomial of degree 3 (see Exercise 9.3.4)
and the denominator is a polynomial of degree 2, we expect the numerator to
overpower the denominator; that is, the limit to be 0 as (x, y) → (0, 0). To
prove this, we must estimate f (x, y) near (0,0). Since 2|xy| ≤ x2 + y2 for all
(x, y) ∈ R2, it is easy to check that

| f (x, y)| ≤ 3

2
|x | < 2|x |

for all (x, y) 
= (0, 0). Let ε > 0 and set δ = ε/2. If 0 < ‖(x, y)‖ < δ, then
| f (x, y)| < 2|x | ≤ 2‖(x, y)‖ < 2δ = ε. Thus, by definition,

lim
(x,y)→(0,0)

f (x, y) = 0. �

It is important to realize that by Definition 9.14, if f converges to L as x → a,
then ‖ f (x) − L‖ is small for all x near a. In particular, f(x) → L as x → a,
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no matter what path x takes. The next two examples show how to use this
observation to prove that a limit does not exist.

9.19 EXAMPLE.

Prove that the function

f (x, y) = 2xy

x2 + y2

has no limit as (x, y) → (0, 0).

Proof. Let g(x, y) = 2xy and h(x, y) = x2 + y2 and suppose that f has a limit
L , as (x, y) → (0, 0). If (x, y) approaches (0,0) along a vertical path (e.g., if
x = 0 and y → 0, y 
= 0), then g(0, y) = 0 but h(0, y) 
= 0 so L would have
to be 0. On the other hand, if (x, y) approaches (0,0) along a “diagonal” path
(e.g., if y = x and x → 0, x 
= 0), then g(x, x) = h(x, x) = 2x2 so L would
have to be 1. Since 0 
= 1, f has no limit at (0,0). �

Recall that if f is a function of two variables then fx denotes the partial
derivative of f with respect to x and fy denotes the partial derivative of f with
respect to y. Sometimes students guess that an analogue of l’Hôpital’s Rule
holds for R2; for example, that

lim
(x,y)→(a,b)

g(x, y)

h(x, y)
?= lim
(x,y)→(a,b)

gx (x, y)+ gy(x, y)

hx (x, y)+ hy(x, y)
.

Example 9.19 shows that this guess is wrong. Indeed, f = g/h satisfies gx +gy =
2x + 2y = hx + hy , but the limit of f is NOT (2x + 2y)/(2x + 2y) = 1. It has
no limit. In particular, be careful about applying one-dimensional results to
functions of several variables unless the analogue has been proved.

In the solution to Example 9.19, the diagonal path was chosen so that the
denominator of f (x, y) would collapse to a single term. This same strategy is
used in the next example.

9.20 EXAMPLE.

Determine whether

f (x, y) = xy2

x2 + y4

has a limit as (x, y) → (0, 0).

Solution. The vertical path x = 0 gives f (0, y) = 0 even before we take the
limit as y → 0. On the other hand, the parabolic path x = y2 gives

f (y2, y) = y4

2y4
= 1

2

= 0.

Therefore, f cannot have a limit as (x, y) → (0, 0). �
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[Notice that if y = mx , then

f (x, y) = m2x3

x2 + m4x4
→ 0

as x → 0. Thus, Example 9.20 shows that the two-dimensional limit of a function
might not exist even when its limit along every linear path exists and gives the
same value.]

When asked whether the limit of a function f (x) exists, it is natural to begin
by taking the limit as each variable moves independently. Comparing Exam-
ples 9.17 and 9.19, we see that this strategy works for some functions but not all.
To look at this problem more closely, we introduce the following terminology.
Let V be an open set in R2, let (a, b) ∈ V , and suppose that f : V \{(a, b)} → Rm .
The iterated limits of f at (a, b) are defined to be

lim
x→a

lim
y→b

f(x, y):= lim
x→a

(
lim
y→b

f(x, y)

)
and lim

y→b
lim
x→a

f(x, y):= lim
y→b

(
lim
x→a

f(x, y)
)
,

when they exist.
The iterated limits of a given function might not exist. Even when they do,

we cannot be sure that the corresponding two-dimensional limit exists. Indeed,
although the iterated limits of the function f in Example 9.19 above exist and
are both zero at (0,0), f has no limit as (x, y) → (0, 0).

It is even possible for both iterated limits to exist but give different values.

9.21 EXAMPLE.

Evaluate the iterated limits of

f (x, y) = x2

x2 + y2

at (0,0).

Solution. For each x 
= 0, x2/(x2 + y2) → 1 as y → 0. Therefore,

lim
x→0

lim
y→0

x2

x2 + y2
= lim

x→0

x2

x2
= 1.

On the other hand,

lim
y→0

lim
x→0

x2

x2 + y2
= lim

y→0

0

y2
= 0. �

This leads us to ask, When are the iterated limits equal? The following result
shows that if f has a limit as (x, y) → (a, b) and both iterated limits exist, then
these limits must be equal.
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9.22 Remark. Suppose that I and J are open intervals, that a ∈ I and b ∈ J , and
that f : (I × J ) \ {(a, b)} → R. If

g(x) := lim
y→b

f (x, y)

exists for each x ∈ I \ {a}, if limx→a f (x, y) exists for each y ∈ J \ {b}, and if
f (x, y) → L as (x, y) → (a, b) (in R2), then

L = lim
x→a

lim
y→b

f (x, y) = lim
y→b

lim
x→a

f (x, y).

Proof. Let ε > 0. By hypothesis, choose δ > 0 such that

0 < ‖(x, y)− (a, b)‖ < δ implies | f (x, y)− L| < ε.

Suppose that x ∈ I and that 0 < |x −a| < δ/
√

2. Then for any y which satisfies
0 < |y − b| < δ/

√
2, we have 0 < ‖(x, y)− (a, b)‖ < δ; hence

|g(x)− L| ≤ |g(x)− f (x, y)| + | f (x, y)− L| < |g(x)− f (x, y)| + ε.

Taking the limit of this inequality as y → b, we find that |g(x)− L| ≤ ε for all
x ∈ I which satisfy 0 < |x − a| < δ/

√
2. It follows that g(x) → L as x → a;

that is,

L = lim
x→a

lim
y→b

f (x, y).

A similar argument proves that the other iterated limit also exists and
equals L . �

Notice by Example 9.21 that the conclusion of Remark 9.22 might not hold if
the hypothesis “ f (x, y) → L as (x, y) → (a, b)” is omitted. In particular, if the
limit of a function does not exist, we must be careful about changing the order
of an iterated limit.

EXERCISES

9.3.1. For each of the following functions, find the maximal domain of f, prove
that the limit of f exists as (x, y) → (a, b), and find the value of that limit.
(Note: You can prove that the limit exists without using ε’s and δ’s—see
Example 9.17.)

a) f(x, y) =
(

x − 1

y − 1
, x + 2

)
, (a, b) = (1,−1)

b) f(x, y) =
(

y sin x

x
, tan

x

y
, x2 + y2 − xy

)
, (a, b) = (0, 1)
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320 Chapter 9 Convergence in Rn

c) f(x, y) =
(

x4 + y4

x2 + y2
,

√|xy|
3
√

x2 + y2

)
, (a, b) = (0, 0)

d) f(x, y) =
(

x2 − 1

y2 + 1
,

x2 y − 2xy + y − (x − 1)2

x2 + y2 − 2x − 2y + 2

)
, (a, b) = (1, 1)

9.3.2. Compute the iterated limits at (0,0) of each of the following functions.
Determine which of these functions has a limit as (x, y) → (0, 0) in R2,
and prove that the limit exists.

a) f (x, y) = sin x sin y

x2 + y2

b) f (x, y) = x2 + y4

x2 + 2y4

c) f (x, y) = x − y

(x2 + y2)α
, α <

1

2

9.3.3. Prove that each of the following functions has a limit as (x, y) → (0, 0).

a) f (x, y) = x3 − y3

x2 + y2
, (x, y) 
= (0, 0)

b) f (x, y) = |x |α y4

x2 + y4
, (x, y) 
= (0, 0),

where α is ANY positive number.
9.3.4. A polynomial on Rn of degree N is a function of the form

P(x1, x2, . . . , xn) =
N1∑

j1 = 0

· · ·
Nn∑

jn = 0

a j1, . . . , jn x j1
1 . . . x jn

n ,

where a j1, . . . , jn are scalars, N1, . . . , Nn are nonnegative integers, and N =
N1 + N2 + · · · + Nn . Prove that if P is a polynomial on Rn and a ∈ Rn ,
then limx→a P(x) = P(a).

9.3.5. Suppose that a ∈ Rn , that L ∈ Rm , and that f : Rn → Rm . Prove that if
f(x) → L as x → a, then there is an open set V containing a and a constant
M > 0 such that ‖f(x)‖ ≤ M for all x ∈ V .

9.3.6. Suppose that a = (a1, . . . , an) ∈ Rn , that f j : R → R for j = 1, 2, . . . , n,
and that g(x1, x2, . . . , xn) := f1(x1) · · · fn(xn).

a) Prove that if f j (t) → f j (a j ) as t → a j , for each j = 1, . . . , n, then
g(x) → f1(a1) · · · fn(an) as x → a.
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b) Show that the limit of g might not exist if, even for one j , the hypoth-
esis “ f j (t) → f j (a j )” is replaced by “ f j (t) → L j ” for some L j ∈ R.

9.3.7. Suppose that g : R → R is differentiable and that g′(x) > 1 for all x ∈ R.
Prove that if g(1) = 0 and f (x, y) = (x − 1)2(y + 1)/(yg(x)), then there is
an L ∈ R such that f (x, y) → L as (x, y) → (1, b) for all b ∈ R \ {0}.

9.3.8. a) Prove Theorem 9.15i.
b) Prove Theorem 9.15ii.
c) Prove Theorem 9.15iii.
d) Prove Theorem 9.15iv.

9.4 CONTINUOUS FUNCTIONS

In this section we define what it means for a vector function to be continuous,
obtain analogues of many results in Sections 3.3 and 3.4, and examine how open
sets, closed sets, and connected sets behave under images and inverse images by
continuous functions. We shall use these results many times in the subsequent
chapters.

9.23 Definition.

Let E be a nonempty subset of Rn and f : E → Rm .

i) f is said to be continuous at a ∈ E if and only if for every ε > 0 there is a
δ > 0 (which in general depends on ε, f, E , and a) such that

‖x − a‖ < δ and x ∈ E imply ‖f(x)− f(a)‖ < ε. (3)

ii) f is said to be continuous on E (notation: f : E → Rm is continuous) if and
only if f is continuous at every x ∈ E .

Suppose that E is a nonempty subset of Rn . It is easy to verify that f is con-
tinuous at a ∈ E if and only if f(xk) → f(a) for all xk ∈ E which converge to a.
Hence, by Theorem 9.4, if f and g are continuous at a point a ∈ E (respectively,
continuous on E), then so are f + g, αf (for α ∈ R), f · g, ‖f‖, and (when m = 3)
f × g. Moreover, if f : E → Rm is continuous at a ∈ E and g : f (E) → Rp is
continuous at f(a) ∈ f (E), then g ◦ f is continuous at a ∈ E .

We shall frequently need a stronger version of continuity.

9.24 Definition.

Let E be a nonempty subset of Rn and f : E → Rm . Then f is said to be
uniformly continuous on E (notation: f : E → Rm is uniformly continuous) if
and only if for every ε > 0 there is a δ > 0 such that

‖x − a‖ < δ and x, a ∈ E imply ‖f(x)− f(a)‖ < ε.
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322 Chapter 9 Convergence in Rn

As in the real case, continuity and uniform continuity of a vector function are
equivalent on closed, bounded sets. By the powerful Heine–Borel Theorem,
we need only verify this result for compact sets. The definition of compact sets
allows us to construct a direct proof (compare with the proof of Theorem 3.39).

9.25 Theorem. Let E be a nonempty compact subset of Rn . If f is continuous on
E, then f is uniformly continuous on E.

Proof. Suppose that f is continuous on E . Given ε > 0 and a ∈ E , choose
δ(a) > 0 such that

x ∈ Bδ(a)(a) and x ∈ E imply ‖f(x)− f(a)‖ < ε

2
.

Since δ(a)/2 is positive for all a ∈ E , the collection {Bδ(a)/2}a∈E is an open
covering of E . By the definition of compact sets, there exist finitely many
points a j ∈ E and numbers δ j := δ(a j )/2 such that

E ⊂
N⋃

j=1

Bδ j (a j ). (4)

Set δ := min{δ1, . . . , δN }. Clearly, δ > 0.
Suppose that x, a ∈ E with ‖x − a‖ < δ. By (4), x belongs to Bδ j (a j ) for

some 1 ≤ j ≤ N . Hence, ‖a−a j‖ ≤ ‖a−x‖+‖x−a j‖ < δ j +δ j = 2δ j = δ(a j );
that is, a also belongs to Bδ(a j )(a j ). It follows, therefore, from the choice of
δ(a j ) that

‖f(x)− f(a)‖ ≤ ‖f(x)− f(a j )‖ + ‖f(a j )− f(a)‖ < ε

2
+ ε

2
= ε.

This proves that f is uniformly continuous on E . �

Thus continuous vector functions behave much the same as continuous real
functions.

When we turn our attention to how continuous functions interact with the
topological structure of Rn , we again find a surprising bonus. The ε’s and δ’s
disappear.

9.26 Theorem. Suppose that E ⊆ Rn and that f : E → Rm . Then f is continuous
on E if and only if f −1(V ) is relatively open in E for every V open in Rm .

Proof. Suppose that f is continuous on E and that V is open in Rm . Since ∅ is
open, we may suppose that some a ∈ f −1(V ). By Remark 8.27, to show that
f −1(V ) is relatively open in E we need to find a δ > 0 such that Bδ(a) ∩ E ⊂
f −1(V ). But f(a) ∈ V and V is open, so there is a ε > 0 such that Bε(f(a)) ⊂ V .
Since f is continuous at a ∈ E , choose δ > 0 such that ‖x − a‖ < δ and x ∈ E
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implies ‖f(x) − f(a)‖ < ε; that is, x ∈ Bδ(a) ∩ E implies f (x) ∈ Bε(f(a)). It
follows that f(Bδ(a) ∩ E) ⊆ Bε(f(a)) ⊂ V ; that is, Bδ(a) ∩ E ⊂ f −1(V ).

Conversely, if a ∈ E and ε > 0, then Bε(f(a)) is open in Rm . By hypothesis
f −1(Bε(f(a))) is relatively open in E ; that is, by Remark 8.27, there is a δ > 0
such that Bδ(a) ∩ E ⊂ f −1(Bε(f(a))). We conclude that if ‖x − a‖ < δ and
x ∈ E , then ‖f(x)− f(a)‖ < ε (i.e., that f is continuous at a ∈ E). �

By Theorem 9.26, when f is continuous on E, f −1 takes open sets to relatively
open sets in E . If the domain E is open (e.g., if the domain is Rn), then the
word relatively can be dropped (see Exercise 9.4.3). We shall refer to this prop-
erty by saying that open sets are invariant under inverse images by continuous
functions.

Analogues of these results also hold for closed sets (see Exercises 9.4.5a
and 9.4.4). In particular, if f is continuous and its domain is a closed set, then
f −1 takes closed sets to closed sets. Thus closed sets are invariant under inverse
images by continuous functions.

It is natural to ask whether bounded sets or connected sets are invariant under
inverse images by continuous functions. The following examples show that the
answers to these questions are no, even when the range and domain are one
dimensional.

9.27 EXAMPLES.

i) If f (x) = 1/(x2 + 1) and E = (0, 1], then f is continuous on R and E is
bounded, but f −1(E) = (−∞,∞) is not bounded.

ii) If f (x) = x2 and E = (1, 4), then f is continuous on R and E is connected,
but f −1(E) = (−2,−1) ∪ (1, 2) is not connected.

We now turn our attention from inverse images of sets to images of sets. Are
open sets and closed sets invariant under images by continuous functions? The
following examples show that the answers to these questions are also no.

9.28 EXAMPLES.

i) If f (x) = x2 and V = (−1, 1), then f is continuous on V and V is open, but
f (V ) = [0, 1) is neither open nor closed.

ii) If f (x) = 1/x and E = [1,∞), then f is continuous on E and E is closed,
but f (E) = (0, 1] is neither open nor closed.

As the next result shows, however, if a set is both closed and bounded (i.e.,
compact), then so is its image under any continuous function. This innocent-
looking result has far-reaching consequences which we shall exploit on many
occasions.

9.29 Theorem. If H is compact in Rn and f : H → Rm is continuous on H, then
f(H) is compact in Rm .
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Proof. Suppose that {Vα}α∈A is an open covering of f (H). Then, by Theorem
1.37, parts iii and v, {f −1(Vα)}α∈A covers H . But by Theorem 9.26, f −1(Vα)
are relatively open in H ; that is, there exist open sets Oα such that f −1(Vα) =
Oα∩ H . Since {Oα}α∈A is an open covering of H and H is compact, there exist
α j ∈ A such that H ⊂ ⋃N

j=1 Oα j . We conclude by Theorem 1.37, parts i and
v, that

f(H) ⊆ f

⎛
⎝ N⋃

j=1

Oα j ∩ H

⎞
⎠ =

N⋃
j=1

f
(

f−1(Vα j )
)

=
N⋃

j=1

Vα j ;

that is, f(H) is compact by definition. �

Connected sets are also invariant under images by continuous functions.

9.30 Theorem. If E is connected in Rn and f : E → Rm is continuous on E, then
f(E) is connected in Rm .

Proof. Suppose that f(E) is not connected. By Definition 8.28, there exist
a pair of relatively open sets U, V in f(E) which separates f(E); that is, U ∩
f(E) 
= ∅, V ∩ f(E) 
= ∅, f(E) = U ∪ V , and U ∩ V = ∅. Set A := f −1(U )
and B := f −1(V ). By Exercise 9.4.5b, A and B are relatively open in E . Since
f(E) = U ∪ V and both f −1(U ) and f −1(V ) are subsets of E , we also have (see
Theorem 1.37iii)

E = f −1(U ) ∪ f −1(V ) = A ∪ B.

Finally, U ∩ V = ∅ implies f −1(U ) ∩ f −1(V ) = ∅ (i.e., A ∩ B = ∅). Thus A, B
is a pair of relatively open sets which separates E (i.e., E is not connected, a
contradiction). �

Keeping track of which kind of sets are invariant under images and inverse
images by continuous functions is a powerful tool. To illustrate this fact, we
offer the following four results.

9.31 Remark. The graph y = f (x) of a continuous real function f on an interval
[a, b] is compact and connected.

Proof. The function F(x) = (x, f (x)) is continuous from [a, b] into R2, and
the graph of y = f (x) for x ∈ [a, b] is the image of [a, b] under F . Hence the
graph of f is compact and connected by Theorems 9.29 and 9.30. �

It is interesting to note that this property actually characterizes continuity of
real functions (see Theorem 9.51).

To appreciate the perspective that the topological point of view gives, com-
pare the following simple proof with that of its one-dimensional analogue
(Theorem 3.26).
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9.32 Theorem. [EXTREME VALUE THEOREM].
Suppose that H is a nonempty subset of Rn and that f : H → R. If H is
compact, and f is continuous on H, then

M := sup{ f (x) : x ∈ H} and m := inf{ f (x) : x ∈ H}

are finite real numbers. Moreover, there exist points xM , xm ∈ H such that
M = f (xM ) and m = f (xm).

Proof. By symmetry, it suffices to prove the result for M . Since H is com-
pact, f (H) is compact by Theorem 9.29. Thus f (H) is closed and bounded
by the Heine–Borel Theorem. Since f (H) is bounded, M is finite. By the
Approximation Property, choose xk ∈ H such that f (xk) → M as k → ∞.
Since f (H) is closed, M ∈ f (H). Therefore, there is an xM ∈ H such that
M = f (xM ). �

(For a multidimensional analogue of Theorem 3.29, see Exercise 9.4.9.)
The following analogue of Theorem 4.32 will be used in Chapter 13 to exam-

ine change of parametrizations of curves and surfaces.

9.33 Theorem. If H is a compact subset of Rn and f : H → Rm is 1–1 and
continuous, then f −1 is continuous on f(H).

Proof. By Theorem 9.29 and the Heine–Borel Theorem, f(H) is closed. Thus,
by Exercise 9.4.4, it suffices to show that (f −1)−1 takes closed sets to closed
sets. To this end, let E be closed in Rn . Since the domain of f −1 is f(H), we
have by definition that

(f −1)−1(E) = {x ∈ f(H) : f −1(x) = y for some y ∈ E}.

Since f is 1–1, f −1(x) = y ∈ E implies that x ∈ f(E). Thus (f−1)−1(E) =
f(E ∩ H). But E ∩ H is closed (see Theorem 8.24) and bounded (by “the
bound” of H), so by Theorem 9.29 and the Heine–Borel Theorem, f(E ∩ H)
is closed and bounded. In particular, (f−1)−1(E) = f(E ∩ H) is closed. �

The final result of this section shows that “rectangles” are connected in Rn .

9.34 Remark. If a j ≤ b j for j = 1, 2, . . . , n, then

R := {(x1, . . . , xn) : a j ≤ x j ≤ b j }

is connected.

Proof. Suppose not. Choose nonempty sets U and V , relatively open in R,
such that R = U ∪ V and U ∩ V = ∅. Let a ∈ U and b ∈ V , and consider the
line segment E := {ta + (1 − t)b : t ∈ [0, 1]}. Since E is a continuous image
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of the interval [0, 1], we have by Theorems 8.30 and 9.30 that E is connected.
On the other hand, since E ⊂ R by the definition of R, it is easy to check that
U0 := U ∩ E and V0 := V ∩ E are nonempty sets which are relatively open in
E and satisfy E = U0 ∪ V0 and U0 ∩ V0 = ∅. It follows that E is not connected,
a contradiction. �

EXERCISES

9.4.1. Define f and g on R by f (x) = sin x and g(x) = x/|x | if x 
= 0 and
g(0) = 0.

a) Find f (E) and g(E) for E = (0, π), E = [0, π], E = (−1, 1),
and E = [−1, 1]. Compare your answers with what Theorems
9.26, 9.29, and 9.30 predict. Explain any differences you notice.

b) Find f −1(E) and g−1(E) for E = (0, 1), E = [0, 1], E = (−1,1),
and E = [−1, 1]. Compare your answers with what Theorems
9.26, 9.29, and 9.30 predict. Explain any differences you notice.

9.4.2. Define f on [0,∞) and g on R by f (x) = √
x and g(x) = 1/x if x 
= 0

and g(0) = 0.

a) Find f (E) and g(E) for E = (0, 1), E = [0, 1), and E = [0, 1].
Compare your answers with what Theorems 9.26, 9.29, and 9.30
predict. Explain any differences you notice.

b) Find f −1(E) and g−1(E) for E = (−1, 1) and E = [−1, 1]. Com-
pare your answers with what Theorems 9.26, 9.29, and 9.30 predict.
Explain any differences you notice.

9.4.3 . This exercise is used in this section and in Chapter 11. Suppose that A
is open in Rn and f : A → Rm . Prove that f is continuous on A if and
only if f −1(V ) is open in Rn for every open subset V of Rm .

9.4.4. Suppose that A is closed in Rn and f : A → Rm . Prove that f is contin-
uous on A if and only if f −1(E) is closed in Rn for every closed subset
E of Rm .

9.4.5. Suppose that E ⊆ Rn and that f : E → Rm .

a) Prove that f is continuous on E if and only if f −1(B) is relatively
closed in E for every closed subset B of Rm .

b) Suppose that f is continuous on E . Prove that if V is relatively
open in f(E), then f −1(V ) is relatively open in E , and if B is rela-
tively closed in f(E), then f −1(B) is relatively closed in E .

9.4.6. Prove that

f (x, y) =
{

e−1/|x−y| x 
= y
0 x = y

is continuous on R2.
∗9.4.7 . This exercise is used in Section ∗9.6. Let H be a nonempty, closed,

bounded subset of Rn .
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a) Suppose that f : H → Rm is continuous. Prove that

‖f‖H := sup
x∈H

‖f(x)‖

is finite and there exists an x0 ∈ H such that ‖f(x0)‖ = ‖f‖H .
b) A sequence of functions fk : H → Rm is said to converge uniformly

on H to a function f : H → Rm if and only if for every ε > 0 there
is an N ∈ N such that

k ≥ N and x ∈ H imply ‖fk(x)− f(x)‖ < ε.

Show that ‖fk − f‖H → 0 as k → ∞ if and only if fk → f uniformly
on H as k → ∞.

c) Prove that a sequence of functions fk converges uniformly on H if
and only if for every ε > 0 there is an N ∈ N such that

k, j ≥ N implies ‖fk − f j‖H < ε.

9.4.8. Let E ⊂ Rn and suppose that D is dense in E (i.e., that D ⊆ E and
D = E). If f : D → Rm is uniformly continuous on D, prove that f has
a continuous extension to E ; that is, prove that there is a continuous
function g : E → Rm such that g(x) = f(x) for all x ∈ D.

9.4.9. [Intermediate Value Theorem]. Let E be a connected subset of Rn .
If f : E → R is continuous, f (a) 
= f (b) for some a, b ∈ E , and y is a
number which lies between f (a) and f (b), then prove that there is an
x ∈ E such that f (x) = y. (You may use Theorem 8.30.)

∗9.4.10 . This exercise is used to prove ∗Corollary 11.35.

a) A set E ⊆ Rn is said to be polygonally connected if and only if
any two points a, b ∈ E can be connected by a polygonal path
in E ; that is, there exist points xk ∈ E, k = 1, . . . , N , such that
x0 = a, xN = b and L(xk−1; xk) ⊆ E for k = 1, . . . , N . Prove that
every polygonally connected set in Rn is connected.

b) Let E ⊆ Rn be open and x0 ∈ E . Let U be the set of points
x ∈ E which can be polygonally connected in E to x0. Prove that
U is open.

c) Prove that every open connected set in Rn is polygonally con-
nected.

∗9.5 COMPACT SETS

This section requires no material from any other enrichment section.

In this section we give a more complete description of compact sets. Most of the
results we state are trivial to prove by appealing to the hard part of Heine–Borel
Theorem, specifically, that closed and bounded subsets of a Euclidean space are
compact. Since this powerful result does not hold in some non-Euclidean spaces,
our proofs will appeal only to the basic definition of compact sets and, hence,
avoid using the Heine–Borel Theorem.
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328 Chapter 9 Convergence in Rn

We begin by expanding our terminology concerning what we mean by a
“covering.”

9.35 Definition.

Let V = {Vα}α∈A be a collection of subsets of Rn , and suppose that E ⊆ Rn .

i) V is said to cover E (or be a covering of E) if and only if

E ⊆
⋃
α∈A

Vα.

(No assumption about Vα being open is made.)
ii) Let V be a covering of E . V is said to have a finite (respectively, count-

able) subcovering if and only if there is a finite (respectively, an at most
countable) subset A0 of A such that {Vα}α∈A0 covers E .

Notice that the collections of open intervals

{(
1

k + 1
,

k

k + 1

)}
k∈N

and
{(

−1

k
,

k + 1

k

)}
k∈N

are open coverings of the interval (0, 1). The first covering of (0, 1) has no finite
subcovering, but any member of the second covering covers (0, 1). Thus, an
open covering of an arbitrary set might not have a finite subcovering.

Our first general result about compact sets shows that every “space” contains
compact sets.

9.36 Remark. The empty set and all finite subsets of Rn are compact.

Proof. These statements follow immediately from Definition 9.10. The empty
set needs no set to cover it, and any finite set H can be covered by finitely
many sets, one set for each element in H . �

Since the empty set and finite sets are also closed, it is natural to ask whether
there is a relationship between compact sets and closed sets in general. The
following three results address this question.

9.37 Remark. A compact set is always closed.

Proof. This result follows easily from the sequential characterization of
closed sets (see the second paragraph in the proof of Theorem 9.11). �
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Since {(k − 1, k + 1) : k ∈ N} is an open covering of the closed set E := [1,∞),
the converse of Theorem 9.37 is false. The following result shows that this is not
the case if E is a subset of some compact set.

9.38 Remark. A closed subset of a compact set is compact.

Proof. Let E be a closed subset of H , where H is compact, and suppose that
V = {Vα}α∈A is an open covering of E . Now Ec = Rn \ E is open. Thus
V ∪ {Ec} is an open covering of H . Since H is compact, there is a finite set
A0 ⊆ A such that

H ⊆ Ec ∪
⎛
⎝ ⋃
α∈A0

Vα

⎞
⎠ .

But E ∩ Ec = ∅. Therefore, E is covered by {Vα}α∈A0 . �

Finally, we show that every open covering of a set in a Euclidean space has a
countable subcovering.

9.39 Theorem. [LINDELÖF].
Let n ∈ N and let E be a subset of Rn . If {Vα}α∈A is a collection of open sets
and E ⊆ ∪α∈AVα , then there is an at most countable subset A0 of A such that

E ⊆
⋃
α∈A0

Vα.

Proof. Let T be the collection of open balls with rational radii and rational
centers (i.e., centers which belong to Qn). This collection is countable. More-
over, by the proof of the Borel Covering Lemma, T “approximates” the col-
lection of open balls in the following sense: Given any open ball Br (x) ⊆ Rn ,
there is a ball Bρ(a) ∈ T such that x ∈ Bρ(a) and Bρ(a) ⊆ Br (x).

To prove the theorem, let x ∈ E . By hypothesis, x ∈ Vα for some α ∈ A.
Since Vα is open, there is a r > 0 such that Br (x) ⊂ Vα . Since T approximates
open balls, we can choose a ball Bx ∈ T such that x ∈ Bx ⊆ Vα . The collection
T is countable and, hence, so is the subcollection

{U1,U2, . . . }:={Bx : x ∈ E}.

By the choice of the balls Bx, for each k ∈ N there is at least one αk ∈ A such
that Uk ⊆ Vαk . Hence, by construction,

E ⊆
⋃
x∈E

Bx =
⋃
k∈N

Uk ⊆
⋃
k∈N

Vαk .

Thus, set A0 := {αk : k ∈ N}. �
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EXERCISES

9.5.1. Identify which of the following sets are compact and which are not. If E
is not compact, find the smallest compact set H (if there is one) such that
E ⊂ H .

a) {1/k : k ∈ N} ∪ {0}
b) {(x, y) ∈ R2 : a ≤ x2 + y2 ≤ b} for real numbers 0 < a < b
c) {(x, y) ∈ R2 : y = sin(1/x) for some x ∈ (0, 1]}
d) {(x, y) ∈ R2 : |xy| ≤ 1}

9.5.2. Let A, B be compact subsets of Rn . Using only Definition 9.10ii, prove
that A ∪ B and A ∩ B are compact.

9.5.3. Suppose that E ⊆ R is compact and nonempty. Prove that sup E, inf
E ∈ E .

9.5.4. Suppose that {Vα}α∈A is a collection of nonempty open sets in Rn which
satisfies Vα ∩ Vβ = ∅ for all α 
= β in A. Prove that A is countable. What
happens to this result when open is omitted?

9.5.5. Prove that if V is open in Rn , then there are open balls B1, B2, . . . ,

such that

V =
⋃
j∈N

B j .

Prove that every open set in R is a countable union of open intervals.
9.5.6. Let n ∈ N.

a) A subset E of Rn is said to be sequentially compact if and only if ev-
ery sequence xk in E has a convergent subsequence xk j whose limit
belongs to E . Prove that every compact set is sequentially compact.

b) Prove that every sequentially compact set is closed and bounded.
c) Prove that a set E ⊂ Rn is sequentially compact if and only if it is

compact.

9.5.7. Let H ⊆ Rn . Prove that H is compact if and only if every cover
{Eα}α∈A of H , where the Eα’s are relatively open in H , has a finite
subcovering.

∗9.6 APPLICATIONS

This section uses no material from any prior enrichment sections.

We have seen that topological concepts (e.g., closed sets, open sets, and con-
nected sets) are powerful theoretical tools. In this section we continue de-
veloping this theme by obtaining three independent theorems (i.e., you may
cover them in any order) which further elucidate results we obtained in earlier
chapters.

Our first application of topological ideas is a partial converse of Theorem 7.10.
A sequence of real valued functions { fk} is said to be pointwise increasing (re-
spectively, pointwise decreasing) on a subset E of Rn if and only if fk(x) ≤
fk+1(x) [respectively, fk(x) ≥ fk+1(x)] for all x ∈ E and k ∈ N. A sequence

330



Section 9.6 Applications 331

is said to be pointwise monotone on E if and only if it is pointwise increasing on
E or pointwise decreasing on E .

9.40 Theorem. [DINI].
Suppose that H is a compact subset of Rn and that fk : H → R is a pointwise
monotone sequence of continuous functions. If fk → f pointwise on H as
k → ∞ and if f is continuous on H, then fk → f uniformly on H. In particular,
if φk is a pointwise monotone sequence of functions continuous on an interval
[a, b] which converges pointwise to a continuous function, then

lim
k→∞

∫ b

a
φk(t) dt =

∫ b

a

(
lim

k→∞φk(t)

)
dt.

Proof. By Theorem 7.10, we need only show that fk → f uniformly on H .
We may suppose that fk is pointwise increasing and that H 
= ∅.

Let ε > 0. For each x ∈ H , choose N (x) ∈ N such that

k ≥ N (x) implies | fk(x)− f (x)| < ε

3
.

Since f and fN (x) are continuous on H , choose an r = r(x) > 0 such that

y ∈ H ∩ Br (x) implies | f (x)− f (y)| < ε

3
and | fN (x)(x)− fN (x)(y)| < ε

3
.

By the Heine–Borel Theorem, choose x j ∈ H and r j = r(x j ) such that

H ⊂
M⋃

j=1

Br j (x j ).

Set N = max{N (x1), . . . , N (xM )}, let x ∈ H , and suppose that k ≥ N . Since
x ∈ Br j (x j ) for some j ∈ {1, . . . ,M} and k ≥ N (x j ), it follows that

| f (x)− fk(x)| = f (x)− fk(x) ≤ f (x)− fN (x j )(x)

≤ | f (x)− f (x j )| + | f (x j )− fN (x j )(x j )|
+ | fN (x j )(x j )− fN (x j )(x)|

<
ε

3
+ ε

3
+ ε

3
= ε.

Since this inequality holds for all x ∈ H , we conclude that fk → f uniformly
on H as k → ∞. �

Our next application of topological ideas is a characterization of Riemann
integrability of a function f by the size of the set of points of discontinuity of f .
To measure the size of this set, we make the following definition. (Recall that
|I | denotes the length of an interval I .)
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9.41 Definition.

i) A set E ⊂ R is said to be of measure zero if and only if for every ε > 0 there
is a countable collection of intervals {I j } j∈N which covers E such that

∞∑
j=1

|I j | ≤ ε.

ii) A function f : [a, b] → R is said to be almost everywhere continuous on
[a, b] if and only if the set of points x ∈ [a, b] where f is discontinuous is a
set of measure zero.

Notice that, by definition, if E is of measure zero, then every subset of E is
also of measure zero. Loosely speaking, a set is of measure zero if it is so sparse
that it can be covered by a sequence of intervals whose total length is as small
as we wish.

It is easy to see that a single point E = {x} is a set of measure zero. Indeed,
I1 := (x − ε/2, x + ε/2), Ik := ∅, for k ≥ 2, cover E and have total length ε.
Modifying this technique, we can show that any finite set is a set of measure zero
(see also Remark 9.42 below). On the other hand, by the Heine–Borel Theorem,
any open covering of [a, b] has a finite subcovering; hence, any covering of [a, b]
by open intervals must have total length greater than or equal to b − a. In
particular, a nondegenerate interval cannot be of measure zero.

The following result shows that if a set is small in the set theoretical sense,
then it is small in the measure theoretical sense.

9.42 Remark. Every at most countable set of real numbers is a set of measure
zero.

Proof. We may suppose that E is countable, say E = {x1, x2, . . .}. Given ε > 0
and j ∈ N, set

I j = (x j − ε2− j−1, x j + ε2− j−1).

Then x j ∈ I j and |I j | = ε2− j for j ∈ N. Therefore, E ⊆ ∪∞
j=1 I j and

∞∑
j=1

|I j | = ε

∞∑
j=1

1

2 j
= ε. �

The converse of Remark 9.42 is false; that is, there exist uncountable sets of
measure zero (see Exercise 9.6.9 below).

The following result shows that the countable union of sets of measure zero
is a set of measure zero.
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9.43 Remark. If E1, E2, . . . is a sequence of sets of measure zero, then

E =
∞⋃

k=1

Ek

is also a set of measure zero.

Proof. Let ε > 0. By hypothesis, given k ∈ N we can choose a collection of
intervals {I (k)j } j∈N which covers Ek such that

∞∑
j=1

|I (k)j | < ε

2k
.

Then the collection {I (k)j }k, j∈N is countable, covers E , and

∞∑
k=1

∞∑
j=1

|I (k)j | ≤
∞∑

k=1

ε

2k
= ε.

Consequently, E is of measure zero. �

To facilitate our discussion of points of discontinuity, we introduce the follow-
ing concepts.

9.44 Definition.

Let [a, b] be a closed interval and f : [a, b] → R be bounded.

i) The oscillation of f on an interval J which intersects [a, b] is defined to be

� f (J ):= sup
x,y∈J∩[a,b]

( f (x)− f (y)).

ii) The oscillation of f at a point t ∈ [a, b] is defined to be

ω f (t):= lim
h→0+� f ((t − h, t + h)),

when this limit exists.

9.45 Remark. If f : [a, b] → R is bounded, then ω f (t) exists for all t ∈ [a, b]
and satisfies 0 ≤ ω f (t) < ∞.

Proof. Fix t ∈ [a, b] and for each interval J , set

MJ = sup
x∈J∩[a,b]

f (x), m J = inf
x∈J∩[a,b] f (x).
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Since sup(− f (x)) = − inf f (x), it is obvious that

� f (J ) = MJ − m J ≥ 0. (5)

Suppose for simplicity that t ∈ (a, b), and choose h0 so small that (t − h0,

t + h0) ⊂ (a, b). For each 0 < h < h0, set

F(h) = � f ((t − h, t + h)).

By the Monotone Property of Suprema, F(h) is increasing on (0, h0) and,
hence, has a finite limit as h → 0+. By (5), F(h) ≥ 0. Therefore, ω f (t) exists
and is both finite and nonnegative. �

The next result shows that, by using the oscillation function ω f , we can rep-
resent the set of points of discontinuity of any bounded f as a countable union.

9.46 Remark. Let f : [a, b] → R be bounded. If E represents the set of points
of discontinuity of f in [a, b], then

E =
∞⋃
j=1

{
t ∈ [a, b] : ω f (t) ≥ 1

j

}
.

Proof. By (5), f is continuous at t ∈ [a, b] if and only if ω f (t) = 0. Hence,
t belongs to E if and only if ω f (t) > 0. Since, by the Archimedean Principle,
ω f (t) > 0 if and only if ω f (t) ≥ 1/j for some j ∈ N, the result follows
at once. �

We need two technical results about the oscillation of f at a point t .

9.47 Lemma.
Let f : [a, b] → R be bounded. For each ε > 0, the set

H = {t ∈ [a, b] : ω f (t) ≥ ε}

is compact.

Proof. By definition, H is bounded (by max{|a|, |b|}). Hence, if the lemma is
false, then H is not closed. Hence, there are points tk ∈ H such that tk → t as
k → ∞ but t /∈ H . Since ω f (t) < ε, it follows that there is an h0 > 0 such that

� f ((t − h0, t + h0)) < ε. (6)

Since tk → t , choose N ∈ N so that

(
tN − h0

2
, tN + h0

2

)
⊂ (t − h0, t + h0).
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Then, by (6), � f ((tN − h0/2, tN + h0/2)) < ε. Therefore, ω f (tN ) < ε, which
contradicts the fact that tN ∈ H . �

9.48 Lemma.
Let I be a closed, bounded interval and f : I → R be bounded. If ε > 0 and
ω f (t) < ε for all t ∈ I , then there is a δ > 0 such that � f (J ) < ε for all closed
intervals J ⊆ I which satisfy |J | < δ.

Proof. For each t ∈ I , choose δt > 0 such that

� f ((t − δt , t + δt )) < ε. (7)

Since δt/2 > 0, use the Heine–Borel Theorem to choose t1, . . . , tN such that

I ⊂
N⋃

j=1

(
t j − δt j

2
, t j + δt j

2

)

and set

δ = min
1≤ j≤N

δt j

2
.

If J ⊆ I , then

J ∩
(

t j − δt j

2
, t j + δt j

2

)

= ∅

for some j ∈ {1, . . . , N }. If J also satisfies |J | < δ, then it follows from 2δ ≤ δt j

that J ⊆ (t j − δt j , t j + δt j ). In particular, (7) implies

� f (J ) ≤ � f ((t j − δt j , t j + δt j )) < ε. �

9.49 Theorem. [LEBESGUE].
Let f : [a, b] → R be bounded. Then f is Riemann integrable on [a, b] if
and only if f is almost everywhere continuous on [a, b]. In particular, if f is
bounded and has countably many points of discontinuity on [a, b], then f is
integrable on [a, b].

Proof. Let E be the set of points of discontinuity of f in [a, b]. Suppose that
f is integrable but E is not of measure zero. By Remarks 9.43 and 9.46, there
is a j0 ∈ N such that

H :=
{

t ∈ [a, b] : ω f (t) ≥ 1

j0

}
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is not of measure zero. In particular, there is an ε0 > 0 such that if {Ik}k∈N is
any collection of intervals which covers H , then

∞∑
k=1

|Ik | ≥ ε0. (8)

Let P = {x0, . . . , xn} be a partition of [a, b]. If (xk−1, xk) ∩ H 
= ∅, then, by
definition, Mk( f )− mk( f ) ≥ 1/j0. Hence,

U ( f, P)− L( f, P) =
n∑

k=1

(Mk( f )− mk( f ))
xk

≥
∑

(xk−1,xk)∩H 
=∅
(Mk( f )− mk( f ))
xk

≥ 1

j0

∑
(xk−1,xk)∩H 
=∅


xk

But { [xk−1, xk] : (xk−1, xk) ∩ H 
= ∅} is a collection of intervals which covers
H . Hence, it follows from (8) that

U ( f, P)− L( f, P) ≥ ε0

j0
> 0.

Therefore, f cannot be integrable on [a, b].
Conversely, suppose that E is of measure zero. Let M = supx∈[a,b] f (x) and

m = infx∈[a,b] f (x). Given ε > 0, choose j0 ∈ N such that

M − m + b − a

j0
< ε.

Since E is of measure zero, so is

H =
{

t ∈ [a, b] : ω f (t) ≥ 1

j0

}
.

Hence, by Definition 9.41, there exists a collection of intervals which covers
H , whose lengths sum to a real number less than 1/(2 j0). By expanding these
intervals slightly, we may suppose that there exist open intervals I1, I2, . . . ,

which cover H such that

∞∑
ν=1

|Iν | < 1

j0
.
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Hence, by Lemma 9.47, we can choose N ∈ N such that {I1, I2, . . . , IN }
covers H and

N∑
ν=1

|Iν | < 1

j0
. (9)

We must find a partition P such that U ( f, P) − L( f, P) < ε. The end-
points of the Iν ’s form part of this partition. Other points will come from
further division of that part of [a, b] not covered by the Iν ’s. Indeed, let
I ′ ⊆ [a, b]\(∪N

ν=1 Iν). Since the Iν ’s cover H, ω f (t) < 1/j0 for all t ∈ I ′.
Hence, by Lemma 9.48, there is a δ > 0 such that if J ⊆ I ′ satisfies |J | < δ,
then � f (J ) < 1/j0. Subdivide [a, b]\(∪N

ν=1 Iν) into intervals J�, � = 1, . . . , s,
such that |J�| < δ. Then

� f (J�) <
1

j0
(10)

for � = 1, . . . , s.
Let P = {x0, x1, . . . , xn} represent the collection of points x such that x is

an endpoint of some Iν or of some J�. Notice that if (xk−1, xk) ∩ H 
= ∅, then
xk−1 and xk are endpoints of some Iν , whence, by (9),

∑
(xk−1,xk)∩H 
=∅

(Mk( f )− mk( f ))
xk ≤ M − m

j0
.

On the other hand, if (xk−1, xk) ∩ H = ∅, then xk−1 and xk are endpoints of
some J�, whence, by (10),

∑
(xk−1,xk)∩H=∅

(Mk( f )− mk( f ))
xk ≤ 1

j0

n∑
k=1


xk = b − a

j0
.

Consequently,

U ( f, P)− L( f, P) =
n∑

k=1

(Mk( f )− mk( f ))
xk ≤ M − m + b − a

j0
< ε.

We conclude that f is integrable on [a, b]. �

Recall that if α > 0 and f (x) is positive, then

f α(x):=eα log( f (x)).

Suppose that f is Riemann integrable. Although Corollary 5.23 implies that
f n is integrable for each n ∈ N, we have not yet investigated the integrability
of noninteger powers of f (e.g.,

√
f and 3

√
f ). The following result shows that

Lebesgue’s Theorem answers the question of integrability for all positive powers
of f , rational or irrational.
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338 Chapter 9 Convergence in Rn

9.50 Corollary. If f : [a, b] → [0,∞) is Riemann integrable, then so is f α for
every α > 0.

In our final application, we use connectivity to characterize the graph of a
continuous function.

9.51 Theorem. [CLOSED GRAPH THEOREM].
Let I be a closed interval and f : I → R. Then f is continuous on I if and only
if the graph of f is closed and connected in R2.

Proof. For any interval J ⊆ I , let G(J ) represent the graph of y = f (x) for
x ∈ J . Suppose that f is continuous on I . The function x �−→ (x, f (x)) is
continuous from I into R2, and I is connected in R. Thus G(I ) is connected in
R2 by Theorem 9.30. To prove that G(I ) is closed, we shall use Theorem 9.8.
Let xk ∈ I and (xk, f (xk)) → (x, y) as k → ∞. Then xk → x and f (xk) → y,
as k → ∞. Hence, x ∈ I and since f is continuous, f (xk) → f (x). In
particular, the graph of f is closed.

Conversely, suppose that the graph of f is closed and connected in R2.
We first show that f satisfies the Intermediate Value Theorem on I . Indeed,
suppose to the contrary that there exist x1 < x2 in I with f (x1) 
= f (x2)

and a value y0 between f (x1) and f (x2) such that f (t) 
= y0 for all t ∈ [x1, x2].
Suppose for simplicity that f (x1) < f (x2). Since f (t) 
= y0 for any t ∈ [x1, x2],
the open sets

U = {(x, y) : x < x1} ∪ {(x, y) : x < x2, y < y0},
V = {(x, y) : x > x2} ∪ {(x, y) : x > x1, y > y0}

separate G(I ), a contradiction. Therefore, f satisfies the Intermediate Value
Theorem on I .

If f is not continuous on I , then there exist numbers x0 ∈ I, ε0 > 0, and
xk ∈ I such that xk → x0 and | f (xk) − f (x0)| > ε0. By symmetry, we may
suppose that f (xk) > f (x0)+ ε0 for infinitely many k’s, say

f (xk j ) > f (x0)+ ε0 > f (x0), j ∈ N.

By the Intermediate Value Theorem, choose c j between xk j and x0 such that
f (c j ) = f (x0) + ε0. By construction, (c j , f (c j )) → (x0, f (x0) + ε0) and
c j → x0 as j → ∞. Hence, the graph of f on I is not closed. �

EXERCISES

9.6.1. Suppose that fk : [a, b] → [0,∞) for k ∈ N and that

f (x):=
∞∑

k=1

fk(x)
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converges pointwise on [a, b]. If f and fk are continuous on [a, b] for
each k ∈ N, prove that

∫ b

a

∞∑
k=1

fk(x) dx =
∞∑

k=1

∫ b

a
fk(x) dx .

9.6.2. Let E be closed and bounded in Rn . Suppose that g, fk, gk : E → R are
continuous on E with gk ≥ 0 and f1 ≥ f2 . . . ≥ fk ≥ 0 for k ∈ N. If
g = ∑∞

k=1 gk converges pointwise on E , prove that
∑∞

k=1 fk gk converges
uniformly on E .

9.6.3. Suppose that f, fk : R → R are continuous and nonnegative. Prove that
if f (x) → 0 as x → ±∞ and fk ↑ f everywhere on R, then fk → f
uniformly on R.

9.6.4. For each of the following functions, find a formula for ω f (t).

a) f (x) =
{

1 x ∈ Q
0 x /∈ Q

b) f (x) =
{

1 x ≥ 0
0 x < 0

c) f (x) =
{

sin(1/x) x 
= 0
0 x = 0

9.6.5. Prove that (1 − x/k)k → e−x uniformly on any closed, bounded subset
of R.

9.6.6. Show that if f : [a, b] → R is integrable and g : f ([a, b]) → R is contin-
uous, then g ◦ f is integrable on [a, b]. (Notice by Remark 3.34 that this
result is false if g is allowed even one point of discontinuity.)

9.6.7. Using Theorem 7.10 or Theorem 9.30, prove that each of the following
limits exists. Find a value for the limit in each case.

a) lim
k→∞

∫ π/2

0
sin x

√
2k

4k − 3x
dx

b) lim
k→∞

∫ 1

0
x2 f

(
k

k2 + x

)
dx

where f is continuously differentiable on [0, 1] and f ′(0) > 0.

c) lim
k→∞

∫ 1

0
x3 cos

(
log k + x

k + x

)
dx
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340 Chapter 9 Convergence in Rn

d) lim
k→∞

∫ 1

−1

(
1 + x

k

)k
ex dx

9.6.8. a) Prove that for every ε > 0 there is a sequence of open intervals {Ik}k∈N
which covers [0, 1] ∩ Q such that

∞∑
k=1

|Ik | < ε.

b) Prove that if {Ik}k∈N is a sequence of open intervals which covers [0, 1],
then there is an N ∈ N such that

N∑
k=1

|Ik | ≥ 1.

9.6.9. Let E1 be the unit interval [0, 1] with its middle third (1/3, 2/3) removed
(i.e., E1 = [0, 1/3]∪[2/3, 1]). Let E2 be E1 with its middle thirds removed;
that is,

E2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].
Continuing in this manner, generate nested sets Ek such that each Ek is

the union of 2k closed intervals of length 1/3k . The Cantor set is the set

E :=
∞⋂

k=1

Ek .

Assume that every point x ∈ [0, 1] has a binary expansion and a ternary
expansion; that is, there exist ak ∈ {0, 1} and bk ∈ {0, 1, 2} such that

x =
∞∑

k=1

ak

2k
=

∞∑
k=1

bk

3k
.

(e.g., if x = 1/3, then a2k−1 = 0, a2k = 1 for all k and either b1 = 1, bk = 0
for k > 1 or b1 = 0 and bk = 1 for all k > 1.)

a) Prove that E is a nonempty compact set of measure zero.
b) Show that a point x ∈ [0, 1] belongs to E if and only if x has a ternary

expansion whose digits satisfy bk 
= 1 for all k ∈ N.
c) Define f : E → [0, 1] by

f

( ∞∑
k=1

bk

3k

)
=

∞∑
k=1

bk/2

2k
.

Prove that there is a countable subset E0 of E such that f is 1–1 from
E\E0 onto [0, 1] (i.e., prove that E is uncountable).
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d) Extend f from E to [0, 1] by making f constant on the middle thirds
Ek−1\Ek . Prove that f : [0, 1] → [0, 1] is continuous and increasing.

(Note: The function f is almost everywhere constant on [0, 1]; that
is, constant off a set of measure zero. Yet it begins at f (0) = 0 and
ends at f (1) = 1.)
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C H A P T E R 10

Metric Spaces

This chapter, an alternative to Chapter 9, covers topological ideas in a metric
space setting. If you have already covered Chapter 9, skip this one and proceed
directly to Chapter 11.

10.1 INTRODUCTION

The following concept shows up in many parts of analysis.

10.1 Definition.

A metric space is a set X together with a function ρ : X × X → R (called the
metric of X) which satisfies the following properties for all x, y, z ∈ X :

positive definite ρ(x, y) ≥ 0 with ρ(x, y) = 0 if and only if x = y,

symmetric ρ(x, y) = ρ(y, x),

Triangle Inequality ρ(x, y) ≤ ρ(x, z)+ ρ(z, y).

[Notice that by definition, ρ(x, y) is finite valued for all x, y ∈ X .]

We are already very familiar with a whole class of metric spaces.

10.2 EXAMPLE.

Every Euclidean space Rn is a metric space with metric ρ(x, y) = ‖x − y‖.
(We shall call this the usual metric on Rn . Unless specified otherwise, we shall

always use the usual metric on Rn .)

Proof. By Theorems 1.7 and 8.6, ρ is a metric on Rn . �

For the remainder of this chapter, unless otherwise noted, X and Y will denote
general metric spaces with respective metrics ρ and τ . We shall develop a theory
of convergence (for both sequences and functions) for arbitrary metric spaces.
According to Example 10.2, this theory is valid (and will be used by us almost
exclusively) on Rn . Why, then, subject ourselves to such stark generality? Why
not stick with the concrete Euclidean space case? There are at least three
answers to these questions:

1) Economy. You will soon discover that there are many other metric spaces
which crop up in analysis (e.g., all Hilbert spaces, all normed linear spaces,

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 10 of Introduction to Analysis, Fourth Edition. William R. Wade. 

342



Section 10.1 Introduction 343

and many function spaces, including the space of continuous functions on
a closed, bounded interval). Our general theory of convergence in metric
spaces will be valid for each of these examples, too.

2) Visualization. As we mentioned in Section 1.2, analysis has a strong geomet-
ric flavor. Working in an abstract metric space only makes that aspect more
apparent.

3) Simplicity. Emphasizing the fact that Rn is a metric space strips R of all extra-
neous details (the field operations, the order relation, decimal expansions) so
that we can focus our attention on the underlying concept (distance) which
governs convergence. Mathematics frequently benefits from such abstrac-
tion. Instead of becoming more difficult, generality actually makes the proofs
easier to construct.

On the other hand, R2 provides a good and sufficiently general model for most
of the theory of abstract metric spaces (especially convergence of sequences
and continuity of functions). For this reason, we often draw two-dimensional
pictures to illustrate ideas and motivate proofs in an arbitrary metric space.
(For example, see the proof of Remark 10.9 below.) We must not, however, mis-
lead ourselves by believing that R2 provides a complete picture. Metric spaces
have such simple structure that they can take on many bizarre forms. With that
in mind, we introduce several more examples.

10.3 EXAMPLE.

R is a metric space with metric

σ(x, y) =
{

0 x = y
1 x �= y.

(This metric is called the discrete metric.)

Proof. The function σ is obviously positive definite and symmetric. To prove
that σ satisfies the Triangle Inequality, we consider three cases. If x = z, then
σ(x, y) = 0 + σ(z, y) = σ(x, z) + σ(z, y). A similar equality holds if y = z.
Finally, if x �= z and y �= z, then σ(x, y) ≤ 1 < 2 = σ(x, z)+ σ(z, y). �

Comparing Examples 10.2 and 10.3, we see that a given set can have more
than one metric. Hence, to describe a particular metric space, we must specify
both the set X and the metric ρ.

10.4 EXAMPLE.

If E ⊆ X , then E is a metric space with metric ρ. (We shall call such metric
spaces E subspaces of X .)

Proof. If the Positive Definite Property, the Symmetric Property, and the
Triangle Inequality hold for all x, y ∈ X , then they hold for all x, y ∈ E . �

A particular example of a subspace is provided by the set of rationals in R.
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344 Chapter 10 Metric Spaces

10.5 EXAMPLE.

Q is a metric space with metric ρ(x, y) = |x − y|.
Metric spaces are by no means confined to numbers and vectors. Here is an

important metric space whose “points” are functions.

10.6 EXAMPLE.

Let C[a, b] represent the collection of continuous f : [a, b] → R and

‖ f ‖ := sup
x∈[a,b]

| f (x)|.

Then ρ( f, g) := ‖ f − g‖ is a metric on C[a, b].
Proof. By the Extreme Value Theorem, ‖ f ‖ is finite for each f ∈ C[a, b].
By definition, ‖ f ‖ ≥ 0 for all f , and ‖ f ‖ = 0 if and only if f (x) = 0 for
every x ∈ [a, b]. Thus ρ is positive definite. Since ρ is obviously symmetric, it
remains to verify the Triangle Inequality. But

‖ f + g‖ = sup
x∈[a,b]

| f (x)+ g(x)| ≤ sup
x∈[a,b]

| f (x)| + sup
x∈[a,b]

|g(x)| = ‖ f ‖ + ‖g‖. �

It is interesting to note that convergence in this metric space means uniform
convergence (see Exercise 10.1.8).

There are two ways to generalize open and closed intervals to arbitrary metric
spaces. One way is to use the metric directly as follows.

10.7 Definition.

Let a ∈ X and r > 0. The open ball (in X) with center a and radius r is the set

Br (a) := {x ∈ X : ρ(x, a) < r},
and the closed ball (in X) with center a and radius r is the set

{x ∈ X : ρ(x, a) ≤ r}.

Notice by Theorem 1.6 that in R (with the usual metric), the open ball
(respectively, the closed ball) centered at a of radius r is (a − r, a + r) (respec-
tively, [a−r, a+r ]) (i.e., open balls are open intervals and closed balls are closed
intervals). With respect to the discrete metric, however, balls look quite differ-
ent. For example, for each 0 < r < 1 and each a in the discrete metric space, the
closed and open balls centered at a of radius r are both equal to {a}.

Another way to generalize open and closed intervals to X is to specify what
open and closed mean. Notice that every point x in an open interval I is sur-
rounded by points in I . The same property holds for complements of closed
intervals. This leads us to the following definition.
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Section 10.1 Introduction 345

10.8 Definition.

i) A set V ⊆ X is said to be open if and only if for every x ∈ V there is an
ε > 0 such that the open ball Bε(x) is contained in V .

ii) A set E ⊆ X is said to be closed if and only if Ec := X \ E is open.

Our first result about these concepts shows that they are consistent as applied
to balls.

10.9 Remark. Every open ball is open, and every closed ball is closed.

Proof. Let Br (a) be an open ball. By definition, we must prove that given
x ∈ Br (a) there is an ε > 0 such that Bε(x) ⊆ Br (a). Let x ∈ Br (a) and set
ε = r − ρ(x, a). (Look at Figure 8.5 to see why this choice of ε should work.)
If y ∈ Bε(x), then by the Triangle Inequality, assumption, and the choice of ε,

ρ(y, a) ≤ ρ(y, x)+ ρ(x, a) < ε + ρ(x, a) = r.

Thus, by Definition 10.7, y ∈ Br (a). In particular, Bε(x) ⊆ Br (a). Similarly,
we can show that {x ∈ X : ρ(x, a) > r} is also open. Hence, every closed ball
is closed. �

Here are more examples of open sets and closed sets.

10.10 Remark. If a ∈ X , then X \ {a} is open and {a} is closed.

Proof. By Definition 10.8, it suffices to prove that the complement of
every singleton E := {a} is open. Let x ∈ Ec and set ε = ρ(x, a). Then, by
Definition 10.7, a /∈ Bε(x), so Bε(x) ⊆ Ec. Therefore, Ec is open by
Definition 10.8. �

Students sometimes mistakenly believe that every set is either open or closed.
Some sets are neither open nor closed (like the interval [0, 1)). And, as the
following result shows, every metric space contains two special sets which are
both open and closed.

10.11 Remark. In an arbitrary metric space, the empty set ∅ and the whole space
X are both open and closed.

Proof. Since X = ∅c and ∅ = Xc, it suffices by Definition 10.8 to prove that ∅
and X are both open. Because the empty set contains no points, “every” point
x ∈ ∅ satisfies Bε(x) ⊆ ∅. (This is called the vacuous implication.) Therefore,
∅ is open. On the other hand, since Bε(x) ⊆ X for all x ∈ X and all ε > 0, it is
clear that X is open. �

For some metric spaces (like Rn), these are the only two sets which are simul-
taneously open and closed. For other metric spaces, there are many such sets.
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346 Chapter 10 Metric Spaces

10.12 EXAMPLE.

Every subset of the discrete space R is both open and closed.

Proof. It suffices to prove that every subset of R is open (with respect to the
discrete metric). Let E ⊆ R. By Remark 10.11, we may assume that E is
nonempty. Let a ∈ E . Since B1(a) = {a}, some open ball containing a is a
subset of E . By Definition 10.8, E is open. �

To see how these concepts are connected with limits, we examine convergence
of sequences in an arbitrary metric space. Using the analogy between the met-
ric ρ and the absolute value, we can transfer much of the theory of limits of
sequences from R to any metric space. Here are the basic definitions.

10.13 Definition.

Let {xn} be a sequence in X .

i) {xn} converges (in X) if there is a point a ∈ X (called the limit of xn) such
that for every ε > 0 there is an N ∈ N such that

n ≥ N implies ρ(xn, a) < ε.

ii) {xn} is Cauchy if for every ε > 0 there is an N ∈ N such that

n,m ≥ N implies ρ(xn, xm) < ε.

iii) {xn} is bounded if there is an M > 0 and a b ∈ X such that ρ(xn, b) ≤ M
for all n ∈ N.

Modifying the proofs in Chapter 2, by doing little more than replacing |x − y|
by ρ(x, y), we can establish the following result.

10.14 Theorem. Let X be a metric space.

i) A sequence in X can have at most one limit.
ii) If xn ∈ X converges to a and {xnk } is any subsequence of {xn}, then xnk con-

verges to a as k → ∞.
iii) Every convergent sequence in X is bounded.
iv) Every convergent sequence in X is Cauchy.

The following result shows that, by using open sets, we can describe conver-
gence of sequences in an arbitrary metric space without reference to the dis-
tance function. Later in this chapter, we shall use this point of view to great
advantage.

10.15 Remark. Let xn ∈ X . Then xn → a as n → ∞ if and only if for every
open set V which contains a there is an N ∈ N such that n ≥ N implies xn ∈ V .
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Proof. Suppose that xn → a, and let V be an open set which contains a. By
Definition 10.8, there is an ε > 0 such that Bε(a) ⊆ V . Given this ε, use
Definition 10.13 to choose an N ∈ N such that n ≥ N implies xn ∈ Bε(a). By
the choice of ε, xn ∈ V for all n ≥ N .

Conversely, let ε > 0 and set V = Bε(a). Then V is an open set which
contains a; hence, by hypothesis, there is an N ∈ N such that n ≥ N implies
xn ∈ V . In particular, ρ(xn, a) < ε for all n ≥ N . �

The following result, which we shall use many times, shows that convergent
sequences can also be used to characterize closed sets.

10.16 Theorem. Let E ⊆ X . Then E is closed if and only if the limit of every
convergent sequence xk ∈ E satisfies

lim
k→∞ xk ∈ E .

Proof. The theorem is vacuously satisfied if E is the empty set.
Suppose that E �= ∅ is closed but some sequence xn ∈ E converges to a

point x ∈ Ec. Since E is closed, Ec is open. Thus, by Remark 10.15, there is
an N ∈ N such that n ≥ N implies xn ∈ Ec, a contradiction.

Conversely, suppose that E is a nonempty set such that every convergent
sequence in E has its limit in E . If E is not closed, then, by Remark 10.11,
E �= X , and, by definition, Ec is nonempty and not open. Thus, there is
at least one point x ∈ Ec such that no ball Br (x) is contained in Ec. Let
xk ∈ B1/k(x) ∩ E for k = 1, 2, . . . . Then xk ∈ E and ρ(xk, x) < 1/k for all
k ∈ N. Now 1/k → 0 as k → ∞, so it follows from the Squeeze Theorem
(these are real sequences) that ρ(xk, x) → 0 as k → ∞ (i.e., xk → x as
k → ∞). Thus, by hypothesis, x ∈ E , a contradiction. �

Notice that the Bolzano–Weierstrass Theorem and Cauchy’s Theorem are
missing from Theorem 10.14. There is a simple reason for this. As the next
two remarks show, neither of these results holds in an arbitrary metric space.

10.17 Remark. The discrete space contains bounded sequences which have no
convergent subsequences.

Proof. Let X = R be the discrete metric space introduced in Example 10.3.
Since σ(0, k) = 1 for all k ∈ N, {k} is a bounded sequence in X . Suppose
that there exist integers k1 < k2 < . . . and an x ∈ X such that k j → x as
j → ∞. Then there is an N ∈ N such that σ(k j , x) < 1 for j ≥ N (i.e.,
k j = x for all j ≥ N). This contradiction proves that {k} has no convergent
subsequences. �

10.18 Remark. The metric space X = Q, introduced in Example 10.5, contains
Cauchy sequences which do not converge.
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348 Chapter 10 Metric Spaces

Proof. Choose (by the Density of Rationals) points qk ∈ Q such that
qk → √

2. Then {qk} is Cauchy (by Theorem 10.14iv) but does not converge
in X since

√
2 /∈ X . �

This leads us to the following concept.

10.19 Definition.

A metric space X is said to be complete if and only if every Cauchy sequence
xn ∈ X converges to some point in X .

At this point, you should read Section 9.1 to see how these concepts play
out in the concrete Euclidean space setting. Notice by Theorem 9.6 that Rn

is complete for all n ∈ N. What can be said about complete metric spaces in
general?

10.20 Remark. By Definition 10.19, a complete metric space X satisfies two
properties: 1) Every Cauchy sequence in X converges; 2) the limit of every Cauchy
sequence in X stays in X.

Property 2), by Theorem 10.16, means that X is closed. Hence, it is natural
to ask, Is there a simple relationship between complete subspaces and closed
subsets?

10.21 Theorem. Let X be a complete metric space and E be a subset of X. Then
E (as a subspace) is complete if and only if E (as a subset) is closed.

Proof. Suppose that E is complete and that xn ∈ E converges. By The-
orem 10.14iv, {xn} is Cauchy. Since E is complete, it follows from Defini-
tion 10.19 that the limit of {xn} belongs to E . Thus, by Theorem 10.16, E is
closed.

Conversely, suppose that E is closed and that xn ∈ E is Cauchy in E . Since
the metrics on X and E are identical, {xn} is Cauchy in X . Since X is complete,
it follows that xn → x , as n → ∞, for some x ∈ X . But E is closed, so x must
belong to E . Thus E is complete by definition. �

EXERCISES

10.1.1. If a, b ∈ X and ρ(a, b) < ε for all ε > 0, prove that a = b.
10.1.2. Prove that {xk} is bounded in X if and only if supk∈N ρ(xk, a) < ∞ for

all a ∈ X .
10.1.3. Let Rn be endowed with the usual metric and suppose that {xk} is a

sequence in Rn with components x ( j)
k ; that is,

xk =
(

x (1)k , x (2)k , . . . , x (n)k

)
.
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a) Use Remark 8.7 to prove that {xk} is bounded in Rn if and only if
there is a C > 0 such that |x ( j)

k | ≤ C for all k ∈ N and all j ∈
{1, 2, . . . , n}.

b) Let a ∈ Rn . Prove that xk → a as n → ∞ if and only if x ( j)
k → ak , as

k → ∞, for every j ∈ {1, 2, . . . , n}.
c) Find the limit of each of the following sequences.

(
k2 + 1

1 − k2
, e1/k

) (√
k + 1 − √

k,

√
k + 2

3
√

k2 − k + 1

)
((

k

k + 1

)k

,
1

5k
,

√
4k + 1

5k − 1

)

10.1.4. a) Let a ∈ X . Prove that if xn = a for every n ∈ N, then xn converges.
What does it converge to?

b) Let X = R with the discrete metric. Prove that xn → a as n → ∞ if
and only if xn = a for large n.

10.1.5. a) Let {xn} and {yn} be sequences in X which converge to the same
point. Prove that ρ(xn, yn) → 0 as n → ∞.

b) Show that the converse of part a) is false.

10.1.6. Let {xn} be Cauchy in X . Prove that {xn} converges if and only if at least
one of its subsequences converges.

10.1.7. Prove that the discrete space R is complete.
10.1.8. a) Prove that the metric space C[a, b] in Example 10.6 is complete.

b) Let ‖ f ‖1 := ∫ b
a | f (x)|dx and define

dist( f, g) := ‖ f − g‖1

for each pair f, g ∈ C[a, b]. Prove that this distance function also
makes C[a, b] a metric space.

c) Prove that the metric space C[a, b] defined in part b) is not complete.

10.1.9. a) Show that if x ∈ Br (a), then there is an ε > 0 such that the closed
ball centered at x of radius ε is a subset of Br (a).

b) If a �= b are distinct points in X , prove that there is an r > 0 such
that Br (a) ∩ Br (b) = ∅.

c) Show that given two balls Br (a) and Bs(b), and a point x ∈ Br (a) ∩
Bs(b), there are radii c and d such that

Bc(x) ⊆ Br (a) ∩ Bs(b) and Bd(x) ⊇ Br (a) ∪ Bs(b).

10.1.10. a) A subset E of X is said to be sequentially compact if and only if
every sequence xn ∈ E has a convergent subsequence whose limit
belongs to E . Prove that every sequentially compact set is closed
and bounded.
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350 Chapter 10 Metric Spaces

b) Prove that R is closed but not sequentially compact.
c) Prove that every closed bounded subset of R is sequentially

compact.

10.1.12. Prove Theorem 10.14.

10.2 LIMITS OF FUNCTIONS

In the preceding section we used results in Chapter 2 as a model for the theory
of limits of sequences in an arbitrary metric space X . In this section we use
results in Chapter 3 as a model to develop a theory of limits of functions which
take one metric space X to another Y .

A straightforward adaptation of Definition 3.1 leads us to guess that, in an
arbitrary metric space, f (x) → L as x → a if for every ε > 0 there is a δ > 0
such that

0 < ρ(x, a) < δ implies τ( f (x), L) < ε.

The only problem with this definition is that there may be no x which satisfies
0 < ρ(x, a) < δ; for example, if X is the set N together with the metric ρ(x, y) =
|x − y| and δ = 1. To prevent our theory from collapsing into the vacuous case,
we introduce the following idea.

10.22 Definition.

A point a ∈ X is said to be a cluster point (of X) if and only if Bδ(a) contains
infinitely many points for each δ > 0.

For example, every point in any Euclidean space Rn is a cluster point (of Rn).
Notice that any concept defined on a metric space X is automatically defined

on all subsets of X . Indeed, since any subset E of X is itself a metric space (see
Example 10.4 above), the definition can be applied to E as well as to X .

To be more specific, let E be a subspace of X (i.e., a nonempty subset of X).
By Definition 10.7 an open ball in E has the form

B E
r (a) := {x ∈ E : ρ(x, a) < r}.

Since the metrics on X and E are the same, it follows that

B E
r (a) = Br (a) ∩ E,

where Br (a) is an open ball in X . A similar statement holds for closed
balls. We shall call these balls relative balls (in E). In particular, in the sub-
space Q of Example 10.5 above, the relative open balls take on the form
Br (a) = (a − r, a + r)∩Q and the relative closed balls the form [a − r, a + r ]∩Q.

What, then, does it mean for a set E to have a cluster point? By Defini-
tion 10.22, a point a ∈ X is a cluster point of a nonempty set E ⊆ X if and only
if the relative ball E ∩ Bδ(a) contains infinitely many points for each δ > 0.
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The etymology of the term cluster point is obvious. A cluster point of E
is a point near which E “clusters.” Cluster points are also called points of
accumulation.

Notice that, by definition, no finite set has cluster points. On the other hand, a
set may have infinitely many cluster points. Indeed, by the Density of Rationals
(Theorem 1.18), every point of R is a cluster point of Q.

Here are two more examples of sets and their cluster points.

10.23 EXAMPLE.

Show that 0 is the only cluster point of the set

E =
{

1

n
: n ∈ N

}
.

Solution. By Theorem 1.16 (the Archimedean Principle), given δ > 0 there is
an N ∈ N such that 1/N < δ. Since n ≥ N implies 1/n ≤ 1/N , it follows that
(−δ, δ) ∩ E contains infinitely many points. Thus 0 is a cluster point of E .

On the other hand, if x0 �= 0, then choose δ < |x0|, and notice that either
x0 − δ > 0 or x0 + δ < 0. Thus (x0 − δ, x0 + δ)∩ E contains at most finitely many
points (i.e., x0 is not a cluster point of E). �

10.24 EXAMPLE.

Show that every point in the interval [0, 1] is a cluster point of the open interval
(0, 1).

Solution. Let x0 ∈ [0, 1] and δ > 0. Then x0+δ > 0 and x0−δ < 1. In particular,
(x0−δ, x0+δ)∩(0, 1) is itself a nondegenerate interval, say (a, b). But (a, b) con-
tains infinitely many points; for example, (a + b)/2, (2a + b)/3, (3a + b)/4, . . ..
Therefore, x0 is a cluster point of (0, 1). �

We are now prepared to define limits of functions on metric spaces.

10.25 Definition.

Let a be a cluster point of X and f : X \{a} → Y . Then f (x) is said to converge
to L, as x approaches a, if and only if for every ε > 0 there is a δ > 0 such that

0 < ρ(x, a) < δ implies τ( f (x), L) < ε. (1)

In this case we write f (x) → L as x → a, or

L = lim
x→a

f (x),

and call L the limit of f (x) as x approaches a.
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352 Chapter 10 Metric Spaces

As in Chapter 3, we can introduce an algebraic structure on functions that
take X to Rm . Given f, g : X → Rm and c ∈ R, define the pointwise sum,
pointwise product, and scalar product by

( f +g)(x) := f (x)+g(x), ( f g)(x) := f (x)g(x), and (c f )(x) := c f (x), x ∈ X.

When m = 1, define the pointwise quotient by

( f/g)(x) := f (x)

g(x)
, x ∈ X and g(x) �= 0.

By modifying the proofs presented in Chapter 3, we can prove the following
results about limits of functions on metric spaces.

10.26 Theorem. Let a be a cluster point of X and f, g : X \ {a} → Y .

i) If f (x) = g(x) for all x ∈ X \ {a} and f (x) has a limit as x → a, then g(x)
also has a limit as x → a, and

lim
x→a

g(x) = lim
x→a

f (x).

ii) [Sequential Characterization of Limits]. The limit

L := lim
x→a

f (x)

exists if and only if f (xn) → L as n → ∞ for every sequence xn ∈ X \ {a}
which converges to a as n → ∞.

iii) Suppose that Y = Rn . If f (x) and g(x) have a limit as x approaches a, then so
do ( f + g)(x), ( f · g)(x), (α f )(x), and ( f/g)(x) [when Y = R and the limit
of g(x) is nonzero]. In fact,

lim
x→a

( f + g) (x) = lim
x→a

f (x)+ lim
x→a

g(x),

lim
x→a

(α f ) (x) = α lim
x→a

f (x),

lim
x→a

( f · g) (x) = lim
x→a

f (x) · lim
x→a

g(x),

and [when Y = R and the limit of g(x) is nonzero]

lim
x→a

(
f

g

)
(x) = limx→a f (x)

limx→a g(x)
.

iv) [Squeeze Theorem for Functions]. Suppose that Y = R. If h : X \ {a} → R
satisfies g(x) ≤ h(x) ≤ f (x) for all x ∈ X \ {a}, and

lim
x→a

f (x) = lim
x→a

g(x) = L ,
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then the limit of h exists, as x → a, and

lim
x→a

h(x) = L .

v) [Comparison Theorem for Functions]. Suppose that Y = R. If f (x) ≤ g(x)
for all x ∈ X \ {a}, and if f and g have a limit as x approaches a, then

lim
x→a

f (x) ≤ lim
x→a

g(x).

At this point you should read Section 9.3 to see how these concepts play out
in the concrete Euclidean space setting. Pay special attention to Theorem 9.16
and Example 9.18 (which show how to evaluate a limit in Rn) and Examples 9.19
and 9.20 (which show how to prove that a specific limit in Rn does not exist).

Here is the metric space version of Definition 3.20.

10.27 Definition.

Let E be a nonempty subset of X and f : E → Y .

i) f is said to be continuous at a point a ∈ E if and only if given ε > 0 there is
a δ > 0 such that

ρ(x, a) < δ and x ∈ E imply τ( f (x), f (a)) < ε.

ii) f is said to be continuous on E (notation: f : E → Y is continuous) if and
only if f is continuous at every x ∈ E .

Notice that this definition is valid whether a is a cluster point or not. Modify-
ing corresponding proofs in Chapter 3, we can prove the following results.

10.28 Theorem. Let E be a nonempty subset of X and f, g : E → Y .

i) f is continuous at a ∈ E if and only if f (xn) → f (a), as n → ∞, for all
sequences xn ∈ E which converge to a.

ii) Suppose that Y = Rn . If f, g are continuous at a point a ∈ E (respectively,
continuous on a set E), then so are f + g, f · g, and α f (for any α ∈ R).
Moreover, in the case Y = R, f/g is continuous at a ∈ E when g(a) �= 0
[respectively, on E when g(x) �= 0 for all x ∈ E].

The following result shows that the composition of two continuous functions
is continuous.

10.29 Theorem. Suppose that X, Y, and Z are metric spaces and that a is a cluster
point of X. Suppose further that f : X → Y and g : f (X) → Z . If f (x) → L as
x → a and g is continuous at L, then

lim
x→a

(g ◦ f )(x) = g
(

lim
x→a

f (x)
)
.
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354 Chapter 10 Metric Spaces

We shall examine the metric space analogues of the Extreme Value Theorem,
the Intermediate Value Theorem, and uniform continuity in Section 10.4.

EXERCISES

10.2.1. Find all cluster points of each of the following sets.

a) E = R \ Q
b) E = [a, b), a, b ∈ R, a < b
c) E = {(−1)nn : n ∈ N}
d) E = {xn : n ∈ N}, where xn → x as n → ∞
e) E = {1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . .}

10.2.2. a) A point a in a metric space X is said to be isolated if and only if there
is an r > 0 so small that Br (a) = {a}. Show that a point a ∈ X is not
a cluster point of X if and only if a is isolated.

b) Prove that the discrete space has no cluster points.

10.2.3. Prove that a is a cluster point for some E ⊆ X if and only if there is a
sequence xn ∈ E \ {a} such that xn → a as n → ∞.

10.2.4. a) Let E be a nonempty subset of X . Prove that a is a cluster point of E
if and only if for each r > 0, E ∩ Br (a) \ {a} is nonempty.

b) Prove that every bounded infinite subset of R has at least one clus-
ter point.

10.2.5. Prove Theorem 10.26.
10.2.6. Prove Theorem 10.28.
10.2.7. Prove Theorem 10.29.
10.2.8. Prove that if fn ∈ C[a, b], then fn → f uniformly on [a, b] if and only if

fn → f in the metric of C[a, b] (see Example 10.6).
10.2.9. Suppose that X is a metric space which satisfies the following condition.

10.30 Definition.

X is said to satisfy the Bolzano–Weierstrass Property if and only if every
bounded sequence xn ∈ X has a convergent subsequence.

a) Prove that if E is a closed, bounded subset of X and xn ∈ E , then there is an
a ∈ E and a subsequence xnk of xn such that xnk → a as k → ∞.

b) If E is closed and bounded in X and f : E → R is continuous on E , prove
that f is bounded on E .

c) Prove that under the hypotheses of part b) that there exist points xm,

xM ∈ E such that

f (xM ) = sup
x∈E

f (x) and f (xm) = inf
x∈E

f (x).
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10.3 INTERIOR, CLOSURE, AND BOUNDARY

Thus far, we have used open and closed mostly for identification. At this point,
we begin to examine these concepts in more depth. Our first result shows that
open sets and closed sets behave very differently with respect to unions and
intersections.

10.31 Theorem. Let X be a metric space.

i) If {Vα}α∈A is any collection of open sets in X, then⋃
α∈A

Vα

is open.
ii) If {Vk : k = 1, 2, . . . , n} is a finite collection of open sets in X, then

n⋂
k=1

Vk :=
⋂

k∈{1,2,...,n}
Vk

is open.
iii) If {Eα}α∈A is any collection of closed sets in X, then⋂

α∈A

Eα

is closed.
iv) If {Ek : k = 1, 2, . . . , n} is a finite collection of closed sets in X, then

n⋃
k=1

Ek :=
⋃

k∈{1,2,...,n}
Ek

is closed.
v) If V is open in X and E is closed in X, then V \ E is open and E \ V is closed.

Proof. i) Let x ∈ ⋃
α∈A Vα . Then x ∈ Vα for some α ∈ A. Since Vα is open,

it follows that there is an r > 0 such that Br (x) ⊆ Vα . Thus Br (x) ⊆ ⋃
α∈A Vα

(i.e., this union is open).
ii) Let x ∈ ⋂n

k=1 Vk . Then x ∈ Vk for k = 1, 2, . . . , n. Since each Vk is
open, it follows that there are numbers rk > 0 such that Brk (x) ⊆ Vk . Let
r = min{r1, . . . , rn}. Then r > 0 and Br (x) ⊆ Vk for all k = 1, 2, . . . , n; that is,
Br (x) ⊆ ⋂n

k=1 Vk . Hence, this intersection is open.
iii) By DeMorgan’s Law (Theorem 1.36) and part i),(⋂

α∈A

Eα

)c

=
⋃
α∈A

Ec
α

is open, so
⋂
α∈A Eα is closed.
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iv) By DeMorgan’s Law and part ii),

(
n⋃

k=1

Ek

)c

=
n⋂

k=1

Ec
k

is open, so
⋃n

k=1 Ek is closed.
v) Since V \ E = V ∩ Ec and E \ V = E ∩ V c, the former is open by part

ii), and the latter is closed by part iii). �

The finiteness hypothesis in Theorem 10.31 is critical, even for the case X = R.

10.32 Remark. Statements ii) and iv) of Theorem 10.31 are false if arbitrary col-
lections are used in place of finite collections.

Proof. In the metric space X = R,

⋂
k∈N

(
−1

k
,

1

k

)
= {0}

is closed and ⋃
k∈N

[
1

k + 1
,

k

k + 1

]
= (0, 1)

is open. �

Theorem 10.31 has many applications. Our first application is that every set
contains a largest open set and is contained in a smallest closed set. To facilitate
our discussion, we introduce the following topological operations.

10.33 Definition.

Let E be a subset of a metric space X .

i) The interior of E is the set

Eo :=
⋃

{V : V ⊆ E and V is open in X}.

ii) The closure of E is the set

E :=
⋂

{B : B ⊇ E and B is closed in X}.

Notice that every set E contains the open set ∅ and is contained in the closed
set X . Hence, the sets Eo and E are well defined. Also notice, by Theorem 10.31,
that the interior of a set is always open and the closure of a set is always closed.
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The following result shows that Eo is the largest open set contained in E , and
E is the smallest closed set which contains E .

10.34 Theorem. Let E ⊆ X . Then

i) Eo ⊆ E ⊆ E ,
ii) if V is open and V ⊆ E , then V ⊆ Eo, and

iii) if C is closed and C ⊇ E , then C ⊇ E .

Proof. Since every open set V in the union defining Eo is a subset of E , it is
clear that the union of these V ’s is a subset of E . Thus Eo ⊆ E . A similar
argument establishes E ⊆ E . This proves i).

By Definition 10.33, if V is an open subset of E , then V ⊆ Eo and if C is a
closed set containing E , then E ⊆ C . This proves ii) and iii). �

In particular, the interior of a bounded interval with endpoints a and b is
(a, b), and its closure is [a, b]. In fact, it is evident by parts ii) and iii) that
E = Eo if and only if E is open and E = E if and only if E is closed. We shall
use this observation many times below.

The following examples illustrate the fact that the interior of a nice enough
set E in R2 can be obtained by removing all its “edges,” and the closure of E by
adding all its “edges.”

10.35 EXAMPLE.

Find the interior and closure of the set E = {(x, y) : −1 ≤ x ≤ 1 and −|x | <
y < |x |}.

Solution. Graph y = |x | and x = ±1, and observe that E is a bow-tie-shaped
region with “solid” vertical edges (see Figure 8.6). Now, by Definition 10.8, any
open set in R2 must contain a disk around each of its points. Since Eo is the
largest open set inside E , it is clear that

Eo = {(x, y) : −1 < x < 1 and − |x | < y < |x |}.

Similarly,

E = {(x, y) : −1 ≤ x ≤ 1 and − |x | ≤ y ≤ |x |}. �

10.36 EXAMPLE.

Find the interior and closure of the set E = B1(−2, 0)∪ B1(2, 0)∪ {(x, 0) : −1 ≤
x ≤ 1}.

Solution. Draw a graph of this region. It turns out to be “dumbbell shaped”:
two open disks joined by a straight line. Thus Eo = B1(−2, 0) ∪ B1(2, 0) and

E = B1(−2, 0) ∪ B1(2, 0) ∪ {(x, 0) : −1 ≤ x ≤ 1}. �
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One of the most important results from one-dimensional calculus is the
Fundamental Theorem of Calculus. It states that the behavior of a derivative
f ′ on an interval [a, b], as measured by the integral, is completely determined
by the values of f at the endpoints of [a, b]. What shall we use for “endpoints”
of an arbitrary set in X? Notice that the endpoints a, b are the only points which
lie near both [a, b] and the complement of [a, b]. Using this as a cue, we intro-
duce the following concept.

10.37 Definition.

Let E ⊆ X . The boundary of E is the set

∂E := {x ∈ X : for all r > 0, Br (x) ∩ E �= ∅ and Br (x) ∩ Ec �= ∅}.
[We will refer to the last two conditions in the definition of ∂E by saying Br (x)
intersects E and Ec.]

10.38 EXAMPLE.

Describe the boundary of the set

E = {(x, y) : x2 + y2 ≤ 9 and (x − 1)(y + 2) > 0}.
Solution. Graph the relations x2 + y2 = 9 and (x − 1)(y + 2) = 0 to obtain a
region with solid curved edges and dotted straight edges (see Figure 8.7). By
definition, then, the boundary of E is the union of these curved and straight
edges (all made solid). Rather than describing ∂E analytically (which would
involve solving for the intersection points of the straight lines x = 1, y = −2,
and the circle x2 + y2 = 9), it is easier to describe ∂E by using set algebra.

∂E = {(x, y) : x2 + y2 ≤ 9 and (x − 1)(y + 2) ≥ 0}
\ {(x, y) : x2 + y2 < 9 and (x − 1)(y + 2) > 0} �

It turns out that set algebra can be used to describe the boundary of any set.

10.39 Theorem. Let E ⊆ X . Then ∂E = E\Eo.

Proof. By Definition 10.37, it suffices to show

x ∈ E if and only if Br (x) ∩ E �= ∅ for all r > 0, and (2)
x /∈ Eo if and only if Br (x) ∩ Ec �= ∅ for all r > 0. (3)

We will provide the details for (2) and leave the proof of (3) as an exercise.
Suppose that x ∈ E but Br0(x) ∩ E = ∅ for some r0 > 0. Then (Br0(x))

c is
a closed set which contains E ; hence, by Theorem 10.34iii, E ⊆ (Br0(x))

c. It
follows that E ∩ Br0(x) = ∅ (e.g., x �∈ E , a contradiction).
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Conversely, suppose that x �∈ E . Since (E)c is open, there is an r0 > 0
such that Br0(x) ⊆ (E)c. In particular, ∅ = Br0(x) ∩ E ⊇ Br0(x) ∩ E for
some r0 > 0. �

We have introduced topological operations (interior, closure, and boundary).
The following result answers the question, How do these operations interact
with the set operations (union and intersection)?

10.40 Theorem. Let A, B ⊆ X . Then

i) (A ∪ B)o ⊇ Ao ∪ Bo, (A ∩ B)o = Ao ∩ Bo,

ii) A ∪ B = A ∪ B, A ∩ B ⊆ A ∩ B,

iii) ∂(A ∪ B) ⊆ ∂A ∪ ∂B, and ∂(A ∩ B) ⊆ (A ∩ ∂B)∪ (B ∩ ∂A)∪ (∂A ∩ ∂B).

Proof. i) Since the union of two open sets is open, Ao ∪ Bo is an open subset
of A ∪ B. Hence, by Theorem 10.34ii, Ao ∪ Bo ⊆ (A ∪ B)o.

Similarly, (A∩ B)o ⊇ Ao ∩ Bo. On the other hand, if V ⊂ A∩ B, then V ⊂ A
and V ⊂ B. Thus, (A ∩ B)o ⊆ Ao ∩ Bo.

ii) Since A ∪ B is closed and contains A ∪ B, it is clear that by Theo-
rem 10.34iii), A ∪ B ⊆ A ∪ B. Similarly, A ∩ B ⊆ A ∩ B. To prove the reverse
inequality for union, suppose that x �∈ A ∪ B. Then there is a closed set E
which contains A ∪ B such that x �∈ E . Since E contains both A and B, it
follows that x �∈ A and x �∈ B. This proves part ii).

iii) Let x ∈ ∂(A ∪ B); that is, suppose that Br (x) intersects both A ∪ B and
(A∪ B)c for all r > 0. Since (A∪ B)c = Ac ∩ Bc, it follows that Br (x) intersects
both Ac and Bc for all r > 0. Thus, Br (x) intersects A and Ac for all r > 0, or
Br (x) intersects B and Bc for all r > 0 (i.e., x ∈ ∂A ∪ ∂B). This proves the first
set inequality in part iii).

To prove the second set inequality, fix x ∈ ∂(A ∩ B) [i.e., suppose that Br (x)
intersects A ∩ B and (A ∩ B)c for all r > 0]. If x ∈ (A ∩ ∂B) ∪ (B ∩ ∂A),
then there is nothing to prove. If x �∈ (A ∩ ∂B) ∪ (B ∩ ∂A), then
x ∈ (Ac ∪(∂B)c)∩(Bc ∪(∂A)c). Hence, it remains to prove that x ∈ Ac ∪(∂B)c

implies x ∈ ∂A and x ∈ Bc ∪ (∂A)c implies x ∈ ∂B. By symmetry, we need
only prove the first implication.

Case 1. x ∈ Ac. Since Br (x) intersects A, it follows that x ∈ ∂A.
Case 2. x ∈ (∂B)c. Since Br (x) intersects B, it follows that Br (x) ⊆ B for

small r > 0. Since Br (x) also intersects Ac ∪ Bc, it must be the case that Br (x)
intersects Ac. In particular, x ∈ ∂A. �

EXERCISES

10.3.1. Find the interior, closure, and boundary of each of the following sub-
sets of R.

a) E = {1/n : n ∈ N}
b) E = ⋃∞

n=1

(
1

n + 1
,

1

n

)
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c) E = ⋃
(−n, n)

d) E = Q

10.3.2. Identify which of the following sets are open, which are closed, and
which are neither. Find Eo, E , and ∂E and sketch E in each case.

a) E = {(x, y) : x2 + 4y2 ≤ 1}
b) E = {(x, y) : x2 − 2x + y2 = 0} ∪ {(x, 0) : x ∈ [2, 3]}
c) E = {(x, y) : y ≥ x2, 0 ≤ y < 1}
d) E = {(x, y) : x2 − y2 < 1, −1 < y < 1}

10.3.3. Let a ∈ X, s < r ,

V = {x ∈ X : s < ρ(x, a) < r}, and E = {x ∈ X : s ≤ ρ(x, a) ≤ r}.
Prove that V is open and E is closed.

10.3.4. Suppose that A ⊆ B ⊆ X . Prove that A ⊆ B and Ao ⊆ Bo.
10.3.5 . This exercise is used in Section 10.5. Show that if E is nonempty and

closed in X and a �∈ E , then infx∈E ρ(x, a) > 0.
10.3.6. Prove (3).
10.3.7. Show that Theorem 10.40 is best possible in the following sense.

a) There exist sets A, B in R such that (A ∪ B)o �= Ao ∪ Bo.
b) There exist sets A, B in R such that A ∩ B �= A ∩ B.
c) There exist sets A, B in R such that ∂(A ∪ B) �= ∂A ∪ ∂B and
∂(A ∩ B) �= (A ∩ ∂B) ∪ (B ∩ ∂A) ∪ (∂A ∩ ∂B).

10.3.8 . This exercise is used many times from Section 10.5 onward. Let Y be a
subspace of X .

a) Show that a set V is open in Y if and only if there is an open set U
in X such that V = U ∩ Y .

b) Show that a set E is closed in Y if and only if there is a closed set A
in X such that E = A ∩ Y .

10.3.9. Let f : R → R. Prove that f is continuous on R if and only if f −1(I )
is open in R for every open interval I .

10.3.10. Let V be a subset of X .

a) Prove that V is open in X if and only if there is a collection of open
balls {Bα : α ∈ A} such that

V =
⋃
α∈A

Bα.

b) What happens to this result if open is replaced by closed?

10.3.11. Let E ⊆ X be closed.

a) Prove that ∂E ⊆ E .
b) Prove that ∂E = E if and only if Eo = ∅.
c) Show that b) is false if E is not closed.
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10.4 COMPACT SETS

In Chapter 3 we proved the Extreme Value Theorem for functions defined on
R. In this section we shall extend that result to functions defined on an arbi-
trary metric space. To replace the hypothesis “closed, bounded interval” used in
the real case, we introduce “compactness,” a concept which gives us a powerful
tool for extending local results to global ones (see especially Remark 10.44 and
Theorems 10.52, 10.69, and 12.46).

Since compactness of E depends on how E can be “covered” by a collection
of open sets, we begin by introducing the following terminology.

10.41 Definition.

Let V = {Vα}α∈A be a collection of subsets of a metric space X and suppose
that E is a subset of X .

i) V is said to cover E (or be a covering of E) if and only if

E ⊆
⋃
α∈A

Vα.

ii) V is said to be an open covering of E if and only if V covers E and each Vα
is open.

iii) Let V be a covering of E . V is said to have a finite (respectively, countable)
subcovering if and only if there is a finite (respectively, countable) subset
A0 of A such that {Vα}α∈A0 covers E .

Notice that the collections of open intervals

{(
1

k + 1
,

k

k + 1

)}
k∈N

and
{(

−1

k
,

k + 1

k

)}
k∈N

are open coverings of the interval (0, 1). The first covering of (0, 1) has no finite
subcover, but any member of the second covering covers (0, 1). Thus an open
covering of an arbitrary set may or may not have a finite subcovering.

Sets that always have finite subcoverings are important enough to be given
a name.

10.42 Definition.

A subset H of a metric space X is said to be compact if and only if every open
covering of H has a finite subcover.

To get a feeling for what this definition means, we make some elementary
observations concerning compact sets in general.

10.43 Remark. The empty set and all finite subsets of a metric space are compact.
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362 Chapter 10 Metric Spaces

Proof. These statements follow immediately from Definition 10.42. The
empty set needs no set to cover it, and any finite set H can be covered by
finitely many sets, one set for each element in H . �

Since the empty set and finite sets are also closed, it is natural to ask whether
there is a relationship between compact sets and closed sets in general. The
following three results address this question in an arbitrary metric space.

10.44 Remark. A compact set is always closed.

Proof. Suppose that H is compact but not closed. Then H is nonempty and
(by Theorem 10.16) there is a convergent sequence xk ∈ H whose limit x does
not belong to H . For each y ∈ H , set r(y) := ρ(x, y)/2. Since x does not
belong to H, r(y) > 0; hence, each Br(y)(y) is open and contains y; that is,
{Br(y)(y) : y ∈ H} is an open covering of H . Since H is compact, we can
choose points y j and radii r j := r(y j ) such that {Br j (y j ) : j = 1, 2, . . . , N }
covers H .

Set r := min{r1, . . . , rN }. (This is a finite set of positive numbers, so r is also
positive.) Since xk → x as k → ∞, xk ∈ Br (x) for large k. But xk ∈ Br (x)∩ H
implies xk ∈ Br j (y j ) for some j ∈ N. Therefore, it follows from the choices of
r j and r , and from the Triangle Inequality, that

r j ≥ ρ(xk, y j ) ≥ ρ(x, y j )− ρ(xk, x)

= 2r j − ρ(xk, x) > 2r j − r ≥ 2r j − r j = r j ,

a contradiction. �

The following result is a partial converse of Remark 10.44 (see also Theo-
rem 10.50 below).

10.45 Remark. A closed subset of a compact set is compact.

Proof. Let E be a closed subset of H , where H is compact in X and suppose
that V = {Vα}α∈A is an open covering of E . Now Ec = X\E is open; hence,
V ∪ {Ec} is an open covering of H . Since H is compact, there is a finite set
A0 ⊆ A such that

H ⊆ Ec ∪
⎛
⎝ ⋃
α∈A0

Vα

⎞
⎠ .

But E ∩ Ec = ∅. Therefore, E is covered by {Vα}α∈A0 . �

Here is the connection between closed, bounded sets and compact sets.

10.46 Theorem. Let H be a subset of a metric space X. If H is compact, then H
is closed and bounded.
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Proof. Suppose that H is compact. By Remark 10.44, H is closed. It is also
bounded. Indeed, fix b ∈ X and observe that {Bn(b) : n ∈ N} covers X . Since
H is compact, it follows that

H ⊂
N⋃

n=1

Bn(b)

for some N ∈ N. Since these balls are nested, we conclude that H ⊂ BN (b)
(i.e., H is bounded). �

10.47 Remark. The converse of Theorem 10.46 is false for arbitrary metric
spaces.

Proof. Let X = R be the discrete metric space introduced in Example 10.3.
Since σ(0, x) ≤ 1 for all x ∈ R, every subset of X is bounded. Since xk → x
in X implies xk = x for large k, every subset of X is closed. Thus [0, 1] is a
closed, bounded subset of X . Since {x}x∈[0,1] is an uncountable open covering
of [0, 1], which has no finite subcover, we conclude that [0, 1] is closed and
bounded, but not compact. �

The problem here is that the discrete space has too many open sets. To iden-
tify a large class of metric spaces for which the converse of Theorem 10.46
DOES hold, we need a property which cuts the “number of essential” open
sets down to a reasonable size.

10.48 Definition.

A metric space X is said to be separable if and only if it contains a countable
dense subset (i.e., if and only if there is a countable set Z of X such that for
every point a ∈ X there is a sequence xk ∈ Z such that xk → a as k → ∞).

It is easy to see (Theorem 9.3) that all Euclidean spaces are separable. The
space C[a, b] is also separable (see Exercise 10.7.1). Hence, the hypothesis of
separability is not an unusual requirement.

The following result makes clear what we meant above by “number of essen-
tial” open sets. It shows that every open covering of a set in a separable metric
space has a countable subcovering.

10.49 Theorem. [LINDELÖF].
Let E be a subset of a separable metric space X. If {Vα}α∈A is a collection of
open sets and E ⊆ ∪α∈AVα , then there is a countable subset {α1, α2, . . .} of A
such that

E ⊆
∞⋃

k=1

Vαk .
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364 Chapter 10 Metric Spaces

Proof. Let Z be a countable dense subset of X , and consider the collection T
of open balls with centers in Z and rational radii. This collection is countable.
Moreover, it “approximates” all other open sets in the following sense:

Claim: Given any open ball Br (x) ⊂ X , there is a ball Bq(a) ∈ T such that
x ∈ Bq(a) and Bq(a) ⊆ Br (x).

Proof of Claim: Let Br (x) ⊂ X be given. By Definition 10.48, choose
a ∈ Z such that ρ(x, a) < r/4, and choose by Theorem 1.18 a rational q ∈ Q
such that r/4 < q < r/2. Since r/4 < q, we have x ∈ Bq(a). Moreover, if
y ∈ Bq(a), then

ρ(x, y) ≤ ρ(x, a)+ ρ(a, y) < q + r

4
<

r

2
+ r

4
< r.

Therefore, Bq(a) ⊆ Br (x). This establishes the claim.
To prove the theorem, let x ∈ E . By hypothesis, x ∈ Vα for some α ∈ A.

Hence, by the claim, there is a ball Bx ∈ T such that

x ∈ Bx ⊆ Vα. (4)

The collection T is countable; hence, so is the subcollection

{U1,U2, . . . } := {Bx : x ∈ E}. (5)

By (4), for each k ∈ N there is at least one αk ∈ A such that Uk ⊆ Vαk . Hence,
by (5),

E ⊆
⋃
x∈E

Bx =
∞⋃

k=1

Uk ⊆
∞⋃

k=1

Vαk . �

We are prepared to obtain a converse of Theorem 10.46. (For the definition
of the Bolzano–Weierstrass Property, see Exercise 10.2.9.)

10.50 Theorem. [HEINE–BOREL].
Let X be a separable metric space which satisfies the Bolzano–Weierstrass
Property and H be a subset of X. Then H is compact if and only if it is closed
and bounded.

Proof. By Theorem 10.46, every compact set is closed and bounded.
Conversely, suppose to the contrary that H is closed and bounded but not

compact. Let V be an open covering of H which has no finite subcover of H .
By Lindelöf’s Theorem, we may suppose that V = {Vk}k∈N; that is,

H ⊆
⋃
k∈N

Vk . (6)
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By the choice of V, ∪k
j=1Vj cannot contain H for any k ∈ N. Thus we can

choose a point

xk ∈ H \
k⋃

j=1

Vj (7)

for each k ∈ N. Since H is bounded, the sequence xk is bounded. Hence,
by the Bolzano–Weierstrass Property, there is a subsequence xkν which con-
verges to some x as ν → ∞. Since H is closed, x ∈ H . Hence, by (6), x ∈ VN
for some N ∈ N. But VN is open; hence, there is an M ∈ N such that ν ≥ M
implies kν > N and xkν ∈ VN . This contradicts (7). We conclude that H is
compact. �

Since Rn satisfies the hypotheses of Theorem 10.50 (see Theorems 9.3 and
9.5), it follows that a subset of a Euclidean space is compact if and only if it is
closed and bounded.

We now turn our attention to uniform continuity on an arbitrary metric
space.

10.51 Definition.

Let X be a metric space, E be a nonempty subset of X , and f : E → Y . Then
f is said to be uniformly continuous on E (notation: f : E → Y is uniformly
continuous) if and only if given ε > 0 there is a δ > 0 such that

ρ(x, a) < δ and x, a ∈ E imply τ( f (x), f (a)) < ε.

In the real case, we proved that uniform continuity and continuity were equiv-
alent on closed, bounded intervals. That result, whose proof relied on the
Bolzano–Weierstrass Theorem, is not true in an arbitrary metric space. If we
strengthen the hypothesis from closed and bounded to compact, however, the
result is valid for any metric space.

10.52 Theorem. Suppose that E is a compact subset of X and that f : X → Y .
Then f is uniformly continuous on E if and only if f is continuous on E.

Proof. If f is uniformly continuous on a set, then it is continuous whether or
not the set is compact.

Conversely, suppose that f is continuous on E . Given ε > 0 and a ∈ E ,
choose δ(a) > 0 such that

x ∈ Bδ(a)(a) and x ∈ E imply τ( f (x), f (a)) <
ε

2
.
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366 Chapter 10 Metric Spaces

Since a ∈ Bδ(a) for all δ > 0, it is clear that {Bδ(a)/2(a) : a ∈ E} is an open
covering of E . Since E is compact, choose finitely many points a j ∈ E and
numbers δ j := δ(a j ) such that

E ⊆
N⋃

j=1

Bδ j/2(a j ). (8)

Set δ := min{δ1/2, . . . , δN/2}.
Suppose that x, a ∈ E with ρ(x, a) < δ. By (8), x belongs to Bδ j/2(a j ) for

some 1 ≤ j ≤ N . Hence,

ρ(a, a j ) ≤ ρ(a, x)+ ρ(x, a j ) <
δ j

2
+ δ j

2
= δ j ;

that is, a also belongs to Bδ j (a j ). It follows, therefore, from the choice of δ j
that

τ( f (x), f (a)) ≤ τ( f (x), f (a j ))+ τ( f (a j ), f (a)) <
ε

2
+ ε

2
= ε.

This proves that f is uniformly continuous on E . �

EXERCISES

10.4.1. Identify which of the following sets are compact and which are not. If
E is not compact, find the smallest compact set H (if there is one) such
that E ⊂ H .

a) {1/k : k ∈ N} ∪ {0}
b) {(x, y) ∈ R2 : a ≤ x2 + y2 ≤ b} for real numbers 0 < a < b
c) {(x, y) ∈ R2 : y = sin(1/x) for some x ∈ (0, 1]}
d) {(x, y) ∈ R2 : |xy| ≤ 1}

10.4.2. Let A, B be compact subsets of X . Prove that A ∪ B and A ∩ B are
compact.

10.4.3. Suppose that E ⊆ R is compact and nonempty. Prove that
sup E, inf E ∈ E .

10.4.4. Suppose that {Vα}α∈A is a collection of nonempty open sets in X which
satisfies Vα ∩ Vβ = ∅ for all α �= β in A. Prove that if X is separable,
then A is countable. What happens to this result when open is omitted?

10.4.5. Prove that if V is open in a separable metric space X , then there are
open balls B1, B2, . . . such that

V =
⋃
j∈N

B j .

Prove that every open set in R is a countable union of open intervals.
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10.4.6. Suppose that X is a separable metric space which satisfies the Bolzano–
Weierstrass Property, that Y is a complete metric space, and that E is
a bounded subset of X . Prove that a function f : E → Y is uniformly
continuous on E if and only if f can be continuously extended to E ;
that is, if and only if there exists a continuous function g : E → Y such
that f (x) = g(x) for all x ∈ E .

10.4.7. Suppose that X satisfies the Bolzano–Weierstrass Property and that A
and B are compact subsets of X . Prove that if A ∩ B = ∅ and if

dist (A, B) := inf{ρ(x, y) : x ∈ A and y ∈ B},

then dist (A, B) > 0. Show that even in the space R2, there exist subsets
A and B which are closed and satisfy A ∩ B = ∅, but dist(A, B) = 0.

10.4.8. a) Prove that Cantor’s Intersection Theorem holds for nested compact
sets in an arbitrary metric space; that is, if H1, H2, . . . is a nested
sequence of nonempty compact sets in X , then

∞⋂
k=1

Hk �= ∅.

b) Prove that (
√

2,
√

3) ∩ Q is closed and bounded but not compact in
the metric space Q introduced in Example 10.5.

c) Show that Cantor’s Intersection Theorem does not hold in an arbi-
trary metric space if compact is replaced by closed and bounded.

10.4.9. Prove that the Bolzano–Weierstrass Property does not hold for C[a, b]
and ‖ f ‖ (see Example 10.6). Namely, prove that if fn(x) = xn , then
‖ fn‖ is bounded but ‖ fnk − f ‖ does not converge for any f ∈ C[0, 1]
and any subsequence {nk}.

10.4.10. Let X be a metric space.

a) Prove that if E ⊆ X is compact, then E is sequentially compact (see
Exercise 10.1.10).

b) Prove that if X is separable and satisfies the Bolzano–Weierstrass
Property, then a set E ⊆ X is sequentially compact if and only if it is
compact.

10.5 CONNECTED SETS

We have introduced open sets (analogues of open intervals), closed sets (ana-
logues of closed intervals), and compact sets (analogues of closed bounded
intervals) in order to develop a calculus of functions of several variables, in
Chapters 11 through 13, which parallels that developed for functions of a single
variable in Chapters 2 through 5. Some of the earlier theory, however, depended
on a property of intervals not yet discussed. For example, the proof of the Inter-
mediate Value Theorem tacitly used the fact that an interval is connected (i.e., is
unbroken and all of one piece). We shall also use connected sets in Chapter 13 to
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368 Chapter 10 Metric Spaces

provide a sufficiently broad definition of surfaces for computational ease. Thus
we introduce the following idea.

10.53 Definition.

Let X be a metric space.

i) A pair of nonempty open sets U, V in X is said to separate X if and only if
X = U ∪ V and U ∩ V = ∅.

ii) X is said to be connected if and only if X cannot be separated by any pair
of open sets U, V .

Loosely speaking, a connected space is all in one piece (i.e., cannot be broken
into smaller, nonempty, open pieces which do not share any common points).
Indeed, we shall see that R, under the usual metric, is connected. On the other
hand, under the discrete metric, R is not connected (since (−∞, 0] and (0,∞)

are both “open” in the discrete space).
Recall (Example 10.4) that every subset of X is a metric space. Hence Defini-

tion 10.53 also defines what it means for a subset E of X to be connected. We can
always find two subsets of an arbitrary metric space which are connected: 1) The
empty set is connected, since it can never be written as the union of nonempty
sets. 2) Every singleton E = {a} is also connected since, if E = U ∪ V , where
both U and V are nonempty, then E has at least two points.

To obtain deeper results about connectivity, it is convenient to introduce the
following concepts. (These concepts will also be used to study continuous func-
tions in the next section.)

10.54 Definition.

Let X be a metric space and E ⊆ X .

i) A set U ⊆ E is said to be relatively open in E if and only if there is a set V
open in X such that U = E ∩ V .

ii) A set A ⊆ E is said to be relatively closed in E if and only if there is a set C
closed in X such that A = E ∩ C .

For example, the set E of Example 10.35 is relatively open in the subspace
Y := {(x, y) : −1 ≤ x ≤ 1} and relatively closed in the subspace Z := {(x, y) :
−|x | < y < |x |}. Indeed, V = Z is open in R2 (it contains none of its boundary),
A = Y is closed in R2 (it contains all its boundary), and E = V ∩ Y, E = A ∩ Z .

Recall (Exercise 10.3.8) that a subset A of E is open (respectively, closed) in
the subspace E if and only if it is relatively open (respectively, relatively closed)
in the set E . Thus all Definition 10.54 does is codify the “subspace topology.”

By Definition 10.53, then, a set E is connected if there are no nonempty sets
U, V , relatively open in E , such that E = U ∪ V and U ∩ V = ∅. The follow-
ing result, which is usually easier to use than Definition 10.53, shows that when
“separating” a nonconnected set, we can use open sets instead of relatively open
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sets. (The converse of this result is also true, but harder to prove—see Theo-
rem 10.57 below.)

10.55 Remark. Let E ⊆ X . If there exists a pair of open sets A, B in X which
separate E (i.e., if E ⊆ A ∪ B, A ∩ B = ∅, A ∩ E �= ∅, and B ∩ E �= ∅), then E is
not connected.

Proof. Set U = A ∩ E and V = B ∩ E . It suffices to prove that U and V are
relatively open in E and separate E . It is clear by hypothesis and the remarks
above that U and V are nonempty, they are both relatively open in E , and
U ∩ V = ∅. It remains to prove that E = U ∪ V . But E is a subset of A ∪ B, so
E ⊆ U ∪ V . On the other hand, both U and V are subsets of E , so E ⊇ U ∪ V .
We conclude that E = U ∪ V . �

Thus when looking for “separations” of a given set E ⊂ X , we can confine our
attention to open sets in X . Here are several examples. The set Q is not con-
nected since the pair A = (−∞,

√
2), B = (

√
2,∞) separate Q. Example 10.35

is not connected since {(x, y) : x < 0} and {(x, y) : x > 0} are open in R2 (nei-
ther of them contains any of their boundary points) and separate the bow tie set
E . Notice that Examples 10.36 and 10.38 are both connected in R2.

There is a simple description of all connected subsets of R.

10.56 Theorem. A subset E of R is connected if and only if E is an interval.

Proof. Let E be a connected subset of R. If E is empty or contains only one
point, then E is a degenerate interval. Hence we may suppose that E contains
at least two points.

Set a = inf E and b = sup E . Notice that −∞ ≤ a < b ≤ ∞. Suppose
for simplicity that a, b /∈ E ; that is, E ⊆ (a, b). If E �= (a, b), then there is an
x ∈ (a, b) such that x /∈ E . By the Approximation Property, E ∩(a, x) �= ∅ and
E ∩ (x, b) �= ∅, and, by assumption, E ⊆ (a, x) ∪ (x, b). Hence, E is separated
by the open sets (a, x), (x, b), a contradiction.

Conversely, suppose that E is an interval which is not connected. Then
there are sets U, V, relatively open in E , which separate E (i.e., E = U ∪ V,
U ∩ V = ∅), and there exist points x1 ∈ U and x2 ∈ V . We may suppose that
x1 < x2. Since x1, x2 ∈ E and E is an interval, I0 := [x1, x2] ⊆ E . Define f on
I0 by

f (x) =
{

0 x ∈ U
1 x ∈ V .

Since U ∩ V = ∅, f is well defined. We claim that f is continuous on I0.
Indeed, fix x0 ∈ [x1, x2]. Since U ∪ V = E ⊇ I0, it is evident that x0 ∈ U
or x0 ∈ V . We may suppose the former. Let yk ∈ I0 and suppose that yk → x0
as k → ∞. Since U is relatively open, there is an ε > 0 such that (x0 − ε, x0 +
ε) ∩ E ⊂ U . Since yk ∈ E and yk → x0, it follows that yk ∈ U for large k.
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370 Chapter 10 Metric Spaces

Hence f (yk) = 0 = f (x0) for large k. Therefore, f is continuous at x0 by the
Sequential Characterization of Continuity.

We have proved that f is continuous on I0. Hence, by the Intermediate
Value Theorem (Theorem 3.29), f must take on the value 1/2 somewhere on
I0. This is a contradiction, since by construction, f takes on only the values 0
or 1. �

We can use this result to prove that a real function is continuous on a closed,
bounded interval if and only if its graph is closed and connected (see Theo-
rem 9.51 in the preceding chapter).

We close this section by showing that the converse of Remark 10.55 is also true.
This result is optional because we do not use it elsewhere.

∗10.57 Theorem. Let E ⊆ X . If there exist sets U, V, relatively open in E, such
that U ∩ V = ∅, E = U ∪ V, U �= ∅, and V �= ∅, then there is a pair of open sets
A, B which separates E.

Proof. We first show that

U ∩ V = ∅. (9)

Indeed, since V is relatively open in E , there is a set �, open in X , such that
V = E ∩�. Since U ∩ V = ∅, it follows that U ⊂ �c. This last set is closed in
X . Therefore,

U ⊆ �c = �c;
that is, (9) holds.

Next, we use (9) to construct the set B. Set

δx = inf{ρ(x, u) : u ∈ U }, x ∈ V, and B =
⋃
x∈V

Bδx/2(x).

Clearly, B is open in X . Since δx > 0 for each x /∈ U (see Exercise 10.3.5),
B contains V ; hence, B ∩ E ⊇ V . The reverse inequality also holds since by
construction B ∩ U = ∅ and by hypothesis E = U ∪ V . Therefore, B ∩ E = V .

Similarly, we can construct an open set A such that A ∩ E = U by setting

εy = inf{ρ(v, y) : v ∈ V }, y ∈ U and A =
⋃
y∈U

Bεy/2(y).

To prove that the pair A, B separates E , it remains to prove that A ∩ B = ∅.
Suppose to the contrary that there is a point a ∈ A ∩ B. Then a ∈ Bδx/2(x)
for some x ∈ V and a ∈ Bεy/2(y) for some y ∈ U . We may suppose that
δx ≤ εy . Then

ρ(x, y) ≤ ρ(x, a)+ ρ(a, y) <
δx

2
+ εy

2
≤ εy .
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Therefore, ρ(x, y) < inf{ρ(v, y) : v ∈ V }. Since x ∈ V , this is impossible. We
conclude that A ∩ B = ∅. �

EXERCISES

10.5.1. a) Let a ≤ b and c ≤ d be real numbers. Sketch a graph of the
rectangle

[a, b] × [c, d] := {(x, y) : x ∈ [a, b], y ∈ [c, d]},

and decide whether this set is compact or connected. Explain
your answers.

b) Sketch a graph of set

B1(−2, 0) ∪ B1(2, 0) ∪ {(x, 0) : −1 < x < 1},

and decide whether this set is compact or connected. Explain
your answers.

10.5.2. a) Sketch a graph of the set

{(x, y) : x2 + 2y2 < 6, y ≥ 0},

and decide whether this set is relatively open or relatively closed
in the subspace {(x, y) : y ≥ 0}. Do the same for the subspace
{(x, y) : x2 + 2y2 < 6}. Explain your answers.

b) Sketch a graph of set

{(x, y) : x2 + y2 ≤ 1, (x − 2)2 + y2 < 2},

and decide whether this set is relatively open or relatively closed
in the subspace B1(0, 0). Do the same for the subspace B√

2(2, 0).
Explain your answers.

10.5.3. a) Prove that the intersection of two connected sets in R is con-
nected. Show that this is false if R is replaced by R2.

b) Generalize part a) as follows. If {Eα}α∈A is an arbitrary collection
of connected sets in R, then

⋂
α∈A

Eα

is also connected.
10.5.4. Prove that if E ⊆ R is connected, then Eo is also connected. Show

that this is false if R is replaced by R2.
10.5.5. Suppose that E ⊆ X is connected and that E ⊆ A ⊆ E . Prove that A

is connected.
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10.5.6. Suppose that X and Y are metric spaces and that f : X → Y . If X is
compact and connected, and if to every x ∈ X there corresponds an
open ball Bx such that x ∈ Bx and f (y) = f (x) for all y ∈ Bx , prove
that f is constant on X .

10.5.7 . This exercise is used in Section 10.6. Let H ⊆ X . Prove that H is
compact if and only if every cover {Eα}α∈A of H , where the Eα’s are
relatively open in H , has a finite subcover.

10.5.8. A set E in a metric space is called clopen if it is both open and closed.

a) Prove that every metric space has at least two clopen sets.
b) Prove that a metric space is connected if and only if it contains

exactly two clopen sets.

10.5.9. Let X be a metric space. Prove that X is connected if and only if
every nonempty proper subset of X has a nonempty boundary.

∗10.5.10 . This exercise is used to prove ∗Corollary 11.35.

a) A set E ⊆ Rn is said to be polygonally connected if and only if
any two points a, b ∈ E can be connected by a polygonal path
in E ; that is, there exist points xk ∈ E, k = 1, . . . , N , such that
x0 = a, xN = b and L(xk−1; xk) ⊆ E for k = 1, . . . , N . Prove that
every polygonally connected set in Rn is connected.

b) Let E ⊆ Rn be open and x0 ∈ E . Let U be the set of points
x ∈ E which can be polygonally connected in E to x0. Prove that
U is open.

c) Prove that every open connected set in Rn is polygonally con-
nected.

10.5.11. Suppose that {Eα}α∈A is a collection of connected sets in a metric
space X such that ∩α∈A Eα �= ∅. Prove that

E =
⋃
α∈A

Eα

is connected.

10.6 CONTINUOUS FUNCTIONS

In this section we discuss the behavior of images and inverse images of open
sets, closed sets, compact sets, and connected sets under continuous functions.
We shall use these results many times in the sequel.

Recall that if X and Y are metric spaces (with respective metrics ρ and τ ), then
a function f : X → Y is continuous on X if and only if given a ∈ X and ε > 0
there is a δ > 0 such that ρ(x, a) < δ implies τ( f (x), f (a)) < ε; that is, such that

Bδ(a) ⊆ f −1(Bε( f (a))). (10)

This observation can be used to give the following simple but powerful charac-
terization of continuous functions which can be stated without using the metric
of X (see also Exercise 10.6.3).
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10.58 Theorem. Suppose that f : X → Y . Then f is continuous if and only if
f −1(V ) is open in X for every open V in Y.

Proof. Suppose that f is continuous on X and that V is open in Y . We may
suppose that f −1(V ) is nonempty. Let a ∈ f −1(V ); that is, f (a) ∈ V . Since
V is open, choose ε > 0 such that Bε( f (a)) ⊆ V . Since f is continuous at a,
choose δ > 0 such that (10) holds. Evidently,

Bδ(a) ⊆ f −1(Bε( f (a))) ⊆ f −1(V ). (11)

Since a ∈ f −1(V ) was arbitrary, we have shown that every point in f −1(V ) is
interior to f −1(V ). Thus f −1(V ) is open.

Conversely, let ε > 0 and a ∈ X . The ball V = Bε( f (a)) is open in Y .
By hypothesis, f −1(V ) is open. Since a ∈ f −1(V ), it follows that there is
a δ > 0 such that Bδ(a) ⊆ f −1(V ). This means that if ρ(x, a) < δ, then
τ( f (x), f (a)) < ε. Therefore, f is continuous at a ∈ X . �

By using the subspace (i.e., relative) topology, we see that Theorem 10.58
contains the following criterion for f to be continuous on a subset of X .

10.59 Corollary. Let E ⊆ X and f : E → Y . Then f is continuous on E if and
only if f −1(V ) ∩ E is relatively open in E for all open sets V in Y.

We shall refer to Theorem 10.58 and its corollary by saying that open sets
are invariant under inverse images by continuous functions. It is interesting to
notice that closed sets are also invariant under inverse images by continuous
functions (see Exercises 10.6.3 and 10.6.4).

It is natural to ask whether compact sets and connected sets are invariant
under inverse images by continuous functions. The following examples show
that, even for the metric space R, the answer to this question is no.

10.60 EXAMPLES.

i) If f (x) = 1/x and H = [0, 1], then f is continuous on (0,∞) and H is
compact, but f −1(H) = [1,∞) is not compact.

ii) If f (x) = x2 and E = (1, 4), then f is continuous on R and E is connected,
but f −1(E) = (−2,−1) ∪ (1, 2) is not connected.

The next two results show that compact sets and connected sets are invariant
under images, rather than inverse images, by continuous functions.

10.61 Theorem. If H is compact in X and f : H → Y is continuous on H, then
f (H) is compact in Y.
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Proof. Suppose that {Vα}α∈A is an open covering of f (H). By Theorem 1.37,

H ⊆ f −1( f (H)) ⊆ f −1

(⋃
α∈A

Vα

)
=
⋃
α∈A

f −1(Vα).

Hence, by Corollary 10.59, { f −1(Vα)}α∈A is a covering of H whose sets are
all relatively open in H . Since H is compact, there are indices α1, α2, . . . , αN
such that

H ⊆
N⋃

j=1

f −1(Vα j )

(see Exercise 10.5.7). It follows from Theorem 1.37 that

f (H) ⊆ f

⎛
⎝ N⋃

j=1

f −1(Vα j )

⎞
⎠ =

N⋃
j=1

( f ◦ f −1)(Vα j ) =
N⋃

j=1

Vα j .

Therefore, f (H) is compact. �

10.62 Theorem. If E is connected in X and f : E → Y is continuous on E, then
f (E) is connected in Y.

Proof. Suppose that f (E) is not connected. By Definition 10.53, there exists
a pair U, V ⊂ Y of relatively open sets in f (E) which separates f (E). By
Exercise 10.6.4, f −1(U ) ∩ E and f −1(V ) ∩ E are relatively open in E . Since
f (E) = U ∪ V , we have

E = ( f −1(U ) ∩ E) ∪ ( f −1(V ) ∩ E).

Since U ∩ V = ∅, we also have f −1(U ) ∩ f −1(V ) = ∅. Thus f −1(U ) ∩ E,
f −1(V ) ∩ E is a pair of relatively open sets which separates E . Hence, by
Definition 10.53, E is not connected, a contradiction. �

(Note: Theorems 10.61 and 10.62 do not hold if compact or connected are re-
placed by open or closed. For example, if f (x) = x2 and V = (−1, 1), then f is
continuous on R and V is open, but f (V ) = [0, 1) is neither open nor closed.)

Suppose that f is a real function continuous on a closed, bounded interval
[a, b]. Then the function F(x) = (x, f (x)) is continuous from R into R2. Since
the graph of y = f (x) for x ∈ [a, b] is the image of [a, b] under F , it follows
from Theorems 10.61 and 10.62 that the graph of f is compact and connected.
It is interesting to note that this property actually characterizes continuity of
real functions (see Theorem 9.51 in the preceding chapter).

To illustrate the power of the topological point of view presented above, com-
pare the proofs of the following theorem and Exercise 10.6.5 with those of The-
orems 3.26 and 3.29.
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10.63 Theorem. [EXTREME VALUE THEOREM].
Let H be a nonempty, compact subset of X and suppose that f : H → R is
continuous. Then

M := sup{ f (x) : x ∈ H} and m := inf{ f (x) : x ∈ H}
are finite real numbers and there exist points xM , xm ∈ H such that M = f (xM )

and m = f (xm).

Proof. By symmetry, it suffices to prove the result for M . Since H is compact,
f (H) is compact. Hence, by the Theorem 10.46, f (H) is closed and bounded.
Since f (H) is bounded, M is finite. By the Approximation Property, choose
xk ∈ H such that f (xk) → M as k → ∞. Since f (H) is closed, M ∈ f (H).
Therefore, there is an xM ∈ H such that M = f (xM ). A similar argument
shows that m is finite and attained on H . �

The following analogue of Theorem 4.32 will be used in Chapter 13 to exam-
ine change of parametrizations of curves and surfaces.

10.64 Theorem. If H is a compact subset of X and f : H → Y is 1–1 and
continuous, then f −1 is continuous on f (H).

Proof. By Exercise 10.6.4a, it suffices to show that ( f −1)−1 takes closed sets
in X to relatively closed sets in f (H). Let E be closed in X . Then E ∩ H is a
closed subset of H , so by Remark 10.45, E ∩ H is compact. Hence, by Theo-
rem 10.61, f (E ∩ H) is compact, in particular, closed. Since f is 1–1, f (E ∩ H)
= f (E) ∩ f (H) (see Exercise 1.5.7). Since f (E ∩ H) and f (H) are closed, it
follows that f (E) ∩ f (H) is relatively closed in f (H). Since ( f −1)−1 = f , we
conclude that ( f −1)−1(E) ∩ f (H) is relatively closed in f (H). �

If you are interested in how to use these topological ideas to study real functions
further, you may read Section 9.6 in the preceding chapter now.

EXERCISES

10.6.1. Let f (x) = sin x and g(x) = x/|x | if x �= 0 and g(0) = 0.

a) Find f (E) and g(E) for E = (0, π), E = [0, π], E = (−1, 1), and
E = [−1, 1]. Compare your answers to what Theorems 10.58, 10.61,
and 10.62 predict. Explain any departures from the predictions.

b) Find f −1(E) and g−1(E) for E = (0, 1), E = [0, 1], E = (−1, 1), and
E = [−1, 1]. Compare your answers to what Theorems 10.58, 10.61,
and 10.62 predict. Explain any departures from the predictions.

10.6.2. Let f (x) = √
x and g(x) = 1/x if x �= 0 and g(0) = 0.

a) Find f (E) and g(E) for E = (0, 1), E = [0, 1), and E = [0, 1]. Com-
pare your answers to what Theorems 10.58, 10.61, and 10.62 predict.
Explain any departures from the predictions.
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b) Find f −1(E) and g−1(E) for E = (−1, 1) and E = [−1, 1]. Com-
pare your answers to what Theorems 10.58, 10.61, and 10.62 predict.
Explain any departures from the predictions.

10.6.3. Suppose that f : X → Y . Prove that f is continuous if and only if
f −1(C) is closed in X for every set C closed in Y .

10.6.4. Suppose that E ⊆ X and that f : E → Y .

a) Prove that f is continuous on E if and only if f −1(A)∩ E is relatively
closed in E for all closed sets A in Y .

b) Suppose that f is continuous on E . Prove that if V is relatively open
in f (E), then f −1(V ) is relatively open in E , and if A is relatively
closed in f (E), then f −1(A) is relatively closed in E .

10.6.5. [Intermediate Value Theorem]. Let E be a connected subset of X . If
f : E → R is continuous, f (a) �= f (b) for some a, b ∈ E , and y is a
number which lies between f (a) and f (b), then prove that there is an
x ∈ E such that f (x) = y. (You may use Theorem 10.56.)

10.6.6. Suppose that H is a nonempty compact subset of X and that Y is a Eu-
clidean space.

a) If f : H → Y is continuous, prove that

‖ f ‖H := sup
x∈H

‖ f (x)‖Y

is finite and there exists an x0 ∈ H such that ‖ f (x0)‖Y = ‖ f ‖H .
b) A sequence of functions fk : H → Y is said to converge uniformly

on H to a function f : H → Y if and only if given ε > 0 there is an
N ∈ N such that

k ≥ N and x ∈ H imply ‖ fk(x)− f (x)‖Y < ε.

Show that ‖ fk − f ‖H → 0 as k → ∞ if and only if fk → f uniformly
on H as k → ∞.

c) Prove that a sequence of functions fk converges uniformly on H if
and only if, given ε > 0, there is an N ∈ N such that

k, j ≥ N implies ‖ fk − f j‖H < ε.

10.6.7. Suppose that E is a compact subset of X .

a) If f, g : E → Rn are uniformly continuous, prove that f + g and
f · g are uniformly continuous. Did you need compactness for both
results?

b) If g : E → R is continuous on E and g(x) �= 0 for x ∈ E , prove that
1/g is a bounded function.

c) If f, g : E → R are uniformly continuous on E and g(x) �= 0 for
x ∈ E , prove that f/g is uniformly continuous on E .
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10.6.8. Suppose that E ⊆ X and that f : E → Y .

a) If f is uniformly continuous on E and xn ∈ E is Cauchy in X , prove
that f (xn) is Cauchy in Y .

b) Suppose that D is a dense subspace of X (i.e., that D ⊂ X and D = X).
If Y is complete and f : D → Y is uniformly continuous on D, prove
that f has a continuous extension to X ; that is, prove that there is a
continuous function g : X → Y such that g(x) = f (x) for all x ∈ D.

10.6.9. Suppose that X is connected. Prove that if there is a nonconstant, con-
tinuous function f : X → R, then X has uncountably many points.

∗10.7 STONE–WEIERSTRASS THEOREM

This section uses the Binomial Series (Theorem 7.52). Since these results are not
used elsewhere, it can be skipped.
One of the oldest questions in analysis is the following:
APPROXIMATION QUESTION. Can one use polynomials to approximate
continuous functions on an interval [a, b]?

For well over 150 years, mathematicians thought that the way to answer
this question was to use Taylor polynomials. When Cauchy showed that this
approach was doomed to failure, even for the smaller space C∞[a, b] (see
Remark 7.41), other avenues of investigation were opened up. The main result
of this section, the Stone–Weierstrass Theorem, shows that the answer to the
Approximation Question is yes in a very general sense. You will explore some
of the consequences of this powerful result in the exercises. It has many other
far-reaching consequences as well and is valid in a much more general setting
than compact metric spaces.

For each metric space X, C(X) will represent the collection of continu-
ous functions from X to R. The Stone–Weierstrass approach to approximation
requires that the collection of approximating functions be closed under point-
wise addition, pointwise multiplication, and scalar multiplication. Thus we begin
with the following concept.

10.65 Definition.

A set A is said to be a (real function) algebra in C(X) if and only if

i) ∅ �= A ⊆ C(X).
ii) If f, g ∈ A, then f + g and f g both belong to A.

iii) If f ∈ A and c ∈ R, then c f ∈ A.

We notice once and for all that every algebra of functions contains the zero
function, since f ∈ A implies − f ∈ A; hence 0 = f − f ∈ A.

It is well known that the collection of one variable polynomials is an algebra
in C(R). By Theorem 10.26, C(X) itself is an algebra in C(X) for any metric
space X .
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378 Chapter 10 Metric Spaces

As you know, there are several types of convergence for function sequences.
The Stone–Weierstrass Theorem is a result about the strongest of these: uniform
convergence. To streamline our presentation, we introduce a metric on C(X)
which governs uniform convergence. Namely, we define dist( f, g) := ‖ f − g‖,
where uniform norm of an f ∈ C(X) is defined to be

‖ f ‖ := sup
x∈X

| f (x)|.

If X is compact, then dist( f, g) is a metric on C(X). Indeed, by the Extreme
Value Theorem, dist( f, g) is finite for each f, g ∈ C(X). And since the abso-
lute value metric on R is positive definite, symmetric, and satisfies the Triangle
Inequality, it is easy to verify that dist( f, g) does, too.

Notice that ‖ fn − f ‖ → 0 as n → ∞ if and only if for each ε > 0 there is
an N ∈ N such that n ≥ N implies | fn(x) − f (x)| < ε for all x ∈ X . Thus
convergence of a sequence fn in the metric of C(X) is equivalent to uniform
convergence of fn on X .

10.66 Definition.

Let X be a metric space.

a) A subset A of C(X) is said to be (uniformly) closed if and only if for each
sequence fn ∈ A that satisfies ‖ fn − f ‖ → 0 as n → ∞, the limit function
f belongs to A.

b) A subset A of C(X) is said to be uniformly dense in C(X) if and only if given
ε > 0 and f ∈ C(X) there is function g ∈ A such that ‖g − f ‖ < ε.

It is easy to see that C(X) is uniformly closed (modify the proof of Theo-
rem 7.9). If we can show that the polynomials are uniformly dense in C[a, b],
then the answer to the Approximation Question is evidently yes.

It turns out that uniformly closed algebras which contain the constant func-
tions are also closed under pointwise maxima and minima.

10.67 Lemma.
Suppose that X is a compact metric space and that A is a closed algebra in C(X)
which contains the constant functions. For each f, g ∈ C(X) and each x ∈ X ,
define ( f ∧ g)(x) := min{ f (x), g(x)} and ( f ∨ g)(x) := max{ f (x), g(x)}. If
f, g ∈ A, then f ∧ g and f ∨ g both belong to A.

Proof. Since f ∧ g and f ∨ g can be defined as an algebraic combination of
( f +g) and | f −g| (see Exercise 3.1.8), and A is an algebra, it suffices to prove
that f ∈ A implies | f | ∈ A. If ‖ f ‖ = 0, then | f | = 0 ∈ A and there is nothing
to prove. Hence, we may suppose that M := ‖ f ‖ > 0.
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Let ε > 0. Recall (see Theorem 7.52) that the Binomial Series

|t | = (1 − (1 − t2))1/2

= 1 − 1

2
(1 − t2)− 1

2 · 4
(1 − t2)2

−
∞∑

k=3

1 · 3 · 5 · · · (2k − 3)

2 · 4 · 6 · · · (2k)
(1 − t2)k

(12)

converges uniformly on compact subsets of (−√
2,

√
2); hence on [−1, 1]. In

particular, there is an N ∈ N such that if n ≥ N and

Pn(t) := 1 − 1

2
(1 − t2)− 1

2 · 4
(1 − t2)2 −

n∑
k=3

1 · 3 · 5 · · · (2k − 3)

2 · 4 · 6 · · · (2k)
(1 − t2)k, (13)

then |Pn(t)− |t || < ε for all t ∈ [−1, 1].
Fix x ∈ X and set gn(x) := Pn( f (x)/M). Since A is an algebra which

contains the constant functions, gn ∈ A. Since M = ‖ f ‖ > 0 implies that
t := f (x)/M ∈ [−1, 1], we have by the choice of P that

∣∣∣∣gn(x)−
∣∣∣∣ f (x)

M

∣∣∣∣
∣∣∣∣ = |Pn(t)− |t | | < ε

for all n ≥ N and all x ∈ X . Thus Mgn ∈ A and Mgn → | f | uniformly on X ,
as n → ∞. Since A is uniformly closed, we conclude that | f | belongs to A. �

We will identify conditions on an algebra A which guarantee that A is uni-
formly dense in C(X). Since the collection of constant functions forms an alge-
bra in C[a, b] which is not uniformly dense in C[a, b], such an A must contain
some nonconstant functions. The following concept addresses this issue.

10.68 Definition.

A subset A of C(X) separates points of X if and only if given x, y ∈ X with
x �= y there exists an f ∈ A such that f (x) �= f (y).

We are now prepared to identify a huge class of dense algebras in C(X) when
X is compact.

10.69 Stone–Weierstrass Theorem. Suppose that X is a compact metric space.
If A is an algebra in C(X) that separates points of X and contains the constant
functions, then A is uniformly dense in C(X).
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380 Chapter 10 Metric Spaces

Proof. Fix x, y ∈ X with x �= y. Let a, b be any points in R. Since A separates
points, there is a g ∈ A such that g(x) �= g(y). Since A is an algebra that
contains the constants—in particular, contains g(x) and g(y)—the function

f (t) := a
g(t)− g(y)

g(x)− g(y)
+ b

g(t)− g(x)

g(y)− g(x)

also belongs to A. Since f (x) = a and f (y) = b, we have proved the follow-
ing: Given x, y ∈ X ,

if x �= y and a, b ∈ R, then f (x) = a and f (y) = b for some f ∈ A. (14)

Let B represent the uniform closure of A (i.e., B is the set of all functions f
for which there exists a sequence fn ∈ A such that ‖ fn − f ‖ → 0 as n → ∞).
Since A is an algebra, so is B. Since B is by definition uniformly closed, it
contains its pointwise maxima and minima (see Lemma 10.67).

Let F ∈ C(X) and ε > 0. We must show that there is a G ∈ B such that

F(x)− ε < G(x) < F(x)+ ε (15)

for all x ∈ X . We will do this a point at a time and use the compactness of X
to globalize these local estimates.

Fix x0 ∈ X . For each y �= x0, use (14) to choose an fy ∈ A ⊆ B such that

fy(x0) = F(x0) and fy(y) = F(y).

Since fy and F are continuous, the set Vy := {x ∈ X : fy(x) < F(x) + ε} is
open. Since x0, y ∈ Vy for all y ∈ X , it is clear that

X =
⋃

y �=x0

Vy .

Since X is compact, there exist y j ∈ X such that X = ⋃N
j=1 Vy j . Let f j = fy j

for j = 1, . . . , N and set gx0 := f1 ∧ · · · ∧ fN . Then gx0 ∈ B. Moreover, by
construction,

gx0(x0) = F(x0) ∧ · · · ∧ F(x0) = F(x0).

Since x ∈ X implies x ∈ Vyk for some k ∈ [1, N ], we also have

gx0(x) ≤ fk(x) < F(x)+ ε. (16)

This is essentially the right half of (15).
To finish the proof, repeat the argument by covering X by a finite collection

of open sets {Wx j }M
j=1, where

Wx j := {x ∈ X : gx j (x) > F(x)− ε}.
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Let g j = gx j and set G := g1 ∨ · · · ∨ gM . By (16), G(x) < F(x) + ε for all
x ∈ X . But since x ∈ X implies that x ∈ Wx j for some j , we also have

G(x) ≥ g j (x) ≥ F(x)− ε

for all x ∈ X . Therefore, (15) holds for all x ∈ X . �

EXERCISES

10.7.1. a) Prove that given f ∈ C[a, b], then there is a sequence of one-variable
polynomials Pn such that Pn → f uniformly on [a, b] as n → ∞.

b) Prove that the metric space C[a, b] (see Example 10.6) is separable.

10.7.2. A polynomial on Rn is a function of the form

P(x1, x2, . . . , xn) =
N1∑

j1=0

· · ·
Nn∑

jn=0

a j1,..., jn x j1
1 · · · x jn

n ,

where the a j1, . . . , jn ’s are scalars and N1, . . . , Nn ∈ N. Prove that if A is
compact in Rn and f ∈ C(A), then there is a sequence of polynomials Pk
on Rn such that Pk → f uniformly on A as k → ∞.

10.7.3. Let R = [a, b] × [c, d] be a rectangle in R2. A function f is said to have
separated variables if

P(x, y) =
N∑

k=1

ck fk(x)gk(y)

for some scalars ck and functions fk ∈ C[a, b], gk ∈ C[c, d]. Prove that
given f ∈ C(R) there is a sequence of functions with separated variables,
Pn , such that Pn → f uniformly on R as n → ∞.

10.7.4. Use Exercise 10.7.1 to prove that if f ∈ C[a, b] and

∫ b

a
f (x) xk dx = 0

for k = 0, 1, . . . , then f (x) = 0 for all x ∈ [a, b].
10.7.5. Use Exercise 10.7.3 to prove that if f ∈ C([a, b] × [c, d]), then

∫ b

a

(∫ d

c
f (x, y) dy

)
dx =

∫ d

c

(∫ b

a
f (x, y) dx

)
dy.

10.7.6. Let T = [0, 2π).

a) Prove that the function


(x) := (cos x, sin x)

is 1–1 from T onto ∂B1(0, 0) ⊆ R2.
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b) Prove that

p(x, y) := ‖
(x)−
(y)‖
is a metric on T .

c) Prove that a function f is continuous on (T, p) if and only if it is
continuous and periodic on [0, 2π]; that is, if and only if f has an
extension to [0, 2π] which is continuous in the usual sense which also
satisfies f (0) = f (2π).

d) A function P is called a trigonometric polynomial if

P(x) =
N∑

k=0

ak cos(kx)+ bk sin(kx)

for some scalars ak, bk . Prove that given f ∈ C(T ) there is a sequence
of trigonometric polynomials Pn such that Pn → f uniformly on
[0, 2π] as n → ∞.

10.7.7. Use Exercise 10.7.6 to prove that if f is continuous and periodic on
[0, 2π] and

∫ 2π

0
f (x) cos(kx) dx =

∫ 2π

0
f (x) sin(kx) dx = 0

for k = 0, 1, . . . , then f (x) = 0 for all x ∈ [a, b].
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Differentiability on Rn

11.1 PARTIAL DERIVATIVES AND PARTIAL INTEGRALS

The most natural way to define derivatives and integrals of functions of several
variables is to allow one variable to move at a time. The corresponding objects,
partial derivatives and partial integrals, are the subjects of this section. Our main
goal is to identify conditions under which partial derivatives, partial integrals,
and evaluation of limits commute with each other (e.g., under which the limit of
a partial integral is the partial integral of the limit).

We begin with some notation. The Cartesian product of a finite collection of
sets E1, E2, . . . , En is the set of ordered n-tuples defined by

E1 × E2 × · · · × En :={(x1, x2, . . . , xn) : x j ∈ E j for j = 1, 2, . . . , n}.

Thus the Cartesian product of n subsets of R is a subset of Rn . By a rectangle
in Rn (or an n-dimensional rectangle) we mean a Cartesian product of n closed,
nondegenerate, bounded intervals. An n-dimensional rectangle H = [a1, b1]
× · · · × [an, bn] is called an n-dimensional cube with side s if |b j − a j | = s for
j = 1, . . . , n.

Let f : {x1} × · · · × {x j−1} × [a, b] × {x j+1} × · · · × {xn} → R. We shall denote
the function

g(t) := f (x1, . . . , x j−1, t, x j+1, . . . , xn), t ∈ [a, b],

by f (x1, . . . , x j−1, ·, x j+1, . . . , xn). If g is integrable on [a, b], then the partial
integral of f on [a, b] with respect to x j is defined by

∫ b

a
f (x1, . . . , xn) dx j :=

∫ b

a
g(t) dt.

If g is differentiable at some t0 ∈ (a, b), then the partial derivative (or first-
order partial derivative) of f at (x1, . . . , x j−1, t0, x j+1, . . . xn) with respect to x j
is defined by

∂ f

∂x j
(x1, . . . , x j−1, t0, x j+1, . . . , xn) := g′(t0).

We will also denote this partial derivative by fx j (x1, . . . , x j−1, t0, x j+1, . . . , xn).
Thus the partial derivative fx j exists at a point a if and only if the limit

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 11 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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384 Chapter 11 Differentiability on Rn

∂ f

∂x j
(a) := lim

h→0

f (a + he j )− f (a)
h

exists. (Some authors use f j to denote the partial derivative fx j . To avoid con-
fusing first-order partial derivatives with sequences and components of func-
tions, we will not use this notation.)

We extend partial derivatives to vector-valued functions in the following way.
Suppose that a = (a1, . . . , an) ∈ Rn and f = ( f1, f2, . . . , fm) : {a1} × · · · ×
{a j−1} × I × {a j+1} × · · · × {an} → Rm , where j ∈ {1, 2, . . . , n} is fixed and I is
an open interval containing a j . If for each k = 1, 2, . . . ,m the first-order partial
derivative ∂ fk/∂x j exists at a, then we define the first-order partial derivative of
f with respect to x j to be the vector-valued function

fx j (a) := ∂ f
∂x j

(a) :=
(
∂ f1

∂x j
(a), . . . ,

∂ fm

∂x j
(a)
)
.

Higher-order partial derivatives are defined by iteration. For example, the
second-order partial derivative of f with respect to x j and xk is defined by

fx j xk := ∂2f
∂xk ∂x j

:= ∂

∂xk

(
∂f
∂x j

)

when it exists. Second-order partial derivatives are called mixed when j �= k.
This brings us to the following important collection of functions.

11.1 Definition.

Let V be a nonempty, open subset of Rn , let f : V → Rm , and let p ∈ N.

i) f is said to be C p on V if and only if each partial derivative of f of order
k ≤ p exists and is continuous on V .

ii) f is said to be C∞ on V if and only if f is C p on V for all p ∈ N.

Clearly, if f is C p on V and q < p, then f is Cq on V . By making obvious
modifications in Definition 11.1 using Definition 4.6, we can also define what it
means for a function to be C p on a rectangle H . We shall denote the collection
of functions which are C p on an open set V , respectively, on a rectangle H , by
C p(V ), respectively, by C p(H).

For simplicity, we shall state all results in this section for the case n = 2 and
m = 1, using x for x1 and y for x2. (It is too cumbersome to do otherwise.) It is
clear that, with appropriate changes in notation, these results also hold for any
n,m ∈ N.

Since partial derivatives and partial integrals are essentially one-dimensional
concepts, each one-dimensional result about derivatives and integrals contains
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Section 11.1 Partial Derivatives and Partial Integrals 385

information about partial derivatives and partial integrals. Here are three
examples.

1) By the Product Rule (Theorem 4.10), if fx and gx exist, then

∂

∂x
( f g) = f

∂g

∂x
+ g

∂ f

∂x
.

2) By the Mean Value Theorem (Theorem 4.15), if f (·, y) is continuous on [a, b]
and the partial derivative fx (·, y) exists on (a, b), then there is a point c ∈
(a, b) (which may depend on y as well as a and b) such that

f (b, y)− f (a, y) = (b − a)
∂ f

∂x
(c, y).

3) By the Fundamental Theorem of Calculus (Theorem 5.28), if f (·, y) is con-
tinuous on [a, b], then

∂

∂x

∫ x

a
f (t, y) dt = f (x, y),

and if the partial derivative fx (·, y) exists and is integrable on [a, b], then

∫ b

a

∂ f

∂x
(x, y) dx = f (b, y)− f (a, y).

Our first result about the commutation of partial derivatives, partial integrals,
and evaluation of limits deals with interchanging two first-order partial deriva-
tives (see also Exercise 11.2.11).

11.2 Theorem. Suppose that V is open in R2, that (a, b) ∈ V , and that f :V →R.
If f is C1 on V, and if one of the mixed second partial derivatives of f exists on V
and is continuous at the point (a, b), then the other mixed second partial derivative
exists at (a, b) and

∂2 f

∂y ∂x
(a, b) = ∂2 f

∂x ∂y
(a, b).

NOTE: These hypotheses are met if f ∈ C2(V ).

Proof. Suppose that fyx exists on V and is continuous at the point (a, b).
Consider �(h, k) := f (a + h, b + k) − f (a + h, b) − f (a, b + k) + f (a, b),
defined for |h|, |k| < r/

√
2, where r > 0 is so small that Br (a, b) ⊂ V . Apply

the Mean Value Theorem twice to choose scalars s, t ∈ (0, 1) such that

�(h, k) = k
∂ f

∂y
(a + h, b + tk)− k

∂ f

∂y
(a, b + tk) = hk

∂2 f

∂x ∂y
(a + sh, b + tk).
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386 Chapter 11 Differentiability on Rn

Since this last mixed partial derivative is continuous at the point (a, b),
we have

lim
k→0

lim
h→0

�(h, k)

hk
= ∂2 f

∂x ∂y
(a, b). (1)

On the other hand, the Mean Value Theorem also implies that there is a scalar
u ∈ (0, 1) such that

�(h, k) = f (a + h, b + k)− f (a, b + k)− f (a + h, b)+ f (a, b)

= h
∂ f

∂x
(a + uh, b + k)− h

∂ f

∂x
(a + uh, b).

Hence, it follows from (1) that

lim
k→0

lim
h→0

1

k

(
∂ f

∂x
(a + uh, b + k)− ∂ f

∂x
(a + uh, b)

)

= lim
k→0

lim
h→0

�(h, k)

hk
= ∂2 f

∂x ∂y
(a, b).

Since fx is continuous on Br (a, b), we can let h = 0 in the first expression. We
conclude by definition that

∂2 f

∂y ∂x
(a, b) = lim

k→0

1

k

(
∂ f

∂x
(a, b + k)− ∂ f

∂x
(a, b)

)
= ∂2 f

∂x ∂y
(a, b). �

We shall refer to the conclusion of Theorem 11.2 by saying the first partial
derivatives of f commute. Thus, if f is C2 on an open subset V of Rn , if a ∈ V ,
and if j �= k, then

∂2 f

∂x j∂xk
(a) = ∂2 f

∂xk∂x j
(a).

The following example shows that Theorem 11.2 is false if the assumption
about continuity of the second-order partial derivative is dropped.

11.3 EXAMPLE.

Prove that

f (x, y) =
⎧⎨
⎩xy

(
x2 − y2

x2 + y2

)
(x, y) �= 0

0 (x, y) = 0

is C1 on R2, both mixed second partial derivatives of f exist on R2, but the first
partial derivatives of f do not commute at (0, 0); that is, fxy(0, 0) �= fyx (0, 0).
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Section 11.1 Partial Derivatives and Partial Integrals 387

Proof. By the one-dimensional Product and Quotient Rules,

∂ f

∂x
(x, y) = xy

∂

∂x

(
x2 − y2

x2 + y2

)
+ ∂

∂x
(xy)

(
x2 − y2

x2 + y2

)

= xy

(
4xy2

(x2 + y2)2

)
+ y

(
x2 − y2

x2 + y2

)

for (x, y) �= (0, 0). Since 2|xy| ≤ x2 + y2, we have | fx (x, y)| ≤ 2|y|. Therefore,
fx (x, y) → 0 as (x, y) → (0, 0). On the other hand, by definition

∂ f

∂x
(0, y) = lim

h→0
y

(
h2 − y2

h2 + y2

)
= −y

for all y ∈ R; hence, fx (0, 0) = 0. This proves that fx exists and is continuous
on R2 with value −y at (0, y). A similar argument shows that fy exists and
is continuous on R2 with value x at (x, 0). It follows that the mixed second
partial derivatives of f exist on R2, and

∂2 f

∂y ∂x
(0, 0) = −1 �= 1 = ∂2 f

∂x ∂y
(0, 0). �

The following result shows that we can interchange a limit sign and a partial
integral sign when the integrand is continuous on a rectangle.

11.4 Theorem. Let H = [a, b] × [c, d] be a rectangle and let f : H → R be
continuous. If

F(y) =
∫ b

a
f (x, y) dx,

then F is continuous on [c, d]; that is,

lim
y→y0

y∈[c,d]

∫ b

a
f (x, y) dx =

∫ b

a
lim

y→y0
y∈[c,d]

f (x, y) dx

for all y0 ∈ [c, d].

Proof. For each y ∈ [c, d], f (·, y) is continuous on [a, b]. Hence, by Theo-
rem 5.10, F(y) exists for y ∈ [c, d].

Fix y0 ∈ [c, d] and let ε > 0. Since H is compact, f is uniformly continuous
on H . Hence, choose δ > 0 such that ‖(x, y) − (z, w)‖ < δ and (x, y), (z, w)
∈ H imply

| f (x, y)− f (z, w)| < ε

b − a
.
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388 Chapter 11 Differentiability on Rn

Since |y − y0| = ‖(x, y)− (x, y0)‖, it follows that

|F(y)− F(y0)| ≤
∫ b

a
| f (x, y)− f (x, y0)| dx < ε

for all y ∈ [c, d] which satisfy |y − y0| < δ. We conclude that F is continuous
on [c, d]. �

The following result shows that we can interchange a derivative and an inte-
gral sign when the first partial derivative of the integrand is sufficiently smooth.
We will refer to this process as differentiating under the integral sign.

11.5 Theorem. Let H = [a, b] × [c, d] be a rectangle in R2 and let f : H → R.
Suppose that f (·, y) is integrable on [a, b] for each y ∈ [c, d] and that the partial
derivative fy(x, ·) exists on [c, d] for each x ∈ [a, b]. If the two-variable function
fy(x, y) is continuous on H, then

d

dy

∫ b

a
f (x, y) dx =

∫ b

a

∂ f

∂y
(x, y) dx

for all y ∈ [c, d].
NOTE: These hypotheses are met if f ∈ C1(H).

Proof. Recall that “ fy(x, ·) exists on [c, d]” means fy(x, ·) exists on (c, d), and

fy(x, c) := lim
h→0+

f (x, c + h)− f (x, c)

h
, fy(x, d) := lim

h→0−
f (x, d + h)− f (x, d)

h

both exist (see Definition 4.6). Hence, it suffices to show that

lim
h→0+

∫ b

a

f (x, y + h)− f (x, y)

h
dx =

∫ b

a

∂ f

∂y
(x, y) dx

for y ∈ [c, d), and that

lim
h→0−

∫ b

a

f (x, y + h)− f (x, y)

h
dx =

∫ b

a

∂ f

∂y
(x, y) dx

for y ∈ (c, d]. The arguments are similar; we provide the details only for the
first identity.

Fix x ∈ [a, b] and y ∈ [c, d), and let h > 0 be so small that y + h ∈ [c, d).
Let ε > 0. By uniform continuity, choose a δ > 0 so small that |y − z| < δ and
x ∈ [a, b] imply | fy(x, y)− fy(x, z)| < ε/(b−a). By the Mean Value Theorem,
choose a point z(x; h) between y and y + h such that

F(x, y, h) := f (x, y + h)− f (x, y)

h
= ∂ f

∂y
(x, z(x; h)).
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Section 11.1 Partial Derivatives and Partial Integrals 389

Since |z(x; h)− y| = z(x; h)− y ≤ h, it follows that if 0 < h < δ, then∣∣∣∣
∫ b

a
F(x, y, h) dx −

∫ b

a

∂ f

∂y
(x, y) dx

∣∣∣∣ ≤
∫ b

a

∣∣∣∣∂ f

∂y
(x, z(x; h))− ∂ f

∂y
(x, y)

∣∣∣∣ dx < ε.

Therefore,

d

dy

∫ b

a
f (x, y) dx =

∫ b

a

∂ f

∂y
(x, y) dx . �

Thus if H = [a1, b1]× · · ·× [an, bn] is an n-dimensional rectangle, if f is C1 on
H , and if k �= j , then

∂

∂xk

∫ b j

a j

f (x1, . . . , xn) dx j =
∫ b j

a j

∂ f

∂xk
(x1, . . . , xn) dx j . (2)

The rest of this section contains optional material which shows what happens
to the results above when the improper integral is used.

We begin by borrowing a concept from the theory of infinite series.

∗11.6 Definition.

Let a < b be extended real numbers, let I be an interval in R, and suppose
that f : (a, b)× I → R. The improper integral

∫ b

a
f (x, y) dx

is said to converge uniformly on I if and only if f (·, y) is improperly integrable
on (a, b) for each y ∈ I and given ε > 0 there exist real numbers A, B ∈ (a, b)
such that ∣∣∣∣

∫ b

a
f (x, y) dx −

∫ β

α

f (x, y) dx

∣∣∣∣ < ε

for all a < α < A, B < β < b, and all y ∈ I .

For most applications, the following simple test for uniform convergence of
an improper integral will be used instead of Definition 11.6 (compare with The-
orem 7.15).

∗11.7 Theorem. [WEIERSTRASS M-TEST].
Suppose that a < b are extended real numbers, that I is an interval in R, that
f : (a, b) × I → R, and that f (·, y) is locally integrable on the interval (a, b)
for each y ∈ I . If there is a function M : (a, b) → R, absolutely integrable on
(a, b), such that

| f (x, y)| ≤ M(x)
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390 Chapter 11 Differentiability on Rn

for all x ∈ (a, b) and y ∈ I , then

∫ b

a
f (x, y) dx

converges uniformly on I.

Proof. Let ε > 0. By hypothesis and the Comparison Test for improper inte-
grals,

∫ b
a f (x, y) dx exists and is finite for each y ∈ I . Moreover, since M(x)

is improperly integrable on (a, b), there exist real numbers A, B such that
a < A < B < b and ∫ A

a
M(x) dx +

∫ b

B
M(x) dx < ε.

Thus for each a < α < A < B < β < b and each y ∈ I , we have∣∣∣∣
∫ b

a
f (x, y) dx −

∫ β

α

f (x, y) dx

∣∣∣∣ ≤
∫ α

a
| f (x, y)| dx +

∫ b

β

| f (x, y)| dx

≤
∫ A

a
M(x) dx +

∫ b

B
M(x) dx < ε. �

The following is an improper integral analogue of Theorem 11.4.

∗11.8 Theorem. Suppose that a < b are extended real numbers, that c < d are
finite real numbers, and that f : (a, b)× [c, d] → R is continuous. If

F(y) =
∫ b

a
f (x, y) dx

converges uniformly on [c, d], then F is continuous on [c, d]; that is,

lim
y→y0

y∈[c,d]

∫ b

a
f (x, y) dx =

∫ b

a
lim

y→y0
y∈[c,d]

f (x, y) dx

for all y0 ∈ [c, d].
Proof. Let ε > 0 and y0 ∈ [c, d]. Choose real numbers A, B such that
a < A < B < b and ∣∣∣∣F(y)−

∫ B

A
f (x, y) dx

∣∣∣∣ < ε

3

for all y ∈ [c, d]. By Theorem 11.4, choose δ > 0 such that∣∣∣∣
∫ B

A
( f (x, y)− f (x, y0)) dx

∣∣∣∣ < ε

3
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Section 11.1 Partial Derivatives and Partial Integrals 391

for all y ∈ [c, d] which satisfy |y − y0| < δ. Then

|F(y)− F(y0)| ≤
∣∣∣∣F(y)−

∫ B

A
f (x, y) dx

∣∣∣∣+
∣∣∣∣
∫ B

A
( f (x, y)− f (x, y0)) dx

∣∣∣∣
+
∣∣∣∣F(y0)−

∫ B

A
f (x, y0) dx

∣∣∣∣
<
ε

3
+ ε

3
+ ε

3
= ε

for all y ∈ [c, d] which satisfy |y − y0| < δ. �

The proof of Theorem 11.5 can be modified to prove the following result.

∗11.9 Theorem. Suppose that a < b are extended real numbers, that c < d
are finite real numbers, that f : (a, b) × [c, d] → R is continuous, and that the
improper integral

F(y) =
∫ b

a
f (x, y) dx

exists for all y ∈ [c, d]. If fy(x, y) exists and is continuous on (a, b)× [c, d] and if

φ(y) =
∫ b

a

∂ f

∂y
(x, y) dx

converges uniformly on [c, d], then F is differentiable on [c, d] and F ′(y) = φ(y);
that is,

d

dy

∫ b

a
f (x, y) dx =

∫ b

a

∂ f

∂y
(x, y) dx

for all y ∈ [c, d].

For a result about interchanging two partial integrals, see Theorem 12.31 and
Exercise 12.3.10.

EXERCISES

11.1.1. Compute all mixed second-order partial derivatives of each of the
following functions and verify that the mixed partial derivatives
are equal.

a) f (x, y) = xey b) f (x, y) = cos(xy) c) f (x, y) = x + y

x2 + 1

11.1.2. For each of the following functions, compute fx and determine where
it is continuous.

391



392 Chapter 11 Differentiability on Rn

a) f (x, y) =
⎧⎨
⎩

x4 + y4

x2 + y2
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

b) f (x, y) =

⎧⎪⎨
⎪⎩

x2 − y2

3
√

x2 + y2
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

11.1.3. Suppose that r > 0, that a ∈ Rn , and that f : Br (a) → Rm . If all first-
order partial derivatives of f exist on Br (a) and satisfy fx j (x) = 0 for
all x ∈ Br (a) and all j = 1, 2, . . . , n, prove that f has only one value on
Br (a).

11.1.4. Suppose that H = [a, b] × [c, d] is a rectangle, that f : H → R is
continuous, and that g : [a, b] → R is integrable. Prove that

F(y) =
∫ b

a
g(x) f (x, y) dx

is uniformly continuous on [c, d].
11.1.5. Evaluate each of the following expressions.

a) lim
y→0

∫ 1

0
ex3 y2+x dx

b)
d

dy

∫ 1

0
sin(ex y − y3 + π − ex ) dx at y = 1

c)
∂

∂x

∫ 3

1

√
x3 + y3 + z3 − 2 dz at (x, y) = (1, 1)

11.1.6. Suppose that f is a continuous real function.

a) If
∫ 1

0 f (x) dx = 1, find the exact value of

lim
y→0

∫ 2

0
f (|x − 1|)ex2 y+xy2

dx .

b) If f is C1 on R and
∫ π

0 f ′(x) sin xdx = e, find the exact value of

e + lim
y→0

∫ π

0
f (x) cos(y5 + 3

√
y + x) dx .

c) If
∫ 1

0 f (
√

x)ex dx = 6, find the exact value of

d

dx

∫ 1

0
f (y)exy+y2

dy at x = 0.
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Section 11.1 Partial Derivatives and Partial Integrals 393

∗11.1.7. Evaluate each of the following expressions.

a) lim
y→0+

∫ 1

0

x cos y
3
√

1 − x + y
dx

b)
d

dy

∫ ∞

π

e−xy sin x

x
dx at y = 1

∗11.1.8. a) Prove that ∫ 1

0

cos(x2 + y2)√
x

dx

converges uniformly on (−∞,∞).
b) Prove that

∫∞
0 e−xydx converges uniformly on [1,∞).

c) Prove that
∫∞

0 ye−xydx exists for each y ∈ [0,∞) and converges
uniformly on any [a, b] ⊂ (0,∞) but that it does not converge uni-
formly on [0, 1].

∗11.10 Definition.

The Laplace transform of a function f : (0,∞) → R is said to exist at a point
s ∈ (0,∞) if and only if the integral

L{ f }(s) :=
∫ ∞

0
e−st f (t) dt

converges. (Note: This integral is improper at ∞ and may be improper at 0.)

∗11.1.9. Prove that

a) L{1}(s) = 1

s
, s > 0

b) L{tn}(s) = n!
sn+1

, s > 0, n ∈ N

c) L{eat }(s) = 1

s − a
, s > a, a ∈ R

d) L{cos(bt)}(s) = s

s2 + b2
, s > 0, b ∈ R

e) L{sin(bt)}(s) = b

s2 + b2
, s > 0, b ∈ R
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394 Chapter 11 Differentiability on Rn

∗11.1.10. Suppose that f : (0,∞) → R is continuous and bounded and that
L{ f } exists at some a ∈ (0,∞). Let

φ(t) =
∫ t

0
e−au f (u) du, t ∈ (0,∞).

a) Prove that

∫ N

0
e−st f (t) dt = φ(N )e−(s−a)N + (s − a)

∫ N

0
e−(s−a)tφ(t) dt

for all N ∈ N.
b) Prove that the integral

∫∞
0 e−(s−a)tφ(t)dt converges uniformly on

[b,∞) for any b > a and

∫ ∞

0
e−st f (t) dt = (s − a)

∫ ∞

0
e−(s−a)tφ(t) dt, s > a.

c) Prove that L{ f } exists, is continuous on (a,∞), and satisfies

lim
s→∞L{ f }(s) = 0.

d) Let g(t) = t f (t) for t ∈ (0,∞). Prove that L{ f } is differentiable on
(a,∞) and

d

ds
L{ f }(s) = −L{g}(s)

for all s ∈ (a,∞).
e) If, in addition, f ′ is continuous and bounded on (0,∞), prove that

L( f ′)(s) = sL( f )(s)− f (0)

for all s ∈ (a,∞).
∗11.1.11. Using Exercises 11.1.9 and 11.1.10, find the Laplace transforms of each

of the functions tet , t sinπ t , and t2 cos t .

11.2 THE DEFINITION OF DIFFERENTIABILITY

In this section we define what it means for a vector function to be differentiable
at a point. Whatever our definition, we expect two things: If f is differentiable
at a, then f will be continuous at a, and all first-order partial derivatives of f will
exist at a.

Working by analogy with the one-variable case, we guess that f is differen-
tiable at a if and only if all its first-order partial derivatives exist at a. The fol-
lowing example shows that this guess is wrong even when the range of f is one
dimensional.
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11.11 EXAMPLE.

Prove that the first-order partial derivatives of

f (x, y) =
{

x + y x = 0 or y = 0
1 otherwise

exist at (0, 0), but f is not continuous at (0, 0).

Proof. Since

lim
x→0

f (x, x) = 1 �= 0 = f (0, 0),

it is clear that f is not continuous at (0, 0). However, the first-order partial
derivatives of f DO exist since

fx (0, 0) = lim
h→0

f (h, 0)− f (0, 0)

h
= 1

and, similarly, fy(0, 0) = 1. �

Even if we restrict our attention to those functions f which are continuous and
have first-order partial derivatives, we still cannot be sure that f is differentiable
(see Exercise 11.2.7). How, then, shall we define differentiability in Rn?

When a mathematical analogy breaks down, it is often helpful to reformulate
the problem in its original setting. For functions of one variable, we found that f
is differentiable at a if and only if there is a linear function T ∈ L(R; R) such that

lim
h→0

f (a + h)− f (a)− T (h)

h
= 0

(see Theorem 4.3). Thus f is differentiable at a ∈ R if and only if there is a
T ∈ L(R; R) such that the function ε(h) := f (a + h)− f (a)− T (h) converges to
zero so fast that ε(h)/h → 0 as h → 0. This leads us to the following definition.

11.12 Definition.

Suppose that a ∈ Rn , that V is an open set containing a, and that f : V → Rm .

i) f is said to be differentiable at a if and only if there is a T ∈ L(Rn; Rm) such
that the function

ε(h) := f(a + h)− f(a)− T(h)

(defined for ‖h‖ sufficiently small) satisfies ε(h)/‖h‖ → 0 as h → 0.
ii) f is said to be differentiable on a set E if and only if E is nonempty and f is

differentiable at every point in E .

We shall see (Theorem 11.14) that if f is differentiable at a, then there is
only one T that satisfies Definition 11.12. Its representing m × n matrix (see
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396 Chapter 11 Differentiability on Rn

Theorem 8.15) is called the total derivative of f (“total” as opposed to partial
derivatives of f) and will be denoted by Df(a).

The following result shows that if f is differentiable, then it is continuous. Thus
differentiability, as defined in 11.12, rules out pathology such as Example 11.11.

11.13 Theorem. If a vector function f is differentiable at a, then f is continuous
at a.

Proof. Suppose that f is differentiable at a. Then by Definition 11.12 there
exist a T ∈ L(Rn; Rm) and a δ > 0 such that ‖f(a + h)− f(a)− T(h)‖ ≤ ‖h‖ for
all ‖h‖ < δ. By the triangle inequality (Theorem 8.6iii) and the definition of
the operator norm (see Theorem 8.17), it follows that

‖f(a + h)− f(a)‖ ≤ ‖T‖ ‖h‖ + ‖h‖
for ‖h‖ < δ. Since ‖T‖ is a finite real number, we conclude from the Squeeze
Theorem that f(a + h) → f(a) as h → 0 (i.e., f is continuous at a). �

If f is differentiable at a, is there an easy way to compute the total derivative
Df(a)? The following result shows that the answer to this question is yes.

11.14 Theorem. Let f be a vector function. If f is differentiable at a, then all
first-order partial derivatives of f exist at a. Moreover, the total derivative of f at a
is unique and can be computed by

Df(a) =
[
∂ fi

∂x j
(a)
]

m×n

:=

⎡
⎢⎢⎢⎢⎣
∂ f1

∂x1
(a) . . .

∂ f1

∂xn
(a)

...
. . .

...
∂ fm

∂x1
(a) . . .

∂ fm

∂xn
(a)

⎤
⎥⎥⎥⎥⎦ .

Proof. Since f is differentiable, we know that there is an m × n matrix B :=
[bi j ] such that

f(a + h)− f(a)− Bh
‖h‖ → 0 as h → 0. (3)

Fix 1 ≤ j ≤ n and set h = te j for some t > 0. Since ‖h‖ = t , we have

f(a + h)− f(a)− Bh
‖h‖ := f(a + te j )− f(a)

t
− Be j .

Take the limit of this identity as t → 0+, using (3) and the definition of matrix
multiplication. We obtain

lim
t→0+

f(a + te j )− f(a)
t

= Be j = (b1 j , . . . , bmj ).
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A similar argument shows that the limit of this quotient as t → 0− also exists
and equals (b1 j , . . . , bmj ). Since a vector function converges if and only if its
components converge (see Theorem 9.16), it follows that the first-order par-
tial derivative of each component fi with respect to x j exists at a and satisfies

∂ fi

∂x j
(a) = bi j

for i = 1, 2, . . . ,m. In particular, for each differentiable f and each point a,
there is only one T that satisfies Definition 11.12, and its representing matrix is

Df(a) := [bi j ]m×n =
[
∂ fi

∂x j
(a)
]

m×n

. �

The fact that for each function f differentiable at a, there is only one matrix B
which satisfies (3) will be referred to as the uniqueness of the total derivative.

By Theorem 11.14 and the uniqueness of the total derivative, we now have
several ways to find out whether a given vector function f is differentiable.
Indeed, f is differentiable at a point a if and only if there exists an m × n matrix
B such that

lim
h→0

f(a + h)− f(a)− Bh
‖h‖ = 0,

if and only if

lim
h→0

‖f(a + h)− f(a)− Bh‖
‖h‖ = 0,

or if and only if

lim
h→0

f(a + h)− f(a)− Df(a)(h)
‖h‖ = 0. (4)

We shall use these three descriptions interchangeably. The advantage of the first
two conditions is that they can be applied without computing partial derivatives
of f (e.g., see the proofs of Theorems 11.20 and 11.28). The last condition is more
concrete but can only be used if you can compute the first-order partial deriva-
tives of f at a (see Example 11.18). Notice that existence of these partial deriva-
tives is NOT enough to conclude that f is differentiable (see Exercise 11.2.7).

Abusing the notation a bit, if all first-order partial derivatives of function f
exist at a point a, we shall denote the Jacobian matrix

[
∂ fi

∂x j
(a)
]

m×n

by Df(a). We shall only call it the “total derivative” when f is differentiable at a;
that is, when f satisfies (4).
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398 Chapter 11 Differentiability on Rn

If n = 1 or m = 1, the Jacobian matrix Df is an m × 1 or 1 × n matrix and,
hence, can be identified with a vector. Most applied mathematicians represent
Df in these cases by different notations. For the case n = 1,

Df(a) =
⎡
⎢⎣

f ′
1(a)
...

f ′
m(a)

⎤
⎥⎦

is sometimes denoted in vector notation by

f′(a) := ( f ′
1(a), . . . , f ′

m(a)
)
.

For the case m = 1,

Df(a) =
[
∂ f

∂x1
(a) . . .

∂ f

∂xn
(a)
]

is sometimes denoted in vector notation by

∇f(a) :=
(
∂ f

∂x1
(a), . . . ,

∂ f

∂xn
(a)
)
.

(∇f is called the gradient of f because it identifies the direction of steepest
ascent. For this connection and a relationship between gradients and directional
derivatives, see Exercise 11.4.11.)

If we strengthen the conclusion of Theorem 11.14, we can obtain a reverse
implication.

11.15 Theorem. Let V be open in Rn , let a ∈ V , and suppose that f : V → Rm .
If all first-order partial derivatives of f exist in V and are continuous at a, then f is
differentiable at a.

NOTE: These hypotheses are met if f is C1 on V.

Proof. Since a function converges if and only if each of its components con-
verge (see Theorem 9.16), we may suppose that m = 1. By definition, then, it
suffices to show that if f is real valued and has continuous first partial deriva-
tives on V , then

lim
h→0

f (a + h)− f (a)− ∇ f (a) · h
‖h‖ = 0.

Let a = (a1, . . . , an). Suppose that r > 0 is so small that Br (a) ⊂ V . Fix
h = (h1, . . . , hn) �= 0 in Br (0). By telescoping and using the one-dimensional
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Mean Value Theorem, we can choose numbers c j between a j and a j + h j
such that

f (a + h)− f (a) = f (a1 + h1, . . . , an + hn)− f (a1, a2 + h2, . . . , an + hn)

+ · · · + f (a1, . . . , an−1, an + hn)− f (a1, . . . , an)

=
n∑

j=1

h j
∂ f

∂x j
(a1, . . . , a j−1, c j , a j+1 + h j+1, . . . , an + hn).

Therefore,

f (a + h)− f (a)− ∇ f (a) · h = h · δ, (5)

where δ ∈ Rn is the vector with components

δ j = ∂ f

∂x j
(a1, . . . , a j−1, c j , a j+1 + h j+1, . . . , an + hn)− ∂ f

∂x j
(a1, . . . , an).

Since the first-order partial derivatives of f are continuous at a, δ j → 0 for
each 1 ≤ j ≤ n (i.e., ‖δ‖ → 0 as h → 0). Moreover, by the Cauchy–Schwarz
Inequality and (5),

0 ≤ | f (a + h)− f (a)− ∇ f (a) · h|
‖h‖ = |h · δ|

‖h‖ ≤ ‖δ‖. (6)

It follows from the Squeeze Theorem that the first quotient in (6) converges
to 0 as h → 0. Thus f is differentiable at a by definition. �

If all first-order partial derivatives of a vector function f exist and are contin-
uous at a point a (respectively, on an open set V ), we shall call f continuously
differentiable at a (respectively, on V ). By Theorem 11.15, every continuously
differentiable function is differentiable. In particular, every function which is C p

on an open set V , for some 1 ≤ p ≤ ∞, is continuously differentiable on V .
These results suggest the following procedure to determine whether a vector

function f is differentiable at a point a.

1) Compute all first-order partial derivatives of f at a. If one of these does not
exist, then f is not differentiable at a (Theorem 11.14).

2) If all first-order partial derivatives exist and are continuous at a, then f is
differentiable at a (Theorem 11.15).

3) If the first-order partial derivatives of f exist but one of them fails to be
continuous at a, then use the definition of differentiability directly. By the
uniqueness of the total derivative, this will involve trying to verify (3) or (4).
A decision about whether this limit exists and equals zero will involve meth-
ods outlined in Section 9.3.

We close with some examples.
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400 Chapter 11 Differentiability on Rn

11.16 EXAMPLE.

Is f(x, y) = (cos(xy), ln x − ey) differentiable at (1, 1)?

Solution. Since fx = (−y sin(xy), 1/x) and fy = (−x sin(xy),−ey) both exist
and are continuous at any (x, y) ∈ R2 with x > 0, f is differentiable at any such
(x, y), in particular, at (1, 1). �

11.17 EXAMPLE.

Is

f (x, y) =
⎧⎨
⎩

y2

x2 + y2
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

differentiable at (0, 0)?

Solution. Again we begin by looking at the first-order partial derivatives of f .
By the one-dimensional Quotient Rule, if (x, y) �= (0, 0), then

∂ f

∂x
(x, y) = − 2xy2

(x2 + y2)2
.

To see whether the partial derivatives exist at (0, 0), we apply the definition of
fx directly:

∂ f

∂x
(0, 0) = lim

h→0

f (h, 0)− f (0, 0)

h
= lim

h→0

0

h
= 0.

Thus fx (0, 0) = 0 DOES exist even though the formula approach above crashed.
Notice, then, that we cannot rely on the rules of differentiation alone to compute
partial derivatives.

What about fy(0, 0)? Again, we use the definition of fy , not the formula:

∂ f

∂y
(0, 0) = lim

k→0

f (0, k)− f (0, 0)

k
= lim

k→0

1

k
.

Since this last limit does not exist, fy(0, 0) does not exist. Hence f cannot be
differentiable at (0, 0). �

Our final example shows that the converse of Theorem 11.15 is false.

11.18 EXAMPLE.

Prove that

f (x, y) =
⎧⎨
⎩(x

2 + y2) sin
1√

x2 + y2
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

is differentiable on R2 but not continuously differentiable at (0, 0).
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Proof. If (x, y) �= (0, 0), then we can use the one-dimensional Product Rule
to verify that both fx and fy exist and are continuous, for example,

fx (x, y) = −x√
x2 + y2

cos
1√

x2 + y2
+ 2x sin

1√
x2 + y2

.

Thus f is differentiable on R2 \ {(0, 0)}. Since fx (x, 0) has no limit as x → 0,
the partial derivative fx is not continuous at (0, 0). A similar statement holds
for fy . Thus to check differentiability at (0, 0) we must return to the definition.

First, we compute the partial derivatives at (0, 0). By definition,

fx (0, 0) = lim
t→0

f (t, 0)− f (0, 0)

t
= lim

t→0
t sin

1

|t | = 0,

and similarly, fy(0, 0) = 0. Thus, both first partials exist at (0, 0) and
∇ f (0, 0) = (0, 0).

To prove that f is differentiable at (0, 0), we must verify (4) for a = (0, 0).
But it is clear that

f (h, k)− f (0, 0)− ∇ f (0, 0) · (h, k)

‖(h, k)‖ =
√

h2 + k2 sin
1√

h2 + k2
→ 0

as (h, k) → (0, 0). Thus f is differentiable at (0, 0). �

EXERCISES

11.2.1. Suppose, for j = 1, 2, . . . , n, that f j are real functions continuously
differentiable on the interval (−1, 1). Prove that

g(x) := f1(x1) · · · fn(xn)

is differentiable on the cube (−1, 1)× (−1, 1)× · · · × (−1, 1).
11.2.2. Suppose that f, g : R → Rm are differentiable at a and there is a δ > 0

such that g(x) �= 0 for all 0 < |x − a| < δ. If f(a) = g(a) = 0 and
Dg(a) �= 0, prove that

lim
x→a

‖f(x)‖
‖g(x)‖ = ‖Df(a)‖

‖Dg(a)‖ .

11.2.3. Prove that f (x, y) = √|xy| is not differentiable at (0, 0).
11.2.4. Prove that

f (x, y) =

⎧⎪⎨
⎪⎩

x2 + y2

sin
√

x2 + y2
0 < ‖(x, y)‖ < π

0 (x, y) = (0, 0)

is not differentiable at (0, 0).
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11.2.5. Prove that

f (x, y) =
⎧⎨
⎩

x4 + y4

(x2 + y2)α
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

is differentiable on R2 for all α < 3/2.
11.2.6. Prove that if α > 1/2, then

f (x, y) =
{

|xy|α log(x2 + y2) (x, y) �= (0, 0)
0 (x, y) = (0, 0)

is differentiable at (0, 0).
11.2.7. Prove that

f (x, y) =
⎧⎨
⎩

x3 − xy2

x2 + y2
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

is continuous on R2 and has first-order partial derivatives everywhere
on R2, but f is not differentiable at (0, 0).

11.2.8 . This exercise is used several times in this chapter and the next. Sup-
pose that T ∈ L(Rn; Rm). Prove that T is differentiable everywhere on
Rn with

DT(a) = T for a ∈ Rn.

11.2.9. Let r > 0, f : Br (0) → R, and suppose that there exists an α > 1 such
that | f (x)| ≤ ‖x‖α for all x ∈ Br (0). Prove that f is differentiable at 0.
What happens to this result when α = 1?

11.2.10. Let V be open in Rn, a ∈ V , and f : V → Rm .

∗11.19 Definition.

If u is a unit vector in Rn (i.e., ‖u‖ = 1), then the directional derivative of f at a
in the direction u is defined by

Duf(a) := lim
t→0

f(a + tu)− f(a)
t

when this limit exists.

a) Prove that Duf(a) exists for u = ek if and only if fxk (a) exists, in which case

Dek f(a) = ∂ f
∂xk

(a).

b) Show that if f has directional derivatives at a in all directions u, then the first-
order partial derivatives of f exist at a. Use Example 11.11 to show that the
converse of this statement is false.
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c) Prove that the directional derivatives of

f (x, y) =
⎧⎨
⎩

x2 y

x4 + y2
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

exist at (0, 0) in all directions u, but f is neither continuous nor differentiable
at (0, 0).

11.2.11. Let r > 0, (a, b) ∈ R2, f : Br (a, b) → R, and suppose that the first-
order partial derivatives fx and fy exist in Br (a, b) and are differen-
tiable at (a, b).

a) Set�(h) = f (a + h, b + h)− f (a + h, b)− f (a, b + h)+ f (a, b) and
prove for h sufficiently small that

�(h)

h
= fy(a + h, b + th)− fy(a, b)− ∇ fy(a, b) · (h, th)

− ( fy(a, b + th)− fy(a, b)−∇ fy(a, b) · (0, th)
)+ h fyx (a, b)

for some t ∈ (0, 1).
b) Prove that

lim
h→0

�(h)

h2
= fyx (a, b).

c) Prove that

∂2 f

∂x ∂y
(a, b) = ∂2 f

∂y∂x
(a, b).

11.3 DERIVATIVES, DIFFERENTIALS, AND TANGENT PLANES

In this section we begin to explore the analogy between Df and f ′. First we
examine how the total derivative interacts with the algebra of functions.

11.20 Theorem. Let α ∈ R, a ∈ Rn , and suppose that f and g are vector func-
tions. If f and g are differentiable at a, then f+g, αf, and f ·g are all differentiable
at a. In fact,

D(f + g)(a) = Df(a)+ Dg(a), (7)
D(αf)(a) = αDf(a), (8)

and

D(f · g)(a) = g(a)Df(a)+ f(a)Dg(a). (9)

[The sums which appear on the right side of (7) and (9) represent matrix
addition, and the products which appear on the right side of (9) represent matrix
multiplication.]
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404 Chapter 11 Differentiability on Rn

Proof. The proofs of these rules are similar. We provide the details only for
the hardest of them, (9). Let

T = g(a)Df(a)+ f(a)Dg(a). (10)

Since g(a) and f(a) are 1×m matrices, and Df(a) and Dg(a) are m×n matrices,
T is a 1 × n matrix, the right size for the total derivative of f · g. By the
uniqueness of the total derivative, we need only show that

lim
h→0

(f · g)(a + h)− (f · g)(a)− T(h)
‖h‖ = 0.

Since by (10),

(f · g)(a + h)− (f · g)(a)− T(h)
= (f · g)(a + h)− (f · g)(a)− g(a)Df(a)(h)− f(a)Dg(a)(h)
= (f(a + h)− f(a)− Df(a)(h)) · g(a + h)

+ (Df(a)(h)) · (g(a + h)− g(a))
+ f(a) · (g(a + h)− g(a)− Dg(a)(h))

=: T1(h)+ T2(h)+ T3(h),

it suffices to verify Tj (h)/‖h‖ → 0 as h → 0 for j = 1, 2, 3.
Set ε(h) = f(a + h)− f(a)− Df(a)(h) and δ(h) = g(a + h)− g(a)− Dg(a)(h)

for ‖h‖ sufficiently small. Since f and g are differentiable at a, we know that
ε(h)/‖h‖ and δ(h)/‖h‖ both converge to zero as h → 0.

To estimate T1, use the Cauchy–Schwarz Inequality and the definition of ε
to verify

|T1(h)| ≤ ‖f(a + h)− f(a)− Df(a)(h)‖ ‖g(a + h)‖ = ‖ε(h)‖ ‖g(a + h)‖.
Since g is continuous at a (Theorem 11.13) and ε(h)/‖h‖ → 0 as h → 0,
it follows that T1(h)/‖h‖ → 0 as h → 0. A similar argument shows that
T3(h)/‖h‖ → 0 as h → 0.

To estimate T2, observe by the Cauchy–Schwarz Inequality and the defini-
tion of the operator norm (see Theorem 8.17) that

|T2(h)| ≤ ‖Df(a)(h)‖ ‖g(a + h)− g(a)‖ ≤ ‖Df(a)‖ ‖h‖ ‖g(a + h)− g(a)‖.
Thus |T2(h)|/‖h‖ ≤ ‖Df(a)‖ ‖g(a + h) − g(a)‖ → 0 as h → 0. We conclude
that f · g is differentiable at a and its total derivative is T. �

Formula (7) is called the Sum Rule; (8) is sometimes called the Homogeneous
Rule; and (9) is called the Dot Product Rule. (We note that a quotient rule also
holds for real-valued functions; see Exercise 11.3.6.)

Continuing to explore the analogy between Df and f ′, let g be a real function
and f be a real-valued vector function. We know that g is differentiable at a
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Section 11.3 Derivatives, Differentials, and Tangent Planes 405

point a if and only if the curve y = g(x) has a unique tangent line at (a, g(a)),
in which case g′(a) is the slope of that tangent line. What happens in the mul-
tidimensional case? Working by analogy, we expect that f is differentiable at
a point a ∈ Rn if and only if the surface z = f (x) has a unique tangent hyper-
plane at the point (a, f (a)) := (a1, . . . , an, f (a1, . . . , an)) ∈ Rn+1. Moreover, we
expect that the normal vector n of that tangent hyperplane is somehow related
to the total derivative ∇ f (a). We shall show that both of these expectations are
correct, and that the relationship between n and ∇ f (a) is a simple one [see (12)
below and Exercise 11.6.9b]. Thus, for the case m = 1, Definition 11.12 captures
both the analytic and geometric spirit of the one-dimensional derivative.

First we define what we mean by a tangent hyperplane.

11.21 Definition.

Let S be a subset of Rm and c ∈ S. A hyperplane Π with normal n is said to be
tangent to S at c if and only if Π contains c and

lim
k→∞ n · ck − c

‖ck − c‖ = 0 (11)

for all sequences ck ∈ S\ {c} which converge to c.

h, k

(a + h, b + k)
(a, b)

z = f (x, y)

n

IIn(a, b)

FIGURE 11.1

Definition 11.21 is illustrated for the case n = 3 in Figure 11.1. There S is the
surface z = f (x, y), c = (a, b, f (a, b)), and θh,k represents the angle between n
and the vector from c to (a+h, b+k), f (a+h, b+k). Notice, by (2) in Section 8.1,
that (11) is equivalent to assuming that the angle between n and ck −c converges
to π/2 for all sequences ck ∈ S\ {c} which converge to c. Hence the definition of
a “tangent hyperplane” makes geometric sense.

It is easy to see that surfaces generated by differentiable vector functions have
tangent hyperplanes.
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406 Chapter 11 Differentiability on Rn

11.22 Theorem. Suppose that V is open in Rn , that a ∈ V , and that f : V → R.
If f is differentiable at a, then the surface

S := {(x, z) ∈ Rn+1 : z = f (x) and x ∈ V }
has a tangent hyperplane at (a, f (a)) with normal

n = (∇ f (a),−1) := ( fx1(a), fx2(a), . . . , fxn (a),−1). (12)

An equation of this tangent hyperplane is given by

z = f (a)+ ∇ f (a) · (x − a). (13)

Proof. Let ck ∈ S with ck �= (a, f (a)) and suppose that ck → (a, f (a)) as
k → ∞. Then ck = (ak, f (ak)) for some ak ∈ V and ak → a as k → ∞. For
‖h‖ small, set ε(h) = f (a + h)− f (a)− ∇ f (a) · h and define n by (12). Since

‖ck − c‖ =
√

‖ak − a‖2 + | f (ak)− f (a)|2 ≥ ‖ak − a‖,

it is clear by (12) that

0 ≤
∣∣∣∣n · ck − c

‖ck − c‖
∣∣∣∣ ≤ |ε(ak − a)|

‖ak − a‖ .

Since ε(h)/‖h‖ → 0 as h → 0, it follows from the Squeeze Theorem that n
satisfies (11) for c := (a, f (a)). Finally, (13) is an equation of this tangent
hyperplane by the point-normal form. �

Thus for the case n = 2, if f is differentiable at (a, b), then an equation of that
tangent plane to z = f (x, y) at (a, b) is given by

z = f (a, b)+ (x − a) fx (a, b)+ (y − b) fy(a, b). (14)

Notice that (14) is completely analogous to the one variable case. Namely, if
g is differentiable at a, then the tangent line to y = g(x) at the point (a, g(a)) is

y = g(a)+ g′(a)(x − a). (15)

It is interesting to note that the converse of Theorem 11.22 is also true (see
Theorem 11.27 below).

There is another analogy between Df and f ′ worth mentioning. Recall that if
f is a real function, then the change in y = f (x) as x moves from a to a +�x is
defined by�y = f (a+�x)− f (a). For many concrete situations, it is convenient
and useful to approximate �y by the Leibnizian differential dy := f ′(a) dx ,
where dx = �x is a small real number (see Figure 11.2). Does a similar situation
prevail for functions on Rn?
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x

y

y = f (x)

Δy

dy

a + Δxa

Tangent at (a, f (a))

FIGURE 11.2

To answer this question, suppose that z = f (x) is a vector function from n
variables to one variable, differentiable at a; that �z := f (a + �x) − f (a),
where �x := (�x1, . . . , �xn); and that dx = �x is a vector with small norm.
Comparing (14) and (15), we define the first total differential of a vector function
from n variables to one variable to be

dz := ∇ f (a) ·�x :=
n∑

j=1

∂ f

∂x j
(a) dx j .

Is dz a good approximation to �z?

11.23 Remark. Let f : Rn → R be differentiable at a and �x =
(�x1, . . . , �xn). Then

�z − dz

‖�x‖ → 0 as �x → 0.

In particular, the differential dz approximates �z.

Proof. By definition, if f is differentiable at a, then ε(h) := f (a+h)− f (a)−
∇ f (a) · h satisfies ε(h)/‖h‖ → 0 as h → 0. Since �z = f (a + h) − f (a) for
h :=�x and dz =∇ f (a) · h, it follows that (�z − dz)/‖�x‖→0 as �x→0. �

Figure 11.2 gives us a useful geometric interpretation of the one-dimensional
differential. Is there an analogous interpretation for two-dimensional differen-
tials? Specifically, if z = f (x, y), does the total differential dz and the increment
�z play an analogous geometric role in R3 that dy and �y played in R2?

The two-dimensional picture corresponding to Figure 11.2 involves a tangent
plane and a wedge-shaped region (see Figure 11.3). Namely, let z0 = f (a, b) and
consider the wedge-shaped region W with vertical sides parallel to the xz- and

407



408 Chapter 11 Differentiability on Rn

x

y

z = f (x,y)

z

dz
D B

A

(a + Δx, b)

(a + Δx, b + Δy)

(a, b + Δy)

(a, b)

FIGURE 11.3

yz-planes whose base has vertices c0 := (a, b, z0), c1 := (a + �x, b, z0), c2 :=
(a, b+�y, z0), c3 := (a+�x, b+�y, z0), and whose top is tangent to z = f (x, y)
at c0. Let A represent the length of the vertical edge of W based at c1, B the
length of the edge based at c2, and C the length of the edge based at c3. If dz is to
play the same role in Figure 11.3 that dy plays in Figure 11.2, then it must be the
case that C = dz. This is actually easy to verify. Since the diagonals of rectangles
bisect one another, the line segment from the intersection of the diagonals in
the base of W to the intersection of the diagonals in the top of W must be
parallel to the z-axis. Thus the length D of this line segment can be computed
two ways. On the one hand, D = C/2. On the other hand, D = (A + B)/2.
Therefore, C = A + B. But from one-dimensional calculus, A = fx (a, b) dx and
B = fy(a, b) dy. Consequently,

C = A + B = ∂ f

∂x
(a, b) dx + ∂ f

∂y
(a, b) dy = dz.

We conclude that the first total differential of vector functions plays exactly the
same role that it did for real functions.

We close this section with some optional material about tangent planes and
applications of the first total differential.

Notice by Remark 11.23 that if f is differentiable at a, then the total differ-
ential of f can be used to approximate the change of f as x moves from a to
a + h for ‖h‖ sufficiently small. This suggests that the differential can be used to
approximate a function.
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∗11.24 EXAMPLE.

Use differentials to approximate the change of f (x, y) = x2 y − y3 as (x, y)
moves from (0, 1) to (0.02, 1.01).

Solution. Let z = x2 y − y3, a = 0, and b = 1. Then dx = 0.02 and dy = 0.01.
Since dz = 2xy dx + (x2 − 3y2) dy, we have

�z ≈ 0(0.02)− 3(0.01) = −0.03.

Note that �z = f (0.02, 1.01)− f (0, 1)=−0.029897 . . . is very close to −0.03. �

∗11.25 EXAMPLE.

Use differentials to approximate (5.97) 4
√

16.03.

Solution. Let z = y 4
√

x, a = 16, and b = 6. Then dx = 0.03 and dy =
−0.03. Since

dz = y

4
4
√

x3
dx + 4

√
x dy,

we have

�z ≈ 6(0.03)

4 4
√
(16)3

+ 4
√

16(−0.03) ≈ −0.054375.

Thus,

z ≈ 6 4
√

16 − 0.054375 = 11.945625.

Note that the actual value of 5.97 4
√

16.03 is 11.945593 . . . . Thus our approxima-
tion is good to three decimal places. �

∗11.26 EXAMPLE.

Find the maximum percentage error for the calculated value of the volume of
a right circular cylinder if the radius can be measured with a maximum error of
3% and the altitude can be measured with a maximum error of 2%.

Solution. The volume of a right circular cylinder is V = πr2 h, where r is the
radius and h is the altitude. Hence, the differential of V is dV = 2πrh dr +
πr2 dh. Thus

dV

V
= 2

dr

r
+ dh

h
.

Since the percentage error of a variable x is �x/x ≈ dx/x , it follows that the
maximum percentage error in calculating the volume V is approximately 8%:

dV

V
= 2(±0.03)+ (±0.02) = ±0.08. �
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410 Chapter 11 Differentiability on Rn

We close this section by showing that the converse of Theorem 11.22 holds.
(The proof presented here is based on Taylor [13]1.)

∗11.27 Theorem. Let V be open in R2, let (a, b) ∈ V , and let f : V → R. Then f
is differentiable at (a, b) if and only if z = f (x, y) has a nonvertical tangent plane
Π at c := (a, b, f (a, b)), in which case Π = Πn(c) for

n = ( fx (a, b), fy(a, b),−1). (16)

Proof. If f is differentiable at (a, b), then by Theorem 11.22, z = f (x, y) has
a nonvertical tangent plane with normal given by (16).

Conversely, suppose that the surface S := {(x, y, z) : z = f (x, y) for
(x, y) ∈ V } has a nonvertical tangent plane Π at c with normal N whose third
component is γ . Since γ �= 0, n := −N/γ =: (n1, n2,−1) is also a normal of
Π . Let n1,2 = (n1, n2), let a := (a, b), and let h := (h, k) �= 0 be chosen so that
a + h ∈ V . Set

ε(h) := �z − n1,2 · h,

where �z := f (a + h, b + k) − f (a, b), and observe (by the uniqueness of
the total derivative) that if we prove that ε(h)/‖h‖ → 0 as h → 0, then f is
differentiable at a, and n1,2 = ∇ f (a, b) as required.

Set ch := (a + h, b + k, f (a + h, b + k)). Since Π is tangent to S at c, and
since n · (ch − c) = n1,2 · h −�z, Definition 11.21 implies

Q := Q(h) := n1,2 · h −�z√‖h‖2 + (�z)2
→ 0 (17)

as h → 0. Since the expression Q defined in (17) is a quadratic in �z, use the
quadratic formula to solve for �z:

�z = −n1,2 · h ± |Q|√(n1,2 · h)2 + (1 − Q2)‖h‖2

Q2 − 1
. (18)

It follows that

ε(h) = �z − n1,2 · h = −n1,2 · h Q2 ± |Q|√(n1,2 · h)2 + (1 − Q2)‖h‖2

Q2 − 1
. (19)

To estimate ε(h), observe by the Cauchy–Schwarz Inequality that |n1,2 · h|≤
‖n1,2‖ ‖h‖ and that (n1,2 · h)2 + (1 − Q2)‖h‖2 ≤ (‖n1,2‖2 + 1 − Q) ‖h‖2.
Substituting these estimates into (19), we obtain

|ε(h)|
‖h‖ ≤ Q2 ‖n1,2‖ + |Q|√‖n1,2‖2 + 1 − Q2

1 − Q2
.

1Angus E. Taylor, Advanced Calculus (Boston: Ginn and Company, 1955). Reprinted with
permission of John Wiley & Sons, Inc.
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Section 11.3 Derivatives, Differentials, and Tangent Planes 411

Since Q → 0 as h → 0, we conclude by the Squeeze Theorem that
ε(h)/‖h‖ → 0 as h → 0. In particular, f is differentiable at (a, b) and
( fx (a, b), fy(a, b),−1) is normal to its tangent plane there. �

EXERCISES

11.3.1. For each of the following, prove that f and g are differentiable on their
domains, and find formulas for D(f + g)(x) and D(f · g)(x).

a) f(x, y) = x − y, g(x, y) = x2 + y2

b) f(x, y) = xy, g(x, y) = x sin x − cos y

c) f(x, y) = (cos(xy), x log y), g(x, y) = (y, x)

d) f(x, y, z) = (y, x − z), g(x, y, z) = (xyz, y2)

11.3.2. For each of the following functions, find an equation of the tangent
plane to z = f (x, y) at c.

a) f (x, y) = x2 + y2, c = (1,−1, 2)
b) f (x, y) = x3 y − xy3, c = (1, 1, 0)
c) f (x, y, z) = xy + sin z, c = (1, 0, π/2, 1)

11.3.3. Find all points on the paraboloid z = x2 + y2 (see Appendix D) where
the tangent plane is parallel to the plane x + y + z = 1. Find equa-
tions of the corresponding tangent planes. Sketch the graphs of these
functions to see that your answer agrees with your intuition.

11.3.4. Let K be the cone, given by z = √x2 + y2.

a) Find an equation of each plane tangent to K which is perpendicular
to the plane x + z = 5.

b) Find an equation of each plane tangent to K which is parallel to the
plane x − y + z = 1.

11.3.5. Prove (7) and (8) in Theorem 11.20.
11.3.6. [Quotient Rule]. Suppose that f : Rn → R is differentiable at a and

that f (a) �= 0.

a) Show that for ‖h‖ sufficiently small, f (a + h) �= 0.
b) Prove that D f (a)(h)/‖h‖ is bounded for all h ∈ Rn\{0}.
c) If T := −D f (a)/ f 2(a), show that

1

f (a + h)
− 1

f (a)
− T (h) = f (a)− f (a + h)+ D f (a)(h)

f (a) f (a + h)

+ ( f (a + h)− f (a))D f (a)(h)
f 2(a) f (a + h)

for ‖h‖ sufficiently small.
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412 Chapter 11 Differentiability on Rn

d) Prove that 1/ f (x) is differentiable at x = a and

D

(
1

f

)
(a) = − D f (a)

f 2(a)
.

e) Prove that if f and g are real-valued vector functions which are
differentiable at some a, and if g(a) �= 0, then

D

(
f

g

)
(a) = g(a)D f (a)− f (a)Dg(a)

g2(a)
.

11.3.7. [Cross-Product Rule]. Suppose that V is open in Rn , that f, g : V →
R3, and that a ∈ V . If f and g are differentiable at a, prove that f × g is
differentiable at a and

D(f × g)(a)(y) = f(a)× (Dg(a)(y))− g(a)× (Df(a)(y))

for all y ∈ Rn .
∗11.3.8. Compute the differential of each of the following functions.

a) z = x2 + y2 b) z = sin(xy) c) z = xy

1 + x2 + y2

∗11.3.9. Let w = x2 y + z. Use differentials to approximate �w as (x, y, z)
moves from (1,2,1) to (1.01, 1.98, 1.03). Compare your approximation
with the actual value of �w.

∗11.3.10. The time T it takes for a pendulum to complete one full swing is
given by

T = 2π

√
L

g
,

where g is the acceleration due to gravity and L is the length of the
pendulum. If g can be measured with a maximum error of 1%, how
accurately must L be measured (in terms of percentage error) so that
the calculated value of T has a maximum error of 2%?

∗11.3.11. Suppose that

1

w
= 1

x
+ 1

y
+ 1

z
,

where each variable x, y, z can be measured with a maximum error of
p%. Prove that the calculated value of w also has a maximum error
of p%.

11.4 THE CHAIN RULE

Here is the Chain Rule for vector functions.
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11.28 Theorem. [CHAIN RULE].
Suppose that f and g are vector functions. If g is differentiable at a and f is
differentiable at g(a), then f ◦ g is differentiable at a and

D(f ◦ g)(a) = Df(g(a))Dg(a). (20)

[The product Df(g(a))Dg(a) is matrix multiplication.]

Proof. To specify the dimensions, suppose that a ∈ Rn, b := g(a) ∈ Rm ,
and f(b) ∈ Rp. Set T = Df(g(a))Dg(a) and observe that T, the product of a
p × m matrix with an m × n matrix, is a p × n matrix, the right size for the
total derivative of f ◦ g. By the uniqueness of the total derivative, we must
show that

lim
h→0

f(g(a + h))− f(g(a))− T(h)
‖h‖ = 0. (21)

Set

ε(h) = g(a + h)− g(a)− Dg(a)(h), (22)

and

δ(k) = f(b + k)− f(b)− Df(b)(k) (23)

for ‖h‖ and ‖k‖ sufficiently small. By hypothesis, ε(h)/‖h‖ → 0 in Rm as
h → 0 in Rn , and δ(k)/‖k‖ → 0 in Rp as k → 0 in Rm . Fix h small and set
k = g(a + h)− g(a). Since (23) and (22) imply

f(g(a + h))− f(g(a)) = f(b + k)− f(b) = Df(b)(k)+ δ(k)
= Df(b)(Dg(a)(h)+ ε(h))+ δ(k)
= T(h)+ Df(b)(ε(h))+ δ(k),

we have f(g(a + h)) − f(g(a)) − T(h) = Df(b)(ε(h)) + δ(k) =: T1(h) + T2(h).
It remains to verify that T j (h)/‖h‖ → 0 as h → 0 for j = 1, 2.

Since ε(h)/‖h‖ → 0 as h → 0 and Df(b)(h) is matrix multiplication, it is
clear that T1(h)/‖h‖ → Df(b)(0) = 0 as h → 0. On the other hand, by (22),
the triangle inequality, and the definition of the operator norm, we have

‖k‖ := ‖g(a + h)− g(a)‖ = ‖Dg(a)(h)+ ε(h)‖ ≤ ‖Dg(a)‖ · ‖h‖ + ‖ε(h)‖.

Thus ‖k‖/‖h‖ is bounded for ‖h‖ sufficiently small. Since k = 0 implies
‖T2(h)‖ = 0, we may suppose that k �= 0. Since k → 0 implies h → 0, it
follows that

‖T2(h)‖
‖h‖ = ‖k‖

‖h‖ · ‖δ(k)‖
‖k‖ → 0

as h → 0. We conclude that f ◦ g is differentiable at a and the derivative is
Df(g(a))Dg(a). �
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414 Chapter 11 Differentiability on Rn

The Chain Rule can be used to compute individual partial derivatives with-
out writing out the entire matrices Df and Dg. For example, suppose that
f (u1, . . . , um) is differentiable from Rm to R, that g(x1, . . . , xn) is differentiable
from Rn to Rm , and that z = f (g(x1, . . . , xn)). Since D f = ∇ f and the jth
column of Dg consists of first partial derivatives, with respect to x j , of the com-
ponents uk := gk(x1, . . . , xn), it follows from the Chain Rule and the definition
of matrix multiplication that

∂z

∂x j
= ∂ f

∂u1

∂u1

∂x j
+ · · · + ∂ f

∂um

∂um

∂x j

for j = 1, 2, . . . , n. Here are two concrete examples which illustrate this
principle.

11.29 EXAMPLES.

i) If F,G, H : R2 → R are differentiable and z = F(x, y), where x = G(r, θ),
and y = H(r, θ), then

∂z

∂r
= ∂z

∂x

∂x

∂r
+ ∂z

∂y

∂y

∂r
and

∂z

∂θ
= ∂z

∂x

∂x

∂θ
+ ∂z

∂y

∂y

∂θ
.

ii) If f : R3 → R and φ,ψ, σ : R → R are differentiable and w = f (x, y, z),
where x = φ(t), y = ψ(t), and z = σ(t), then

dw

dt
= ∂w

∂x

dx

dt
+ ∂w

∂y

dy

dt
+ ∂w

∂z

dz

dt
.

EXERCISES

11.4.1. Let F : R3 → R and f, g, h : R2 → R be C2 functions. Ifw = F(x, y, z),
where x = f (p, q), y = g(p, q), and z = h(p, q), find formulas for
wp, wq , and wpp.

11.4.2. Let r > 0, let a ∈ Rn , and suppose that g : Br (a) → Rm is differentiable
at a.

a) If f : Br (g(a)) → R is differentiable at g(a), prove that the partial
derivatives of h = f ◦ g are given by

∂h

∂x j
(a) = ∇ f (g(a)) · ∂ g

∂x j
(a)

for j = 1, 2, . . . , n.
b) If n = m and f : Br (g(a)) → Rn is differentiable at g(a), prove that

det(D(f ◦ g)(a)) = det(Df(g(a))) det(Dg(a)).
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11.4.3. Suppose that k ∈ N and that f : Rn → R is homogeneous of order
k; that is, that f (ρx) = ρk f (x) for all x ∈ Rn and all ρ ∈ R. If f is
differentiable on Rn , prove that

x1
∂ f

∂x1
(x)+ · · · + xn

∂ f

∂xn
(x) = k f (x)

for all x = (x1, . . . , xn) ∈ Rn .
11.4.4. Let f, g : R → R be twice differentiable. Prove that u(x, y) := f (xy)

satisfies

x
∂u

∂x
− y

∂u

∂y
= 0,

and v(x, y) := f (x − y)+ g(x + y) satisfies the wave equation; that is,

∂2v

∂x2
− ∂2v

∂y2
= 0.

11.4.5. Let f, g : R2 → R be differentiable and satisfy the Cauchy–Riemann
equations; that is, that

∂ f

∂x
= ∂g

∂y
and

∂ f

∂y
= −∂g

∂x

hold on R2. If u(r, θ) = f (r cos θ, r sin θ) and v(r, θ) = g(r cos θ, r sin θ),
prove that

∂u

∂r
= 1

r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
r �= 0.

11.4.6. Let f : R2 → R be C2 on R2 and set u(r, θ) = f (r cos θ, r sin θ). If f
satisfies the Laplace equation; that is, if

∂2 f

∂x2
+ ∂2 f

∂y2
= 0,

prove for each r �= 0 that

1

r2

∂2u

∂θ2
+ 1

r

∂u

∂r
+ ∂2u

∂r2
= 0.

11.4.7. Let

u(x, t) = e−x2/4t

√
4π t

, t > 0, x ∈ R.

a) Prove that u satisfies the heat equation (i.e., uxx −ut = 0 for all t > 0
and x ∈ R).
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416 Chapter 11 Differentiability on Rn

b) If a > 0, prove that u(x, t) → 0, as t → 0+, uniformly for x ∈
[a,∞).

11.4.8. Let u : R → [0,∞) be differentiable. Prove that for each (x, y, z) �=
(0, 0, 0),

F(x, y, z):=u

(√
x2 + y2 + z2

)
satisfies((

∂F

∂x

)2

+
(
∂F

∂y

)2

+
(
∂F

∂z

)2
)1/2

=
∣∣∣∣u′
(√

x2 + y2 + z2

)∣∣∣∣ .
11.4.9. Suppose that z = F(x, y) is differentiable at (a, b), that Fy(a, b) �= 0,

and that I is an open interval containing a. Prove that if f : I → R is
differentiable at a, f (a) = b, and F(x, f (x)) = 0 for all x ∈ I , then

d f

dx
(a) =

−∂F

∂x
(a, b)

∂F

∂y
(a, b)

.

11.4.10. Suppose that I is a nonempty, open interval and that f : I → Rm is
differentiable on I . If f(I ) ⊆ ∂Br (0) for some fixed r > 0, prove that
f(t) is orthogonal to f′(t) for all t ∈ I .

11.4.11. Let V be open in Rn, a ∈ V, f : V → R, and suppose that f is
differentiable at a.

a) Prove that the directional derivative Du f (a) exists (see Exer-
cise 11.2.10) for each u ∈ Rn such that ‖u‖ = 1 and Du f (a) =
∇ f (a) · u.

b) If ∇ f (a) �= 0 and θ represents the angle between u and ∇ f (a), prove
that Du f (a) = ‖∇ f (a)‖ cos θ .

c) Show that as u ranges over all unit vectors in Rn , the maximum of
Du f (a) is ‖∇ f (a)‖, and it occurs when u is parallel to ∇ f (a).

11.5 THE MEAN VALUE THEOREM AND TAYLOR’S FORMULA

Using Df as a replacement for f ′, we guess that the multidimensional analogue
of the Mean Value Theorem is f(x)− f(a) = Df(c)(x−a) for some c “between” x
and a; that is, some c ∈ L(x; a), the line segment from a to x. The following result
shows that this guess is correct when f is real valued (see also Exercises 11.5.6
and 11.5.9).

11.30 Theorem. [MEAN VALUE THEOREM FOR REAL VALUED
FUNCTIONS].
Let V be open in Rn and suppose that f : V → R is differentiable on V. If
x, a ∈ V and L(x; a) ⊂ V , then there is a c ∈ L(x; a) such that

f (x)− f (a) = ∇ f (c) · (x − a). (24)
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Section 11.5 The Mean Value Theorem and Taylor’s Formula 417

Proof. Let

g(t) = a + t (x − a), t ∈ R,

and notice by Exercise 11.2.8 that g : R → Rn is differentiable with Dg(t) =
x − a for all t ∈ R. Since L(x; a) ⊆ V and V is open, choose δ > 0 such that
g(t) ∈ V for all t ∈ Iδ := (−δ, 1 + δ). By the Chain Rule,

D( f ◦ g)(t) = D f (g(t))(x − a), t ∈ Iδ. (25)

But f ◦g : Iδ → R is a real function and f is real valued, so D( f ◦g) = ( f ◦g)′
and D f = ∇ f . Hence, by the one-dimensional Mean Value Theorem and
(25), there is a t0 ∈ (0, 1) such that

f (x)− f (a) = ( f ◦ g)(1)− ( f ◦ g)(0) = ( f ◦ g)′(t0) = ∇ f (c) · (x − a)

for c = g(t0). �

The following result shows that this result does not extend to vector-valued
functions, even when the domain is one dimensional.

11.31 Remark. The function f (t) = (cos t, sin t) is differentiable on R and satis-
fies f (2π) = f (0), but there is no c ∈ R such that D f (c) = (0, 0).

Proof. D f (t) = (− sin t, cos t) exists and is continuous for t ∈ R but (0, 0) �=
(− sin t, cos t) for t ∈ R. �

But any vector-valued function f can be turned into a scalar-valued function
by taking the dot product of f with any vector u. Combining this observation
with Theorem 11.30, we obtain the following multivariable version of the Mean
Value Theorem.

11.32 Theorem. [MEAN VALUE THEOREM FOR VECTOR VALUED
FUNCTIONS].
Let V be open in Rn and suppose that f : V → Rm is differentiable on V. If
x, a ∈ V and L(x; a) ⊆ V , then given any u ∈ Rm there is a c ∈ L(x; a) such
that

u · (f(x)− f(a)) = u · (Df(c)(x − a)).

Proof. Let u ∈ Rm. Set h(x) := u · f(x) and observe by the Dot Product Rule
[see (9) above] that

Dh(x) = u · D(f)(x)

for all x ∈ V . Since h is scalar valued, it follows from Theorem 11.30 that
there is a c ∈ L(x; a) such that

u · (f(x)− f(a)) = h(x)− h(a) = Dh(c)(x − a) = u · (Df(c)(x − a)). �
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418 Chapter 11 Differentiability on Rn

Sets which satisfy the hypothesis “L(x; a) ⊆ V ” come up often enough to
warrant a name.

11.33 Definition.

A subset E of Rn is said to be convex if and only if L(x; a) ⊆ E for all x, a ∈ E .

Using this terminology, we see that the Mean Value Theorems above hold for
any C1 function on a convex, open set V .

It is easy to see that balls and rectangles are convex. For example, if x, a ∈
Br (b), then

‖((1 − t)a + tx)− b‖ = ‖(1 − t)(a − b)+ t (x − b)‖ < (1 − t)r + tr = r.

On the other hand, Figure 11.4 is an example of a nonconvex set in R2 (because
the line segment which joins a to b contains some points outside V ).

a

x1

x2

b

V

FIGURE 11.4

As in the one-dimensional case, the Mean Value Theorem is used most often
to obtain information about a function from properties of its derivative. Here is
a typical example.

11.34 Corollary. Let V be an open set in Rn , let H be a compact subset of V, and
suppose that f : V → Rm is C1 on V. If E is a convex subset of H, then there is a
constant M (which depends on H and f but not on E) such that

‖f(x)− f(a)‖ ≤ M‖x − a‖
for all x, a ∈ E .

Proof. Since H is compact and the entries of Df are continuous on H , we
have by the Extreme Value Theorem (Theorem 9.32 or 10.63) and the proof
of Theorem 8.17 that the operator norm of Df is bounded on H ; that is, that

M := sup
c ∈H

‖Df(c)‖

is finite. Notice that M depends only on H and f.
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Let x, a ∈ E and u = f(x)− f(a). Since E is convex, L(x; a) ⊆ E . Hence, by
Theorem 11.32, there is a c ∈ L(x; a) such that

‖f(x)− f(a)‖2 = u · (f(x)− f(a)) = u · (D f (c)(x − a))
= ( f (x)− f (a)) · (Df(c)(x − a)).

It follows from the Cauchy–Schwarz Inequality and the definition of the
operator norm that

‖f(x)− f(a)‖2 ≤ ‖f(x)− f(a)‖ ‖Df(c)‖ ‖x − a‖.
If ‖f(x) − f(a)‖ = 0, there is nothing to prove. Otherwise, we can divide the
inequality above by ‖f(x)− f(a)‖ to obtain

‖f(x)− f(a)‖ ≤ ‖Df(c)‖ ‖x − a‖ ≤ M‖x − a‖. �

As the following optional result shows, for some applications of the Mean
Value Theorem, the convexity hypothesis can be replaced by connectivity. (This
is an analogue of the one-dimensional result: If f ′ = 0 on [a, b], then f is
constant on [a, b].)
∗11.35 Corollary. Suppose that V is open and connected in Rn and that f : V →
Rm is differentiable on V. If Df(c) = O for all c ∈ V , then f is constant on V.

Proof. Fix a ∈ V , and let x ∈ V . Since V is open and connected, V is polyg-
onally connected (see Exercise 9.4.10 or 10.5.10). Thus, there exist points
x0 = a, x1, . . . , xk = x such that L(x j−1; x j ) ⊆ V for j = 1, 2, . . . , k (see
Figure 11.4).

Let u = f(x) − f(a) and choose by Theorem 11.32 points c j ∈ L(x j−1; x j )

such that

u · (f(x j )− f(x j−1)) = u · (Df(c j )(x j − x j−1)) = 0

for j = 1, 2, . . . , k. Summing over j and telescoping, we see by the choice of
u that

0 =
k∑

j=1

u · (f(x j )− f(x j−1)) = u · (f(x)− f(a)) = ‖f(x)− f(a)‖2.

Therefore, f(x) = f(a). �

To obtain a multidimensional version of Taylor’s Formula, we need to define
higher-order differentials. Let p ≥ 1, let V be open in Rn , let a ∈ V , and let
f : V → R. We shall say that f has a pth-order total differential at a if and only
if the (p − 1)-st order partial derivatives of f exist on V and are differentiable
at a, in which case we call
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420 Chapter 11 Differentiability on Rn

D(p) f (a; h) :=
n∑

i1=1

· · ·
n∑

i p=1

∂ p f

∂xi1 . . . ∂xi p

(a)hi1 · · · hi p , h = (h1, . . . , hn) ∈ Rn

the pth-order total differential of f at a. Notice that

D(p) f (a; h) = D(1)(D(p−1) f )(a; h)

=
n∑

j=1

∂

∂x j

⎛
⎝ n∑

i1=1

· · ·
n∑

i p−1=1

∂ p−1 f

∂xi1 . . . ∂xi p−1

(a)hi1 · · · hi p−1

⎞
⎠ h j

for p > 1. Also notice that if z = f (x), then D(1) f (a;�x) is the first total
differential dz defined in Section 11.3, and also is the total derivative of f at a
evaluated at �x:

D(1) f (a;�x) :=
n∑

j=1

∂ f

∂x j
(a)�x j = ∇ f (a) ·�x = D f (a)(�x).

For the case n = 2, this differential has a simple geometric interpretation (see
Figure 11.3 above).

Although total differentials look messy to evaluate, when f is a sufficiently
smooth function of two variables, they are relatively easy to calculate using
binomial coefficients (see the next example and Exercise 11.5.2).

11.36 EXAMPLE.

Suppose that f : V → R is C2 on V . Find a formula for the second total differ-
ential of f at (a, b) ∈ V .

Solution. By definition,

D(2) f ((a, b); (h, k)) = h2 ∂
2 f

∂x2
(a, b)+ hk

∂2 f

∂x ∂y
(a, b)

+ hk
∂2 f

∂y ∂x
(a, b)+ k2 ∂

2 f

∂y2
(a, b).

But by Theorem 11.2, fxy(a, b) = fyx (a, b). Therefore,

D(2) f ((a, b); (h, k)) = h2 ∂
2 f

∂x2
(a, b)+ 2hk

∂2 f

∂x ∂y
(a, b)+ k2 ∂

2 f

∂y2
(a, b). �

Thus the second total differential of f (x, y) = (xy)2 is

D(2) f ((x, y); (h, k)) = 2y2h2 + 8xyhk + 2x2k2.

Here is a multidimensional version of Taylor’s Formula.
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11.37 Theorem. [TAYLOR’S FORMULA ON Rn].
Let p ∈ N, let V be open in Rn , let x, a ∈ V , and suppose that f : V → R. If
the pth total differential of f exists on V and L(x; a) ⊆ V , then there is a point
c ∈ L(x; a) such that

f (x) = f (a)+
p−1∑
k=1

1

k! D(k) f (a; h)+ 1

p! D(p) f (c; h)

for h := x − a.

NOTE: These hypotheses are met if V is convex and f is C p on V.

Proof. Let h = x − a. As in the proof of Theorem 11.32, choose δ > 0 so
small that a + th ∈ V for t ∈ Iδ := (−δ, 1 + δ). The function F(t) = f (a + th)
is differentiable on Iδ and, by the Chain Rule,

F ′(t) = D f (a + th)(h) =
n∑

k=1

∂ f

∂xk
(a + th) hk .

In fact, a simple induction argument can be used to verify that

F ( j)(t) =
n∑

i1=1

· · ·
n∑

i j =1

∂ j f

∂xi1 · · · ∂xi j

(a + th) hi1 · · · hi j

for j = 1, 2, . . . , p. Thus

F ( j)(0) = D( j) f (a; h) and F (p)(t) = D(p) f (a + th; h) (26)

for j = 1, . . . , p − 1, and t ∈ Iδ .
We have proved that the real function F has a derivative of order p

everywhere on Iδ ⊃ [0, 1]. Therefore, by the one-dimensional Taylor Formula
and (26),

f (x)− f (a) = F(1)− F(0) =
p−1∑
j=1

1

j ! F ( j)(0)+ 1

p! F (p)(t)

=
p−1∑
j=1

1

j ! D( j) f (a; h)+ 1

p! D(p) f (a + th; h)

for some t ∈ (0, 1). Thus set c = a + th. �

11.38 EXAMPLE.

Write Taylor’s Formula for f (x, y) = cos(xy), a = (0, 0), and p = 3.
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422 Chapter 11 Differentiability on Rn

Solution. It is easy to verify that fx , fy, fxx , fxy , and fyy are all zero at (0, 0),
so D(1) f ((0, 0); (x, y)) = 0 and D(2) f ((0, 0); (x, y)) = 0. Since fxxx (x, y) =
y3 sin(xy), fxxy = −2y cos(xy)+ xy2 sin(xy), fxyy = −2x cos(xy)+ x2 y sin(xy),
and fyyy = x3 cos(xy), Theorem 11.2 implies D(3) f ((c, d); (x, y)) = (x3 +
y3) sin(cd)+ 3(x2 y + xy2) sin(cd)− 6(x + y) cos(cd). Thus by Taylor’s Formula,
for all (x, y) ∈ R2 there is a point (c, d) on the line segment between (0, 0) and
(x, y) such that

cos(xy) = 1 +
(

x3 + y3

6

)
sin(cd)+

(
x2 y + xy2

2

)
sin(cd)− (x + y) cos(cd).

EXERCISES

11.5.1. a) Write out an expression in powers of (x +1) and (y−1) for f (x, y) =
x2 + xy + y2.

b) Write Taylor’s Formula for f (x, y) = √
x + √

y, a = (1, 4), and
p = 3.

c) Write Taylor’s Formula for f (x, y) = exy, a = (0, 0), and p = 4.

11.5.2. Suppose that f : R2 → R is C p on Br (x0, y0) for some r > 0. Prove
that, given (x, y) ∈ Br (x0, y0), there is a point (c, d) on the line segment
between (x0, y0) and (x, y) such that

f (x, y) = f (x0, y0)+
p−1∑
k=1

1

k!

⎛
⎝ k∑

j=0

(
k

j

)
(x − x0)

j (y−y0)
k− j ∂k f

∂x j ∂yk− j
(x0, y0)

⎞
⎠

+ 1

p!
p∑

j=0

(
p

j

)
(x − x0)

j (y − y0)
p− j ∂ p f

∂x j ∂y p− j
(c, d).

11.5.3. Suppose that f : Rn → R and g : Rn → Rn are differentiable on Rn and
that there exist r > 0 and a ∈ Rn such that Dg(x) is the identity matrix,
I , for all x ∈ Br (a). Prove that there is a function h : Br (a) \ {a} →
Br (x) such that

| f (g(x))− f (g(a))|
‖x − a‖ ≤ ‖D f ((g ◦ h)(x))‖

for all x ∈ Br (a) \ {a}.
11.5.4. Suppose that V is convex and open in Rn and that f : V → Rn is dif-

ferentiable on V . If there exists an a ∈ V such that Df(x) = Df(a) for
all x ∈ V , prove that there exist a linear function S ∈ L(Rn; Rn) and a
vector c ∈ Rn such that f(x) = S(x)+ c for all x ∈ V .

11.5.5. [Integral Form of Taylor’s Formula]. Let p ∈ N, V be an open set in
Rn, x, a ∈ V , and f : V → R be C p on V . If L(x; a) ⊂ V and h = x − a,
prove that
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f (x)− f (a)=
p−1∑
k=1

1

k! D(k) f (a; h)+ 1

(p − 1)!
∫ 1

0
(1−t)p−1 D(p) f (a+th; h) dt.

11.5.6. Let r > 0, a, b ∈ R, f : Br (a, b) → R be differentiable, and (x, y) ∈
Br (a, b).

a) Let g(t) = f (t x + (1 − t)a, y)+ f (a, t y + (1 − t)b) and compute the
derivative of g.

b) Prove that there are numbers c between a and x , and d between b
and y such that

f (x, y)− f (a, b) = (x − a) fx (c, y)+ (y − b) fy(a, d).

(This is Exercise 12.20 in Apostol [1].)

11.5.7. Suppose that 0 < r < 1 and that f : B1(0) → R is continuously differ-
entiable. If there is an α > 0 such that | f (x)| ≤ ‖x‖α for all x ∈ Br (0),
prove that there is an M > 0 such that | f (x)| ≤ M‖x‖ for x ∈ Br (0).

11.5.8. Suppose that V is open in Rn , that f : V → R is C2 on V , and that
fx j (a) = 0 for some a ∈ H and all j = 1, . . . , n. Prove that if H is a
compact convex subset of V , then there is a constant M such that

| f (x)− f (a)| ≤ M‖x − a‖2

for all x ∈ H .
11.5.9. Let f : Rn → R. Suppose that for each unit vector u ∈ Rn , the direc-

tional derivative Du f (a + tu) exists for t ∈ [0, 1] (see Definition 11.19).
Prove that

f (a + u)− f (a) = Du f (a + tu)

for some t ∈ (0, 1).
11.5.10. Suppose that V is open in R2, that (a, b) ∈ V , and that f : V → R is C3

on V . Prove that

lim
r→0

4

πr2

∫ 2π

0
f (a+r cos θ, b+r sin θ) cos(2θ) dθ = fxx (a, b)− fyy(a, b).

11.5.11. Suppose that V is open in R2, that H =[a, b]×[0, c] ⊂ V , that u : V →R
is C2 on V , and that u(x0, t0) ≥ 0 for all (x0, t0) ∈ ∂H .

a) Show that, given ε > 0, there is a compact set K ⊂ Ho such that
u(x, t) ≥ −ε for all (x, t) ∈ H \ K .

b) Suppose that u(x1, t1) = −� < 0 for some (x1, t1) ∈ Ho, and choose
r > 0 so small that 2r t1 < �. Apply part a) to ε := �/2 − r t1 to
choose the compact set K , and prove that the minimum of

w(x, t) := u(x, t)+ r(t − t1)

on H occurs at some (x2, t2) ∈ K .
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424 Chapter 11 Differentiability on Rn

c) Prove that if u satisfies the heat equation (i.e., uxx − ut = 0 on V ),
and if u(x0, t0) ≥ 0 for all (x0, t0) ∈ ∂H , then u(x, t) ≥ 0 for all
(x, t) ∈ H .

11.5.12. a) Prove that every convex set in Rn is connected.
b) Show that the converse of part a) is false.

∗c) Suppose that f : R → R. Prove that f is convex (as a function) if
and only if E := {(x, y) : y ≥ f (x)} is convex (as a set in R2).

11.6 THE INVERSE FUNCTION THEOREM

By the one-dimensional Inverse Function Theorem (Theorem 4.33), if g :R→R
is 1–1 and differentiable with g′(x0) �= 0, then g−1 is differentiable at y0 =
g(x0) and

(g−1)′(y0) = 1

g′(x0)
.

In this section we obtain a multivariable analogue of this result (i.e., an Inverse
Function Theorem for vector functions f from n variables to n variables). What
shall we use for hypotheses? We needed g to be 1–1 so that the inverse function
g−1 existed. For the same reason, we shall assume that f is 1–1. We needed
g′(x0) to be nonzero so that we could divide by it. In the multidimensional case,
Df(a) is a matrix; hence “divisibility” corresponds to invertibility. Since an n × n
matrix is invertible if and only if it has a nonzero determinant (see Appendix C),
we shall assume that the Jacobian of f

�f(a) := det(Df(a)) �= 0.

The word Jacobian is used because it was Jacobi who first recognized the impor-
tance of �f and its connection with volume (see Exercise 12.4.6).

The proof of the Inverse Function Theorem on Rn is not simple and lies some-
what deeper than the preceding results of this chapter. Before presenting it,
we first prove two preliminary results which explore the consequences of the
hypothesis �f �= 0.

11.39 Lemma.
Let V be open and nonempty in Rn and let f : V → Rn be continuous. If f is
1–1 and has first-order partial derivatives on V, and if �f �= 0 on V, then f−1 is
continuous on f(V ).

Strategy: To prove that f−1 is continuous on V , it suffices to prove (apply
Exercise 9.4.3 or Theorem 10.58 to f−1) that f(W ) = (f−1)−1(W ) is open for all
open W ⊆ V . Thus, given b ∈ f(W ), say b = f(a) for some a ∈ W , we must find a
ρ > 0 such that Bρ(b) ⊆ f(W ). We will actually show more: that if Br (a) ⊂ W for
some r > 0, then there is a ρ > 0 such that Bρ(b) ⊆ f(Br (a)); that is, y ∈ Bρ(f(a))
implies that y = f(c) for some c ∈ Br (a).

Where should we look to find such a c? To show that f(c) − y = 0, we might
first try finding a point c ∈ Br (a) that minimizes ‖f(x)−y‖ as x ranges over Br (a)

424
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and then try showing that the minimum value is actually zero. It is relatively
easy to prove that the minimum value is zero using the hypothesis that �f �= 0.
Moreover, since ‖f(x)−y‖ is continuous on the compact set Br (a), the minimum
value must be attained by some c, but c might belong to the boundary of Br (a),
not its interior. By controlling the size of ρ, we can keep the minimum value
from occurring on the boundary. Here are the details.

Proof. Suppose that W is an open subset of V and let b ∈ f(W ). Choose a ∈ W
such that b = f(a). Since W is open, choose r0 > 0 such that Br0(a) ⊂ W , and
observe for any r ∈ (0, r0) that ∂Br (a) ⊂ Br (a) ⊂ W .

Since f is 1–1 on W , the real-valued function

g(x) := ‖f(x)− f(a)‖, x ∈ ∂Br (a),

is positive on the compact set ∂Br (a). Since f is continuous on W , it follows
from the Extreme Value Theorem that g attains a positive minimum on
∂Br (a); that is,

m = inf
x∈∂Br (a)

g(x) > 0.

Set ρ = m/2 and fix y ∈ Bρ(f(a)). To show that y ∈ f(Br (a)), notice that
since the function h(x) := ‖f(x)− y‖ is continuous on the compact set Br (a), it
also attains its minimum there. Thus there is a c ∈ Br (a) such that h(c) ≤ h(x)
for all x ∈ Br (a).

To show that c ∈ Br (a), suppose to the contrary that c /∈ Br (a); that is, that
c ∈ ∂Br (a). Then ‖f(c) − f(a)‖ ≥ m = 2ρ. Since y ∈ Bρ(f(a)) implies that
h(a) = ‖f(a)− y‖ < ρ, the minimum of ‖h(x)‖ must also be less that ρ; that is,
ρ > h(c). Therefore, it follows from the triangle inequality that

ρ > h(c) = ‖f(c)− y‖ ≥ ‖f(c)− f(a)‖ − ‖f(a)− y‖ > 2ρ − ρ = ρ,

a contradiction. Thus c ∈ Br (a).
It remains to prove that y = f(c). Notice that, since h(c) ≥ 0, h2(c) is the

minimum of h2 on Br (a). Thus, by one-dimensional calculus,

∂h2

∂xk
(c) = 0

for k = 1, . . . , n. Since h2(x) =∑n
j=1( f j (x)− y j )

2, it follows that

0 = 1

2

∂h2

∂xk
(c) =

n∑
j=1

( f j (c)− y j )
∂ f j

∂xk
(c).

This is a system of n linear equations in n unknowns, f j (c) − y j . Since the
matrix of coefficients of this system has determinant �f(c) �= 0, it follows
from Cramer’s Rule (see Appendix C) that this system has only the trivial
solution; that is, f j (c)− y j = 0 for all j = 1, . . . , n. In particular, y = f(c). �
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Our second preliminary result shows that if the Jacobian of a continuously
differentiable function f is nonzero at a point, then f must be 1–1 near that
point. (This will provide a key step in the proof of the Inverse Function The-
orem below.)

11.40 Lemma.
Let V be open in Rn and f : V → Rn be C1 on V. If �f(a) �= 0 for some a ∈ V ,
then there is an r > 0 such that Br (a) ⊂ V , f is 1–1 on Br (a),�f(x) �= 0 for all
x ∈ Br (a), and

det

[
∂ fi

∂x j
(ci )

]
n×n

�= 0

for all c1, . . . cn ∈ Br (a).

Strategy: The idea behind the proof is simple. If f is not 1–1 on some Br (a),
then there exist x, y ∈ Br (a) such that x �= y and f(x) = f(y). Since L(x; y) ⊂
Br (a), we have by Theorem 11.30 (the Mean Value Theorem) that

0 = fi (y)− fi (x) =
n∑

k=1

∂ fi

∂xk
(ci )(yk − xk) (27)

for x = (x1, . . . , xn), y = (y1, . . . , yn), ci ∈ L(x; y), and i = 1, . . . , n. Notice
that (27) is a system of n linear equations in n unknowns, (yk − xk). If we can
show, for sufficiently small r , that the matrix of coefficients of (27) has nonzero
determinant for any choice of ci ∈ Br (a), then by Cramer’s Rule the linear
system (27) has only one solution: yk − xk = 0 for k = 1, . . . , n. This would
imply x = y, a contradiction. Here are the details.

Proof. To show that there is an r > 0 such that the matrix of coefficients of the
linear system (27) is nonzero for all ci ∈ Br (a), let V (n) = V ×· · ·×V represent
the n-fold Cartesian product of V with itself, and define h : V (n) → R by

h(x1, x2, . . . , xn) = det

[
∂ fi

∂x j
(xi )

]
n×n

.

Since the determinant of a matrix is defined using products and differences
of its entries (see Appendix C), we have by hypothesis that h is continuous
on V (n). Since h(a, . . . , a) = �f(a) �= 0, it follows that there is an r > 0
such that Br (a) ⊂ V and h(c1, . . . , cn) �= 0 for ci ∈ Br (a). In particular, the
matrix of coefficients of the linear system (27) is nonzero for all ci ∈ Br (a),
and �f(x) = h(x, . . . , x) �= 0 for all x ∈ Br (a). �

We now prove a multidimensional version of the Inverse Function Theorem.

11.41 Theorem. [THE INVERSE FUNCTION THEOREM].
Let V be open in Rn and f : V → Rn be C1 on V. If �f(a) �= 0 for some a ∈ V ,
then there exists an open set W containing a such that
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Section 11.6 The Inverse Function Theorem 427

i) f is 1–1 on W,
ii) f−1 is C1 on f(W ), and

iii) for each y ∈ f(W ),

D(f−1)(y) = [Df(f−1(y))]−1,

where [ ]−1 represents matrix inversion (see Theorem C.5).

Proof. By Lemma 11.40, there is an open ball B centered at a such that f is
1–1 and �f �= 0 on B, and

� := det

[
∂ fi

∂x j
(ci )

]
n×n

�= 0

for all ci ∈ B. Let B0 be an open ball centered at a which is smaller than B
(i.e., the radius of B0 is strictly less than the radius of B). Then B0 ⊂ B, f is
1–1 on B0 and, by Lemma 11.39, f−1 is continuous on f(B0).

Let W be any open ball centered at a which is smaller than B0. Then f is 1–1
on W and f(W ) is open. To show that the first partial derivatives of f−1 exist
and are continuous on f(W ), fix y0 ∈ f(W ) and 1 ≤ i, k ≤ n. Choose t ∈ R \ {0}
so small that y0 + tek ∈ f(W ), and choose x0, x1 ∈ W such that x0 = f−1(y0)

and x1 = f−1(y0 + tek). Observe that for each i = 1, 2, . . . , n,

fi (x1)− fi (x0) =
{

t k = i
0 k �= i.

Hence, by Theorem 11.30 (the Mean Value Theorem), there exist points ci ∈
L(x0; x1) such that

∇ fi (ci ) · x1 − x0

t
= fi (x1)− fi (x0)

t
=
{

1 k = i
0 k �= i

i = 1, 2, . . . , n. (28)

Let x ( j)
0 (respectively, x ( j)

1 ) denote the jth component of x0 (respectively, x1).

Since (28) is a system of n linear equations in n variables (x ( j)
1 − x ( j)

0 )/t whose
coefficient matrix has determinant � (which is nonzero by the choice of B),
we see by Cramer’s Rule that the solutions of (28) satisfy

(f−1) j (y0 + tek)− (f−1) j (y0)

t
:= x ( j)

1 − x ( j)
0

t
= Q j (t), (29)

where Q j (t) is a quotient of determinants whose entries are 0s or 1s, or first-
order partial derivatives of components of f evaluated at the ci ’s. Since t → 0
implies x1 → x0, ci → x0, and y0 + tek → y0, it follows that Q j (t) converges
to Q j , a quotient of determinants whose entries are 0s or 1s, or first-order
partial derivatives of components of f evaluated at x0 = f−1(y0). Since f−1 is
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428 Chapter 11 Differentiability on Rn

continuous on f(W ), Q j must be continuous at each y0 ∈ f(W ). Taking the
limit of (29) as t → 0, we see that the first-order partial derivatives of (f−1) j

exist at y0 and equal Q j ; that is, f−1 is continuously differentiable on f(W ).
It remains to verify iii). Fix y ∈ f(W ), and observe, by the Chain Rule and

Exercise 11.2.8, that

I = DI (y) = D(f ◦ f−1)(y) = Df(f−1(y))Df−1(y).

By the uniqueness of matrix inverses, we conclude that

D(f−1)(y) = [Df(f−1(y))]−1. �

Of course, the value Df−1(y) is not unique because f−1 may have several
branches. For example, if f (x) = x2, then f −1(1) = ±1, depending on whether
we take the inverse of f (x) near x = 1 or x = −1.

11.42 Remark. The hypothesis “�f �= 0” in Lemma 11.39 can be relaxed.

Proof. If f (x) = x3, then f : R → R and its inverse f −1(x) = 3
√

x are
continuous on R, but � f (0) = f ′(0) = 0. �

11.43 Remark. The hypothesis “�f �= 0” in Theorem 11.41 cannot be relaxed.
In fact, if f : Br (a) → Rn is differentiable at a and its inverse f−1 exists and is
differentiable at f(a), then �f(a) �= 0.

Proof. Suppose to the contrary that f is differentiable at a but �f(a) = 0. By
Exercise 11.2.8 and the Chain Rule,

I = D(f−1 ◦ f)(a) = D(f−1)(f(a))Df(a).

Taking the determinant of this identity, we have

1 = �f−1(f(a))�f(a) = 0,

a contradiction. �

11.44 Remark. The hypothesis “f is C1 on V” in Theorem 11.41 cannot be
relaxed, even when f is a real function.

Proof. If f (x) = x + 2x2 sin(1/x), x �= 0, and f (0) = 0, then f : R → R is
differentiable on V := (−1, 1) and f ′(0) = 1 �= 0. However, since

f

(
2

(4k − 1)π

)
< f

(
2

(4k + 1)π

)
< f

(
2

(4k − 3)π

)

for k ∈ N, f is not 1–1 on any open set which contains 0. Therefore, no open
subset of f (V ) can be chosen on which f −1 exists. �
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Section 11.6 The Inverse Function Theorem 429

Although Theorem 11.41 says f must be 1–1 on some subset W of V , it does
not say that f is 1–1 on V .

11.45 Remark. The set W chosen in Theorem 11.41 is, in general, a proper subset
of V, even when V is connected.

Proof. Set f(x, y) = (x2−y2, xy) and V = R2\{(0, 0)}. Then�f = 2(x2+y2) �=
0 for (x, y) ∈ V , but f(x,−y) = f(−x, y) for all (x, y) ∈ R2. Thus f is not 1–1
on V . �

Sometimes vector functions from p variables to n variables are defined
implicitly by relations on Rn+p. On rare occasions, such a relation can be solved
explicitly as follows.

∗11.46 EXAMPLE.

If x2
0 + s2

0 + t2
0 = 1 and x0 �= 0, prove that there exist an r > 0 and a function

g(s, t), continuously differentiable on Br (s0, t0), such that x0 = g(s0, t0) and

x2 + s2 + t2 = 1

for x = g(s, t) and (s, t) ∈ Br (s0, t0).

Proof. Solve x2 + s2 + t2 = 1 for x to obtain

x = ±
√

1 − s2 − t2.

Which sign shall we take? If x0 > 0, set g(s, t) = √
1 − s2 − t2. By the

Chain Rule,

∂g

∂s
= −s√

1 − s2 − t2
and

∂g

∂t
= −t√

1 − s2 − t2
.

Thus g is differentiable at any point (s, t) which lies inside the two-
dimensional unit ball (i.e., which satisfies s2 + t2 < 1). Since x2

0 + s2
0 + t2

0 = 1
and x0 > 0, (s0, t0, x0) lies on the boundary of the three-dimensional unit ball
in st x space a distance x0 units above the st plane (see Figure 11.5). In partic-

ular, if r := 1−
√

1 − x2
0 and (s, t) ∈ Br (s0, t0), then s2 + t2 < 1. Therefore, g is

continuously differentiable on Br (s0, t0). If x0 < 0, a similar argument works
for g(s, t) = −√

1 − s2 − t2. �

We cannot expect that all relations can be solved explicitly as we did in
Example 11.46 above. It is most fortunate, therefore, that once we know a solu-
tion exists, we can often approximate that solution by numerical methods.

The crux of the matter, then, is which relations have solutions? In order to
state a result about the existence of solutions to a relation, we introduce addi-
tional notation. Let V be an open subset of Rn, f : V → Rm , and a ∈ V . Then
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430 Chapter 11 Differentiability on Rn

x

s
t

1 1
r

(s0, t0, x0)

x0

FIGURE 11.5

the partial Jacobian of f generated by a subset {k1, k2, . . . , kn} of {1, 2, . . . ,m} at
the point a is the number

∂( fk1, . . . , fkn )

∂(x1, . . . , xn)
(a) := det

[
∂ fki

∂x j
(a)
]

n×n

= det

⎡
⎢⎢⎢⎢⎣
∂ fk1

∂x1
(a) . . .

∂ fk1

∂xn
(a)

...
. . .

...
∂ fkn

∂x1
(a) . . .

∂ fkn

∂xn
(a)

⎤
⎥⎥⎥⎥⎦

provided all these partial derivatives exist. For the case n = m, the correspond-
ing partial Jacobian is just the Jacobian �f(a). We shall use partial Jacobians
again in Chapter 12 to discuss change of variables for integrals in Rn , and in
Chapter 13 to introduce differential forms of order 2.

For the next several pages, we shall represent a vector (x1, . . . , xn, t1, . . . , tp)

in Rn+p by (x, t). Here is a result about the existence of solutions to relations.
It states as follows: If F is a C1 function which satisfies F(x0, t0) = 0 at some
point (x0t0), then the implicit relation F(x, t) = 0 can be solved for the variables
x1, . . . , xn , when t is near t0, provided the partial Jacobian of F with respect to
x1, x2, . . . , xn (the variables we want to solve for) is not zero at (x0, t0).

11.47 Theorem. [THE IMPLICIT FUNCTION THEOREM].
Suppose that V is open in Rn+p, and that F = (F1, . . . , Fn) : V → Rn is C1 on
V. Suppose further that F(x0, t0) = 0 for some (x0, t0) ∈ V , where x0 ∈ Rn and
t0 ∈ Rp. If

∂(F1, . . . , Fn)

∂(x1, . . . , xn)
(x0, t0) �= 0,
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Section 11.6 The Inverse Function Theorem 431

then there is an open set W ⊂ Rp containing t0 and a unique continuously
differentiable function g : W → Rn such that g(t0) = x0, and F(g(t), t) = 0 for
all t ∈ W .

Strategy: The idea behind the proof is simple. If F took its range in Rn+p

instead of Rn and had nonzero Jacobian, then, by the Inverse Function Theorem,
F−1 would exist and be differentiable on some open set. Presumably, the first n
components of F−1 would solve F for the variables x1, . . . , xn . Thus we should
extend F (in the simplest possible way) to a function F̃ which takes its range in
Rn+p and has nonzero Jacobian, and apply the Inverse Function Theorem to F̃.
Here are the details.

Proof. For each (x, t) ∈ V , set

F̃(x, t) = (F1(x, t), . . . , Fn(x, t), t1, . . . , tp). (30)

Clearly, F̃ : V → Rn+p and

DF̃ =
[[

∂Fi
∂x j

]
n×n

B

Op×n Ip×p

]
,

where Op×n represents a zero matrix, Ip×p represents an identity matrix, and
B represents a certain n× p matrix whose entries are first-order partial deriva-
tives of Fj ’s with respect to tk ’s. Expanding the determinant of DF̃ along the
bottom rows first, we see by hypothesis that

�F̃(x0, t0) = 1 · ∂(F1, . . . , Fn)

∂(x1, . . . , xn)
(x0, t0) �= 0.

Since F̃(x0, t0) = (0, t0), it follows from the Inverse Function Theorem that
there exist open sets �1 containing (x0, t0) and �2 := F̃(�1) containing (0, t0)

such that F̃ is 1–1 on �1, and G := F̃−1 is 1–1 and continuously differentiable
on �2.

Let φ = (G1, . . . ,Gn). Since G = F̃−1 is 1–1 from �2 onto �1, it is evident
by (30) that

φ(̃F(x, t)) = x (31)

for all (x, t) ∈ �1 and

F̃(φ(x, t), t) = (x, t) (32)

for all (x, t) ∈ �2. Define g on W := {t ∈ Rp : (0, t) ∈ �2} by g(t) = φ(0, t).
Since �2 is open in Rn+p, W is open in Rp. Since G is continuously differen-
tiable on �2 and φ represents the first n components of G, g is continuously
differentiable on W . By the definition of g, the choice of x0, and (31), we have

g(t0) = φ(0, t0) = φ(̃F(x0, t0)) = x0.
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432 Chapter 11 Differentiability on Rn

Moreover, by (30) and (32) we have F(φ(x, t), t) = x for all (x, t) ∈ �2. Spe-
cializing to the case x = 0, we obtain F(g(t), t) = 0 for t ∈ W .

It remains to show uniqueness. But if h : W → Rn satisfies F(h(t), t) = 0 =
F(g(t), t) [i.e., F̃(h(t), t) = (0, t) = F̃(g(t), t)], then g(t) = h(t) for all t ∈ W ,
since F̃ is 1–1 on �2. �

Theorem 11.47 is an existence theorem. It states that a solution g exists with-
out giving us any idea how to find it. Fortunately, for many applications it is not
as important to be able to write an explicit formula for g as it is to know that g
exists.

Here is an example for which an explicit solution is unobtainable.

11.48 EXAMPLE.

Prove that there is a function g(s, t), continuously differentiable on some
Br (1, 0), such that 1 = g(1, 0), and

sx2 + t x3 + 2
√

t + s + t2x4 − x5 cos t − x6 = 1

for x = g(s, t) and (s, t) ∈ Br (1, 0).

Proof. If F(x, s, t) = sx2 + t x3 + 2
√

t + s + t2x4 − x5 cos t − x6 − 1, then
F(1, 1, 0) = 0, and Fx = 2sx + 3t x2 + 4t2x3 − 5x4 cos t − 6x5 is nonzero at
the point (1, 1, 0). Applying the Implicit Function Theorem to F , with n = 1,
p = 2, x0 = 1, and (s0, t0) = (1, 0), we conclude that such a g exists. �

Even when an explicit solution is obtainable, it is frequently easier to apply
the Implicit Function Theorem than it is to solve a relation explicitly for one or
more of its variables. Indeed, consider Example 11.46 again. Let F(x, s, t) = 1−
x2 − s2 − t2 and notice that Fx = −2x . Thus, by the Implicit Function Theorem,
a continuously differentiable solution x = g(s, t) exists for each x0 �= 0.

The following example shows that the Implicit Function Theorem can be
used to prove that differentiable solutions to a system of equations exist
simultaneously.

11.49 EXAMPLE.

Prove that there exist functions u, v : R4 → R, continuously differentiable
on some ball B centered at the point (x, y, z, w) = (2, 1,−1,−2), such that
u(2, 1,−1,−2) = 4, v(2, 1,−1,−2) = 3, and the equations

u2 + v2 + w2 = 29,
u2

x2
+ v2

y2
+ w2

z2
= 17

both hold for all (x, y, z, w) in B.

Proof. Set n = 2, p = 4, and

F(u, v, x, y, z, w) = (u2 + v2 + w2 − 29, u2/x2 + v2/y2 + w2/z2 − 17).
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Then F(4, 3, 2, 1,−1,−2) = (0, 0), and

∂(F1, F2)

∂(u, v)
= det

[
2u 2v

2u/x2 2v/y2

]
= 4uv

(
1

y2
− 1

x2

)
.

This determinant is nonzero when u = 4, v = 3, x = 2, and y = 1. Therefore,
such functions u, v exist by the Implicit Function Theorem. �

EXERCISES

11.6.1. For each of the following functions, prove that f−1 exists and is differ-
entiable in some nonempty, open set containing (a, b), and compute
D(f−1)(a, b)

a) f(u, v) = (3u − v, 2u + 5v) at any (a, b) ∈ R2

b) f(u, v) = (u + v, sin u + cos v) at (a, b) = (0, 1)
c) f(u, v) = (uv, u2 + v2) at (a, b) = (2, 5)
d) f(u, v) = (u3 − v2, sin u − log v) at (a, b) = (−1, 0)

11.6.2. For each of the following functions, find out whether the given expres-
sion can be solved for z in a nonempty, open set V containing (0, 0, 0).
Is the solution differentiable near (0, 0)?

a) xyz + sin(x + y + z) = 0
b) x2 + y2 + z2 +√sin(x2 + y2)+ 3z + 4) = 2
c) xyz(2 cos y − cos z)+ (z cos x − x cos y) = 0
d) x + y + z + g(x, y, z) = 0, where g is any continuously differentiable

function which satisfies g(0, 0, 0) = 0 and gz(0, 0, 0) > 0

11.6.3. Prove that there exist functions u(x, y), v(x, y), and w(x, y), and an
r > 0 such that u,v,w are continuously differentiable and satisfy the
equations

u5 + xv2 − y + w = 0

v5 + yu2 − x + w = 0

w4 + y5 − x4 = 1

on Br (1, 1), and u(1, 1) = 1, v(1, 1) = 1, w(1, 1) = −1.
11.6.4. Find conditions on a point (x0, y0, u0, v0) such that there exist real-

valued functions u(x, y) and v(x, y) which are continuously differen-
tiable near (x0, y0) and satisfy the simultaneous equations

xu2 + yv2 + xy = 9

xv2 + yu2 − xy = 7.

Prove that the solutions satisfy u2 + v2 = 16/(x + y).
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434 Chapter 11 Differentiability on Rn

11.6.5. Given nonzero numbers x0, y0, u0, v0, s0, t0 which satisfy the simulta-
neous equations

(∗) u2 + sx + t y = 0
v2 + t x + sy = 0

2s2x + 2t2 y − 1 = 0
s2x − t2 y = 0,

prove that there exist functions u(x, y), v(x, y), s(x, y), t (x, y), and an
open ball B containing (x0, y0), such that u,v,s,t are continuously differ-
entiable and satisfy (∗) on B, and such that u(x0, y0) = u0, v(x0, y0) =
v0, s(x0, y0) = s0, and t (x0, y0) = t0.

11.6.6. Let E = {(x, y) : 0 < y < x} and set f(x, y) = (x + y, xy) for (x, y) ∈ E .

a) Prove that f is 1–1 from E onto {(s, t) : s > 2
√

t, t > 0} and find a
formula for f−1(s, t).

b) Use the Inverse Function Theorem to compute D(f−1)(f(x, y)) for
(x, y) ∈ E .

c) Use the formula you obtained in part a) to compute D(f−1)(s, t) di-
rectly. Check to see that this answer agrees with the one you found
in part b).

11.6.7. Suppose that V is open in Rn , that a ∈ V , and that F : V → R is C1

on V . If F(a) = 0 �= Fx j (a) and u( j) := (x1, . . . , x j−1, x j+1, . . . , xn)

for j = 1, 2, . . . , n, prove that there exist open sets W j containing
(a1, . . . , a j−1, a j+1, . . . , an), an r > 0, and functions g j (u( j)), C1 on
W j , such that F(x1, . . . , x j−1, g j (u( j)), x j+1, . . . , xn) = 0 on W j and

∂g1

∂xn

∂g2

∂x1

∂g3

∂x2
· · · ∂gn

∂xn−1
= (−1)n

on Br (a).
11.6.8. Suppose that f : R2 → R2 has continuous first-order partial derivatives

in some ball Br (x0, y0), r > 0. Prove that if �f(x0, y0) �= 0, then

∂ f −1
1

∂x
( f (x0, y0))= ∂ f2/∂y(x0, y0)

�f(x0, y0)
,
∂ f −1

1

∂y
( f (x0, y0))= −∂ f1/∂y(x0, y0)

�f(x0, y0)
,

and

∂ f −1
2

∂x
( f (x0, y0))= −∂ f2/∂x(x0, y0)

�f(x0, y0)
,
∂ f −1

2

∂y
( f (x0, y0))= ∂ f1/∂x(x0, y0)

�f(x0, y0)
.

11.6.9 . This exercise is used in Section ∗11.7. Let F : R3 → R be continuously
differentiable in some open set containing (a, b, c) with F(a, b, c) = 0
and ∇F(a, b, c) �= 0.
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Section 11.7 Optimization 435

a) Prove that the graph of the relation F(x, y, z) = 0; that is, that the
set G := {(x, y, z) : F(x, y, z) = 0} has a tangent plane at (a, b, c).

b) Prove that a normal of the tangent plane to G at (a, b, c) is given by
∇F(a, b, c).

11.6.10. Suppose that f := (u, v) : R → R2 is C2 and that (x0, y0) = f(t0).

a) Prove that if f′(t0) �= 0, then u′(t0) and v′(t0) cannot both be zero.
b) If f′(t0) �= 0, show that either there is a C1 function g such that

g(x0) = t0 and u(g(x)) = x for x near x0, or there is a C1 function h
such that h(y0) = t0 and v(h(y)) = y for y near y0.

11.6.11. Let H be the hyperboloid of one sheet, given by x2 + y2 − z2 = 1.

a) Use Exercise 11.6.9 to prove that at every point (a, b, c) ∈ H,H has
a tangent plane whose normal is given by (−a,−b, c).

b) Find an equation of each plane tangent to H which is perpendicular
to the xy-plane.

c) Find an equation of each plane tangent to H which is parallel to the
plane x + y − z = 1.

∗11.7 OPTIMIZATION

This section uses no material from any other enrichment section.
In this section we discuss how to find extreme values of differentiable func-

tions of several variables.

11.50 Definition.

Let V be open in Rn , let a ∈ V , and suppose that f : V → R.

i) f (a) is called a local minimum of f if and only if there is an r > 0 such
that f (a) ≤ f (x) for all x ∈ Br (a).

ii) f (a) is called a local maximum of f if and only if there is an r > 0 such
that f (a) ≥ f (x) for all x ∈ Br (a).

iii) f (a) is called a local extremum of f if and only if f (a) is a local maximum
or a local minimum of f .

The following result shows that, as in the one-dimensional case, extrema of
real-valued differentiable functions occur among points where the “derivative”
is zero.

11.51 Remark. If the first-order partial derivatives of f exist at a, and f (a) is a
local extremum of f, then ∇ f (a) = 0.

Proof. The one-dimensional function g(t) = f (a1, . . . , a j−1, t, a j+1, . . . , an)

has a local extremum at t = a j for each j = 1, . . . , n. Hence, by the one-
dimensional theory,
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436 Chapter 11 Differentiability on Rn

∂ f

∂x j
(a) = g′(a j ) = 0. �

As in the one-dimensional case, ∇ f (a) = 0 is necessary but not sufficient for
f (a) to be a local extremum.

11.52 Remark. There exist continuously differentiable functions which satisfy
∇ f (a) = 0 such that f (a) is neither a local maximum nor a local minimum.

Proof. Consider

f (x, y) = y2 − x2.

Since the first-order partial derivatives of f exist and are continuous every-
where on R2, f is continuously differentiable on R2. Moreover, it is evident
that ∇ f (0) = 0, but f (0) is not a local extremum (see Figure 11.6). �

z

z = y2 – x2

y

x

FIGURE 11.6

The fact that the graph of this function resembles a saddle motivates the fol-
lowing terminology.

11.53 Definition.

Let V be open in Rn , let a ∈ V , and let f : V → R be differentiable at a. Then
a is called a saddle point of f if ∇ f (a) = 0 and there is a r0 > 0 such that given
any 0 < ρ < r0 there are points x, y ∈ Bρ(a) which satisfy f (x) < f (a) < f (y).

By the Extreme Value Theorem, if f is continuous on a compact set H , then
it attains its maximum and minimum on H ; that is, there exist points a, b ∈ H
such that
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Section 11.7 Optimization 437

f (a) = sup
x∈H

f (x) and f (b) = inf
x∈H

f (x).

When f is a function of two variables, these points can sometimes be found by
combining Remark 11.51 with one-dimensional techniques.

11.54 EXAMPLE.

Find the maximum and minimum of f (x, y) = x2 − x + y2 −2y on H = B2(0, 0).

Solution. If ∇ f (x, y) = (0, 0), then (x, y) = (1/2, 1). Since this point belongs
to H , it might be an extremum of f on H . Set it aside. (If it did not belong to
H , we would discard it.)

By polar coordinates, ∂H = {(x, y) = (2 cos θ, 2 sin θ) : θ ∈ [0, 2π]} is es-
sentially a one-dimensional set. Thus to find the extrema of f on ∂H , we must
optimize h(θ) := f (2 cos θ, 2 sin θ) = 2(2 − cos θ − 2 sin θ) on [0, 2π]. Since
h′(θ) = 0 implies tan θ = 2, the critical points of h are θ = arctan 2 ≈ 1.10715
and θ = arctan 2 + π ≈ 4.24874. This provides two more candidates for extrema
of f on H : (x, y) ≈ (0.4472, 0.8944) and (x, y) ≈ (−0.4472,−0.8944). Finally,
the endpoints of [0, 2π] provide a fourth candidate: (x, y) = (2, 0).

Evaluating f at these four points, we see that the maximum of f on H is
f (−0.4472,−0.8944) ≈ 3.236 and the minimum of f on H is f (1/2, 1) = −1.25.
[The values f (0.4472, 0.8944) ≈ −1.236 and f (2, 0) = 2 are neither maxima nor
minima of f on H .] �

Using the second-order total differential D(2) f introduced in Section 11.5, we
can obtain a multidimensional analogue of the Second Derivative Test. First, we
prove a technical result.

11.55 Lemma.
Let V be open in Rn, a ∈ V , and f : V → R. If all second-order partial
derivatives of f exist at a and D(2) f (a; h) > 0 for all h �= 0, then there is an
m > 0 such that

D(2) f (a; x) ≥ m‖x‖2 (33)

for all x ∈ Rn .

Proof. Set H = {x ∈ Rn : ‖x‖ = 1} and consider the function

g(x) := D(2) f (a; x) :=
n∑

j=1

n∑
k=1

∂2 f

∂xk ∂x j
(a) x j xk, x ∈ Rn.

By hypothesis, g is continuous and positive on Rn\{0} and, hence, on H . Since
H is compact, it follows from the Extreme Value Theorem that g has a positive
minimum m on H .
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Clearly, (33) holds for x = 0. If x �= 0, then x/‖x‖ ∈ H , and it follows from
the choice of g and m that

D(2) f (a; x) = g(x)
‖x‖2

‖x‖2 = g

(
x

‖x‖
)

‖x‖2 ≥ m‖x‖2.

We conclude that (33) holds for all x ∈ Rn . �

11.56 Theorem. [THE SECOND DERIVATIVE TEST].
Let V be open in Rn, a ∈ V , and suppose that f : V → R satisfies ∇ f (a) = 0.
Suppose further that the second-order total differential of f exists on V and is
continuous at a.

i) If D(2) f (a; h) > 0 for all h �= 0, then f (a) is a local minimum of f.
ii) If D(2) f (a; h) < 0 for all h �= 0, then f (a) is a local maximum of f.

iii) If D(2) f (a; h) takes on both positive and negative values for h ∈ Rn , then a
is a saddle point of f.

Proof. Choose r > 0 such that Br (a) ⊂ V , and suppose for a moment that
there is a function ε : Br (0) → R such that ε(h) → 0 as h → 0 and

f (a + h)− f (a) = 1

2
D(2) f (a; h)+ ‖h‖2ε(h) (34)

for ‖h‖ sufficiently small. If D(2) f (a; h) > 0 for h �= 0, then (33) and (34)
imply

f (a + h)− f (a) ≥
(m

2
+ ε(h)

)
‖h‖2

for ‖h‖ sufficiently small. Since m > 0 and ε(h) → 0 as h → 0, it follows that
f (a + h)− f (a) > 0 for ‖h‖ sufficiently small; that is, f (a) is a local minimum.
Similarly, if D(2) f (a; h) < 0 for h �= 0, then f (a) is a local maximum. This
proves parts i) and ii).

To prove part iii), fix h ∈ Rn and notice that (34) implies

f (a + th)− f (a) = t2
(

1

2
D(2) f (a; h)+ ‖h‖2ε(th)

)

for t ∈ R. Since ε(th) → 0 as t → 0, it follows that f (a + th)− f (a) takes on
the same sign as D(2) f (a; h) for t small. In particular, if D(2) f (a; h) takes on
both positive and negative values as h varies, then a is a saddle point.

It remains to find a function ε : Br (0) → R such that ε(h) → 0 as h → 0,
and (34) holds for all ‖h‖ sufficiently small. Set ε(0) = 0 and

ε(h) = f (a + h)− f (a)− 1
2 D(2) f (a; h)

‖h‖2
, h ∈ Br (0), h �= 0.
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By the definition of ε(h), (34) holds for h ∈ Br (0). Does ε(h) → 0 as h → 0?
Fix h = (h1, h2, . . . , hn) ∈ Br (0). Since ∇ f (a) = 0, Taylor’s Formula implies

f (a + h)− f (a) = 1

2
D(2) f (c; h)

for some c ∈ L(a; a + h); that is,

f (a + h)− f (a)− 1

2
D(2) f (a; h) = 1

2

(
D(2) f (c; h)− D(2) f (a; h)

)

= 1

2

n∑
j=1

n∑
k=1

(
∂2 f

∂x j ∂xk
(c)− ∂2 f

∂x j ∂xk
(a)
)

h j hk .

Since |h j hk | ≤ ‖h‖2 and the second-order partial derivatives of f are contin-
uous at a, it follows that

0 ≤ |ε(h)| ≤ 1

2

⎛
⎝ n∑

j=1

n∑
k=1

∣∣∣∣ ∂2 f

∂x j ∂xk
(c)− ∂2 f

∂x j ∂xk
(a)

∣∣∣∣
⎞
⎠→ 0

as h → 0. We conclude by the Squeeze Theorem that ε(h) → 0 as h → 0. �

The following result shows that the strict inequalities in Theorem 11.56 cannot
be relaxed.

11.57 Remark. If D(2) f (a; h) ≥ 0, then f (a) can be a local minimum or a can
be a saddle point.

Proof. f (0, 0) is a local minimum of f (x, y) = x4 + y2, and (0, 0) is a saddle
point of f (x, y) = x3 + y2. �

In practice, it is not easy to determine the sign of D(2) f (a; h). For the case
n = 2, the second total differential D(2) f (a; h) is a quadratic form (i.e., has the
form Ah2 +2Bhk +Ck2). The following result shows that the sign of a quadratic
form is determined completely by the discriminant D = AC − B2.

11.58 Lemma.
Let A, B,C ∈ R, D = AC − B2, and φ(h, k) = Ah2 + 2Bhk + Ck2.

i) If D > 0, then A and φ(h, k) have the same sign for all (h, k) �= (0, 0).
ii) If D < 0, then φ(h, k) takes on both positive and negative values as (h, k)

varies over R2.

Proof.

i) Suppose that D > 0. Then A �= 0 and Aφ(h, k) is a sum of two squares:

Aφ(h, k) = A2h2 + 2ABhk + ACk2 = (Ah + Bk)2 + Dk2.
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440 Chapter 11 Differentiability on Rn

Since A �= 0 �= D, at least one of these squares is positive for each (h, k) �=
(0, 0). It follows that A and φ(h, k) have the same sign for all (h, k) �= (0, 0).

ii) Suppose that D < 0. Then either A �= 0 or B �= 0.
If A �= 0, then Aφ(h, k) is a difference of two squares:

Aφ(h, k) = (Ah + Bk −√|D| k)(Ah + Bk +√|D| k).

The lines Ah + Bk −√|D|k = 0 and Ah + Bk +√|D|k = 0 divide the hk-plane
into four open regions (see Figure 11.7). Since Aφ(h, k) is positive on two of
these regions and negative on the other two, it follows that φ(h, k) takes on
both positive and negative values as (h, k) varies over R2.

h

IV.

I.II.

III.

k

Ah + Bk +  Dk

Ah + Bk –  Dk

FIGURE 11.7

If A = 0 and B �= 0, then

φ(h, k) = 2Bhk + Ck2 = (2Bh + Ck)k.

Since B �= 0, the lines 2Bh + Ck = 0 and k = 0 divide the hk-plane into four
open regions. As before, φ(h, k) takes on both positive and negative values as
(h, k) varies over R2. �

This result leads us to the following simple test for extrema and saddle points.

11.59 Theorem. Let V be open in R2, (a, b) ∈ V , and suppose that f : V → R
satisfies ∇ f (a, b) = 0. Suppose further that the second-order total differential of
f exists on V and is continuous at (a, b), and set

D = fxx (a, b) fyy(a, b)− f 2
xy(a, b).
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i) If D > 0 and fxx (a, b) > 0, then f (a, b) is a local minimum.
ii) If D > 0 and fxx (a, b) < 0, then f (a, b) is a local maximum.

iii) If D < 0, then (a, b) is a saddle point.

Proof. Set A = fxx (a, b), B = fxy(a, b), and C = fyy(a, b). Apply Theo-
rem 11.56 and Lemma 11.58. �

(For a discriminant which works for functions on Rn , see Colley [3], p. 250.)

11.60 Remark. If the discriminant D = 0, f (a, b) may be a local maximum, a
local minimum, or (a, b) may be a saddle point.

Proof. The function f (x, y) = x2 has zero discriminant at (a, b) = (0, 0), and
0 = f (0, 0) is a local minimum for f . On the other hand, f (x, y) = x3 has
zero discriminant at (a, b) = (0, 0), and (0, 0) is a saddle point for f . �

In practice, we often wish to optimize a function subject to certain constraints.
(For example, we do not simply want to build the cheapest shipping container,
but the cheapest shipping container which will fit in a standard railway car and
will not fall apart after several trips.)

11.61 Definition.

Let V be open in Rn, a ∈ V , and f, g j : V → R for j = 1, 2, . . . ,m.

i) f (a) is called a local minimum of f subject to the constraints g j (a) = 0, j =
1, . . . ,m, if and only if there is a ρ > 0 such that x ∈ Bρ(a) and g j (x) = 0
for all j = 1, . . . ,m imply f (x) ≥ f (a).

ii) f (a) is called a local maximum of f subject to the constraints g j (a) = 0, j =
1, . . . ,m, if and only if there is a ρ > 0 such that x ∈ Bρ(a) and g j (x) = 0
for all j = 1, . . . ,m imply f (x) ≤ f (a).

The following example serves two purposes: to illustrate Definition 11.61 and
to motivate Theorem 11.63.

∗11.62 EXAMPLE.

Find all points on the ellipsoid x2 + 2y2 + 3z2 = 1 (see Appendix D) which lie
closest to or farthest from the origin.

Solution. We must optimize the distance formula
√

x2 + y2 + z2; equivalently,
we must optimize the function f (x, y, z) = x2 + y2 + z2 subject to the constraint
g(x, y, z) = x2 + 2y2 + 3z2 − 1 = 0. Using g to eliminate the variable x in f , we
see that f takes on the form

φ(y, z) = 1 − y2 − 2z2.
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442 Chapter 11 Differentiability on Rn

Solving ∇φ(y, z) = (0, 0), we obtain (y, z) = (0, 0) (i.e., x2 = 1). Thus, elim-
ination of x leads to the points (±1, 0, 0). Similarly, elimination of y leads to
(0,±1/

√
2, 0), and elimination of z leads to (0, 0,±1/

√
3). Checking the dis-

tance formula, we see that the maximum distance is 1, which occurs at the
points (±1, 0, 0), and the minimum distance is 1/

√
3, which occurs at the points

(0, 0,±1/
√

3). (The points (0,±1/
√

2, 0) are saddle points, that is, correspond
neither to a maximum nor to a minimum.) �

x

z

y

1/   2 
1

1/   3 

1

1

FIGURE 11.8

Optimizing a function subject to constraints, as above, by eliminating one or
more of the variables is called the direct method. There is another, more geomet-
ric, method for solving Example 11.62. Notice that the points on the ellipsoid
g(x, y, z) = x2 +2y2 +3z2 −1 = 0 which are closest to and farthest from the ori-
gin occur at points where the tangent planes of the ellipsoid g(x, y, z) = 0 and
the sphere f (x, y, z) = 1 are parallel (see Figure 11.8). Recall that two nonzero
vectors a and b are parallel if and only if a + λb = 0 for some scalar λ �= 0.
Since normal vectors of the tangent planes of f (x, y, z) = 1 and g(x, y, z) = 0
are ∇ f and ∇g (see Exercise 11.6.9b), it follows that extremal points (x, y, z) of
f (x, y, z) subject to the constraints g(x, y, z) = 0 must satisfy

∇ f (x, y, z)+ λ∇g(x, y, z) = 0 (35)

for some λ �= 0. For the case at hand, (35) implies (2x, 2y, 2z)+ λ(2x, 4y, 6z) =
(0, 0, 0). Combining this equation with the constraint g(x, y, z) = 0, we have
four equations in four unknowns:

x(λ+ 1), y(2λ+ 1) = 0, z(3λ+ 1) = 0, and x2 + 2y2 + 3z2 = 1.
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Solving these equations, we obtain three pairs of solutions: (±1, 0, 0) (when
λ = −1), (0,±1/

√
2, 0) (when λ = −1/2), and (0, 0,±1/

√
3) (when λ = −1/3).

Hence, we obtain the same solutions with the geometric method as we did with
the direct method.

The following result shows that the geometric method is valid when the func-
tions have nothing to do with spheres and ellipsoids, even when several con-
straints are used. This is fortunate since the direct method cannot be used unless
the constraints are relatively simple.

11.63 Theorem. [LAGRANGE MULTIPLIERS].
Let m < n, V be open in Rn , and f, g j : V → R be C1 on V for j = 1, 2, . . . ,m.
Suppose that there is an a ∈ V such that

∂(g1, . . . , gm)

∂(x1, . . . , xm)
(a) �= 0.

If f (a) is a local extremum of f subject to the constraints gk(a) = 0, k =
1, . . . ,m, then there exist scalars λ1, λ2, . . . , λm such that

∇ f (a)+
m∑

k=1

λk∇gk(a) = 0. (36)

Proof. Equation (36) is a system of n equations in m unknowns,
λ1, λ2, . . . , λm :

m∑
k=1

λk
∂gk

∂x j
(a) = − ∂ f

∂x j
(a), j = 1, 2, . . . , n. (37)

The first m of these equations forms a system of m linear equations in m vari-
ables whose matrix of coefficients has a nonzero determinant and, hence, this
system uniquely determines the λk ’s. What remains to be seen is that because
f (a) is a local extremum subject to the constraints gk(a) = 0, these same
λk ’s also satisfy (37) for j = m + 1, . . . , n. This is a question about implicit
functions.

Let p = n − m. As in the proof of the Implicit Function Theorem, write
vectors in Rm+p in the form x = (y, t) = (y1, . . . , ym, t1, . . . , tp). We must
show that

0 = ∂ f

∂t�
(a)+

m∑
k=1

λk
∂gk

∂t�
(a) (38)

for � = 1, . . . , p.
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Let g = (g1, . . . , gm), and choose y0 ∈ Rm, t0 ∈ Rp such that a = (y0, t0).
By hypothesis, g(y0, t0) = 0 and the partial Jacobian of g (with respect to the
variables y j ) is nonzero at (y0, t0). Hence, by the Implicit Function Theorem,
there is an open set W ⊂ Rp which contains t0, and a function h : W → Rm

such that h is continuously differentiable on W, h(t0) = y0, and

g(h(t), t) = 0, t ∈ W. (39)

For each t ∈ W and k = 1, . . . ,m, set

Gk(t) = gk(h(t), t) and F(t) = f(h(t), t).

We shall use the functions G1, . . . ,Gm and F to verify (38) for � = 1, . . . , p.
Fix such an �. By (39), each Gk is identically zero on W and, hence, has deriva-
tive zero there. Since t0 ∈ W and (h(t0), t0) = (y0, t0) = a, it follows from the
Chain Rule that

O = DGk(t0) =
[
∂gk

∂x1
(a) . . .

∂gk

∂xn
(a)
]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h1

∂t1
(t0) . . .

∂h1

∂tp
(t0)

...
. . .

...
∂hm

∂t1
(t0) . . .

∂hm

∂tp
(t0)

1 . . . 0
...

. . .
...

0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, the �th component of DGk(t0) is given by

0 =
m∑

j=1

∂gk

∂x j
(a)
∂h j

∂t�
(t0)+ ∂gk

∂t�
(a) (40)

for k = 1, 2, . . . ,m. Multiplying (40) by λk and adding, we obtain

0 =
m∑

k=1

m∑
j=1

λk
∂gk

∂x j
(a)
∂h j

∂t�
(t0)+

m∑
k=1

λk
∂gk

∂t�
(a)

=
m∑

j=1

(
m∑

k=1

λk
∂gk

∂x j
(a)

)
∂h j

∂t�
(t0)+

m∑
k=1

λk
∂gk

∂t�
(a).

Hence, it follows from (37) that

0 = −
m∑

j=1

∂ f

∂x j
(a)
∂h j

∂t�
(t0)+

m∑
k=1

λk
∂gk

∂t�
(a). (41)
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Suppose that f (a) is a local maximum subject to the constraints g(a) = 0.
Set E0 = {x ∈ V : g(x) = 0}, and choose an n-dimensional open ball B(a)
such that

x ∈ B(a) ∩ E0 implies f (x) ≤ f (a). (42)

Since h is continuous, choose a p-dimensional open ball B(t0) such that t ∈
B(t0) implies (h(t), t) ∈ B(a). By (42), F(t0) is a local maximum of F on B(t0).
Hence, ∇F(t0) = 0. Applying the Chain Rule as above, we obtain

0 =
m∑

j=1

∂ f

∂x j
(a)
∂h j

∂t�
(t0)+ ∂ f

∂t�
(a) (43)

[compare with (40)]. Adding (43) and (41), we conclude that

0 = ∂ f

∂t�
(a)+

m∑
k=1

λk
∂gk

∂t�
(a). �

11.64 EXAMPLE.

Find all extrema of x2+y2+z2 subject to the constraints x−y = 1 and y2−z2 = 1.

Solution. Let f (x, y, z) = x2 + y2 + z2, g(x, y, z) = x − y − 1, and h(x, y, z) =
y2 − z2 − 1. Then (36) takes on the form ∇ f + λ∇g + μ∇h = 0; that is,

(2x, 2y, 2z)+ λ(1,−1, 0)+ μ(0, 2y,−2z) = (0, 0, 0).

In particular, 2x + λ = 0, 2y + 2μy − λ = 0, and 2z − 2μz = 0. From this last
equation, either μ = 1 or z = 0.

If μ = 1, then λ = 4y. Since 2x + λ = 0, we find that x = −2y. From g = 0
we obtain −3y = 1 (i.e., y = −1/3). Substituting this into h = 0, we obtain
z2 = −8/9, a contradiction.

If z = 0, then from h = 0 we obtain y = ±1. Since g = 0, we obtain x = 2
when y = 1, and x = 0 when y = −1. Thus, the only candidates for extrema of
f subject to the constraints g = 0 = h are f (2, 1, 0) = 5 and f (0,−1, 0) = 1.
To decide whether these are maxima, minima, or neither, look at the problem
from a geometric point of view. The problem requires us to find points on the
intersection of the plane x − y = 1 and the hyperbolic cylinder y2 − z2 = 1
which lie closest to the origin. Evidently, both of these points correspond to
local minima, and there is no maximum (see Figure 11.9). In particular, the
minimum of x2 + y2 + z2 subject to the given constraints is 1, attained at the
point (0,−1, 0). �
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z
y2 – z2 = 1

x – y = 1

y

x

1
(0, – 1,0)

FIGURE 11.9

EXERCISES

11.7.1. Find all local extrema of each of the following functions.

a) f (x, y) = x2 − xy + y3 − y
b) f (x, y) = sin x + cos y
c) f (x, y, z) = ex+y cos z
d) f (x, y) = ax2 + bxy + cy2, where a �= 0 and b2 − 4ac �= 0

11.7.2. For each of the following, find the maximum and minimum of f on H .

a) f (x, y) = x2 + 2x − y2 and H = {(x, y) : x2 + 4y2 ≤ 4}
b) f (x, y) = x2 + 2xy + 3y2, and H is the region bounded by the

triangle with vertices (1,0), (1,2), (3,0)
c) f (x, y) = x3 + 3xy − y3, and H = [−1, 1] × [−1, 1]

11.7.3. For each of the following, use Lagrange multipliers to find all extrema
of f subject to the given constraints

a) f (x, y) = x + y2 and x2 + y2 = 4
b) f (x, y) = x2 − 4xy + 4y2 and x2 + y2 = 1
c) f (x, y, z) = xy, x2 + y2 + z2 = 1 and x + y + z = 0
d) f (x, y, z, w) = 3x + y +w, 3x2 + y +4z3 = 1 and −x3 +3z4 +w = 0

11.7.4. Suppose that f : Rn → Rm is differentiable at a, and that g : Rm → R
is differentiable at b = f (a). Prove that if g(b) is a local extremum of
g, then ∇(g ◦ f )(a) = 0.

446



Section 11.7 Optimization 447

11.7.5. Suppose that V is open in R2, that (a, b) ∈ V , and that f : V → R has
second-order total differential on V with fx (a, b) = fy(a, b) = 0. If
the second-order partial derivatives of f are continuous at (a, b) and
exactly two of the three numbers fxx (a, b), fxy(a, b), and fyy(a, b) are
zero, prove that (a, b) is a saddle point if fxy(a, b) �= 0.

11.7.6. Suppose that V is an open set in Rn , that a ∈ V , and that f : V → R
is C2 on V . If f (a) is a local minimum of f , prove that D(2) f (a; h) ≥ 0
for all h ∈ Rn .

11.7.7. Let a,b,c,D,E be real numbers with c �= 0.

a) If DE > 0, find all extrema of ax + by + cz subject to the constraint
z = Dx2 + Ey2. Prove that a maximum occurs when cD < 0 and a
minimum when cD > 0.

b) What can you say when DE < 0?

11.7.8. [Implicit Method].

a) Suppose that f, g : R3 → R are differentiable at a point (a, b, c),
and that f (a, b, c) is an extremum of f subject to the constraint
g(x, y, z) = k, where k is a constant. Prove that

∂ f

∂x
(a, b, c)

∂g

∂z
(a, b, c)− ∂ f

∂z
(a, b, c)

∂g

∂x
(a, b, c) = 0

and

∂ f

∂y
(a, b, c)

∂g

∂z
(a, b, c)− ∂ f

∂z
(a, b, c)

∂g

∂y
(a, b, c) = 0.

b) Use part a) to find all extrema of f (x, y, z) = 4xy+2xz+2yz subject
to the constraint xyz = 16.

11.7.9 . This exercise is used in Section ∗14.4.

a) Let p > 1. Find all extrema of f (x) = ∑n
k=1 x2

k subject to the
constraint

∑n
k=1 |xk |p = 1.

b) Prove that

1

n(2−p)/(2p)

(
n∑

k=1

|xk |p

)1/p

≤
(

n∑
k=1

x2
k

)1/2

≤
(

n∑
k=1

|xk |p

)1/p

for all x1, . . . , xn ∈ R, n ∈ N, and 1 ≤ p ≤ 2.

11.7.10. [Least Squares or Linear Regression].
Suppose that points x and y are fixed in Rn and set

d0 := n
n∑

k=1

x2
k −
(

n∑
k=1

xk

)2

.

447



448 Chapter 11 Differentiability on Rn

a) Prove that if

F(a, b) :=
n∑

k=1

(yk − (axk + b))2

for (a, b) ∈ R2, then the system

∂F

∂a
(a, b) = 0 = ∂F

∂b
(a, b)

is solved by

a0 := n
∑n

k=1 xk yk −∑n
k=1 xk

∑n
k=1 yk

d0

and

b0 :=
∑n

k=1 x2
k

∑n
k=1 yk −∑n

k=1 xk
∑n

k=1 xk yk

d0
.

b) Prove that if a0 and b0 are given by part a), then the straight line
whose graph is closest to the points (x1, y1), . . . , (xn, yn)—that is,
such that

n∑
k=1

(yk − (mxk + b))2

is minimized—is the line λ(x) = a0x + b0.
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Integration on Rn

12.1 JORDAN REGIONS

In this section we define grids and use them to identify special subsets of Rn ,
called Jordan regions, which have a well-defined volume. In the next section,
when we define integrals of multivariable functions on Jordan regions, grids will
play the role that partitions did in the one-variable case.

Throughout this chapter, R will represent a nondegenerate n-dimensional
rectangle; that is,

R = [a1, b1] × · · · × [an, bn] := {x ∈ Rn : x j ∈ [a j , b j ] for j = 1, . . . , n}, (1)

where a j < b j for j = 1, 2, . . . , n. A grid on R is a collection of n-dimensional
rectangles G = {R1, . . . , Rp} obtained by subdividing the sides of R; that is, for
each j = 1, . . . , n there are integers ν j ∈ N and partitions P j = P j (G) = {x ( j)

k :
k = 1, . . . , ν j } of [a j , b j ] such that G is the collection of rectangles of the form
I1×. . .× In , where each I j = [x ( j)

k−1, x ( j)
k ] for some k = 1, . . . , ν j (see Figure 12.1).

A grid G is said to be finer than a grid H if and only if each partition P j (G) is
finer than the corresponding partition P j (H), j = 1, . . . , n. Notice that given
two grids G and H, there is a grid I which is finer than both G and H. [Such a
grid can be constructed by taking P j (I) = P j (G) ∪ P j (H) for j = 1, . . . , n.]

If R is an n-dimensional rectangle of the form (1), then the volume of R is
defined to be

|R| = (b1 − a1) . . . (bn − an).

(When n = 1, we shall call |R| the length of R, and when n = 2, we shall call
|R| the area of R.) Notice that given ε > 0 there exists a rectangle R∗ such that
R ⊂ (R∗)o and |R∗| = |R| + ε. Indeed, since b j − a j + 2δ → b j − a j as δ → 0,
we can choose δ > 0 so small that R∗ := [a1 − δ, b1 + δ] × · · · × [an − δ, bn + δ]
satisfies |R∗| = |R| + ε.

We want to define the integral of a multivariable function on a variety of
sets; for example, the integral of a function of two variables on rectangles, disks,
triangles, ellipses, and the integral of a function of three variables on balls, cones,
ellipsoids, pyramids, and so on. One property these regions all have in common
is that they have a well-defined “area” or “volume.”

How shall we define the volume of a general set E? Let R be a rectangle
which contains E . If E is simple enough, we should be able to get a good
approximation for the volume of E by choosing a sufficiently fine grid G on
R and adding up the collective volumes of all rectangles in G which intersect E .

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 12 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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FIGURE 12.1

Accordingly, we define the outer sums of E with respect to a grid G on a rectangle
R by

V (E;G) :=
∑

R j ∩E �=∅
|R j |,

where the empty sum is by definition zero. Notice that since the empty sum is
defined to be zero, V (∅;G) = 0 for all grids G.

Figure 12.2 illustrates an outer sum for a particular set E and grid G. The
rectangles which intersect E have been shaded; those which cover ∂E are darker
than those which are contained in Eo. Notice, even for this crude grid, that the
shaded region is a fair approximation to the “volume” of E .

E

R

FIGURE 12.2
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Section 12.1 Jordan Regions 451

The following result shows that as the grids get finer, the outer sum approxi-
mations to the volume of E get better.

12.1 Remark. Let R be an n-dimensional rectangle.
i) Let E be a subset of R, and let G, H be grids on R. If G is finer than H, then

V (E;G) ≤ V (E;H).
ii) If A and B are subsets of R and A ⊆ B, then

V (A;G) ≤ V (B;G).

Proof. i) Since G is finer than H, each Q ∈ H is a finite union of R j ’s in G.
If Q ∩ E �= ∅, then some of the R j ’s in Q intersect E and others might not
(see Figure 12.3, where the darker lines represent the grid H, the lighter
lines represent G \ H, and the R j ’s which intersect E are shaded). Let
I1 = {R ∈ G : R ∩ E �= ∅} and I2 = {R ∈ G \ I1 : R ⊆ Q for some
Q ∈ H with Q ∩ E �= ∅}. Then

V (E;H) =
∑
R∈I1

|R| +
∑
R∈I2

|R| ≥
∑
R∈I1

|R| = V (E;G).

ii) If A ⊆ B, then A ⊆ B (see Exercise 8.4.3). Thus, every rectangle which
appears in the sum V (A;G) also appears in the sum V (B;G). Since all |R j |’s
are nonnegative, it follows that V (A;G) ≤ V (B;G). �

In view of this, we guess that the volume of a set E can be computed by
taking the infimum of all outer sums of E . Unfortunately, this guess is wrong
unless some restriction is made on the set E . To see why a restriction is neces-
sary, notice that any reasonable definition of volume should satisfy the following

FIGURE 12.3
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452 Chapter 12 Integration on Rn

property: If E = A ∪ B, where B = E \ A, then the volume of E equals the sum
of the volumes of A and B. The following example shows that this property does
not hold if A is too fractured.

12.2 EXAMPLE.

If R = [0, 1] × [0, 1], A = {(x, y) : x, y ∈ Q ∩ [0, 1]}, and B = R \ A, then
V (A;G)+ V (B;G) = 2V (R;G) no matter how fine G is.

Proof. Let G = {R1, . . . , Rp} be a grid on R. Since each R j is nondegenerate,
it is clear by the Density of Rationals (Theorem 1.18) that R j ∩ A �= ∅ for all
j ∈ [1, p]. Hence V (A;G) = |R| = 1. Similarly, the Density of the Irrationals
(Exercise 1.3.3) implies V (B;G) = |R| = 1. �

The real problem with A is that its boundary, ∂A := A \ Ao = R, is too
big. To avoid this type of pathology, we will restrict our attention to “Jordan”
regions; that is to sets whose boundaries are small in the following sense (see
Definition 12.5 and the darkly shaded rectangles in Figure 12.2).

12.3 Definition.

A subset E of Rn is said to be of volume zero if and only if given ε > 0 there is
rectangle R ⊇ E and a grid G = {R1, . . . , Rp} on R such that V (E;G) < ε.

Recall that E is covered by {Qk}q
k=1 means that E ⊆ ⋃q

k=1 Qk . By Defini-
tion 12.3, E is of volume zero if and only if it is covered by rectangles (from a
grid G) whose total volume is as small as one wishes. The next result contains
two other (highly useful) descriptions of sets of volume zero.

12.4 Theorem. For every subset E of Rn , the following three conditions are
equivalent.

i) E is of volume zero.
ii) There is an absolute constant C > 0 such that for each ε > 0 there is a

rectangle R, which contains E, and a grid G on R such that

V (E;G) < Cε.

(The constant C > 0 may depend on E but does not depend on ε or G.)
iii) For every ε > 0 there is a finite collection of cubes Qk of the same size; that

is, all with sides of length s, such that

E ⊂
q⋃

k=1

Qk and
q∑

k=1

|Qk | < ε.

In particular, if E is a set of volume zero and A ⊆ E , then both A and ∂A are sets
of volume zero.
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Section 12.1 Jordan Regions 453

Proof. i) implies ii). If V (E;G) < ε, then V (E;G) < Cε for C = 1.
ii) implies iii). Let ε > 0 and set η = ε/(2C). By hypothesis, there exists a

grid G such that if {R1, . . . , Rp} represents all rectangles in G which intersect
E , then

E ⊂
p⋃

j=1

R j and
p∑

j=1

|R j | < Cη.

By increasing the size of the R j ’s slightly, we may suppose that the sides of
each R j have rational lengths, and

∑p
j=1 |R j | < 2Cη = ε. (These rectangles

no longer form a grid because they may have some overlap, but they still cover
E and hence E itself.)

The lengths of the sides of the R j ’s have a common denominator, say d.
By using a grid fine enough, we can divide each R j into cubes Q( j)

k , for

k = 1, 2, . . . , ν j and some choice of ν j ∈ N, such that each Q( j)
k has sides

of common length s = 1/d. Since |R j | = ∑ν j
k=1 |Q( j)

k |, it follows that

p∑
j=1

ν j∑
k=1

|Q( j)
k | =

p∑
j=1

|R j | < ε.

iii) implies i). Suppose that E can be covered by finitely many cubes

Qk = [a(k)1 , b(k)1 ] × · · · × [a(k)n , b(k)n ]
whose volumes sum to a number less than ε. Let R be a rectangle which
contains the union of the Qk ’s. For each j = 1, 2, . . . , n, the endpoints
{a(1)j , b(1)j , . . . , a(q)j , b(q)j } can be arranged in increasing order to form a parti-
tion of the jth side of R. Thus there is a grid G = {R1, . . . , Rp} so fine that each
Qk is a union of the R j ’s (see Figure 12.4). Thus V (E;G) ≤ ∑q

k=1 |Qk | < ε;
that is, E is a set of volume zero by definition. This completes the proof that
conditions i), ii), and iii) are equivalent.

Finally, suppose that A ⊆ E and G is a grid on some rectangle that contains
E . Since ∂A ⊆ A ⊆ E , it is clear that V (∂A,G) ≤ V (A,G) ≤ V (E,G). Thus if
E is a set of volume zero, then so are A and ∂A. �

We are now prepared to define volume.

12.5 Definition.

A subset E of Rn is called a Jordan region if and only if E ⊆ R for some
n-dimensional rectangle R and ∂E is of volume zero, in which case we define
the volume (or Jordan content) of E by

Vol(E) := inf
G

V (E;G) := inf{V (E;G) : G ranges over all grids on R}.
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FIGURE 12.4

We sometimes shall call Vol(E) length when n = 1 and area when n = 2.
Notice, then, that the empty set is of length, area, and volume zero.

By Theorem 12.4, it is clear that a set A is of volume zero if and only if
Vol(A) = 0. Since rectangles are bounded, it is also clear by Definition 12.5
that every Jordan region is bounded. The converse of this last statement is false.
The set A in Example 12.2 is bounded but not a Jordan region.

Notice that by Theorem 12.4 and Definition 12.5, a set E is a Jordan region if
and only if its boundary can be covered by cubes whose total volume is as small
as one wishes. We shall use this observation many times in the sequel.

Before we continue, we need to show that Vol(E) does not depend on the
rectangle R chosen to generate the grids G. To this end, let R and Q be rectan-
gles which contain E . Since the intersection of two rectangles is a rectangle, we
may suppose that E ⊆ Q ⊂ R. Since Q ⊂ R, it is easy to see that

inf
H on Q

V (E;H) ≤ inf
G on R

V (E;G).

On the other hand, given ε > 0, choose, for each grid H on Q, a rectangle Q∗
such that Q ⊂ (Q∗)o and |Q∗| = |Q| + ε. Let H0 be the grid formed by adding
the endpoints of Q∗ and R to H; that is, if

Q∗ = [α1, β1] × · · · × [αn, βn] and R = [γ1, δ1] × · · · × [γn, δn],
then P j (H0) = P j (H)∪ {α j , β j , γ j , δ j }. Then G0 := H0 ∩ R is a grid on R whose
rectangles which intersect E are either part of H to begin with or the thin ones
formed by adding the endpoints of Q∗. Hence,

V (E;H)+ ε ≥ V (E;G0) ≥ inf
G on R

V (E;G).
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Section 12.1 Jordan Regions 455

It follows that

inf
H on Q

V (E;H) ≤ inf
G on R

V (E;G) ≤ inf
H on Q

V (E;H)+ ε,

for every ε > 0. By letting ε → 0, we verify that the definition of volume does
not depend on the rectangle R.

Next, we show that the two definitions of the volume of a rectangle (length
times width times etc. versus the infimum of outer sums) agree.

12.6 Remark. If R is an n-dimensional rectangle, then R is a Jordan region in
Rn and

Vol(R) = |R|.
Proof. Let ε > 0 and suppose that

R = [a1, b1] × · · · × [an, bn].
Since b j − a j − 2δ → b j − a j as δ → 0, we can choose δ > 0 so small that if

Q = [a1 + δ, b1 − δ] × · · · × [an + δ, bn − δ],
then |R| − |Q| < ε.

Let G := {H1, . . . , Hq} be the grid on R determined by

P j (G) = {a j , a j + δ, b j − δ, b j }.
Then it is clear that an Hj ∈ G intersects ∂R if and only if Hj �= Q. Hence,

V (∂R;G) :=
∑

Hj ∩∂R �=∅
|Hj | = |R| − |Q| < ε.

This proves that R is a Jordan region.
To compute the volume of R using Definition 12.5, let G = {R1, . . . , Rp} be

any grid on R. Since R j ∩ R �= ∅ for all R j ∈ G, it follows from definition that
V (R;G) = |R|. Taking the infimum of this identity over all grids G on R, we
find that Vol(R) = |R|. �

In general, it is not easy to decide whether or not a given set is a Jordan
region. Topology alone cannot resolve this problem since there are open sets in
Rn which are not Jordan regions (see Spivak [12], p. 56). In practice, however,
it is usually easy to show that a specific set E is a Jordan region by applying
Theorem 12.4 to ∂E . Here is a typical example.

12.7 Theorem. If E1 and E2 are Jordan regions, then E1 ∪ E2 is a Jordan
region and

Vol(E1 ∪ E2) ≤ Vol(E1)+ Vol(E2).
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456 Chapter 12 Integration on Rn

Proof. We begin by proving that E1 ∪ E2 is a Jordan region. Since E1 and E2
are Jordan regions, use Theorem 12.4 to choose cubes {S j } which cover ∂E1
(respectively, cubes {Qk} which cover ∂E2) such that

p∑
j=1

|S j | < ε

2
and

p∑
k=1

|Qk | < ε

2
.

But by Theorem 8.37 or 10.40, ∂(E1 ∪ E2) ⊆ ∂E1 ∪ ∂E2. Thus {S j } ∪ {Qk} is a
collection of cubes which covers ∂(E1 ∪ E2) whose volumes sum to a number
less than ε. Hence by Theorem 12.4 and Definition 12.5, E1 ∪ E2 is a Jordan
region.

To estimate the volume of E1 ∪ E2, let G be a grid on a rectangle which
contains E1 ∪ E2. If R j intersects E1 ∪ E2, then by Theorem 8.37 (or 10.40) R j

intersects E1 or E2 (or both). Hence, V (E1 ∪ E2;G) ≤ V (E1;G) + V (E2;G).
Taking the infimum of this inequality over all grids G, we obtain

Vol(E1 ∪ E2) ≤ Vol(E1)+ Vol(E2). �

By iterating this result, we see that the collection of Jordan regions is closed
under finite unions. This is also the case for intersections and set differences (see
Exercise 12.1.6b).

Theorem 12.4 can also be used to show that spheres, ellipsoids, and, in fact,
all “projectable regions” (just about anything you can draw) are Jordan regions
(see Exercise 12.1.4 and Theorem 12.39).

To evaluate integrals of multivariable functions over unions of sets, we intro-
duce the following concept.

12.8 Definition.

Let E := {E
}
∈N be a collection of subsets of Rn .

i) E is said to be nonoverlapping if and only if E j ∩ Ek is of volume zero for
j �= k.

ii) E is said to be pairwise disjoint if and only if E j ∩ Ek = ∅ for j �= k.

Notice that since ∅ is of volume zero, every collection of pairwise disjoint sets
is nonoverlapping. (The converse of this statement is false—see Exercise 12.1.3
below.)

In order to prove a change-of-variables formula in Rn in Section 12.4, we need
to identify conditions under which a C1 function preserves Jordan regions (see
Theorem 12.10). Since Jordan regions are sets whose boundaries are of volume
zero, we first prove a result about functions which take sets of volume zero to
sets of volume zero.

12.9 Lemma.
Suppose that V is a bounded, open set in Rn and that φ : V → Rn is 1–1 and C1

on V with �φ �= 0. If E is of volume zero and E ⊂ V , then φ(E) is of volume
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Section 12.1 Jordan Regions 457

zero. In particular, if {Ek}k∈N is a nonoverlapping collection of sets in Rn with
Ek ⊂ V for all k ∈ N, then {φ(Ek)}k∈N is a nonoverlapping collection of sets
in Rn .

Proof. Since E ⊂ V , for each x ∈ E there is an r(x) > 0 such that
Br(x)(x) ⊂ V . Since

E ⊆
⋃
x∈E

Br(x)(x),

it follows from the Heine–Borel Theorem that there exist finitely many xk ∈ E
such that the bounded open set

U :=
N⋃

j=1

Br(xk)(xk)

contains E . Set H := U . Since U is bounded, H is compact. Moreover, the
construction guarantees that E ⊂ Ho ⊂ H ⊂ V . Thus by Corollary 11.34,
there exists an M > 0 which depends only on H,φ, and n such that

‖φ(x)− φ(y)‖ ≤ M‖x − y‖, x, y ∈ Q, (2)

for all cubes Q ⊆ H .
Let ε > 0 and set C := (2A)n , where A := M

√
n. Since E is of volume zero

and E ⊂ Ho, use Theorem 12.4 to choose cubes Q1, . . . , Qq , all the same size
with sides of length s, such that Q j ⊂ H ,

E ⊂
q⋃

j=1

Q j , and
q∑

j=1

|Q j | < ε

C
. (3)

Fix j and fix x0 ∈ Q j . By (2) and Remark 8.7,

‖φ(x0)− φ(x)‖ ≤ Ms
√

n = s A

for all x ∈ Q j . Thus φ(Q j ) is contained in the cube Q̃ j := I1 × · · · × In , where

Ik := [φk(x0)− s A, φk(x0)+ s A] .

In particular, it follows from the left side of (3) and Theorem 1.37 that

φ(E) ⊂ φ

⎛
⎝ q⋃

j=1

Q j

⎞
⎠ =

q⋃
j=1

φ(Q j ) ⊆
q⋃

j=1

Q̃ j .
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458 Chapter 12 Integration on Rn

But the sides of Q̃ j are of length 2s A, so |Q̃ j | = (2s A)n = Csn . In particular,
the right side of (3) implies that

q∑
j=1

|Q̃ j | =
q∑

j=1

Csn = C
q∑

j=1

|Q j | < C
ε

C
= ε.

Therefore, Vol(φ(E)) = 0 by Theorem 12.4.
Finally, by what we just proved, if Ek ∩ E j is of volume zero, then so is

φ(Ek ∩ E j ). But by Exercise 1.5.7 (since φ is 1–1),

φ(Ek) ∩ φ(E j ) = φ(Ek ∩ E j ).

Thus {φ(Ek)} is nonoverlapping when {Ek} is nonoverlapping. �

12.10 Theorem. Suppose that V is a bounded, open set in Rn and that φ :
V → Rn is 1–1 and C1 on V with �φ �= 0. If E is a Jordan region and E ⊂ V ,
then φ(E) is a Jordan region.

Proof. By Definition 12.5, Theorem 12.4, and Lemma 12.9, it suffices to prove
that ∂(φ(E)) ⊆ φ(∂E). By Theorem 11.39, the set φ(Eo) is open, and by
Theorem 9.29 (or 10.61), the set φ(E) is closed. It follows from Theorem 8.32
(or 10.34) that φ(Eo) ⊆ (φ(E))o and φ(E) ⊇ φ(E). Therefore,

∂(φ(E)) = φ(E) \ (φ(E))o ⊆ φ(E) \ φ(Eo) = φ(E \ Eo) = φ(∂E). �

We close this section with some optional results which will not be used else-
where. They show that the volume of a set can also be approximated from below
using inner sums.

We introduced outer sums (analogues of upper sums) and defined the volume
of a Jordan region as the infimum of all outer sums. In order to calculate the vol-
ume of a specific set, it is sometimes convenient to have inner sums (analogues
of the lower sums we used to define integrals in Chapter 5). Given E ⊂ Rn , a
subset of some n-dimensional rectangle R, and G = {R j : j = 1, . . . , p}, a grid
on R, the inner sums of E with respect to G are defined by

v(E;G) :=
∑

R j ⊂Eo

|R j |,

where the empty sum is again interpreted to be zero. Thus v(E;G) = 0 for all
grids G and all sets E satisfying Eo = ∅.

Inner and outer sums can be used to define inner and outer volume of ANY
bounded set, in the same way that upper and lower sums were used to define
upper and lower integrals of any bounded function (see Definition 12.13 below).
If G is fine enough and E is Jordan, the inner sum of a Jordan region E with
respect to G should approximate Vol(E); just as V (E;G) overestimated Vol(E),
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Section 12.1 Jordan Regions 459

each v(E;G) underestimates Vol(E). [In Figure 12.2, the underestimate v(E;G)
is represented by the lightly shaded rectangles. You might refine the grid there
and revisualize the inner and outer sums to illustrate that these estimates get
better as the grid gets finer.]

Since v(E;H) is either zero or a sum of nonnegative terms, it is clear that
v(E;H) ≥ 0 for all grids H. If we combine this observation with the proof of
Remark 12.1i, we can also establish the following result.

12.11 Remark. Let R be an n-dimensional rectangle, let E be a subset of R, and
let G, H be grids on R. If G is finer than H, then

0 ≤ v(E;H) ≤ v(E;G) ≤ V (E;G) ≤ V (E;H).

This leads us to the following fundamental principle.

12.12 Remark. Let R be an n-dimensional rectangle and E be a subset of R. If G
and H are grids on R, then

0 ≤ v(E;G) ≤ V (E;H).

Proof. Let I be a grid finer than both G and H. By Remark 12.11,

0 ≤ v(E;G) ≤ v(E;I) ≤ V (E;I) ≤ V (E;H). �

Using the sums v(E;G) and V (E;G), we can define inner and outer volume
of any bounded set E .

12.13 Definition.

Let E be a bounded subset of Rn and let R be an n-dimensional rectangle
which satisfies E ⊆ R. The inner volume of E is defined by

Vol(E) := sup{v(E;G) : G ranges over all grids on R},
and the outer volume of E is defined by

Vol(E) := inf{V (E;G) : G ranges over all grids on R}.

As before, we can show that this definition is independent of the rectangle R
chosen to generate the grids G.

When E is a Jordan region, the outer and inner volume of E is precisely the
volume of E .

12.14 Theorem. Let E be a bounded subset of Rn . Then E is a Jordan region if
and only if Vol(E) = Vol(E).
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460 Chapter 12 Integration on Rn

Proof. Let E ⊂ Rn and suppose that R is a rectangle which contains E . We
shall show that for all grids G on R,

V (E;G)− v(E;G) = V (∂E;G). (4)

If Eo = ∅, then ∂E = E and (4) is obvious. Otherwise, suppose that R j ∈ G is
a rectangle which appears in the sum represented by the left side of (4); that
is, R j intersects E but R j is not a subset of Eo. If R j does not appear in the
sum represented by the right side of (4), then R j ∩ ∂E = ∅. It follows that
the pair Eo, (Rn\E)o separates R j , a contradiction since all rectangles are
connected (see Remark 9.34). Therefore, every rectangle which appears in
the sum represented by the left side of (4) also appears in the sum represented
by the right side; that is,

V (E;G)− v(E;G) ≤ V (∂E;G).

On the other hand, suppose that R j ∈ G is a rectangle which appears in the
sum represented by the right side of (4); that is, R j ∩ ∂E �= ∅. Recall from
Theorems 8.24 and 8.36 (or 10.39 and 10.31) that ∂E = E \ Eo is closed, so
R j ∩ ∂E �= ∅. It follows that R j intersects E but R j is not a subset of Eo.
Thus every rectangle which appears in the sum represented by the right side
of (4) also appears in the sum represented by the left side; that is, V (E;G) −
v(E;G) ≥ V (∂E;G). This proves (4).

To prove the theorem, suppose that E is a Jordan region. By definition,
Vol(∂E) = 0. Since by (4), V (∂E;G) = V (E;G)− v(E;G) ≥ Vol(E)− Vol(E),
it follows (by taking the infimum of this last inequality over all grids G) that

0 = Vol(∂E) ≥ Vol(E)− Vol(E) ≥ 0. (5)

Thus Vol(E) = Vol(E).
Conversely, suppose that Vol(E) = Vol(E). By the Approximation Prop-

erty, given ε > 0, there exist grids H1 and H2 such that

Vol(E)+ ε > V (E;H1) and Vol(E)− ε < v(E;H2).

If G is a grid on R which is finer than both H1 and H2, it follows from
Remark 12.11 that

Vol(E)+ ε > V (E;G) and Vol(E)− ε < v(E;G).

Subtracting these inequalities, we see by (4) that

0 ≤ V (∂E;G) = V (E;G)− v(E;G) < Vol(E)− Vol(E)+ 2ε = 2ε.

Hence E is a Jordan region by definition. �
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EXERCISES

12.1.1. a) For m = 1, 2, 3, let Gm be the grid on [0, 1] × [0, 1] generated by

P j (Gm) = {k/2m : k = 0, 1, . . . , 2m},
where j = 1, 2. For each of the following sets, compute V (E;Gm).

α) E = {(x, y) ∈ [0, 1] × [0, 1] : x = 0 or y = 0}.
β) E = {(x, y) ∈ [0, 1] × [0, 1] : y ≤ x}.
γ ) E = {(x, y) ∈ [0, 1] × [0, 1] : (2x − 1)2 + (2y − 1)2 ≤ 1}.

b) For each E in part a), compute v(E;Gm).

12.1.2. a) Prove that every finite subset of Rn is a Jordan region of vol-
ume zero.

b) Show that, even in R2, part a) is not true if finite is replaced by
countable.

c) By an interval in R2 we mean a set of the form

{(x, c) : a ≤ x ≤ b} or {(c, y) : a ≤ y ≤ b}
for some a, b, c ∈ R. Prove that every interval in R2 is a Jordan
region.

12.1.3. Prove that every grid is a nonoverlapping collection of Jordan regions.

12.1.4. a) Prove that the boundary of an open ball Br (a) is given by

∂Br (a) = {x : ‖x − a‖ = r}.
b) Prove that Br (a) is a Jordan region for all a ∈ Rn and all r ≥ 0.

12.1.5. Let E be a Jordan region in Rn .

a) Prove that Eo and E are Jordan regions.
b) This exercise is used in Section 12.2. Prove that Vol(Eo) = Vol(E) =

Vol(E).
c) Prove that Vol(E) > 0 if and only if Eo �= ∅.
d) Let f : [a, b] → R be continuous on [a, b]. Prove that the graph of

y = f (x), x ∈ [a, b], is a Jordan region in R2.
e) Does part d) hold if continuous is replaced by integrable? How

about bounded?

12.1.6 . This exercise is used in Section ∗12.5. Suppose that E1, E2 are Jordan
regions in Rn .

a) Prove that if E1 ⊆ E2, then

Vol(E1) ≤ Vol(E2).

b) Prove that E1 ∩ E2 and E1 \ E2 are Jordan regions.
c) Prove that if E1, E2 are nonoverlapping, then

Vol(E1 ∪ E2) = Vol(E1)+ Vol(E2).
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d) If E2 ⊆ E1, prove that

Vol(E1 \ E2) = Vol(E1)− Vol(E2).

e) Prove that

Vol(E1 ∪ E2) = Vol(E1)+ Vol(E2)− Vol(E1 ∩ E2).

12.1.7 . This exercise is used in Section ∗12.6. Let E ⊂ Rn . The translation of
E by an x ∈ Rn is the set x + E = {y ∈ Rn : y = x + z for some z ∈ E},
and the dilation of E by a scalar α > 0 is the set αE = {y ∈ Rn : y =
αz for some z ∈ E}.
a) Prove that E is a Jordan region if and only if x+E is a Jordan region,

in which case Vol(x + E) = Vol(E).
b) Prove that E is a Jordan region if and only if αE is a Jordan region,

in which case Vol(αE) = αnVol(E).
12.1.8. A set E ⊂ Rn is said to be of measure zero if and only if given ε > 0

there is a sequence of rectangles R1, R2, . . . which covers E such that∑∞
k=1 |Rk | < ε.

a) Prove that if E ⊂ Rn is of volume zero, then E is of measure zero.
b) Prove that if E ⊂ Rn is at most countable, then E is of measure zero.
c) Prove that there is a set E ⊂ R2 of measure zero which does not

have zero area and, in fact, is not even a Jordan region.
∗12.1.9. Show that if E ⊂ Rn is bounded and has only finitely many cluster

points, then E is a Jordan region.

12.2 RIEMANN INTEGRATION ON JORDAN REGIONS

By analogy with the one-variable case, the integral of a nonnegative function
f over a Jordan region E should be the volume of the set {(x, t) : x ∈ E, 0 ≤
t ≤ f (x)}. We should be able to approximate this volume by using (n + 1)-
dimensional rectangles whose heights approximate t = f (x) and whose bases
belong to some grid on E (see Figure 12.5). This leads us to the following defi-
nition (compare with Definition 5.13).

12.15 Definition.

Let E be a Jordan region in Rn , let f : E → R be a bounded function, let R
be an n-dimensional rectangle such that E ⊆ R, and let G = {R1, . . . , Rp} be a
grid on R. Extend f to Rn by setting f (x) = 0 for x ∈ Rn \ E .

i) The upper sum of f on E with respect to G is

U ( f,G) :=
∑

R j ∩E �=∅
M j |R j |,

where M j = supx∈R j
f (x).
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ii) The lower sum of f on E with respect to G is

L( f,G) :=
∑

R j ∩E �=∅
m j |R j |,

where m j = infx∈R j f (x).
iii) The upper and lower integrals of f on E are defined by

(L)
∫

E
f (x) dx := (L)

∫
E

f dV := sup
G

L( f,G)

and

(U )
∫

E
f (x) dx := (U )

∫
E

f dV := inf
G

U ( f,G),

where the supremum and infimum are taken over all grids G on R.

E

z = f (x, y)

FIGURE 12.5

Using the fact that f (x) = 0 when x ∈ R \ E , we can modify the proofs of
Remarks 5.7, 5.8, and 5.14 to establish the following result.

12.16 Remark. Let E be a nonempty Jordan region in Rn , let f : E → R be
bounded, and let R be a rectangle which contains E.
i) If G and H are grids on R, then

L( f,G) ≤ U ( f,H).
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ii) The upper and lower integrals of f over E always exist, do not depend on the
choice of R, and satisfy

(L)
∫

E
f dV ≤ (U )

∫
E

f dV . (6)

12.17 Definition.

A real-valued bounded function f defined on a Jordan region E is said to be
(Riemann) integrable on E if and only if for every ε > 0 there is a grid G
such that

U ( f,G)− L( f,G) < ε.

By modifying the proof of Theorem 5.15, we can establish the following result.

12.18 Remark. Let E be a Jordan region in Rn and suppose that f : E → R is
bounded. Then f is integrable on E if and only if

(L)
∫

E
f dV = (U )

∫
E

f dV . (7)

When f is integrable on E , we denote the common value in (7) by∫
E

f (x) dx or
∫

E
f dV

and call it the integral of f over E . For n = 2 (respectively, n = 3) we shall fre-
quently denote the integral

∫
E f dV by

∫∫
E f d A (respectively, by

∫∫∫
E f dV ).

The following result shows that evaluation of Riemann integrals over Jordan
regions reduces to evaluation of Riemann integrals over rectangles.

12.19 Remark. Let E be a Jordan region in Rn , let R be an n-dimensional rect-
angle which contains E, and suppose that f : E → R is integrable on E. If

g(x) =
{

f (x) x ∈ E
0 x /∈ E,

then g is integrable on R and ∫
E

f dV =
∫

R
g dV . (8)

Proof. By Definition 12.15, the upper and lower sums of f and g are iden-
tical; hence, they have the same upper and lower integrals. It follows from
Remark 12.18 that they have the same integrals. �

464



Section 12.2 Riemann Integration on Jordan Regions 465

This last proof worked because we defined the upper and lower integrals of
a function f on E by extending f to be zero off E . We did this to be sure that
U ( f ;G) was an overestimate of the integral of f and L( f ;G) was an underesti-
mate. Unfortunately, the abrupt change from f to 0 at the boundary of E intro-
duces additional complications. The next result shows that since the boundary
of E is of volume zero, we can ignore what happens at the boundary.

12.20 Theorem. Let E be a Jordan region and suppose that f : E → R is
bounded. Then given ε > 0 there is a grid G0 such that if G := {R1, . . . , Rp} is any
grid finer than G0 and M j , m j are defined as in Definition 12.15, then∣∣∣∣∣∣(U )

∫
E

f (x) dx −
∑

R j ⊂Eo

M j |R j |
∣∣∣∣∣∣ < ε

and ∣∣∣∣∣∣(L)
∫

E
f (x) dx −

∑
R j ⊂Eo

m j |R j |
∣∣∣∣∣∣ < ε.

Proof. Let ε > 0 and choose M > 0 such that | f (x)| ≤ M for all x ∈ E .
Since Vol(∂E) = 0, we can choose a grid H1 such that V (∂E;H1) < ε/(2M).
Moreover, by the Approximation Property of Infima, we can choose a grid
H2 such that

(U )
∫

E
f (x) dx ≤ U ( f ;H2) < (U )

∫
E

f (x) dx + ε

2
.

Let G0 be a grid finer than both H1 and H2, and suppose that G =
{R1, . . . , Rp} is finer than G0. Since each R j is connected, it is easy to see that
if R j intersects E but R j is not a subset of Eo, then R j intersects ∂E . [Indeed,
if R j ∩ ∂E = ∅, then the pair Eo, (Rn\E)o separates R j , a contradiction since
all rectangles are connected—see Remark 9.34.] Since G is finer than H1 and
H2, it follows that∣∣∣∣∣∣(U )

∫
E

f (x) dx −
∑

R j ⊂Eo

M j |R j |
∣∣∣∣∣∣ ≤ ε

2
+
∣∣∣∣∣∣U ( f ;G)−

∑
R j ⊂Eo

M j |R j |
∣∣∣∣∣∣

≤ ε

2
+

∑
R j ∩∂E �=∅

|M j | |R j |

≤ ε

2
+ M V (∂E;G) < ε.

A similar proof establishes the inequality involving lower sums and lower
integrals. �

It follows that if Eo = ∅, then the upper and lower integrals of any bounded
f are zero; that is,

∫
E f dV = 0.
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466 Chapter 12 Integration on Rn

Can we avoid worrying about the boundary by redefining the numbers M j and
m j in Definition 12.15? For example, why not just define M j = supx∈R j ∩E f (x)?
This approach will not work because the infimum of these upper sums will not
equal the integral of f . For example, suppose that G0 = {[0, 1] × [0, 1]} and
that G = {R1, R2, R3, R4}, where the R j ’s are formed by bisecting the sides
of G0; that is, each R j is exactly one-fourth of the unit square. Let E = R1 and
suppose that f = 1 on Ro

1 , but f = −1 otherwise. If M j is defined as above,
then U ( f,G0) = 1 but U ( f,G) = −1/2, which is LESS than

∫
E f dV = 1/4.

Evidently, in order to define f on E by looking at grids on a rectangle which
contains E , we must extend f to be zero off E .

Our first application of Theorem 12.20 is an analogue of Theorem 5.10.

12.21 Theorem. If E is a closed Jordan region in Rn and f : E → R is continu-
ous on E, then f is integrable on E.

Proof. Since by hypothesis E is closed and bounded, f is bounded on E
(apply the Extreme Value Theorem and the Heine–Borel Theorem). To show
that f is integrable on E , let ε > 0 and R be a rectangle which contains E . By
Theorem 12.20, there is a grid G0 on R such that if G = {R1, . . . , Rp} is any
grid which is finer than G0, then

∣∣∣∣∣∣(U )
∫

E
f dV − (L)

∫
E

f dV −
∑

R j ⊂Eo

(M j − m j ) |R j |
∣∣∣∣∣∣ < ε. (9)

Since f is uniformly continuous on E , choose δ > 0 such that

‖x − y‖ < δ and x, y ∈ E imply | f (x)− f (y)| < ε.

Make G finer by insisting that for each R j ∈ G, ‖x − y‖ < δ when x, y ∈ R j .
Then the choice of δ implies that M j − m j < ε for all j which satisfy R j ⊂ E .
Hence it follows from Remark 12.16 and (9) that

0 ≤ (U )
∫

E
f dV − (L)

∫
E

f dV < ε +
∑

R j ⊂Eo

(M j − m j )|R j |

< ε + εV (E;G) ≤ ε(1 + |R|).

Since ε > 0 was arbitrary, we conclude that (U )
∫

E f dV = (L)
∫

E f dV (i.e., f
is integrable on E). �

The proof of Theorem 12.21 shows that the hypothesis that E be closed can
be weakened if we insist that f be uniformly continuous on E . (See also Exer-
cises 9.4.8 and 12.2.11.)

The following result shows that the volume of a Jordan region can be com-
puted by integration.

466



Section 12.2 Riemann Integration on Jordan Regions 467

12.22 Theorem. If E is a Jordan region, then

Vol(E) =
∫

E
1 dx.

Proof. By Exercise 12.1.5b, we may suppose that E is closed. Let R be a
rectangle containing E and G = {R1, . . . , Rp} be a grid on R. Define f (x) = 1
for x ∈ E and f (x) = 0 for x /∈ E , and notice by Theorem 12.21 that f is
integrable on E . Since R j ∩ E �= ∅ implies R j ∩ E �= ∅, and M j ( f ) = 1 when
R j ∩ E �= ∅, it is clear, by the definition of upper sums and outer sums, that
U ( f,G) ≤ V (E;G). Taking the infimum of this inequality over all grids G, and
applying Theorem 12.21 together with Definitions 12.15 and 12.5, we have∫

E
1 dx = inf

G
U ( f,G) ≤ inf

G
V (E;G) = Vol(E).

On the other hand, since Vol(∂E) = 0, given ε > 0 we can choose G so that
V (∂E;G) < ε. Since m j ( f ) = 0 when R j ∩ Ec �= ∅, and m j ( f ) = 1 when
R j ⊆ E , it follows that∫

E
1 dx ≥ L( f ;G) =

∑
R j ∩E �=∅

m j |R j |

=
∑

R j ⊆E

|R j | ≥
∑

R j ∩E �=∅
|R j | −

∑
R j ∩∂E �=∅

|R j |

= V (E;G)− V (∂E;G) ≥ Vol(E)− ε.

Since ε > 0 was arbitrary, it follows that
∫

E 1 dx ≥ Vol(E). �

As in the one-dimensional case, the integral of a sum of functions over a union
of regions can be broken into simpler pieces.

12.23 Theorem. [LINEAR PROPERTIES].
Let E be a Jordan region in Rn , let f, g : E → R, and let α be a scalar.

i) If f, g are integrable on E, then so are α f and f + g. In fact,∫
E
α f dV = α

∫
E

f dV (10)

and ∫
E
( f + g) dx =

∫
E

f dV +
∫

E
g dV . (11)

ii) If E1, E2 ⊆ E are nonoverlapping Jordan regions and f is integrable on
both E1 and E2, then f is integrable on E1 ∪ E2 and∫

E1∪E2

f dV =
∫

E1

f dV +
∫

E2

f dV . (12)
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Proof. We suppose for simplicity that α > 0. Let ε > 0 and choose a grid G
such that

U ( f,G)− ε <

∫
E

f dV < L( f,G)+ ε. (13)

Notice that U (α f,G) = αU ( f,G) and L(α f,G) = αL( f,G). Multiplying (13)
by α, we obtain

U (α f,G)− αε < α

∫
E

f dV < L(α f,G)+ αε.

In particular,

inf
G

U (α f,G) < α

∫
E

f dV + αε

and

sup
G

L(α f,G) > α

∫
E

f dV − αε.

Taking the limit of these inequalities as ε → 0, we conclude that

inf
G

U (α f,G) ≤ α

∫
E

f dV ≤ sup
G

L(α f,G).

This proves (10).
To prove (11), choose a grid G such that

U ( f,G)− ε <

∫
E

f dV < L( f,G)+ ε

and

U (g,G)− ε <

∫
E

g dV < L(g,G)+ ε.

Adding these inequalities, we have

U ( f,G)+ U (g,G)− 2ε <
∫

E
f dV +

∫
E

g dV < L( f,G)+ L(g,G)+ 2ε.

By definition, U ( f + g,G) ≤ U ( f,G)+ U (g,G) and L( f + g,G) ≥ L( f,G)+
L(g,G). Therefore,

U ( f + g,G)− 2ε <
∫

E
f dV +

∫
E

g dV < L( f + g,G)+ 2ε;

that is,

inf
G

U ( f + g,G) ≤
∫

E
f dV +

∫
E

g dV ≤ sup
G

L( f + g,G).

This proves (11).
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To prove (12), let ε > 0 and apply Theorem 12.20 three times to choose a
grid G0 so that if G = {R1, . . . , Rp} is finer than G0, then

∣∣∣∣∣∣
∫

Ei

f dV −
∑

R j ⊂Eo
i

M j |R j |
∣∣∣∣∣∣ < ε (14)

for i = 1, 2, and∣∣∣∣∣∣(U )
∫

E1∪E2

f dV −
∑

R j ⊂(E1∪E2)
o

M j |R j |
∣∣∣∣∣∣ < ε. (15)

Since E1 and E2 are nonoverlapping, we may also assume that

V (E1 ∩ E2;G) < ε. (16)

Let M = max{|M1|, . . . , |Mp|}. Since each R j is connected and Eo
1 ∩ Eo

2 = ∅,
it is easy to see that each R j ⊂ (E1 ∪ E2)

o satisfies one and only one of the
following three conditions: i) R j ⊂ Eo

1 ; ii) R j ⊂ Eo
2 ; or iii) R j ∩ E1 ∩ E2 �= ∅.

Hence, it follows from (15), (16), and (14) that

(U )
∫

E1∪E2

f dV < ε +
∑

R j ⊂(E1∪E2)
o

M j |R j |

≤ ε +
∑

R j ⊂Eo
1

M j |R j | +
∑

R j ⊂Eo
2

M j |R j | + M V (E1 ∩ E2;G)

< 3ε +
∫

E1

f dV +
∫

E2

f dV + Mε.

Since ε > 0 was arbitrary, we obtain

(U )
∫

E1∪E2

f dV ≤
∫

E1

f dV +
∫

E2

f dV .

A similar argument establishes

(L)
∫

E1∪E2

f dV ≥
∫

E1

f dV +
∫

E2

f dV .

Thus (12) holds. �

The following result shows that the value of an integral remains the same
when the integrand is changed on a set of volume zero (compare with Exer-
cise 5.1.6).
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12.24 Theorem. Let E be a Jordan region in Rn and let f, g : E → R be
bounded functions.

i) If E0 is of volume zero, then g is integrable on E0 and

∫
E0

g dV = 0.

ii) If f is integrable on E , if E0 is a subset of E of volume zero, and if g(x) =
f (x) for all x ∈ E \ E0, then g is integrable on E and

∫
E

g dV =
∫

E
f dV .

Proof. i) If Eo
0 �= ∅, then E0 contains a ball, hence a nondegenerate rect-

angle, so Vol(E) > 0, a contradiction. Since Eo
0 = ∅, it follows from Theo-

rem 12.20 that

(U )
∫

E0

g dV = (L)
∫

E0

g dV = 0.

ii) Since f = g on E \ E0, it follows from the proof of Theorem 12.23ii and
part i) above that

∫
E

f dV =
∫

E\E0

f dV +
∫

E0

f dV

= (U )
∫

E\E0

g dV + (U )
∫

E0

g dV ≥ (U )
∫

E
g dV .

Similarly,
∫

E f dV ≤ (L)
∫

E g dV . �

This suggests a way to define the integral of f on a Jordan region E when f is
not defined on all of E . Indeed, if f is defined on E \ E0, where E0 is of volume
zero, and if the function

g(x) :=
{

f (x) x ∈ E \ E0

0 x ∈ E0

is integrable on E , then define

∫
E

f dV :=
∫

E
g dV .
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For example, ∫ 2

0

x2 − 1

x − 1
dx =

∫ 2

0
(x + 1) dx = 4.

Henceforth, the phrase “ f : E → R is integrable” includes the possibility that
f may not be defined on a subset of E of volume zero.

The following result is a multidimensional analogue of Theorems 5.21
and 5.22.

12.25 Theorem. [COMPARISON THEOREM FOR MULTIPLE
INTEGRALS].
Let E be a Jordan region in Rn and suppose that f, g : E → R are integrable
on E.

i) If f (x) ≤ g(x) for x ∈ E , then∫
E

f dV ≤
∫

E
g dV .

ii) If m, M are scalars which satisfy m ≤ f (x) ≤ M for x ∈ E , then

m Vol(E) ≤
∫

E
f dV ≤ M Vol(E).

iii) The function | f | is integrable on E and∣∣∣∣
∫

E
f dV

∣∣∣∣ ≤
∫

E
| f | dV . (17)

Proof. i) If f ≤ g on E , then L( f,G) ≤ L(g,G) for any grid G. Taking the
supremum of this inequality over all grids G verifies part i).

ii) By Theorem 12.22, (10), and part i),

m Vol(E) =
∫

E
m dx ≤

∫
E

f dV ≤
∫

E
M dx = M Vol(E).

iii) Let ε > 0 and choose by Definition 12.17 a grid G = {R1, . . . , Rp} such
that

U ( f,G)− L( f,G) < ε. (18)

By repeating the argument which verified (10) in Theorem 5.22, we have

sup
x∈R j

| f (x)| − inf
x∈R j

| f (x)| ≤ sup
x∈R j

f (x)− inf
x∈R j

f (x).

Hence, it follows from (18) that

U (| f |,G)− L(| f |,G) ≤ U ( f,G)− L( f,G) < ε.
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472 Chapter 12 Integration on Rn

Thus | f | is integrable on E . Since −| f | ≤ f ≤ | f |, we conclude by part i) that

−
∫

E
| f | dV ≤

∫
E

f dV ≤
∫

E
| f | dV . �

12.26 Theorem. [MEAN VALUE THEOREM FOR MULTIPLE
INTEGRALS].
Let E be a Jordan region in Rn and let f, g : E → R be integrable on E with
g(x) ≥ 0 for all x ∈ E .
i) There is a number c satisfying

inf
x∈E

f (x) ≤ c ≤ sup
x∈E

f (x) (19)

such that

c
∫

E
g dV =

∫
E

f g dV . (20)

ii) There is a number c satisfying (19) such that

c Vol(E) =
∫

E
f dV .

Proof. i) By hypothesis, the product fg is integrable on E (see Exer-
cise 12.2.8). Let m = infx∈E f (x) and M = supx∈E f (x). Since g ≥ 0, The-
orem 12.25 implies that

m
∫

E
g dV ≤

∫
E

f g dV ≤ M
∫

E
g dV . (21)

If
∫

E g dV = 0, then
∫

E f (x)g dV = 0 by (21), so (20) holds for any c. If∫
E g dV �= 0, then (20) holds for

c =
∫

E f g dV∫
E g dV

.

ii) Apply part i) to g(x) = 1. �

We close this section with some optional material which generalizes a concept
introduced in Section 9.6.
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Section 12.2 Riemann Integration on Jordan Regions 473

∗12.27 Definition.

A set E ⊂ Rn is said to be of measure zero if and only if for every ε > 0 there
is a countable collection of rectangles {R j } j∈N such that

E ⊂
∞⋃
j=1

R j and
∞∑
j=1

|R j | < ε.

∗12.28 Remark. If E1, E2, . . . is a sequence of subsets of Rn and each Ek is of
measure zero, then

E =
∞⋃

k=1

Ek

is also of measure zero.

Proof. Let ε > 0. For each k ∈ N, choose a collection of rectangles {R(k)j } j∈N

which covers Ek such that

∞∑
j=1

|R(k)j | < ε

2k
.

Clearly, the collection {R(k)j } j,k∈N is countable, covers E , and

∞∑
k=1

∞∑
j=1

|R(k)j | ≤
∞∑

k=1

ε

2k
= ε.

Consequently, E is of measure zero. �

Every singleton E = {a} in Rn is of measure zero. In fact, by comparing
Definition 12.27 with Theorem 12.4, it is clear that every set of volume zero is
a set of measure zero. The converse of this statement is false. Indeed, for each
a ∈ R the set {(a, y) : y ∈ [0, 1]} is of volume zero and, hence, is of measure
zero. Thus, by Remark 12.28, E := Q × [0, 1] is a set of measure zero. On the
other hand, it is clear that Vol(E) = 0 < 1 ≤ Vol(E), so E is not a set of volume
zero; in fact, E is not even a Jordan region.

An analogue of Lebesgue’s Theorem holds for multiple integrals.

∗12.29 Theorem. Let E be a Jordan region and let f : E → R be bounded.

i) f is Riemann integrable on E if and only if the set of points of discontinuity of
f on E is of measure zero.
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474 Chapter 12 Integration on Rn

ii) Suppose that V is an open set in Rn such that E ⊂ V , and that φ : V → Rn

is 1–1 and φ−1 is C1 on φ(V ) with �φ−1 �= 0. If f is integrable on φ(E), then
f ◦ φ is integrable on E.

Proof. i) This part can be verified by modifying the proof of Theorem 9.49
(see Spivak [12], p. 53).

ii) By part i) and Theorem 12.10, it suffices to show that the set of points
of discontinuity of f ◦ φ on E is a set of measure zero. Let ε > 0. Since f
is integrable on φ(E), its set of points of discontinuity, D, can be covered by
cubes Qk such that

∑∞
k=1 |Qk | < ε. Set ψ = φ−1 and apply (2), with ψ in place

of φ, to choose an absolute constant C and cubes Qψ
k such that ψ(Qk) ⊆ Qψ

k

and |Qψ
k | ≤ C |Qk |. Then {Qψ

k } covers ψ(D) = φ−1(D) and

∞∑
k=1

|Qψ
k | ≤ C

∞∑
k=1

|Qk | < Cε.

Hence, φ−1(D) := ψ(D) is a set of measure zero. But since D is the set of
points of discontinuity of f on φ(E), φ−1(D) is the set of points of disconti-
nuity of f ◦ φ on E . Hence f ◦ φ is Riemann integrable by part i). �

EXERCISES

12.2.1. Using Exercise 1.4.4a, compute the upper and lower sums
U ( f,Gm), L( f,Gm) for m ∈ N, where f (x, y) = xy and Gm is deter-
mined by

P j (Gm) = {k/2m : k = 0, 1, . . . , 2m}
for j = 1, 2. Prove that

lim
m→∞ U ( f,Gm)− L( f,Gm) = 0.

12.2.2. Let E be a Jordan region in Rn with E ⊆ [0, 1] × · · · × [0, 1]. If f, g are
integrable on E with∫

E
f dV = 1 and

∫
E

g dV = −1,

and if g(x) ≤ f (x) for all x ∈ E , prove that for each j ∈ {1, 2, . . . , n}
there is a 0 ≤ t j ≤ 2 such that∫

E
x2

j ( f (x)− g(x)) dx = t j .

12.2.3 . This exercise is used in Sections 12.4, 13.5, and 13.6. Let E be an open
Jordan region in Rn and x0 ∈ E . If f : E → R is integrable on E and
continuous at x0, prove that
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Section 12.2 Riemann Integration on Jordan Regions 475

lim
r→0+

1

Vol(Br (x0))

∫
Br (x0)

f dV = f (x0).

12.2.4. a) Suppose that E is a Jordan region in Rn and that fk : E → R are
integrable on E for k ∈ N. If fk → f uniformly on E as k → ∞,
prove that f is integrable on E and

lim
k→∞

∫
E

fk(x) dx =
∫

E
f (x) dx.

b) Prove that

lim
k→∞

∫∫
E

cos(x/k)ey/k d A

exists, and find its value for any Jordan region E in R2.
12.2.5. If E0 ⊂ E are Jordan regions in Rn and f : E → R is integrable on E ,

prove that f is integrable on E0.
12.2.6. Let H be a closed, connected, nonempty Jordan region and suppose

that f : H → R is continuous. If g : H → R is integrable and nonneg-
ative on H , prove that there is an x0 ∈ H such that

f (x0)

∫
H

g(x) dx =
∫

H
f (x)g(x) dx.

12.2.7. Suppose that Q := {(x, y) ∈ R : x > 0 and y > 0} and that f is a
continuous function on R2 whose first-order partial derivative satisfies
| fx | ≤ 1. If

F(x, y) := 1

x3

∫∫
Bx (0,0)

( f (u, y)− f (v, y)) d(u, v)

for (x, y) ∈ Q, prove that F is bounded on Q.
[Hint: You may use polar coordinates to change variables in F .]

12.2.8. Suppose that E is a Jordan region in Rn and that f, g : E → R is
integrable on E .
a) Modifying the proof of Corollary 5.23, prove that fg is integrable

on E .
b) Prove that f ∨ g and f ∧ g are integrable on E (see Exercise 3.1.8).

12.2.9. Suppose that V is open in Rn and that f : V → R is continuous. Prove
that if ∫

E
f dV = 0

for all nonempty Jordan regions E ⊂ V , then f = 0 on V .
12.2.10. Suppose that E is a Jordan region and that f : E → R is integrable.
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476 Chapter 12 Integration on Rn

a) If f (E) ⊆ H , for some compact set H , and φ : H → R is continu-
ous, prove that φ ◦ f is integrable on E .

∗b) Show that part a) is false if φ has even one point of discontinuity.
12.2.11. Prove the following special case of Theorem 12.29i. Suppose that E

and E0 are a Jordan regions in Rn , and that f : E → R is bounded. If
f is continuous on E \ E0, then f is integrable on E .

12.3 ITERATED INTEGRALS

If f (x1, . . . , xk, . . . , x j , . . . , xn) is defined for xk ∈ [c, d] and x j ∈ [a, b], j �= k,
then we shall call

∫ d

c

∫ b

a
f (x1, . . . , xn) dx j dxk :=

∫ d

c

(∫ b

a
f (x1, . . . , xn) dx j

)
dxk

an iterated integral, when the integrals on the right side exist. In a similar way,
we define higher-order iterated integrals.

In the preceding section we defined the Riemann integral of a multivariable
function but developed no practical way to evaluate it. In this section we show
that, for a large collection of Jordan regions E , integrals over E can be evaluated
using iterated integrals.

For simplicity, we begin with the two-dimensional case. Recall that if φ :
[a, b] → R is bounded, then the upper Riemann integral, (U )

∫ b
a φ(x) dx , and

the lower Riemann integral, (L)
∫ b

a φ(x) dx , both exist and are finite.

12.30 Lemma.
Let R = [a, b] × [c, d] be a two-dimensional rectangle and suppose that f :
R → R is bounded. If f (x, ·) is integrable on [c, d] for each x ∈ [a, b], then

(L)
∫∫

R
f d A ≤ (L)

∫ b

a

(∫ d

c
f (x, y)dy

)
dx

≤ (U )
∫ b

a

(∫ d

c
f (x, y)dy

)
dx ≤ (U )

∫∫
R

f d A.

(22)

Proof. Let Ri j = [xi−1, xi ] × [y j−1, y j ], where {x0, . . . , xk} is a partition
of [a, b] and {y0, . . . , y
} is a partition of [c, d]. Then G = {Ri j : i =
1, 2, . . . , k, j = 1, 2 . . . , 
} is a grid on R.

Let ε > 0, choose G so that

U ( f,G)− ε < (U )
∫∫

R
f d A, (23)

and set

Mi j = sup
(x,y)∈Ri j

f (x, y). (24)
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Since (U )
∫ b

a φ(x) dx = ∑k
i=1(U )

∫ xi
xi−1

φ(x) dx and

(U )
∫ b

a
(φ(x)+ ψ(x)) dx ≤ (U )

∫ b

a
φ(x) dx + (U )

∫ b

a
ψ(x) dx

for any bounded functions φ and ψ defined on [a, b] (see Exercise 5.1.7), we
can write

(U )
∫ b

a

(∫ d

c
f (x, y)dy

)
dx =

k∑
i=1

(U )
∫ xi

xi−1

⎛
⎝ 
∑

j=1

∫ y j

y j−1

f (x, y)dy

⎞
⎠ dx

≤
k∑

i=1


∑
j=1

(U )
∫ xi

xi−1

(∫ y j

y j−1

f (x, y)dy

)
dx

≤
k∑

i=1


∑
j=1

Mi j (xi − xi−1)(y j − y j−1) = U ( f,G).

It follows from (23) that

(U )
∫ b

a

(∫ d

c
f (x, y)dy

)
dx < (U )

∫∫
R

f d A + ε.

Taking the limit of this inequality as ε → 0, we obtain

(U )
∫ b

a

(∫ d

c
f (x, y) dy

)
dx ≤ (U )

∫∫
R

f d A.

Similarly,

(L)
∫ b

a

(∫ d

c
f (x, y) dy

)
dx ≥ (L)

∫∫
R

f d A. �

We are now prepared to show that, under reasonable conditions, a double
integral over a rectangle reduces to an iterated integral.

12.31 Theorem. [FUBINI’S THEOREM].
Let R = [a, b] × [c, d] be a two-dimensional rectangle and let f : R → R.
Suppose that f (x, ·) is integrable on [c, d] for each x ∈ [a, b], that f (·, y) is in-
tegrable on [a, b] for each y ∈ [c, d], and that f is integrable on R (as a function
of two variables). Then

∫∫
R

f d A =
∫ b

a

∫ d

c
f (x, y) dy dx =

∫ d

c

∫ b

a
f (x, y) dx dy. (25)

NOTE: These hypotheses hold if f is continuous on the rectangle [a, b] × [c, d].
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478 Chapter 12 Integration on Rn

Proof. For each x ∈ [a, b], set g(x) = ∫ d
c f (x, y) dy. Since f is integrable on

R, Lemma 12.30 implies that

∫∫
R

f d A = (U )
∫ b

a
g(x) dx = (L)

∫ b

a
g(x) dx .

Hence, g is integrable on [a, b] and the first identity in (25) holds. Reversing
the roles of x and y, we obtain

∫∫
R

f d A =
∫ d

c

∫ b

a
f (x, y) dx dy.

Hence, the second identity in (25) holds. �

The second identity in Fubini’s Theorem is as important as the first. It tells
us that, under certain conditions, the order of integration in an iterated integral
can be reversed. Frequently, one of these iterated integrals is easier to evaluate
than the other.

12.32 EXAMPLE.

Find ∫ 1

0

∫ 1

0
y3exy2

dy dx .

Solution. This iterated integral looks tough to integrate. However, if we change
the order of integration, using Fubini’s Theorem, and substitute u = y2, we
obtain ∫ 1

0

∫ 1

0
y3exy2

dx dy =
∫ 1

0
y(ey2 − 1) dy = e − 2

2
. �

The following three remarks show that the hypotheses of Fubini’s Theorem
cannot be relaxed. First, we show that existence of both iterated integrals is
not enough to apply Fubini. You must also verify that f is integrable in the
two-dimensional sense.

12.33 Remark. There exists a function f : R2 → R such that f (x, ·) and f (·, y)
are both integrable on [0, 1], but the iterated integrals are not equal.

Proof. Set

f (x, y) =

⎧⎪⎨
⎪⎩

22n (x, y) ∈ [2−n, 2−n+1)× [2−n, 2−n+1), n ∈ N,
−22n+1 (x, y) ∈ [2−n−1, 2−n)× [2−n, 2−n+1), n ∈ N,
0 otherwise.
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Notice that for each fixed y0 ∈ [0, 1), f (x, y0) takes on only two nonzero
values and is integrable on [0, 1) in x . For example, if y0 ∈ [2−n, 2−n+1),
then f (x, y0) = 22n for x ∈ [2−n, 2−n+1), and f (x, y0) = −22n+1 for x ∈
[2−n−1, 2−n); hence, f (x, y0) is bounded on [0, 1), and

∫ 1

0
f (x, y0) dx =

∫ 2−n+1

2−n
22n dx −

∫ 2−n

2−n−1
22n+1 dx = 2n − 2n = 0. (26)

The same is true for f (x0, y) when x0 ∈ [0, 1/2), but when x0 ∈
[1/2, 1), f (x0, y) takes on only one nonzero value—namely, f (x0, y) = 4
when y ∈ [1/2, 1), and equals zero otherwise. It follows that

∫ 1

0

∫ 1

0
f (x, y) dy dx =

∫ 1

1/2

∫ 1

1/2
4 dy dx = 1.

On the other hand, by (26) we have

∫ 1

0

∫ 1

0
f (x, y) dx dy = 0.

Thus the iterated integrals of f are not equal. �

The function in Remark 12.33 is not bounded. The following example shows
that even when f is bounded, existence of the iterated integrals is not enough
to conclude that f is integrable in the two-dimensional sense.

12.34 Remark. There exists a bounded function f : R2 → R such that f (x, ·)
and f (·, y) are both integrable on [0, 1], but f is not integrable on [0, 1] × [0, 1].

Proof. Set

f (x, y) =
{

1 (x, y) =
( p

2n
,

q

2n

)
, 0 < p, q < 2n, n ∈ N,

0 otherwise.

Notice that if x0 = p/2n , then f (x0, y) = 1 only when y = q/2n for some
q = 1, 2, . . . , 2n − 1. Hence, for each fixed x0 ∈ [0, 1], f (x0, y) = 0 except for
finitely many y’s. It follows from Exercise 5.1.6 that

∫ 1

0
f (x, y) dy = 0

for all x ∈ [0, 1]. A similar statement holds for the dx integral. Consequently,

∫ 1

0

∫ 1

0
f (x, y) dy dx =

∫ 1

0

∫ 1

0
f (x, y) dx dy = 0.
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480 Chapter 12 Integration on Rn

To see that the double integral of f does not exist, let R j := [a, b] × [c, d]
be a nondegenerate rectangle in [0, 1] × [0, 1]. It is easy to verify that [a, b]
and [c, d] both contain irrational points and points of the form p/2n (just use
density of irrationals, and repeat the proof of Theorem 1.18 with 2n in place
of n). Thus if G = {R j } is a grid on [0, 1] × [0, 1], then M j ( f ) = 1 and
m j ( f ) = 0 for all j , and U ( f,G) − L( f,G) = 1 − 0 = 1. Hence, f is not
integrable on [0, 1] × [0, 1]. �

Thus we cannot assume that a function of several variables is integrable just
because its iterated integrals exist and are equal. (See also Exercises 12.3.5
and 12.3.9.)

The next result is starred because it uses Lebesgue’s characterization of
Riemann integrability (see Theorems 9.49 and 12.29i).

∗12.35 Remark. There exists a function f : R2 → R such that f is integrable on
[0, 1] × [0, 1], f (·, y) is integrable on [0, 1] for all y ∈ [0, 1], but f (x, ·) is not
integrable on [0, 1] for infinitely many x ∈ [0, 1].

Proof. Let

f (x, y) =
{

0 when x = 0 or when x or y is irrational
1/q when x, y ∈ Q and x = p/q is in reduced form.

By the argument of Example 3.33, the function f is continuous and zero on
the set ([0, 1] \ Q) × [0, 1]. Hence, by Lebesgue’s Theorem, f is integrable
on the square R = [0, 1] × [0, 1]. By computing its lower sums, we find that∫∫

R f d A = 0.
Similarly, for each y ∈ [0, 1], f (·, y) is integrable on [0, 1] with∫ 1

0 f (x, y) dx = 0. Thus

∫ 1

0

(∫ 1

0
f (x, y) dx

)
dy =

∫∫
R

f d A = 0.

On the other hand, since for each nonzero x ∈ Q the function f (x, ·) is
nowhere continuous, it cannot be integrable on [0, 1]. Therefore, the other
iterated integral in Fubini’s Theorem does not exist. �

Fubini’s Theorem shows us how to evaluate a double integral over a rectangle
by means of iterated integrals. The following result shows that the integral of
a continuous function over a rectangle in Rn can be evaluated using n partial
integrals.

12.36 Lemma.
Let R = [a1, b1]×· · ·×[an, bn] be an n-dimensional rectangle and let f : R → R
be integrable on R. If, for each x := (x1, . . . , xn−1) ∈ Rn := [a1, b1] × · · · ×
[an−1, bn−1], the function f (x, ·) is integrable on [an, bn], then
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Section 12.3 Iterated Integrals 481∫ bn

an

f (x, t) dt

is integrable on Rn , and

∫
R

f (x, t) d(x, t) =
∫

Rn

∫ bn

an

f (x, t) dt dx. (27)

Proof. By repeating the argument of Lemma 12.30, we have

(L)
∫

R
f (x, t) d(x, t) ≤ (L)

∫
Rn

∫ bn

an

f (x, t) dt dx

≤ (U )
∫

Rn

∫ bn

an

f (x, t) dt dx

≤ (U )
∫

R
f (x, t) d(x, t)

for any bounded f . Since f is integrable on R, it follows that (27) holds. �

Using this result in conjunction with Remark 12.19, we can evaluate integrals
over a large collection of nonrectangular Jordan regions. To this end, we shall
call a nonempty set E ⊂ Rn a projectable region if and only if there is a closed
Jordan region H ⊂ Rn−1, an index j ∈ {1, . . . , n}, and continuous functions
φ,ψ : H → R such that

E = {(x1, . . . , xn) ∈ Rn : (x1, . . . , x̂ j , . . . , xn) ∈ H

and φ(x1, . . . , x̂ j , . . . , xn) ≤ x j ≤ ψ(x1, . . . , x̂ j , . . . , xn)}.

[The notation x̂ j means the variable x j is missing; hence, (x1, . . . , x̂ j , . . . , xn) is
a point in Rn−1.] In this case, we say that E is generated by j, H, φ, and ψ .

We are more specific for regions in R2 and R3. A set E ⊂ R2 is called a region
of type I if and only if E = {(x, y) : x ∈ [a, b], φ(x) ≤ y ≤ ψ(x)} and a region
of type II if and only if E = {(x, y) : y ∈ [a, b], φ(y) ≤ x ≤ ψ(y)}, where φ,ψ :
[a, b] → R are continuous functions. Similarly, a set E ⊂ R3 is called a region of
type I if and only if E = {(x, y, z) : (x, y) ∈ H, φ(x, y) ≤ z ≤ ψ(x, y)}, a region
of type II if and only if E = {(x, y, z) : (x, z) ∈ H, φ(x, z) ≤ y ≤ ψ(x, z)}, and a
region of type III if and only if E = {(x, y, z) : (y, z) ∈ H, φ(y, z) ≤ x ≤ ψ(y, z)},
where φ,ψ : H → R are continuous functions and H is a closed Jordan region
in R2.

12.37 EXAMPLE.

Prove that the set E in R2 bounded by y = x and y = x2 is a region of types I
and II.
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482 Chapter 12 Integration on Rn

Proof. The set E can be described by

{(x, y) : x2 ≤ y ≤ x, x ∈ [0, 1]} or {(x, y) : y ≤ x ≤ √
y, y ∈ [0, 1]}

(see Figure 12.6). �

x

y
y = x2 y = x

E

FIGURE 12.6

12.38 EXAMPLE.

Prove that the set E of points (x, y, z) which satisfy 4x2 + y2 + z2 ≤ 1 is a region
of types I, II, and III.

Proof. The set E , an ellipsoid, can be described by

E = {(x, y, z) : −
√

1 − 4x2 − y2 ≤ z ≤
√

1 − 4x2 − y2, (x, y) ∈ H},

where H = {(x, y) : 4x2 + y2 ≤ 1}. A similar argument shows that E is of
types II and III. �

Before we show how to evaluate multiple integrals over projectable regions,
we introduce additional terminology. For each k = 1, . . . , n the set

�k = {x ∈ Rn : xk = 0}
will be called a coordinate hyperplane. Given a set E ⊆ Rn , the pro-
jection of E onto the coordinate hyperplane �k is the set Ek of points
(x1, . . . , xk−1, 0, xk+1, . . . , xn) such that (x1, . . . , xk, . . . , xn) ∈ E for some xk ∈ R.
For example, in R3 the coordinate hyperplane �1 corresponds to the yz-plane,
and the projection of the three-dimensional ball Br (x0, y0, z0) onto �1 is essen-
tially the two-dimensional ball Br (y0, z0) (see Figure 12.7).

The following result shows that multiple integrals over most projectable
regions can be evaluated using iterated integrals.
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z

y

x

(x0, y0, z0)

(0, y0, z0)

FIGURE 12.7

12.39 Theorem. Let E be a projectable region in Rn generated by j, H, φ, and ψ .
Then E is a Jordan region in Rn . Moreover, if f : E → R is continuous on E, then

∫
E

f (x) dx =
∫

H

(∫ ψ(x1,..., x̂ j ,... xn)

φ(x1,... x̂ j ,... xn)

f (x1, . . . , xn) dx j

)
d(x1, . . . , x̂ j , . . . , xn).

(28)

Proof. By symmetry, we may suppose that j = n. Thus

E = {(x, t) : x = (x1, . . . , xn−1) ∈ H and φ(x) ≤ t ≤ ψ(x)}.

To show that E is a Jordan region, we must show that the volume of ∂E is zero.
Now ∂E is made up of “lower-dimensional pieces,” a bottom B ={(x, t) : x∈ H
and t = φ(x)}, a top T = {(x, t) : x ∈ H and t = ψ(x)}, and a side S = {(x, t) :
x ∈ ∂H and φ(x) ≤ t ≤ ψ(x)}. (Figure 12.8 illustrates the situation for the
case n = 3.) Hence, we must show that B, T, and S are of volume zero.

To estimate the volume of B, notice that since H is compact, φ is uniformly
continuous on H . Thus, given ε > 0, there is a δ > 0 such that

x, y ∈ H and ‖x − y‖ < δ imply |φ(x)− φ(y)| < ε. (29)

Since H is bounded, H is contained in some (n − 1)-dimensional cube Q.
Divide Q into subcubes Q1, . . . , Q p such that x, y ∈ Qk implies ‖x − y‖ < δ,
and let Rk = Qk × [φ(ak)− 2ε, φ(ak)+ 2ε] for some ak ∈ Qk, k = 1, 2, . . . , p.
Then G := {R1, . . . , Rp} is grid in Rn , and, by (29),

V (B;G) ≤
p∑

k=1

|Rk | = 4ε
p∑

k=1

|Qk | = 4ε|Q|.

483



484 Chapter 12 Integration on Rn

x

y

z z =   (x, y)

z =   (x, y)

H

FIGURE 12.8

It follows from Theorem 12.4 that B is of volume zero. A similar argument
shows that T is of volume zero.

To estimate the volume of S, set

M = sup
x∈H

ψ(x) and m = inf
x∈H

φ(x).

Since H is a Jordan region, choose a grid {Q1, . . . , Q p} in Rn−1 such that

∑
Qk∩∂H �=∅

|Qk | < ε.

Set Rk = Qk × [m,M] and observe that G := {R1, . . . , Rp} is a grid in Rn , and

V (S;G) ≤
p∑

k=1

|Rk | < (M − m)ε.

Hence it follows from Theorem 12.4 that S is of volume zero. We conclude
that ∂E is of volume zero (i.e., E is a Jordan region).

To prove (28), let R = [a1, b1]× · · ·×[an, bn] be an n-dimensional rectangle
which contains E , and define g on R by g(x, t) = f (x, t) when (x, t) ∈ E , and
g(x, t) = 0 otherwise. By Remark 12.19 and Lemma 12.36,

∫
E

f (x, t) d(x, t) =
∫ b1

a1

· · ·
∫ bn

an

g(x1, . . . , xn) dxn . . . dx1

=
∫

H

(∫ bn

an

g(x, t) dt

)
dx.
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Section 12.3 Iterated Integrals 485

But for each x = (x1, . . . , xn−1) ∈ H , we have

g(x, t) =
{

f (x, t) φ(x) ≤ t ≤ ψ(x)
0 otherwise.

Therefore, ∫ bn

an

g(x, t) dt =
∫ ψ(x)

φ(x)
f (x, t) dt. �

Although we have stated Theorem 12.39 for continuous f , the result is evi-
dently true whenever Lemma 12.36 applies; for example, if f is integrable on E
and f (x, ·) is integrable on [an, bn] for each fixed x ∈ H .

If the set H is itself projectable, then Theorem 12.39 can be applied again
to H . Thus if E is nice enough, an integral over E can be evaluated using n
partial integrals. We close this section with several examples which illustrate
this principle for the cases n = 2 and n = 3.

12.40 EXAMPLE.

Find the integral of f (x, y, z) = x over the region E bounded by z = 1 − x − y,
x = 0, y = 0, and z = 0.

Solution. The surfaces z = 0 and z = 1 − x − y intersect when y = 1 − x . The
projection E3 is bounded by the curves x = 0, y = 0, and y = 1 − x . These last
two curves intersect when x = 1. Thus E is a region of type I: E = {(x, y, z) :
0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y} (see Figure 12.9). It follows that

∫∫∫
E

f dV =
∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
x dz dy dx

=
∫ 1

0

∫ 1−x

0
(x − x2 − xy) dy dx

= 1

2

∫ 1

0
(x − 2x2 + x3) dx = 1

24
. �

12.41 EXAMPLE.

Find the integral of f (x, y, z) = x2 over the region E bounded by |x | = 1, z =
x2 − y2, where z ≥ 0.

Solution. The surfaces z = 0 and z = x2 − y2 intersect when x2 − y2 = 0 (i.e.,
y = ±x). The curves y = ±x and |x | = 1 intersect when x = ±1. Thus the
region E is of type I:

E = {(x, y, z) : −1 ≤ x ≤ 1,−|x | ≤ y ≤ |x |, 0 ≤ z ≤ x2 − y2}
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y = 0

z = 0

x = 0

z = 1 – x – y

1 

x y

z

1

1

FIGURE 12.9

(see Figure 12.10). It follows that

∫∫∫
E

f dV =
∫ 1

−1

∫ |x |

−|x |

∫ x2−y2

0
x2 dz dy dx

=
∫ 1

−1

∫ |x |

−|x |
(x2 − y2)x2 dy dx

= 4
∫ 1

0

∫ x

0
(x2 − y2)x2dy dx = 8

3

∫ 1

0
x5 dx = 4

9
. �

Although Theorem 12.39 can be used in conjunction with Theorem 12.23 to
handle the case when E is a finite union of projectable subregions, we can some-
times avoid breaking E into subregions by changing our point of view. Here is a
typical example.

z

y

x

1

–1

FIGURE 12.10
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z = x

z = 1

x = 0

z = y2

x

y

z

FIGURE 12.11

12.42 EXAMPLE.

Find the integral of f (x, y, z) = x − z over the region bounded by z = y2, z = 1,
z = x , and x = 0.

Solution. The region E is a union of two regions of type I (see Figure 12.11,
where the “back” of E is that portion of the plane x = 0 which is bounded by the
parabola z = y2, x = 0 here represented by a dashed line). Therefore, we must
use two integrals if we integrate dz first: the integral where z varies between y2

and 1, and the integral where z varies from x to 1. It looks complicated to set
up. The solution is simpler if we integrate dx first. Indeed, E is a single region
of type III since

E = {(x, y, z) : −1 ≤ y ≤ 1, y2 ≤ z ≤ 1, 0 ≤ x ≤ z}.
Thus,

∫∫∫
E

f dV =
∫ 1

−1

∫ 1

y2

∫ z

0
(x − z) dx dz dy

= −1

2

∫ 1

−1

∫ 1

y2
z2 dz dy = 1

6

∫ 1

−1
(y6 − 1) dy = −2

7
. �

EXERCISES

12.3.1. Evaluate each of the following iterated integrals.

a)
∫ 1

0

∫ 1
0 (x + y) dx dy
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488 Chapter 12 Integration on Rn

b)
∫ 3

0

∫ 1
0

√
xy + x dx dy

c)
∫ π

0

∫ π
0 y cos(xy) dy dx

12.3.2. Evaluate each of the following iterated integrals. Write each as an
integral over a region E , and sketch E in each case.

a)
∫ 1

0

∫ x2+1
x (x + 1) dy dx

b)
∫ 1

0

∫ 1
y sin(x2) dx dy

c)
∫ 1

0

∫ 1√
y

∫ x2+y2

0 dz dx dy

d)
∫ 1

0

∫ 1√
y

∫ 1
x3

√
x3 + z dz dx dy

12.3.3. For each of the following, evaluate
∫

E f dV .

a) f (x, y) = (1+x2)−1 and E is bounded by x = 1, y = 0, and y = x3.
b) f (x, y) = x + y and E is the triangle with vertices (0, 0), (0, 1), and

(2, 0).
c) f (x, y) = x2exy and E is the triangle with vertices (0, 0), (1, 0),

and (1, 1).
d) f (x, y, z) = x and E is the set of points (x, y, z) such that 0 ≤ z ≤

1 − x2, 0 ≤ y ≤ x2 + z2, and x ≥ 0.

12.3.4. Compute the volume of each of the following regions.

a) E is bounded by the surfaces x + y + z = 3, z = 0, and x2 + y2 = 1.
b) E lies under the plane z = x + y and over the region in the xy-plane

bounded by the curves x = √
y/2, x = 2

√
y, x + y = 3.

c) E is bounded by z = y2, x = y2 + z2, x = 0, z = 1.
d) E is bounded by y = x3, x = z2, z = x2, and y = 0.

12.3.5. a) Verify that the hypotheses of Fubini’s Theorem hold when f is con-
tinuous on R.

b) Modify the proof of Remark 12.33 to show that Fubini’s Theorem
might not hold for a nonintegrable f , even if f (x, y) is continuous
in each variable separately; that is, if f (x, ·) is continuous for each
x ∈ [a, b] and f (·, y) is continuous for each y ∈ [c, d].

12.3.6. a) Suppose that fk is integrable on [ak, bk] for k = 1, . . . , n, and set
R = [a1, b1] × · · · × [an, bn]. Prove that∫

R
f1(x1) . . . fn(xn) d(x1, . . . , xn)

=
(∫ b1

a1

f1(x1) dx1

)
. . .

(∫ bn

an

fn(xn) dxn

)
.

b) If Q = [0, 1]n and y := (1, 1, . . . , 1), prove that∫
Q

e−x·y dx =
(

e − 1

e

)n

.
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12.3.7. The greatest integer in a real number x is the integer [x] := n which
satisfies n ≤ x < n + 1. An interval [a, b] is called Z-asymmetric if
b + a �= [b] + [a] + 1.

a) Suppose that R is a two-dimensional Z-asymmetric rectangle (i.e.,
that both of its sides are Z-asymmetric). If ψ(x, y) := (x − [x] −
1/2)(y − [y] − 1/2), prove that

∫∫
R ψd A = 0 if and only if at least

one side of R has integer length.
b) Suppose that R is tiled by rectangles R1 . . . , RN (i.e., that the R j ’s

are Z-asymmetric, nonoverlapping, and that R = ∪N
j=1 R j ). Prove

that if each R j has at least one side of integer length and R is
Z- asymmetric, then R has at least one side of integer length.

12.3.8. Let E be a nonempty Jordan region in R2 and f : E → [0,∞) be
integrable on E . Prove that the volume of � = {(x, y, z) : (x, y) ∈ E,
0 ≤ z ≤ f (x, y)} (as given by Definition 12.5) satisfies

Vol(�) =
∫∫

E
f d A.

12.3.9. Let R = [a, b] × [c, d] be a two-dimensional rectangle and f : R → R
be bounded.
a) Prove that

(L)
∫∫

R
f d A ≤ (L)

∫ b

a

(
(X)

∫ d

c
f (x, y) dy

)
dx

≤ (U )
∫ b

a

(
(X)

∫ d

c
f (x, y) dy

)
dx

≤ (U )
∫∫

R
f d A

for X = U or X = L .
b) Prove that if f is integrable on R, then

∫∫
R

f d A =
∫ b

a

(
(L)

∫ d

c
f (x, y) dy

)
dx

=
∫ b

a

(
(U )

∫ d

c
f (x, y) dy

)
dx .

c) Compute the two iterated integrals in part b) for

f (x, y) =
{

1 y ∈ Q
x y /∈ Q

and R = [0, 1] × [0, 1]. Prove that f is not integrable on R.
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490 Chapter 12 Integration on Rn

∗12.3.10. [Fubini’s Theorem for Improper Integrals]. If a < b are extended
real numbers, c < d are finite real numbers, f : (a, b) × [c, d] → R is
continuous, and

F(y) =
∫ b

a
f (x, y) dx

converges uniformly on [c, d], prove that∫ d

c
f (x, y) dy

is improperly integrable on (a, b) and∫ d

c

∫ b

a
f (x, y) dx dy =

∫ b

a

∫ d

c
f (x, y) dy dx .

12.4 CHANGE OF VARIABLES

Recall (Theorem 5.34) that if φ : [a, b] → R is continuously differentiable and
φ′ �= 0 on [a, b], then∫

φ([a,b])
f (t) dt =

∫
[a,b]

f (φ(x)) |φ′(x)| dx

for all f integrable on φ([a, b]). We shall generalize this result to functions of
several variables; namely, we shall identify conditions under which∫

φ(E)
f (u) du =

∫
E

f (φ(x))|�φ(x)| dx (30)

holds. (At this point you may wish to read the discussion following the proof
of Theorem 12.46 below to see that �φ takes on a familiar form when φ is the
change from polar to rectangular coordinates.)

It takes six or seven hypotheses to establish (30). These hypotheses fall into
two categories:

1) Hypotheses made so the change of variables is possible. Since the one-
dimensional result required φ to be continuously differentiable and φ′ �= 0
(which together imply that φ is 1–1), we expect the corresponding hypotheses
for (30) to be as follows: φ is 1–1, continuously differentiable, and �φ �= 0.

2) Hypotheses made so the integrals in (30) exist. There are four of these: E is a
Jordan region, φ(E) is a Jordan region, f is integrable on φ(E), and f ◦φ|�φ |
is integrable on E . In practice, only the first and third of the hypotheses in
category 2) need be verified. Indeed, if φ satisfies all hypotheses in cate-
gory 1) and E is Jordan, then φ(E) is Jordan by Theorem 12.10, and, when
f is integrable on φ(E), f ◦ φ|�φ | is integrable on E (see Theorem 12.29ii
and Exercise 12.2.8a). Moreover, the remaining hypotheses in category 2)
can usually be verified by inspection. The reason for this is twofold. E
is frequently projectable, hence a Jordan region, and most functions are
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Section 12.4 Change of Variables 491

continuous (or nearly so), hence integrable on E . Therefore, the crucial
hypotheses for (30) are those in category 1), namely, that φ be 1–1,
continuously differentiable, and �φ �= 0.

To give an outline of a proof of (30), we introduce the following terminology. A
function f is said to satisfy a certain property P “locally” on a set E if and only if
given a ∈ E there is an open set W containing a such that f satisfies P on W ∩ E .
f is said to satisfy the property P “globally” on E if and only if f satisfies P for
all points in E . To prove (30), we first obtain several preliminary results which
culminate in a “local” change-of-variables formula (see Lemma 12.45) and then
use this to obtain a “global” change-of-variables formula for functions φ which
are C1 on an open set which contains E (see Theorem 12.46). Throughout this
discussion, we assume that �φ is never zero. In Section 12.5, we work much
harder to show that the condition “�φ �= 0” can be relaxed on a set of volume
zero (see Theorem 12.65).

Since every Jordan region can be approximated by rectangles, and every
integrable function is almost continuous, hence locally nearly constant, we
should consider (30) first in the case when φ(E) is a rectangle and f is iden-
tically 1; that is, we should prove that

|R| =
∫

φ−1(R)
|�φ(x)| dx. (31)

Our first preliminary result shows that this case is a step in the right direction.

12.43 Lemma.
Let W be open in Rn , let φ : W → Rn be 1–1 and continuously differentiable
on W with �φ �= 0 on W, and suppose that φ−1 is continuously differentiable
on φ(W ) with �φ−1 �= 0 on φ(W ). Suppose further that (31) holds for every

n-dimensional rectangle R ⊂ φ(W ). If E is a Jordan region with E ⊂ W , if f is
integrable on φ(E), and if f ◦ φ is integrable on E, then∫

φ(E)
f (u) du =

∫
E
( f ◦ φ)(x)|�φ(x)| dx.

Proof. We may suppose that W is nonempty. Let E be a fixed Jordan region
which satisfies E ⊂ W and suppose that f is integrable on φ(E). Set f + =
(| f |+ f )/2 and f − = (| f |− f )/2. Then f + and f − are both nonnegative and
integrable on φ(E), and f = f + − f − (see Exercises 3.1.7 and 5.2.2). Since
the integral of a difference is the difference of the integrals, it suffices to prove
the lemma for the case when f ≥ 0.

Let ε > 0. Since f is integrable on φ(E), choose a grid G = {R1, . . . , Rp}
such that ∫

φ(E)
f (u) du > U ( f,G)− ε :=

∑
R j ∩φ(E)�=∅

M j |R j | − ε, (32)

where M j := sup f (R j ) = f (φ(φ−1(R j ))). Moreover, since φ(E) = φ(E) ⊂
φ(W ), we may suppose, by refining G if necessary, that R j ∩ φ(E) �= ∅ implies
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492 Chapter 12 Integration on Rn

R j ⊂ φ(W ). Hence, by Lemma 12.9, {φ−1(R j )}R j ∩φ(E)�=∅ is a nonoverlapping
collection of Jordan regions whose union satisfies

�1 :=
⋃

R j ∩φ(E)�=∅
φ−1(R j ) ⊇ φ−1(φ(E)) = E .

Hence, (32), (31), and Theorems 12.25 and 12.23 imply that∫
φ(E)

f (u) du ≥
∑

R j ∩φ(E)�=∅
M j |R j | − ε

=
∑

R j ∩φ(E)�=∅
M j

∫
φ−1(R j )

|�φ(x)| dx − ε

≥
∑

R j ∩φ(E)�=∅

∫
φ−1(R j )

f (φ(x))|�φ(x)| dx − ε

=
∫
�1

f (φ(x))|�φ(x)| dx − ε

≥
∫

E
f (φ(x))|�φ(x)| dx − ε.

(For this last step, we used the fact that f ≥ 0.) Since ε > 0 was arbitrary, we
obtain ∫

φ(E)
f (u) du ≥

∫
E

f (φ(x))|�φ(x)| dx.

On the other hand, by Theorem 12.20 there is a grid H = {Q1, . . . , Q p}
such that ∫

φ(E)
f (u) du ≤

∑
Q j ⊂(φ(E))o

m j |Q j | + ε,

where m j := inf f (Q j ) = f (φ(φ−1(Q j ))). Repeating the steps above with

�2 :=
⋃

Q j ⊂(φ(E))o
φ−1(Q j ) ⊆ φ−1(φ(E)) = E

in place of �1, we see that∫
φ(E)

f (u) du ≤
∑

Q j ⊂(φ(E))o
m j |Q j | + ε

≤
∫
�2

f (φ(x))|�φ(x)| dx + ε

≤
∫

E
f (φ(x))|�φ(x)| dx + ε.
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We conclude that ∫
φ(E)

f (u) du =
∫

E
f (φ(x))|�φ(x)| dx. �

Next, we show that (31) holds locally near points a when �φ(a) �= 0 and φ is
1–1 and C1.

12.44 Lemma.
Let V be open in Rn , and φ : V → Rn be 1–1 and continuously differentiable
on V. If �φ(a) �= 0 for some a ∈ V , then there exists an open rectangle W such
that a ∈ W ⊂ V, �φ is nonzero on W, φ−1 is C1 and its Jacobian is nonzero on
φ(W ), and such that if R is an n-dimensional rectangle contained in φ(W ), then
φ−1(R) is Jordan and (31) holds.

Proof. The proof is by induction on n. If n = 1 and φ′(a) �= 0, then φ′ is
nonzero on some open interval I containing a. Hence, by Theorem 5.34, (31)
holds for “rectangles” (i.e., intervals) in φ(I ).

Suppose that (31) holds on Rn−1, for some n > 1. Let φ : V → Rn be 1–1
and C1 on V with�φ(a) �= 0. Expanding the determinant of A := Dφ(a) along
the first row, it is clear that at least one of its minors, say A1 j , has nonzero
determinant; that is, that ψ(x) := (φ2(x), . . . , φ j (x), x j , . . . , φn(x)) also has
nonzero Jacobian at x = a. Since φ and ψ are both C1 on V , it follows from
the Inverse Function Theorem that there is an open set W ⊂ V , containing a,
such that φ and ψ are 1–1 on W , �φ and �ψ are nonzero on W , and φ−1 is
1–1, C1 and �φ−1 �= 0 on φ(W ). By making W smaller, if necessary, we may
suppose that W is an open rectangle; that is, that there exist open intervals I j
such that W = I1 × · · · × In .

Assume for simplicity that j = 1; that is, that ψ(x) = (x1, φ2(x), . . . , φn(x)).
For each x = (x1, . . . , xn) ∈ ψ(W ) set σ (x) = (φ1(ψ

−1(x)), x2, . . . , xn). It is
clear that φ = σ ◦ ψ , hence by the Chain Rule, �φ(x) = �σ (ψ(x))�ψ (x). In
particular, by the choice of W ,

�ψ (x) �= 0 and �σ (ψ(x)) �= 0 for all x ∈ W . (33)

To show that the inductive hypothesis can be used on ψ , fix t ∈ I1. Set
W0 = I2 × · · · × In and φt (y) = (φ2(t, y), . . . , φn(t, y)) for each y ∈ W0. Then
φt : W0 → Rn−1 is 1–1 and C1 on W0, and, by (33), �φt (y) = �ψ (t, y) �= 0
for all y ∈ W0. It follows from the inductive hypothesis that if Q0 is an
(n − 1)-dimensional rectangle which satisfies Q0 ⊂ φt (W0), then (φt )−1(Q0) is
Jordan and

|Q0| =
∫
(φt )−1(Q0)

|�φt (y)| dy. (34)

(W0, hence, W , may have gotten smaller again.)
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494 Chapter 12 Integration on Rn

Let Q = I0 × Q0 be any n-dimensional rectangle in ψ(W ) and integrate
(34) with respect to t over I0 to verify

|Q| = |I0| · |Q0| =
∫

I0

∫
(φt )−1(Q0)

|�φt (y)| dy dt.

But the first component of ψ satisfies ψ1(t, y) = t for all y ∈ W , so �φt = �ψ

and ψ−1(Q) is the union of the “t-sections” (φt )−1(Q0) as t ranges over I0.
Hence, we can continue the identity above as follows:

|Q| =
∫

I0

∫
(φt )−1(Q0)

|�φt (y)| dy =
∫

ψ−1(Q)
|�ψ (u)| du.

In particular, it follows from Lemma 10.43 that∫
ψ(E)

g(u) du =
∫

E
g(ψ(x))|�ψ (x)| dx (35)

for all Jordan regions E which satisfy E ⊂ W , provided g is integrable on
ψ(W ) and g ◦ ψ is integrable on E .

Similarly, we can use the inductive hypothesis to prove that (31) holds for σ

in place of φ for all n-dimensional rectangles R contained in φ(W ). Hence, for
each such rectangle R, we have by (35)—with E = ψ−1(σ−1(R)) ≡ φ−1(R)
and g = |�σ |—and the Chain Rule that

|R| =
∫

σ−1(R)
|�σ (u)| du

=
∫

ψ−1(σ−1(R))
|�σ (ψ(x))| |�ψ (x)| dx

=
∫

φ−1(R)
|�φ(x)| dx. �

By combining Lemmas 12.43 and 12.44, we obtain the following local version
of the change-of-variables formula we want.

12.45 Lemma.
Suppose that V is open in Rn , that a ∈ V , and that φ : V → Rn is continuously
differentiable on V. If �φ(a) �= 0, then there exists an open rectangle W ⊂ V
containing a such that if E is Jordan with E ⊂ W , if f ◦ φ is integrable on E,
and if f is integrable on φ(E), then∫

φ(E)
f (u) du =

∫
E

f (φ(x))|�φ(x)| dx.

This local change-of-variables formula contains the following global result.
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12.46 Theorem. Suppose that V is open in Rn and that φ : V → Rn is 1–1 and
continuously differentiable on V. If �φ �= 0 on V, if E is a Jordan region with
E ⊂ V , if f ◦ φ is integrable on E, and if f is integrable on φ(E), then∫

φ(E)
f (u) du =

∫
E

f (φ(x))|�φ(x)| dx. (38)

Proof. Let f : φ(E) → R be integrable, and set H := E . By Lemma 12.45,
given a ∈ H there is an open rectangle Wa such that a ∈ Wa ⊂ V and∫

φ(Ei )

f (u) du =
∫

Ei

f (φ(x))|�φ(x)| dx (39)

for every Jordan region Ei which satisfies Ei ⊂ Wa. Let Qa be an open rect-
angle which satisfies a ∈ Qa ⊂ Qa ⊂ Wa. Then for each a ∈ H there is an
r(a) > 0 such that Br(a)(a) ⊂ Qa. Since the Jordan region E is bounded, H is
compact by the Heine–Borel Theorem. Thus there exist finitely many a j such
that H is covered by Br(a j )(a j ), j = 1, 2, . . . , N . Hence the open rectangles
Q j := Qa j satisfy

H ⊂
N⋃

j=1

Q j .

Let R be a huge rectangle which contains H and G = {R1, . . . , Rp} be a grid on
R so fine that each rectangle in G which intersects H is a subset of some Q j .
(This is possible since there are only finitely many Q j ’s; just use the endpoints
of the Q j ’s to generate G.) Let Ei = Ri ∩E . Then Ei ⊆ Ri ∩H ⊆ Q j ⊂ Wa j for
some j ∈ {1, . . . , N }; that is, (39) holds. Moreover, the collection {E1, . . . , E p}
is a nonoverlapping family of nonempty Jordan regions whose union is E ;
hence, by Theorem 1.37 and Lemma 12.9, the collection {φ(Ei ) : i = 1, . . . , p}
is a nonoverlapping family of nonempty Jordan regions whose union is φ(E).
It follows from Theorem 12.23 and (39) that

∫
φ(E)

f (u) du =
p∑

i=1

∫
φ(Ei )

f (u) du

=
p∑

i=1

∫
Ei

f (φ(x))|�φ(x)| dx =
∫

E
f (φ(x))|�φ(x)| dx. �

Again, we note that in Theorem 12.46 the hypothesis that f ◦ φ be integrable
is superfluous—see Theorem 12.29ii.

To see how all this works out in practice, we begin with a familiar change of
variables in R2. Recall that polar coordinates in R2 have the form

x = r cos θ, y = r sin θ,
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x

y

r

(r,  ) = (x, y)

FIGURE 12.12

where r = ‖(x, y)‖ and θ is the angle measured counterclockwise from the
positive x axis to the line segment L((0, 0); (x, y)) (see Figure 12.12). Set
φ(r, θ) = (r cos θ, r sin θ) and observe that

�φ = det

[
cos θ −r sin θ
sin θ r cos θ

]
= r(cos2 θ + sin2 θ) = r. (40)

Thus we abbreviate the change-of-variables formula from polar coordinates to
rectangular coordinates by dx dy = r dr dθ .

Although φ is not 1–1 [e.g., φ(0, θ) = (0, 0) for all θ ∈ R] and its Jacobian is
not nonzero, this does not prevent us from applying Theorem 12.46 (i.e., chang-
ing variables from polar coordinates to rectangular coordinates and vice versa).
Indeed, since φ is 1–1 on � := {(r, θ) : r > 0, 0 ≤ θ < 2π} and its Jacobian
is nonzero off the set Z := {(r, θ) : r = 0}, we can apply Theorem 12.46 to
E ∩ {(r, θ) : r > 0} and let r ↓ 0. Since the end result is the same as if we
applied Theorem 12.46 directly without this intermediate step, we shall do so
below without any further comments. This works in part because the set Z
where the hypotheses of category 1 fail (see the discussion following (30) above)
is a set of volume zero (see Theorem 12.66 below).

The next two examples show that polar coordinates can be used to evaluate
integrals which cannot be computed easily using rectangular coordinates.

12.47 EXAMPLE.

Find the volume of the region E bounded by z = x2 + y2, x2 + y2 = 4, and
z = 0.

Solution. Clearly, E lies under the function f (x, y) = x2 + y2 over the region
B = B2(0, 0) (see Figure 12.13). Using polar coordinates, we obtain

Vol(E) =
∫∫

B
(x2 + y2) d A =

∫ 2π

0

∫ 2

0
r3 dr dθ = 8π. �
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x
y

z

x2 + y2 = 4

B

22

z = 0

z = x2 + y2

FIGURE 12.13

12.48 EXAMPLE.

Evaluate ∫∫
E

x2 + y2

x
d A,

where E = {(x, y) : a2 ≤ x2 + y2 ≤ 1 and 0 ≤ y ≤ x} for some 0 < a < 1.

Solution. Changing to polar coordinates, we see that

∫∫
E

x2 + y2

x
d A =

∫ π/4

0

∫ 1

a

r3

r cos θ
dr dθ = 1 − a3

3

∫ π/4

0
sec θ dθ.

To integrate sec θ , multiply and divide by sec θ + tan θ . Using the change of
variables u = sec θ + tan θ , we obtain

∫ π/4

0
sec θ dθ =

∫ π/4

0

sec θ tan θ + sec2 θ

sec θ + tan θ
dθ

=
∫ 1+√

2

1

du

u
= log(1 + √

2).

Consequently, ∫∫
E

x2 + y2

x
d A = (1 − a3) log(1 + √

2)

3
. �

Recall that cylindrical coordinates in R3 have the form

x = r cos θ, y = r sin θ, z = z,
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where r = ‖(x, y, 0)‖ and θ is the angle measured counterclockwise from the
positive x axis to the line segment L((0, 0, 0); (x, y, 0)). It is easy to see that this
change of variables is 1–1 on � := {(r, θ, z) : r > 0, 0 ≤ θ < 2π, z ∈ R}, and
its Jacobian, r , is nonzero off Z := {(r, θ, z) : r = 0}. We shall abbreviate the
change-of-variables formula from cylindrical coordinates to rectangular coordi-
nates by dx dy dz = r dz dr dθ . (Note that Z is a set of volume zero. As with
polar coordinates, application of Theorem 12.46 can be justified by applying it
first for r > 0, and then taking the limit as r ↓ 0.)

12.49 EXAMPLE.

Find the volume of the region E which lies inside the paraboloid x2 + y2 + z = 4,
outside the cylinder x2 − 2x + y2 = 0, and above the plane z = 0.

Solution. The paraboloid z = 4 − x2 − y2 has vertex (0, 0, 4) and opens down-
ward about the z-axis. The cylinder x2 −2x + y2 = (x −1)2 + y2 −1 = 0 has base
centered at (1, 0) with radius 1. Hence, the projection E3 lies inside the circle
x2 + y2 = 4 and outside the circle x2 + y2 = 2x (see Figure 12.14). This last circle
can be described in polar coordinates by r2 = 2r cos θ , that is, r = 2 cos θ . Thus

Vol(E) =
∫∫∫

E
1 dV =

∫∫
E3

∫ 4−r2

0
dz d A

=
∫ π/2

−π/2

∫ 2

2 cos θ
(4 − r2)r dr dθ +

∫ 3π/2

π/2

∫ 2

0
(4 − r2)r dr dθ = 11π

2
. �

–2 21

E3

x

y

FIGURE 12.14

Recall that spherical coordinates in R3 have the form

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ,

where ρ = ‖(x, y, z)‖, θ is the angle measured counterclockwise from the posi-
tive x axis to the line segment L((0, 0, 0); (x, y, 0)), and ϕ is the angle measured
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(   ,    ,    ) =  (x,  y,  z)

y
x

z

FIGURE 12.15

from the positive z-axis to the vector (x, y, z) (see Figure 12.15). Notice that
this change of variables is 1–1 on {(ρ, ϕ, θ) : ρ > 0, 0 < ϕ < π, 0 ≤ θ < 2π}
and its Jacobian, ρ2 sinϕ (see Exercise 12.4.8a), is nonzero off Z := {(ρ, ϕ, θ) :
ϕ = 0, π, ρ = 0}, a Jordan region of volume zero. Hence, application of The-
orem 12.46 can justified by applying it first for ρ > 0 and 0 < ϕ < π , and
then taking the limit as ρ, ϕ ↓ 0 and ϕ ↑ π . Since the end result is the same
as applying Theorem 12.46 directly to any projectable region in R3, we shall
do so, without further comments, when changing variables to or from spherical
coordinates. We shall abbreviate the change-of-variables formula from spheri-
cal coordinates to rectangular coordinates by dx dy dz = ρ2 sinϕ dρ dϕ dθ . (For
spherical coordinates in Rn , see the proof of Theorem 12.70.)

12.50 EXAMPLE.

Find ∫∫∫
Q

x dV,

where Q = B3(0, 0, 0) \ B2(0, 0, 0).

Solution. Using spherical coordinates, we have

∫∫∫
Q

x dV =
∫ 2π

0

∫ π

0

∫ 3

2
ρ sinϕ cos θ(ρ2 sinϕ) dρ dϕ dθ = 0. �

Theorem 12.46 can be used for other changes of variables besides polar, cylin-
drical, and spherical coordinates.

12.51 EXAMPLE.

Find ∫∫
E

sin(x + y) cos(2x − y) d A,
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500 Chapter 12 Integration on Rn

where E is the region bounded by y = 2x − 1, y = 2x + 3, y = −x , and
y = −x + 1.

Solution. Let φ(x, y) = (2x − y, x + y) and observe that the integral in question
looks like the right side of (38) except the Jacobian is missing. By Cramer’s Rule,
for each fixed u, v ∈ R, the system u = 2x − y, v = x + y has a unique solution
in x, y. Hence, φ is 1–1 on R2. It is obviously continuously differentiable, and its
Jacobian,

�φ(x, y) = ∂(u, v)

∂(x, y)
= det

[
2 −1
1 1

]
= 3,

is a nonzero constant. Hence, we can make adjustments to the integral in ques-
tion so that it is precisely the right side of (38):∫∫

E
sin(x + y) cos(2x − y) d A = 1

3

∫∫
E

f ◦ φ(x, y)�φ(x, y) d(x, y),

where f (u, v) = cos u sin v. It remains to compute the left side of (38) (i.e., to
find what happens to E under φ).

Notice that y = 2x − 1 implies u = 1, y = 2x + 3 implies u = −3, y = −x
implies v = 0, and y = −x + 1 implies v = 1. Thus φ(E) = [−3, 1] × [0, 1].
Applying Theorem 12.46 and the preliminary step taken above, we find

∫∫
E

sin(x + y) cos(2x − y) d A = 1

3

∫ 1

0

∫ 1

−3
sin v cos u du dv

= 1

3
(sin(1)+ sin(3))(1 − cos(1)). �

EXERCISES

12.4.1. Evaluate each of the following integrals.

a)
∫ 2

0

∫ √
4−x2

0
sin(x2 + y2) dy dx

b)
∫ 1

0

∫ x

0

3
√
(2y − y2)2 dy dx

c)
∫ b

a

∫ x

0

√
x2 + y2 dy dx, 0 ≤ a < b

12.4.2. For each of the following, find
∫∫

E f d A.

a) f (x, y) = cos(3x2 + y2) and E is the set of points satisfying x2 +
y2/3 ≤ 1.
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b) f (x, y) = y
√

x − 2y and E is bounded by the triangle with vertices
(0, 0), (4, 0), and (4, 2).

12.4.3. For each of the following, find
∫∫∫

E f dV .

a) f (x, y, z) = z2 and E is the set of points satisfying x2 + y2 + z2 ≤ 6
and z ≥ x2 + y2.

b) f (x, y, z) = ez and E is the set of points satisfying x2 + y2 + z2 ≤ 9,
x2 + y2 ≤ 1, and z ≥ 0.

c) f (x, y, z) = (x − y)z and E is the set of points satisfying x2 + y2 +
z2 ≤ 4, z ≥ √

x2 + y2, and x ≥ 0.

12.4.4. a) Prove that the volume bounded by the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1

is 4πabc/3.
b) Let a, b, c, d be positive numbers and r2 < d2/(b2 + c2). Find

the volume of the region bounded by y2 + z2 = r2, x = 0, and
ax + by + cz = d.

c) Show that for any a ≥ 0, the volume of the region bounded by the
cylinders x2 + z2 = a2 and y2 + z2 = a2 is 16a3/3.

12.4.5. a) Compute
∫∫

E
√

x − y
√

x + 2y d A, where E is the parallelogram
with vertices (0, 0), (2/3,−1/3), (1, 0), (1/3, 1/3).

b) Compute
∫∫

E
3
√

2x2 − 5xy − 3y2 d A, where E is the parallelogram
bounded by the lines y = x/3, y = (x−1)/3, y = −2x, y = 1−2x .

c) Find ∫∫
E

e(y−x)/(y+x) d A,

where E is the trapezoid with vertices (1, 1), (2, 2), (2, 0), (4, 0).
d) Given

∫ 1
0 (1 − x) f (x) dx = 5, find

∫ 1

0

∫ x

0
f (x − y) dy dx .

12.4.6. Suppose that V is nonempty and open in Rn and that f : V → Rn is
continuously differentiable with �f �= 0 on V . Prove that

lim
r→0+

Vol(f(Br (x0)))

Vol(Br (x0))
= |�f(x0)|

for every x0 ∈ V .
12.4.7. Show that Vol is rotation invariant in R2; that is, if φ is a rotation on

R2 (see Exercise 8.2.9) and E is a Jordan region in R2, then

Vol(φ(E)) = Vol(E).
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502 Chapter 12 Integration on Rn

12.4.8. a) Compute the Jacobian of the change of variables from spherical
coordinates to rectangular coordinates.

b) Assuming that Vol is translation and rotation invariant (see Exer-
cises 12.1.7 and 12.4.7), verify the following classical formulas: the
volume of a sphere of radius r is 4

3πr3, and the volume of a right
circular cone of altitude h and radius r is πr2h/3.

12.4.9. Let v j = (v j1, . . . , v jn) ∈ Rn, j = 1, . . . , n, be fixed. The paral-
lelepiped determined by the vectors v j is the set

P(v1, . . . , vn) := {t1v1 + · · · + tnvn : t j ∈ [0, 1]},
and the determinant of the v j ’s is the number

det(v1, . . . , vn) := det
[
v jk
]

n×n .

Prove that

Vol(P(v1, . . . , vn)) = | det(v1, . . . , vn)|.
Check this formula for n = 2 and n = 3 to see that it agrees with the
classical formulas for the area of a parallelogram and the volume of a
parallelepiped.

12.4.10 . This exercise is used in Section ∗12.6.

a) Prove that the improper integral
∫∞

0 e−x2
dx converges to a finite

real number.
b) Prove that if I is the value of the integral in part a), then

I 2 = lim
N→∞

∫ π/2

0

∫ N

0
e−r2

r dr dθ.

c) Show that ∫ ∞

0
e−x2

dx =
√
π

2
.

d) Let Qk represent the n-dimensional cube [−k, k] × · · · × [−k, k].
Find

lim
k→∞

∫
Qk

e−‖x‖2
dx.

12.4.11. Let H ⊂ V ⊂ Rn , with H convex and V open, and suppose that
φ : V → Rn is C1.

a) Show that if E is a closed subset of Ho and

εh(x) := φ(x + h)− φ(x)− Dφ(x)(h), for x ∈ V and h small,

then εh(x)/‖h‖ → 0 uniformly on E , as h → 0.
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b) Show that if R is a closed rectangle in Ho and S := (Dφ(x))−1

exists for some x ∈ R, then given ε > 0 there are constants δ > 0
and M > 0 and a function T (x, y) such that

S ◦ φ(x)− S ◦ φ(y) = x − y + T (x, y)

for x, y ∈ R, and ‖T (x, y)‖ ≤ Mε when ‖x − y‖ < δ.
c) Use parts a) and b) to prove that if �φ is nonzero on V, x ∈ Ho,

and ε is sufficiently small, then there exist numbers Cε > 0, which
depend only on H, φ, n, and ε, and a δ > 0 such that Cε → 1
as ε → 0 and Vol(S ◦ φ(Q)) ≤ Cε|Q| for all cubes Q ⊂ H which
contain x and satisfy Vol(Q) < δ.

d) Use part c) and Exercise 12.4.9 to prove that if �φ is nonzero on
V and x ∈ Ho, then given any sequence of cubes Q j which sat-
isfy x ∈ Q j and Vol(Q j ) → 0 as j → ∞, it is also the case that
Vol(φ(Q j ))/|Q j | → |�φ(x)| as j → ∞.

∗12.5 PARTITIONS OF UNITY

This section uses results from Section 9.5.

In this section we show that a smooth function can be broken into a sum of
smooth functions, each of which is zero except on a small set, and use this to
prove a global change-of-variables formula when the Jacobian is nonzero off a
set of volume zero. This same technique can be used to prove the Fundamental
Theorem of Calculus on manifolds (see [12], for example).

12.52 Definition.

Let f : Rn → R.

i) The support of f is the closure of the set of points at which f is nonzero;
that is,

spt f := {x ∈ Rn : f (x) �= 0}.
ii) A function f is said to have compact support if and only if spt f is a com-

pact set.

12.53 EXAMPLE.

If

f (x) =
{

1 x ∈ Q
0 x /∈ Q,

then spt f = R.
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504 Chapter 12 Integration on Rn

12.54 EXAMPLE.

If

f (x) =

⎧⎪⎨
⎪⎩

1 x ∈ (0, 1)
2 x ∈ (1, 2)
0 otherwise,

then spt f = [0, 2].

Since the support of a function is always closed, a function f on Rn has com-
pact support if and only if spt f is bounded (see the Heine–Borel Theorem).

The following result shows that if two functions have compact support, then
so does their sum (see also Exercises 12.5.1 and 12.5.2).

12.55 Remark. If f, g : Rn → R, then

spt ( f + g) ⊆ spt f ∪ spt g.

Proof. If ( f + g)(x) �= 0, then f (x) �= 0 or g(x) �= 0. Thus

{x ∈ Rn : ( f + g)(x) �= 0} ⊆ {x ∈ Rn : f (x) �= 0} ∪ {x ∈ Rn : g(x) �= 0}.

Since the closure of a union equals the union of its closures (see Theorem 8.37
or 10.40), it follows that spt ( f + g) ⊆ spt f ∪ spt g. �

Let p ∈ N or p = ∞. The symbol C p
c (Rn) will denote the collection of func-

tions f : Rn → R which are C p on Rn and have compact support. In particular,
it follows from Remark 12.55 that if f j ∈ C p

c (Rn) for j = 1, . . . , N , then

N∑
j=1

f j ∈ C p
c (Rn).

We will use this observation several times below.
If f is analytic (a condition stronger than C∞) and has compact support, then

f is identically zero (see Exercise 12.5.3). Thus it is not at all obvious that
C∞

c (R
n) contains anything but the zero function. Nevertheless, we shall show

that C∞
c (R

n) not only contains nonzero functions but has enough functions to
“approximate” any compact set (see Theorem 12.58 and Exercise 12.5.6).

First, we deal with the one-dimensional case.

12.56 Lemma.
For every a < b there is a function φ ∈ C∞

c (R) such that φ(t) > 0 for t ∈ (a, b)
and φ(t) = 0 for t /∈ (a, b).
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Proof. The function

f (t) =
{

e−1/t2
t �= 0

0 t = 0

belongs to C∞(R) and f ( j)(0) = 0 for all j ∈ N (see Exercise 4.4.7). Hence,

φ(t) =
{

e−1/(t−a)2e−1/(t−b)2 t ∈ (a, b)
0 otherwise

belongs to C∞(R), satisfies φ(t) > 0 for t ∈ (a, b), and spt φ = [a, b]. �

Next, we show that there exists a nonzero C∞ function which is constant
everywhere except on a small interval.

12.57 Lemma.
For each δ > 0 there is a function ψ ∈ C∞(R) such that 0 ≤ ψ ≤ 1 on R,
ψ(t) = 0 for t ≤ 0, and ψ(t) = 1 for t > δ.

Proof. By Lemma 12.56, choose φ ∈ C∞
c (R) such that φ(t) > 0 for t ∈ (0, δ)

and φ(t) = 0 for t /∈ (0, δ). Set

ψ(t) =
∫ t

0 φ(u) du∫ δ
0 φ(u) du

.

By the Fundamental Theorem of Calculus, ψ ∈ C∞(R), by construction
0 ≤ ψ ≤ 1, and

ψ(t) =
{

0 t ≤ 0
1 t > δ.

�

Finally, we use these one-dimensional C∞ functions to construct nonzero
functions in C∞

c (R
n).

12.58 Theorem. [C∞ VERSION OF URYSOHN’S LEMMA].
Let H be compact and nonempty, let V be open in Rn , and let H ⊂ V . Then
there is an h ∈ C∞

c (R
n) such that 0 ≤ h(x) ≤ 1 for all x ∈ Rn, h(x) = 1 for all

x ∈ H , and spt h ⊂ V .

Proof. Let φ ∈ C∞
c (R) satisfy φ(t) > 0 for t ∈ (−1, 1) and φ(t) = 0 for

t /∈ (−1, 1). For each ε > 0 and each x ∈ Rn , let Qε(x) represent the
n-dimensional cube

Qε(x) = {y ∈ Rn : |y j − x j | ≤ ε for all j = 1, . . . , n}.
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506 Chapter 12 Integration on Rn

Set

gε(y) = φ
( y1

ε

)
. . . φ

( yn

ε

)
, (44)

and observe by Theorem 4.10 (the Product Rule) that gε is C∞ on Rn . By
construction, gε(y) ≥ 0 on Rn, gε(y) > 0 for all y in the open ball Bε(0), and
the support of gε is a subset of the cube Qε(0). In particular, gε ∈ C∞

c (R
n).

We will use sums of translates of these gε’s to construct a C∞ function,
supported on V , which is strictly positive on H . It is here that the compactness
of H enters in a crucial way.

For each x ∈ H , choose ε := ε(x) > 0 such that Qε(x) ⊂ V . Set

hx(y) = gε(y − x), y ∈ Rn,

and notice that hx ≥ 0 on Rn, hx(y) > 0 for all y ∈ Bε(x), hx(y) = 0 for all
y /∈ Qε(x), and hx ∈ C∞

c (R
n). Since H is compact and

H ⊂
⋃
x∈H

Bε(x),

choose points x j ∈ H and positive numbers ε j = ε(x j ), j = 1, . . . , N ,
such that

H ⊂ Bε1(x1) ∪ · · · ∪ BεN (xN ).

Set Q = Qε1(x1) ∪ . . . ∪ QεN (xN ) and f = hx1 + . . . + hxN . Clearly, Q is
compact, Q ⊂ V , and f is C∞ on Rn . If x /∈ Q, then x /∈ Qε j (x j ) for all j ;
hence, f (x) = 0. Thus spt f ⊆ Q. If x ∈ H , then x ∈ Bε j (x j ) for some j ;
hence, f (x) > 0. It remains to flatten f so that it is identically 1 on H . This is
where Lemma 12.57 comes in.

Since f > 0 on the compact set H, f has a nonzero minimum on H . Thus
there is a δ > 0 such that f (x) > δ for x ∈ H . By Lemma 12.57, choose
ψ ∈ C∞(R) such that ψ(t) = 0 when t ≤ 0, and ψ(t) = 1 when t > δ. Set
h = ψ ◦ f . Clearly, h ∈ C∞

c (R
n), spt h ⊆ Q ⊂ V , and, since f > δ on H, h = 1

on H . Finally, since 0 ≤ ψ ≤ 1, the same is true of h. �

This result leads directly to a decomposition theorem for C∞ functions.

12.59 Theorem. [C∞ PARTITIONS OF UNITY].
Let� ⊂ Rn be nonempty and let {Vα}α∈A be an open covering of�. Then there
exist functions φ j ∈ C∞

c (R
n) and indices α j ∈ A, j ∈ N, such that the following

properties hold.

i) φ j ≥ 0 for all j ∈ N.

ii) spt φ j ⊂ Vα j for all j ∈ N.
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iii)
∞∑
j=1

φ j (x) = 1 for all x ∈ �.

iv) If H is a nonempty compact subset of �, then there is a nonempty open set
W ⊃ H and an integer N such that φ j (x) = 0 for all j ≥ N and x ∈ W . In
particular,

N∑
j=1

φ j (x) = 1 for all x ∈ W .

Proof. For each x ∈ �, choose a bounded open set W (x) and an index α ∈ A
such that

x ∈ W (x) ⊂ W (x) ⊂ Vα.

Then W = {W (x) : x ∈ �} is an open covering of � and, by Lindelöf’s Theo-
rem, we may suppose that W is countable; that is, W = {W j } j∈N.

By construction, given j ∈ N, there is an index α j ∈ A such that

W j ⊂ W j ⊂ Vα j .

Choose by Theorem 12.58 functions h j ∈ C∞
c (R

n) such that 0 ≤ h j ≤ 1 on
Rn, h j = 1 on W j , and spt h j ⊂ Vα j for j ∈ N. Set φ1 = h1 and for j > 1, set

φ j = (1 − h1) . . . (1 − h j−1)h j .

Then φ j ≥ 0 on Rn , and φ j ∈ C∞
c (R

n) with spt φ j ⊆ spt h j ⊂ Vα j for j ∈ N.
This proves parts i) and ii).

An easy induction argument establishes

k∑
j=1

φ j = 1 − (1 − h1) . . . (1 − hk)

for k ∈ N. If x ∈ �, then x ∈ W j0 for some j0 so 1 − h j0(x) = 0. Thus

k∑
j=1

φ j (x) = 1 − 0 = 1

for k ≥ j0. If H is a compact subset of �, then H ⊂ W1 ∪ · · · ∪ WN for some
N ∈ N. If W = W1 ∪ · · · ∪ WN , then x ∈ W implies hk(x) = 1 for some
1 ≤ k ≤ N ; that is, φ j (x) = 0 for all j > N . Hence,

N∑
j=1

φ j (x) =
∞∑
j=1

φ j (x) = 1

for all x ∈ W . �
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A sequence of functions {φ j } j∈N is called a (C0) partition of unity on � sub-
ordinate to a covering {Vα}α∈A if and only if � and all the Vα’s are open and
nonempty, the φ j ’s are all continuous with compact support and satisfy state-
ments i) through iv) of Theorem 12.59. By a C p partition of unity on � we shall
mean a partition of unity on � whose functions φ j are also C p on �. By The-
orem 12.59, given any open covering V of any nonempty set � ⊆ Rn and any
extended real number p ≥ 0, there exists a C p partition of unity on � subordi-
nate to V .
C p partitions of unity can be used to decompose a function f into a sum of

functions f j which have small support and are as smooth as f . For example, let
f be defined on a set �, {φ j } j∈N be a C p partition of unity on � subordinate to
a covering {Vj } j∈N, and f j = f φ j . Then

f (x) = f (x)
∞∑
j=1

φ j (x) =
∞∑
j=1

f (x)φ j (x) =
∞∑
j=1

f j (x)

for all x ∈ �. If f is continuous on� and p ≥ 0, then each f j is continuous on�;
if f is continuously differentiable on � and p ≥ 1, then each f j is continuously
differentiable on �. Thus, f can be written as a sum of functions f j which are
as smooth as f . This allows us to pass from local results to global ones; for
example, if we know that a certain property holds on small open sets in �, then
we can show that a similar property holds on all of � by using a partition of
unity subordinate to a covering of � which consists of small open sets.

To illustrate the power of this point of view, we now show that the integral
can be extended from Jordan regions to open bounded sets, even though such
sets are not always Jordan regions. This extension is a multidimensional version
of the improper integral. (The proofs Theorems 12.63 and 12.64 are based on
Spivak [12].1)

Strategy: The idea behind this extension is fairly simple. Let V be a bounded
open set and let f be locally integrable on V ; that is, f : V → R is integrable
on every closed Jordan region H ⊂ V . For each x ∈ V , choose an open Jordan
region V (x) so small that x ∈ V (x) ⊂ V . [e.g., V (x) could be an open ball.]
Then {V (x)}x∈V is an open covering of V , and by Lindelöf’s Theorem it has a
countable subcover, say V = {Vj } j∈N. Let {φ j } j∈N be a partition of unity on
V subordinate to V . Since f is locally integrable on V , each f φ j is integrable.
Since f = ∑∞

j=1 f φ j , it seems reasonable to define∫
V

f (x) dx =
∞∑
j=1

∫
Vj

f (x)φ j (x) dx.

Before we can proceed, we must answer two questions: Does this series con-
verge? And if it does, will its value change when the partition of unity changes?
The next two results answer these questions.

1M. Spivak, Calculus on Manifolds, (New York: W. A. Benjamin, Inc., 1965). Reprinted with
permission of Addison-Wesley Publishing Company.
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12.60 Lemma.
Let V be a bounded open set in Rn and let V = {Vj } j∈N be a sequence of
nonempty open Jordan regions in V which satisfies

V =
∞⋃
j=1

Vj .

Suppose that f : V → R is bounded on V and integrable on each Vj . If {φ j } j∈N
is any partition of unity on V subordinate to the covering V , then

∞∑
j=1

∫
Vj

φ j (x) f (x) dx (45)

converges absolutely.

Proof. Let R be an n-dimensional rectangle containing V and M =
supx∈V | f (x)|. Since φ j is supported on Vj , the function φ j f is integrable on
Vj . Moreover, if E = ∪N

j=1Vj we have

N∑
j=1

∣∣∣∣∣
∫

Vj

φ j (x) f (x) dx

∣∣∣∣∣ ≤
N∑

j=1

∫
E

|φ j (x) f (x)| dx

=
∫

E

N∑
j=1

|φ j (x) f (x)| dx

≤ M
∫

E

N∑
j=1

|φ j (x)| dx ≤ M Vol(E) ≤ M |R| < ∞.

Therefore, the series in (45) converges absolutely. �

The value of the series in (45) depends neither on the partition of unity chosen
nor the covering V .

12.61 Lemma.
Let V be a bounded, nonempty, open set in Rn . Suppose that V = {Vj } j∈N and
W = {Wk}k∈N are sequences of nonempty open Jordan regions in Rn such that

V =
∞⋃
j=1

Vj =
∞⋃

k=1

Wk .

Suppose further that f : V → R is bounded and locally integrable on V. If
{φ j } j∈N is a partition of unity on V subordinate to V and {ψk}k∈N is a partition
of unity on V subordinate to W , then
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∞∑
j=1

∫
Vj

φ j (x) f (x) dx =
∞∑

k=1

∫
Wk

ψk(x) f (x) dx. (46)

Proof. By Lemma 12.60, both sums in (46) converge absolutely. By Exer-
cise 12.5.5, {φ jψk} j,k∈N is a partition of unity on V subordinate to the covering
{Vj ∩ Wk} j,k∈N. Thus

∞∑
j=1

∞∑
k=1

∫
V
φ j (x)ψk(x) f (x) dx

also converges absolutely. Fix j ∈ N. Since sptφ j is compact, choose N ∈ N
so large that ψk(x) = 0 for k > N and x ∈ sptφ j . Hence,

∫
Vj

φ j (x) f (x) dx =
∫

Vj

φ j (x)
N∑

k=1

ψk(x) f (x) dx

=
N∑

k=1

∫
Vj ∩Wk

φ j (x)ψk(x) f (x) dx

=
∞∑

k=1

∫
Vj ∩Wk

φ j (x)ψk(x) f (x) dx.

Thus

∞∑
j=1

∫
Vj

φ j (x) f (x) dx =
∞∑
j=1

∞∑
k=1

∫
Vj ∩Wk

φ j (x)ψk(x) f (x) dx.

Reversing the roles of j and k, we also have

∞∑
k=1

∫
Wk

ψk(x) f (x) dx =
∞∑

k=1

∞∑
j=1

∫
Vj ∩Wk

φ j (x)ψk(x) f (x) dx.

Since these series are absolutely convergent, we may reverse the order of
summation in the last double series. �

Using Lemma 12.61, we define the integral of a locally integrable function f
over a bounded open set V as follows.

510



Section 12.5 Partitions of Unity 511

12.62 Definition.

Let V be a bounded, nonempty, open set in Rn and let f : V → R be bounded
and locally integrable on V . The integral of f on V is defined to be

IV ( f ) :=
∞∑
j=1

∫
Vj

φ j (x) f (x) dx,

where {φ j } j∈N is any partition of unity on V subordinate to an open covering
V = {Vj } j∈N such that each Vj is a nonempty Jordan region and

V =
∞⋃
j=1

Vj .

The following result shows that this definition agrees with the old one when
V is a Jordan region. Thus, we shall use the notation

∫
V f (x) dx for IV ( f ).

12.63 Theorem. If E is a nonempty, open Jordan region in Rn and f : E → R
is integrable on E, then

∫
E

f (x) dx = IE ( f ).

Proof. Let ε > 0. Since E is a Jordan region, choose a grid G = {Q1, . . . , Q p}
of some n-dimensional rectangle R ⊃ E such that

∑
Q
∩∂E �=∅

|Q
| < ε. (47)

Let

H =
⋃

Q
⊂E

Q
.

Clearly, H is compact and by (47), Vol(E\H) < ε (see Exercise 12.1.6d).
Set M = supx∈E | f (x)|. Let {R j } j∈N be a sequence of rectangles such that

R j ⊂ E and E = ⋃∞
j=1 Ro

j , and let {φ j } j∈N be a partition of unity on E subor-
dinate to V = {Ro

j } j∈N. Since H is compact, choose N1 ∈ N such that φ j (x) = 0
for j > N1 and x ∈ H . Then, for any N ≥ N1, we have

511



512 Chapter 12 Integration on Rn∣∣∣∣∣∣
∫

E
f (x) dx −

N∑
j=1

∫
R j

φ j (x) f (x) dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

E
f (x) dx −

N∑
j=1

∫
E
φ j (x) f (x) dx

∣∣∣∣∣∣
≤
∫

E
| f (x)−

N∑
j=1

φ j (x) f (x)| dx

≤ M
∫

E
|1 −

N∑
j=1

φ j (x)| dx

≤ M Vol(E \ H) < Mε.

We conclude that IE ( f ) exists and equals
∫

E f (x) dx. �

We now prove a change-of-variables formula valid for all open bounded sets.

12.64 Theorem. Suppose that V is a bounded, nonempty, open set in Rn , that φ :
V → Rn is 1–1 and continuously differentiable on V, and that φ(V ) is bounded.
If �φ �= 0 on V, then

∫
φ(V )

f (u) du =
∫

V
f (φ(x))|�φ(x)| dx,

for all bounded f : φ(V ) → R, provided f is locally integrable on φ(V ).

Proof. For each a ∈ V , choose by Theorem 12.45 an open rectangle W (a)
such that W (a) ⊂ V and

∫
φ(W (a))

f (u) du =
∫

W (a)
f (φ(x))|�φ(x)| dx. (48)

Set W = {W (a)}a∈V . Then W is an open covering of V . By Lindelöf’s Theo-
rem, we may assume that W = {W j } j∈N. Let {φ j } j∈N be a partition of unity
on V subordinate to W ; that is, a sequence of C∞ functions such that

spt φ j ⊂ W j ⊂ V, j ∈ N, and
∞∑
j=1

φ j (x) = 1

for all x ∈ V . By Theorem 12.10, each φ(W j ) is a Jordan region. By The-
orem 11.39, each φ(W j ) is open. And by Exercise 12.5.4, {φ j ◦ φ−1} j∈N is
a partition of unity on φ(V ) subordinate to the open covering {φ(W j )} j∈N.
Hence, by Definition 12.62 and (48),
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Section 12.5 Partitions of Unity 513

∫
φ(V )

f (u) du =
∞∑
j=1

∫
φ(W j )

(φ j ◦ φ−1)(u) f (u) du

=
∞∑
j=1

∫
W j

φ j (x) f (φ(x))|�φ(x)| dx

=
∫

V
f (φ(x))|�φ(x)| dx. �

Finally, we are prepared to prove a change-of-variables formula for functions
whose Jacobians are zero on a set of volume zero.

12.65 Theorem. [CHANGE OF VARIABLES FOR MULTIPLE INTEGRALS].
Suppose that E is a Jordan region in Rn and that φ : E → Rn is 1–1 and
continuous on E , and C1 on Eo. Suppose further that there exists a closed
subset Z of E such that V ol(Z) = V ol(φ(Z)) = 0. If φ(∂E) is of volume zero
and if �φ(x) �= 0 for all x ∈ Eo \ Z , then∫

φ(E)
f (u) du =

∫
E

f (φ(x))|�φ(x)| dx

provided f is integrable on φ(E).

Proof. By the proof of Lemma 12.9, ∂(φ(E)) is a subset of φ(E). Since this
last set is of volume zero, it follows that φ(E) is a Jordan region.

Set V := Eo \ Z and E0 := (E \ Eo) ∪ Z . Then V is a bounded open set, E0
is of volume zero, E = V ∪ E0, and V ∩ E0 = ∅.

Since φ is 1–1 on E , φ(E) = φ(V )∪φ(E0) is a disjoint decomposition of the
Jordan region φ(E). Moreover, by Lemma 11.39, the set φ(V ) is bounded and
open. Since

φ(E0) = φ(E \ Eo) ∪ φ(Z) ⊆ φ(∂E) ∪ φ(Z),

a set of volume zero, φ(E0) is also a set of volume zero. We conclude by
Theorems 12.23, 12.24, and 12.65 that∫

φ(E)
f (u) du =

∫
φ(V )

f (u) du

=
∫

V
f (φ(x))|�φ(x)| dx =

∫
E

f (φ(x))|�φ(x)| dx. �

We close by noting that, as general as it is, even this result can be improved. If
something called the Lebesgue integral is used instead of the Riemann integral,
the condition that �φ �= 0 can be dropped altogether (see Spivak [12], p. 72).

EXERCISES

12.5.1. If f, g : Rn → R, prove that spt( f g) ⊆ spt f ∩ spt g.
12.5.2. Prove that if f, g ∈ C∞

c (R
n), then so are f g and α f for any scalar α.
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514 Chapter 12 Integration on Rn

∗12.5.3. Prove that if f is analytic on R and f (x0) �= 0 for some x0 ∈ R, then
f �∈ C∞

c (R).
12.5.4. Suppose that V is a bounded, nonempty, open set in Rn and that

φ : V → Rn is 1–1 and continuously differentiable on V with �φ �= 0
on V . Let W = {W j } j∈N be an open covering of V and {φ j } j∈N be a C p

partition of unity on V subordinate to W , where p ≥ 1. Prove that
{φ j ◦ φ−1} j∈N is a C1 partition of unity on φ(V ) subordinate to the open
covering {φ(W j )} j∈N.

12.5.5. Let V be open in Rn and V = {Vj } j∈N, W = {Wk}k∈N be coverings of V .
If {φ j } j∈N is a C p partition of unity on V subordinate to V and {ψk}k∈N is
a C p partition of unity on V subordinate to W , prove that {φ jψk} j,k∈N is
a C p partition of unity on V subordinate to the covering {Vj ∩ Wk} j,k∈N.

12.5.6. Show that, given any compact Jordan region H ⊂ Rn , there is a se-
quence of C∞ functions φ j such that

lim
j→∞

∫
Rn
φ j dV = Vol(H)

∗12.6 THE GAMMA FUNCTION AND VOLUME

The last result of this section uses Dini’s Theorem from Section 9.6.
In this section we introduce the gamma function and use it to find a formula for
the volume of any n-dimensional ball and an asymptotic estimate of n!.

Recall that if f : (0,∞) → R is locally integrable on (0,∞), then∫ ∞

0
f (t) dt = lim

x→0+
y→∞

∫ y

x
f (t) dt.

In particular, it is easy to check that
∫∞

0 e−αt dt is finite for all α > 0.

12.66 Definition.

The gamma function is defined by

�(x) =
∫ ∞

0
t x−1e−t dt, x ∈ (0,∞),

when this (improper) integral converges.

By definition,

�(1) =
∫ ∞

0
e−t dt = 1,

and

�(1/2) =
∫ ∞

0
t−1/2e−t dt = 2

∫ ∞

0
e−u2

du = √
π.

(We used the change of variables t = u2 and Exercise 12.4.10.) It turns out that
�(x) is defined for all x ∈ (0,∞).
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12.67 Theorem. For each x ∈ (0,∞), �(x) exists and is finite, �(x +1) = x�(x),
and �(n) = (n − 1)! for n ∈ N.

Proof. Write

�(x) =
∫ 1

0
t x−1e−t dt +

∫ ∞

1
t x−1e−t dt =: I1 + I2.

By l’Hôpital’s Rule,

lim
t→∞ e−t/2t y = 0

for all y ∈ R. Hence, e−t t x−1 ≤ e−t/2 for t large and it follows, from Theo-
rem 5.43 (the Comparison Theorem), that I2 is finite for all x ∈ R.

To show that I1 is finite for x > 0, suppose first that x ≥ 1. Then t x−1 ≤ 1
for all t ∈ [0, 1] and

I1 =
∫ 1

0
t x−1e−t dt ≤

∫ 1

0
e−t dt = 1 − 1

e
< ∞.

Therefore, �(x) is finite for all x ≥ 1. Next, suppose that 0 < x < 1. Then
x + 1 ≥ 1, so �(x + 1) is finite. Integration by parts yields

�(x) =
∫ ∞

0
t x−1e−t dt = t x e−t

x

∣∣∞
t=0 +1

x

∫ ∞

0
t x e−t dt = 1

x
�(x + 1).

Therefore, �(x) is finite when 0 < x < 1.
This argument also verifies x�(x) = �(x +1) for x ∈ (0,∞). Since �(1) = 1,

it follows that �(n) = (n − 1)! for all n ∈ N. �

The gamma function can be used to evaluate certain integrals which cannot
be evaluated by using elementary techniques of integration.

12.68 Theorem. If x, y ∈ (0,∞), then

i)
∫ 1

0
vy−1(1 − v)x−1 dv = �(x)�(y)

�(x + y)
,

and

ii)
∫ π/2

0
cos2x−1 ϕ sin2y−1 ϕ dϕ = �(x)�(y)

2�(x + y)
.

In particular,

iii)
∫ π

0
sink−2 ϕ dϕ = �((k − 1)/2)�(1/2)

�(k/2)

holds for all integers k > 2.
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Proof. To prove part i), make the change of variables v = u/(1+u) and write

∫ 1

0
vy−1(1 − v)x−1 dv =

∫ ∞

0

(
u

1 + u

)y−1 (
1 − u

1 + u

)x−1 du

(1 + u)2

=
∫ ∞

0
u y−1

(
1

1 + u

)x+y

du.

It follows from two more changes of variables [s = t/(1 + u) and w = su]
and Fubini’s Theorem that

�(x + y)
∫ 1

0
vy−1(1 − v)x−1 dv

=
∫ ∞

0

∫ ∞

0
u y−1

(
1

1 + u

)x+y

t x+y−1e−t dt du

=
∫ ∞

0

∫ ∞

0
u y−1sx+y−1e−s(u+1) ds du

=
∫ ∞

0
sx−1e−s

(∫ ∞

0
u y−1s ye−su du

)
ds

=
∫ ∞

0
sx−1e−s

(∫ ∞

0
wy−1e−w dw

)
ds = �(x)�(y).

To prove part ii) use the change of variables v = sin2 ϕ and part i) to verify

∫ π/2

0
cos2x−1 ϕ sin2y−1 ϕ dϕ = 1

2

∫ 1

0
vy−1(1 − v)x−1 dv = �(x)�(y)

2�(x + y)
.

Specializing to the case y = (k − 1)/2 and x = 1/2, we obtain part iii). �

The connection between the gamma function and volume is contained in the
following result.

12.69 Theorem. If r > 0 and a ∈ Rn , then

Vol(Br (a)) = 2rnπn/2

n�(n/2)
.

Proof. By translation invariance (see Exercise 12.1.7) and Theorem 12.22,
Vol(Br (a)) = ∫

B 1 dx for B = Br (0). We suppose for simplicity that n ≥ 2, and
we introduce a change of variables in Rn analogous to spherical coordinates.
Namely, let

x1 = ρ cosϕ1, x2 = ρ sinϕ1 cosϕ2, x3 = ρ sinϕ1 sinϕ2 cosϕ3, . . . ,

xn−1 = ρ sinϕ1 . . . sinϕn−2 cos θ, and xn = ρ sinϕ1 . . . sinϕn−2 sin θ,
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where 0 ≤ ρ ≤ r, 0 ≤ θ ≤ 2π , and 0 ≤ ϕ j ≤ π for j = 1, . . . , n − 2. An easy
induction argument shows that this change of variables has Jacobian

� := ρn−1 sinn−2 ϕ1 sinn−3 ϕ2 . . . sin2 ϕn−3 sinϕn−2. (49)

Hence, by Theorems 12.65 (or Theorem 12.46 and a limiting argument) and
12.68iii,

Vol(Br (a)) =
∫

B
1 dx

=
∫ r

0

∫ π

0
· · ·
∫ π

0

∫ 2π

0
ρn−1 sinn−2 ϕ1 . . . sinϕn−2 dθ dϕ1 . . . dϕn−2 dρ

= 2πrn

n

(∫ π

0
sinn−2 ϕ dϕ

)
· · ·
(∫ π

0
sinϕ dϕ

)

= 2πrn

n
· �((n − 1)/2)�(1/2)

�(n/2)
· �((n − 2)/2)�(1/2)

�((n − 1)/2)
. . .

�(1)�(1/2)

�(3/2)
.

Canceling all superfluous factors and substituting the value
√
π for �(1/2), we

conclude that

Vol(Br (a)) = 2πrn

n

(
�n−2(1/2)

�(n/2)

)
= 2rnπn/2

n�(n/2)
. �

This formula agrees with what we already know. For n = 1 we have

Vol(Br (0)) = 2rπ1/2

�(1/2)
= 2r,

for n = 2 we have

Vol(Br (0, 0)) = 2r2π

2�(1)
= πr2,

and for n = 3 we have

Vol(Br (0, 0, 0)) = 2r3π3/2

3�(3/2)
= 2r3π3/2

(3/2)�(1/2)
= 4

3
πr3.

We close this section with an asymptotic estimate of n!. First, we obtain an
integral representation for n!/(nn+1/2e−n).

12.70 Lemma.
If φ(x) = x − log x − 1, x > 0, then

n!
nn+1/2e−n

=
∫ ∞

−√
n

e−nφ(1+t/
√

n) dt.
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Proof. By Definition 12.66 and Theorem 12.67, we can write

n! = �(n + 1) =
∫ ∞

0
xne−x dx .

Making two changes of variables (first x = ny, then y = 1 + t/
√

n), we con-
clude that

n!
nn+1/2e−n

= 1√
n

∫ ∞

0

( x

n

)n
e−x+n dx

= √
n
∫ ∞

0
yne−n(y−1) dy

= √
n
∫ ∞

0
e−nφ(y) dy =

∫ ∞

−√
n

e−nφ(1+t/
√

n) dt. �

Next, we derive some inequalities which will be used, in conjunction
with Dini’s Theorem, to evaluate the limit of the integral which appears in
Lemma 12.70.

12.71 Lemma.
If φ(x) = x − log x − 1, x > 0, then

(x − 1)φ′(x)− 2φ(x) > 0, for 0 < x < 1,

and

(x − 1)φ′(x)− 2φ(x) < 0, for x > 1.

Moreover, there is an absolute constant M > 0 such that

φ(x) ≥ M(x − 1)2, for 0 < x < 2, (50)

and

φ(x) ≥ M(x − 1), for x ≥ 2. (51)

Proof. Let ψ(x) = 2 log x − x + 1/x and observe that (x − 1)φ′(x)− 2φ(x) =
ψ(x). Since ψ ′(x) = −(x − 1)2/x2 < 0 for all x �= 1, ψ is decreasing on
(0,∞). Since ψ(1) = 0, it follows that ψ > 0 on (0, 1) and ψ < 0 on (1,∞).
This proves the first pair of inequalities.

To prove the second pair of inequalities, observe first that, by Taylor’s
Formula,

φ(x) = φ(1)+ φ′(1)(x − 1)+ φ′′(c) (x − 1)2

2! = (x − 1)2

2c2

for some c between x and 1. Thus φ(x) ≥ (x − 1)2/8 for all 0 < x < 2. Next,
observe, since φ(x) > 0 for x > 1 and φ(x)/(x − 1) → 1 as x → ∞, that
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φ(x)/(x − 1) has a positive minimum, say m, on [2,∞). Thus (50) and (51)
hold for M := min{m, 1/8}. �

Our final preliminary result evaluates the limit of the integral which appears
in Lemma 12.70.

12.72 Lemma.
If φ(x) = x − log x − 1 for x > 0, and Fn(t) = e−nφ(1+t/

√
n) for n ∈ N and

t > −√
n, then

lim
n→∞

∫ ∞

−√
n

Fn(t) dt =
∫ ∞

−∞
e−t2/2 dt.

Strategy: The idea behind the proof is simple. By l’Hôpital’s Rule,

lim
n→∞ nφ

(
1 + t√

n

)
= lim

n→∞
t

2

φ′(1 + t/
√

n)

1/
√

n
= t2

2
lim

n→∞φ
′′
(

1 + t√
n

)
= t2

2
,

so Fn(t) → e−t2/2, as n → ∞, for every t ∈ R. Thus
∫∞
−√

n Fn(t) dt should

converge to
∫∞
−∞ e−t2/2 dt as n → ∞. To prove this, we break the integral over

(−√
n,∞) into three pieces: one over (−√

n,−√
a), one over (

√
a,∞), and one

over (−√
a,

√
a). Since e−t2/2 is integrable on (−∞,∞), the first two integrals

should be small for a sufficiently large. Once a is fixed, we shall use Dini’s
Theorem on the third integral. Here are the details.

Proof. Let ε > 0 and observe that∣∣∣∣
∫ ∞

−√
n

Fn(t) dt −
∫ ∞

−√
n

e−t2/2 dt

∣∣∣∣
≤ I1 + I2 + I3 + I4

:=
∣∣∣∣∣
∫ √

a

−√
a

(
Fn(t)− e−t2/2

)
dt

∣∣∣∣∣+
∫

|t |≥√
a

e−t2/2 dt

∫ ∞
√

a
|Fn(t)| dt +

∫ −√
a

−√
n

|Fn(t)| dt

for any a > 0 and n ∈ N, provided n > a. Hence, it suffices to prove that
|I j | ≤ ε/4 for j = 1, 2, 3, 4, and n, a sufficiently large.

Let M be the constant given in Lemma 12.71, and choose a > 0 so large
that ∫

|t |≥√
a

e−Mt2
dt <

ε

4
,

∫ ∞
√

a
e−Mt dt <

ε

4
, (52)

and ∫
|t |≥√

a
e−t2/2 dt <

ε

4
. (53)
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520 Chapter 12 Integration on Rn

By (53), |I2| < ε/4.
To estimate |I j | for j �= 2, fix t > −√

a and consider the function G(x) =
e−xφ(1+t/

√
x), x > 0. By the Product Rule,

G ′(x) = e−xφ(1+t/
√

x)
(

t

2
√

x
φ′
(

1 + t√
x

)
− φ

(
1 + t√

x

))

= e−xφ(y)

2
((y − 1)φ′(y)− 2φ(y)),

where y = 1 + t/
√

x . Thus by Lemma 12.71, G ′(x) > 0 for x > a, −√
a <

t < 0, and G ′(x) < 0 for x > 0, t > 0. It follows that for each
t ∈ (−√

a, 0), Fn(t) ↑ e−t2/2 as n → ∞, and for each t ∈ (0,∞), Fn(t) ↓ e−t2/2

as n → ∞. Hence, by Dini’s Theorem (Theorem 9.40),

∫ √
a

−√
a

Fn(t) dt →
∫ √

a

−√
a

e−t2/2 dt

as n → ∞. Thus, we can choose an N ∈ N so large that n ≥ N implies |I1| < ε.
It remains to estimate |I j | for j = 3, 4.

To this end, let n > max{N , a}. By (50) and (51),

nφ

(
1 + t√

n

)
≥ nM

t2

n
= Mt2 for −√

n < t <
√

n,

and

nφ

(
1 + t√

n

)
≥ nM

t√
n

≥ Mt for t ≥ √
n.

Since n > a, it follows that

|I3| + |I4| =
∫ ∞

√
a

|Fn(t)| dt +
∫ −√

a

−√
n

|Fn(t)| dt

≤
∫

√
a≤|t |≤√

n
e−Mt2

dt +
∫ ∞

√
n

e−Mt dt

<

∫
|t |≥√

a
e−Mt2

dt +
∫ ∞

√
a

e−Mt dt.

We conclude by (52) that |I3| + |I4| < ε/2 as required. �

12.73 Theorem. [STIRLING’S FORMULA].
For n ∈ N sufficiently large, n! ≈ √

2π(nn+1/2)e−n ; that is,

lim
n→∞

n!√
2π(nn+1/2)e−n

= 1.
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Proof. By Exercise 12.4.10 and the change of variables t = √
2u, we have

∫ ∞

−∞
e−t2/2 dt = √

2
∫ ∞

−∞
e−u2

du = 2
√

2
∫ ∞

0
e−u2

du = √
2π.

Therefore, it follows from Lemmas 12.70 and 12.72 that

lim
n→∞

n!√
2πnn+1/2e−n

= lim
n→∞

1√
2π

∫ ∞

−√
n

e−nφ(1+t/
√

n) dt

= 1√
2π

∫ ∞

−∞
e−t2/2 dt = 1. �

EXERCISES

12.6.1. Show that ∫ ∞

0
t2e−t2

dt =
√
π

4
.

12.6.2. Show that ∫ 1

0

dx√− log x
= √

π.

12.6.3. Show that ∫ ∞

−∞
eπ t−et

dt = �(π).

12.6.4. Show that the volume of a four-dimensional ball of radius r is π2r4/2,
and the volume of a five-dimensional ball of radius r is 8π2r5/15.

12.6.5. Verify (49).
12.6.6. Suppose that n > 2 and define an n-dimensional ellipsoid by

E =
{
(x1, . . . , xn) : x2

1

a2
1

+ x2
2

a2
2

+ · · · + x2
n

a2
n

≤ 1

}
.

Prove that

Vol(E) = 2a1 . . . anπ
n/2

n�(n/2)
.

12.6.7. Suppose that n > 2 and define an n-dimensional cone by

C = {(x1, . . . , xn) : (h/r)
√

x2
2 + · · · + x2

n ≤ x1 ≤ h}.

Prove that

Vol(C) = 2hrn−1π(n−1)/2

n(n − 1)�((n − 1)/2)
.
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522 Chapter 12 Integration on Rn

12.6.8. Find the value of ∫
Br (0)

x2
k d(x1, . . . , xn)

for each k ∈ N.
12.6.9. If f : B1(0) → R is differentiable with f (0) = 0 and ‖∇ f (x)‖ ≤ 1 for

x ∈ B1(0), prove that the following exists and equals 0.

lim
k→∞

∫
B1(0)

| f (x)|k dx

12.6.10. a) Prove that � is differentiable on (0,∞) with

�′(x) =
∫ ∞

0
e−t t x−1 log t dt.

∗b) Prove that � is C∞ and convex on (0,∞).
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C H A P T E R 13

Fundamental Theorems of Vector
Calculus

This chapter is more descriptive and less rigorous than its predecessors. Our
goal is to lay a practical foundation for calculus on manifolds.

13.1 CURVES

For a non-mathematician, a curve is a smooth line which bends, without cor-
ners; a one-dimensional object with length but no breadth. Of course, this def-
inition is too imprecise. It is also too restrictive. Our concept of a curve will
include not only “smooth” objects such as the graphs of the function y = x2

and the relation x2 + y2 = 1, but also objects with “corners” such as the graph
of y = |x |.

Recall that if I ⊆ R and φ : I → Rm , then the image of I under φ is the set

φ(I ) = {x ∈ Rm : x = φ(t) for some t ∈ I }.

Also recall that, given a, b ∈ Rm with b �= 0, the image of R under φ(t) := a + tb
is the straight line through a in the direction of b. This is the simplest type of
curve in Rm .

A naive attempt to define a general curve in Rm is to insist that it simply be the
image of an interval under some continuous function φ : R → Rm . It turns out
that this definition is too broad. There are continuous functions (called “space-
filling curves”) which take the unit interval [0, 1] onto the unit square [0, 1] ×
[0, 1] (see Boas [2]). One way to fix this definition is to use homeomorphisms
(i.e., continuous functions whose inverses are also continuous). Since we are
interested primarily in the differential structure of curves, we take a different
approach, using differentiable functions to define curves (see Definition 13.1
below).

We begin by extending the definition of partial differentiation to include func-
tions defined on nonopen domains. Let m, n, p ∈ N, and E be a nonempty subset
of Rn . A function f : E → Rm is said to be C p (on E) if and only if there is an
open set V ⊇ E and a function g : V → Rm whose partial derivatives of orders
j ≤ p exist and are continuous on V such that f(x) = g(x) for all x ∈ E . In this
case we define the partial derivatives of f to be equal to the partial derivatives
of g; for example, ∂ f j/∂xk(x) = ∂g j/∂xk(x) for k = 1, 2, . . . , n, j = 1, 2, . . . ,m,
and x ∈ E . A function f : E → Rm is said to be C∞ (on E) if and only if f is C p

on E for all p ∈ N. Notice that this agrees with Definition 4.6 when n = 1. Also

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 13 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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524 Chapter 13 Fundamental Theorems of Vector Calculus

notice that the Mean Value Theorem and the Inverse Function Theorem hold
for functions in C1(E).

Henceforth, p will denote an element of N or the extended real number ∞.

13.1 Definition.

A subset C of Rm is called a C p curve (in Rm) if and only if there is a nonde-
generate interval I (bounded or unbounded) and a C p function φ : I → Rm

such that φ is 1–1 on I o and C = φ(I ). In this case, the pair (φ, I ) is called a
parametrization of C , and C is called the trace of (φ, I ). The equations

x j = φ j (t), t ∈ J, j = 1, . . . ,m,

are called the parametric equations of C induced by the parametrization (φ, I ).

Thus the straight line through a in the direction of b is a C∞ curve with
parametrization φ(t) := a + tb, I = R.

For most applications, we must assume more about curves.

13.2 Definition.

A C p curve is called an arc if and only if it has a parametrization (φ, I ) where
I = [a, b] for some a, b ∈ R. In this case, we shall call φ(a) and φ(b) the
endpoints of C . An arc is said to be closed if and only if φ(a) = φ(b).

Thus L(a; b), the line segment from a to b, is an arc. The circle x2 + y2 = a2

is an example of a closed arc (see Example 13.4 below).
A closed arc is said to be simple if and only if it does not intersect itself

except possibly at its endpoints. Simple closed arcs are also called Jordan curves
because of the Jordan Curve Theorem. This theorem states that every sim-
ple closed arc C in R2 separates R2 into two pieces, a bounded connected set
E and an unbounded connected set �, where ∂E = ∂� = C . However, as
W. F. Osgood1 discovered, the set E is not necessarily a Jordan region.

Before we start developing a theory of curves, we look at several additional
examples to see how broad Definitions 13.1 and 13.2 really are. First, we show
that curves, as defined in Definition 13.1, include graphs of C p real functions.

13.3 EXAMPLE.

Let I be an interval and let f : I → R be a C p function. Prove that the graph of
y = f (x) on I is a C p curve in R2.

1“A Jordan Curve of Positive Area,” Transactions of the American Mathematical Society,
vol. 4 (1903), pp. 107–112.
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Section 13.1 Curves 525

Proof. Let φ(t) = (t, f (t)). Then φ is C p and 1–1 on I , and φ(I ) is the graph
of y = f (x) as x varies over I . [We shall call (φ, I ) the trivial parametrization
of y = f (x).] �

By an explicit curve we mean a curve of the form φ(I ), where either φ(t) =
(t, f (t)) or φ(t) = ( f (t), t) for some C p function f : I → R. Notice, then, that
an explicit curve is a set of points (x, y) which satisfy y = f (x) [respectively,
x = f (y)] for some real C p function f .

We have just proved that every explicit curve is a curve in R2. The following
result shows that the converse of this statement is false.

13.4 EXAMPLE.

Prove that the circle x2 + y2 = a2 is a C∞ Jordan curve in R2.

Proof. This circle can be described in polar coordinates by r = a (i.e., in
rectangular coordinates by x = a cos θ , y = a sin θ). Set φ(t) = (a cos t, a sin t)
and I = [0, 2π]. Then φ is C∞, 1–1 on [0, 2π), and φ(I ) is the set of points
(x, y) ∈ R2 such that x2 + y2 = a2. [The trace of this parametrization is
sketched in Figure 13.1. The arrow shows the direction the point φ(t) moves
as t gets larger. For example, φ(0) = (a, 0) and φ(π/2) = (0, a).] �

a

a

x

y

FIGURE 13.1

Recall that the graph of a C p function on an interval is “smooth” (i.e., has a
tangent line at each of its points). The following example shows that this is not
the case for a general C p curve.

13.5 EXAMPLE.

Let φ(t) = (cos3 t, sin3 t) and I = [0, 2π]. Show that (φ, I ) is a parametriza-
tion of a C∞ Jordan curve in R2 which has “corners.” (This curve is called an
astroid.)
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526 Chapter 13 Fundamental Theorems of Vector Calculus

Proof. Clearly, φ is C∞ on I and 1–1 on [0, 2π). Let x = cos3 t and y = sin3 t
and observe by a double-angle formula that

x2 + y2 = 3

4
cos2(2t)+ 1

4
.

Hence,
√

x2 + y2 varies from a maximum of 1 (attained when t = 0, π/2,
π, 3π/2, 2π) to a minimum of 1/2 (attained when t = π/4, 3π/4, 5π/4, 7π/4).
Since I is connected and φ is differentiable, hence continuous, the set φ(I )
must also be connected. Plotting a few points, we see that φ(I ) is a four-
cornered star, starting at (1, 0) and moving in a counterclockwise direction
from ∂B1(0, 0) to ∂B1/2(0, 0) and back again (see Figure 13.2). As t runs from
0 to 2π , this curve makes one complete circuit. �

1

1

x

y

1–
2

FIGURE 13.2

We have enough examples to begin to explore the theory of curves. First, we
define the “length” of a curve. (For a geometric justification of this definition,
see Theorem 13.17 below.)

13.6 Definition.

Let C be a C p arc and (φ, I ) be one of its parametrizations. The arc length of
C , as measured by (φ, I ), is defined to be

L(C) :=
∫

I
‖φ′(t)‖ dt.

For example, let (φ, I ) be the parametrization of the circle of radius a given
by Example 13.4. Since ‖φ′(t)‖ = a for all t ∈ [0, 2π], it is easy to check that
L(C) = 2πa, exactly what it should be. This also demonstrates why we insisted
that parametrizations be 1–1 on the interior of their domains. If φ were not 1–1
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Section 13.1 Curves 527

on (0, 2π), some part of the circle might be traced more than once, giving an
inflated value of its arc length.

Since φ is C p on a closed, bounded interval I , then ‖φ′‖ is integrable on I by
Theorem 12.21. Hence, L(C) is finite for any parametrization of a C p arc C . This
is not necessarily the case if C is merely the continuous image of an interval (the
space-filling curve is continuous but its length is infinite) or if C is the image of
an open interval (see Exercise 13.1.4).

When C is an explicit curve, say y = f (x) on [a, b], and (φ, I ) is the trivial
parametrization, Definition 13.6 becomes

L(C) =
∫ b

a

√
1 + ( f ′(x))2 dx .

This agrees with the formula for arc length introduced in elementary calcu-
lus texts.

Before we continue, it is important to realize that every curve has many differ-
ent parametrizations. For example, the line segment {(x, y) ∈ R2 : y = x, 0 <
x ≤ 1} is the trace of φ(t) = (t, t) on (0, 1], of ψ(t) = (t/2, t/2) on (0, 2],
and of σ (t) = (1/t, 1/t) on [1,∞). Although these functions trace the same
line segment, each of them traces it differently. The function ψ traces the line
“twice as slowly” as φ, and σ traces the line “backward” from φ. Therefore, a
parametrization (φ, I ) of C is a specific way of tracing out the points in C .

At this point, it is natural to ask, Does the value of arc length, L(C), remain
the same if we use different parametrizations of C? To answer this question, we
begin by showing that any two parametrizations of the same arc are related by
a one-dimensional change of variables τ .

13.7 Remark. Let I, J be closed bounded intervals and let φ : I → Rm be 1–1
and continuous. Then φ(I ) = ψ(J ) for some continuous ψ : J → Rm if and only
if there is a continuous function τ from J onto I such that ψ = φ ◦ τ .

Proof. Since I is closed and bounded and φ is 1–1 and continuous on I, φ−1 is
continuous from φ(I ) onto I (see Theorem 9.33 or 10.64). Since ψ(J ) = φ(I ),
it follows that τ := φ−1 ◦ ψ is continuous from J onto I .

Conversely, if τ is any continuous function from J onto I , then ψ = φ ◦ τ is
continuous from J onto φ(I ); that is, ψ(J ) = φ(I ). �

Thus if (φ, I ) and (ψ, J ) are C p parametrizations of the same arc and φ is
1–1, then there is a continuous function τ : J → I , called the transition from J
to I , such that ψ = φ ◦ τ , or, equivalently, τ = φ−1 ◦ ψ . It follows that if the
transition is differentiable, then by the Chain Rule,

ψ ′(u) = φ′(τ (u))τ ′(u), u ∈ J. (1)

We are prepared to prove that the definition of arc length does not depend on
the parametrization chosen provided the transition has a nonzero derivative.
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528 Chapter 13 Fundamental Theorems of Vector Calculus

13.8 Remark. If (φ, I ) and (ψ, J ) are C p parametrizations of the same arc, if
ψ = φ ◦ τ , where τ takes J onto I and satisfies τ ′(u) �= 0 for all u ∈ J , then∫

I
‖φ′(t)‖ dt =

∫
J
‖ψ ′(u)‖ du.

Proof. By hypothesis, τ(J ) = I . Hence, it follows from (1) and the Change-
of-Variables Formula (Theorem 12.46) that∫
I
‖φ′(t)‖ dt =

∫
τ(J )

‖φ′(t)‖ dt =
∫

J
‖φ′(τ (u))‖ |τ ′(u)| du =

∫
J
‖ψ ′(u)‖ du. �

We note that the condition τ ′ �= 0 can be relaxed at finitely many points in J
(see Exercise 13.1.8).

One productive way to think about different parametrizations of a curve C is
to interpret φ(t) as the position of a particle moving along C at time t . Different
parametrizations of C represent different flight plans, some faster, some slower,
some forward, and some backward, but all tracing out the same set of points.

13.9 Remark. Let (φ, I ) be a parametrization of a C p curve, and let x0 = φ(t0)
for some t0 ∈ I o. If φ(t) represents the position of a moving particle at time t, then
‖φ′(t0)‖ is the speed of that particle at position x0 and, when φ′(t0) �= 0, φ′(t0) is
a vector which points in the direction of flight at x0.

Proof. Let t0 ∈ I o and notice that, for each sufficiently small h > 0, the
quotient

φ(t0 + h)− φ(t0)

h

is a vector which points in the direction of flight along the curve C (see
Figure 13.3). To calculate the speed of the particle, define the natural
parameter of the curve C := φ(I ) by

s := �(t) :=
∫ t

a
‖φ′(u)‖ du, t ∈ [a, b]. (2)

By the Fundamental Theorem of Calculus, ds/dt = �′(t) = ‖φ′(t)‖. Thus, the
change of arc length s with respect to time at t0 (i.e., the speed of the particle
at x0) is precisely ‖φ′(t0)‖. �

(t0)       

(t0 + h )

T
(t0 +  h ) –       (t0  ) 

h

( I   )

FIGURE 13.3
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By elementary calculus, every explicit C p curve is “smooth” (i.e., has a tangent
line at each of its points). The astroid (Example 13.5) shows that a general C p

curve does not have to be smooth at every point.
Is there an easy way to recognize when a general C p curve has a tangent line

(in the sense of Definition 11.21) at a given point on its trace? To answer this
question, let (φ, I ) be the parametrization of the astroid given in Example 13.5,
and notice that φ′(t) = 0 when t = 0, π/2, π, 3π/2, 2π ; that is, exactly at the
points where the astroid φ(I ) fails to have a tangent line. (Notice that if we
use the flight plan analogy, this condition makes much sense. It is impossible to
draw a curve at a corner without pausing to make the direction change, that is,
without making the velocity of the drawing device zero.)

Could the answer to our question be this simple? Does a curve with para-
metrization (φ, I ) have a tangent line at each point where φ′ �= 0?

13.10 Remark. If (φ, I ) is a parametrization of a C p curve C in R2, and
φ′(t0) �= 0 for some t0 ∈ I o, then C has a tangent line at (x0, y0) := φ(t0).

Strategy: By elementary calculus, the graph of every differentiable function
has a tangent line at each of its points. The curve C is given by x = φ1(t), y =
φ2(t). If we could solve the first equation for t , then by the second equation C is
an explicit curve: y = φ2 ◦ φ−1

1 (x). Thus we must decide: Is φ−1
1 differentiable?

This looks like a job for the Implicit Function Theorem.

Proof. Let (φ1, φ2) represent the components of φ. Since φ′(t0) �= 0, we may
suppose that φ′

1(t0) �= 0. Set F(x, t) = φ1(t) − x and observe by the Implicit
Function Theorem that there is an open interval J0 containing x0 and a con-
tinuously differentiable function g : J0 → I such that φ1(g(x)) = x for all
x ∈ J0 and g(x0) = t0. Thus the graph of y = f (x) := φ2 ◦ g(x), x ∈ J0,
coincides with the trace of φ on g(J0); that is, near (x0, y0). It follows that C
has a tangent line at (x0, y0). �

Accordingly, we make the following definition.

13.11 Definition.

Let (φ, I ) be a parametrization of a C p curve C .

i) (φ, I ) is said to be smooth at t0 ∈ I if and only if φ′(t0) �= 0.
ii) (φ, I ) is called smooth if and only if it is smooth at each point of I , in which

case we call φ′ the tangent vector of C induced by (φ, I ).
iii) A curve is called smooth if and only if it has a smooth parametrization,

unless it is a closed arc, in which case we also insist that one of its smooth
parametrizations (ψ, [c, d]) satisfies ψ ′(c) = ψ ′(d).

By definition, then, if a curve C has a smooth parametrization, then C is
smooth. The converse of this statement is false, even for arcs.
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530 Chapter 13 Fundamental Theorems of Vector Calculus

13.12 Remark. Every smooth arc has nonsmooth parametrizations.

Proof. Let (φ, [a, b]) be a smooth parametrization of a smooth arc C . We
may suppose (by a preliminary change of variables) that 0 ∈ (a, b). Then
ψ(t) := φ(t3), J = ( 3

√
a, 3

√
b) is a parametrization of C . It is NOT smooth,

however, since ψ ′(t) = φ′(t3) · 3t2 = 0 when t = 0. �

This raises another question: When does a change in parametrization pre-
serve smoothness? To answer this question, suppose that (φ, I ) and (ψ, J ) are
parametrizations of the same curve, with φ 1–1 and (φ, I ) smooth. If the transi-
tion τ , from J to I , is differentiable, then, by (1), (ψ, J ) is smooth if and only if
τ ′(u) �= 0 for all u ∈ J . This leads us to the following definition.

13.13 Definition.

Two C p parametrizations (φ, I ), (ψ, J ) are said to be smoothly equivalent if
and only if they are smooth parametrizations of the same curve, and there is a
C p function τ , called the transition from J to I , such that ψ = φ ◦ τ, τ (J ) = I ,
and τ ′(u) �= 0 for all u ∈ J .

Thus, by Remark 13.8, the arc length of a curve is the same under smoothly
equivalent parametrizations.

Notice that since τ ′ is continuous and nonzero, either τ ′ is positive on J or τ ′
is negative on J . Hence, by Theorem 4.17i, a transition τ between two smoothly
equivalent parametrizations is always 1–1.

The following integral can be interpreted as the mass of a wire on a curve with
density g (see Appendix E).

13.14 Definition.

Let C be a smooth arc in Rm with parametrization (φ, I ), and let g : C → R be
continuous. Then the line integral of g on C is∫

C
g ds:=

∫
I

g(φ(t))‖φ′(t)‖ dt. (3)

For an explicit curve C given by y = f (x), x ∈ [a, b], this integral becomes

∫
C

g ds =
∫ b

a
g(x, f (x))

√
1 + | f ′(x)|2 dx .

We note that by Definition 13.6, the line integral (3) equals the arc length of C
when g = 1. This explains the notation ds. Indeed, the parameter s represents
arc length [see (2) above], so, by the Fundamental Theorem of Calculus, ds/dt =
‖φ′(t)‖. Hence, the Leibnizian differential of s satisfies ds = ‖φ′(t)‖ dt . We also
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note that the line integral of a function g on a curve is the same under smoothly
equivalent parametrizations (see Exercise 13.1.8).

Since a line integral is a one-dimensional integral, it can often be evaluated
by the techniques discussed in Chapter 5.

13.15 EXAMPLE.

Find
∫

C g ds, where g(x, y) = 2x + y, C = φ(I ), φ(t) = (cos t, sin t), and
I = [0, π/2].

Solution. Since ‖φ′(t)‖ = ‖(− sin t, cos t)‖ = 1, we have

∫
C

g ds =
∫ π/2

0
(2 cos t + sin t) dt = 3. �

For even the simplest applications, we must have a theory rich enough to
handle curves, like the boundary of the unit square ∂([0, 1] × [0, 1]), which are
not smooth but a union of smooth pieces. Consequently, we extend the theory
developed above to finite unions of smooth curves as follows.

A subset C of Rm is called a piecewise smooth curve (respectively, a piecewise
smooth arc) if and only if C = ∪N

j=1C j , where each C j is a smooth curve (respec-
tively, arc) and for each j �= k either C j and Ck are disjoint or they intersect at
a single point. Thus a piecewise smooth curve might consist of several disjoint
smooth pieces, like the boundary of an annulus 0 < a2 < x2 + y2 < b2, or sev-
eral connected pieces with corners, like the boundary of the perforated square
([0, 3] × [0, 3])\([1, 2] × [1, 2]).

Let C = ∪N
j=1C j be a piecewise smooth curve. By a parametrization of C we

mean a collection of smooth parametrizations (φ j , I j ) of C j . Two parametriza-
tions ∪N

j=1(φ j , I j ) and ∪N
j=1(ψ j , J j ) of C are said to be smoothly equiva-

lent if and only if (φ j , I j ) and (ψ j , J j ) are smoothly equivalent for each
j ∈ {1, . . . , N }. Finally, if C is a piecewise smooth arc, then the arc length of
C is defined by

L(C) :=
N∑

j=1

L(C j ),

and the line integral on C of a continuous function g : C → R is defined by

∫
C

g ds =
N∑

j=1

∫
C j

g ds.

13.16 EXAMPLE.

Parametrize the boundary C of the unit square [0, 1] × [0, 1] and compute∫
C g ds, where g(x, y) = x2 + y3.
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532 Chapter 13 Fundamental Theorems of Vector Calculus

Solution. C has four smooth pieces which can be parametrized by

φ1(t) = (t, 0), φ2(t) = (1, t), φ3(t) = (t, 1), φ4(t) = (0, t),

for t ∈ [0, 1]. Since ‖φ′
j (t)‖ = 1, we have, by definition,

∫
C

g ds =
∫ 1

0
t2 dt +

∫ 1

0
(1 + t3) dt +

∫ 1

0
(t2 + 1) dt +

∫ 1

0
t3 dt = 19

6
. �

We close this section with a geometric justification of Definition 13.6 which will
not be used elsewhere.

(t0)    

(t1)
(t2)

(t3)

(I )

(t4)

FIGURE 13.4

The arc length of some non-C p curves can be defined by using line seg-
ments for approximation (see Figure 13.4). Namely, we say that a curve C with
parametrization (φ, I ) is rectifiable if and only if

‖C‖:= sup

⎧⎨
⎩

k∑
j=1

‖φ(t j )− φ(t j−1)‖ : {t0, t1, . . . , tk} is a partition of I

⎫⎬
⎭

is finite, in which case we call ‖C‖ the arc length of C .
The following result shows that every C p arc is rectifiable, and the two defini-

tions we have given for arc length agree.

∗13.17 Theorem. If C is a C p arc, then ‖C‖ is finite, and L(C) = ‖C‖.

Strategy: The idea behind the proof is simple. By the Mean Value Theorem,
each term ‖φ(t j ) − φ(t j−1)‖ which appears in the definition of ‖C‖ is approxi-
mately ‖φ′(t j )‖(t j − t j−1), a term of a Riemann sum of the integral of ‖φ′(t)‖.
Thus, we begin by controlling the size of ‖φ′(t j )‖.

Proof. Let ε > 0, write φ = (φ1, φ2, . . . , φm), and set

F(x1, . . . , xm) =
(

m∑
�=1

|φ′
�(x�)|2

)1/2
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for (x1, . . . , xm) in the cube I m := I ×· · ·×I . By hypothesis, F is continuous on
I m , and I m is evidently closed and bounded. Thus, F is uniformly continuous
on I m ; that is, there is a δ > 0 such that

x, y ∈ I m and ‖x − y‖ < δ imply |F(x)− F(y)| < ε

2|I | .

Let P = {u0, . . . , uN } be any partition of I . By Theorem 5.18, choose a
partition P0 = {t0, t1, . . . , tk} of I finer than P such that ‖P0‖ < δ/

√
m and

∫
I
‖φ′(t)‖ dt − ε

2
<

k∑
j=1

‖φ′(t j )‖(t j − t j−1) <

∫
I
‖φ′(t)‖ dt + ε

2
.

Fix � ∈ {1, . . . ,m} and j ∈ {1, . . . , k}. By Theorem 4.15ii (the one-dimensional
Mean Value Theorem), choose a point c j (�) ∈ [t j−1, t j ] such that

φ�(t j )− φ�(t j−1) = φ′
�(c j (�))(t j − t j−1).

Since ‖P0‖ < δ/
√

m, we have |F(t j , . . . , t j )− F(c j (1), . . . , c j (m))| < ε/(2|I |).
Since φ′(t) = (φ′

1(t), . . . , φ
′
m(t)), we also have F(t j , . . . , t j ) = ‖φ′(t j )‖ and

F(c j (1), . . . , c j (m))(t j − t j−1) =
(

m∑
�=1

|φ′
�(c j (�))|2

)1/2

(t j − t j−1)

= ‖φ(t j )− φ(t j−1)‖.
It follows that

k∑
j=1

‖φ′(t j )‖(t j − t j−1)− ε

2
<

k∑
j=1

‖φ(t j )− φ(t j−1)‖<
k∑

j=1

‖φ′(t j )‖(t j − t j−1)+ε
2
.

Combining this double inequality with the preceding one, we obtain

∫
I
‖φ′(t)‖ dt − ε <

k∑
j=1

‖φ(t j )− φ(t j−1)‖ <
∫

I
‖φ′(t)‖ dt + ε.

Using the left-hand inequality and the definition of ‖C‖, we have

L(C)− ε =
∫

I
‖φ′(t)‖ dt − ε <

k∑
j=1

‖φ(t j )− φ(t j−1)‖ ≤ ‖C‖.

It follows from Definition 13.6 that L(C) ≤ ‖C‖. On the other hand, since
P0 = {t0, t1, . . . , tk} is finer than P , it follows from the right-hand inequality
that
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534 Chapter 13 Fundamental Theorems of Vector Calculus

N∑
i=1

‖φ(ui )− φ(ui−1)‖ ≤
k∑

j=1

‖φ(t j )− φ(t j−1)‖ <
∫

I
‖φ′(t)‖ dt + ε.

Taking the supremum over all partitions {u0, . . . , uN } of I , we have

‖C‖ ≤
∫

I
‖φ′(t)‖ dt + ε;

that is, ‖C‖ ≤ L(C). �

EXERCISES

13.1.1. Let ψ(t) = (a sin t, a cos t), σ (t) = (a cos 2t, a sin 2t), I = [0, 2π), and
J = [0, π). Sketch the traces of (ψ, I ) and (σ , J ). Note the “direc-
tion of flight” and the “speed” of each parametrization. Compare these
parametrizations with the one given in Example 13.4.

13.1.2. Let a, b ∈ Rm, b �= 0, and set φ(t) = a + tb. Show that C = φ(R) is
a smooth unbounded curve which contains a and a + b. Prove that the
angle between φ(t1)− φ(0) and φ(t2)− φ(0) for any t1, t2 �= 0 is 0 or π .

13.1.3. Let I be an interval and f : I → R be continuously differentiable with

| f (θ)|2 + | f ′(θ)|2 �= 0

for all θ ∈ I . Prove that the graph of r = f (θ) (in polar coordinates) is
a smooth C1 curve in R2.

∗13.1.4. Show that the curve y = sin(1/x), 0 < x ≤ 1, is not rectifiable. Thus
show that Theorem 13.17 can be false if C is not an arc.

13.1.5. Sketch the trace and compute the arc length of each of the following.

a) φ(t) = (et sin t, et cos t, et ), t ∈ [0, 2π]
b) y3 = x2 from (−1, 1) to (1,1)
c) φ(t) = (t2, t2, t2), t ∈ [0, 2]
d) The astroid of Example 13.5

13.1.6. For each of the following, find a (piecewise) smooth parametrization of
C and compute

∫
C g ds.

a) C is the curve y = √
9 − x2, x ≥ 0, and g(x, y) = xy2.

b) C is the portion of the ellipse x2/a2 + y2/b2 = 1, a, b > 0, which lies
in the first quadrant and g(x, y) = xy.

c) C is the intersection of the surfaces x2 + z2 = 4 and y = x2, and
g(x, y, z) = √

1 + yz2.
d) C is the triangle with vertices (0, 0, 0), (1, 0, 0), and (0, 2, 0), and

g(x, y, z) = x + y + z3.

13.1.7. Let C be a smooth arc and gk : C → R be continuous for n ∈ N.
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a) If gk → g uniformly on C , prove that
∫

C gk ds → ∫
C g ds as k → ∞.

∗b) Suppose that {gk} is pointwise monotone and that gk → g pointwise
on C as k → ∞. If g is continuous on φ(I ), prove that

∫
C gk ds →∫

C g ds as k → ∞.

13.1.8. Suppose that (φ, I ) is a parametrization of a smooth arc in Rm , and that
τ : J → R is a C1 function, 1–1 from J onto I . If τ ′(u) �= 0 for all
but finitely many u ∈ J, ψ = φ ◦ τ , and g : φ(I ) → R is continuous,
prove that

∫
I

g(φ(t))‖φ′(t)‖ dt =
∫

J
g(ψ(u))‖ψ ′(u)‖ du.

13.1.9. [The Folium of Descartes]. Let C be the piecewise smooth curve
φ(I1 ∪ I2), where I1 = (−∞,−1), I2 = (−1,∞), and

φ(t) =
(

3t

1 + t3
,

3t2

1 + t3

)
.

Show that if (x, y) = φ(t), then x3 + y3 = 3xy. Sketch C .
13.1.10. The absolute curvature of a smooth curve with parametrization (ψ, I )

at a point x0 = ψ(t0) is the number

κ(x0) = lim
t→t0

θ(t)

�(t)
,

when this limit exists, where θ(t) is the angle between ψ ′(t) and ψ ′(t0),
and �(t) is the arc length of ψ(I ) from ψ(t) to ψ(t0). [Thus κ measures
how rapidly θ(t) changes with respect to arc length.]

a) Given a, b ∈ Rn, b �= 0, prove that the absolute curvature of the
line � from a to b is zero at each point x0 on �.

b) Prove that the absolute curvature of the circle of radius r is 1/r at
each point x0 on C .

13.1.11. Let C be a smooth C2 arc with parametrization (φ, [a, b]), and suppose
that s = �(t) is given by (2). The natural parametrization of C is the pair
(ν, [0, L]), where

ν(s) = (φ ◦ �−1)(s) and L = L(C).

a) Prove that ‖ν′(s)‖ = 1 for all s ∈ [0, L] and the arc length of a
subcurve (ν, [c, d]) of C is d − c. (This is why (ν, [0, L]) is called the
natural parametrization.)

b) Show that ν′(s) and ν′′(s) are orthogonal for each s ∈ [0, L].
c) Prove that the absolute curvature (see Exercise 13.1.10) of (ν, [0, L])

at x0 = ν(s0) is κ(x0) = ‖ν′′(s0)‖.
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536 Chapter 13 Fundamental Theorems of Vector Calculus

d) Show that if x0 = φ(t0) = ν(s0) and m = 3, then

κ(x0) = ‖ν′(s0)× ν′′(s0)‖ = ‖φ′(t0)× φ′′(t0)‖
‖φ′(t0)‖3

.

e) Prove that the absolute curvature of an explicit C p curve y = f (x)
at (x0, y0) under the trivial parametrization is

κ = |y′′(x0)|
(1 + (y′(x0))2)3/2

.

13.2 ORIENTED CURVES

Every parametrization (φ, I ) of a smooth curve C determines a “direction of
flight” along C ; that is, determines the direction φ(t) moves as t increases on I ,
equivalently, the direction in which the tangent vector φ′(t) points. This direc-
tion is called the orientation of C induced by (φ, I ). (The arrows in Figures 13.1
and 13.2 above represent the orientation of the given parametrization.)

If C is smooth and (φ, I ) is one of its smooth parametrizations, then the unit
tangent vector of C at x0 = φ(t0) is defined by

T(x0):= φ′(t0)
‖φ′(t0)‖ .

Suppose that (φ, I ) and (ψ, J ) are smoothly equivalent parametrizations of
the same curve with transition τ . Since τ ′ is continuous and nonzero, either
τ ′ (u) > 0 for all u ∈ J or τ ′(u) < 0 for all u ∈ J . In the first case, the vectors
φ′(τ (u)) and ψ ′(u) point in the same direction [see (1) in Section 13.1]; hence,
these parametrizations determine the same orientation and same unit tangent.
In the second case, the vectors φ′(τ (u)) and ψ ′(u) point in opposite directions
and, hence, determine different orientations and opposite unit tangents. Ac-
cordingly, we make the following definition.

13.18 Definition.

Two parametrizations (φ, I ) and (ψ, J ) are said to be orientation equivalent
if and only if they are smoothly equivalent and the transition τ from J to I
satisfies τ ′(u) > 0 for all u ∈ J .

In practice, a curve and its orientation are often described geometrically. The
reader must provide a parametrization which traces the curve in the prescribed
orientation. Here are two typical examples.

13.19 EXAMPLE.

Find a smooth parametrization of the curve C in R3, oriented in the clockwise
direction when viewed from high up on the positive z-axis, formed by intersect-
ing the surfaces x2 + 5y2 = 5 and z = x2.
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z

y
x

15

FIGURE 13.5

Solution. The elliptical cylinder x2 + 5y2 = 5 intersects the parabolic cylinder
z = x2 to form a “sagging ellipse” (the shaded region in Figure 13.5 repre-
sents that part of z = x2 which lies inside the cylinder x2 + 5y2 = 5). Using
x = √

5 sin t, y = cos t to incorporate clockwise motion around the ellipse
x2 + 5y2 = 5, we see that z = x2 = 5 sin2 t . Thus a smooth parametrization of
C with clockwise orientation is φ(t) = (

√
5 sin t, cos t, 5 sin2 t) on I = [0, 2π]. �

13.20 EXAMPLE.

Find a smooth parametrization of the curve C in R3, oriented from right to left
when viewed from far out the line y = x in the xy-plane, formed by intersecting
the surfaces z = x2 − y2 and x + y = 1.

Solution. The saddle surface z = x2 − y2 intersects the plane x + y = 1 to form
a curve which cuts across the surface. Using x = t as a parameter to incorporate
right to left orientation, we see that y = 1− t and z = t2 − (1− t)2 = 2t −1. Thus
a smooth parametrization of C is φ(t) = (t, 1 − t, 2t − 1) on I = R. In particular,
C is a line in the direction (1,−1, 2) passing through the point (0, 1,−1). �

The following integral arises naturally in the study of fluids, electricity, and
magnetism (e.g., see the discussion that follows this definition).

13.21 Definition.

Let C be a smooth arc in Rm with unit tangent T, and let (φ, I ) be a smooth
parametrization of C . If F : C → Rm is continuous, then the oriented line
integral of F along C is∫

C
F · T ds:=

∫
C

F · dφ:=
∫

I
F(φ(t)) · φ′(t) dt. (4)
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538 Chapter 13 Fundamental Theorems of Vector Calculus

The notation F · dφ is self-explanatory. The notation F · T ds is consistent with
equation (3) in Section 13.1. Indeed, T = φ′(t)/‖φ′(t)‖ and ds = ‖φ′(t)‖ dt , so
in the expression F · T ds, the scalars ‖φ′(t)‖ cancel each other out.

What does this number represent? If F represents the flow of a fluid, then F·T
is the tangential component of F; that is, a measure of fluid flow in the direction
to which the tangent T points (see Appendix E). For example, suppose that C is
the unit circle oriented in the counterclockwise direction and F(x, y) = (−y, x).
The unit tangent to C at a point (x, y) is (−y, x), so F points in the same direction
that T does. Hence, F · T = 1 is an indication that the fluid is flowing “with
the tangent” rather than against it. On the other hand, if G(x, y) = (y,−x) and
H(x, y) = (x, y), then G ·T = −1 because the fluid is flowing against the tangent,
and H · T = 0 because the fluid is flowing orthogonally to T (e.g., neither with
nor against it). Therefore, the integral of F · T ds over C is a measure of the
circulation of F around C in the direction of the tangent vector. If this integral
is positive, it means that the net flow of the fluid is with T rather than against T.

Since an oriented line integral is a one-dimensional integral, it can of-
ten be evaluated by techniques introduced in Chapter 5. Here is a typical
example.

13.22 EXAMPLE.

Describe the trace of φ(t) = (cos t, sin t, t), t ∈ I = [0, 4π], and compute

∫
C

F · T ds,

where F(x, y, z) = (1, cos z, xy) and C = φ(I ).

Solution. Let (x, y, z) = φ(t). Since x2 + y2 = 1, the trace of φ lies on the
cylinder x2 + y2 = 1, 0 ≤ z ≤ 4π . As t increases, the point (x, y) winds around
the unit circle x2 + y2 = 1 in a counterclockwise direction. Thus the trace of φ is
a spiral (called the circular helix) which winds around the cylinder x2 + y2 = 1
(see Figure 13.6). As t runs from 0 to 4π , this spiral winds around the cylinder
twice, and z runs from 0 to 4π . Since φ′(t) = (− sin t, cos t, 1), we have

∫
C

F · T ds =
∫ 4π

0
(1, cos t, cos t sin t) · (− sin t, cos t, 1) dt

=
∫ 4π

0
(− sin t + cos2 t + sin t cos t) dt = 2π. �

The following result shows that, unlike the line integral
∫

C g ds, the oriented
line integral

∫
C F·T ds can give different values for different smoothly equivalent

parametrizations of the same curve.
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FIGURE 13.6

13.23 Remark. If (φ, I ) and (ψ, J ) are smoothly equivalent but not orientation
equivalent, then ∫

I
F(φ(t)) · φ′(t) dt = −

∫
J

F(ψ(u)) · ψ ′(u) du.

Proof. Let τ be the transition from J to I . Since τ ′ is continuous and nonzero,
it is either positive on J or negative on J . Since (φ, I ) and (ψ, J ) are not
orientation equivalent, it follows that τ ′ is negative on J ; that is, |τ ′(u)| =
−τ ′(u) for u ∈ J . Combining this observation with the Change-of-Variables
Formula (Theorem 12.46) and (1) in Section 13.1, we conclude that∫

I
F(φ(t)) · φ′(t) dt =

∫
J

F(φ(τ (u)) · φ′(τ (u)) |τ ′(u)| du

= −
∫

J
F(ψ(u)) · ψ ′(u) du. �

By the same method, we can show that the oriented integral (4) gives iden-
tical values for orientation equivalent parametrizations of the same curve (see
Exercise 13.2.5). Therefore, to evaluate an oriented integral over a curve C
whose orientation has been described geometrically, we can use any smooth
parametrization of C and adjust the sign of the integral to reflect the prescribed
orientation. Here is a typical example.

13.24 EXAMPLE.

Find ∫
C

F · T ds,

where F(x, y) = (y, xy) and C is the unit circle x2 + y2 = 1 oriented in the
clockwise direction.
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540 Chapter 13 Fundamental Theorems of Vector Calculus

Solution. The parametrization φ(t) = (cos t, sin t), t ∈ [0, 2π], of C has coun-
terclockwise orientation (see Example 13.4). Thus, by Remark 13.23,

∫
C

F · T ds = −
∫ 2π

0
(sin t, sin t cos t) · (− sin t, cos t) dt

=
∫ 2π

0
(sin2 t − sin t cos2 t) dt = π. �

There is another way to represent the oriented integral (4) which uses differ-
ential notation. Recall that if x j = φ j (t), then dx j = φ′

j (t) dt . Hence, formally,
F(φ(t)) · φ′(t) dt looks like

(F1(φ(t))φ
′
1(t)+ · · · + Fm(φ(t))φ

′
m(t)) dt = F1 dx1 + · · · + Fm dxm .

This last expression is called a differential form of degree 1 on Rm (more briefly,
a 1-form) and the functions Fj are called its coefficients. A 1-form is said to
be continuous on a set E if and only if each of its coefficients is continuous
on E . The oriented integral of a continuous 1-form on a smooth arc C in Rm is
defined by ∫

C
F1 dx1 + · · · + Fm dxm :=

∫
C

F · T ds,

where F = (F1, . . . , Fm).
The following example illustrates the fact that differential forms provide a

shorthand for the way an oriented line integral is computed (so we can avoid
parametrizing explicit curves).

13.25 EXAMPLE.

Find ∫
C

y dx + cos x dy,

where C is the explicit curve y = x2 + sin x oriented from (0, 0) to (π, π2).

Solution. Since y = x2 + sin x and dy = (2x + cos x) dx , we have

∫
C

y dx + cos x dy =
∫ π

0
(x2 + sin x) dx +

∫ π

0
cos x (2x + cos x) dx

= π3

3
+ π

2
− 2. �

Let C = ⋃N
j=1 C j be a piecewise smooth arc in Rm (see the discussion pre-

ceding Example 13.16) and T j be a unit tangent vector for C j . If F : C → Rm is
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continuous, then the oriented line integral of F along C induced by the tangents
T j is defined to be

∫
C

F · T ds =
N∑

j=1

∫
C j

F · T j ds.

Ifω is a 1-form continuous on C , then the oriented integral ofω along C is defined
to be ∫

C
ω =

N∑
j=1

∫
C j

ω.

13.26 EXAMPLE.

Find ∫
C

xy dx + (x2 + y2) dy,

where C is the boundary of Q = [0, 1] × [0, 1] oriented in the counterclockwise
direction.

Solution. The boundary C = ∂Q consists of four smooth pieces (see
Figure 13.7): C1 (which lies in the line x = 0), C2 (in y = 0), C3 (in x = 1),
and C4 (in y = 1). For C1, let x = 0 and y run from 1 to 0 (to maintain counter-
clockwise orientation on C). Then

∫
C1

xy dx + (x2 + y2) dy =
∫ 0

1
y2 dy = −1

3
.

Similarly, the integrals over C2, C3, and C4 are 0, 4/3, and −1/2. Hence,

∫
C

F · T ds = −1

3
+ 0 + 4

3
− 1

2
= 1

2
. �

C2 1 x

y

1 C4

C3

C1

FIGURE 13.7
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EXERCISES

13.2.1. For each of the following, sketch the trace of (φ,R), describe its orien-
tation, and verify that it is a subset of the surface S.

a) φ(t) = (3t, 3 sin t, cos t), S = {(x, y, z) : y2 + 9z2 = 9}
b) φ(t) = (t2, t3, t2), S = {(x, y, z) : z = x}
c) φ(t) = (t, t2, sin t), S = {(x, y, z) : y = x2}
d) φ(t) = (cos t, sin t, cos t), S = {(x, y, z) : y2 + z2 = 1}
e) φ(t) = (sin t, sin t, t), S = {(x, y, z) : y = x}

13.2.2. For each of the following, find a (piecewise) smooth parametrization
of C and compute

∫
C F · T ds.

a) C is the curve y = x2 from (1, 1) to (3, 9), and F(x, y) = (xy, y − x).
b) C is the intersection of the elliptical cylinder y2 + 2z2 = 1 with

the plane x = −1, oriented in the counterclockwise direction
when viewed from far out the positive x-axis, and F(x, y, z) =
(
√

x3 + y3 + 5, z, x2).
c) C is the intersection of the bent plane y = |x | with the elliptical

cylinder x2 + 3z2 = 1, oriented in the clockwise direction when
viewed from far out the positive y-axis, and F(x, y, z) = (z,−z,
x + y).

13.2.3. For each of the following, compute
∫

C ω.

a) C is the polygonal path consisting of the line segment from (1,1)
to (2,1) followed by the line segment from (2,1) to (2,3), and ω =
y dx + x dy.

b) C is the intersection of z = x2 + y2 and x2 + y2 + z2 = 1, oriented
in the counterclockwise direction when viewed from high up the
positive z-axis, and ω = dx + (x + y) dy + (x2 + xy + y2) dz.

c) C is the boundary of the rectangle R = [a, b] × [c, d], oriented in
the counterclockwise direction, and ω = xy dx + (x + y) dy.

d) C is the intersection of y = x and y = z2, 0 ≤ z ≤ 1, oriented
from left to right when viewed from far out the y-axis, and ω =√

x dx + cos y dy − dz.

13.2.4. a) Let c ∈ R, δ > 0, and set τ(u) = δu + c for u ∈ R. Prove that if
(φ, I ) is a smooth parametrization of some curve, if J = τ−1(I ),
and if ψ = φ ◦ τ , then (ψ, J ) is orientation equivalent to (φ, I ).

b) Prove that if (φ, I ) is a parametrization of some smooth arc,
then it has an orientation equivalent parametrization of the form
(ψ, [0, 1]).

c) Obtain an analogue of b) for piecewise smooth curves.

13.2.5. Let (φ, I ) be a smooth parametrization of some arc and τ be a C1

function, 1–1 from J onto I , which satisfies τ ′(u) > 0 for all but finitely
many u ∈ J . If ψ = φ ◦ τ , prove that
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Section 13.2 Oriented Curves 543∫
I

F(φ(t)) · φ′(t) dt =
∫

J
F(ψ(u)) · ψ ′(u) du

for any continuous F : φ(I ) → Rm .
13.2.6 . This exercise is used in Section 13.5. Let f : [a, b] → R be C1 on [a, b]

with f ′(t) �= 0 for t ∈ [a, b]. Prove that the explicit curve x = f −1(y),
as y runs from f (a) to f (b), is orientation equivalent to the explicit
curve y = f (x), as x runs from a to b.

13.2.7. Let V �= ∅ be open in R2. A function F : V → R2 is said to be
conservative on V if and only if there is a function f : V → R such
that F = ∇ f on V . Let (x, y) ∈ V and let F = (P, Q) : V → R2 be
continuous on V .

a) Suppose that C(x) is a horizontal line segment terminating at (x, y);
that is, a line segment of the form L((x1, y); (x, y)), oriented from
(x1, y) to (x, y). If C(x) is a subset of V , prove that

∂

∂x

∫
C(x)

F · T ds = P(x, y).

Make and prove a similar statement for ∂/∂y and vertical line seg-
ments in V terminating at (x, y).

b) Let (x0, y0) ∈ V . Prove that

(∗)
∫

C
F · T ds = 0

for all closed piecewise smooth curves C ⊂ V if and only if for all
(x, y) ∈ V , the integrals

f (x, y):=
∫

C(x,y)
F · T ds

give the same value for all piecewise smooth curves C(x, y) which
start at (x0, y0), end at (x, y), and stay inside V .

c) Prove that F is conservative on V if and only if (∗) holds for all
closed piecewise smooth curves C which are subsets of V .

d) Prove that if F is C1 and satisfies (∗) for all closed piecewise smooth
curves C which are subsets of V , then

∂P

∂y
= ∂Q

∂x
.

Note: If V is nice enough, the converse of this statement also holds (see
Exercise 13.6.8).

∗13.2.8. Suppose that f : [0, 1] → R is increasing and continuously differen-
tiable on [0, 1]. Let T be the right triangle whose vertices are (0, f (0)),
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544 Chapter 13 Fundamental Theorems of Vector Calculus

(1, f (0)), and (1, f (1)). If c represents the hypotenuse of T, a and b
represent the legs of T, and L represents the arc length of the explicit
curve y = f (x), x ∈ [0, 1], prove that c ≤ L ≤ a + b.

13.3 SURFACES

In this section we define surfaces and unoriented surface integrals, concepts
which are two-dimensional analogues of arcs and the line integrals discussed
in Section 13.1. Recall that a smooth arc is parametrized on a closed, bounded
interval. On what shall we parametrize a smooth surface? Evidently, we need to
use some type of closed, bounded set in R2. Although we could use rectangles,
such a restriction would be awkward when dealing with explicit surfaces with
curved projections, or with surfaces described by cylindrical or spherical coor-
dinates. It is much more efficient to build greater generality into the definition
of surface, using two-dimensional regions instead of rectangles (i.e., using sets of
the following type for m = 2).

13.27 Definition.

An m-dimensional region is a set E ⊂ Rm such that E = V for some nonempty,
open, connected Jordan region V in Rm .

Notice that every closed, bounded interval is a one-dimensional region, ev-
ery two-dimensional rectangle and the closure of every two-dimensional ball or
ellipse is a two-dimensional region, and every three-dimensional rectangle and
the closure of every three-dimensional ball or ellipsoid is a three-dimensional
region.

13.28 Definition.

A subset S of R3 is called a C p surface (in R3) if and only if there is a pair
(φ, E) such that E is a two-dimensional region, φ : E → R3 is C p on E and
1–1 on Eo, and S = φ(E). In this case we call (φ, E) a parametrization of S, S
the trace of (φ, E), and the equations

x = φ1(u, v), y = φ2(u, v), z = φ3(u, v), (u, v) ∈ E

the parametric equations of S induced by (φ, E).

Earlier, we called the graph of a function z = f (x, y) a surface. The follow-
ing result shows that this designation is compatible with Definition 13.28 when
f is C p.

13.29 EXAMPLE.

Let E be a two-dimensional region and let f : E → R be a C p function. Prove
that the graph of z = f (x, y) is a C p surface.
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Section 13.3 Surfaces 545

Proof. If φ(u, v) = (u, v, f (u, v)), then φ is C p and 1–1 on E , and φ(E) is
the graph of z = f (x, y). [This is called the trivial parametrization of z =
f (x, y).] �

In a similar way we define trivial parametrizations of surfaces of the form x =
f (y, z) and y = f (x, z). For example, the trivial parametrization of the surface
x = f (y, z), (y, z) ∈ E , is given by (φ, E), where φ(u, v) = ( f (u, v), u, v). By
an explicit surface over E we shall mean a surface of the form x = f (y, z), y =
f (x, z), or z = f (x, y), where f : E → R is a C p function and E is a two-
dimensional region. By the proof of Example 13.29, every explicit surface is a
C p surface.

The next four examples, which provide model parametrizations for certain
kinds of surfaces, show that not every surface is an explicit surface.

13.30 EXAMPLE.

Show that the truncated cylinder x2 + y2 = 1, 0 ≤ z ≤ 2, is a C∞ surface.

Proof. Let φ(u, v) = (cos u, sin u, v) and E = [0, 2π] × [0, 2], and notice that
φ is 1–1 on Eo and C∞ on E . The corresponding parametric equations are
x = cos u, y = sin u, z = v. Clearly, x2 + y2 = 1. Thus φ(E) is a subset of
the cylinder x2 + y2 = 1, 0 ≤ z ≤ 2. Since E is connected, so is φ(E). To see
that φ(E) is the entire cylinder, look at the images of horizontal line segments
in E . The image of the line segment v = v0 is a circle lying in the plane z = v0,
centered at (0, 0, v0), of radius 1 (see Figure 13.8). Thus, as v0 ranges from 0 to
2, the images of horizontal lines v = v0 cover the entire cylinder x2 + y2 = 1,
0 ≤ z ≤ 2. �

(0, 2)

(0, 0)

(2  , 2)

(2  , 0)

v = v0

z

y

x
(1, 0, 0)

(0, 1, 0)

FIGURE 13.8

13.31 EXAMPLE.

Show that the sphere x2 + y2 + z2 = a2 is a C∞ surface.

Proof. Let φ(u, v) = (a cos u cos v, a sin u cos v, a sin v) and E = [0, 2π] ×
[−π/2, π/2]. Clearly, φ is C∞ on E . The corresponding parametric equations
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546 Chapter 13 Fundamental Theorems of Vector Calculus

are x = a cos u cos v, y = a sin u cos v, z = a sin v. Since x2 + y2 = a2 cos2 v,
we have x2 + y2 + z2 = a2. Thus φ(E) is a subset of the sphere centered at the
origin of radius a. The image of the horizontal line segment v = v0 is a cir-
cle, lying in the plane z = a sin v0, centered at (0, 0, a sin v0) of radius a cos v0
(see Figure 13.9). The image of the top edge (respectively, bottom edge) of
E (i.e., of the horizontal line v = π/2) (respectively, v = −π/2) is the north
pole (0, 0, a) [respectively, the south pole (0, 0,−a)]. Thus, as v0 ranges from
−π/2 to π/2, the images of horizontal lines v = v0 cover the entire sphere
x2 + y2 + z2 = a2. �

(2  ,    /2)(0,    /2)

(0, –   /2) (2  , –   /2)

v = v0

v = 0

z

yx

(a, 0, 0) (0, a, 0)

(0, 0, a)

FIGURE 13.9

Let C represent the circle in the xz-plane centered at (a, 0, 0) of radius b,
where a > b. The torus centered at the origin with radii a > b is the donut-
shaped surface obtained by revolving C about the z axis (see Figure 13.10).

(–   ,    )

(–   , –   )

z

x y
(0, a + b, 0)

(   ,    )
v = v0

u = 0

(  , –   )

(a + b, 0, 0)

FIGURE 13.10

13.32 EXAMPLE.

Show that the torus centered at the origin with radii a > b is a C∞ surface.

Proof. Let φ(u, v) = ((a + b cos v) cos u, (a + b cos v) sin u, b sin v) and E =
[−π, π] × [−π, π], and notice that φ is 1–1 on Eo and C∞ on E . The image of
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Section 13.3 Surfaces 547

u = 0 is a circle in the xz-plane centered at (a, 0, 0) of radius b. The images
of horizontal lines v = v0 are circles, parallel to the xy-plane, centered at
(0, 0, b sin v0) of radius (a + b cos v0). The image of the lines v = ±π is a circle
in the xy-plane centered at (0, 0, 0) of radius a − b. Thus φ(E) covers the
entire torus. �

13.33 EXAMPLE.

Let b > 0. Show that the truncated cone z = √
x2 + y2, 0 ≤ z ≤ b, is a C∞

surface.

Proof. Let (x, y, z) = φ(u, v) = (v cos u, v sin u, v) and E = [0, 2π] × [0, b],
and notice that φ is 1–1 on Eo and C∞ on E . Clearly, x2 + y2 = z2 and
0 ≤ z ≤ b. Thus φ(E) is a subset of the given cone. The image of a horizontal
line v = v0, 0 < v0 ≤ b, is a circle in the plane z = v0 centered at (0, 0, v0) of
radius v0 (see Figure 13.11). Thus φ(E) is the cone z = √

x2 + y2, 0 ≤ z ≤ b.
Notice that the image of the line v = 0 is the vertex (0, 0, 0). �

(0, b)

v = v0

(2  , b)

(0, 0) (2  , 0)

z

b

b

x y

FIGURE 13.11

Let S be a C p surface with parametrization (φ, E), and suppose that (u0, v0) ∈
Eo. If φ = (φ1, φ2, φ3), then by the Implicit Function Theorem (see the proof
of Remark 13.10), we can show that if at least one of the partial Jacobians is
nonzero at (u0, v0)—that is, if

�φi ,φ j (u0, v0) := ∂(φi , φ j )

∂(u, v)
(u0, v0) �= (0, 0, 0) (5)

for some i �= j—then there is a C p explicit surface (ψ, B) such that
(x0, y0, z0) := φ(u0, v0) ∈ ψ(B) and ψ(B) ⊂ φ(E). Since differentiable ex-
plicit surfaces have tangent planes (see Theorem 11.22), it follows that if (5) is
satisfied for some i �= j and (x0, y0, z0) = φ(u0, v0), then S has a tangent plane
at (x0, y0, z0).
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548 Chapter 13 Fundamental Theorems of Vector Calculus

The following result shows how to use a parametrization of a surface to com-
pute a normal to its tangent plane.

13.34 Remark. Let S be a C p surface, let (φ, E) be one of its parametrizations,
and set φ =: (φ1, φ2, φ3). If (5) holds at some (u0, v0) ∈ Eo and some i �= j , then
a normal to the tangent plane of S at (x0, y0, z0) = φ(u0, v0) is given by

(φu × φv)(u0, v0) := (
�φ2,φ3(u0, v0),�φ3,φ1(u0, v0),�φ1,φ2(u0, v0)

)
. (6)

Proof. Let Π be the tangent plane to S at φ(u0, v0). To compute a normal
to Π we need only find two vectors which lie in Π . But φu(u0, v0) is tan-
gent to the curve φ(u, v0) and φv(u0, v0) is tangent to the curve φ(u0, v) (see
Figure 13.3). Hence, φu(u0, v0) and φv(u0, v0) both lie in� (see Figure 13.12).
Therefore, a normal to � at (x0, y0, z0) is given by the cross product

φu(u0, v0)× φv(u0, v0) = (�φ2,φ3(u0, v0),�φ3,φ1(u0, v0),�φ1,φ2(u0, v0)). �

N

u
v

(E )

tangent plane

FIGURE 13.12

If (φ, E) is a parametrization of a C1 surface S, we shall use the notation

Nφ(u, v) := φu(u, v)× φv(u, v), (u, v) ∈ E,

to represent the vector (6). When (5) holds for some i �= j , we shall call
Nφ(u0, v0) the normal induced by φ on S. It is easy to check that if z = f (x, y) is
an explicit surface and φ is its trivial parametrization, then Nφ = (− fx ,− fy, 1).
This is equivalent to the normal we used for explicit surfaces before (see
Theorem 11.22).

Normal vectors play the same role for surfaces that tangent vectors played
for curves. (For example, we shall use normal vectors to define area of surfaces,
smooth surfaces, and orientation of surfaces.) Indeed, many of the concepts for
curves can be brought over to surfaces by replacing φ′ by Nφ . For example,
compare the following definition with Definition 13.11.
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Section 13.3 Surfaces 549

13.35 Definition.

Suppose that (φ, E) is a parametrization of a C p surface.

i) (φ, E) is said to be smooth at a point (u0, v0) ∈ E if and only if Nφ(u0,

v0) �= 0 [equivalently, if and only if ‖Nφ(u0, v0)‖ > 0].
ii) (φ, E) is said to be smooth if and only if it is smooth at each point in E .

iii) (φ, E) is said to be smooth off a set E0 ⊂ E if and only if (φ, E) is smooth
at each point in E \ E0.

Notice that the trivial parametrization of an explicit surface is always smooth.
Analogous to the situation for curves, a surface with a smooth parametriza-

tion must have a tangent plane at each of its points (see Exercise 13.3.7). On
the other hand, a surface with tangent planes at each point can have nonsmooth
parametrizations. For example, the parametrization φ of the sphere given in
Example 13.31 satisfies

‖Nφ‖ = ‖(a2 cos u cos2 v, a2 sin u cos2 v, a2 sin v cos v)‖ = a2| cos v|

and, hence, is not smooth when v = ±π/2. (This happens because this
parametrization takes the lines v = ±π/2 to the north and south pole, and,
hence, is not 1–1 there.)

We shall call a surface S smooth if and only if for each point x0 ∈ S there is
a parametrization (φ, E) of S which is smooth at (u0, v0), where x0 = φ(u0, v0).
Other authors call a surface smooth only when it has a smooth parametrization.
This definition is inadequate for most “closed” surfaces (i.e., surfaces which are
the boundary of some three-dimensional region) because those surfaces have no
(globally) smooth parametrizations. (See, e.g., discussion of the parametrization
of the sphere in the preceding paragraph. The sphere IS smooth by our defini-
tion, however, since we can find other parametrizations which are “smooth”
at the north and south poles, for example, the trivial parametrizations of each
hemisphere.) This is typical. Every surface smooth by our definition is a union
of surfaces with smooth parametrizations—see Exercise 13.4.7.

The following result shows what happens to the normal vector Nφ under a
change of parameter.

13.36 Theorem. Let (φ, E) and (ψ, B) be parametrizations of the same C p sur-
face. If τ is a C1 function which takes B into E such that ψ = φ ◦ τ , then

Nψ (u, v) = �τ (u, v)Nφ(τ (u, v))

for each u, v ∈ B.

Proof. Let φ = (φ1, φ2, φ3) and ψ = (ψ1, ψ2, ψ3). By Remark 13.34,

Nψ = (�(ψ2,ψ3), �(ψ3,ψ1), �(ψ1,ψ2)).
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550 Chapter 13 Fundamental Theorems of Vector Calculus

Since, by hypothesis, (ψi , ψ j ) = (φi , φ j ) ◦ τ for i, j = 1, 2, 3, it follows from
the Chain Rule that

�(ψi ,ψ j )(u, v) = �τ (u, v)�(φi ,φ j )(τ (u, v))

for any u, v ∈ B. Therefore, Nψ = �τ · (Nφ◦τ ) on B. �

This leads us to the following definition (compare with Definition 13.13).

13.37 Definition.

Two C p parametrizations (φ, E), (ψ, B) are said to be smoothly equivalent if
and only if they are smooth parametrizations of the same surface and there is
a C p function τ , which takes B onto E , such that ψ = φ ◦ τ and �τ (u, v) �= 0
for all (u, v) ∈ B. The function τ is called the transition from B to E .

Analogous to Definitions 13.6 and 13.14, we define surface area and the sur-
face integral as follows.

13.38 Definition.

Let S be a smooth C p surface and (φ, E) be one of its parametrizations.

i) The surface area of S is defined to be

σ(S):=
∫

E
‖Nφ(u, v)‖ d(u, v).

ii) If g : S → R is continuous, then the surface integral of g on S is defined to
be ∫∫

S
g dσ :=

∫
E

g(φ(u, v)) ‖Nφ(u, v)‖ d(u, v). (7)

The surface integral (7) can be interpreted as the mass of a membrane with
shape φ(E) and density g (see Appendix E). For an explicit C p surface S given
by z = f (x, y), (x, y) ∈ E , this integral looks like∫∫

S
g dσ =

∫
E

g(x, y)
√

1 + f 2
x (x, y)+ f 2

y (x, y) d(x, y). (8)

It can be argued on heuristic grounds that this is the right definition for
surface area (see Appendix E). In fact, we could have defined the surface
area of S by approximating it with planar regions, as we defined ‖C‖ below
Example 13.16, by approximating it by line segments (see Price [10], p. 360).
This approach, however, works only under suitable restrictions. Indeed, even
when using triangular regions to approximate a bounded cylinder, the total area
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of the approximating regions may become infinite (see Spivak [12], p. 130). We
prefer Definition 13.38i because it is both direct and easy to use.

Notice that by Theorem 12.24, (7) makes sense when the normal Nφ(u, v) is
undefined on a set of area zero. Thus the surface integral can be defined for
some nonsmooth surfaces (e.g., for cones).

It is easy to see that surface area and the surface integral are invariant un-
der smoothly equivalent parametrizations, even when the condition �τ �= 0
is relaxed on a closed set of area zero (see Exercise 13.3.5). It is also easy to
see that if a surface S is a subset of R2, then its surface area, as defined by
Definition 13.38, is the same as the area of S, as defined by Definition 12.3 (see
Exercise 13.3.4).

To compute a surface integral, we must find a suitable parametrization of the
given surface and apply Definition 13.38.

13.39 EXAMPLE.

Find
∫∫

S g dσ , where S is the hemisphere z = √
a2 − x2 − y2 and g(x, y, z) =√

z.

Solution. Let φ be the function defined in Example 13.31 and E = [0, 2π] ×
[0, π/2]. Then (φ, E) is a parametrization of the hemisphere S and ‖Nφ‖ =
a2 cos v. Therefore,

∫∫
S

g dσ =
∫∫

E0

a2 cos v
√

a sin v du dv = 2πa5/2
∫ π/2

0
cos v

√
sin v dv = 4π

3
a5/2.

�
Continuity of g is assumed in Definition 13.38 only so that the integral on

the right-hand side of (7) makes sense. If one of the iterated integrals is a con-
vergent improper integral, we can extend the definition of the surface integral
in the obvious way. Using this observation, we now offer a second solution to
Example 13.39 using the trivial parametrization.

Alternate solution. The explicit surface z = √
a2 − x2 − y2 has normal

N = (−zx ,−zy, 1) = (x/z, y/z, 1). [This normal does not exist on ∂Ba(0, 0), but
since ∂Ba(0, 0) is of area zero, we can ignore it when integrating over Ba(0, 0).]
Notice that on S, ‖N‖ = a/z. Thus, by (8) and polar coordinates,

∫∫
S

g dσ =
∫

Ba(0,0)

a
√

z

z
d(x, y) = a

∫ 2π

0

∫ a

0
r(a2 − r2)−1/4 dr dθ = 4π

3
a5/2.

[The inner integral (with respect to r) is an improper integral.] �

For even the simplest applications, we must have a theory rich enough to han-
dle surfaces, like the boundary of the unit cube ∂([0, 1] × [0, 1] × [0, 1]), which
are not smooth but a union of smooth pieces. Consequently, we shall extend the
theory developed above to finite unions of smooth surfaces. This expanded the-
ory will be introduced using informal geometric descriptions instead of formal
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552 Chapter 13 Fundamental Theorems of Vector Calculus

statements. For now, these vague descriptions will suffice because the concrete
surfaces which arise in practice are easy to visualize. (Spivak [12] contains a
rigorous and more mathematically satisfying treatment of these ideas.)

Before describing piecewise smooth surfaces, we must distinguish between in-
terior points (points which lie “inside” a surface) and boundary points (points
which lie on the “edge” of a surface). To illustrate the difference, consider
the truncated cylinder S parametrized by (φ, E) in Example 13.30. A point
(x, y, z) ∈ S lies inside S if 0 < z < 2, and on its edge if z = 0 or z = 2. (Look at
Figure 13.8 to see why this terminology is appropriate.) Naively, we might guess
that (x, y, z) lies on the edge of φ(E) if and only if (x, y, z) /∈ φ(Eo). This guess is
incorrect, even for the cylinder; for example, (1, 0, 1) = φ(0, 1) does not belong
to φ(Eo) but does not belong to an edge of the cylinder either. (Instead, it lies
on a “seam” of S.) Evidently, to define the interior and boundary of a general
surface S, we must describe them geometrically. We cannot define the interior
and boundary of a surface by using a particular parametrization (φ, E).

Accordingly, let S be a C p surface in R3. Imagine yourself standing on a point
(x, y, z) ∈ S. We shall say that (x, y, z) is interior to S if you are surrounded on
all sides by points in S (i.e., if you take a sufficiently small step in any direction
you remain on S). We shall denote the set of interior points of a surface S by
Int(S) and shall define the (manifold) boundary of a surface S by ∂S := S\Int(S).

We have used the same notation to denote the boundary of a surface as we
did to denote the boundary of a set (see Definition 8.34 or 10.37) even though
these concepts are not the same. We made this choice because it homogenizes
the statements of all the fundamental theorems of multidimensional calculus. To
avoid ambiguity, we shall henceforth refer to the boundary of a region E (i.e.,
to E \ Eo) as the topological boundary of E . No confusion will arise because
the only boundary we use in connection with surfaces is the manifold boundary,
and the only boundary we use in connection with m-dimensional regions is the
topological boundary.

A surface S is said to be closed if and only if ∂S = ∅. For example, if a > 0,
then the sphere x2+y2+z2 = a2 is closed, but the hemisphere z = √

a2 − x2 − y2

(respectively, the truncated paraboloid z = x2 + y2, 0 ≤ z ≤ 1) is not closed,
since its boundary is x2 + y2 = a2, z = 0 (respectively, x2 + y2 = 1, z = 1).

By the Jordan Curve Theorem, a closed arc C divides R2 into two or more
disjoint connected sets, the bounded components “surrounded” by C and the
unbounded component which lies “outside” C . This is not the case for closed
surfaces. Indeed, there are closed smooth surfaces (the Klein bottle is one ex-
ample) which surround no points and, hence, do not divide R3 into disjoint sets
(see Hocking and Young [4], p. 237).

A set S ⊂ R3 will be called a piecewise smooth surface if and only if S =
∪N

j=1S j , where each S j = (φ j , E j ) is a smooth surface and for each j �= k either
S j ∩ Sk is empty, or a portion of the boundary of S j is matched to a portion of
the boundary of Sk . Thus a piecewise smooth surface might consist of several
disjoint, smooth surfaces, like the topological boundary of the corona 0 < a ≤
‖(x, y, z)‖ ≤ b, or several connected pieces with ridges, like the concentric boxes
∂[([0, 3]×[0, 3]×[0, 3])\([1, 2]×[1, 2]×[1, 2])]. We make the further restriction

552



Section 13.3 Surfaces 553

that the intersection of any three S j ’s is empty, or a finite set. This prevents a
piecewise smooth surface from doubling back on itself more than once along
any given edge.

Let S = ∪N
j=1S j be a piecewise smooth surface. By a parametrization of S we

mean a collection of smooth parametrizations (φ j , E j ) of S j . Two parametriza-
tions (φ j , E j ), (ψ j , B j ) are said to be smoothly equivalent if and only if (φ j , E j )

is smoothly equivalent to (ψ j , B j ) for j = 1, . . . , N . The boundary, ∂S, of S is
defined to be the union of all points which belong to the closure of an unmatched
portion of ∂S j . (e.g., the boundary of the box formed by removing the face z = 1
from the unit cube [0, 1]× [0, 1]× [0, 1] is the unit square in the plane z = 1, and
the boundary of the union of x2 + y2 = 1, −3 ≤ z ≤ 0, and z = √

1 − x2 − y2 is
the unit circle in the plane z = −3.) The surface area of S is defined by

σ(S) =
N∑

j=1

σ(S j )

and the surface integral of a real-valued function g continuous on S is defined by

∫∫
S

g dσ =
N∑

j=1

∫∫
S j

g dσ.

13.40 EXAMPLE.

Let S be the tetrahedron formed by taking the topological boundary of the re-
gion bounded by x = 0, y = 0, z = 0, and x + y + z = 1. Find a piecewise
smooth parametrization S and compute

∫∫
S g dσ , where g(x, y, z) = x + y2 + z3.

Solution. The tetrahedron has four faces which can be parametrized by
φ1(u, v) = (u, v, 0), φ2(u, v) = (0, u, v), φ3(u, v) = (u, 0, v), φ4(u, v) =
(u, v, 1 − u − v), where (u, v) belongs to E , the triangular region with vertices
(0, 0), (1, 0), and (0, 1). Since ‖Nφ j

‖ = 1 for j = 1, 2, 3 and ‖Nφ4
‖ = √

3,
we have

∫∫
S

g dσ =
∫ 1

0

∫ 1−u

0
(u + v2) dv du +

∫ 1

0

∫ 1−u

0
(u2 + v3) dv du

+
∫ 1

0

∫ 1−u

0
(u + v3) dv du

+ √
3
∫ 1

0

∫ 1−u

0
(u + v2 + (1 − u − v)3)) dv du

=
∫ 1

0

∫ 1−u

0
((2 + √

3)u + u2 + (1 + √
3)v2 + 2v3

+ √
3(1 − u − v)3) dv du
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554 Chapter 13 Fundamental Theorems of Vector Calculus

=
∫ 1

0
((2 + √

3)u − (1 + √
3)u2 − u3 + 1 + √

3

3
(1 − u)3

+ 2 + √
3

4
(1 − u)4) du

= 3

10
(2 + √

3). �

EXERCISES

13.3.1. For each of the following, find the surface area of S.

a) S is the conical shell given by z = √
x2 + y2, where a ≤ z ≤ b.

b) S is the sphere given in Example 13.31.
c) S is the torus given in Example 13.32.

13.3.2. For each of the following, find a (piecewise) smooth parametrization of
S and of ∂S, and compute

∫∫
S g dσ .

a) S is the portion of the surface z = x2 − y2 which lies above the
xy-plane and between the planes x = 1 and x = −1, and g(x, y, z) =√

1 + 4x2 + 4y2.
b) S is the surface y = x3, 0 ≤ y ≤ 8, 0 ≤ z ≤ 4, and g(x, y, z) = x3z.
c) S is the portion of the hemisphere z = √

9 − x2 − y2 which lies out-
side the cylinder 2x2 + 2y2 = 9, and g(x, y, z) = x + y + z.

13.3.3. Find a parametrization (φ, E) of the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1

which is smooth off the topological boundary ∂E .
13.3.4. a) Suppose that E is a two-dimensional region and that S = {(x, y, z) ∈

R3 : (x, y) ∈ E and z = 0}. Prove that

Area (E) =
∫∫

S
dσ

and that ∫∫
S

g dσ =
∫

E
g(x, y, 0) d(x, y)

for each continuous g : E → R.
b) Let f : [a, b] → R be a C p function, let C be the curve in R2 de-

termined by z = f (x), a ≤ x ≤ b, and let S be the surface in
R3 determined by z = f (x), a ≤ x ≤ b, c ≤ y ≤ d. Show that
σ(S) = (d − c)L(C).

c) Let f : [a, b] → R be a C p function and let S be the surface obtained
by revolving the curve y = f (x), a ≤ x ≤ b, about the x-axis. Prove
that the surface area of S is
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σ(S) = 2π
∫ b

a
| f (x)|

√
1 + | f ′(x)|2 dx .

13.3.5. Suppose that ψ(B) and φ(E) are C p surfaces and that ψ = φ ◦ τ , where
τ is a C1 function from B onto Z .

a) If (ψ, B) and (φ, E) are smooth and τ is 1–1 with �τ �= 0 on B,
prove that

∫∫
E

g(φ(u, v))‖Nφ(u, v)‖ du dv =
∫∫

B
g(ψ(s, t))‖Nψ (s, t)‖ ds dt

for all continuous g : φ(E) → R.
∗b) If Z is a closed subset of B of area zero such that (ψ, B) is smooth off

Z , τ is 1–1, and �τ �= 0 on Bo\Z , prove that

∫∫
E

g(φ(u, v))‖Nφ(u, v)‖ du dv =
∫∫

B
g(ψ(s, t))‖Nψ (s, t)‖ ds dt

for all continuous g : φ(E) → R.

13.3.6. Suppose that f : B3(0, 0) → R is differentiable with ‖∇ f (x, y)‖ ≤ 1 for
all (x, y) ∈ B3(0, 0). Prove that if S is the paraboloid 2z = x2 + y2, 0 ≤
z ≤ 4, then ∫∫

S
| f (x, y)− f (0, 0)| dσ ≤ 40π.

13.3.7. Suppose that φ(E) is a C p surface and that (x0, y0, z0) = φ(u0, v0), where
(u0, v0) ∈ Eo. If Nφ(u0, v0) �= 0, prove that φ(E) has a tangent plane at
(x0, y0, z0).

13.3.8. Let ψ(B) be a smooth surface. Set E = ‖ψu‖, F = ψu · ψv , and G =
‖ψv‖. Prove that the surface area of S is

∫
B

√
E2G2 − F2d(u, v).

13.3.9. Suppose that S is a C1 surface with parametrization (φ, E) which is
smooth at (x0, y0, z0) = φ(u0, v0). Let (ψ, I ) be a parametrization of a C1

curve in E which passes through the point (u0, v0) [i.e., there is a t0 ∈ I
such that ψ(t0) = (u0, v0)]. Prove that (φ ◦ψ)′(t0) · (φu ×φv)(u0, v0) = 0.

13.4 ORIENTED SURFACES

Recall that a smooth curve φ(I ) is oriented by using the tangent vector φ′(t)
to choose a “positive direction.” Analogously, a smooth surface S = φ(E) will
be oriented by using the normal vector Nφ to choose a “positive side.” Since
smooth surfaces are by definition connected, such a choice will be possible if S
has two, and only two, sides.

A new complication arises here. There are smooth surfaces which have only
one side. (The following example of such a surface can be made out of paper by
taking a long narrow strip by the narrow edges, twisting it once, and gluing the
narrow edges together.)
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556 Chapter 13 Fundamental Theorems of Vector Calculus

13.41 EXAMPLE. [THE MÖBIUS STRIP].

Sketch the trace of (φ, E), where φ(u, v) = ((2 + v sin(u/2)) cos u, (2 +
v sin(u/2)) sin u, v cos(u/2)) and E = [−π, π] × [−1, 1].
Solution. The image of the horizontal line v = 0 under φ is (2 cos u, 2 sin u, 0)
(i.e., the circle in the xy-plane centered at the origin of radius 2). The image of
each vertical line u = u0 is a line segment in R3 which rotates through space
as u0 increases. For example, the image of u = 0 is (2, 0, v), −1 ≤ v ≤ 1, and
the image of u = ±π is the seam S0 := (−2 ∓ v, 0, 0), −1 ≤ v ≤ 1; that is,
the set of points {(x, 0, 0) : −3 ≤ x ≤ −1}. Thus the trace of (φ, E) is given in
Figure 13.13. �

(   , 1)

z

x
y

(2, 0, 0)

(0,2,0)

(  , –1)

= 0

(–  , –1)

v = 0

u

FIGURE 13.13

To avoid such anomalies, we introduce the following concepts. The unit nor-
mal of a smooth surface S, at a point (x0, y0, z0) on S, induced by one of its
parametrizations (φ, E) is the vector n(x0, y0, z0) = Nφ(u0, v0)/‖Nφ(u0, v0)‖,
where φ(u0, v0) = (x0, y0, z0). Evidently, the unit normal n is well defined
only when

Nφ(u0, v0)

‖Nφ(u0, v0)‖ = Nφ(u1, v1)

‖Nφ(u1, v1)‖ �= 0

for all (u j , v j ) ∈ E which satisfy φ(u j , v j ) = (x0, y0, z0) for j = 0, 1. This
will surely be the case if φ is 1–1 and smooth on E . If φ fails to be 1–1 on
E , however, the unit normal n might not be well defined, even though (φ, E)
is smooth on E [see the Möbius strip above where φ(π, v) = φ(−π, v) but
Nφ(π, v) = −Nφ(−π, v) for all v].

A smooth surface S is said to be orientable if and only if it has a smooth
parametrization (φ, E) which induces an unambiguous unit normal n on S that
varies continuously over S; that is, if φ(u0, v0) = φ(u1, v1), then Nφ(u0, v0) points
in the same direction as Nφ(u1, v1), and if (u2, v2) is near (u0, v0), then Nφ(u2, v2)

points in approximately the same direction as Nφ(u0, v0). (A formal definition
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Section 13.4 Oriented Surfaces 557

of orientable can be found in Spivak [12].) If S is orientable, then its unit normal
can be used to choose a “positive” side (the side from which n points).

Henceforth, by a parametrization of an orientable surface S we mean a smooth
(φ, E) which induces an unambiguous unit normal on S.

13.42 Definition.

Two parametrizations (φ, E) and (ψ, B) are said to be orientation equivalent if
and only if they are parametrizations of the same orientable surface, smoothly
equivalent with transition τ , and �τ (u, v) > 0 for all (u, v) ∈ B.

By Theorem 13.36, if (φ, E) and (ψ, B) are orientation equivalent, then the
normal vectors they generate point in the same direction. Thus the positive side
chosen by (φ, E) is the same as the positive side chosen by (ψ, B).

Oriented surface integrals can be defined using the unit normal in the same
way that oriented line integrals were defined using the unit tangent (compare
the following definition with Definition 13.21).

13.43 Definition.

Let S be a smooth orientable surface with unit normal n determined by a
parametrization (φ, E). If F : S → R3 is continuous, then the oriented sur-
face integral of F on S is∫∫

S
F · n dσ :=

∫
E
(F ◦ φ)(u, v) · Nφ(u, v) d(u, v).

The notation of the left-most integral is consistent with the notation in (7)
since n = Nφ/‖Nφ‖ and dσ = ‖Nφ‖ d(u, v).

Notice that the trivial parametrization always induces an unambiguous nor-
mal on an explicit surface. In fact, if S = {(x, y, z) : z = f (x, y), (x, y) ∈ E},
Definition 13.43 takes the form∫∫

S
F · n dσ =

∫
E

F(x, y, f (x, y)) · (− fx ,− fy, 1) d(x, y). (9)

Things are not so simple for smooth surfaces which are the boundary of
a three-dimensional region (like the sphere) and for surfaces which are not
smooth (like the cone), because their parametrizations have at least one point
where the normal is zero and, hence, the unit normal cannot be defined. Nev-
ertheless, as was the case for the oriented line integral, the oriented surface
integral can be defined when the normal fails to exist on some set of area zero
(see Exercise 13.4.4). We need to be careful, however, with the definition of ori-
entable. If the collection of nonsmooth points cuts across the entire surface (like
the peak of a pup tent or the edge of a pyramid), we have difficulty defining what
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558 Chapter 13 Fundamental Theorems of Vector Calculus

it means to have a “continuously varying” normal. We shall address this prob-
lem for piecewise smooth surfaces at the end of this section. In the meantime,
notice that we can define what it means for a surface S = φ(E) to be orientable
if the set of singularities [i.e., the set of (x, y, z) ∈ R3 such that (x, y, z) = φ(u, v)
for some (u, v) ∈ E which satisfies Nφ(u, v) = 0] is finite. In particular, the
standard parametrizations of spheres and cones can be used in Definition 13.43.

What does an oriented surface integral represent? If F represents the flow of
an incompressible fluid at points on a surface S, then F · n represents the normal
component of F (i.e., the amount of fluid which flows in the direction of n) (see
Appendix E). Thus the integral of F · n dσ on S, a measure of the flow of the
fluid across the surface S in the direction of n, is sometimes called the flux of F
across S. In particular, we should not be surprised when many of these integrals
turn out to be zero.

It is easy to see that the integral of F · n dσ on a surface S does not change
when orientation equivalent parametrizations are used (see Exercise 13.4.4).
The following result shows that a change of orientation changes the value of the
oriented surface integral by a minus sign.

13.44 Remark. If (φ, E) and (ψ, B) are smoothly equivalent but not orientation
equivalent, then

∫
E

F(φ(u, v)) · Nφ(u, v) d(u, v) = −
∫

B
F(ψ(s, t)) · Nψ (s, t) d(s, t).

Proof. Let τ be the transition from B to E . Since �τ is continuous and
nonzero on the connected set B, and (φ, E) and (ψ, B) are not orientation
equivalent, we have �τ < 0 on B. Hence, it follows from Theorem 13.36 and
Theorem 12.46 (the Change-of-Variables Formula) that

∫
B

F(ψ(s, t)) · Nψ (s, t) d(s, t) = −
∫

B
|�τ (s, t)|(F ◦ φ ◦ τ )(s, t) · (Nφ ◦ τ )(s, t)

= −
∫

τ (B)
F(φ(u, v)) · Nφ(u, v) d(u, v)

= −
∫

E
F(φ(u, v)) · Nφ(u, v) d(u, v). �

Therefore, when evaluating an oriented integral on a surface S whose orienta-
tion has been described geometrically, we can use any smooth parametrization
of S and adjust the sign of the integral to reflect the prescribed orientation. Here
is a typical example.

13.45 EXAMPLE.

Find the value of
∫∫

S F · n dσ , where F(x, y, z) = (xy, x − y, z), S is the planar
region x + y + z = 1, (x, y) ∈ [0, 1] × [0, 1], and n is the downward–pointing
normal.
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Solution. The usual normal (1, 1, 1) of the plane x + y + z = 1 points upward
rather than downward. Thus, by Remark 13.44,

∫∫
S

F · n dσ = −
∫ 1

0

∫ 1

0
(xy, x − y, 1 − x − y) · (1, 1, 1) dx dy = −1

4
. �

It is convenient to have a “differential” version of oriented surface integrals.
To see how to define differentials of degree 2, let S = φ(E) be a smooth ori-
entable surface and x = φ1(u, v), y = φ2(u, v), z = φ3(u, v). By Remark 13.34,

Nφ =
(
∂(y, z)

∂(u, v)
,
∂(z, x)

∂(u, v)
,
∂(x, y)

∂(u, v)

)
.

Therefore, the oriented surface integral of a function F = (P, Q, R) : φ(E) →
R3 has the form∫

E

(
P
∂(y, z)

∂(u, v)
+ Q

∂(z, x)

∂(u, v)
+ R

∂(x, y)

∂(u, v)

)
d(u, v)

=:
∫∫

S
P dy dz + Q dz dx + R dx dy;

that is, we should define differentials of degree 2 by

dy dz := ∂(y, z)

∂(u, v)
d(u, v), dz dx := ∂(z, x)

∂(u, v)
d(u, v), and dx dy := ∂(x, y)

∂(u, v)
d(u, v).

[These are two-dimensional analogues of the differential dy = f ′(x) dx .] By a
2-form (or a differential form of degree 2) on a set � ⊂ R3 we mean an expres-
sion of the form

P dy dz + Q dz dx + R dx dy,

where P, Q, R : � → R. A 2-form is said to be continuous on� if and only if its
coefficients P, Q, R are continuous on �. The oriented integral of a continuous
2-form on a smooth surface S oriented with a unit normal n is defined by

∫∫
S

P dy dz + Q dz dx + R dx dy =
∫∫

S
(P, Q, R) · n dσ.

Differential forms of degree 1 were formal devices used in certain computa-
tions (e.g., to compute an oriented line integral or to estimate the increment of a
function). Similarly, differential forms of degree 2 are formal devices which will
be used in certain computations (e.g., to compute an oriented surface integral).
They can also be used to unify the three fundamental theorems of vector calcu-
lus presented in the next two sections (see Spivak [12]). There is a less formal
way to introduce differentials in which the differential dx can be interpreted as
the derivative of the projection operator (x, y, z) �−→ x (see Spivak [12], p. 89).
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560 Chapter 13 Fundamental Theorems of Vector Calculus

In general, the boundary of a surface is a curve. Since the boundary of the
Möbius strip is a simple closed curve, the boundary of a surface may be ori-
entable even when the surface is not.

Suppose that S is an oriented surface and that ∂S is a piecewise smooth curve.
The orientation of S can be used to induce an orientation on ∂S in the following
way. Imagine yourself standing close to ∂S on the positive side of S. The direc-
tion of positive flow on ∂S moves from right to left (i.e., as you walk around the
boundary on the positive side of S in the direction of positive flow, the surface
lies on your left). This orientation of ∂S is called the positive orientation, the
right-hand orientation, or the orientation on ∂S induced by the orientation of S.
When S is a subset of R2 (i.e., of the xy-plane), we shall say that ∂S is oriented
positively if it carries the orientation induced by the upward pointing normal on
S (i.e., the normal which points toward the upper half space z ≥ 0). Thus if
S is a bounded subset of R2 whose boundary is a connected piecewise smooth
closed curve, then the usual orientation on S induces a counterclockwise orien-
tation on ∂S when viewed from high up on the positive z-axis. This is not the
case, however, when E has interior “holes.” For example, if E = {(x, y) : a2 <

x2 + y2 < b2} for some a > 0, then the positive orientation is counterclockwise
on {(x, y) : x2 + y2 = b2} but clockwise on {(x, y) : x2 + y2 = a2}. This informal
geometric description is sufficient to identify the induced orientation in most
concrete situations. Here is a typical example.

13.46 EXAMPLE.

Let S be the truncated paraboloid z = x2+ y2, 0 ≤ z ≤ 4, with outward-pointing
normal. Parametrize ∂S with positive orientation.

Solution. The boundary of S is the circle x2 + y2 = 4 which lies in the z =
4 plane. The positive orientation is clockwise when viewed from high up the
z-axis. Therefore, a parametrization of ∂S is given by φ(t) = (2 sin t, 2 cos t, 4),
t ∈ [0, 2π]. �

How do we extend these ideas to piecewise smooth surfaces? If S = ∪S j ,
it is not enough to assume that each S j is orientable, because the Möbius strip
is the union of two orientable surfaces, namely φ(E1) and φ(E2), where φ is
given by Example 13.41 and Ek = [π(k − 2), π(k − 1)] × [−1, 1], k = 1, 2.
We shall say that a piecewise smooth surface S = ∪S j is orientable if and only
if one can use the normals ±Nφ j

to generate a unit normal n j on each piece
S j which identifies the “positive side” in a consistent way (e.g., all normals on
one connected piece point outward and all normals on another connected piece
point inward). If S = ∪N

j=1S j is orientable, then the oriented surface integral of
a continuous function F : S → R3 is defined to be∫∫

S
F · n dσ =

N∑
j=1

∫∫
S j

F · n j dσ.

The following three examples provide further explanation of these ideas.
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13.47 EXAMPLE.

Evaluate ∫∫
S

F · n dσ,

where S is the topological boundary of the solid bounded by the cylinder x2 +
y2 = 1 and the planes z = 0, z = 2; n is the outward-pointing normal; and
F(x, y, z) = (x, 0, y).

z

y

x

(0, 0, 2)

S3

S1

(0,1, 0)(1, 0, 0)

S2

FIGURE 13.14

Solution. This surface has three smooth pieces: a vertical side S1, a bottom S2,
and a top S3 (see Figure 13.14). Parametrize S1 by φ(u, v) = (cos u, sin u, v),
where E = [0, 2π] × [0, 2]. Thus Nφ = (cos u, sin u, 0) and

∫∫
S1

F · n dσ =
∫ 2

0

∫ 2π

0
cos2 u du dv = 2π.

Since the outward-pointing unit normal to S2 is n = (0, 0,−1), we see by
Exercise 13.3.4a that

∫∫
S2

F · n dσ = −
∫

B1(0,0)
y d(x, y) = −

∫ 2π

0

∫ 1

0
r2 sin θ dr dθ = 0.

Similarly, the integral on S3 is also zero. Therefore,

∫∫
S

F · n dσ = 2π + 0 + 0 = 2π. �
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562 Chapter 13 Fundamental Theorems of Vector Calculus

13.48 EXAMPLE.

Find
∫∫

S F · n dσ , where F(x, y, z) = (x + z2, x, z), S is the topological boundary
of the solid bounded by the paraboloid z = x2 + y2 and the plane z = 1, and n is
the outward-pointing normal.

Solution. The surface S has two smooth pieces: the paraboloid S1 given by z =
x2 + y2, 0 ≤ z ≤ 1, and the disk S2 given by x2 + y2 ≤ 1, z = 1. The trivial
parametrization of S1 is φ(u, v) = (u, v, u2 + v2), (u, v) ∈ B1(0, 0). Note that
Nφ = (−2u,−2v, 1) points inward (the wrong way). Thus, by Remark 13.44 and
polar coordinates,∫∫

S1

F · n dσ = −
∫

B1(0,0)
(−2u2 − 2u(u2 + v2)2 − 2uv + (u2 + v2)) d(u, v)

=
∫ 1

0

∫ 2π

0
(2r2 cos2 θ + 2r5 cos θ + 2r2 cos θ sin θ − r2)r dθ dr = 0.

Since the unit outward-pointing normal of S2 is n = (0, 0, 1) and F · n = z = 1
on S2, we see by Exercise 13.3.4a that∫∫

S2

F · n dσ =
∫

B1(0,0)
d(x, y) = Area(B1(0, 0)) = π.

Therefore, ∫∫
S

F · n dσ = 0 + π = π. �

13.49 EXAMPLE.

Compute
∫∫

S F ·n dσ , where F(x, y, z) = (x, y, z); S is the topological boundary
of the solid bounded by the hyperboloid of one sheet x2 + y2 − z2 = 1 and the
planes z = −1, z = √

3; and n is the outward-pointing normal to S.

Solution. The surface S has three smooth pieces: a top S1, a side S2, and a
bottom S3 (see Figure 13.15). Using n = (0, 0, 1) for S1, we have∫∫

S1

F · n dσ =
∫

B2(0,0)

√
3 d(x, y) = 4

√
3π.

Similarly, ∫∫
S3

F · n dσ = 2π.

To integrate F · n on S2, let z = u and note that x2 + y2 = 1 + u2. Thus φ(u, v) =
((1 + u2)cos v, (1 + u2)sin v, u), (u, v) ∈ [−1,

√
3] × [0, 2π], is a parametrization

of S2. Since Nφ = (−(1 + u2)cos v,−(1 + u2)sin v, 2u(1 + u2)) points inward and
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z
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x

S1

S2

(1, 0, 0) (0,1, 0)

S3 (0, 0, –1)

(0, 0,   3)

FIGURE 13.15

F · Nφ = ((1 + u2)cos v, (1 + u2)sin v, u)·
· (−(1 + u2)cos v,−(1 + u2)sin v, 2u(1 + u2))

= −(1 + u2)2 + 2u2(1 + u2) = u4 − 1,

we have ∫∫
S2

F · n dσ = −
∫ √

3

−1

∫ 2π

0
(u4 − 1) dv du

= 2π
∫ √

3

−1
(1 − u4) du = 8π

5
(1 − √

3).

Therefore,∫∫
S

F · n dσ = 4
√

3π + 2π + 8π

5
(1 − √

3) = 6π

5
(3 + 2

√
3). �

EXERCISES

13.4.1. For each of the following, find a (piecewise) smooth parametrization of
∂S which agrees with the induced orientation, and compute

∫
∂S F · T ds.

a) S is the truncated paraboloid y = 9 − x2 − z2, y ≥ 0, with outward-
pointing normal, and F(x, y, z) = (x2 y, y2x, x + y + z).

b) S is the portion of the plane x + 2y + z = 1 which lies in the first oc-
tant, with normal which points away from the origin, and F(x, y, z) =
(x − y, y − x, xz2).

c) S is the truncated paraboloid z = x2 + y2, 1 ≤ z ≤ 4, with outward-
pointing normal, and F(x, y, z) = (5y + cos z, 4x − sin z, 3x cos z +
2y sin z).
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13.4.2. For each of the following, compute
∫∫

S F · n dσ .

a) S is the truncated paraboloid z = x2+y2, 0 ≤ z ≤ 1, n is the outward-
pointing normal, and F(x, y, z) = (x, y, z).

b) S is the truncated half-cylinder z = √
4 − y2, 0 ≤ x ≤ 1, n is outward-

pointing normal, and F(x, y, z) = (x2 + y2, yz, z2).
c) S is the torus in Example 13.32, n is the outward-pointing normal,

and F(x, y, z) = (y,−x, z).
d) S is the portion of z = x2 which lies inside the cylinder x2 + y2 = 1, n

is the upward-pointing normal, and F(x, y, z) = (y2z, cos(2 + log(2 −
x2 − y2)), x2z).

13.4.3. For each of the following, compute
∫∫

S ω.

a) S is the portion of the surface z = x4 + y2 which lies over the unit
square [0, 1]×[0, 1], with upward-pointing normal, and ω = x dy dz+
y dz dx + z dx dy.

b) S is the upper hemisphere z = √
a2 − x2 − y2, with outward-pointing

normal, and ω = x dy dz + y dz dx .
c) S is the spherical cap z = √

a2 − x2 − y2 which lies inside the cylinder
x2 + y2 = b2, 0 < b < a, with upward-pointing normal, and ω =
xz dy dz + dz dx + z dx dy.

d) S is the truncated cone z = 2
√

x2 + y2, 0 ≤ z ≤ 2, with normal which
points away from the z-axis, and ω = x dy dz + ydz dx + z2 dx dy.

13.4.4. Suppose that ψ(B) and φ(E) are C p surfaces and that ψ = φ ◦ τ , where
τ is a C1 function from B onto E .

a) If (ψ, B) and (φ, E) are smooth, and τ is 1–1 with �τ > 0 on B,
prove for all continuous F : φ(E) → R3 that

∫
E

F(φ(u, v)) · Nφ(u, v) d(u, v) =
∫

B
F(ψ(s, t)) · Nψ (s, t) d(s, t).

∗b) Suppose that Z is a closed subset of B of area zero, that (ψ, B) is
smooth off Z , and that τ is 1–1 with �τ > 0 on Bo\Z . Prove for all
continuous F : φ(E) → R3 that

∫
E

F(φ(u, v)) · Nφ(u, v) d(u, v) =
∫

B
F(ψ(s, t)) · Nψ (s, t) d(s, t).

13.4.5. Let E be the solid tetrahedron bounded by x = 0, y = 0, z = 0, and
x + y + z = 1, and suppose that its topological boundary, T = ∂E ,
is oriented with outward-pointing normal. Prove for all C1 functions
P, Q, R : E → R that

∫∫
∂E

P dy dz + Q dz dx + R dx dy =
∫∫∫

E
(Px + Qy + Rz) dV .

564



Section 13.5 Theorems of Green and Gauss 565

13.4.6. Let T be the topological boundary of the tetrahedron in Exercise 13.4.5,
with outward-pointing normal, and S be the surface obtained by taking
away the slanted face from T (i.e., S has three triangular faces, one each
in the planes x = 0, y = 0, z = 0). If ∂S is oriented positively, prove for
all C1 functions P, Q, R : S → R that∫

∂S
P dx + Q dy + R dz =

∫∫
S
(Ry − Qz) dy dz + (Pz − Rx ) dz dx

+ (Qx − Py) dx dy.

13.4.7. Suppose that S is a smooth surface.

a) Show that there exist smooth parametrizations (φ j , E j ) of portions
of S such that S = ∪N

j=1φ j (E j ).
b) Show that there exist nonoverlapping surfaces S j with smooth

parametrizations such that S = ∪N
j=1S j . What happens if S is

orientable?

13.5 THEOREMS OF GREEN AND GAUSS

Recall by the Fundamental Theorem of Calculus that if f is a C1 function, then

f (b)− f (a) =
∫ b

a
f ′(t) dt.

Thus the integral of the derivative f ′ on [a, b] is completely determined by the
values f takes on the topological boundary {a, b} of [a, b].

In the next two sections we shall obtain analogues of this theorem for func-
tions F : � → Rm , where � is a surface or an m-dimensional region, m = 2 or 3.
Namely, we shall show that the integral of a “derivative” of F on� is completely
determined by the values F takes on the “boundary” of �. Which “derivative”
and “boundary” we use depends on whether � is a surface or an m-dimensional
region and whether m = 2 or 3.

Our first fundamental theorem applies to two-dimensional regions in
the plane.

13.50 Theorem. [GREEN’S THEOREM].
Let E be a two-dimensional region whose topological boundary ∂E is a piece-
wise smooth C1 curve oriented positively. If P, Q : E → R are C1 and
F = (P, Q), then

∫
∂E

F · T ds =
∫∫

E

(
∂Q

∂x
− ∂P

∂y

)
d A.

Proof for special regions. We will prove Green’s Theorem when E is a finite
union of nonoverlapping regions each of which is of types I and II. For a proof
of Green’s Theorem as stated, see Spivak [12].
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566 Chapter 13 Fundamental Theorems of Vector Calculus

Suppose first that E is a single region of types I and II. Write the integral on
the left in differential notation,∫

∂E
P dx + Q dy =

∫
∂E

P dx +
∫
∂E

Q dy =: I1 + I2.

We evaluate I1 first. Since E is of type I, choose continuous functions f, g :
[a, b] → R such that

E = {(x, y) ∈ R2 : a ≤ x ≤ b, f (x) ≤ y ≤ g(x)}.
Thus ∂E has a top y = g(x), a bottom y = f (x), and (possibly) one or two
vertical sides (see Figure 13.16).

a vertical side

y = g(x)

y = f (x)

x

y

FIGURE 13.16

Since the positive orientation is counterclockwise, the trivial parametrization
of the top is y = g(x), where x runs from b to a, and of the bottom is y = f (x),
where x runs from a to b. Since dx = 0 on any vertical curve, the contribution
of the vertical sides to I1 is zero. Thus it follows from Definition 13.21 and the
one-dimensional Fundamental Theorem of Calculus that

I1 =
∫
∂E

P dx =
∫ b

a
P(x, f (x)) dx +

∫ a

b
P(x, g(x)) dx

= −
∫ b

a
(P(x, g(x))− P(x, f (x)) dx

= −
∫ b

a

∫ g(x)

f (x)

∂P

∂y
(x, y) dy dx = −

∫∫
E

∂P

∂y
d A.

Since E is of type II, a similar argument establishes

I2 =
∫
∂E

Q dy =
∫∫

E

∂Q

∂x
d A.

[Here, we have changed parametrizations of ∂E , for example, replaced y = f (x)
by x = f −1(y). The value of the oriented integral does not change because these
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E1    

C

E2

x

y

FIGURE 13.17

parametrizations are orientation equivalent—see Exercise 13.2.6.] Adding I1
and I2 completes the proof when E is of type I and II.

Since disjoint regions have disjoint boundaries, it remains to verify Green’s
Theorem for two-dimensional regions which can be divided into a finite number
of regions each of which is of types I and II (see Theorem 12.23). By induction,
it is enough to examine a region E which can be divided into two contiguous
regions (see Figure 13.17). Notice that although E is not of type II, the regions
E1 and E2 are both of types I and II. Applying Theorem 13.50 to each piece,
we find

∫∫
E

(
∂Q

∂x
− ∂P

∂y

)
d A =

∫∫
E1

(
∂Q

∂x
− ∂P

∂y

)
d A +

∫∫
E2

(
∂Q

∂x
− ∂P

∂y

)
d A

=
∫
∂E1

F · T ds +
∫
∂E2

F · T ds

=
∫
∂E

F · T ds +
∫

C∩∂E1

F · T ds +
∫

C∩∂E2

F · T ds,

where C is the common border between E1 and E2. Since ∂E1 and ∂E2 are
oriented in the counterclockwise direction, the orientation of C∩∂E1 is different
from the orientation of C ∩ ∂E2. Since a change of orientation changes the sign
of the integral, the integrals along C drop out. The end result is the integral of
F · T ds on ∂E , as promised. �

Green’s Theorem is often used to avoid tedious parametrizations.

13.51 EXAMPLE.

Find
∫
∂E F · T ds, where E = [0, 2] × [1, 3], ∂E has the counterclockwise orien-

tation, and F(x, y) = (xy, x2 + y2).

Solution. Since ∂E has four sides, direct evaluation requires four separate
parametrizations. However, by Green’s Theorem,
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568 Chapter 13 Fundamental Theorems of Vector Calculus∫
∂E

F · T ds =
∫ 2

0

∫ 3

1
(2x − x) dy dx = 4. �

Green’s Theorem is also used to avoid difficult integrals.

13.52 EXAMPLE.

Find
∫
∂E F · Tds, where E = B1(0, 0), ∂E has the clockwise orientation, and

F = (xy2, arctan(log(y + 3))− x)).

Solution. The second component of F looks tough to integrate. However, by
Green’s Theorem,∫

∂E
F · T ds = −

∫∫
B1(0,0)

(−1 − 2xy) dx dy

=
∫ 2π

0

∫ 1

0
(1 + 2r2 cos θ sin θ)r dr dθ = π.

(Note: The minus sign appears because ∂E is oriented in the clockwise
direction.) �

By Green’s Theorem, the “derivative” used to obtain a fundamental theorem
of calculus for two-dimensional regions in R2 is Qx − Py . Here are the “deriva-
tives” which will be used when� is a surface in R3 or a three-dimensional region.

13.53 Definition.

Let E be a subset of R3 and let F = (P, Q, R) : E → R3 be C1 on E . The curl
of F is

curl F =
(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
,

and the divergence of F is

div F = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z
.

Notice that if F = (P, Q, 0), where P and Q are as in Green’s Theorem, then
curl F · k = Qx − Py is the derivative used for Green’s Theorem.

These derivatives take on a more easily remembered form by using the
notation

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

Indeed, curl F = ∇ × F and div F = ∇ · F.
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If E is a three-dimensional region whose topological boundary is a piecewise
smooth orientable surface, then the positive orientation on ∂E is determined by
the unit normal which points away from Eo. If E is convex, this means that n
points outward. This is not the case, however, when E has interior “bubbles.”
For example, if E = {x : a ≤ ‖x‖ ≤ b} for some a > 0, then n points away from
the origin on {x : ‖x‖ = b} but toward the origin on {x : ‖x‖ = a}.

Our next fundamental theorem applies to the case when � is a three-
dimensional region. This result is also called the Gauss’s Theorem.

13.54 Theorem. [THE DIVERGENCE THEOREM].
Let E be a three-dimensional region whose topological boundary ∂E is a piece-
wise smooth C1 surface oriented positively. If F : E → R3 is C1 on E , then

∫∫
∂E

F · n dσ =
∫∫∫

E
div F dV .

Proof for special regions. We will prove the Divergence Theorem when E
is a finite union of nonoverlapping three-dimensional regions each of which is
of types I, II, and III. For a proof of the Divergence Theorem as stated, see
Spivak [12].

Suppose first that E is a single region of types I, II, and III. Let F = (P, Q, R)
and write the surface integral in differential form:

∫∫
∂E

F · n dσ =
∫∫

∂E
P dy dz +

∫∫
∂E

Q dz dx +
∫∫

∂E
R dx dy =: I1 + I2 + I3.

We evaluate I3 first.
Since E is of type I, there exist a two-dimensional region B ⊂ R2 and contin-

uous functions f, g : B → R such that

E = {(x, y, z) ∈ R3 : (x, y) ∈ B, f (x, y) ≤ z ≤ g(x, y)}.

Thus ∂E has a top z = g(x, y), a bottom z = f (x, y), and (possibly) a vertical
side (see Figure 13.18). Any normal to ∂E on the vertical side is parallel to the
xy-plane. Since dx dy is the third component of a normal to ∂E , it must be zero
on the vertical portion. Therefore, I3 can be evaluated by integrating over the
top and bottom of ∂E . Notice that, by hypothesis, the unit normal on the bottom
portion points downward and the unit normal on the top portion points upward.
By using trivial parametrizations and Theorem 5.28 (the Fundamental Theorem
of Calculus), we obtain

I3 =
∫∫

∂E
R dx dy =

∫
B
(R(x, y, g(x, y)− R(x, y, f (x, y)) d(x, y)

=
∫

B

∫ g(x,y)

f (x,y)

∂R

∂z
(x, y, z) dz d(x, y) =

∫∫∫
E

∂R

∂z
dV .
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z

y

x

B

z = f (x,y)

vertical side

z = g (x,y)

FIGURE 13.18

Similarly, since E is of type II,

I2 =
∫∫∫

E

∂Q

∂y
dV,

and since E is of type III,

I1 =
∫∫∫

E

∂P

∂x
dV .

Adding I1 + I2 + I3 verifies the theorem.
Since disjoint regions have disjoint boundaries, it remains to verify the Diver-

gence Theorem for three-dimensional regions which can be divided into a finite
number of regions each of which is of types I, II, and III (see Theorem 12.23).
But if E = E1 ∪ E2 share a common boundary, then

∫∫∫
E

div F dV =
∫∫∫

E1

div F dV +
∫∫∫

E2

div F dV

=
∫∫

∂E
F · n dσ +

∫∫
S∩∂E1

F · n dσ +
∫∫

S∩∂E2

F · n dσ,

where S is the common surface between E1 and E2. Since E1 and E2 have
outward-pointing normals, the orientation of S ∩ ∂E1 is different from the ori-
entation of S ∩ ∂E2, and the integrals over S cancel each other out. �

The next two examples show that, like Green’s Theorem, the Divergence The-
orem can be used to avoid difficult integrals and tedious parametrizations.
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13.55 EXAMPLE.

Use Theorem 13.54 to evaluate
∫∫

S F ·n dσ , where S is the topological boundary
of the solid E = {(x, y, z) : x2 + y2 ≤ z ≤ 1}, n is the outward-pointing normal,
and F(x, y, z) = (2x + z2, x5 + z7, cos(x2)+ sin(y3)− z2).

Solution. Since div F = 2 − 2z, it follows from the Divergence Theorem that

∫∫
S

F · n dσ =
∫∫∫

E
(2 − 2z) dV = 2

∫ 2π

0

∫ 1

0

∫ 1

r2
(1 − z)r dz dr dθ = π

3
. �

13.56 EXAMPLE.

Evaluate
∫∫
∂Q F · n dσ , where Q is the unit cube [0, 1] × [0, 1] × [0, 1], n is the

outward-pointing normal, and F(x, y, z) = (2x − z, x2 y,−xz2).

Solution. Since ∂Q has six sides, direct evaluation of this integral requires six
separate integrals. However, by the Divergence Theorem,

∫∫
∂Q

F · n dσ =
∫ 1

0

∫ 1

0

∫ 1

0
(2 + x2 − 2xz) dx dy dz = 11

6
. �

These definitions and results take on new meaning when examined in the con-
text of fluid flow. When F represents the flow of an incompressible fluid near a
point a, curl F(a) measures the tendency of the fluid to swirl in a counterclock-
wise direction about a (see Exercise 13.6.6), and div F(a) measures the tendency
of the fluid to spread out from a (see Exercise 13.5.7). (This explains the etymol-
ogy of the words curl and divergence.) For example, if F(x, y, z) = (x, y, z), then
the fluid is not swirling at all, but spreading straight out from the origin. Accord-
ingly, curl F = 0 and div F = 3. On the other hand, if G(x, y, z) = (y,−x, 0),
then the fluid is swirling around in a circular motion about the origin. Accord-
ingly, curl G = (0, 0,−1) but div G = 0. Note the minus sign in the component of
curl G. This fluid swirls about the origin in a clockwise direction, so runs against
counterclockwise motion.

When the fluid flows over a two-dimensional region E ⊂ R2, the integral of
F ·T ds over C represents the circulation of the fluid around C in the direction of
T (see the comments following Definition 13.21). Thus Green’s Theorem tells
us that the circulation of a fluid around ∂E in the direction of the tangent is
determined by how strongly the fluid swirls inside E . When F represents the
flow of an incompressible fluid through a three-dimensional region E ⊂ R3 and
S = ∂E , the integral

∫∫
S F · n represents the flux of the fluid across the surface S

(see the comments following Definition 13.43). Thus the Divergence Theorem
tells us that the flux of the fluid across S = ∂E is determined by how strongly
the fluid is spreading out inside E .

We close this section by admitting that the interpretations of curl and di-
vergence given above are imperfect at best. For example, the vector field
F(x, y, z) = (0, z, 0) has curl (−1, 0, 0). Here the fluid is shearing in layers with
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572 Chapter 13 Fundamental Theorems of Vector Calculus

flow parallel to the xy-plane in the direction of the positive y-axis when z > 0.
Although the fluid is not swirling, it does tend to rotate a stick placed in the fluid
parallel to the z-axis [e.g., the line segment {(0, 1, z) : 0 ≤ z ≤ 1}] because more
force is applied to the top than the bottom. This tendency toward rotation is
reflected by the value of the curl. (Notice that the rotation is clockwise and the
curl has a negative first component.)

EXERCISES

13.5.1. For each of the following, evaluate
∫

C F · T ds.

a) C is the topological boundary of the two-dimensional region in
the first quadrant bounded by x = 0, y = 0, and y =√

4 − x2, oriented in the counterclockwise direction, and F(x, y) =
(sin(

√
x3 − x2), xy).

b) C is the perimeter of the rectangle with vertices (0, 0), (2, 0),
(0, 3), (2, 3), oriented in the counterclockwise direction, and
F(x, y) = (ey, log(x + 1)).

c) C = C1∪C2, where C1 = ∂B1(0, 0) oriented in the counterclockwise
direction, C2 = ∂B2(0, 0) oriented in the clockwise direction, and
F(x, y) = ( f (x2 + y2), xy2), where f is a C1 function on [1,2].

13.5.2. For each of the following, evaluate
∫

C ω.

a) C is the topological boundary of the rectangle [a, b] × [c, d], ori-
ented in the counterclockwise direction, and ω = ( f (x) + y) dx +
xy dy, where f : [0, 1] → R is any continuous function.

b) C is the topological boundary of the two-dimensional region
bounded by y = x2 and y = x , oriented in the clockwise direc-
tion, and ω = y f (x) dx + (x2 + y2) dy, where f : [0, 1] → R is C1

and satisfies
∫ 1

0 x f (x) dx = ∫ 1
0 x2 f (x) dx .

c) C is the topological boundary of a two-dimensional region E which
satisfies the hypotheses of Green’s Theorem, oriented positively,
and ω = ex sin y dy − ex cos y dx .

13.5.3. For each of the following, evaluate
∫∫

S F ·n dσ , where n is the outward-
pointing normal.

a) S is the topological boundary of the rectangle [0, 1] × [0, 2] × [0, 3]
and F(x, y, z) = (x + ez, y + ez, ez).

b) S is the truncated cylinder x2 + y2 = 1, 0 ≤ z ≤ 1 together with the
disks x2 + y2 ≤ 1, z = 0, 1, and F(x, y, z) = (x2, y2, z2).

c) S is the topological boundary of E , where E ⊂ R3 is bounded by
z = 2 − x2, z = x2, y = 0, z = y, and F(x, y, z) = (x + f (y, z), y +
g(x, z), z + h(x, y)) and f, g, h : R2 → R are C1.

d) S is the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 and F(x, y, z) =
(x |y|, y|z|, z|x |).

13.5.4. For each of the following, find
∫∫

S ω, where n is the outward-pointing
normal.
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a) S is the topological boundary of the three-dimensional region en-
closed by y = x2, z = 0, z = 1, y = 4, and ω = xyz dy dz + (x2 +
y2 + z2) dz dx + (x + y + z) dx dy.

b) S is the truncated hyperboloid of one sheet x2 − y2 + z2 = 1, 0 ≤
y ≤ 1, together with the disks x2 + z2 ≤ 1, y = 0, and x2 + z2 ≤ 2,
y = 1, and ω = xy|z| dy dz + x2|z| dz dx + (x3 + y3) dx dy.

c) S is the topological boundary of E , where E ⊂ R3 is bounded
by the surfaces x2 + y + z2 = 4 and 4x + y + 2z = 5, and
ω = (x + y2 + z2) dy dz + (x2 + y + z2) dz dx + (x2 + y2 + z) dx dy.

13.5.5. a) Prove that if E is a Jordan region whose topological boundary is
a piecewise smooth curve oriented in the counterclockwise direc-
tion, then

Area (E) = 1

2

∫
∂E

x dy − y dx .

b) Find the area enclosed by the loop in the Folium of Descartes; that
is, by

φ(t) =
(

3t

1 + t3
,

3t2

1 + t3

)
, t ∈ [0,∞).

c) Find an analogue of part a) for the volume of a Jordan region E
in R3.

d) Compute the volume of the torus with radii a > b (see Exam-
ple 13.32).

13.5.6. a) Show that Green’s Theorem does not hold if continuity of P, Q is
relaxed at one point in E . [Hint: Consider P = y/(x2 + y2), Q =
−x/(x2 + y2), and E = B1(0, 0).]

b) Show that the Divergence Theorem does not hold if continuity of F
is relaxed at one point in E .

13.5.7 . This exercise is used in Section 13.6. Suppose that V is a nonempty,
open set in R3 and that F : V → R3 is C1. Prove that

div F(x0) = lim
r→0+

1

Vol(Br (x0))

∫∫
∂Br (x0)

F · n dσ

for each x0 ∈ V , where n is the outward-pointing normal of Br (x0).
13.5.8. Let F,G : R3 → R3 and f : R3 → R be differentiable. Prove the fol-

lowing analogues of the Sum and Product Rules for the “derivatives”
curl and divergence.

a) ∇ × (F + G) = (∇ × F)+ (∇ × G)

b) ∇ × ( f F) = f (∇ × F)+ (∇ f × F)
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574 Chapter 13 Fundamental Theorems of Vector Calculus

c) ∇ · ( f F) = ∇ f · F + f · (∇ · F)

d) ∇ · (F + G) = ∇ · F + ∇ · G

e) ∇ · (F × G) = (∇ × F) · G − (∇ × G) · F

13.5.9 . This exercise is used in Section 13.6. Let E ⊂ R3. Recall that the
gradient of a C1 function f : E → R is defined by

grad f :=∇ f :=( fx , fy, fz).

a) Prove that if f is C2 at x0, then curl grad f (x0) = 0.
b) If F : E → R3 is C1 on E and C2 at x0 ∈ E , prove that div curl

F(x0) = 0.
c) Suppose that E satisfies the hypotheses of the Divergence Theorem

and that f : E → R is a C2 function which is harmonic on E (see
Exercise 13.5.10d). If F = grad f on E , prove that∫∫

∂E
f F · n dσ =

∫∫∫
E

‖F‖2 dV .

13.5.10. Let E be a set in Rm . For each u : E → R which has second-order
partial derivatives on E , Laplace’s equation is defined by

�u:=
m∑

j=1

∂2u

∂x2
j

.

a) Show that if u is C2 on E , then �u = ∇ · (∇u) on E .
b) [Green’s First Identity]. Show that if E ⊂ R3 satisfies the hy-

potheses of the Divergence Theorem, then∫∫∫
E
(u�v + ∇u · ∇v) dV =

∫∫
∂E

u∇v · n dσ

for all C2 functions u, v : E → R.
c) [Green’s Second Identity]. Show that if E ⊂ R3 satisfies the hy-

potheses of the Divergence Theorem, then∫∫∫
E
(u�v − v�u) dV =

∫∫
∂E
(u∇v − v∇u) · n dσ

for all C2 functions u, v : E → R.
d) A function u : E → R is said to be harmonic on E if and only if u is

C2 on E and �u(x) = 0 for all x ∈ E . Suppose that E is a nonempty
open region in R3 which satisfies the hypotheses of the Divergence
Theorem. If u is harmonic on E, u is continuous on E , and u = 0
on ∂E , prove that u = 0 on E .
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Section 13.6 Stokes’s Theorem 575

e) Suppose that V is open and nonempty in R2, that u is C2 on V , and
that u is continuous on V . Prove that u is harmonic on V if and
only if ∫

∂E
(ux dy − uy dx) = 0

for all two-dimensional regions E ⊂ V which satisfy the hypotheses
of Green’s Theorem.

13.6 STOKES’S THEOREM

Our final fundamental theorem applies to surfaces in R3 whose boundaries are
curves.

13.57 Theorem. [STOKES’S THEOREM].
Let S be an oriented, piecewise smooth C2 surface in R3 with unit normal n.
If the boundary ∂S is a piecewise smooth C1 curve oriented positively and F :
S → R3 is C1, then

∫
∂S

F · T ds =
∫∫

S
curl F · n dσ.

Proof for special regions. We will prove Stokes’s Theorem when E is a
finite union of nonoverlapping explicit C2 surfaces which lie over “Green’s
regions” (i.e., two-dimensional regions which satisfy the hypotheses of Green’s
Theorem). For a proof of Stokes’s Theorem as stated, see Spivak [12].

Suppose first that S is a single explicit C2 surface which lies over a “Green’s
region” E . Let F = (P, Q, R) be C1 on S and write the line integral in differential
notation: ∫

∂S
F · T ds =

∫
∂S

P dx + Q dy + R dz.

Without loss of generality, suppose that S is determined by z = f (x, y),
(x, y) ∈ E , where f : E → R is a C2 function, and that S is oriented with
the upward-pointing normal. Thus n = N/‖N‖, where N = (− fx ,− fy, 1).

Let (g(t), h(t)), t ∈ [a, b], be a piecewise smooth parametrization of ∂E ori-
ented in the counterclockwise direction. Then

φ(t) = (g(t), h(t), f (g(t), h(t))), t ∈ [a, b],

is a piecewise smooth parametrization of ∂S which is oriented positively (see
Figure 13.19). If x = g(t), y = h(t), and z = f (g(t), h(t)), then dx =
g′(t) dt, dy = h′(t) dt , and

dz = ∂z

∂x
dx + ∂z

∂y
dy.
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n

z = f (x, y)

 (t)

(  (t),    (t))E

FIGURE 13.19

Thus, by definition,∫
∂S

P dx + Q dy + R dz =
∫
∂E
(P + R

∂z

∂x
) dx + (Q + R

∂z

∂y
) dy. (10)

We shall apply Green’s Theorem to this last integral. By the Chain Rule and
the Product Rule,

∂

∂x

(
Q + R

∂z

∂y

)
= ∂Q

∂x
+ ∂Q

∂z

∂z

∂x
+ ∂R

∂x

∂z

∂y
+ ∂R

∂z

∂z

∂x

∂z

∂y
+ R

∂2z

∂x ∂y

and

∂

∂y

(
P + R

∂z

∂x

)
= ∂P

∂y
+ ∂P

∂z

∂z

∂y
+ ∂R

∂y

∂z

∂x
+ ∂R

∂z

∂z

∂y

∂z

∂x
+ R

∂2z

∂y ∂x
.

Since z = f (x, y) is C2, the mixed second-order partial derivatives above are
equal. Therefore,

∂

∂x

(
Q + R

∂z

∂y

)
− ∂

∂y

(
P + R

∂z

∂x

)

=
(
∂R

∂y
− ∂Q

∂z

)(
− ∂z

∂x

)
+
(
∂P

∂z
− ∂R

∂x

)(
− ∂z

∂y

)
+
(
∂Q

∂x
− ∂P

∂y

)
= curl F · N .

Hence, it follows from (10), Green’s Theorem, and (9) that∫
∂S

F · T ds =
∫

E
curl F · N d(x, y) =

∫∫
S

curl F · n dσ.

Stokes’s Theorem for finite unions of pairwise disjoint explicit C2 surfaces
which lie over Green’s regions follows immediately. If the surfaces are con-
tiguous, the common boundaries (as in the proofs of Green and Gauss) appear
twice, each time in a different orientation and, hence, cancel each other out. �

Stokes’s Theorem can be used to replace complicated line integrals by simple
surface integrals.
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13.58 EXAMPLE.

Compute
∫

C F · T ds, where C is the circle x2 + z2 = 1, y = 0, oriented in
the counterclockwise direction when viewed from far out on the y-axis, and
F(x, y, z) = (x2z + √

x3 + x2 + 2, xy, xy + √
z3 + z2 + 2).

Solution. Since curl F = (x, x2 − y, y), using Stokes’s Theorem is considerably
easier than trying to integrate F · T ds directly. Let S be the disk x2 + z2 ≤ 1,
y = 0, and notice that ∂S = C . Since C is oriented in the counterclockwise di-
rection, the normal to S must point toward the positive y-axis [i.e., n = (0, 1, 0)].
Thus curl F · n = x2 − y = x2 on S, and Stokes’s Theorem implies

∫
C

F · T ds =
∫∫

S
x2 d A =

∫ 2π

0

∫ 1

0
r3 cos2 θ dr dθ = π

4
. �

In Example 13.58, we could have chosen any surface S whose boundary is C .
Thus Stokes’s Theorem can also be used to replace complicated surface integrals
by simpler ones.

13.59 EXAMPLE.

Find
∫∫

S curl F · n dσ , where S is the semiellipsoid 9x2 + 4y2 + 36z2 = 36, z ≥ 0,
n is the upward-pointing normal, and

F(x, y, z) = (cos x sin z + xy, x3, ex2+z2 − ey2+z2 + tan(xy)).

Solution. Let C = ∂S. The integral of curl F · n dσ over S and the integral of
F · T ds over C are both complicated. But, by Stokes’s Theorem, the integral of
F · T ds over C is the same as the integral of curl F · n dσ over any oriented C2

surface E satisfying ∂E = C . Let E be the two-dimensional region 9x2 + 4y2

≤ 36. On E, n = (0, 0, 1). Thus we only need the third component of curl F:

(curl F)3 := ∂

∂x
(x3)− ∂

∂y
(cos x sin z + xy) = 3x2 − x .

Therefore, ∫∫
S

curl F · n dσ =
∫

E
(3x2 − x) d(x, y).

Let x = 2r cos θ and y = 3r sin θ . By a change of variables,

∫
E
(3x2 − x) d(x, y) =

∫ 2π

0

∫ 1

0
(12r2 cos2 θ − 2r cos θ)6r dr dθ = 18π. �

Stokes’s Theorem can also be used to replace complicated surface integrals
by simple line integrals.

577



578 Chapter 13 Fundamental Theorems of Vector Calculus

13.60 EXAMPLE.

Let S be the union of the truncated paraboloid z = x2 + y2, 0 ≤ z ≤ 1, and the
truncated cylinder x2 + y2 = 1, 1 ≤ z ≤ 3. Compute∫∫

S
F · n dσ,

where n is the outward-pointing normal and F(x, y, z) = (x + z2, 0,−z − 3).

Solution. The boundary of S is x2 + y2 = 1, z = 3. To use Stokes’s Theorem,
we must find a function G = (P, Q, R) : S → R3 such that curl G = F; that is,
such that

∂R

∂y
− ∂Q

∂z
= x + z2, (11)

∂P

∂z
− ∂R

∂x
= 0, (12)

and
∂Q

∂x
− ∂P

∂y
= −z − 3. (13)

Starting with (11), set

∂Q

∂z
= −x and

∂R

∂y
= z2. (14)

The left side of (14) implies Q = −xz + g(x, y) for some g : R2 → R. Similarly,
the right side of (14) leads to R = z2 y + h(x, z) for some h : R2 → R. Thus
Qx = −z + gx will solve (13) if we set g = 0 and Py = 3; that is, P = 3y +σ(x, z)
for some σ : R2 → R. Hence, Pz − Rx = σz − hx will satisfy (12) if σ = h = 0.
Therefore, P = 3y, Q = −xz and R = yz2; that is, G = (3y,−xz, yz2).

Parametrize ∂S by φ(t) = (sin t, cos t, 3), t ∈ [0, 2π], and observe that

(G ◦ φ) · φ′ = (3 cos t,−3 sin t, 9 cos t) · (cos t,− sin t, 0) = 3 cos2 t + 3 sin2 t = 3.

Consequently, Stokes’s Theorem implies

∫∫
S

F · n dσ =
∫∫

S
curl G · n dσ =

∫
∂S

G · T ds =
∫ 2π

0
3 dt = 6π. �

The solution to Example 13.60 involved finding a function G which satisfied
curl G = F. This function is not unique. Indeed, we could have begun with

∂Q

∂z
= −z2 and

∂R

∂y
= x
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instead of (14). This leads to a different solution:

G̃(x, y, z) = (zy,−(3x + z3/3), xy).

The technique used to solve Example 13.60, however, is perfectly valid. Indeed,
by Stokes’s Theorem the value of the oriented line integral of G · T will be the
same for all C1 functions G which satisfy curl G = F.

This technique works only when the system of partial differential equations
curl G = F has a solution G. To avoid searching for something which does not
exist, we must be able to discern beforehand whether such a solution exists. To
discover how to do this, suppose that G is a C2 function which satisfies curl G = F
on some set E . Then div F = 0 on E by Exercise 13.5.9b. Thus the condition
div F = 0 is necessary for existence of a solution G to curl G = F. The following
result shows that if E is nice enough, this condition is also sufficient.

13.61 Theorem. Let � be a ball or a rectangle with nonempty interior, and sup-
pose that F : � → R3 is C1 on �. Then the following three statements are equiva-
lent.

i) There is a C2 function G : � → R3 such that curl G = F on �.
ii) If E and S = ∂E satisfy the hypotheses of the Divergence Theorem and E ⊂

�, then ∫∫
S

F · n dσ = 0. (15)

iii) The identity div F = 0 holds everywhere on �.

Proof. If i) holds, then div F = div (curl G) = 0 since the first-order partial
derivatives of G commute. Thus (15) holds by the Divergence Theorem. (This
works for any set �.)

If ii) holds, then by the Divergence Theorem and Exercise 13.5.7,

div F(x0) = lim
r→0+

1

Vol (Br (x0))

∫∫∫
Br (x0)

div F dV

= lim
r→0+

1

Vol (Br (x0))

∫∫
∂Br (x0)

F · n dσ = 0

for each x0 ∈ �o. Since div F is continuous on �, it follows that div F = 0
everywhere on �. (This works for any three-dimensional region �.)

Finally, suppose that iii) holds. Let F = (p, q, r) and suppose for simplicity
that G = (0, Q, R). If curl G = F, then

Ry − Qz = p, −Rx = q, Qx = r. (16)

If � is a ball, let (x0, y0, z0) be its center; if � is a rectangle, let (x0, y0, z0) be
any point in �. Then given any (x, y, z) ∈ �, the line segment from (x0, y, z)
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to (x, y, z) is a subset of �. Hence we can integrate the last two identities in
(16) from x0 to x , obtaining

R = −
∫ x

x0

q(u, y, z) du + g(y, z) and Q =
∫ x

x0

r(u, y, z) du + h(y, z)

for some g, h : R2 → R. Differentiating under the integral sign
(Theorem 11.5), and using condition iii), the first identity becomes

p = Ry − Qz = −
∫ x

x0

(qy(u, y, z)+ rz(u, y, z)) du + gy − hz

=
∫ x

x0

px (u, y, z) du + gy − hz = p(x, y, z)− p(x0, y, z)+ gy − hz .

Thus (16) can be solved by gy = p(x0, y, z) and h = 0; that is,

Q =
∫ x

x0

r(u, y, z) du and R =
∫ y

y0

p(x0, v, z) dv −
∫ x

x0

q(u, y, z) du. �

We notice that Theorem 13.61 holds for any three-dimensional region �

which satisfies the following property: There is a point (x0, y0, z0) ∈ � such
that the line segments L((x0, y, z); (x, y, z)) and L((x0, y0, z); (x0, y, z)) are both
subsets of � for all (x, y, z) ∈ �. However, as the following result shows,
Theorem 13.61 is false without some restriction on �.

13.62 Remark. Let � = B1(0, 0, 0)\{(0, 0, 0)} and

F(x, y, z) =
( x

w3/2
,

y

w3/2
,

z

w3/2

)
,

where w = w(x, y, z) = x2 + y2 + z2. Then div F = 0 on �, but there is no G
which satisfies curl G = F.

Proof. By definition,

div F = −2x2 + y2 + z2

w5/2
+ x2 − 2y2 + z2

w5/2
+ x2 + y2 − 2z2

w5/2
= 0.

Let S represent the unit sphere ∂B1(0, 0, 0) oriented with the outward-
pointing normal, and suppose that there is a G such that curl G = F. On
the one hand, since F = (x, y, z) = n on S implies F · n = x2 + y2 + z2 = 1,
we have ∫∫

S
F · n dσ =

∫∫
S

1 d A = σ(S) = 4π. (17)
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On the other hand, dividing S into the upper hemisphere S1 and the lower
hemisphere S2, we have by Stokes’s Theorem that∫∫

S
F · n dσ =

∫∫
S1

F · n dσ +
∫∫

S2

F · n dσ

=
∫
∂S1

G · T1 ds +
∫
∂S2

G · T2 ds = 0.

(18)

This last step follows from the fact that ∂S1 = ∂S2 and T1 = −T2. Since
(17) and (18) are incompatible, we conclude that there is no G which satisfies
curl G = F. �

EXERCISES

13.6.1. For each of the following, evaluate
∫

C F · T ds.

a) C is the curve formed by intersecting the cylinder x2 + y2 = 1 with
z = −x , oriented in the counterclockwise direction when viewed
from high on the positive z-axis, and F(x, y, z) = (xy2, 0, xyz).

b) C is the intersection of the cubic cylinder z = y3 and the cir-
cular cylinder x2 + y2 = 3, oriented in the clockwise direction
when viewed from high up the positive z-axis, and F(x, y, z) =
(ex + z, xy, zey).

13.6.2. For each of the following, evaluate
∫∫

S curl F · n dσ .

a) S is the “bottomless” surface in the upper half-space z ≥ 0 bounded
by y = x2, z = 1 − y, n is the outward-pointing normal, and
F(x, y, z) = (x sin z3, y cos z3, x3 + y3 + z3).

b) S is the truncated paraboloid z = 3−x2−y2, z ≥ 0, n is the outward-
pointing normal, and F(x, y, z) = (y, xyz, y).

c) S is the hemisphere z = √
10 − x2 − y2, n is the inward-pointing

normal, and F(x, y, z) = (x, x, x2 y3 log(z + 1)).
d) S is the “bottomless” tetrahedron in the upper half-space z ≥ 0

bounded by x = 0, y = 0, x + 2y + 3z = 1, z ≥ 0, n is the outward-
pointing normal, and F(x, y, z) = (xy, yz, xz).

13.6.3. For each of the following, evaluate
∫∫

S F · n dσ using Stokes’s Theorem
or the Divergence Theorem.

a) S is the sphere x2 + y2 + z2 = 1, n is the outward-pointing normal,
and F(x, y, z) = (xz2, x2 y − z3, 2xy + y2z).

b) S is the portion of the plane z = y which lies inside the ball B1(0), n
is the upward-pointing normal, and F(x, y, z) = (xy, xz,−yz).

c) S is the truncated cone y = 2
√

x2 + z2, 2 ≤ y ≤ 4, n is the outward-
pointing normal, and F(x, y, z) = (x,−2y, z).

d) S is a union of truncated paraboloids z = 4− x2 − y2, 0 ≤ z ≤ 4, and
z = x2 + y2 − 4, −4 ≤ z ≤ 0, n is the outward-pointing normal, and

F(x, y, z) = (x + y2 + sin z, x + y2 + cos z, cos x + sin y + z).
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e) S is the union of three surfaces z = x2 + y2 (0 ≤ z ≤ 2), 2 =
x2 + y2 (2 ≤ z ≤ 5), and z = 7 − x2 − y2 (5 ≤ z ≤ 6), n is the
outward-pointing normal, and F(x, y, z) = (2y, 2z, 1).

13.6.4. For each of the following, evaluate
∫

S ω using Stokes’s Theorem or the
Divergence Theorem.

a) S is the topological boundary of cylindrical solid y2 + z2 ≤ 9, 0 ≤
x ≤ 2, with outward-pointing normal, and ω = xy dy dz + (x2 −
z2) dz dx + xz dx dy.

b) S is the truncated cylinder x2 + z2 = 8, 0 ≤ y ≤ 1, with outward-
pointing normal, and ω = (x − 2z) dy dz − y dz dx .

c) S is the topological boundary of R = [0, π/2] × [0, 1] × [0, 3], with
outward-pointing normal, and ω = ey cos x dy dz + x2z dz dx + (x +
y + z) dx dy.

d) S is the intersection of the elliptic cylindrical solid 2x2 + z2 ≤ 1
and the plane x = y, with normal which points toward the positive
x-axis, and ω = x dy dz − y dz dx + sin y dx dy.

13.6.5. Prove that Green’s Theorem is a corollary of Stokes’s Theorem.
13.6.6. Let Π be a plane in R3 with unit normal n and x0 ∈ Π . For each r > 0,

let Sr be the disk in Π centered at x0 of radius r [i.e., Sr = Br (x0) ∩Π].
Prove that if F : B1(x0) → R3 is C1 and ∂Sr carries the orientation
induced by n, then

curl F(x0) · n = lim
r→0+

1

σ(Sr )

∫
∂Sr

F · T ds.

13.6.7. Let S be an orientable surface with unit normal n and nonempty bound-
ary ∂S which satisfies the hypotheses of Stokes’s Theorem.

a) Suppose that F : S → R3\{0} is C1, that ∂S is smooth, and that T
is the unit tangent vector on ∂S induced by n. If the angle between
T(x0) and F(x0) is never obtuse for any x0 ∈ ∂S, and

∫∫
S curl F ·

n dσ = 0, prove that T(x0) and F(x0) are orthogonal for all x0 ∈ ∂S.
b) If F,Fk : S → R3 are C1 and Fk → F uniformly on ∂S, prove that

lim
k→∞

∫∫
S

curl Fk · n dσ =
∫∫

S
curl F · n dσ.

13.6.8. Suppose that E is a two-dimensional region such that if (x, y) ∈ E ,
then the line segments from (0, 0) to (x, 0) and from (x, 0) to (x, y) are
both subsets of E . If F : E → R2 is C1, prove that the following three
statements are equivalent.

a) F = ∇ f on E for some f : E → R.
b) F = (P, Q) is exact (i.e., Qx = Py on E).
c)
∫

C F · T ds = 0 for all piecewise smooth curves C = ∂� oriented
counterclockwise, where � is a two-dimensional region which satis-
fies the hypotheses of Green’s Theorem, and � ⊂ E .
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13.6.9. Let � be a three-dimensional region and F : � → R3 be C1 on �.
Suppose further that, for each (x, y, z) ∈ �, both the line segments
L((x, y, 0); (x, y, z)) and L((x, 0, 0); (x, y, 0)) are subsets of �. Prove
that the following statements are equivalent.

a) There is a C2 function G : � → R3 such that curl G = F on �.
b) If F, E , and S = ∂E satisfy the hypotheses of the Divergence Theo-

rem and E ⊂ �, then ∫∫
S

F · n dσ = 0.

c) The identity div F = 0 holds everywhere on �.

13.6.10. Suppose that E satisfies the hypotheses of the Divergence Theorem and
that S satisfies the hypotheses of Stokes’s Theorem.

a) If f : S → R is a C2 function and F = grad f on S, prove that∫∫
∂S
( f F) · T ds = 0.

b) If G : E → R3 is a C2 function and F = curl G on E , prove that∫∫
∂E
( f F) · n dσ =

∫∫∫
E

grad f · F dV .

Note: You may wish to use Exercises 13.5.8 and 13.5.9.

13.6.11. Let F be C1 and exact on R2\{(0, 0)} (see Exercise 13.6.8b).

a) Suppose that C1 and C2 are disjoint smooth simple curves, oriented
in the counterclockwise direction, and that E is a two-dimensional
region whose topological boundary ∂E is the union of C1 and C2.
(Note: This means that E has a hole with one of the C j ’s as the
outer boundary and the other as the inner boundary.) If (0, 0) /∈ E ,
prove that ∫

C1

F · T ds =
∫

C2

F · T ds.

b) Suppose that E is a two-dimensional region which satisfies
(0, 0) ∈ Eo. If ∂E is a smooth simple curve oriented in the coun-
terclockwise direction, and

F(x, y) =
( −y

x2 + y2
,

x

x2 + y2

)
,

compute
∫
∂E F · T ds.

c) State and prove an analogue of part a) for functions F : R3\{(0,
0, 0)}, three-dimensional regions, and smooth surfaces.
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C H A P T E R 14

Fourier Series

∗14.1 INTRODUCTION

This section uses no material from any other enrichment section.
In Chapter 7 we studied power series and their partial sums, classical polyno-

mials. In this chapter, we shall study the following objects.

14.1 Definition.

Let ak, bk ∈ R and let N be a nonnegative integer.

i) A trigonometric series is a series of the form

a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx).

ii) A trigonometric polynomial of order N is a function P : R → R of the form

P(x) = a0

2
+

N∑
k=1

(ak cos kx + bk sin kx).

[Here, cos kx is shorthand for cos(kx), and sin kx is shorthand for sin(kx).]

Calculus was invented with the tacit assumption that power series provided
a unified function theory; that is, every function has a power series expan-
sion (see Kline [5]). When Cauchy showed that this assumption was false (see
Remark 7.41), mathematicians began to wonder whether some other type of
series would provide a unified function theory. Euler (respectively, Fourier) had
shown that the position of a vibrating string (respectively, the temperature along
a metal rod) can be represented by trigonometric series. Thus, it was natural to
ask, Does every function have a trigonometric series expansion? In this chap-
ter we shall examine this question, and the following calculation will help to
answer it.

Copyright © 2010 by Pearson Education, Inc. All rights reserved.
From Chapter 14 of Introduction to Analysis, Fourth Edition. William R. Wade. 
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Section 14.1 Introduction 585

14.2 Lemma. [ORTHOGONALITY].
Let k, j be nonnegative integers. Then

i)
∫ π

−π
cos kx cos j x dx =

⎧⎪⎨
⎪⎩

2π k = j = 0
π k = j �= 0
0 k �= j

ii)
∫ π

−π
sin kx sin j x dx =

{
π k = j �= 0
0 k �= j

and

iii)
∫ π

−π
sin kx cos j x dx = 0.

Proof. Let

I =
∫ π

−π
cos kx cos j x dx .

If k = j = 0, then I = ∫ π
−π dx = 2π . If k = j �= 0, then by a half-angle

formula and elementary integration, we have

I =
∫ π

−π
cos2 kx dx = 1

2

∫ π

−π
(1 + cos 2kx) dx = π.

And if k �= j , then by a sum-angle formula and elementary integration, we
have

I = 1

2

∫ π

−π
(cos(k + j)x + cos(k − j)x) dx = 0.

This proves part i). Similar arguments prove parts ii) and iii). �

Notice that the question concerning representation of functions by trigono-
metric series has a built-in limitation. A function f : R → R is said to be
periodic (of period 2π) if and only if f (x + 2π) = f (x) for all x ∈ R. Since
cos kx and sin kx are periodic, it is clear that every trigonometric polynomial
is periodic. Therefore, any function which is the pointwise or uniform limit of
a trigonometric series must also be periodic. For this reason, we will usually
restrict our attention to the interval [−π, π] and assume that f (−π) = f (π).

The following definition, which introduces a special type of trigonometric
series, plays a crucial role in the representation of periodic functions by trigono-
metric series.

585



586 Chapter 14 Fourier Series

14.3 Definition.

Let f be integrable on [−π, π] and let N be a nonnegative integer.

i) The Fourier coefficients of f are the numbers

ak( f ) = 1

π

∫ π

−π
f (x) cos kx dx, k = 0, 1, . . . ,

and

bk( f ) = 1

π

∫ π

−π
f (x) sin kx dx, k = 1, 2, . . . .

ii) The Fourier series of f is the trigonometric series

(S f )(x) = a0( f )

2
+

∞∑
k=1

(ak( f ) cos kx + bk( f ) sin kx).

iii) The partial sum of S f of order N is the trigonometric polynomial defined,
for each x ∈ R, by (S0 f )(x) = a0( f )/2 if N = 0, and

(SN f )(x) = a0( f )

2
+

N∑
k=1

(ak( f ) cos kx + bk( f ) sin kx)

if N ∈ N.

The following result shows why Fourier series play such an important role in
the representation of periodic functions by trigonometric series.

14.4 Theorem. [FOURIER].
If a trigonometric series

S := a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx)

converges uniformly on R to a function f, then S is the Fourier series of f; that
is, ak = ak( f ) for k = 0, 1, . . . , and bk = bk( f ) for k = 1, 2, . . . .

Proof. Fix an integer k ≥ 0. Since

f (x) = a0

2
+

∞∑
j=1

(a j cos j x + b j sin j x)
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Section 14.1 Introduction 587

converges uniformly and cos kx is bounded,

f (x) cos kx = a0

2
cos kx +

∞∑
j=1

(a j cos j x cos kx + b j sin j x cos kx) (1)

also converges uniformly. Since f is the uniform limit of continuous functions,
f is continuous and, hence, integrable on [−π, π]. Integrating (1) term by
term and using orthogonality, we obtain

ak( f ) = 1

π

∫ π

−π
f (x) cos kx dx

= a0

2π

∫ π

−π
cos kx dx +

∞∑
j=1

(
a j

π

∫ π

−π
cos kx cos j x dx

+ b j

π

∫ π

−π
cos kx sin j x dx

)
= ak .

A similar argument establishes bk( f ) = bk . �

There are two central questions in the study of trigonometric series.

The Convergence Question. Given a function f : R → R, periodic on R and
integrable on [−π, π], does the Fourier series of f converge to f?

The Uniqueness Question. If a trigonometric series S converges to some func-
tion f integrable on [−π, π], is S the Fourier series of f?

We shall answer these questions for pointwise and uniform convergence
when f is continuous and of bounded variation. We notice in passing that, by
Theorem 14.4, the answer to the Uniqueness Question is yes if uniform conver-
gence is used.

The following special trigonometric polynomials arise naturally in connection
with the Convergence Question (see Exercise 14.1.2).

14.5 Definition.

Let N be a nonnegative integer.

i) The Dirichlet kernel of order N is the function defined, for each x ∈ R, by
D0(x) = 1/2 if N = 0, and

DN (x) = 1

2
+

N∑
k=1

cos kx

if N ∈ N.
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588 Chapter 14 Fourier Series

14.5 Definition. (Continued)

ii) The Fejér kernel of order N is the function defined, for each x ∈ R, by
K0(x) = 1/2 if N = 0, and

KN (x) = 1

2
+

N∑
k=1

(
1 − k

N + 1

)
cos kx (2)

if N ∈ N.

The following result shows that there is a simple relationship between Fejér
kernels and Dirichlet kernels.

14.6 Remark. If N is a nonnegative integer, then

KN (x) = D0(x)+ · · · + DN (x)

N + 1

for all x ∈ R.

Proof. The identity is trivial if N = 0. To prove the identity for N ∈ N, fix
x ∈ R. By definition,

KN (x) = 1

N + 1

(
N + 1

2
+

N∑
k=1

(N − k + 1) cos kx

)

= 1

N + 1

⎛
⎝1

2
+ N

2
+

N∑
k=1

N∑
j=k

1 · cos kx

⎞
⎠

= 1

N + 1

⎛
⎝1

2
+

N∑
j=1

⎛
⎝1

2
+

j∑
k=1

cos kx

⎞
⎠
⎞
⎠ = D0(x)+ · · · + DN (x)

N + 1
.

�

The next result shows that Dirichlet and Fejér kernels can be represented by
quotients of trigonometric functions.

14.7 Theorem. If x ∈ R cannot be written in the form 2kπ for any k ∈ Z, then

DN (x) =
sin
(

N + 1
2

)
x

2 sin x
2

(3)
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Section 14.1 Introduction 589

and

KN (x) = 2

N + 1

⎛
⎝sin

(
N+1

2

)
x

2 sin x
2

⎞
⎠

2

(4)

for N = 0, 1, . . . .

Proof. The formulas are trivial for N = 0. Fix N ∈ N. Applying a sum-angle
formula and telescoping, we have

(
DN (x)− 1

2

)
sin

x

2
=

N∑
k=1

cos kx sin
x

2

= 1

2

N∑
k=1

(
sin

(
k + 1

2

)
x − sin

(
k − 1

2

)
x

)

= 1

2

(
sin

(
N + 1

2

)
x − sin

x

2

)
.

Solving this equation for DN (x) verifies (3).
Let k ∈ N. By (3) and another sum-angle formula,

Dk(x) sin2 x

2
= 1

2
sin

x

2
sin

(
k + 1

2

)
x = 1

4
(cos kx − cos(k + 1)x).

This identity also holds for k = 0. Applying Remark 14.6 and telescoping, we
have

(N + 1)KN (x) sin2 x

2
=

N∑
k=0

Dk(x) sin2 x

2

= 1

4

N∑
k=0

(cos kx − cos(k + 1)x)

= 1

4
(1 − cos(N + 1)x) = 1

2
sin2

(
N + 1

2

)
x .

Solving this equation for KN (x) verifies (4). �

These identities will be used in the next section to obtain a partial answer to
the Convergence Question.

The next two examples illustrate the general principle that the Fourier coeffi-
cients of many common functions can be computed using integration by parts.
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590 Chapter 14 Fourier Series

14.8 EXAMPLE.

Prove that the Fourier series of f (x) = x is

2
∞∑

k=1

(−1)k+1

k
sin kx .

Proof. Since x cos kx is odd and x sin kx is even, we see that ak( f ) = 0 for
k = 0, 1, . . . , and

bk( f ) = 2

π

∫ π

0
x sin kx dx

for k = 1, 2, . . . . Integrating by parts, we conclude that

bk( f ) = 2

π

(
− x cos kx

k

∣∣π
0 +1

k

∫ π

0
cos kx dx

)
= 2(−1)k+1

k
. �

14.9 EXAMPLE.

Prove that the Fourier series of f (x) = |x | is

π

2
− 4

π

∞∑
k=1

cos(2k − 1)x

(2k − 1)2
.

Proof. Since |x | cos kx is even and |x | sin kx is odd, we see that bk( f ) = 0 for
k = 1, 2 . . . , and

ak( f ) = 2

π

∫ π

0
x cos kx dx

for k = 0, 1, . . . . If k = 0, then

ak( f ) = 2

π

(
π2

2

)
= π;

that is, a0( f )/2 = π/2. If k > 0, then integration by parts yields

ak( f ) = 2

πk2
(cos kπ − 1) =

{
0 if k is even,

− 4
πk2 if k is odd.

�

EXERCISES

14.1.1. Compute the Fourier series of x2 and of cos2 x .
14.1.2. Prove that if f : R → R is integrable on [−π, π], then

(SN f )(x) = 1

π

∫ π

−π
f (t)DN (x − t) dt

for all x ∈ [−π, π] and N ∈ N.
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Section 14.2 Summability of Fourier Series 591

14.1.3. Show that if f, g are integrable on [−π, π] and α ∈ R, then

ak( f + g) = ak( f )+ ak(g), ak(α f ) = αak( f ), k = 0, 1, . . . ,

and

bk( f + g) = bk( f )+ bk(g), bk(α f ) = αbk( f ), k = 1, 2, . . . .

14.1.4. Suppose that f : R → R is differentiable and periodic and that f ′ is
integrable on [−π, π]. Prove that

ak( f ′) = kbk( f ) and bk( f ′) = −kak( f ), k ∈ N.

14.1.5. Suppose that fN : [−π, π] → R are integrable and that fN → f uni-
formly on [−π, π] as N → ∞.

a) Prove that ak( fN ) → ak( f ) and bk( fN ) → bk( f ), as N → ∞, uni-
formly in k.

b) Show that part a) holds under the weaker hypothesis

lim
N→∞

∫ π

−π
| f (x)− fN (x)| dx = 0.

14.1.6. Let

f (x) =
⎧⎨
⎩

x

|x | x �= 0

0 x = 0.

a) Compute the Fourier coefficients of f .
b) Prove that

(S2N f )(x) = 2

π

∫ x

0

sin 2Nt

sin t
dt

for x ∈ [−π, π] and N ∈ N.
∗c) [Gibbs’s phenomenon]. Prove that

lim
N→∞(S2N f )

( π
2N

)
= 2

π

∫ π

0

sin t

t
dt ≈ 1.179.

∗14.2 SUMMABILITY OF FOURIER SERIES

This section uses material from Section 14.1.
The Convergence Question posed in Section 14.1 is very difficult to answer,

even for continuous functions. In this section we replace it with an easier ques-
tion and show that the answer to this question is yes. Namely, we shall show that
the Fourier series of any continuous periodic function f is uniformly summable
to f . By summable, we mean the following concept.
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592 Chapter 14 Fourier Series

14.10 Definition.

A series
∑∞

k=0 ak with partial sums sN = ∑N
k=0 ak is said to be Cesàro

summable to L if and only if its Cesàro means

σN := s0 + · · · + sN

N + 1

converge to L as N → ∞.

The following result shows that summability is a generalization of conver-
gence.

14.11 Remark. If
∑∞

k=0 ak converges to a finite number L, then it is Cesàro
summable to L.

Proof. Let ε > 0. Choose N1 ∈ N such that k ≥ N1 implies |sk − L| < ε/2.
Use the Archimedean Principle to choose N2 ∈ N such that N2 > N1 and

N1∑
k=0

|sk − L| < εN2

2
.

If N > N2, then

|σN − L| ≤ 1

N + 1

N1∑
k=0

|sk − L| + 1

N + 1

N∑
k=N1+1

|sk − L|

≤ εN2

2(N + 1)
+ ε

2

(
N − N1

N + 1

)
<
ε

2
+ ε

2
= ε. �

The converse of Remark 14.11 is false. Indeed, although the series
∑∞

k=0(−1)k

does not converge, its Cesàro means satisfy

σN =

⎧⎪⎪⎨
⎪⎪⎩

N + 2

2(N + 1)
N is even

1

2
N is odd,

whence σN → 1/2 as N → ∞.
It is easier to show that a series is Cesàro summable than to show that it

converges. Thus the following question is easier to answer than the Convergence
Question.

The Summability Question. Given a function f : R → R, periodic on R and
integrable on [−π, π], is Sf Cesàro summable to f?

The Cesàro means of a Fourier series Sf are denoted by

(σN f )(x) := (S0 f )(x)+ · · · + (SN f )(x)

N + 1
,
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Section 14.2 Summability of Fourier Series 593

N = 0, 1, . . . . The following result shows that the Cesàro means of a Fourier
series can always be represented by an integral equation. This is important
because it allows us to estimate the remainder σN f − f , using techniques of
integration.

14.12 Lemma.
Let f : R → R be periodic on R and integrable on [−π, π]. Then

(σN f )(x) = 1

π

∫ π

−π
f (x − t)KN (t) dt

for all N = 0, 1, . . . , and all x ∈ R.

Proof. Fix j, N ∈ N and x ∈ R. By definition and a sum-angle formula,

a j ( f ) cos j x + b j ( f ) sin j x

= 1

π

∫ π

−π
f (u) cos ju cos j x du + 1

π

∫ π

−π
f (u) sin ju sin j x du

= 1

π

∫ π

−π
f (u)(cos ju cos j x + sin ju sin j x) du

= 1

π

∫ π

−π
f (u) cos j (x − u) du.

Summing this identity over integers j = 1, 2, . . . , k and adding a0( f )/2, we
have

(Sk f )(x) = a0( f )

2
+

k∑
j=1

(a j ( f ) cos j x + b j ( f ) sin j x)

= 1

π

∫ π

−π
f (u)

⎛
⎝1

2
+

k∑
j=1

cos j (x − u)

⎞
⎠ du

= 1

π

∫ π

−π
f (u)Dk(x − u) du

for k = 0, 1, . . . . Making the change of variables t = x − u and using the fact
that both f and Dk are periodic, we obtain

(Sk f )(x) = 1

π

∫ π

−π
f (x − t)Dk(t) dt, k = 0, 1, . . . .
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594 Chapter 14 Fourier Series

We conclude by Remark 14.11 that

(σN f )(x) = 1

N + 1

N∑
k=0

(Sk f )(x)

= 1

N + 1

N∑
k=0

1

π

∫ π

−π
f (x − t)Dk(t) dt = 1

π

∫ π

−π
f (x − t)KN (t) dt.

�

To answer the Summability Question we need to know more about Fejér
kernels. The following result shows that Fejér kernels satisfy some very nice
properties.

14.13 Lemma.
For each nonnegative integer N,

KN (t) ≥ 0 for all t ∈ R, (5)

and
1

π

∫ π

−π
KN (t) dt = 1. (6)

Moreover, for each 0 < δ < π ,

lim
N→∞

∫ π

δ

|KN (t)| dt = 0. (7)

Proof. Fix N ≥ 0. If t = 2 jπ for some j ∈ Z, then Dk(t) = k + 1/2 ≥ 0 for all
k ≥ 0, whence KN (t) ≥ 0. If t �= 2 jπ for any j ∈ Z, then, by Theorem 14.7,

KN (t) = 2

N + 1

⎛
⎝sin

(
N+1

2

)
t

2 sin t
2

⎞
⎠

2

≥ 0.

This proves (5). By Definition 14.5 and orthogonality,

∫ π

−π
KN (t) dt =

∫ π

−π

(
1

2
+

N∑
k=1

(
1 − k

N + 1

)
cos kt

)
dt = π.

This proves (6).
To prove (7), fix 0 < δ < π and observe that sin t/2 ≥ sin δ/2 for t ∈ [δ, π].

Hence, it follows from Theorem 14.7 that

∫ π

δ

|KN (t)| dt ≤ 2

N + 1

∫ π

δ

⎛
⎝sin

(
N+1

2

)
t

2 sin δ
2

⎞
⎠

2

dt ≤ π

2(N + 1) sin2 δ
2

.

Since δ is fixed, this last expression tends to 0 as N → ∞. �
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Section 14.2 Summability of Fourier Series 595

Using these properties, we can answer the Summability Question for contin-
uous functions (see also Exercises 14.2.6 and 14.2.8).

14.14 Theorem. [FEJÉR].
Suppose that f : R → R is periodic on R and integrable on [−π, π].

i) If

L = lim
h→0

f (x0 + h)+ f (x0 − h)

2

exists for some x0 ∈ R, then (σN f )(x0) → L as N → ∞.
ii) If f is continuous on some closed interval I, then σN f → f uniformly on I

as N → ∞.

Proof. Since f is periodic, we may suppose that x0 ∈ [−π, π]. Fix N ∈ N. By
(6), Lemma 14.12, and a change of variables,

(σN f )(x0)− L = 1

π

∫ π

−π
KN (t)( f (x0 − t)− L) dt

= 2

π

∫ π

0
KN (t)

(
f (x0 + t)+ f (x0 − t)

2
− L

)
dt

=: 2

π

∫ π

0
KN (t)F(x0, t) dt.

(8)

Let ε > 0 and choose 0 < δ < π such that |t | < δ implies |F(x0, t)| < ε/3.
By (5) and (6) we have

2

π

∫ δ

0
KN (t)|F(x0, t)| dt <

2ε

3π

∫ δ

0
KN (t) dt ≤ 2ε

3
. (9)

On the other hand, choose by (7) an N1 ∈ N such that N ≥ N1 implies∫ π
δ

KN (t) dt < ε/3M , where M := supx∈R |F(x)|. Then

2

π

∫ π

δ

KN (t)|F(x0, t)| dt ≤ M
∫ π

δ

KN (t) dt <
ε

3
,

and it follows from (8) and (9) that

|(σN f )(x0)− L| ≤ 2

π

∫ δ

0
KN (t)|F(x0, t)| dt + 2

π

∫ π

δ

KN (t)|F(x0, t)| dt < ε (10)

for all N ≥ N1. This proves part i).
To prove part ii), suppose that f is continuous on some closed interval I .

Since f is periodic, we may suppose that I ⊆ [−π, π]. Thus I is closed and
bounded, and f is uniformly continuous on I . Repeating the estimates above,
we see that (10) holds uniformly for all x0 ∈ I . �
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596 Chapter 14 Fourier Series

14.15 Corollary. If f : R → R is continuous and periodic, then σN f converges
to f uniformly on R as N → ∞.

14.16 Corollary. [COMPLETENESS]. If f : R → R is continuous and periodic,
and ak−1( f ) = bk( f ) = 0 for k ∈ N, then f (x) = 0 for all x ∈ R.

Proof. By hypothesis, (σN f )(x) = 0 for all N ∈ N and x ∈ R. Hence, by
Corollary 14.15, f (x) = limN→∞(σN f )(x) = 0 for all x ∈ R. �

14.17 Corollary. Let f : R → R be continuous and periodic. Then there is a
sequence of trigonometric polynomials T1, T2, . . . , such that TN → f uniformly
on R.

Proof. Set TN = σN f for N ∈ N, and apply Corollary 14.15. �

EXERCISES

14.2.1. Let E ⊆ R and suppose that f, fk : R → R are bounded functions.
Prove that if

∑∞
k = 0 fk(x) converges to f (x) uniformly on E , then

σN (x):=
N∑

k=0

(
1 − k

N + 1

)
fk(x)

converges to f (x) uniformly on E as N → ∞.
14.2.2. If f : R → R is periodic on R and integrable on [−π, π], prove that the

Cesàro means of Sf are uniformly bounded; that is, there is an M > 0
such that

|(σN f )(x)| ≤ M

for all x ∈ R and N ∈ N.
14.2.3. Let

S = a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx)

be a trigonometric series and set

σN (x) = a0

2
+

N∑
k=1

(
1 − k

N + 1

)
(ak cos kx + bk sin kx)

for x ∈ R and N ∈ N. Prove that S is the Fourier series of some contin-
uous periodic function f : R → R if and only if σN converges uniformly
on R, as N → ∞.

14.2.4. Let f be integrable on [−π, π] and L ∈ R.

a) Prove that if (σN f )(x0) → L as N → ∞ and if (S f )(x0) converges,
then (SN f )(x0) → L .
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b) Prove that

sin
√

2π +
∞∑

k=1

4(−1)k sin
√

2π

2 − k2
cos kx

converges to
√

2π cos
√

2x uniformly on compact subsets of (0, 2π).

14.2.5. Suppose that f : [a, b] → R is continuous and that

∫ b

a
xn f (x) dx = 0

for all integers n ≥ 0.

a) Evaluate
∫ b

a P(x) f (x) dx for any polynomial P on R.

b) Prove that
∫ b

a | f (x)|2 dx = 0.
c) Show that f (x) = 0 for all x ∈ [a, b].

14.2.6. [Summability Kernels]. Let φN : R → R be a sequence of continuous,
periodic functions on R which satisfy

∫ 2π

0
φN (t) dt = 1 and

∫ 2π

0
|φN (t)| dt ≤ M < ∞

for all N ∈ N, and

lim
N→∞

∫ 2π−δ

δ

|φN (t)| dt = 0

for each 0 < δ < 2π . Suppose that f : R → R is continuous and
periodic. Prove that

lim
N→∞

∫ 2π

0
f (x − t)φN (t) dt = f (x)

uniformly for x ∈ R.
14.2.7. Let [a, b] be a nondegenerate, closed, bounded interval.

a) Prove that given any polynomial P on R and any ε > 0, there is
a polynomial Q on R, with rational coefficients, such that |P(x) −
Q(x)| < ε for all x ∈ [a, b].

∗b) Prove that the space C[a, b] (see Example 10.6) is separable.
∗14.2.8. A sequence of functions fN : R → R is said to converge almost every-

where to a function f if and only if there is a set E of measure zero such
that fN (x) → f (x), as N → ∞, for every x ∈ R \ E . Suppose that
f : R → R is also periodic. Prove that if f is Riemann integrable on
[−π, π], then σN f → f almost everywhere as N → ∞.
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598 Chapter 14 Fourier Series

∗14.3 GROWTH OF FOURIER COEFFICIENTS

This section uses material from Sections 5.5 and 14.2.
By Theorem 14.14, a continuous periodic function f is completely determined

by its Fourier coefficients. In this section we ask to what extent smoothness of f
affects the growth of these coefficients.

We begin with a computational result.

14.18 Lemma.
If f : R → R is integrable on [−π, π] and N is a nonnegative integer, then

1

π

∫ π

−π
f (x)(SN f )(x) dx = |a0( f )|2

2
+

N∑
k=1

(
|ak( f )|2 + |bk( f )|2

)

= 1

π

∫ π

−π
|(SN f )(x)|2 dx .

(11)

Proof. Fix N ≥ 0. Since f and SN f are integrable on [−π, π], both integrals
in (11) exist. By definition and orthogonality,

1

π

∫ π

−π
f (x)

a0( f )

2
dx = |a0( f )|2

2
= 1

π

∫ π

−π
(SN f )(x)

a0( f )

2
dx .

Similarly,

1

π

∫ π

−π
f (x)ak( f ) cos kx dx = |ak( f )|2 = 1

π

∫ π

−π
(SN f )(x)ak( f ) cos kx dx

and

1

π

∫ π

−π
f (x)bk( f ) sin kx dx = |bk( f )|2 = 1

π

∫ π

−π
(SN f )(x)bk( f ) sin kx dx

for k ∈ N. Adding these identities for k = 0, . . . , N verifies (11). �

Next, we use this result to identify a growth condition satisfied by the Fourier
coefficients of any Riemann integrable function.

14.19 Theorem. [BESSEL’S INEQUALITY].
If f : R → R is (Riemann) integrable on [−π, π], then

∑∞
k=1 |ak( f )|2 and∑∞

k=1 |bk( f )|2 are convergent series. In fact,

|a0( f )|2
2

+
∞∑

k=1

(
|ak( f )|2 + |bk( f )|2

)
≤ 1

π

∫ π

−π
| f (x)|2 dx . (12)
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Proof. Fix N ∈ N. By Lemma 14.18,

0 ≤ 1

π

∫ π

−π
| f (x)− (SN f )(x)|2 dx

= 1

π

∫ π

−π
| f (x)|2 dx − 2

π

∫ π

−π
f (x)(SN f )(x) dx + 1

π

∫ π

−π
|(SN f )(x)|2 dx

= 1

π

∫ π

−π
| f (x)|2 dx −

(
|a0( f )|2

2
+

N∑
k=1

(
|ak( f )|2 + |bk( f )|2

))
.

Therefore,

|a0( f )|2
2

+
N∑

k=1

(
|ak( f )|2 + |bk( f )|2

)
≤ 1

π

∫ π

−π
| f (x)|2 dx

for all N ∈ N. Taking the limit of this inequality as N → ∞ verifies (12). Since
| f |2 is Riemann integrable when f is, it follows that both

∑∞
k=1 |ak( f )|2 and∑∞

k=1 |bk( f )|2 are convergent series. �

14.20 Corollary. [RIEMANN–LEBESGUE LEMMA]. If f is integrable on
[−π, π], then

lim
k→∞ ak( f ) = lim

k→∞ bk( f ) = 0.

Proof. Since the terms of a convergent series converge to zero, it follows from
Bessel’s Inequality that ak( f ) and bk( f ) converge to zero as k → ∞. �

Our next major result shows that Bessel’s Inequality is actually an identity
when f is continuous and periodic. First, we show that the partial sums of the
Fourier series of a function f are the best approximations to f in the follow-
ing sense.

14.21 Lemma.
Let N ∈ N. If f is (Riemann) integrable on [−π, π] and

TN = c0

2
+

N∑
k=1

(ck cos kx + dk sin kx)

is any trigonometric polynomial of degree N, then

∫ π

−π
| f (x)− (SN f )(x)|2 dx ≤

∫ π

−π
| f (x)− TN (x)|2 dx .
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Proof. Notice by (11) that

∫ π

−π
| f (x)− TN (x)|2 dx

=
∫ π

−π
| f (x)− (SN f )(x)+ (SN f )(x)− TN (x)|2 dx

=
∫ π

−π
| f (x)− (SN f )(x)|2 dx

+ 2
∫ π

−π
( f (x)− (SN f )(x))((SN f )(x)− TN (x)) dx

+
∫ π

−π
|(SN f )(x)− TN (x)|2 dx

≥
∫ π

−π
| f (x)− (SN f )(x)|2 dx + 2

∫ π

−π
((SN f )(x)TN (x)− f (x)TN (x)) dx .

This last term is zero since, by orthogonality,

1

π

∫ π

−π
((SN f )(x)TN (x)− f (x)TN (x)) dx

= a0( f )c0

4
+

N∑
k=1

(ak( f )ck + bk( f )dk)

− c0

2π

∫ π

−π
f (x) dx −

N∑
j=1

c j

π

∫ π

−π
f (x) cos j x dx

−
N∑

j=1

d j

π

∫ π

−π
f (x) sin j x dx

= a0( f )c0

4
+

N∑
k=1

(ak( f )ck + bk( f )dk)

−
(

a0( f )c0

4
+

N∑
k=1

ak( f )ck + bk( f )dk

)

= 0.

Consequently,

∫ π

−π
| f (x)− TN (x)|2 dx ≥

∫ π

−π
| f (x)− (SN f )(x)|2 dx . �

600



Section 14.3 Growth of Fourier Coefficients 601

14.22 Theorem. [PARSEVAL’S IDENTITY].
If f : R → R is periodic and continuous, then

|a0( f )|2
2

+
∞∑

k=1

(
|ak( f )|2 + |bk( f )|2

)
= 1

π

∫ π

−π
| f (x)|2 dx . (13)

Proof. By Bessel’s Inequality, we need only show that the left side of (13)
is greater than or equal to the right side of (13). Since f is continuous and
periodic, σN f → f uniformly on R as N → ∞ by Fejér’s Theorem. Hence, it
follows from Lemmas 14.18 and 14.21 that

1

π

∫ π

−π
| f (x)|2 dx − |a0( f )|2

2
−

N∑
k=1

(
|ak( f )|2 + |bk( f )|2

)

= 1

π

∫ π

−π
| f (x)− (SN f )(x)|2 dx ≤ 1

π

∫ π

−π
| f (x)− (σN f )(x)|2 dx → 0

as N → ∞. In particular,

1

π

∫ π

−π
| f (x)|2 dx ≤ |a0( f )|2

2
+

∞∑
k=1

(
|ak( f )|2 + |bk( f )|2

)
. �

The Riemann–Lebesgue Lemma can be improved if f is smooth and periodic.
In fact, the following result shows that the smoother f is, the more rapidly its
Fourier coefficients converge to zero.

14.23 Theorem. Let f : R → R and j ∈ N. If f ( j) exists and is integrable on
[−π, π] and f (�) is periodic for each 0 ≤ � < j , then

lim
k→∞ k j ak( f ) = lim

k→∞ k j bk( f ) = 0. (14)

Proof. Fix k ∈ N. Since f is periodic, integration by parts yields

ak( f ′) = 1

π

∫ π

−π
f ′(x) cos kx dx = k

π

∫ π

−π
f (x) sin kx dx = kbk( f ).

Similarly, bk( f ′) = −kak( f ); hence ak( f ′′) = kbk( f ′) = −k2ak( f ). Iterating,
we obtain

|ak( f ( j))| =
{

|k j ak( f )| when j is even,
|k j bk( f )| when j is odd.

A similar identity holds for |bk( f ( j))|. Since the Riemann–Lebesgue Lemma
implies ak( f ( j)) and bk( f ( j)) → 0 as k → ∞, it follows that k j ak( f ) → 0 and
k j bk( f ) → 0 as k → ∞. �
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602 Chapter 14 Fourier Series

This result shows that if f is continuously differentiable and periodic, then
kak( f ) and kbk( f ) both converge to zero as k → ∞. Recall that if f is
continuously differentiable on [−π, π], then f is of bounded variation (see
Remark 5.51). Thus it is natural to ask, How rapidly do kak( f ) and kbk( f )
grow when f is a function of bounded variation? To answer this question, let
{x0, x1, . . . , xn} be a partition of [−π, π]. Using Riemann sums, the Mean Value
Theorem, Abel’s Formula, and sin kx0 = sin kxn = 0, we can convince our-
selves that

πak( f ) =
∫ π

−π
f (x) cos kx dx ≈

n∑
j=1

f (x j ) cos kx j (x j − x j−1)

≈ 1

k

n∑
j=1

f (x j )(sin kx j − sin kx j−1)

= 1

k

n−1∑
j=1

( f (x j )− f (x j+1)) sin kx j .

Since the absolute value of this last sum is bounded by Var f , we guess that
k|ak( f )| ≤ Var f/π .

To prove that our guess is correct, suppose for a moment that f is increasing,
periodic, and differentiable on [−π, π], and φ(x) = sin kx . Then, by Defini-
tion 14.3, periodicity, integration by parts, and the Fundamental Theorem of
Calculus, we can estimate the Fourier coefficients of f as follows:

πk|ak( f )| =
∣∣∣∣
∫ π

−π
f (x)φ′(x) dx

∣∣∣∣
=
∣∣∣∣ f (x)φ(x)

∣∣π−π −
∫ π

−π
f ′(x)φ(x) dx

∣∣∣∣
=
∣∣∣∣
∫ π

−π
f ′(x)φ(x) dx

∣∣∣∣ ≤
∫ π

−π
f ′(x) dx

=
n∑

j=1

∫ x j

x j−1

f ′(x) dx =
n∑

j=1

f (x j )− f (x j−1) ≤ Var f.

The following result shows that this estimate is valid even when f is neither
differentiable nor increasing.

14.24 Lemma.
Suppose that f and φ are periodic, where f is of bounded variation on [−π, π]
and φ is continuously differentiable on [−π, π]. If M := supx∈[−π,π] |φ(x)|,
then ∣∣∣∣

∫ π

−π
f (x)φ′(x) dx

∣∣∣∣ ≤ M Var f. (15)
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Proof. Since f is of bounded variation and φ′ is continuous on [−π, π], the
product f φ′ is integrable on [−π, π] (see Corollary 5.23 and the comments
following Corollary 5.57).

Let ε > 0 and set C = supx∈[−π,π] | f (x)|. Since φ′ is uniformly continuous
and f φ′ is integrable on [−π, π], choose a partition P = {x0, x1, . . . , x2n} of
[−π, π] such that

w, c ∈ [x j−1, x j ] implies |φ′(w)− φ′(c)| < ε

4πC
(16)

and ∣∣∣∣∣∣
2n∑
j=1

f (w j )φ
′(w j )(x j − x j−1)−

∫ π

−π
f (x)φ′(x) dx

∣∣∣∣∣∣ <
ε

2
(17)

for any choice of w j ∈ [x j−1, x j ].
Set

A:=
2n∑
j=1

f (w j )(φ(x j )− φ(x j−1)),

where w j = x j when j is even, w j = x j−1 when j is odd. By the Mean Value
Theorem, choose c j ∈ [x j−1, x j ] such that φ(x j ) − φ(x j−1) = φ′(c j )(x j −
x j−1). Then

A =
2n∑
j=1

f (w j )φ
′(c j )(x j − x j−1).

Hence, it follows from (17) and (16) that

∣∣∣∣A −
∫ π

−π
f (x)φ′(x) dx

∣∣∣∣
≤
∣∣∣∣∣∣

2n∑
j=1

f (w j )φ
′(c j )(x j − x j−1)−

2n∑
j=1

f (w j )φ
′(w j )(x j − x j−1)

∣∣∣∣∣∣
+
∣∣∣∣∣∣

2n∑
j=1

f (w j )φ
′(w j )(x j − x j−1)−

∫ π

−π
f (x)φ′(x) dx

∣∣∣∣∣∣
<

2n∑
j=1

| f (w j )| |φ′(c j )− φ′(w j )|(x j − x j−1)+ ε

2

≤ ε

4π

2n∑
j=1

(x j − x j−1)+ ε

2
= ε

2
+ ε

2
= ε.
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Combining this observation with the Triangle Inequality, we obtain

∣∣∣∣
∫ π

−π
f (x)φ′(x) dx

∣∣∣∣ ≤ |A| + ε. (18)

On the other hand, by the choice of the w j ’s,

A =
n∑

j=1

f (x2 j−2)(φ(x2 j−1)− φ(x2 j−2))+
n∑

j=1

f (x2 j )(φ(x2 j )− φ(x2 j−1))

=
n∑

j=1

φ(x2 j−1)( f (x2 j−2)− f (x2 j ))

+
n∑

j=1

( f (x2 j )φ(x2 j )− f (x2 j−2)φ(x2 j−2)).

Since f and φ are periodic, this last sum telescopes to 0. Therefore,

|A| =
∣∣∣∣∣∣

n∑
j=1

φ(x2 j−1)( f (x2 j−2)− f (x2 j )

∣∣∣∣∣∣
≤

n∑
j=1

|φ(x2 j−1)| | f (x2 j−2)− f (x2 j )| ≤ M Var f.

This, together with (18), proves that

∣∣∣∣
∫ π

−π
f (x)φ′(x) dx

∣∣∣∣ ≤ M Var f + ε.

Taking the limit of this inequality as ε → 0, we conclude that (15) holds. �

We now estimate the rate of growth of Fourier coefficients of functions of
bounded variation.

14.25 Theorem. If f : R → R is periodic and of bounded variation on
[−π, π], then

|kak( f )| ≤ Var f

π
and |kbk( f )| ≤ Var f

π

for k ∈ N.

Proof. Fix k ∈ N and set φ(x) = sin kx . Then φ is periodic and φ′(x) =
k cos kx is continuously differentiable on [0, 2π]. Hence, it follows from
Lemma 14.24 that
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|kak( f )| =
∣∣∣∣ 1

π

∫ π

−π
f (x)k cos kx dx

∣∣∣∣ =
∣∣∣∣ 1

π

∫ π

−π
f (x)φ′(x) dx

∣∣∣∣ ≤ Var f

π
.

A similar argument proves that |kbk( f )| ≤ Var f/π . �

EXERCISES

14.3.1. If f is integrable on [−π, π] and α ∈ R, prove that

lim
k→∞

∫ π

−π
f (x) sin(k + α)x dx = 0.

14.3.2. Prove that there is no continuous function whose Fourier coefficients
satisfy |ak( f )| ≥ 1/

√
k for k ∈ N.

14.3.3. Prove that if f : R → R belongs to C2(R) and f, f ′ are both periodic,
then S f converges to f uniformly and absolutely on R. (See also Exer-
cise 14.4.5.)

14.3.4. If f : R → R belongs to C∞(R) and f ( j) is periodic for all j ≥ 0, prove
that S f is term-by-term differentiable on R. In fact, show that

d j f

dx j
(x) =

∞∑
k=1

d j

dx j
(ak( f ) cos kx + bk( f ) sin kx)

uniformly for all j ∈ N.
14.3.5. Suppose that f : R → R is periodic on R, integrable on [−π, π], and

that ak( f ) ≥ 0 for k = 0, 1, . . . .

a) Prove that (Sk f )(0) ≥ (S j f )(0) for all k ≥ j ≥ 0.
b) Prove that SN f (0) ≤ 2σ2N f (0) for N ∈ N.
c) Prove that

∑∞
k=1 |ak( f )| < ∞.

d) Suppose that f is also even. Prove that f must be continuous and S f
converges uniformly and absolutely on R.

14.3.6. Suppose that f : R → R is continuous and periodic. The modulus of
continuity of f is defined by

ω( f, δ) = sup
t∈[0,2π]

|h|≤δ

| f (t + h)− f (t)|.

a) Show that

ak( f ) = 1

2π

∫ π

−π

(
f (u)− f

(
u + π

k

))
cos ku du

for k ∈ N.
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606 Chapter 14 Fourier Series

b) Prove that

|ak( f )| ≤ ω
(

f,
π

k

)
and |bk( f )| ≤ ω

(
f,
π

k

)
for k ∈ N.

c) Use part b) to give a different proof the Riemann–Lebesgue Lemma
in the special case when f is periodic and continuous.

14.3.7. a) Compute the Fourier coefficients of f (x) = x .
b) Prove that

n∑
k=1

1

k2
= π2

6
.

∗14.4 CONVERGENCE OF FOURIER SERIES

This section uses material from Sections 5.5, 14.2, and 14.3.
We shall prove that, under certain conditions, a summable series must also

be convergent. Such results, called Tauberian theorems, will be used to obtain a
partial answer to the Convergence Question posed in Section 14.1 and further
results concerning the growth of Fourier coefficients.

The following result was the first Tauberian theorem discovered.

14.26 Theorem. [TAUBER].
Let ak ≥ 0 and L ∈ R. If

∑∞
k=0 ak is Cesàro summable to L, then

∞∑
k=0

ak = L .

Proof. By Remark 14.11, it suffices to prove that
∑∞

k=0 ak < ∞. Suppose to
the contrary that

∑∞
k=0 ak = ∞. Then, given M > 0, there is an n0 ∈ N such

that n ≥ n0 implies sn := ∑n
k=0 ak ≥ M . Let N > n0. Then

σN :=s0 + s1 + · · · + sn0

N + 1
+ sn0+1 + · · · + sN

N + 1
≥ 0 + N − n0

N + 1
M.

Taking the limit of this last inequality as N → ∞, we obtain L ≥ M for all
M > 0. We conclude that L = ∞, a contradiction. �

This result can be used to improve the Riemann–Lebesgue Lemma for certain
types of functions.

14.27 Corollary. Let f : R → R be periodic on R and integrable on [−π, π]. If
ak( f ) = 0 and bk( f ) ≥ 0 for k ∈ N, then

∞∑
k=1

bk( f )

k
< ∞.
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Section 14.4 Convergence of Fourier Series 607

Proof. By considering g = f − a0( f ), we may suppose that a0( f ) = 0. Let

F(x) =
∫ x

0
f (t) dt.

By Theorem 5.26, F is continuous on R. Since a0( f ) = 0, F is also periodic.
Hence, by Fejér’s Theorem, (σN F)(0) → F(0) = 0 as N → ∞. Integrating by
parts, we obtain

ak(F) = bk( f )

k
≥ 0 and bk(F) = −ak( f )

k
= 0.

It follows that
∑∞

k=1 bk( f )/k is Cesàro summable [to −a0(F)/2] and has
nonnegative terms. We conclude by Tauber’s Theorem that

∑∞
k=1 bk( f )/k

converges. �

We are now in a position to see that the converse of the Riemann–Lebesgue
Lemma is false. Indeed, if

∞∑
k=2

sin kx

log k

were the Fourier series of some integrable function, then, by Corollary 14.27,

∞∑
k=2

1

k log k

would converge, a contradiction of the Integral Test.
The following result is one of the deepest Tauberian theorems.

14.28 Theorem. [HARDY].
Let E ⊆ R and suppose that fk : E → R is a sequence of functions which
satisfies

|k fk(x)| ≤ M (19)

for all x ∈ E , all k ∈ N, and some M > 0. If
∑∞

k=0 fk is uniformly Cesàro
summable to f on E, then

∑∞
k=0 fk converges uniformly to f on E.

Proof. Fix x ∈ E and suppose without loss of generality that M ≥ 1. For each
n = 0, 1, . . . , set

sn(x) =
n∑

k=0

fk(x), σn(x) = s0(x)+ · · · + sn(x)

n + 1
,

and consider the delayed averages
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σn,k(x) := sn(x)+ · · · + sn+k(x)

k + 1

defined for n, k ≥ 0.
Let 0 < ε < 1. For each n ∈ N, choose k = k(n) ∈ N such that k + 1 ≤

nε/(2M) < k + 2. Then

n − 1

k + 1
<

n

k + 1
<

2M

ε
< ∞. (20)

Moreover, since

σn,k(x)− sn(x) = (sn(x)− sn(x))+ · · · + (sn+k(x)− sn(x))

k + 1

=
n+k∑
j=n

(
1 − j − n

k + 1

)
f j (x),

it follows from (19) and the choice of k = k(n) that

|σn,k(x)− sn(x)| ≤
n+k∑

j=n+1

| f j (x)| ≤ M
n+k∑

j=n+1

1

j
<

M(k + 1)

n + 1
<
ε

2
. (21)

Since σn → f uniformly on E , choose N ∈ N such that

n ≥ N and x ∈ E imply |σn(x)− f (x)| < ε2

12M
. (22)

Since

σn,k(x) =
(

1 + n − 1

k + 1

)
σn+k −

(
n − 1

k + 1

)
σn−1,

it follows from (20), (21), and (22) that

|sn(x)− f (x)| ≤ |sn(x)− σn,k(x)| + |σn,k − f (x)|
<
ε

2
+
(

1 + n − 1

k + 1

)
|σn+k(x)− f (x)|

+
(

n − 1

k + 1

)
|σn−1(x)− f (x)|

<
ε

2
+
(

1 + 2M

ε

)(
ε2

12M

)
+ 2M

ε

(
ε2

12M

)

= ε

2
+ ε2

12M
+ ε

3
<
ε

2
+ ε

12
+ ε

3
< ε

for any n > N and x ∈ E . We conclude that sn → f uniformly on E as
n → ∞. �
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Section 14.4 Convergence of Fourier Series 609

We are prepared to answer the Convergence Question posed in Section 14.1
for piecewise continuous functions of bounded variation.

14.29 Theorem. [DIRICHLET–JORDAN].
If f : R → R is periodic on R and of bounded variation on [−π, π], then

lim
N→∞(SN f )(x) = f (x+)+ f (x−)

2

for every x ∈ R. If f is also continuous on some closed interval I, then

lim
N→∞ SN f = f

uniformly on I.

Proof. Since f is periodic and of bounded variation, the one-sided limits
f (x+) and f (x−) exist for each x ∈ R, and f is Riemann integrable on
[−π, π] (see the comments which follow the proof of Corollary 5.57). Hence,
by Fejér’s Theorem, both conclusions hold if SN is replaced by σN . Since
Theorem 14.25 implies

|kak( f ) cos kx | and |kbk( f ) cos kx | ≤ Var f

π

for k ∈ N, it follows from Hardy’s Theorem that both conclusions hold as
stated. �

We close this section with an application of Fourier series to an extremal prob-
lem. We will show that among all smooth simple closed curves in R2 with a given
arc length, the largest area is enclosed by a circle. (The proof presented here
comes from Marsden [7].)

14.30 Theorem. [THE ISOPERIMETRIC PROBLEM].
Let E be a region in R2 whose topological boundary C = ∂E is a smooth closed
simple curve of length 2π . If A = Area(E), then A ≤ π . Moreover, A = π if
and only if E = B1(a, b) for some a, b ∈ R.

Proof. Let (ν, [0, 2π]) be the natural parametrization of C ; that is, ‖ν′(s)‖ = 1
for all s ∈ [0, 2π]. Set

a = 1

2π

∫ 2π

0
ν1(s) ds, b = 1

2π

∫ 2π

0
ν2(s) ds,

P(s) = ν1(s)− a, Q(s) = ν2(s)− b, and φ(s) = (P(s), Q(s))

for s ∈ [0, 2π], where (ν1, ν2) := ν. Clearly, (φ, [0, 2π]) is a smooth
parametrization of ∂E − (a, b) whose trace is a smooth closed simple curve
with arc length 2π which encloses a region with area A. Moreover,
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610 Chapter 14 Fourier Series

|P ′(s)|2 + |Q′(s)|2 = 1, (23)

1

2π

∫ 2π

0
P(s) ds = 0,

1

2π

∫ 2π

0
Q(s) ds = 0, (24)

and, by Green’s Theorem,

A =
∫∫

E
d A =

∫
∂E

x dy =
∫ 2π

0
P(s)Q′(s) ds. (25)

Let ak, bk (respectively, ck, dk) represent the Fourier coefficients of P
(respectively, Q). Since (φ, [0, 2π]) is smooth and closed, P and Q are
continuously differentiable and periodic. By (24) and the Dirichlet–Jordan
Theorem,

P(s) =
∞∑

k=1

(ak cos ks + bk sin ks), Q(s) =
∞∑

k=1

(ck cos ks + dk sin ks), (26)

P ′(s) =
∞∑

k=1

(kbk cos ks − kak sin ks), and Q′(s) =
∞∑

k=1

(kdk cos ks − kck sin ks)

(27)

uniformly on [0, 2π]. Hence, by (23) and Parseval’s Identity,

2π =
∫ 2π

0
(|P ′(s)|2 + |Q′(s)|2) ds = π

∞∑
k=1

k2(a2
k + b2

k + c2
k + d2

k ).

Moreover, by (25) and orthogonality

A =
∫ 2π

0
P(s)Q′(s) ds = π

∞∑
k=1

k(akdk − bkck).

It follows that

π−A = π

2

∞∑
k=2

(k2 − k)(a2
k + b2

k + c2
k + d2

k )+
π

2

∞∑
k=1

k((ak − dk)
2+(ck + bk)

2)≥0.

In particular, A ≤ π and A = π if and only if a1 = d1, c1 = −b1, and
ak = bk = ck = dk = 0 for k ≥ 2.

Suppose that A = π . Then P(s) = a1 cos s+b1 sin s and Q(s) = −b1 cos s+
a1 sin s = −P(s + π

2 ). Thus P ′(s) = −Q(s) and Q′(s) = −P ′′(s) = P(s) for
all s ∈ [0, 2π]. It follows from (23) that φ([0, 2π]) is a subset of ∂B1(0, 0).
Since φ(0) = φ(2π), we must have φ([0, 2π]) = ∂B1(0, 0). Therefore, C is the
boundary of the disk E = B1(a, b). �
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Section 14.4 Convergence of Fourier Series 611

EXERCISES

14.4.1. Suppose that f is continuous and of bounded variation on [−π, π].
Prove that SN f → f pointwise on (−π, π) and uniformly on any
[a, b] ⊂ (−π, π).

14.4.2. a) Prove that

x = 2
∞∑

k=1

(−1)k+1

k
sin kx

pointwise on (−π, π) and uniformly on any [a, b] ⊂ (−π, π).
b) Prove that

|x | = π

2
− 4

π

∞∑
k=1

cos(2k − 1)x

(2k − 1)2

uniformly on [−π, π].
c) Find a value for

∞∑
k=1

1

(2k − 1)2
.

14.4.3. Prove that if f is continuous, odd, and periodic, then
∑∞

k=1 bk( f )/k
converges.

14.4.4. Let L ∈ R. A series
∑∞

k=0 ak is said to be Abel summable to L if and
only if

lim
r→1−

∞∑
k=0

akrk = L .

a) Let Sk = ∑k
j=0 ak . Prove that

∞∑
k=0

akrk = (1 − r)
∞∑

k=0

Skrk = (1 − r)2
∞∑

k=0

(k + 1)σkrk,

provided any one of these series converges for all 0 < r < 1.
b) Prove that if

∑∞
k=0 ak is Cesàro summable to L , then it is Abel

summable to L .
c) Prove that if f is continuous, periodic, and of bounded variation on

R, then S f is Abel summable to f uniformly on R.
d) Show that if ak ≥ 0 and

∑∞
k=0 ak is Abel summable to L , then∑∞

k=0 ak converges to L .

14.4.5. [Bernstein]. Let f : R → R be periodic and α > 0. Suppose that f is
Lipschitz of order α; that is, there is a constant M > 0 such that

| f (x + h)− f (x)| ≤ M |h|α

for all x, h ∈ R.
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612 Chapter 14 Fourier Series

a) Prove that

1

π

∫ π

−π
| f (x + h)− f (x − h)|2 dx = 4

∞∑
k=1

(a2
k ( f )+ b2

k( f )) sin2 kh

holds for each h ∈ R.
b) If h = π/2n+1, prove that sin2 kh ≥ 1/2 for all k ∈ [2n−1, 2n].
c) Combine parts a) and b) to prove that⎧⎨

⎩
2n−1∑

k=2n−1

(a2
k ( f )+ b2

k( f ))

⎫⎬
⎭

1/2

≤ M2
( π

2n+1

)2α

for n = 1, 2, 3, . . . .
d) Assuming

2n−1∑
k=2n−1

(|ak( f )| + |bk( f )|) ≤ 2n/2

⎛
⎝ 2n−1∑

k=2n−1

(a2
k ( f )+ b2

k( f ))

⎞
⎠

1/2

(see Exercise 11.7.9), prove that if f is Lipschitz of order α for some
α > 1/2, then S f converges absolutely and uniformly on R.

e) Prove that if f : R → R is periodic and continuously differentiable,
then S f converges absolutely and uniformly on R.

∗14.4.6. Suppose that f : R → R is periodic and of bounded variation on
[−π, π]. Prove that SN f → f almost everywhere as N → ∞ (see
Exercise 14.2.8).

∗14.5 UNIQUENESS

This section uses material from Section 14.4.
In this section we examine the Uniqueness Question posed in Section 14.1.

We begin with the following generalization of the second derivative.

14.31 Definition.

Let x0 ∈ R and let I be an open interval containing x0. A function F : I → R
is said to have a second symmetric derivative at x0 if and only if

D2 F(x0) = lim
h→0+

F(x0 + 2h)+ F(x0 − 2h)− 2F(x0)

4h2

exists.

14.32 Remark. Let x0 ∈ R and let I be an open interval containing x0. If F is
differentiable on I and F ′′(x0) exists, then F has a second symmetric derivative at
x0 and D2 F(x0) = F ′′(x0).
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Section 14.5 Uniqueness 613

Proof. Set G(t) = F(x0 + 2t) + F(x0 − 2t) for t ∈ I and H(t) = 4t2 and fix
t ∈ I . By Theorem 4.15 (the Generalized Mean Value Theorem),

F(x0 + 2t)+ F(x0 − 2t)− 2F(x0)

4t2
= G(t)− G(0)

H(t)− H(0)
= G ′(c)

H ′(c)

= F ′(x0 + 2c)− F ′(x0 − 2c)

4c

for some c between 0 and t . Since c → 0 as t → 0, it follows that

D2 F(x0) = lim
c→0

F ′(x0 + 2c)− F ′(x0 − 2c)

4c

= 1

2
lim
c→0

(
F ′(x0 + 2c)− F ′(x0)

2c
+ F ′(x0)− F ′(x0 − 2c)

2c

)

= 1

2
(F ′′(x0)+ F ′′(x0)) = F ′′(x0).

�
The converse of Remark 14.32 is false. Indeed, if

F(x) =

⎧⎪⎨
⎪⎩

1 x > 0
0 x = 0

−1 x < 0,

then D2 F(0) = 0 but F ′′(0) does not exist.
The following result reinforces further the analogy between the second

derivative and the second symmetric derivative (see also Exercises 14.5.1
and 14.5.5).

14.33 Lemma.
Let [a, b] be a closed bounded interval. If F : [a, b] → R is continuous on
[a, b] and D2 F(x) = 0 for all x ∈ (a, b), then F is linear on [a, b]; that is, there
exist constants m, γ such that F(x) = mx + γ for all x ∈ [a, b].
Proof. Let ε > 0. By hypothesis,

φ(x):=F(x)− F(a)−
(

F(b)− F(a)

b − a

)
(x − a)+ ε(x − a)(x − b)

is continuous on [a, b], and, by Remark 14.32,

D2φ(x) = D2 F(x)+ 2ε = 2ε (29)

for x ∈ (a, b).
We claim that φ(x) ≤ 0 for x ∈ [a, b]. Clearly, φ(a) = φ(b) = 0. If φ(x) > 0

for some x ∈ (a, b), then φ attains its maximum at some x0 ∈ (a, b). By
Exercise 14.5.1, D2φ(x0) ≤ 0; hence, by (29), 2ε ≤ 0, a contradiction. This
proves the claim.
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614 Chapter 14 Fourier Series

Fix x ∈ [a, b]. We have shown that

F(x)− F(a)−
(

F(b)− F(a)

b − a

)
(x − a) ≤ ε(x − a)(b − x).

A similar argument establishes that

F(x)− F(a)−
(

F(b)− F(a)

b − a

)
(x − a) ≥ −ε(x − a)(b − x).

Therefore,

∣∣ F(x)− F(a)−
(

F(b)− F(a)

b − a

)
(x − a)

∣∣≤ ε(x − a)(b − x) ≤ ε(b − a)2.

Taking the limit of this inequality as ε → 0, we conclude that

F(x) = F(a)+
(

F(b)− F(a)

b − a

)
(x − a)

for all x ∈ [a, b]; that is, F is linear on [a, b]. �

14.34 Definition.

The second formal integral of a trigonometric series,

S = a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx),

is the function

F(x) = a0

4
x2 −

∞∑
k=1

1

k2
(ak cos kx + bk sin kx).

By the Weierstrass M-Test, if the coefficients of S are bounded, then the sec-
ond formal integral of S converges uniformly on R. In particular, the second
formal integral always exists when the coefficients of S converge to zero.

Notice that the second formal integral of a trigonometric series S is the result
of integrating S twice term by term. Hence, it is not unreasonable to expect that
two derivatives of the second formal integral F might recapture the original
series S. Although this statement is not quite correct, the following result shows
that there is a simple connection between the limit of the series S and the second
symmetric derivative of F .
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Section 14.5 Uniqueness 615

14.35 Theorem. [RIEMANN].
Suppose that

S = a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx)

is a trigonometric series whose coefficients ak, bk → 0 as k → ∞ and let F be
the second formal integral of S. If S(x0) converges to L for some x0 ∈ R, then
D2 F(x0) = L .

Proof. Let FN denote the partial sums of F . After several applications of
Theorem B.3, we observe that

lim
h→0

FN (x0 + 2h)+ FN (x0 − 2h)− 2FN (x0)

4h2

= lim
h→0

(
a0

2
+

N∑
k=1

(ak cos kx0 + bk sin kx0)

(
sin kh

kh

)2
)

= a0

2
+

N∑
k=1

(ak cos kx0 + bk sin kx0)

holds for any N ∈ N. Therefore, it suffices to show that given ε > 0 there is
an N ∈ N such that

|RN |:=
∣∣∣∣∣∣

∞∑
k=N+1

(ak cos kx0 + bk sin kx0)

(
sin kh

kh

)2
∣∣∣∣∣∣ < ε (30)

for all |h| ≤ 1.
Let

Ak =
∞∑

j=k+1

(a j cos j x0 + b j sin j x0) and Bk =
(

sin kh

kh

)2

for k ∈ N. Since An → 0 as n → ∞, we have by Abel’s Formula that

RN := lim
n→∞

n∑
k=N+1

(Ak−1 − Ak)Bk

= lim
n→∞

⎛
⎝(AN − An)Bn −

n−1∑
k=N+1

(AN − Ak)(Bk+1 − Bk)

⎞
⎠

= AN BN+1 +
∞∑

k=N+1

Ak(Bk+1 − Bk).

(31)
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616 Chapter 14 Fourier Series

Moreover, by the Fundamental Theorem of Calculus,

|Bk+1 − Bk | =
∣∣∣∣∣
∫ (k+1)h

kh

d

dt

(
sin t

t

)2

dt

∣∣∣∣∣ . (32)

Since

d

dt

(
sin t

t

)2

= 2 sin t

t

(
t cos t − sin t

t2

)

is bounded near t = 0 and is bounded by 2(t + 1)/t3 < 2/t2 for t ≥ 2, it is
clear that the improper integral

C =
∫ ∞

0

∣∣∣∣∣ d

dt

(
sin t

t

)2
∣∣∣∣∣ dt

converges. Since {Bk} is bounded and AN → 0 as N → ∞, we can choose an
N ∈ N such that

|AN BN+1| < ε

2
and k ≥ N implies |Ak | < ε

2C
. (33)

It follows from (32) that

∞∑
k=N+1

Ak(Bk+1 − Bk) ≤ ε

2C

∞∑
k=N+1

∣∣∣∣∣
∫ (k+1)h

kh

d

dt

(
sin t

t

)2

dt

∣∣∣∣∣
≤ ε

2C

∫ ∞

0

∣∣∣∣∣ d

dt

(
sin t

t

)2
∣∣∣∣∣ dt = ε

2
.

Combining this inequality with (31) and (33), we conclude that |RN | < ε. �

The following result shows that the hypotheses of Riemann’s Theorem are
satisfied by any trigonometric series which converges pointwise on a nondegen-
erate interval.

14.36 Theorem. [THE CANTOR–LEBESGUE LEMMA].
If

S = a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx)

is a trigonometric series which converges pointwise on a nondegenerate interval
[a, b], then its coefficients satisfy ak, bk → 0 as k → ∞.

Proof. Set ρ0 = a0/2 and ρ2
k = a2

k + b2
k for k ∈ N. If the result is false, then

there is a δ > 0 such that ρk > δ for infinitely many k ∈ N.
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Section 14.5 Uniqueness 617

Set θ0 = 0 and for each k ∈ N define θk ∈ R so that ak = ρk cos kθk, bk =
ρk sin kθk . By a sum-angle formula,

a0

2
+

n∑
k=1

(ak cos kx + bk sin kx) =
n∑

k=0

ρk cos k(x − θk)

for each x ∈ R and n ∈ N. Since S converges on [a, b], it follows that

lim
k→∞ ρk cos k(x − θk) = 0 (34)

for all x ∈ [a, b].
Set I0 = [a, b] and k0 = 1. Fix j ≥ 0 and suppose that a closed interval

I j ⊆ I0 and an integer k j > k0 have been chosen. Choose k j+1 > k j such that
k j+1|I j | > 2π and ρk j+1 > δ. Clearly, k j+1(x − θk j+1) runs over an interval
of length > 2π as x runs over I j . Hence, we can choose a closed interval
I j+1 ⊆ I j such that

x ∈ I j+1 implies cos k j+1(x − θk j+1) ≥ 1

2
.

By induction, then, there exist integers 1 < k1 < k2 < . . . and a nested
sequence of closed intervals I0 ⊇ I1 ⊇ . . . such that

ρk j cos k j (x − θk j ) ≥ δ

2
(35)

for x ∈ I j , j ∈ N. By the Nested Interval Property, there is an x ∈ I j
for all j ∈ N. This x must satisfy (35) for all j ∈ N and must belong to
[a, b] by construction. Since this contradicts (34), we conclude that ρk → 0 as
k → ∞. �

We are now prepared to answer the Uniqueness Question for continuous
functions of bounded variation.

14.37 Theorem. [CANTOR].
Suppose that

S = a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx)

converges pointwise on [−π, π] to a function f which is periodic and continuous
on R, and of bounded variation on [−π, π]. Then S is the Fourier series of f;
that is, ak = ak( f ) for k = 0, 1, . . . , and bk = bk( f ) for k = 1, 2, . . . .

Proof. Suppose first that f (x) = 0 for all x ∈ R. By the Cantor–Lebesgue
Lemma, the coefficients ak, bk tend to zero as k → ∞. Thus the second formal
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618 Chapter 14 Fourier Series

integral F of S is continuous on R and by Riemann’s Theorem has a second
symmetric derivative which satisfies D2 F(x) = 0 for x ∈ R. It follows that F
is linear on R; that is, there exist numbers m and γ such that

mx + γ = a0

4
x2 −

∞∑
k=1

1

k2
(ak cos kx + bk sin kx)

for x ∈ R. Since the series in this expression is periodic, it must be the case
that m = a0 = 0; that is,

γ +
∞∑

k=1

1

k2
(ak cos kx + bk sin kx) = 0

for all x ∈ R. Since this series converges uniformly, it follows from
Theorem 14.4 that γ = 0 and ak = bk = 0 for k ∈ N. This proves the theorem
when f = 0.

If f is periodic, continuous, and of bounded variation on [−π, π], then
SN f → f uniformly on R by Theorem 14.29. Hence, the series S − S f con-
verges pointwise on R to zero. It follows from the case already considered
that ak − ak( f ) = 0 for k = 0, 1, . . . , and bk − bk( f ) = 0 for k = 1, 2, . . . . �

EXERCISES

14.5.1. Suppose that F : R → R has a second symmetric derivative at some x0.
Prove that if F(x0) is a local maximum, then D2 F(x0) ≤ 0, and if F(x0)

is a local minimum, then D2 F(x0) ≥ 0.
14.5.2. Prove that if the coefficients of a trigonometric series are bounded, then

its second formal integral converges uniformly on R.
14.5.3. Prove that if f : R → R is periodic, then there exists at most one

trigonometric series which converges to f pointwise on R.
14.5.4. Suppose that f : R → R is periodic, piecewise continuous, and of

bounded variation on R. Prove that if S is a trigonometric series which
converges to ( f (x+) + f (x−))/2 for all x ∈ R, then S is the Fourier
series of f .

∗14.5.5. Suppose that F : (a, b) → R is continuous and D2 F(x) > 0 for all
x ∈ (a, b). Prove that F is convex on (a, b).
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Answers and Hints to Selected
Exercises

CHAPTER 1

1.2 Ordered Field Axioms

0. b) False. d) True. It’s vacuous.
1. b) Consider the cases c = 0 and c �= 0.
2. To prove (7), multiply the first inequality in (7) by c and the second

inequality in (7) by b. Prove (8) and (9) by contradiction.
4. a) (−4, 3). b) (0, 4). c) (1/3, (

√
3 − 1)/2) ∪ (1,∞). d) (−∞, 1).

e) (−1/2, 1/2).
5. a) Apply (6) to a − 1. b) Apply (6) to a − 2. c) Apply (6) to 1 − a.

d) Apply (6) to a − 2.
6. Observe that (

√
a − √

b)2 ≥ 0.
7. Factor. Then use Remark 1.5 and/or the triangle inequality.
8. a) n > 99. b) n ≥ 20. c) n ≥ 23.
9. a) Use uniqueness of multiplicative inverses to prove that (nq)−1 =

n−1q−1. b) Use part a). c) Use proof by contradiction for the sum.
Use a similar argument for the product, and identify all rationals q such
that xq ∈ Q for a given x ∈ R \ Q. d) Use the Multiplicative Properties.

10. Show first that the given inequality is equivalent to 2abcd ≤ b2c2 +a2d2.
11. a) The Trichotomy Property implies i); the Additive and Multiplicative

Properties imply ii).

1.3 The Completeness Axiom

0. b) True. d) False.
1. a) inf E = −3, sup E = 1. b) inf E = 0, sup E = 3/2. c) inf E = 0,

sup E = √
5. d) inf E = 0, sup E = 3/2. e) inf E = −1, sup E = 3/2.

f) inf E = 7/4, sup E = 3.
3. Notice that a − √

2 < b − √
2, and use Exercise 1.2.9c.

5. See Theorem 1.15.
6. b) Apply Theorem 1.14 to −E .
8. After showing that sup A and sup B exist, prove that max{sup A, sup B} ≤

sup E .
9. Use the proof of Theorem 1.18 as a model.

10. t1 ≤ t2 ≤ . . . .

1.4 Mathematical Induction

0. c) True.
1. Compare with Exercise 1.2.5.

From Introduction to Analysis, Fourth Edition. William R. Wade. 
Copyright © 2010 by Pearson Education, Inc. All rights reserved.
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3. c) You may use part a).
8. Use the Binomial Formula.
9. b) Show that n2 + 3n cannot be the square of an integer when n > 1.

c) The expression is rational if and only if n = 9.
10. This recursion, discovered by P. W. Wade, generates all Pythagorean

triples a, b, c which satisfy c − b = 1.

1.5 Inverse Functions and Images

0. a) False. It’s π − arcsin(x). d) False.
1. α) f −1(x)= (x +7)/3. β) f −1(x) = 1/ log x . γ ) f −1(x) = arctan(x − π).
δ) f −1(x) = −1 − √

6 + x . ε) f −1(x) = (x + |x − 2| − |x − 4|)/3.
ζ ) f −1(x) = (1 − √

1 − 4x2)/2x when x �= 0, and f −1(0) = 0.
2. a) f (E) = (−4, 5), f −1(E) = (0, 1). b) f (E) = [1, 5], f −1(E) = [−1, 1].

c) f (E) = [−8, 1], f −1(E) = [1 − √
3, 1 + √

3]. d) f (E) = (0, log 5],
f −1(E) = (1 − √

e3 − 1, 1) ∪ (1, 1 + √
e3 − 1). e) f (E) = [−1, 1],

f −1(E) = ∪k∈Z[(4k − 1)π/2, (4k + 1)π/2].
3. a) [−2, 2]. b) (0, 1]. c) {0}. d) [−1, 0]. e) (−∞, 1). f) {1}.
4. First prove that f (A)\ f (B) ⊆ f (A\B) and A ⊆ f −1( f (A)) hold whether

f is 1–1 or not.

1.6 Countable and Uncountable Sets

0. b) False. d) False.
4. If φ is 1–1 from a set E into A, is ψ(x) := f (φ(x)) 1–1 from E into B?
6. a) Prove it by induction on n. b) Use Exercise 1.6.5.

CHAPTER 2

2.1 Limits of Sequences

0. b) False. d) False.
2. a) Apply Definition 2.1 with ε/2 in place of ε. b) First prove that 1/xn < 2

for n large.
5. Definition 2.1 works for any positive ε including ε/C when C > 0.

2.2 Limit Theorems

0. b) True. c) False. d) You may wish to use derivatives to show that 2x − x
is increasing on [2,∞).

1. c) You may use Exercise 2.2.5. d) First prove that n2 ≤ 2n for n = 4,
5, . . . .

3. a) −4/3. b) 1/2. c) ∞. d) 1/2.
5. You may wish to prove that

√
xn − √

x = (xn − x)/(
√

xn + √
x).

6. Use Theorem 1.18.
8. If x = limn→∞ xn exists, what is limn→∞ xn+1?

2.3 The Bolzano–Weierstrass Theorem

0. b) You only need to prove that {xn} has a convergent subsequence, not
actually find it. d) False.
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4. Prove that {xn} is monotone.
8. a) See Exercise 1.2.6.

2.4 Cauchy Sequences

0. a) False. c) True.
1. You may use Theorem 2.29.
5. Use Exercise 2.4.4.
6. Is it Cauchy? (Compare with Example 2.30 and see Exercise 1.4.4c.)
8. a) Use the Bolzano–Weierstrass Theorem.

2.5 Limits Supremum and Infimum

1. a) 2, 4. b) −1, 1. c) −1, 1. d) 1/2, 1/2. e) 0, 0. f) 0,∞. g) ∞,∞.
4. a) First prove that infk≥n xk + infk≥n yk ≤ infk≥n(xk + yk). c) By b), the first

and final inequalities can only be strict if neither {xn} nor {yn} converges.
7. Let s = infn∈N(supk≥n xk) and consider the cases s = ∞, s = −∞, and

s ∈ R.
8. Let s = lim infn→∞ xn and consider the cases s = ∞, s = 0, and 0 <

s < ∞.

CHAPTER 3

3.1 Two-Sided Limits

0. b) False. c) False.
1. See Example 3.3.
2. b) The limit is zero. c) Does it exist as an extended real number? Why

not?
3. a) 2. b) n. c) 0. d) 1/2. [Recall that 2 sin2 x = 1 − cos(2x).] e) 0.
7. b) Use Exercise 3.1.6.
8. b) Use Exercise 3.1.6.

3.2 One-Sided Limits and Limits at Infinity

0. a) False. c) True.
1. d) You may wish to multiply by −1/− 1 to make the numerator positive

as x → 1+.
2. a) 2. b) 5/3. c) 1. d) ∞. e) −∞. f)

√
2/2.

3. b) Use Theorem 3.8.
5. Prove that if f (x) does not converge to L as x → ∞, then there is a

sequence {xn} such that xn → ∞ but f (xn) does not converge to L as
n → ∞.

6. See Exercise 2.2.6.

3.3 Continuity

0. a) True. Show that J = [α, β], where α = inf{ f (x) : x ∈ [a, b]} and
β = sup{ f (x) : x ∈ [a, b]}. c) True.

1. a) and d) Recall that
√

x is continuous on [0,∞).
2. c) Recall that 2x = ex log 2.
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8. b) Use part a) to show that f (x) ≡ f (mx/m) = m f (x/m) first. d) If the
statement is true, then m must equal f (1).

9. a) Begin by showing that f (0) = 1.

3.4 Uniform Continuity

0. d) True. (See Exercise 3.4.5.)
1. c) Recall that sin 2x −sin 2a = 2 sin(x −a) cos(x +a) and that | sin θ | ≤ |θ |.
5. c) and e) Prove that f (x) = x and g(x) = x2 are both uniformly continu-

ous on (0, 1) but only one of them is uniformly continuous on [0,∞).
8. a) This is a function analogue of the Monotone Convergence Theorem.
9. You may wish to prove that if P(x) = anxn + · · · + a0 is a polynomial of

degree n ≥ 1 whose leading coefficient satisfies an > 0, then P(x) → ∞
as x → ∞.

CHAPTER 4

4.1 The Derivative

0. a) False. d) True.
4. Use Definition 4.1.
5. a) a = (2k + 1)π/2 and b = a + (−1)k for k ∈ Z. b) (1, 5) and (−3, 29).

4.2 Differentiability Theorems

0. b) True.
1. a) 3a + c. b) (2b − d)/8. c) bc. d) bc.
2. a) 8e + 3. b) π . c) (1 − 3π)/2.
8. No, f is not differentiable at 0.
9. a) Use assumptions ii) and vi) to prove that sin x → 0 as x → 0. Use

assumption iii) to prove that cos x → 1 as x → 0. b) First prove that
sin x = sin(x − x0) cos x0 +cos(x − x0) sin x0 for any x, x0 ∈ R. c) Assump-
tion vi) and 0 ≤ 1 − cos x ≤ 1 − cos2 x play a prominent role here. d) Use
assumption iv) and part c).

4.3 The Mean Value Theorem

0. a) True. (But you cannot use Theorem 4.17i.) b) False.
10. a) Compare with Exercise 4.1.8.
11. This exercise has nothing to do with the Mean Value Theorem.
12. Use Darboux’s Theorem and Theorem 4.18.

4.4 Taylor’s Formula and l’Hôpital’s Rule

0. a) False.
1. c) n = 5.
2. c) n = 1999.
5. a) 25. b) −∞. c) e1/6. d) 1. e) −1/π . f) 1. g) −2

√
2. h) 3/2 (Rationalize

the numerator and denominator. L’Hôpital’s Rule only makes matters
worse.)
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6. a) Use one-variable calculus techniques to maximize f (x) = log x/xα for
x ∈ [1,∞).

7. b) First prove that if g(x) = e−1/x2
/xk for some k ∈ N, then g(x) → 0 as

x → 0. Next, prove that given n ∈ N, there are integers N = N (n) ∈ N
and ak = a(n)k ∈ Z such that

f (n)(x) =
{∑N

k=0(ak/xk)e−1/x2
x �= 0

0 x = 0.

(Note: Although for each n ∈ N many of the ak ’s are zero, this fact is not
needed in this exercise.)

4.5 Inverse Function Theorems

0. a) False. c) False.
1. a) 1/π . b) 1/e. c) 1/π .
2. b) 1/4e.
3. Observe that if x = sin y, then cos y = √

1 − x2.
9. f (x) = ±√

αx + c for some c ∈ R.
11. Use Darboux’s Theorem.

CHAPTER 5

5.1 The Riemann Integral

0. a) False.
1. a) L( f, P) = 17/16. b) L( f, P) = 11/8. c) U ( f, P) ≈ 0.5386697.
4. a) Look at the proof of Lemma 3.28.
5. First show that

∫
I f (x) dx = 0 for all subintervals I of [a, b].

8. Notice that |x j − x j−1| ≤ ‖P‖ for each j = 1, 2, . . . , n.
9. Prove that there is an absolute constant C > 0 such that M j (

√
f ) −

m j (
√

f ) ≤ C(M j ( f )− m j ( f )).

5.2 Riemann Sums

0. b) True. c) True.
1. a) 5. b) 9. c) πa2/2. d) 10 + π/2.
3. a) See Exercise 4.4.4 and use three nonzero terms for the upper bound.

b) Use the Taylor polynomial with four nonzero terms.
5. Do not forget that f is bounded.
6. b) You may use the fact that

∫
xn dx = xn+1/(n + 1).

8. a) If | f (x0)| > M − ε/2 for some x0 ∈ [a, b], can you choose a nondegen-
erate interval I such that | f (x)| > M − ε for all x ∈ I ? b) See Example
2.21.

5.3 The Fundamental Theorem of Calculus

0. b) True. c) True.
1. a) −2x f (x2). b) 3x2 f (x3) − 2x f (x2). c) (x cos2 x − x2 sin x cos x)

f (x cos x). d) f (−x).
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3. a) −1/2. b) −4.
6. Use the Fundamental Theorem of Calculus.

11. The hard part is showing that f q is integrable on [a, b]. You may use
Exercise 4.2.7a.

12. First show that log(an) is a Riemann sum.

5.4 Improper Riemann Integration

0. c) True.
1. a) 3/2. b) 1/3. c) 3/2. d) −1.
2. a) p > 1. b) p < 1. c) p > 1. d) p > 1. e) p > 1.
3. Compare with Example 5.44.
4. a) Diverges. b) Diverges. c) Converges. d) Converges. e) Converges.
9. Integrate by parts first.

10. You might begin by verifying sin x ≥ √
2/2 for x ∈ [π/4, π/2] and sin x ≥

2x/π for x ∈ [0, π/4].
5.5 Functions of Bounded Variation

1. c) Find a partition where the jumps are large.
4. Combine Theorems 4.18 and 3.39.
9. For the bounded case, prove that (L)

∫ b
a | f ′(x)| dx ≤ Var f ≤

(U )
∫ b

a | f ′(x)| dx .

5.6 Convex Functions

5. Use Remark 5.60.

CHAPTER 6

6.1 Introduction

0. a) False. d) True.
1. a) e/(e + 1). b) −π2/(π2 + 1). c) 64/5. d) 13/35.
2. a) 1. b) 4. c) log(2/3). d) sin 2.
5. |x | ≤ 1.
6. b) Consider the Geometric Series.
8. a) Is na2n ≤ ∑∞

k=n ak?
9. c) Notice that if the partial sums of

∑∞
k=1 bk are bounded, then b = 0.

10. b) See Exercise 6.1.9b. d) First prove that if ak ≥ 0 and
∑∞

k=0 ak diverges,
then

∑∞
k=0 ak = ∞.

11. Use Corollary 6.9.

6.2 Series with Nonnegative Terms

0. b) True. c) True.
1. c) If p > 1, are there constants C > 0 and q > 1 such that log k/k p ≤

Ck−q?
2. b) No, you cannot apply the p-Series Test to k1−1/k because the exponent

p := (1−1/k) is NOT constant but depends on k. d) Try the Integral Test.
4. It converges when p > 1 and diverges when 0 ≤ p ≤ 1.
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8. It diverges when 0 < q ≤ 1 and converges when q > 1.
10. Recall that ab := eb log a and observe that log(log(log k)) → ∞ as k → ∞.

6.3 Absolute Convergence

0. b) False. c) False.
2. a) Convergent. b) Convergent. c) Convergent. d) Convergent. e) Con-

vergent. f) Convergent. g) Divergent.
3. a) (1,∞). b) ∅. c) (−∞,−1) ∪ (1,∞). d) (1/2,∞). e) (1,∞).

f) (−∞, log2(e)) (use Stirling’s Formula when p = log2(e)).
9. π2/8.

10. See Definition 2.32.

6.4 Alternating Series

0. a) True. c) False.
1. b) See Example 6.34.
2. a) [−1, 1). b) (− 3

√
2, 3

√
2). c) (−1, 1]. d) [−3,−1].

3. a) Absolutely convergent. b) Absolutely convergent. c) Absolutely con-
vergent. d) Conditionally convergent. e) Absolutely convergent.

6. Is it Cauchy?
7. Let ck = ∑∞

j=k a j b j and apply Abel’s Formula to

m∑
k=n

ak ≡
m∑

k=n

ck − ck+1

bk
.

8. See Example 6.34.
9. See Example 6.34.

6.5 Estimation of Series

1. a) At most 100 terms. b) At most 15 terms. c) At most 10 terms. (To
prove that {ak} is monotone, verify that ak+1/ak < 1.)

2. a) p > 1.
3. a) n = 8. b) n = 11. c) n = 14. d) n = 11.

6.6 Additional Tests

1. a) Divergent. b) Absolutely convergent. c) Divergent. d) Absolutely
convergent.

2. a) Absolutely convergent for p > 0 and divergent for p ≤ 0. b) Abso-
lutely convergent for p > 0 and divergent for p ≤ 0. c) Absolutely
convergent for |p| < 1/e, conditionally convergent for p = −1/e, and
divergent otherwise. (Use Stirling’s Formula when p = ±1/e.)

4. It actually converges absolutely.
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CHAPTER 7

7.1 Uniform Convergence of Sequences

2. a) (334 − 1)/34. b) 2. c) 14/3.
6. This is different from Theorem 7.9 because when E is not compact, uni-

form continuity is not the same as continuity.
8. Modify the proof of Example 4.22 to show that (1+x/n)n ↑ ex as n → ∞.

To prove that this is a uniform limit, choose N so large that [a, b] ⊂
[−N , N ] and find the maximum of ex − (1 + x/N )N on [a, b].

9. a) Use Exercise 7.1.5c.

7.2 Uniform Convergence of Series

1. a) Recall that | sin θ | ≤ |θ | for all θ ∈ R.
5. Dominate, then telescope.
6. Is there a connection between

∑∞
k=1 k−1 sin(xk−1) and

∑∞
k=1 cos(xk−1)?

7. Use Abel’s Formula.
9. See Example 6.34.

7.3 Power Series

1. a) R = 1. b) R = 1/3. c) R = 1/3. d) R = 1.
2. a) (−2, 2). b) (3/4, 5/4). c) [−1, 1). d) [−1/

√
2, 1/

√
2]. (Use Raabe’s

Test for the endpoints.)
7. a) f (x) = 3x2/(1 − x3) for x ∈ (−1, 1). b) f (x) = (2 − x)/(1 − x)2 for

x ∈ (−1, 1). c) f (x) = 2(1/x − 1 + log x)/(1 − x) for x ∈ (0, 2), x �= 1,
and f (1) = 0.
d) f (x) = log(1/(1 − x3))/x3 for x ∈ [−1, 1), x �= 0, and f (0) = 1.

8. Use Exercise 2.5.8 to prove that if lim sup |ak/ak+1| < R, then there is
an r < R such that {|akrk |} is increasing for k large (i.e., that

∑∞
k=1 akrk

diverges for some r < R).
9. Use the method of Example 7.36 to estimate | f ′(x)|.

10. First prove that the radius of convergence of
∑∞

k=0 ak xk is ≥ 1.
11. a) Use Theorem 6.35 to estimate log(n!) = ∑n

k=1 log k. b) x ∈
(−1/e, 1/e).

7.4 Analytic Functions

1. a) x2 + cos(2x) = 1 − x2 +∑∞
k=2(−4)k x2k/(2k)!. b) x23x =∑∞

k=2 xk logk−2 3/(k − 2)!. c) cos2 x − sin2 x = ∑∞
k=0(−4)k x2k/(2k)!.

d) (ex − 1)/x = ∑∞
k=0 xk/(k + 1)!.

2. a) x/(x5 + 1) = ∑∞
k=0(−1)k x5k+1.

b) ex/(1 + x) = ∑∞
k=0(

∑k
j=0(−1)k− j/j !)xk .

c) log(1/|x2 − 1|) = ∑∞
k=1 x2k/k.

d) arcsin x = ∑∞
k=0

(−1/2
k

)
(−1)k x2k+1/(2k + 1). (Use Theorem 7.52.)

3. a) ex = ∑∞
k=0 e(x − 1)k/k!, valid for x ∈ R.

b) log2 x5 = 5
∑∞

k=1(−1)k+1(x − 1)k/(k log 2), valid for x ∈ (0, 2].
c) x3 − x + 5 = 5 + 2(x − 1) + 3(x − 1)2 + (x − 1)3, valid for x ∈ R.
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d) Use Raabe’s Test.
√

x = 1 + (x − 1)/2 + ∑∞
k=2(−1)k−11 · 1 · 3 · · ·

(2k − 3)(x − 1)k/(2 · 4 · 6 · · · (2k)), valid on [0, 2].
9. Let fn be a Taylor polynomial of f and compute the integral of f · fn .

Question: If fn → f uniformly and f is bounded, does f · fn → f 2

uniformly?
10. See Exercise 5.1.4 and use analytic continuation.
11. First use the Binomial Series to verify that (1 + x)β ≥ 1 + xβ for any

0 < x < 1.

7.5 Applications

1. The first seven places of the only real root are given by −0.3176721.
6. Choose r0 as in the proof of Theorem 7.58, define {xn} by (19), and find a
δ so that | f (x0)| ≤ δ implies |xn − xn−1| < rn+1

0 .

CHAPTER 8

8.1 Algebraic Structure

4. Use (2).
6. b) (a, a, a), a �= 0. c) (a, (20 − 8a)/7, (8 + a)/7), a �= 0.
7. arccos(1/

√
n).

8. b) For part vi), write ‖x × y‖2 = (x × y) · (x × y) and use parts iv) and v).

8.2 Planes and Linear Transformations

2. a) x − y + 2z + 5w = 1. b) x − y + w = 1. c) Use Exercise 1.4.4a.

4. a)

⎡
⎢⎣

0 0 0 0
1 1 0 0
1 0 −1 0
1 1 0 1

⎤
⎥⎦ .

b)
[
1 −1 1

]
.

c)

[
1 0 . . . 0 −1

−1 0 . . . 0 1

]
.

5. Use the linear property to compute the T(e j )’s.

a)

⎡
⎣−1 4
π 0
−1 1

⎤
⎦ .

b)

[
2 e − 2 e − 1
2 π − 2 π − 2

]
.

c)

[
a 4 −1 −π
b 4 1 −3

]
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for any choice of a, b ∈ R.

d)

⎡
⎣a 5 − a 1 −π

b 4 − b 2 −3
c 1 − c 0 1

⎤
⎦

for any choice of a, b, c ∈ R.
6. Don’t be an algebra zombie. Use a, b, c to produce a normal to Π .
8. If (x0, y0, z0) does not lie on Π , let (x2, y2, z2) be a point on Π different

from (x1, y1, z1), let θ represent the angle between w := (x0 − x2, y0 −
y2, z0 − z2) and the normal (a, b, c), and compute cos θ two different
ways, once in terms of w and a second time in terms of the distance from
(x0, y0, z0) to Π .

10. a)

[
2x

cos x

]
.

8.3 Topology of Rn

1. a) Open but not connected. b) Closed and connected. c) Neither open
nor closed, but connected. d) Open but not connected. e) Closed and
connected.

6. b) Try a proof by contradiction.
7. b) Try a proof by contradiction.
9. Notice that a ∈ Ec and Ec is open.

10. Diamonds and squares.

8.4 Interior, Closure, and Boundary

1. a) Eo = ∅, E = E ∪ {0}, ∂E = E . b) Eo = E , E = [0, 1], ∂E = {1/n :
n ∈ N} ∪ {0}. c) Eo = R, E = R, ∂E = ∅. d) Use Theorem 1.18.

2. a) Eo = {(x, y) : x2 + 4y2 < 1} and ∂E = {(x, y) : x2 + 4y2 = 1}.
b) Eo = ∅ and ∂E = E . c) Eo = {(x, y) : y > x2, 0 < y < 1}, E =
{(x, y) : y ≥ x2, 0 ≤ y ≤ 1}, and ∂E = {(x, y) : y = x2, 0 ≤ y ≤ 1}
∪ {(x, 1) : −1 ≤ x ≤ 1}. d) E = {x2 − y2 ≤ 1,−1 ≤ y ≤ 1} and
∂E = {(x, y) : x2 − y2 = 1,−√

2 ≤ x ≤ √
2} ∪ {(x, 1) : −√

2 ≤ x ≤√
2} ∪ {(x,−1) : −√

2 ≤ x ≤ √
2}.

10. c) Use part b). You may assume that Rn is connected.

CHAPTER 9

9.1 Limits of Sequences

2. a) (0, 2). b) (1, 0, 1). c) (−1/2, 1, 0).
6. b) Show that a set C is relatively closed in E if and only if E\C is relatively

open in E .
8. b) Use the Bolzano–Weierstrass Theorem.
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9.2 Heine–Borel Theorem

7. Use the Approximation Theorem for Infima.
8. You may use Exercise 4.4.7.

9.3 Limits of Functions

1. a) Dom f = {(x, y) : y �= 1} and the limit is (0, 3). b) Dom f =
{(x, y) : x �= 0, y �= 0, and x/y �= kπ/2, k odd} and the limit is (1, 0, 1).
c) Dom f = {(x, y) : (x, y) �= (0, 0)} and the limit is (0, 0). d) Dom f =
{(x, y) : (x, y) �= (1, 1)} and the limit is (0, 0).

2. a) limy→0 limx→0 f (x, y) = limx→0 limy→0 f (x, y) = 0, but f (x, y)
has no limit as (x, y) → (0, 0). b) limy→0 limx→0 f (x, y) = 1/2,
limx→0 limy→0 f (x, y) = 1, so f (x, y) has no limit as (x, y) → (0, 0).
c) limy→0 limx→0 f (x, y) = limx→0 limy→0 f (x, y) = 0, and f (x, y) → 0
as (x, y) → (0, 0).

7. Use the Mean Value Theorem.

9.4 Continuous Functions

4. For the converse, suppose not, and use the Sequential Characterization
of Continuity.

5. See Exercise 8.3.8b.
8. See Theorem 3.40.

10. a) A polygonal path in E can be described as the image of a continuous
function f : [0, 1] → E . Use this to prove that every polygonal path is
connected. c) Prove that if E is not polygonally connected, then there
are nonempty open sets U, V ⊂ E such that U ∩ V = ∅ and U ∪ V = E .

9.5 Compact Sets

1. a) Compact. b) Compact. c) Not compact. H = E ∪{(0, y) : −1 ≤ y ≤ 1}.
d) Not compact. There is no compact set H which contains E .

5. Compare with Exercise 8.3.8.

9.6 Applications

2. See Exercise 7.2.7.
4. a) ω f (t) = 1 for all t . b) ω f (t) = 0 if t �= 0 and ω f (0) = 1. c) ω f (t) = 0 if

t �= 0 and ω f (0) = 2.
7. a)

√
1/2. b) f (0)/3. c) 1/4. d) (e4 − 1)/(2e2).

9. d) You may wish to use Theorem 4.18.

CHAPTER 10

10.1 Introduction
8. c) Observe that fn(x) = xn does not converge to a continuous function

on [0, 1].
10. a) Show that if E is not bounded, then there exist xn ∈ E and a ∈ X

such that ρ(xn, a) → ∞ as n → ∞.
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10.2 Limits of Functions

1. a) R. b) [a, b]. c) ∅. d) {x} if E is infinite, ∅ if E is finite. e) ∅.
9. b) See the proof of Theorem 3.26.

10.3 Interior, Closure, and Boundary

1. a) Eo = ∅, E = E ∪ {0}, ∂E = E . b) Eo = E , E = [0, 1], ∂E = {1/n :
n ∈ N} ∪ {0}. c) Eo = R, E = R, ∂E = ∅. d) See Theorem 1.18.

2. a) Closed. Eo = {(x, y) : x2 +4y2 < 1} and ∂E = {(x, y) : x2 +4y2 = 1}.
b) Closed. Eo = ∅ and ∂E = E . c) Neither open nor closed. Eo =
{(x, y) : y > x2, 0 < y < 1}, E = {(x, y) : y ≥ x2, 0 ≤ y ≤ 1}, and
∂E = {(x, y) : y = x2, 0 ≤ y ≤ 1} ∪ {(x, 1) : −1 ≤ x ≤ 1}. d) Open.
E = {x2 − y2 ≤ 1,−1 ≤ y ≤ 1} and ∂E = {(x, y) : x2 − y2 = 1,−√

2 ≤
x ≤ √

2} ∪ {(x, 1) : −√
2 ≤ x ≤ √

2} ∪ {(x,−1) : −√
2 ≤ x ≤ √

2}.
5. Notice that a ∈ Ec and Ec is open.
8. See the description of relative balls following Definition 10.22.
9. To show that f is continuous at a, consider the open interval I=(f(a)−ε,

f (a)+ ε).

10.4 Compact Sets

1. a) Compact. b) Compact. c) Not compact. H = E ∪{(0, y) : −1≤ y ≤1}.
d) Not compact. There is no compact set H which contains E .

5. Compare with Exercise 10.3.10.
8. a) Notice that if ∩Hk = ∅, then {X \ Hk} covers X .

10. a) Let xk ∈ E . Does E contain a point a such that each Br (a), r > 0,
contains xk for infinitely many k’s? b) See Exercise 10.1.10a.

10.5 Connected Sets

9. Use Exercise 10.5.8.
10. a) A polygonal path in E can be described as the image of a continuous

function f : [0, 1] → E . Use this to prove that every polygonal path is
connected. c) Prove that if E is not polygonally connected, then there
are nonempty open sets U, V ⊂ E such that U ∩ V = ∅ and U ∪ V = E .

11. Try a proof by contradiction.

10.6 Continuous Functions

2. b) Note that f −1(−1, 1) is not open. Does this contradict Theorem
10.58?

4. You may wish to prove that A is relatively closed in E if and only if E \ A
is relatively open in E .

8. See Theorem 3.40.
9. See Remark 1.39.

10.7 Stone–Weierstrass Theorem

4. If P is a polynomial, what is
∫ b

a f (x)P(x) dx?

7. If P is a trigonometric polynomial, what is
∫ 2π

0 f (x)P(x) dx?
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CHAPTER 11

11.1 Partial Derivatives and Partial Integrals

1. a) fxy = fyx = ey . b) fxy = fyx = − sin(xy) − xy cos(xy). c) fxy =
fyx = −2x/(x2 + 1)2.

2. a) fx = (2x5+4x3 y2−2xy4)/(x2+y2)2 for (x, y) �= (0, 0) and fx (0, 0) = 0.
fx is continuous on R2. b) fx = (2x/3) · (2x2 + 4y2)/(x2 + y2)4/3 for
(x, y) �= (0, 0) and fx (0, 0) = 0. fx is continuous on R2.

5. a) e − 1. b) (e − 4) cos(π − 1). c) 3 − √
3.

6. a) 2. b) 0. c) 3.
7. a) 9/10. b) e−π/2.

10. c) Choose δ > 0 such that |φ(t)| < ε for 0 ≤ t < δ and break the integral
in part b) into two pieces, one corresponding to 0 ≤ t ≤ δ and the other
to δ ≤ t < ∞. d) Combine part b) with Theorem 11.8.

11. a) L{tet } = 1/(s − 1)2. b) L{t sinπ t} = 2sπ/(s2 + π2)2. c) L{t2 cos t} =
2(s3 − 3s)/(s2 + 1)3.

11.2 The Definition of Differentiability

2. When f is differentiable at a and its domain is one dimensional, does
‖f(a + h)− f(a)‖/|h| have a limit as h → 0?

9. b) The function f might not be differentiable when α = 1.

11.3 Derivatives, Differentials, and Tangent Planes

1. a) D(f + g)(x) = [
2x + 1 2y − 1

]
and

D(f · g)(x) = [
3x2 − 2xy + y2 2xy − x2 − 3y2

]
.

b) D(f + g)(x) = [
x cos x + sin x + y x + sin y

]
and

D(f · g)(x) = [
x2 y cos x + 2xy sin x−y cos y x2 sin x+xy sin y−x cos y

]
.

c) D(f + g)(x) =
[−y sin(xy) 1 − x sin(xy)

1 + log y x/y

]

and

D(f · g)(x) = [
2x log y − y2 sin(xy) cos(xy)− xy sin(xy)+ x2/y

]
.

d) D(f + g)(x) =
[

yz xz + 1 xy
1 2y −1

]
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and

D(f · g)(x) = [
y2(z + 1) 2xyz + 2xy − 2yz y2(x − 1)

]
.

2. a) 2x − 2y − z = 2. b) 2x − 2y − z = 0. c) y − w = −1.
3. (−1/2,−1/2, 1/2), 2x + 2y + 2z = −1.
4. a) x − z = 0. b) There are none.
8. a) dz = 2x dx + 2y dy. b) dz = y cos(xy) dx + x cos(xy) dy. c) dz =
(1 − x2 + y2)y/(1 + x2 + y2)2 dx + (1 + x2 − y2)x/(1 + x2 + y2)2 dy.

9. dw = .05 and �w ≈ 0.049798.
10. L must be measured with no more than 3% error.

11.4 The Chain Rule

1. ∂w

∂p
= ∂F

∂x

∂x

∂p
+ ∂F

∂y

∂y

∂p
+ ∂F

∂z

∂z

∂p
,

∂w

∂q
= ∂F

∂x

∂x

∂q
+ ∂F

∂y

∂y

∂q
+ ∂F

∂z

∂z

∂q
,

∂2w

∂p2
= ∂

∂p

(
∂F

∂x

)
∂x

∂p
+ ∂F

∂x

∂2x

∂p2
+ ∂

∂p

(
∂F

∂y

)
∂y

∂p

+∂F

∂y

∂2 y

∂p2
+ ∂

∂p

(
∂F

∂z

)
∂z

∂p
+ ∂F

∂z

∂2z

∂p2

= ∂F

∂x

∂2x

∂p2
+ ∂F

∂y

∂2 y

∂p2
+ ∂F

∂z

∂2z

∂p2

+∂
2 F

∂x2

(
∂x

∂p

)2

+ ∂2 F

∂y2

(
∂y

∂p

)2

+ ∂2 F

∂z2

(
∂z

∂p

)2

+2
∂2 F

∂x∂y

(
∂x

∂p

)(
∂y

∂p

)
+ 2

∂2 F

∂x∂z

(
∂x

∂p

)(
∂z

∂p

)

+2
∂2 F

∂y∂z

(
∂y

∂p

)(
∂z

∂p

)
.

6. Notice by Exercise 11.2.11 that this result still holds if “ f is in C2” is
replaced by “the first-order partial derivatives of f are differentiable.”

9. Take the derivative of F(x, f (x)) = 0 with respect to x .
10. Compute the derivative of f · f using the Dot Product Rule.

11.5 The Mean Value Theorem and Taylor’s Formula

1. a) f (x, y) = 1 − (x + 1)+ (y − 1)+ (x + 1)2 + (x + 1)(y − 1)+ (y − 1)2.
b)

√
x + √

y = 3 + (x − 1)/2 + (y − 4)/4 − (x − 1)2/8 − (y − 4)2/64 +
(x − 1)3/16

√
c5 + (y − 4)3/16

√
d5 for some (c, d) ∈ L((x, y); (1, 4)). c)

exy = 1 + xy + ((dx + cy)4 + 12(dx + cy)2xy + 12x2 y2)ecd/4! for some
(c, d) ∈ L((x, y); (0, 0)).

2. Notice that by Exercise 11.2.11, this result still holds if “ f is in C p” is
replaced by “the (p − 1)-st order partial derivatives of f are differen-
tiable.”
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10. Apply Taylor’s Formula to f (a + x, b + y) for p = 3, x = r cos θ , and
y = r sin θ , and prove that

4

πr2

∫ 2π

0
f (a + r cos θ, b + r sin θ) cos(2θ) dθ

= fxx (a, b)− fyy(a, b)+ F(r),

where F(r) is a function which converges to 0 as r → 0.
11. c) Let (x2, t2) be the point identified in part b), and observe by one-

dimensional theory that ut (x2, t2) = 0. Use this observation and Tay-
lor’s Formula to obtain the contradiction wxx (x2, t2)− wt (x2, t2) ≥ 0.

11.6 The Inverse Function Theorem

1. a) Since f(x, y) = (a, b) always has a solution by Cramer’s Rule and
Df is constant,

Df−1(a, b) =
[

5/17 1/17
−2/17 3/17

]
(see Theorem C.7).

b) Since f((4k + 1)π/2,−(4k + 1)π/2) = f(2kπ,−2kπ) = (0, 1),

Df −1(0, 1) =
[

0 1
1 −1

]
or

[
1 −1
0 1

]
(see Theorem C.7)

depending on which branch of f −1 you choose.
c) Since f(±2,±1) = f(±1,±2) = (2, 5),

Df −1(2, 5) =
[∓1/3 ±1/3
±2/3 ∓1/6

]
or

[±2/3 ∓1/6
∓1/3 ±1/3

]
(see Theorem C.7)

depending on which branch of f −1 you choose.
d) Since f(0, 1) = (−1, 0), one branch of f −1 satisfies

D(f −1)(−1, 0) =
[−1/2 1
−1/2 0

]
(see Theorem C.7).

4. F(x0, y0, u0, v0) = (0, 0), x2
0 �= y2

0 , and u0 �= 0 �= v0, where
F(x, y, u, v) = (xu2 + yv2 + xy − 9, xv2 + yu2 − xy − 7).

6. a) f −1(s, t) = ((s +
√

s2 − 4t)/2, (s −
√

s2 − 4t)/2).

b) D(f −1)(f(x, y)) =
[

x/(x − y) 1/(y − x)
y/(y − x) 1/(x − y)

]
(see Theorem C.7).
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7. Find the partial of F(x1, . . . , g j+1, . . . , xn) with respect to x j .
9. Use the Implicit Function Theorem.

11. a) ax + by = 1, where a2 + b2 = 1. b) x + y − z = ±1.

11.7 Optimization

1. a) f (1/3, 2/3) = −13/27 is a local minimum and (−1/4,−1/2) is a sad-
dle point. b) Let k, j ∈ Z. f ((2k + 1)π/2, jπ) = 2 is a local maximum
if k and j are even, f ((2k + 1)π/2, jπ) = −2 is a local minimum if k
and j are odd, and ((2k + 1)π/2, jπ) is a saddle point if k + j is odd.
c) This function has no local extrema. d) f (0, 0) = 0 is a local minimum
if a > 0 and b2 − 4ac < 0, a local maximum if a < 0 and b2 − 4ac < 0,
and (0, 0) is a saddle point if b2 − 4ac > 0.

2. a) f (2, 0) = 8 is the maximum and f (−4/5,±√
21/5) = −9/5 is the

minimum. b) f (1, 2) = 17 is the maximum and f (1, 0) = 1 is the mini-
mum. c) f (1, 1) = f (−1,−1) = 3 is the maximum and f (−1, 1) = −5
is the minimum.

3. a) f (−2, 0) = −2 is the minimum and f (1/2,±√
15/2) = 17/4

is the maximum. b) f (±2/
√

5,±1/
√

5) = 0 is the minimum and
f (±1/

√
5,∓2/

√
5) = 5 is the maximum. c) λ = xy, 3μ = x + y,

f (±1/
√

2,∓1/
√

2, 0) = −1/2 is the minimum and f (±1/
√

6,±1/
√

6,
∓2/

√
6) = 1/6 is the maximum. d) f (1,−2, 0, 1) = 2 is the minimum

and f (1, 2,−1,−2) = 3 is the maximum.
7. b) If DE < 0, then ax + by + cz has no extremum subject to the con-

straint z = Dx2 + Ey2.
8. b) f (2, 2, 4) = 48 is the minimum. There is no maximum.

10. a) Use Cramer’s Rule. b) Apply Theorem 11.59.

CHAPTER 12

12.1 Jordan Regions

1. α) V (E;G1) = 3/4, V (E;G2) = 7/16, V (E;G3) = 15/64; v(E;Gm) = 0
for all m. β) V (E;G1) = 1, v(E;G1)= 0; V (E;G2)= 13/16, v(E;G2)= 0;
V (E;G3) = 43/64, v(E;G3) = 5/32. γ ) V (E;G1) = 1, v(E;G1) = 0;
V (E;G2) = 1, v(E;G2) = 1/4; V (E;G3) = 15/16, v(E;G3) = 1/2.

2. c) First prove that E is a Jordan region if and only if there exist grids Gm
such that V (∂E;Gm) → 0 as m → ∞.

5. a) See Theorem 8.15 or 10.39. b) You may use Exercise 12.1.6a.
6. d) Apply part c) to E1 = (E1 \ E2) ∪ E2. e) Apply parts c) and d) to
(E1 ∪ E2) = (E1 \ (E1 ∩ E2)) ∪ (E2 \ (E1 ∩ E2)) ∪ (E1 ∩ E2).

7. Is it true for rectangles?
9. a is a cluster point of E if and only if Br (a) ∩ E contains infinitely many

points for every r > 0 (see Exercise 2.4.8).

12.2 Riemann Integration on Jordan Regions

2. a) 5.
3. Show that the difference converges to zero as r → 0+.
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4. b) Area(E).
7. a) −1. b) 1/2.

10. a) Let ε > 0 and choose δ by uniform continuity of φ. Choose a grid G
such that U ( f,G)− L( f,G) < δ2. Then break U (φ ◦ f,G)− L(φ ◦ f,G)
into two pieces: those j which satisfy M j (φ ◦ f ) − m j (φ ◦ f ) < δ, and
those j which satisfy M j (φ ◦ f )− m j (φ ◦ f ) ≥ δ. These two pieces are
small for different reasons.
b) Use Example 3.34 and Theorem 12.29.

12.3 Iterated Integrals

1. a) 1. b) 28/9. c) (1 − cos(π2))/π.

2. a) E = {(x, y) : 0 ≤ x ≤ 1, x ≤ y ≤ x2 + 1} and the integral of x + 1
over E is 5/4. b) E = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} and the integral
of sin(x2) over E is (1 − cos(1))/2. c) E = {(x, y, z) : 0 ≤ y ≤ 1,√

y ≤ x ≤ 1, 0 ≤ z ≤ x2 + y2} and the volume of E is 26/105. d)
E = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2, x3 ≤ z ≤ 1} and the integral of√

x3 + z over E is 4(2
√

2 − 1)/45.
3. a) (1 − log 2)/2. b) 1. c) (e − 2)/2. d) 1/8.
4. a) 3π . b) 91/30. c) 88/105. d) 1/18.
7. a) See Exercise 12.3.6.

12.4 Change of Variables

1. a) π(1 − cos 4)/4. b) 3/10. c) (
√

2 + log(1 + √
2))(b3 − a3)/6. (Recall

that the indefinite integral of sec θ is
∫

sec θ = log | sec θ + tan θ | + C .)
2. a) (π

√
3/3) sin 3. b) 162/(3 · 5 · 7).

3. a) (6
√

6 − 7)4π/5. b) π(4e3 − 1 − 2(
√

8 − 1)e
√

8). c) 16
√

2/15.
4. b) πr2d/a.
5. a) 4/27. b) 9/112. c) 3(e − 1)/e. d) 5. (Use the change of variables

x = u + v, y = u − v.)
6. See Exercise 12.2.3.
9. See Exercise 8.2.7.

10. d) πn/2.

12.5 Partitions of Unity

3. See Theorem 7.56.

12.6 The Gamma Function and Volume

5. Let ψn represent the spherical change of variables in Rn and observe
that the cofactor |A1| of −ρ sinϕ1 sinϕ2 . . . sinϕn−2 sin θ in the matrix
Dψn is identical to �ψn−1 if, in �ψn−1 , θ is replaced by ϕn−2 and each
entry in the last row of Dψn−1 is multiplied by sin θ .

8. r2 Vol(Br (0))/(n + 2).
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CHAPTER 13

13.1 Curves

5. a) This curve spirals up the cone x2 + y2 = z2 from (0, 1, 1) to
(0, e2π , e2π) and has arc length

√
3(e2π − 1). b) This curve coincides

with the graph of x = ±y3/2, 0 ≤ y ≤ 1 (looking like a stylized gull in
flight) and has arc length 2(

√
133 − 1)/27. c) This curve is a straight line

segment from (0, 0, 0) to (4, 4, 4) and has arc length 4
√

3. d) The arc
length of the astroid is 6.

6. a) 27. b) ab(a2 + ab + b2)/(3(a + b)). c) 12π . d) (5 + 3
√

5)/2.
7. b) Use Dini’s Theorem.
9. Analyze what happens to (x, y) and dy/dx := (dy/dt)/(dx/dt) as

t → −∞, t → −1−, t → −t+, t → 0, and t → ∞. For example,
prove that, as t → −1−, the trace of φ(t) lies in the fourth quadrant and
is asymptotic to the line y = −x .

11. b) Take the derivative of ν′ · ν′ using the Dot Product Rule. d) Observe
that φ(t) = ν(�(t)) and use the Chain Rule to compute φ′(t) and φ′′(t).
Then calculate φ′ × φ′′ directly.

13.2 Oriented Curves

1. a) A spiral on the elliptic cylinder y2 +9z2 = 9 oriented clockwise when
viewed from far out the x-axis. b) A cubical parabola (it looks like a
stylized gull in flight) on the plane z = x oriented from left to right when
viewed from far out the plane y = x . c) A sine wave on the parabolic
cylinder y = x2 oriented from right to left when viewed from far out
the y-axis. d) An ellipse sliced by the plane x = z out of the cylinder
y2 + z2 = 1 oriented clockwise when viewed from far out the x-axis.
e) A sine wave traced vertically on the plane y = x oriented from below
to above when viewed from far out the x-axis.

2. a) 128/3. b) −π√
2/2. c) 0.

3. a) 5. b) π(−1 + √
5)/2. c) |R|(2 − a − b)/2. d) − sin(1)+ 1/3.

4. c) There exist functions ψ and τ on [0, 1] which are C1 on (0, 1) \ { j/N :
j = 1, . . . , N } such that τ ′ > 0 and ψ = φ j ◦ τ on (( j − 1)/N , j/N ) for
each j = 1, . . . , N .

7. c) If F is conservative, consider the case when C is smooth first. If (*)
holds, use parts a) and b) to prove that F is conservative.

8. Use Jensen’s Inequality.

13.3 Surfaces

1. a)
√

2π(b2 − a2). b) 4πa2. c) 4π2ab.
2. a) φ(u, v) = (u, v, u2 − v2), E = {(u, v) : −1 ≤ u ≤ 1, −|u| ≤ v ≤

|u|}, ψ1(t) = (1, t, 1 − t2), ψ2(t) = (−1, t, 1 − t2), ψ3(t) = (t, t, 0),
ψ4(t) = (t,−t, 0), I1 = I2 = I3 = I4 = [−1, 1], and

∫∫
S g dσ =

22/3. b) φ(u, v) = (u, u3, v), E = [0, 2] × [0, 4], ψ1(t) = (t, t3, 4),
ψ2(t) = (t, t3, 0), ψ3(t) = (0, 0, t), ψ4(t) = (2, 8, t), I1 = I2 = [0, 2],
I3 = I4 = [0, 4], and

∫∫
S g dσ = (4/27)(1453/2 − 1). c) φ(u, v) =
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(3 cos u cos v, 3 sin u cos v, 3 sin v), E = [0, 2π] × [π/4, π/2], ψ1(t) =
((3/

√
2) cos t, (3/

√
2) sin t, 3/

√
2), ψ2(t) = (3 cos t, 3 sin t, 0), I = [0, 2π],

and
∫∫

S g dσ = 27π/2.
5. b) Use Theorem 12.65.
6. If you got 52π , you gave up too much when you replaced ‖(x, y)‖ by 3.

13.4 Oriented Surfaces

1. a) Since the x-axis lies to the left of the yz-plane when viewed from far
out the positive y-axis, the boundary can be parametrized by φ(t) =
(3 sin t, 0, 3 cos t), I = [0, 2π], and

∫
∂S F · T ds = −9π . b) The boundary

can be parametrized by φ1(t) = (0,−t, 1 + 2t), I1 = [−1/2, 0]; φ2(t) =
(t, 0, 1 − t), I2 = [0, 1]; and φ3(t) = (−t, (1 + t)/2, 0), I3 = [−1, 0]; and∫
∂S F · T ds = −1/12. c) The boundary can be parametrized by φ1(t) =
(2 sin t, 2 cos t, 4), I1 = [0, 2π], and φ2(t) = (cos t, sin t, 1), I2 = [0, 2π],
and

∫
∂S F · T ds = 3π .

2. a) π/2. b) 16. c) 2π2ab2. d) π/8.
3. a) −14/15. b) 4πa3/3. c) (3b4 + 8a3 − 8(a2 − b2)3/2)π/12. d) −2π/3.
4. b) Use Theorem 12.65.

13.5 Theorems of Green and Gauss

1. a) 8/3. b) 3 log 3 + 2(1 − e3). c) −15π/4.
2. a) (b − a)(c − d)(c + d − 2)/2. b) −1/6. c) 0.
3. a) 2(5 + e3). b) π . c) 8. d) πabc(a + b + c)/2.
4. a) 224/3. b) 2(8

√
2 − 7)/15. c) 24π .

5. b) 3/2. c) Vol(E) = (1/3)
∫
∂E x dy dz + y dz dx + z dx dy. d) 2π2ab2.

9. c) Use Exercise 13.5.8 and Gauss’s Theorem.
10. e) Use Green’s Theorem and Exercise 12.2.3.

13.6 Stokes’s Theorem

1. a) −π/4. b) 27π/4.
2. a) 0. b) −3π . c) −10π . d) −1/12.
3. a) π2/5. b) −π/(8√

2). c) 28π (not −28π because i × k = −j). d) 32π .
e) −π .

4. a) 18π . b) 8π . c) 3(1 − e)+ 3π/2. d) 0.
10. b) 2π .

CHAPTER 14

14.1 Introduction

1. a) a0(x2)= 2π2/3, ak(x2)= 4(−1)k/k2, and bk(x2)= 0 for k = 1, 2, . . . .
b) All Fourier coefficients of cos2 x are zero except a0(cos2 x) = 1/2 and
a2(cos2 x) = 1/2.

6. a) ak( f ) = 0 for k = 0, 1, . . . , bk( f ) = 4/(kπ)when k is odd and 0 when
k is even.
c) You may wish to use Theorem 9.40.
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666 Answers and Hints to Selected Exercises

14.2 Summability of Fourier Series

5. b) See Exercise 10.7.6d. c) See Exercise 5.1.4b.
7. b) See Exercise 10.7.6d.
8. See Theorem 9.49.

14.3 Growth of Fourier Coefficients

4. See Exercise 14.2.4a and Theorem 7.12.

14.4 Convergence of Fourier Series

1. Note: It is not assumed that f is periodic.
2. c) π2/8.
4. a) Use Abel’s Formula. For the first identity, you must show that ρN SN

→ 0 as N → ∞ for all ρ ∈ (0, 1) if
∑∞

k=0 akrk converges for all r ∈ (0, 1).
5. a) Prove that for each fixed h, ak( f (x+h)) = ak( f ) cos kh+bk( f ) sin kh.
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589-590, 593, 601-602, 626, 636

and area, 134, 138, 454
formulas for, 245, 502
region of, 482

Integration by parts, 155, 210, 515, 589-590, 601-602
Intermediate value theorem, 87, 115, 126, 147, 149,

156, 181, 292, 295, 327, 338, 354, 367, 370,
376

Intervals, 13-14, 55-56, 61, 94, 101-102, 106, 113,
129, 136-137, 145, 163, 178, 230, 240, 259,
288, 292, 294, 311, 319, 328, 330, 332-333,
335-337, 340, 344, 361, 365-367, 383, 493,
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of convergence, 240
Inverse, 2-3, 8, 29-34, 125, 127-129, 154, 157, 162,

292, 321, 323-324, 372-373, 424-429, 431,
433-434, 493, 524, 622, 625, 635

functions, 2-3, 29, 31, 33, 125, 129, 292, 321,
323-324, 372-373, 424, 429, 433-434,

524, 622
of matrix, 428

Inverse functions, 29, 31, 33, 125, 622
defined, 29
one-to-one, 29

Irrational number, 114

L
Lagrange multipliers, 443, 446
Leading coefficient, 624
Least squares, 447
Length, 13, 268, 272, 274, 278, 331-332, 340, 408,

412, 449, 452-455, 457-458, 489, 523,
526-528, 530-532, 534-535, 544, 609, 617,
638

Limits, 1, 41-43, 45, 47-51, 61-65, 67, 68-81, 84-85,
95, 101, 109, 112, 120, 122, 124, 164, 180,
200, 209, 212, 224, 229, 288, 303, 305-306,
312-315, 317-320, 339, 346, 350-353, 383,
385, 609, 622-623, 630-632

algebraic, 50, 209, 352
at infinity, 76-77, 79, 81, 120, 623
existence of, 77
properties of, 64, 212

Line, 1, 4, 13, 39, 98, 100-101, 104, 125, 263, 266,
267-268, 270-273, 278, 280, 285-286, 298,
325, 357, 405-406, 408, 416, 418, 422, 448,
487, 496, 498, 523-525, 527, 529-532, 535,
537-538, 540-547, 550, 556-557, 559, 572,
575-577, 579-580, 582-583, 638

horizontal, 543, 545-547, 556
secant, 98
slope of, 98, 405
tangent, 98, 101, 104, 263, 266, 405-406, 408, 525,

529, 537-538, 540, 547, 557, 582
Line segments, 4, 13, 267-268, 532, 543, 545, 550,

580, 582-583
Linear combination, 271
Linear equations, 425-427, 443

system of, 425-427, 443
Linear functions, 283-284
Linear regression, 447
Lines, 39, 104, 280, 285-286, 292, 299, 358, 440, 451,

501, 545-547, 549
defined, 39, 280, 286
parallel, 39, 104, 285-286, 547

Logarithms, 60, 123, 155
defined, 155
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Magnitude, 269-270, 274
Mass, 530, 550
Mathematical induction, 8-9, 23-25, 27, 621

proof by, 9, 621
Matrices, 281-282, 284, 404, 414

column, 282, 414
defined, 281-282, 284
notation, 281-282
row, 282
scalar multiplication, 282
square, 284
zero, 404
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Maxima, 5, 378, 380, 437, 445
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finding, 113
geometric, 13, 15, 58, 109, 111, 149, 405, 532
harmonic, 1
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368, 373, 384, 388, 394, 452, 480-481, 538,
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Minimum, 32, 85-86, 91, 105, 110, 115-116, 178-179,

423, 425, 435-439, 441-442, 445-447, 506,
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set, 1-2, 36, 41, 49, 79, 83, 92, 99, 102, 222, 224,

313, 353, 365, 383-384, 429, 481, 511,
540, 548, 552, 557

nth partial sum, 216-217
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Number line, 13
Numbers, 1, 3-8, 13, 16, 18, 21-25, 29, 32, 35-36, 40,

41, 44-45, 48, 50, 52-53, 56, 59, 61-64, 76,
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263, 267-269, 278-279, 281-282, 291, 295,
310, 322, 325, 330, 332, 338, 344, 355, 362,
366, 371, 375, 389-391, 399, 423, 434, 447,
466, 490, 501, 503, 506, 586, 618

irrational, 5, 8, 22, 263
positive, 7, 16, 22, 45, 48, 76, 87, 116, 194, 200,

208, 212, 214, 216, 247, 249, 310, 322,
344, 362, 501, 506

rational, 8, 22-23, 40, 52-53, 268
real, 1, 3-8, 13, 16, 18, 21-24, 32, 36, 40, 41,

44-45, 48, 50, 52-53, 56, 59, 61-64, 76,
78, 80, 85, 87, 116-117, 141, 148, 184,
186, 188, 190-192, 194, 196, 198, 200,
202, 204, 206, 208, 210, 212, 214,
216-218, 220-221, 222, 247, 249, 267,
269, 278-279, 281-282, 295, 322, 325,
330, 332, 366, 371, 375, 389-391, 447,
490

whole, 44

O
Open interval, 13-14, 29, 36, 68-70, 72-74, 76-80, 83,

90-91, 93-94, 96, 98-101, 104-106, 110, 116,
120, 125, 127-128, 167, 176-178, 180-181,
231, 242, 247, 249-250, 252, 258, 261, 288,
344, 351, 360, 384, 416, 493, 527, 529, 612,
632

Open intervals, 94, 106, 178, 259, 311, 319, 328, 330,
332, 336, 340, 344, 361, 366-367, 493

Ordered pairs, 2
Origin, 100, 103, 267-268, 270, 272, 280-281, 287,

441-442, 445, 546, 556, 563, 569, 571
Orthogonal vectors, 272

P
Parabola, 79, 487, 638

defined, 79
Parameters, 10
Parametric equations, 524, 544-545
Partial derivatives, 1, 383-387, 389, 391-403, 414,

419, 424, 427-428, 430-431, 434-437, 439,
447, 523, 574, 576, 579, 633-634

finding, 424
Perfect square, 24-25, 27
Perimeter, 572
Periodic function, 591, 596, 598
Plane, 39, 267, 278-279, 285-287, 406-407, 410-411,

429, 435, 440, 445, 482, 487-488, 498, 537,
542, 545-549, 553-556, 559-560, 562-563,
565, 569, 572, 581-582, 638-639

Plotting, 526
Point, 2, 4, 9, 13-14, 17, 19, 22, 39, 50, 55-56, 58-59,

61, 70, 78, 83-84, 86-89, 91, 98-99, 101,

104, 108, 110-111, 116-117, 129, 132, 171,
175-176, 178, 184, 223, 233, 237, 250,
263-264, 266, 267-268, 271, 273, 278-280,
283, 285-286, 290, 294, 301, 303, 306-308,
315, 321, 324, 332-334, 339-340, 344-355,
363, 365, 369-370, 373-374, 380, 383,
385-386, 388, 393-395, 397, 399, 405-406,
421-422, 424, 426, 429-430, 432-433,
435-439, 441, 445, 447, 476, 481, 486, 490,
508, 525, 527, 529, 531, 533, 535-538, 549,
552, 555-557, 560, 571, 573, 577, 579-580,
630, 632, 635-636

critical, 110, 437
of discontinuity, 87-88, 333-334, 339, 476

Points, 1-2, 13, 17, 39-40, 41, 58, 61, 69, 74, 85, 89,
94, 97, 98, 104, 109-110, 112-113, 116-117,
120, 126, 130, 134, 140, 153, 173, 175-176,
181, 183, 237, 249, 259, 264, 267-268,
270-272, 276, 279, 282, 285-286, 288, 290,
293-294, 298-299, 303, 305-307, 309-310,
312-313, 315, 322, 325, 327, 331-335, 337,
344-345, 348-351, 354, 357-358, 362, 366,
368-369, 372, 375, 377, 379-380, 411,
418-419, 427, 435-437, 440-442, 445,
447-448, 462, 473-474, 480, 482, 488, 491,
493, 500-501, 503, 506, 525-529, 536, 538,
549, 552-553, 556-560, 562-564, 569, 582,
636

Point-slope form, 223
Polynomial, 40, 82, 84, 97, 107, 117-119, 123, 150,

175, 260, 316, 320, 381-382, 584-586, 597,
599, 624-625, 629, 632

Polynomials, 81, 117-118, 150, 155, 237, 249,
377-378, 381-382, 584, 587, 596

defined, 155, 237, 378, 587
degree of, 81

Positive integers, 9, 200, 261, 312
Positive numbers, 16, 76, 310, 362, 501, 506
Power, 3, 26, 91, 102, 107-108, 154, 159, 184, 209,

237-243, 245-250, 252-253, 374, 508, 584,
628

defined, 3, 184, 237, 246, 508
Power functions, 3
Power Rule, 102, 107-108, 154
Power series, 184, 209, 237-243, 245-250, 252-253,

584, 628
Powers, 23, 260, 337, 422
Price, 550, 620

total, 550
Probability, 170, 175
Product, 2, 8, 15, 38, 50, 66, 72, 80, 91, 106-108, 121,

146, 155, 169, 243, 253, 267-270, 273,
275-276, 278-279, 281-282, 313, 352, 383,
385, 387, 401, 404, 412-413, 417, 426, 472,
506, 520, 548, 573, 576, 603, 621, 634, 638

Product Rule, 106-108, 155, 385, 401, 404, 412, 417,
506, 520, 576, 634, 638

Pyramid, 557
Pythagorean theorem, 270

defined, 270
Pythagorean triples, 622

Q
Quadratic, 6, 31, 217, 410, 439
Quadratic formula, 6, 31, 410
Quotient, 50, 72, 106-107, 316, 352, 387, 397,

399-400, 404, 411, 427, 528
functions, 72, 106, 352, 404, 411
real numbers, 50

Quotient Rule, 106-107, 400, 404, 411
Quotients, 7, 48, 84, 98, 284, 588

R
Range, 2, 29, 32, 127, 280-281, 315, 323, 394, 431

defined, 2, 29, 127, 280-281
Rates, 121
Ratio, 201-202, 217, 219-220, 239, 251, 256
Ratio test, 201, 220, 239, 251, 256
Rational numbers, 268
Ratios, 202, 219
Real numbers, 1, 3-6, 8, 13, 16, 18, 21-24, 41, 44-45,

48, 50, 52-53, 56, 59, 61-64, 78, 85,
116-117, 141, 148, 184, 186, 188, 190-192,
194, 196, 198, 200, 202, 204, 206, 208, 210,
212, 214, 216, 218, 220-221, 222, 247, 249,
269, 278-279, 282, 295, 325, 330, 332, 366,
371, 375, 389-391, 447, 490

absolute value, 6, 13, 269

complex, 1
defined, 3, 5, 13, 21, 184, 188, 200, 282
in calculus, 1
inequalities, 5, 8, 116
integers, 18, 24, 52-53, 63, 188, 200
irrational, 5, 8, 22
properties of, 3, 64, 212, 269, 279
rational, 8, 22-23, 52-53
real, 1, 3-6, 8, 13, 16, 18, 21-24, 41, 44-45, 48, 50,

52-53, 56, 59, 61-64, 78, 85, 116-117,
141, 148, 184, 186, 188, 190-192, 194,
196, 198, 200, 202, 204, 206, 208, 210,
212, 214, 216, 218, 220-221, 222, 247,
249, 269, 278-279, 282, 295, 325, 330,
332, 366, 371, 375, 389-391, 447, 490

Rectangle, 4, 149, 295, 371, 381, 383-384, 387-389,
392, 449-456, 458-460, 462-464, 466-467,
470, 476-477, 480, 484, 489, 491, 493-495,
503, 509, 511-512, 542, 544, 572, 579

fundamental, 4, 459, 503, 542, 544, 572
Rectangles, 130, 134, 325, 408, 418, 449-450,

452-454, 459-460, 462, 464-465, 473, 489,
491, 493-495, 511, 544, 636

similar, 465
Reflection, 20, 22, 125
Regression, 447

linear, 447
Relations, 298, 358, 429-430

defined, 429
Remainder, 250-251, 253-254, 342, 593
Riemann sums, 131-132, 135, 141-143, 145, 147,

149, 151-152, 158, 602, 625
Rise, 282
Roots, 32, 79, 116, 217, 237, 262, 266
Rotations, 287
Rounding, 215
Run, 541

S
Saddle point, 436, 438-439, 441, 447, 636
Scalar multiplication, 282, 377

matrices, 282
vectors, 282

Scalars, 267, 274, 281, 320, 381-382, 385, 443, 471,
538

Secant, 98
defined, 98

Secant line, 98
Second derivatives, 99
Second-order partial derivatives, 384, 391, 437, 439,

447, 574, 576
Sequences, 41-54, 56-62, 64-66, 68, 70-72, 80,

188-189, 194, 197, 206, 209, 212, 214,
222-225, 227-231, 269, 279, 303-307, 315,
342-343, 346-347, 349-350, 353, 378, 384,
405, 509, 622-623, 628, 630

converging, 70
defined, 42, 68, 70-72, 80, 188, 230-231, 349-350,

378, 384
finite, 44, 47, 53, 61, 64, 68, 194, 342, 378
geometric, 58, 64, 212, 343, 405
infinite, 41, 49, 61, 80, 188, 194, 206, 212, 214,

222, 224, 228, 230, 279, 307
limits of, 41, 43, 45, 47-48, 51, 68, 70-71, 209, 224,

303, 305, 315, 346, 350, 353, 622, 630
Series, 39, 170, 184-220, 222, 224, 226, 228,

230-254, 256, 258, 260-264, 266, 279, 377,
379, 389, 508-510, 584-588, 590-600, 602,
604, 606-612, 614-618, 620, 626-629, 640

defined, 39, 170, 184, 188, 200, 203, 230-231,
236-237, 246, 262, 266, 508, 586-588,
608

geometric, 187, 192, 195, 201, 212, 217, 235,
245-246, 253, 263, 626

mean, 185, 228, 279, 508, 591, 602
Sets, 1-2, 8, 19, 22, 29, 31-33, 35-40, 41, 54-56, 103,

113, 267, 288-297, 300-302, 306, 309, 312,
321-330, 332-333, 338, 340, 345-347, 351,
354-356, 359-376, 380, 383, 418, 431, 434,
449, 452, 455-458, 461, 508, 512, 544, 552,
622, 631-632

empty, 1, 37, 290, 293-294, 306, 328, 345, 347,
361-362, 368-369, 458, 552

intersection, 2, 32-33, 291-292, 312, 355, 359, 367,
371

solution, 31, 312, 351
union, 2, 32, 38, 103, 113, 291-294, 297, 300, 330,

332, 340, 355, 359, 366, 368
Sides, 4, 9-10, 17, 69, 83, 101, 270, 272, 274, 278,
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281, 407, 449, 452-453, 457-458, 466, 489,
552, 555, 566-567, 571

Signs, 5, 11-12, 146, 209
Simplify, 31, 164, 249
Sine, 638
Sine wave, 638
Sines, 277
Slope, 98, 109, 176-177, 179, 181, 223, 280-281, 405
Solutions, 1, 184, 427, 429-430, 432-433, 443
Speed, 44, 528, 534
Spheres, 443, 456, 558

volume of, 456
Spirals, 638
Square, 4, 24-25, 27-28, 146, 273, 278, 284, 313, 466,

480, 523, 531, 553, 564, 622
matrix, 284

Squares, 439-440, 447, 630
Statements, 4-6, 9, 14, 21-22, 24, 27-29, 34, 39, 45,

51, 56, 60, 74, 81, 83, 90, 95, 103, 105-106,
108, 115, 123, 125, 128, 138, 150, 160-161,
168, 178, 189, 197, 206, 212, 249, 274, 291,
328, 356, 362, 508, 552, 579, 582-583

defined, 5, 14, 21, 29, 39, 74, 83, 90, 95, 356, 508
Steepest ascent, 398
Subset, 1-2, 8, 16-18, 21-23, 34-38, 61, 83-85, 87, 92,

96, 111, 140, 154, 222, 224-225, 227,
230-232, 288, 293-294, 296-297, 300-302,
304, 307-311, 321-322, 325-332, 339-340,
346, 348-350, 353-354, 356-357, 359-365,
367-369, 372-373, 375-376, 378-379,
383-384, 386, 405, 418, 423, 425, 428-430,
451-453, 458-461, 465, 470-471, 495, 502,
506-507, 513, 523-524, 531, 542-547, 551,
555, 560, 564, 568, 580, 610

Substitution, 127, 159
Subtraction, 268, 272
Sum, 8, 15, 24, 26, 39, 50, 71, 91, 106, 131-133,

137-138, 141, 146, 155-157, 184-186, 199,
205, 211, 216-217, 234, 247, 264, 268, 270,
274, 278, 282, 311, 313, 336, 352, 404, 439,
450-453, 456, 458-460, 462-463, 467,
503-504, 508, 532, 573, 585-586, 589, 593,
602, 604, 617, 621, 626

derivative of, 404
Sums, 48, 66, 84, 131-132, 135-136, 138-139,

141-143, 145, 147, 149, 151-152, 158,
184-186, 188-190, 192, 202, 205, 208,
210-211, 218, 227, 231-233, 403, 450-451,
455, 458-459, 464-467, 474, 480, 506, 510,
584, 592, 599, 602, 615, 625-626

Surface area, 550-551, 553-555
Symmetry, 10, 30, 110, 112-113, 115, 121, 126, 132,

153, 178, 181, 204, 240, 325, 338, 359, 375,
483

T
Tangent, 98-99, 101, 104, 109, 263, 266, 403,

405-411, 435, 442, 525, 529, 536-538, 540,
547-549, 555, 557, 571, 582, 633

defined, 98-99, 101, 266, 406, 410, 536, 540, 557
graphs of, 411

Tangent lines, 104
Taylor polynomials, 118, 150, 249, 377
Taylor series, 250-253
Temperature, 584
Transformations, 279, 281, 283, 285, 287, 629

defined, 281, 283
Trapezoids, 4

area of, 4
Triangles, 4, 223, 449

right, 4, 223
Trigonometric functions, 3, 588
Trigonometric identities, 3

U
Union of sets, 332
Unit circle, 538-539, 553

defined, 553
Unit vectors, 416
Upper bound, 16-17, 19-22, 41, 69, 112, 159, 625

V
Variables, 100, 156, 158-159, 252, 257-258, 267-268,

273, 280-281, 284, 288, 292, 312, 316-317,
367, 381, 383, 407, 420, 424, 427, 429-432,
435, 437, 442-444, 449, 456, 475, 477, 480,
490-491, 493-499, 501-503, 512-514,
516-518, 521, 527-528, 530, 539, 558, 577,

593, 595, 637
functions, 159, 252, 257-258, 267-268, 280-281,

284, 288, 292, 312, 317, 367, 381, 383,
424, 429, 432, 435, 443-444, 449, 456,
477, 490-491, 503, 512-514, 527, 595

Variation, 170-175, 587, 602-604, 609, 611-612,
617-618, 626

Vectors, 267-272, 275-279, 282, 286, 344, 416,
442-443, 502, 536, 548, 557

addition, 268-269, 271-272, 282
defined, 267, 270, 275, 282, 286, 536, 557
direction of, 271, 276, 536
dot product, 268-269, 275, 279, 282
equality, 278
linear combination of, 271
orthogonal, 272, 276, 278-279, 416
parallel, 272, 278-279, 286, 416, 442
scalar multiplication, 282
scalar product, 268, 270
unit, 416, 536, 557
zero, 267, 272, 279, 557

Velocity, 267, 529
Vertex, 270, 272, 498, 547
Vertical, 98, 298, 317, 357, 407-408, 543, 556, 561,

566, 569-570
Vertical line, 543, 556
Vertical tangent, 98
Viewing, 47
Volume, 10, 277, 286, 409, 424, 449-459, 461-462,

465-466, 469-471, 473, 483-484, 488-489,
491, 496, 498-499, 501-503, 513-517, 519,
521, 573, 637

of a sphere, 502

W
Weight, 4

X
x-axis, 32, 542, 554, 582, 638-639
x-intercept, 263, 266

defined, 266
xy-plane, 267, 435, 488, 537, 547, 554, 556, 560, 569,

572

Y
y-axis, 542, 572, 577, 638-639
Years, 377

Z
z-axis, 408, 498-499, 536, 542, 560, 564, 572, 581
Zero, 10, 44-45, 51, 60, 76, 110, 115, 120, 125,

128-129, 136, 158-160, 163, 168, 186, 201,
205, 211, 223-225, 245, 249-251, 261, 267,
272-273, 279, 318, 332-333, 335-336,
340-341, 377, 395, 399, 404, 422, 425,
430-431, 435, 441, 444, 447, 450, 452-454,
456-459, 461-462, 465-466, 469-471,
473-474, 479-480, 483-484, 491, 496,
498-499, 503-504, 513, 529, 535, 551, 555,
557-558, 561, 564, 566, 569, 597, 599-602,
614, 617-618, 623, 625, 636, 639

matrix, 395, 404, 422, 425, 431
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