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Since many excellent treatises on the history of mathemat-

P r e f a_ C e ics are available, there may seem little reason for writing

still another. But most current works are severely techni-

cal, written by mathematicians for other mathematicians

or for historians of science. Despite the admirable schol-

arship and often clear presentation of these works, they are not especially well adapted

to the undergraduate classroom. (Perhaps the most notable exception is Howard Eves’s

popular account, An Introduction to the History of Mathematics.) There seems to be room

at this time for a textbook of tolerable length and balance addressed to the undergraduate

student, which at the same time is accessible to the general reader interested in the history
of mathematics.

In the following pages, I have tried to give a reasonably full account of how
mathematics has developed over the past 5000 years. Because mathematics is one of the
oldest intellectual instruments, it has a long story, interwoven with striking personalities
and outstanding achievements. This narrative is basically chronological, beginning with the
origin of mathematics in the great civilizations of antiquity and progressing through the later
decades of the twentieth century. The presentation necessarily becomes less complete for
modern times, when the pace of discovery has been rapid and the subject matter more
technical.

Considerable prominence has been assigned to the lives of the people responsible
for progress in the mathematical enterprise. In emphasizing the biographical element, I can
say only that there is no sphere in which individuals count for more than the intellectual life,
and that most of the mathematicians cited here really did tower over their contemporaries.
So that they will stand out as living figures and representatives of their day, it is necessary
to pause from time to time to consider the social and cultural framework that animated
their labors. I have especially tried to define why mathematical activity waxed and waned
in different periods and in different countries.

Writers on the history of mathematics tend to be trapped between the desire to
interject some genuine mathematics into a work and the desire to make the reading as
painless and pleasant as possible. Believing that any mathematics textbook should concern
itself primarily with teaching mathematical content, I have favored stressing the mathe-
matics. Thus, assorted problems of varying degrees of difficulty have been interspersed
throughout. Usually these problems typify a particular historical period, requiring the pro-
cedures of that time. They are an integral part of the text, and you will, in working them,
learn some interesting mathematics as well as history. The level of maturity needed for this
work is approximately the mathematical background of a college junior or senior. Readers
with more extensive training in the subject must forgive certain explanations that seem
unnecessary.

The title indicates that this book is in no way an encyclopedic enterprise. Neither
does it pretend to present all the important mathematical ideas that arose during the vast
sweep of time it covers. The inevitable limitations of space necessitate illuminating some
outstanding landmarks instead of casting light of equal brilliance over the whole landscape.
In keeping with this outlook, a certain amount of judgment and self-denial has to be exer-
cised, both in choosing mathematicians and in treating their contributions. Nor was material
selected exclusively on objective factors; some personal tastes and prejudices held sway.
It stands to reason that not everyone will be satisfied with the choices. Some readers will
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raise an eyebrow at the omission of some household names of mathematics that have been
either passed over in complete silence or shown no great hospitality; others will regard the
scant treatment of their favorite topic as an unpardonable omission. Nevertheless, the path
that I have pieced together should provide an adequate explanation of how mathematics
came to occupy its position as a primary cultural force in Western civilization. The book is
published in the modest hope that it may stimulate the reader to pursue the more elaborate
works on the subject.

Anyone who ranges over such a well-cultivated field as the history of mathematics
becomes so much in debt to the scholarship of others as to be virtually pauperized. The
chapter bibliographies represent a partial listing of works, recent and not so recent, that in
one way or another have helped my command of the facts. To the writers and to many others
of whom no record was kept, I am enormously grateful.

Readers familiar with previous editions of The History of Mathematics will find

N€W to ThlS Edition that this edition maintains the same overall organization and content. Nevertheless,

the preparation of a sixth edition has provided the occasion for a variety of small
improvements as well as several more significant ones.

The most pronounced difference is a considerably expanded discussion of Chinese
and Islamic mathematics in Section 5.5. A significant change also occurs in Section 12.2 with
an enhanced treatment of Henri Poincaré’s career. An enlarged Section 10.3 now focuses
more closely on the role of the number theorists P. G. Lejeune Dirichlet and Carl Gustav
Jacobi. The presentation of the rise of American mathematics (Section 12.1) is carried
further into the early decades of the twentieth century by considering the achievements of
George D. Birkhoff and Norbert Wiener.

Another noteworthy difference is the increased attention paid to several individ-
uals touched upon too lightly in previous editions. For instance, material has been added
regarding the mathematical contributions of Apollonius of Perga, Regiomontanus, Robert
Recorde, Simeon-Denis Poisson, Gaspard Monge and Stefan Banach.

Beyond these textual modifications, there are a number of relatively minor changes.
A broadened table of contents more effectively conveys the material in each chapter, making
it easier to locate a particular period, topic, or great master. Further exercises have been in-
troduced, bibliographies brought up to date, and certain numerical information kept current.
Needless to say, an attempt has been made to correct errors, typographical and historical,
which crept into the earlier versions.

Many friends, colleagues, and readers—too numerous to mention individually—

Acknowledgments have been kind enough to forward corrections or to offer suggestions for the book’s

enrichment. I hope that they will accept a general statement of thanks for their
collective contributions. Although not every recommendation was incorporated, all
were gratefully received and seriously considered when deciding upon alterations.
In particular, the advice of the following reviewers was especially helpful in the
creation of the sixth edition:
Rebecca Berg, Bowie State University
Henry Gould, West Virginia University
Andrzej Gutek, Tennessee Technological University
Mike Hall, Arkansas State University
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Ho Kuen Ng, San Jose State University
Daniel Otero, Xavier University
Sanford Segal, University of Rochester
Chia-Chi Tung, Minnesota State University—Mankato
William Wade, University of Tennessee
A special debt of thanks is owed my wife, Martha Beck Burton, for providing
assistance throughout the preparation of this edition; her thoughtful comments significantly
improved the exposition. Last, I would like to express my appreciation to the staff members
of McGraw-Hill for their unfailing cooperation during the course of production.
Any errors that have survived all this generous assistance must be laid at my door.

D.M.B.
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CHAPTER 1

Early Number Systems and Symbols

To think the thinkable—that is the mathematician’s aim.
C.]. KEYSER

The root of the term mathematics is in the Greek word math-

1.1 Primitive Counting emata, which was used quite generally in early writings to

indicate any subject of instruction or study. As learning ad-
A Sense of Number vanced, it was found convenient to restrict the scope of this

term to particular fields of knowledge. The Pythagoreans are
said to have used it to describe arithmetic and geometry; previously, each of these subjects
had been called by its separate name, with no designation common to both. The Pythagore-
ans’ use of the name would perhaps be a basis for the notion that mathematics began in
Classical Greece during the years from 600 to 300 B.C. But its history can be followed
much further back. Three or four thousand years ago, in ancient Egypt and Babylonia, there
already existed a significant body of knowledge that we should describe as mathematics.
If we take the broad view that mathematics involves the study of issues of a quantitative or
spatial nature—number, size, order, and form—it is an activity that has been present from
the earliest days of human experience. In every time and culture, there have been people
with a compelling desire to comprehend and master the form of the natural world around
them. To use Alexander Pope’s words, “This mighty maze is not without a plan.”

It is commonly accepted that mathematics originated with the practical problems of
counting and recording numbers. The birth of the idea of number is so hidden behind the
veil of countless ages that it is tantalizing to speculate on the remaining evidences of early
humans’ sense of number. Our remote ancestors of some 20,000 years ago—who were quite
as clever as we are—must have felt the need to enumerate their livestock, tally objects for
barter, or mark the passage of days. But the evolution of counting, with its spoken number
words and written number symbols, was gradual and does not allow any determination of
precise dates for its stages.

Anthropologists tell us that there has hardly been a culture, however primitive, that
has not had some awareness of number, though it might have been as rudimentary as
the distinction between one and two. Certain Australian aboriginal tribes, for instance,
counted to two only, with any number larger than two called simply “much” or “many.”
South American Indians along the tributaries of the Amazon were equally destitute of
number words. Although they ventured further than the aborigines in being able to count
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to six, they had no independent number names for groups of three, four, five, or six. In
their counting vocabulary, three was called “two-one,” four was “two-two,” and so on. A
similar system has been reported for the Bushmen of South Africa, who counted to ten
(10 =2 + 2 + 2 4 2 + 2) with just two words; beyond ten, the descriptive phrases became
too long. It is notable that such tribal groups would not willingly trade, say, two cows for
four pigs, yet had no hesitation in exchanging one cow for two pigs and a second cow for
another two pigs.

The earliest and most immediate technique for visibly expressing the idea of number
is tallying. The idea in tallying is to match the collection to be counted with some easily
employed set of objects—in the case of our early forebears, these were fingers, shells, or
stones. Sheep, for instance, could be counted by driving them one by one through a narrow
passage while dropping a pebble for each. As the flock was gathered in for the night, the
pebbles were moved from one pile to another until all the sheep had been accounted for. On
the occasion of a victory, a treaty, or the founding of a village, frequently a cairn, or pillar
of stones, was erected with one stone for each person present.

The term fally comes from the French verb failler, “to cut,” like the English word tailor;
the root is seen in the Latin taliare, meaning “to cut.” It is also interesting to note that the
English word write can be traced to the Anglo-Saxon writan, “to scratch,” or “to notch.”

Neither the spoken numbers nor finger tallying have any permanence, although finger
counting shares the visual quality of written numerals. To preserve the record of any count,
it was necessary to have other representations. We should recognize as human intellectual
progress the idea of making a correspondence between the events or objects recorded and
a series of marks on some suitably permanent material, with one mark representing each
individual item. The change from counting by assembling collections of physical objects
to counting by making collections of marks on one object is a long step, not only toward
abstract number concept, but also toward written communication.

Counts were maintained by making scratches on stones, by cutting notches in wooden
sticks or pieces of bone, or by tying knots in strings of different colors or lengths. When the
numbers of tally marks became too unwieldy to visualize, primitive people arranged them
in easily recognizable groups such as groups of five, for the fingers of a hand. It is likely
that grouping by pairs came first, soon abandoned in favor of groups of 5, 10, or 20. The
organization of counting by groups was a noteworthy improvement on counting by ones.
The practice of counting by fives, say, shows a tentative sort of progress toward reaching
an abstract concept of “five” as contrasted with the descriptive ideas “five fingers” or “five
days.” To be sure, it was a timid step in the long journey toward detaching the number
sequence from the objects being counted.

Notches as Tally Marks

Bone artifacts bearing incised markings seem to indicate that the people of the Old Stone
Age had devised a system of tallying by groups as early as 30,000 B.C. The most impressive
example is a shinbone from a young wolf, found in Czechoslovakia in 1937; about 7 inches
long, the bone is engraved with 55 deeply cut notches, more or less equal in length, arranged
in groups of five. (Similar recording notations are still used, with the strokes bundled in

fives, like M Voting results in small towns are still counted in the manner devised by our
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remote ancestors.) For many years such notched bones were interpreted as hunting tallies
and the incisions were thought to represent kills. A more recent theory, however, is that
the first recordings of ancient people were concerned with reckoning time. The markings
on bones discovered in French cave sites in the late 1880s are grouped in sequences of
recurring numbers that agree with the numbers of days included in successive phases of the
moon. One might argue that these incised bones represent lunar calendars.

Another arresting example of an incised bone was unearthed at Ishango along the
shores of Lake Edward, one of the headwater sources of the Nile. The best archeological
and geological evidence dates the site to 17,500 B.C., or some 12,000 years before the first
settled agrarian communities appeared in the Nile valley. This fossil fragment was probably
the handle of a tool used for engraving, or tattooing, or even writing in some way. It contains
groups of notches arranged in three definite columns; the odd, unbalanced composition does
not seem to be decorative. In one of the columns, the groups are composed of 11, 21, 19, and
9 notches. The underlying pattern may be 10 4 1, 20 4 1, 20 — 1, and 10 — 1. The notches
in another column occur in eight groups, in the following order: 3, 6, 4, 8, 10, 5, 5, 7. This
arrangement seems to suggest an appreciation of the concept of duplication, or multiplying
by 2. The last column has four groups consisting of 11, 13, 17, and 19 individual notches.
The pattern here may be fortuitous and does not necessarily indicate—as some authorities
are wont to infer—a familiarity with prime numbers. Because 11 4+ 13 4 17 + 19 = 60 and
11421 + 194+ 9 = 60, it might be argued that markings on the prehistoric Ishango bone
are related to a lunar count, with the first and third columns indicating two lunar months.

The use of tally marks to record counts was prominent among the prehistoric peoples
of the Near East. Archaeological excavations have unearthed a large number of small clay
objects that had been hardened by fire to make them more durable. These handmade artifacts
occur in a variety of geometric shapes, the most common being circular disks, triangles,
and cones. The oldest, dating to about 8000 B.C., are incised with sets of parallel lines on a
plain surface; occasionally, there will be a cluster of circular impressions as if punched into
the clay by the blunt end of a bone or stylus. Because they go back to the time when people
first adopted a settled agricultural life, it is believed that the objects are primitive reckoning
devices; hence, they have become known as “counters” or “tokens.” It is quite likely also
that the shapes represent different commodities. For instance, a token of a particular type
might be used to indicate the number of animals in a herd, while one of another kind could
count measures of grain. Over several millennia, tokens became increasingly complex, with
diverse markings and new shapes. Eventually, there came to be 16 main forms of tokens.
Many were perforated with small holes, allowing them to be strung together for safekeeping.
The token system of recording information went out of favor around 3000 B.c., with the
rapid adoption of writing on clay tablets.

A method of tallying that has been used in many different times and places involves the
notched stick. Although this device provided one of the earliest forms of keeping records,
its use was by no means limited to “primitive peoples,” or for that matter, to the remote past.
The acceptance of tally sticks as promissory notes or bills of exchange reached its highest
level of development in the British Exchequer tallies, which formed an essential part of the
government records from the twelfth century onward. In this instance, the tallies were flat
pieces of hazelwood about 6-9 inches long and up to an inch thick. Notches of varying
sizes and types were cut in the tallies, each notch representing a fixed amount of money.
The width of the cut decided its value. For example, the notch of £1000 was as large as
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the width of a hand; for £100, as large as the thickness of a thumb; and for £20, the width
of the little finger. When a loan was made, the appropriate notches were cut and the stick
split into two pieces so that the notches appeared in each section. The debtor kept one piece
and the Exchequer kept the other, so the transaction could easily be verified by fitting the
two halves together and noticing whether the notches coincided (whence the expression
“our accounts tallied”). Presumably, when the two halves had been matched, the Exchequer
destroyed its section—either by burning it or by making it smooth again by cutting off the
notches—but retained the debtor’s section for future record. Obstinate adherence to custom
kept this wooden accounting system in official use long after the rise of banking institutions
and modern numeration had made its practice quaintly obsolete. It took an act of Parliament,
which went into effect in 1826, to abolish the practice. In 1834, when the long-accumulated
tallies were burned in the furnaces that heated the House of Lords, the fire got out of hand,
starting a more general conflagration that destroyed the old Houses of Parliament.

The English language has taken note of the peculiar quality of the double tally stick.
Formerly, if someone lent money to the Bank of England, the amount was cut on a tally
stick, which was then split. The piece retained by the bank was known as the foil, whereas
the other half, known as the stock, was given the lender as a receipt for the sum of money
paid in. Thus, he became a “stockholder” and owned “bank stock” having the same worth
as paper money issued by the government. When the holder would return, the stock was
carefully checked and compared against the foil in the bank’s possession; if they agreed,
the owner’s piece would be redeemed in currency. Hence, a written certificate that was
presented for remittance and checked against its security later came to be called a “check.”

Using wooden tallies for records of obligations was common in most European coun-
tries and continued there until fairly recently. Early in this century, for instance, in some
remote valleys of Switzerland, “milk sticks” provided evidence of transactions among farm-
ers who owned cows in a common herd. Each day the chief herdsman would carve a six- or
seven-sided rod of ashwood, coloring it with red chalk so that incised lines would stand out
vividly. Below the personal symbol of each farmer, the herdsman marked off the amounts
of milk, butter, and cheese yielded by a farmer’s cows. Every Sunday after church, all par-
ties would meet and settle the accounts. Tally sticks—in particular, double tallies—were
recognized as legally valid documents until well into the 1800s. France’s first modern code
of law, the Code Civil, promulgated by Napoleon in 1804, contained the provision:

The tally sticks which match their stocks have the force of contracts between persons who are
accustomed to declare in this manner the deliveries they have made or received.

The variety in practical methods of tallying is so great that giving any detailed account
would be impossible here. But the procedure of counting both days and objects by means
of knots tied in cords has such a long tradition that it is worth mentioning. The device
was frequently used in ancient Greece, and we find reference to it in the work of Herodotus
(fifth century B.C.). Commenting in his History, he informs us that the Persian king Darius
handed the Ionians a knotted cord to serve as a calendar:

The King took a leather thong and tying sixty knots in it called together the Ionian tyrants and
spoke thus to them: “Untie every day one of the knots; if I do not return before the last day to
which the knots will hold out, then leave your station and return to your several homes.”
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Three views of a Paleolithic wolfbone used for tallying. (The lilustrated London News
Picture Library.)
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The Peruvian Quipus: Knots as Numbers

In the New World, the number string is best illustrated by the knotted cords, called
quipus, of the Incas of Peru. They were originally a South American Indian tribe, or a
collection of kindred tribes, living in the central Andean mountainous highlands. Through
gradual expansion and warfare, they came to rule a vast empire consisting of the coastal
and mountain regions of present-day Ecuador, Peru, Bolivia, and the northern parts of Chile
and Argentina. The Incas became renowned for their engineering skills, constructing stone
temples and public buildings of a great size. A striking accomplishment was their creation of
a vast network (as much as 14,000 miles) of roads and bridges linking the far-flung parts of
the empire. The isolation of the Incas from the horrors of the Spanish Conquest ended early
in 1532 when 180 conquistadors landed in northern Peru. By the end of the year, the invaders
had seized the capital city of Cuzco and imprisoned the emperor. The Spaniards imposed a
way of life on the people that within about 40 years would destroy the Inca culture.

When the Spanish conquerors arrived in the sixteenth century, they observed that each
city in Peru had an “official of the knots,” who maintained complex accounts by means of
knots and loops in strands of various colors. Performing duties not unlike those of the city
treasurer of today, the quipu keepers recorded all official transactions concerning the land
and subjects of the city and submitted the strings to the central government in Cuzco. The
quipus were important in the Inca Empire, because apart from these knots no system of
writing was ever developed there. The quipu was made of a thick main cord or crossbar to
which were attached finer cords of different lengths and colors; ordinarily the cords hung
down like the strands of a mop. Each of the pendent strings represented a certain item to
be tallied; one might be used to show the number of sheep, for instance, another for goats,
and a third for lambs. The knots themselves indicated numbers, the values of which varied
according to the type of knot used and its specific position on the strand. A decimal system
was used, with the knot representing units placed nearest the bottom, the tens appearing
immediately above, then the hundreds, and so on; absence of a knot denoted zero. Bunches
of cords were tied off by a single main thread, a summation cord, whose knots gave the
total count for each bunch. The range of possibilities for numerical representation in the
quipus allowed the Incas to keep incredibly detailed administrative records, despite their
ignorance of the written word. More recent (1872) evidence of knots as a counting device
occurs in India; some of the Santal headsmen, being illiterate, made knots in strings of four
different colors to maintain an up-to-date census.

To appreciate the quipu fully, we should notice the numerical values represented by
the tied knots. Just three types of knots were used: a figure-eight knot standing for 1, a
long knot denoting one of the values 2 through 9, depending on the number of twists in the
knot, and a single knot also indicating 1. The figure-eight knot and long knot appear only in
the lowest (units) position on a cord, while clusters of single knots can appear in the other
spaced positions. Because pendant cords have the same length, an empty position (a value
of zero) would be apparent on comparison with adjacent cords. Also, the reappearance of
either a figure-eight or long knot would point out that another number is being recorded on
the same cord.

Recalling that ascending positions carry place value for successive powers of ten, let us
suppose that a particular cord contains the following, in order: a long knot with four twists,
two single knots, an empty space, seven clustered single knots, and one single knot. For the
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Inca, this array would represent the number
17024 = 4+ (2-10) + (0 - 10*) + (7 - 10%) + (1 - 10*).

Another New World culture that used a place value numeration system was that of the
ancient Maya. The people occupied a broad expanse of territory embracing southern Mexico
and parts of what is today Guatemala, El Salvador, and Honduras. The Mayan civilization
existed for over 2000 years, with the time of its greatest flowering being the period 300—
900 A.D. A distinctive accomplishment was their development of an elaborate form of
hieroglyphic writing using about 1000 glyphs. The glyphs are sometimes sound based and
sometimes meaning based: the vast majority of those that have survived have yet to be
deciphered. After 900 A.D., the Mayan civilization underwent a sudden decline—The Great
Collapse—as its populous cities were abandoned. The cause of this catastrophic exodus is a
continuing mystery, despite speculative explanations of natural disasters, epidemic diseases,
and conquering warfare. What remained of the traditional culture did not succumb easily
or quickly to the Spanish Conquest, which began shortly after 1500. It was a struggle of
relentless brutality, stretching over nearly a century, before the last unconquered Mayan
kingdom fell in 1597.

The Mayan calendar year was composed of 365 days divided into 18 months of 20 days
each, with aresidual period of 5 days. This led to the adoption of a counting system based on
20 (a vigesimal system). Numbers were expressed symbolically in two forms. The priestly
class employed elaborate glyphs of grotesque faces of deities to indicate the numbers 1
through 19. These were used for dates carved in stone, commemorating notable events. The
common people recorded the same numbers with combinations of bars and dots, where a
short horizontal bar represented 5 and a dot 1. A particular feature was a stylized shell that
served as a symbol for zero; this is the earliest known use of a mark for that number.

>

L] L X ) o 00 o000
0 1 2 4
L] L] ] o 00 o000
5 6 7 8 9
L] L] L] o o0 o0 00
10 11 12 13 14
L] L] L] o 00 o0 00
15 16 17 18 19

The symbols representing numbers larger than 19 were arranged in a vertical column
with those in each position, moving upward, multiplied by successive powers of 20; that
is, by 1, 20, 400, 8000, 160,000, and so on. A shell placed in a position would indicate the
absence of bars and dots there. In particular, the number 20 was expressed by a shell at the
bottom of the column and a single dot in the second position. For an example of a number
recorded in this system, let us write the symbols horizontally rather than vertically, with the
smallest value on the left:
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Thirteenth-century British Exchequer tallies. (By courtesy of the Society of Antiquaries of
London.)

For us, this expression denotes the number 62808, for
62808 =8-140-204 17400 + 7 - 8000.

Because the Mayan numeration system was developed primarily for calendar reckoning,
there was a minor variation when carrying out such calculations. The symbol in the third
position of the column was multiplied by 18 - 20 rather than by 20 - 20, the idea being that
360 was a better approximation to the length of the year than was 400. The place value of
each position therefore increased by 20 times the one before; that is, the multiples are 1,
20, 360, 7200, 144,000, and so on. Under this adjustment, the value of the collection of
symbols mentioned earlier would be

56528 =8-1+40-204 17 -360 4+ 7 - 7200.

Over the long sweep of history, it seems clear that progress in devising efficient ways
of retaining and conveying numerical information did not take place until primitive people
abandoned the nomadic life. Incised markings on bone or stone may have been adequate
for keeping records when human beings were hunters and gatherers, but the food producer
required entirely new forms of numerical representation. Besides, as a means for storing
information, groups of markings on a bone would have been intelligible only to the person
making them, or perhaps to close friends or relatives; thus, the record was probably not
intended to be used by people separated by great distances.

Deliberate cultivation of crops, particularly cereal grains, and the domestication of
animals began, so far as can be judged from present evidence, in the Near East some 10,000
years ago. Later experiments in agriculture occurred in China and in the New World. A
widely held theory is that a climatic change at the end of the last ice age provided the
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essential stimulus for the introduction of food production and a settled village existence. As
the polar ice cap began to retreat, the rain belt moved northward, causing the desiccation
of much of the Near East. The increasing scarcity of wild food plants and the game on
which people had lived forced them, as a condition of survival, to change to an agricultural
life. It became necessary to count one’s harvest and herd, to measure land, and to devise a
calendar that would indicate the proper time to plant crops. Even at this stage, the need for
means of counting was modest; and tallying techniques, although slow and cumbersome,
were still adequate for ordinary dealings. But with a more secure food supply came the
possibility of a considerable increase in population, which meant that larger collections of
objects had to be enumerated. Repetition of some fundamental mark to record a tally led
to inconvenient numeral representations, tedious to compose and difficult to interpret. The
desire of village, temple, and palace officials to maintain meticulous records (if only for
the purposes of systematic taxation) gave further impetus to finding new and more refined
means of “fixing” a count in a permanent or semipermanent form.

Thus, it was in the more elaborate life of those societies that rose to power some
6000 years ago in the broad river valleys of the Nile, the Tigris-Euphrates, the Indus, and
the Yangtze that special symbols for numbers first appeared. From these, some of our
most elementary branches of mathematics arose, because a symbolism that would allow
expressing large numbers in written numerals was an essential prerequisite for computation
and measurement. Through a welter of practical experience with number symbols, people
gradually recognized certain abstract principles; for instance, it was discovered that in the
fundamental operation of addition, the sum did not depend on the order of the summands.
Such discoveries were hardly the work of a single individual, or even a single culture, but
more a slow process of awareness moving toward an increasingly abstract way of thinking.

We shall begin by considering the numeration systems of the important Near Eastern
civilizations—the Egyptian and the Babylonian—from which sprang the main line of our
own mathematical development. Number words are found among the word forms of the
earliest extant writings of these people. Indeed, their use of symbols for numbers, detached
from an association with the objects to be counted, was a big turning point in the history
of civilization. It is more than likely to have been a first step in the evolution of humans’
supreme intellectual achievement, the art of writing. Because the recording of quantities
came more easily than the visual symbolization of speech, there is unmistakable evidence
that the written languages of these ancient cultures grew out of their previously written
number systems.

The writing of history, as we understand it, is a

1.2 Number Recording of the Egyptians Greek invention; and foremost among the early
and Greeks Greek historians was Herodotus. Herodotus (circa

485-430 B.C.) was born at Halicarnassus, a largely
The HiStOT}’ Of Herodotus Greek settlement on the southwest coast of Asia

Minor. In early life, he was involved in political
troubles in his home city and forced to flee in exile to the island of Samos, and thence to
Athens. From there Herodotus set out on travels whose leisurely character and broad extent
indicate that they occupied many years. It is assumed that he made three principal journeys,
perhaps as a merchant, collecting material and recording his impressions. In the Black Sea,
he sailed all the way up the west coast to the Greek communities at the mouth of the Dnieper
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River, in what is now Russia, and then along the south coast to the foot of the Caucasus. In
Asia Minor, he traversed modern Syria and Iraq, and traveled down the Euphrates, possibly
as far as Babylon. In Egypt, he ascended the Nile River from its delta to somewhere near
Aswan, exploring the pyramids along the way. Around 443 B.C., Herodotus became a citizen
of Thurium in southern Italy, a new colony planted under Athenian auspices. In Thurium,
he seems to have passed the last years of his life involved almost entirely in finishing the
History of Herodotus, a book larger than any Greek prose work before it. The reputation of
Herodotus as a historian stood high even in his own day. In the absence of numerous copies
of books, it is natural that a history, like other literary compositions, should have been read
aloud at public and private gatherings. In Athens, some 20 years before his death, Herodotus
recited completed portions of his History to admiring audiences and, we are told, was voted
an unprecedentedly large sum of public money in recognition of the merit of his work.

Although the story of the Persian Wars provides the connecting link in the History of
Herodotus, the work is no mere chronicle of carefully recorded events. Almost anything
that concerned people interested Herodotus, and his History is a vast store of information
on all manner of details of daily life. He contrived to set before his compatriots a general
picture of the known world, of its various peoples, of their lands and cities, and of what
they did and above all why they did it. (A modern historian would probably describe the
History as a guidebook containing useful sociological and anthropological data, instead of
a work of history.) The object of his History, as Herodotus conceived it, required him to tell
all he had heard but not necessarily to accept it all as fact. He flatly stated, “My job is to
report what people say, not to believe it all, and this principle is meant to apply to my whole
work.” We find him, accordingly, giving the traditional account of an occurrence and then
offering his own interpretation or a contradictory one from a different source, leaving the
reader to choose between versions. One point must be clear: Herodotus interpreted the state
of the world at his time as a result of change in the past, and felt that the change could be
described. It is this attempt that earned for him, and not any of the earlier writers of prose,
the honorable title “Father of History.”

Herodotus took the trouble to describe Egypt at great length, for he seems to have been
more enthusiastic about the Egyptians than about almost any other people that he met. Like
most visitors to Egypt, he was distinctly aware of the exceptional nature of the climate and
the topography along the Nile: “For anyone who sees Egypt, without having heard a word
about it before, must perceive that Egypt is an acquired country, the gift of the river.” This
famous passage—often paraphrased to read “Egypt is the gift of the Nile”—aptly sums
up the great geographical fact about the country. In that sun-soaked, rainless climate, the
river in overflowing its banks each year regularly deposited the rich silt washed down from
the East African highlands. To the extreme limits of the river’s waters there were fertile
fields for crops and the pasturage of animals; and beyond that the barren desert frontiers
stretched in all directions. This was the setting in which that literate, complex society known
as Egyptian civilization developed.

The emergence of one of the world’s earliest cultures was essentially a political act.
Between 3500 and 3100 B.C., the self-sufficient agricultural communities that clung to
the strip of land bordering the Nile had gradually coalesced into larger units until there
were only the two kingdoms of Upper Egypt and Lower Egypt. Then, about 3100 B.C., these
regions were united by military conquest from the south by a ruler named Menes, an elusive
figure who stepped forth into history to head the long line of pharaohs. Protected from
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The habitable world according to Herodotus. (From Stories from Herodotus by B. Wilson and
D. Miller. Reproduced by permission of Oxford University Press.)

external invasion by the same deserts that isolated her, Egypt was able to develop the most
stable and longest-lasting of the ancient civilizations. Whereas Greece and Rome counted
their supremacies by the century, Egypt counted hers by the millennium; a well-ordered
succession of 32 dynasties stretched from the unification of the Upper and Lower Kingdoms
by Menes to Cleopatra’s encounter with the asp in 31 B.C. Long after the apogee of Ancient
Egypt, Napoleon was able to exhort his weary veterans with the glory of its past. Standing
in the shadow of the Great Pyramid of Gizeh, he cried, “Soldiers, forty centuries are looking
down upon you!”

Hieroglyphic Representation of Numbers

As soon as the unification of Egypt under a single leader became an accomplished
fact, a powerful and extensive administrative system began to evolve. The census had to be
taken, taxes imposed, an army maintained, and so forth, all of which required reckoning
with relatively large numbers. (One of the years of the Second Dynasty was named Year of
the Occurrence of the Numbering of all Large and Small Cattle of the North and South.)
As early as 3500 B.C., the Egyptians had a fully developed number system that would allow
counting to continue indefinitely with only the introduction from time to time of a new
symbol. This is borne out by the macehead of King Narmer, one of the most remarkable
relics of the ancient world, now in a museum at Oxford University. Near the beginning of
the dynastic age, Narmer (who, some authorities suppose, may have been the legendary
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This scene is taken from the great stone macehead of Narmer, which J. E. Quibell discovered at
Hierakonpolis in 1898. There is a summary of the spoil taken by Narmer during his wars, namely “cows,

400,000, m DR R goats, 1,422,000, §:,g ﬁ"ﬁb PR ] ] 11 and captives,

120,000, g} i;] ]

Scene reproduced from the stone macehead of Narmer, giving a summary of the spoil taken by him
during his wars. (From The Dwellers on the Nile by E. W. Budge, 1977, Dover Publications, N.Y.)

Menes, the first ruler of the united Egyptian nation) was obliged to punish the rebellious
Libyans in the western Delta. He left in the temple at Hierakonpolis a magnificent slate
palette—the famous Narmer Palette—and a ceremonial macehead, both of which bear
scenes testifying to his victory. The macehead preserves forever the official record of the
king’s accomplishment, for the inscription boasts of the taking of 120,000 prisoners and a
register of captive animals, 400,000 oxen and 1,422,000 goats.

Another example of the recording of very large numbers at an early stage occurs in
the Book of the Dead, a collection of religious and magical texts whose principle aim was
to secure for the deceased a satisfactory afterlife. In one section, which is believed to date
from the First Dynasty, we read (the Egyptian god Nu is speaking): “I work for you, o ye
spirits, we are in number four millions, six hundred and one thousand, and two hundred.”

The spectacular emergence of the Egyptian government and administration under the
pharaohs of the first two dynasties could not have taken place without a method of writing,
and we find such a method both in the elaborate “sacred signs,” or hieroglyphics, and in the
rapid cursive hand of the accounting scribe. The hieroglyphic system of writing is a picture
script, in which each character represents a concrete object, the significance of which may
still be recognizable in many cases. In one of the tombs near the Pyramid of Gizeh there
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have been found hieroglyphic number symbols in which the number one is represented by
a single vertical stroke, or a picture of a staff, and a kind of horseshoe, or heelbone sign N
is used as a collective symbol to replace ten separate strokes. In other words, the Egyptian
system was a decimal one (from the Latin decem, “ten”’) which used counting by powers of
10. That 10 is so often found among ancient peoples as a base for their number systems is
undoubtedly attributable to humans’ ten fingers and to our habit of counting on them. For
the same reason, a symbol much like our numeral 1 was almost everywhere used to express
the number one.

Special pictographs were used for each new power of 10 up to 10,000,000: 100 by a
curved rope, 1000 by a lotus flower, 10,000 by an upright bent finger, 100,000 by a tadpole,
1,000,000 by a person holding up his hands as if in great astonishment, and 10,000,000 by
a symbol sometimes conjectured to be a rising sun.

1 10 100 1000 10,000 100,000 1,000,000 10,000,000

|”9%r®f§/i

Other numbers could be expressed by using these symbols additively (that is, the number
represented by a set of symbols is the sum of the numbers represented by the individual
symbols), with each character repeated up to nine times. Usually, the direction of writing
was from right to left, with the larger units listed first, then the others in order of importance.
Thus, the scribe would write

noon 9% ((( 9
Il [

to indicate our number
1-100,000+4-10,000+2-1000+1-100+3-10+6-1 = 142,136.

Occasionally, the larger units were written on the left, in which case the symbols were
turned around to face the direction from which the writing began. Lateral space was saved
by placing the symbols in two or three rows, one above the other. Because there was a
different symbol for each power of 10, the value of the number represented was not affected
by the order of the hieroglyphs within a grouping. For example,

1Ppn 99 ¥ 99’0‘0"% non 992 ||

all stood for the number 1232. Thus the Egyptian method of writing numbers was not a
“positional system”—a system in which one and the same symbol has a different significance
depending on its position in the numerical representation.

Addition and subtraction caused little difficulty in the Egyptian number system. For
addition, it was necessary only to collect symbols and exchange ten like symbols for the
next higher symbol. This is how the Egyptians would have added, say, 345 and 678.
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Subtraction was performed by the same process in reverse. Sometimes “borrowing” was
used, wherein a symbol for the large number was exchanged for ten lower-order symbols

to provide enough for the smaller number to be subtracted, as in the case
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Although the Egyptians had symbols for numbers, they had no generally uniform notation for
arithmetical operations. In the case of the famous Rhind Papyrus (dating about 1650 B.C.),
the scribe did represent addition and subtraction by the hieroglyphs /\ and 7\, which
resemble the legs of a person coming and going.

Egyptian Hieratic Numeration

As long as writing was restricted to inscriptions carved on stone or metal, its scope was
limited to short records deemed to be outstandingly important. What was needed was an
easily available, inexpensive material to write on. The Egyptians solved this problem with
the invention of papyrus. Papyrus was made by cutting thin lengthwise strips of the stem
of the reedlike papyrus plant, which was abundant in the Nile Delta marshes. The sections
were placed side by side on a board so as to form a sheet, and another layer was added
at right angles to the first. When these were all soaked in water, pounded with a mallet,
and allowed to dry in the sun, the natural gum of the plant glued the sections together.
The writing surface was then scraped smooth with a shell until a finished sheet (usually 10
to 18 inches wide) resembled coarse brown paper; by pasting these sheets together along
overlapping edges, the Egyptians could produce strips up to 100 feet long, which were
rolled up when not in use. They wrote with a brushlike pen, and ink made of colored earth
or charcoal that was mixed with gum or water. Thanks not so much to the durability of
papyrus as to the exceedingly dry climate of Egypt, which prevented mold and mildew, a
sizable body of scrolls has been preserved for us in a condition otherwise impossible.

With the introduction of papyrus, further steps in simplifying writing were almost
inevitable. The first steps were made largely by the Egyptian priests who developed a more
rapid, less pictorial style that was better adapted to pen and ink. In this so-called “hieratic”
(sacred) script, the symbols were written in a cursive, or free-running, hand so that at first
sight their forms bore little resemblance to the old hieroglyphs. It can be said to correspond
to our handwriting as hieroglyphics corresponds to our print. As time passed and writing
came into general use, even the hieratic proved to be too slow and a kind of shorthand
known as “demotic” (popular) script arose. Hieratic writing is child’s play compared with
demotic, which at its worst consists of row upon row of agitated commas, each representing
a totally different sign.

In both of these writing forms, numerical representation was still additive, based on
powers of 10; but the repetitive principle of hieroglyphics was replaced by the device of
using a single mark to represent a collection of like symbols. This type of notation may be
called “cipherization.” Five, for instance, was assigned the distinctive mark = instead of
being indicated by a group of five vertical strokes.

1 4 7 8 9 10

2 3 5 6
20 30 40 50 60 70 80 90 100 1000

X XN = > p M3 2008
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The hieratic system used to represent numbers is as shown in the table. Note that the
signs for 1, 10, 100, and 1000 are essentially abbreviations for the pictographs used earlier.
In hieroglyphics, the number 37 had appeared as

IRTIT

but in hieratic script it is replaced by the less cumbersome

NZ

The larger number of symbols called for in this notation imposed an annoying tax on the
memory, but the Egyptian scribes no doubt regarded this as justified by its speed and con-
ciseness. The idea of ciphering is one of the decisive steps in the development of numeration,
comparable in significance to the Babylonian adoption of the positional principle.

The Greek Alphabetic Numeral System

Around the fifth century B.C., the Greeks of Ionia also developed a ciphered numeral
system, but with a more extensive set of symbols to be memorized. They ciphered their
numbers by means of the 24 letters of the ordinary Greek alphabet, augmented by three
obsolete Phoenician letters (the digamma > for 6, the koppa T for 90, and the sampi A< for
900). The resulting 27 letters were used as follows. The initial nine letters were associated
with the numbers from 1 to 9; the next nine letters represented the first nine integral multiples
of 10; the final nine letters were used for the first nine integral multiples of 100. The
accompanying table shows how the letters of the alphabet (including the special forms)
were arranged for use as numerals.

la 10 100 p
28 20 k 200 o
3y 30 A 300 7
45 40 400 v
5¢ 50 v 500 ¢
6> 60 & 600 x
7¢ 70 0 700 ¥
8n 80 800 w
90 97 900 A

Because the Ionic system was still a system of additive type, all numbers between 1 and
999 could be represented by at most three symbols. The principle is shown by

Yrs =700 + 80 + 4 = 784.

For larger numbers, the following scheme was used. An accent mark placed to the left
and below the appropriate unit letter multiplied the corresponding number by 1000; thus ,8
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represents not 2 but 2000. Tens of thousands were indicated by using a new letter M, from
the word myriad (meaning “ten thousand”). The letter M placed either next to or below the
symbols for a number from 1 to 9999 caused the number to be multiplied by 10,000, as
with

s
&M, or M = 40,000,

pv
pvM, or M = 1,500,000.
With these conventions, the Greeks wrote
TueM ,Boud = 3,452,144,

To express still larger numbers, powers of 10,000 were used, the double myriad MM denoting
(10,000)?, and so on.

The symbols were always arranged in the same order, from the highest multiple of 10
on the left to the lowest on the right, so accent marks sometimes could be omitted when the
context was clear. The use of the same letter for thousands and units, as in

SoAd = 4234,

gave the left-hand letter a local place value. To distinguish the numerical meaning of letters
from their ordinary use in language, the Greeks added an accent at the end or a bar extended
over them; thus, the number 1085 might appear as

ame  or awe.
The system as a whole afforded much economy of writing (whereas the Greek alphabetic

numerical for 900 is a single letter, the Egyptians had to use the symbol 9 nine times), but
it required the mastery of numerous signs.

Multiplication in Greek alphabetic numerals was performed by beginning with the
highest order in each factor and forming a sum of partial products. Let us calculate, for
example, 24 x 53:

K4 24
vy x 53

o & 1000 60
o 200 12

a0 of 1200 72 = 1272

The idea in multiplying numbers consisting of more than one letter was to write each
number as a sum of numbers represented by a single letter. Thus, the Greeks began by
calculating 20 x 50 (kx by v), then proceeded to 20 x 3 (k by y), then 4 x 50 (§ by v), and
finally 4 x 3 (8 by y). This method, called Greek multiplication, corresponds to the modern
computation

24 x 53 =20+ 4)(50 + 3)
=20-504+20-344-50+4-3
= 1272.
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1.2 Problems

1. Express each of the given numbers in Egyptian
hieroglyphics.

(a) 1492.
(b) 1999.
(©) 12321. (P 3,040,279.

(a) |
I

Chapter 1 Early Number Systems and Symbols

The numerical connection in these products is not evident in the letter products, which
necessitated elaborate multiplication tables. The Greeks had 27 symbols to multiply by
each other, so they were obliged to keep track of 729 entirely separate answers. The same
multiplicity of symbols tended to hide simple relations among numbers; where we recognize
an even number by its ending in 0, 2, 4, 6, and 8, any one of the 27 Greek letters (possibly
modified by an accent mark) could represent an even number.

Anincidental objection raised against the alphabetic notation is that the juxtaposition of
words and number expressions using the same symbols led to a form of number mysticism
known as “gematria.” In gematria, a number is assigned to each letter of the alphabet in
some way and the value of a word is the sum of the numbers represented by its letters.
Two words are then considered somehow related if they add up to the same number. This
gave rise to the practice of giving names cryptically by citing their individual numbers.
The most famous number was 666, the “number of the Beast,” mentioned in the Bible in
the Book of Revelation. (It is probable that it referred to Nero Caesar, whose name has
this value when written in Hebrew.) A favorite pastime among Catholic theologians during
the Reformation was devising alphabet schemes in which 666 was shown to stand for the
name Martin Luther, thereby supporting their contention that he was the Antichrist. Luther
replied in kind; he concocted a system in which 666 forecast the duration of the papal reign
and rejoiced that it was nearing an end. Readers of Tolstoy’s War and Peace may recall that
“L’Empereur Napoleon” can also be made equivalent to the number of the Beast.

Another number replacement that occurs in early theological writings concerns the
word amen, which is aunv in Greek. These letters have the numerical values

Alw)=1, M(u)=40, E@m®m) =38, N(v)=>50,

totaling 99. Thus, in many old editions of the Bible, the number 99 appears at the end of a
prayer as a substitute for amen. An interesting illustration of gematria is also found in the
graffiti of Pompeii: “I love her whose number is 545.”

® nnn ((r S

nr)nr

© [[nra 999 (1f
: %%%rr

@ 70807 ) 2;’”%% 566 Nig

(e)

123,456.

3. Perform the indicated operations and express the
answers in hieroglyphics.

(a) Add“992%

Write each of these Egyptian numbers in our
system.

nno 9
mn 39g~ ”ﬂng@@gf
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® A efff
1 grrr.

and 1) 0 99 (ff
[ ’

(©) Subtract‘ ' l nn 9
11

from“ 200 9 9

(d) Subtract [{| PN 9299
l n

from”hﬂr)%

4. Multiply the number below by N (10), expressing the
result in hieroglyphics.

117082998 £

Describe a simple rule for multiplying any Egyptian
number by 10.
5. Write the Ionian Greek numerals corresponding to

(a) 396. (d) 24,789.
(b) 1492. (e) 123.456.
() 1999. ) 1,234,567.

6. Convert each of these from Ionian Greek numerals to

our system.
(a) ,ao)d. (©) M EPVE.
(®) pa. (d) OmmrmsBX 1S

7. Perform the indicated operations,

(a) Addv¢ and ¢goy.

(b) AddoAp and lwrma.

(c) Subtract x 6 from ,y 8.
(d) Multiply ome by 6.

8. Another system of number symbols the Greeks used
from about 450 to 85 B.C. is known as the “Attic” or
“Herodianic” (after Herodian, a Byzantine grammarian
of the second century, who described it). In this
system, the initial letters of the words for 5 and the
powers of 10 are used to represent the corresponding

10.

© The McGraw-Hill
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numbers; these are

the initial letter of penta, meaning “five.”

the initial letter of deka, meaning “ten.”

the initial letter of hekaton, meaning “hundred.”
the initial letter of kilo, meaning “thousand.”
the initial letter of myriad, meaning “ten thou-
sand.”

XTI

The letter denoting 5 was combined with other letters
to get intermediate symbols for 50, 500, 5000, and
50,000:

1 5 10 50 100 500
1000 5000 10,000 50,000

X ®© M [

Other numbers were made up on an additive basis,
with higher units coming before lower. Thus each
symbol was repeated not more than four times. An
example in this numeration system is

M X [EAA

= 10,000 + 5000 + 1000 + 50 4+ 20 + 3

=16,073.

Write the Attic Greek numerals corresponding to
(a) 386. (d) 24,789.

(b) 1492. (e) 74,802.

(c) 1999. (f) 123,456.

Convert these from Greek Attic numerals to our
system.

@ XXFHHPI
®) MFFAAAL
© X XFHHHHFAA],
@ MMM AL

Perform the indicated operations and express the
answers in Attic numerals.

@ Add  X[PA[T

md  HHFAAAN
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XXX XHHHAA

(b) Add

FHHFAA

and

Subtract F” H FAAA”

X X,

(©
from

(d) Multiply HAI

by AN

The Roman numerals, still used for such decorative
purposes as clock faces and monuments, are patterned
on the Greek Attic system in having letters as symbols
for certain multiples of 5 as well as for numbers that
are powers of 10. The primary symbols with their
values are

I v X L C D M
1 5 10 50 100 500 1000

The Roman numeration system is essentially additive,
with certain subtractive and multiplicative features. If
the symbols decrease in value from left to right, their

values are added, as in the example

MDCCCXXVIII = 1000 + 500 + 300
+20+5+3=1828.

The representation of numbers that involve 4s and 9s is
shortened by using a subtractive principle whereby a
letter for a small unit placed before a unit of higher
value indicates that the smaller is to be subtracted from
the larger. For instance,

CDXCV = (500 — 100) + (100 — 10) + 5
= 495.

Chapter 1
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(This scheme incorporates features of a positional
system, because IV = 4, whereas VI = 6.) However,
there were definite rules:

I could precede only V or X.
X could precede only L or C.
C could precede only D or M.

In place of new symbols for large numbers, a
multiplicative device was introduced; a bar drawn over
the entire symbol multiplied the corresponding number
by 1000, whereas a double bar meant multiplication by
1000%. Thus

XV = 15,000 and XV = 15,000,000.

Write the Roman numerals corresponding to

(a) 1492. (d) 74,802
(b) 1066. (e) 123,456.
(©) 1999. () 3,040,279.

Convert each of these from Roman numerals into our
system.

(a) CXXIV. (d) DCCLXXXVIL.
(b) MDLXI (e) XIX.
(¢) MDCCXLVIIL (f) XCXXV.

Perform the indicated operations and express the
answers in Roman numerals.

(a) Add CM and XIX.

(b) Add MMCLXI and MDCXX.
(¢) Add XXIV and XLVI.

(d) Subtract XXIII from XXX.
(e) Subtract CLXI from CCLII.
() Multiply XXXIV by XVIL

Besides the Egyptian, another culture of an-
tiquity that exerted a marked influence on the
development of mathematics was the Babylo-
nian. Here the term “Babylonian” is used with-
out chronological restrictions to refer to those

peoples who, many thousands of years ago, occupied the alluvial plain between the twin
rivers, the Tigris and the Euphrates. The Greeks called this land “Mesopotamia,” meaning
“the land between the rivers.” Most of it today is part of the modern state of Iraq, although
both the Tigris and the Euphrates rise in Turkey. Humans stepped over the threshold of
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civilization in this region—and more especially in the lowland marshes near the Persian
Gulf—about the same time that humans did in Egypt, that is, about 3500 B.C. or possibly
a little earlier. Although the deserts surrounding Egypt successfully protected it against
invasions, the open plains of the Tigris-Euphrates valley made it less defensible. The early
history of Mesopotamia is largely the story of incessant invaders who, attracted by the rich-
ness of the land, conquered their decadent predecessors, absorbed their culture, and then
settled into a placid enjoyment of wealth until they were themselves overcome by the next
wave of intruders.

Shortly after 3000 B.C., the Babylonians developed a system of writing from
“pictographs”—a kind of picture writing much like hieroglyphics. But the materials chosen
for writing imposed special limitations of their own, which soon robbed the pictographs of
any resemblance to the objects they stood for. Whereas the Egyptians used pen and ink to
keep their records, the Babylonians used first a reed, later a stylus with a triangular end.
With this they made impressions (rather than scratches) in moist clay. Clay dries quickly,
so documents had to be relatively short and written all at one time, but they were virtually
indestructible when baked hard in an oven or by the heat of the sun. (Contrast this with the
Chinese method, which involved more perishable writing material such as bark or bamboo
and did not allow keeping permanent evidence of the culture’s early attainments.) The sharp
edge of a stylus made a vertical stroke (]) and the base made a more or less deep impression
(a), so that the combined effect was a head-and-tail figure resembling a wedge, or nail .
Because the Latin word for “wedge” is cuneus, the resulting style of writing has become
known as “cuneiform.”

Cuneiform script was a natural consequence of the choice of clay as a writing medium.
The stylus did not allow for drawing curved lines, so all pictographic symbols had to be
composed of wedges oriented in different ways: vertical (Y), horizontal (»—), and oblique
(A or ). Another wedge was later added to these three types; it looked something like
an angle bracket opening to the right (<) and was made by holding the stylus so that its
sides were inclined to the clay tablet. These four types of wedges had to serve for all
drawings, because executing others was considered too tiresome for the hand or too time-
consuming. Unlike hieroglyphics, which remained a picture writing until near the end of
Egyptian civilization, cuneiform characters were gradually simplified until the pictographic
originals were no longer apparent. The nearest the Babylonians could get to the old circle

< representing the sun was {>, which was later condensed still further to \«Y. Similarly,

the symbol for a fish, which began as Q ended up as ¥}( The net effect of cuneiform script
seems, to the uninitiated, “like bird tracks in wet sand.” Only within the last two centuries
has anyone known what the many extant cuneiform writings meant, and indeed whether
they were writing or simply decoration.

Deciphering Cuneiform: Grotefend and Rawlinson

Because there were no colossal temples or monuments to capture the archeological
imagination (the land is practically devoid of building stone), excavation came later to
this part of the ancient world than to Egypt. It is estimated that today there are at least
400,000 Babylonian clay tablets, generally the size of a hand, scattered among the museums
of various countries. Of these, some 400 tablets or tablet fragments have been identified
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as having mathematical content. Their decipherment and interpretation have gone slowly,
owing to the variety of dialects and natural modifications in the language over the intervening
several thousand years.

The initial step was taken by an obscure German schoolteacher, Georg Friedrich
Grotefend (1775-1853), of Gottingen, who although well versed in classical Greek, was
absolutely ignorant of Oriental languages. While drinking with friends, Grotefend wagered
that he could decipher a certain cuneiform inscription from Persepolis provided that they
would supply him with the previously published literature on the subject. By an inspired
guess he found the key to reading Persian cuneiform. The prevailing arrangement of the
characters was such that the points of the wedges headed either downward or to the right,
and the angles formed by the broad wedges consistently opened to the right. He assumed
that the language’s characters were alphabetic; he then began picking out those characters
that occurred with the greatest frequency and postulated that these were vowels. The most
recurrent sign group was assumed to represent the word for “king.” These suppositions
allowed Grotefend to decipher the title “King of Kings” and the names Darius, Xerxes, and
Hystapes. Thereafter, he was able to isolate a great many individual characters and to read
twelve of them correctly. Grotefend thus produced a translation that, although it contained
numerous errors, gave an adequate idea of the contents. In 1802, when Grotefend was only
27 years old, he had his investigations presented to the Academy of Science in Géttingen
(Grotefend was not allowed to read his own paper). But the overstated achievements of this
little-known scholar, who neither belonged to the faculty of the university nor was even an
Orientalist by profession, only evoked ridicule from the learned body. Buried in an obscure
publication, Grotefend’s brilliant discovery fell into oblivion, and decades later cuneiform
script had to be deciphered anew. It is one of the whims of history that Champollion, the
original translator of hieroglyphics, won an international reputation, while Georg Grotefend
is almost entirely ignored.

Few chapters in the discovery of the ancient world can rival for interest the copy-
ing of the monumental rock inscriptions at Behistun by Henry Creswicke Rawlinson
(1810-1895). Rawlinson, who was an officer in the Indian Army, became interested in
cuneiform inscriptions when posted to Persia in 1835 as an advisor to the shah’s troops.
He learned the language and toured the country extensively, exploring its many antiquities.
Rawlinson’s attention was soon turned to Behistun, where a towering rock cliff, the “Moun-
tain of the Gods,” rises dramatically above an ancient caravan road to Babylon. There, in
516 B.C., Darius the Great caused a lasting monument to his accomplishments to be engraved
on a specially prepared surface measuring 150 feet by 100 feet. The inscription is written
in thirteen panels in three languages—OIld Persian, Elamite, and Akkadian (the language of
the Babylonians)—all using a cuneiform script. Above the five panels of Persian writing,
the artists chiseled a life-size figure in relief of Darius receiving the submission of ten rebel
leaders who had disputed his right to the throne.

Although the Behistun Rock has been called by some the Mesopotamian Rosetta Stone,
the designation is not entirely apt. The Greek text on the Rosetta Stone allowed Champollion
to proceed from the known to the unknown, whereas all three passages of the Behistun
trilingual were written in the same unknown cuneiform script. However, Old Persian, with its
mainly alphabetic script limited to 43 signs, had been the subject of serious investigation
since the beginning of the nineteenth century. This version of the text was ultimately to
provide the key of admission into the whole cuneiform world.
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The first difficulty lay in copying the long inscription. It is cut 400 feet above the
ground on the face of a rock mass that itself rises 1700 feet above the plain. Since the
stone steps were destroyed after the sculptors finished their work, there was no means
of ascent. Rawlinson had to construct enormous ladders to get to the inscription and at
times had to be suspended by block and tackle in front of the almost precipitous rock
face. By the end of 1837, he had copied approximately half the 414 lines of Persian text;
and using methods akin to those Grotefend worked out for himself 35 years earlier, he
had translated the first two paragraphs. Rawlinson’s goal was to transcribe every bit of the
inscription on the Behistun Rock, but unfortunately war broke out between Great Britain
and Afghanistan in 1839. Rawlinson was transferred to active duty in Afghanistan, where
he was cut off by siege for the better part of the next two years. The year 1843 again
found him back in Baghdad, this time as British consul, eager to continue to copy, de-
cipher, and interpret the remainder of the Behistun inscription. His complete translation
of the Old Persian part of the text, along with a copy of all the 263 lines of the Elamite,
was published in 1846. Next he tackled the third class of cuneiform writing on the monu-
ment, the Babylonian, which was cut on two sides of a ponderous boulder overhanging the
Elamite panels. Despite great danger to life and limb, Rawlinson obtained paper squeezes
(casts) of 112 lines. With the help of the already translated Persian text, which contained
numerous proper names, he assigned correct values to a total of 246 characters. During
this work, he discovered an important feature of Babylonian writing, the principle of
“polyphony”’; that is, the same sign could stand for different consonantal sounds, depend-
ing on the vowel that followed. Thanks to Rawlinson’s remarkable efforts, the cuneiform
enigma was penetrated, and the vast records of Mesopotamian civilization were now an
open book.

The Babylonian Positional Number System

From the exhaustive studies of the last half-century, it is apparent that Babylonian math-
ematics was far more highly developed than had hitherto been imagined. The Babylonians
were the only pre-Grecian people who made even a partial use of a positional number
system. Such systems are based on the notion of place value, in which the value of a sym-
bol depends on the position it occupies in the numerical representation. Their immense
advantage over other systems is that a limited set of symbols suffices to express numbers,
no matter how large or small. The Babylonian scale of enumeration was not decimal, but
sexagesimal (60 as a base), so that every place a “digit” is moved to the left increases its
value by a factor of 60. When whole numbers are represented in the sexagesimal system, the
last space is reserved for the numbers from 1 to 59, the next-to-last space for the multiples
of 60, preceded by multiples of 602, and so on. For example, the Babylonian 3 25 4 might
stand for the number

3-60%+25-60+4 = 12,304
and not
3.-10° +25-10 + 4 = 3254,

as in our decimal (base 10) system.
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The Babylonian use of the sexagesimal place-value notation was confirmed by two
tablets found in 1854 at Senkerah on the Euphrates by the English geologist W. K. Loftus.
These tablets, which probably date from the period of Hammurabi (2000 B.C.), give the
squares of all integers from 1 to 59 and their cubes as far as that of 32. The tablet of squares
reads easily up to 72, or 49. Where we should expect to find 64, the tablet gives 1 4; the
only thing that makes sense is to let 1 stand for 60. Following 82, the value of 97 is listed
as 1 21, implying again that the left digit must represent 60. The same scheme is followed
throughout the table until we come to the last entry, which is 58 1; this cannot but mean

581 =58-60+1=3481 = 59°.

The disadvantages of Egyptian hieroglyphic numeration are obvious. Representing even
small numbers might necessitate relatively many symbols (to represent 999, no less than
27 hieroglyphs were required); and with each new power of 10, a new symbol had to be
invented. By contrast, the numerical notation of the Babylonians emphasized two-wedge

characters. The simple upright wedge Y had the value 1 and could be used nine times,
while the broad sideways wedge < stood for 10 and could be used up to five times. The
Babylonians, proceeding along the same lines as the Egyptians, made up all other numbers
of combinations of these symbols, each represented as often as it was needed. When both
symbols were used, those indicating tens appeared to the left of those for ones, as in

(T

Appropriate spacing between tight groups of symbols corresponded to descending
powers of 60, read from left to right. As an illustration, we have

177 17
1 << 177 < <«
TT <«

which could be interpreted as 1 - 60° + 28 - 60° + 52 - 60 + 20 = 319,940. The Babylo-
nians occasionally relieved the awkwardness of their system by using a subtractive sign

Y 1t permitted writing such numbers as 19 in the form 20 — 1,

(77

instead of using a tens symbol followed by nine units:

TT7
41717
Y7
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Babylonian positional notation in its earliest development lent itself to conflicting
interpretations because there was no symbol for zero. There was no way to distinguish
between the numbers

1-60+24=284  and 1-60% 4060+ 24 = 3624,

since each was represented in cuneiform by

1 <"

One could only rely on the context to relieve the ambiguity. A gap was often used to
indicate that a whole sexagesimal place was missing, but this rule was not strictly applied
and confusion could result. Someone recopying the tablet might not notice the empty space,
and would put the figures closer together, thereby altering the value of the number. (Only
in a positional system must the existence of an empty space be specified, so the Egyptians
did not encounter this problem.) From 300 B.C. on, a separate symbol

A >
Ao A

called a divider, was introduced to serve as a placeholder, thus indicating an empty space

between two digits inside a number. With this, the number 84 was readily distinguishable

from 3624, the latter being represented by

LR A

The confusion was not ended, since the Babylonian divider was used only medially and
there still existed no symbol to indicate the absence of a digit at the end of a number. About
A.D. 150, the Alexandrian astronomer Ptolemy began using the omicron (o, the first letter
of the Greek ovdev, “nothing”), in the manner of our zero, not only in a medial but also in
a terminal position. There is no evidence that Ptolemy regarded o as a number by itself that
could enter into computation with other numbers.

The absence of zero signs at the ends of numbers meant that there was no way of telling
whether the lowest place was a unit, a multiple of 60 or 602, or even a multiple of 61—0. The

value of the symbol 2 24 (in cuneiform, AR ;”) could be
2-60+ 24 = 144.
But other interpretations are possible, for instance,
2-60% + 24 - 60 = 8640,

or if intended as a fraction,
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Thus, the Babylonians of antiquity never achieved an absolute positional system. Their
numerical representation expressed the relative order of the digits, and context alone decided
the magnitude of a sexagesimally written number; since the base was so large, it was usually
evident what value was intended. To remedy this shortcoming, let us agree to use a semicolon
to separate integers from fractions, while all other sexagesimal places will be separated
from one another by commas. With this convention, 25,0,3;30 and 25,0;3,30 will mean,
respectively,

30
25-602+0-6O+3+@=90,003%

and

25-60+0+ 63—0 + % = 1500-%;.
Note that neither the semicolon nor the comma had any counterpart in the original cuneiform
texts.

The question how the sexagesimal system originated was posed long ago and has
received different answers over time. According to Theon of Alexandria, a commentator
of the fourth century, 60 was among all the numbers the most convenient since it was the
smallest among all those that had the most divisors, and hence the most easily handled.
Theon’s point seemed to be that because 60 had a large number of proper divisors, namely,
2,3,4,5,6,10, 12, 15, 20, and 30, certain useful fractions could be represented conveniently;
L1 and % by the integers 30, 20, and 15:

2° 3
1 30
- = — =0;30,
2 60
1 20
- =— =0;20,
3 60
1 15
- =—=0;15.
4 60

Fractions that had nonterminating sexagesimal expansions were approximated by finite
ones, so that every number presented the form of an integer. The result was a simplicity of
calculation that eluded the Egyptians, who reduced all their fractions to sums of fractions
with numerator 1.

Others attached a “natural” origin to the sexagesimal system; their theory was that the
early Babylonians reckoned the year at 360 days, and a higher base of 360 was chosen first,
then lowered to 60. Perhaps the most satisfactory explanation is that it evolved from the
merger between two peoples of whom one had adopted the decimal system, whereas the
other brought with them a 6-system, affording the advantage of being divisible by 2 and
by 3. (The origin of the decimal system is not logical but anatomical; humans have been
provided with a natural abacus—their fingers and toes.)

The advantages of the Babylonian place-value system over the Egyptian additive com-
putation with unit fractions were so apparent that this method became the principal in-
strument of calculation among astronomers. We see this numerical notation in full use in
Ptolemy’s outstanding work, the Megale Syntaxis (The Great Collection). The Arabs later



@ ‘ Burton: The History of 1. Early Number Systems Text © The McGraw-Hill
Mathematics: An and Symbols Companies, 2007
Introduction, Sixth Edition

Number Recording of the Babylonians 27

passed this on to the West under the curious name Almagest (The Greatest). The Almagest
so overshadowed its predecessors that until the time of Copernicus, it was the fundamental
textbook on astronomy. In one of the early chapters, Ptolemy announced that he would be
carrying out all his calculations in the sexagesimal system to avoid “the embarrassment of
[Egyptian] fractions.”

Writing in Ancient China

Our study of early mathematics is limited mostly to the peoples of Mediterranean
antiquity, chiefly the Greeks, and their debt to the Egyptians and the inhabitants of the
Fertile Crescent. Nevertheless, some general comment is called for about the civilizations
of the Far East, and especially about its oldest and most central civilization, that of China.
Although Chinese society was no older than the other river valley civilizations of the ancient
world, it flourished long before those of Greece and Rome. In the middle of the second
millennium B.C., the Chinese were already keeping records of astronomical events on bone
fragments, some of which are extant. Indeed, by 1400 B.C., the Chinese had a positional
numeration system that used nine signs.

The scarcity of reliable sources of information almost completely seals from us the
history of the ancient Orient. In India, no mathematical text exists that can be ascribed with
any certainty to the pre-Christian era; and the first firm date that can be connected with a
Chinese work, namely, the Nine Chapters on the Mathematical Arts, is 150 B.C.

Much of the difference in availability of sources of information is to be ascribed to
differences in climate between the Near East and the Far East. The dry climate and soil
of Egypt and Babylonia preserved materials that would long since have perished in more
moist climates, materials that make it possible for us to trace the progress of these cultures
from the barbarism of the remote past to the full flower of civilization. No other countries
provide so rich a harvest of information about the origin and transmission of mathematics.
“The Egyptians who lived in the cultivated part of the country,” wrote Herodotus in his
History, “by their practice of keeping records of the past, have made themselves much the
best historians of any nation that I have experienced.”

If China had had Egypt’s climate, there is no question that many records would have
survived from antiquity, each with its story to tell of the intellectual life of earlier generations.
But the ancient Orient was a “bamboo civilization,” and among the manifold uses of this
plant was making books. The small bamboo slips used were prepared by splitting the smooth
section between two knots into thin strips, which were then dried over a fire and scraped off.
The narrowness of the bamboo strips made it necessary to arrange the written characters in
vertical lines running from top to bottom, a practice that continues to this day. The opened,
dried, and scraped strips of bamboo were laid side by side, joined, and kept in proper place
by four crosswise cords. Naturally enough the joining cords often rotted and broke, with the
result that the order of the slips was lost and could be reestablished only by a careful reading
of the text. (Another material used about that time for writing was silk, which presumably
came into use because bamboo books or wooden tablets were too heavy and cumbersome.)
The great majority of these ancient books were irretrievably lost to the ravages of time and
nature. Those few available today are known only as brief fragments.



18

Burton: The History of
Mathematics: An

1. Early Number Systems Text © The McGraw-Hill
and Symbols Companies, 2007

Introduction, Sixth Edition

Chapter 1 Early Number Systems and Symbols

Another factor making chronological accounts less trustworthy for China than for Egypt
and Babylonia is that books tended to accumulate in palace or government libraries, where
they disappeared in the great interdynastic upheavals. There is a story that in 221 B.C,,
when China was united under the despotic emperor Shih Huang-ti, he tried to destroy
all books of learning and nearly succeeded. Fortunately, many books were preserved in
secret hiding places or in the memory of scholars, who feverishly reproduced them in the
following dynasty. But such events make the dating of mathematical discoveries far from
easy.

Modern science and technology, as all the world knows, grew up in western Europe,
with the life of Galileo marking the great turning point. Yet between the first and fifteenth
centuries, the Chinese, who experienced nothing comparable to Europe’s Dark Ages, were
generally much in advance of the West. Not until the scientific revolution of the later stages of
the Renaissance did Europe rapidly draw ahead. Before China’s isolation and inhibition, she
transmitted to Europe a veritable abundance of inventions and technological discoveries,
which were often received by the West with no clear idea of where they originated. No
doubt the three greatest discoveries of the Chinese—ones that changed Western civilization,
and indeed the civilization of the whole world—were gunpowder, the magnetic compass,
and paper and printing. The subject of paper is of great interest; and we know almost
to the day when the discovery was first made. A popular account of the time tells that
Tshai Lun, the director of imperial workshops in A.D. 105, went to the emperor and said,
“Bamboo tablets are so heavy and silk so expensive that I sought for a way of mixing
together the fragments of bark, bamboo, and fishnets and I have made a very thin material
that is suitable for writing.” It took more than a thousand years for paper to make its
way from China to Europe, first appearing in Egypt about 900 and then in Spain about
1150.

All the while mathematics was overwhelmingly concerned with practical matters that
were important to a bureaucratic government: land measurement and surveying, taxation,
the making of canals and dikes, granary dimensions, and so on. The misconception that
the Chinese made considerable progress in theoretical mathematics is due to the Jesuit
missionaries who arrived in Peking in the early 1600s. Finding that one of the most important
governmental departments was known as the Office of Mathematics, they assumed that its
function was to promote mathematical studies throughout the empire. Actually it consisted
of minor officials trained in preparing the calendar. Throughout Chinese history the main
importance of mathematics was in making the calendar, for its promulgation was considered
aright of the emperor, corresponding to the issue of minted coins. In an agricultural economy
so dependent on artificial irrigation, it was necessary to be forewarned of the beginning and
end of the rainy monsoon season, as well as of the melting of the snows and the consequent
rise of the rivers. The person who could give an accurate calendar to the people could
thereby claim great importance.

Because the establishment of the calendar was a jealously guarded prerogative, it is not
surprising that the emperor was likely to view any independent investigations with alarm.
“In China,” wrote the Italian Jesuit Matteo Ricci (died 1610), “it is forbidden under pain of
death to study mathematics, without the Emperor’s authorization.” Regarded as a servant
of the more important science astronomy, mathematics acquired a practical orientation that
precluded the consideration of abstract ideas. Little mathematics was undertaken for its own
sake in China.
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1.3 Problems

1. Express each of the given numbers in Babylonian
cuneiform notation.

(@) 1000. (d) 1234.
(b) 10,000. (e) 12,345.
(¢) 100,000. ) 123,456.

2. Translate each of these into a number in our system.

W ITTT
T ( 17

v {TCamQT
O TTITTIT((IT (T
TIT <«

3. Express the fractions 1, 3, 1, 27, 75, and 5 in

sexagesimal notation.

4. Convert these numbers from sexagesimal notation to
our system.

(a) 1,23,45. (c) 0:12,3,45.
(b) 12;3,45. (d) 1,23:45.

5. Multiply the number 12,3;45,6 by 60. Describe a
simple rule for multiplying any sexagesimal number
by 60; by 602.

6. Chinese bamboo or counting-rod numerals, which may
go back to 1000 B.C., originated from bamboo sticks
laid out on flat boards. The system is essentially
positional, based on a 10-scale, with blanks where we
should put zeros. There are two sets of symbols for the
digits 1, 2, 3, ..., 9, which are used in alternate
positions, the first set for units, hundreds, . .., and the
second set for tens, thousands, .. ..

1 2 3 4 5 6 7 8 9
Units, Hundreds, Ten thousands

P W T Tm T T

Tens, Thousands, Hundred thousands

1L L

|l

Il
]
[

10.
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Thus, for example, the number 36,278 would be

L LT

The circular symbol O for zero was introduced
relatively late, first appearing in print in the 1200s.
Write the Chinese counting-rod numerals
corresponding to

(a) 1492. (d) 57,942.
(b) 1999. (e) 123,456.
() 1606. ) 3,040,279.

Convert these into our numerals.

CATATAT
LT =111

© .
—l=ll=l
(d)

TMmLi=oLm

Multiply | l -LTré “ by 10 and express the result
in Chinese rod numerals. Describe a simple rule for
multiplying any Chinese rod numerals by 10; by 102

Perform the indicated operations.

CETLWM +TLIW
(b)

=0T -TT=T

n-=Tr-m

The fifth century Chinese (brush form) numeral system
shares some of the best features of both Egyptian
hieroglyphic and Greek alphabetic numerals. It is an
example of a vertically written multiplicative grouping
system based on powers of 10. The digits 1,2,3,...,9
are ciphered in this system, thus avoiding the repetition
of symbols, and special characters exist for 100, 1000,
10,000, and 100,000.
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1 -
10 ""‘
2 | o=~
3| & 100 5
4| &)
5 | A 1000 :“
6| 7=
7| A= 10,000 %
8| /\ =
0 | 74 100,000 /f g:

Text

Numerals are written from the top downward, so that

AR

(5 % 10,000)
—

4_ (2 x 1000)
[- | (100)

-t (7% 10)
\ZAS S

represents

5-10,000 +2-1000 4100 +7- 10+ 4
= 52,174.
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11.

Notice that if only one of a certain power of 10 is
intended, then the multiplier 1 is omitted.
Express each of the given numbers in traditional
Chinese numerals.

(a) 236. (d) 1066.
(b) 1492. (e) 57,942.
(©) 1999. ) 123.456.

Translate each of these numerals from the Chinese
system to our numerals.

(a) /\ (b) E’ ©) == @
T g ¥
= +t

.1..

Bt
B+ N 7~

12. Multiply the given number by 10, expressing the result

in Chinese numerals.

B+

13. The Mayan Indians of Central America developed a

positional number system with 20 as the primary base,
along with an additive grouping technique (based on 5)
for the numbers in the 20-block. The symbols for 1 to
19 were represented by combinations of dots and
horizontal bars, each dot standing for 1 and each bar
for 5 (P26 & 7).

The Mayan year was divided into 18 months of
20 days each, with 5 extra holidays added to fill the
difference between this and the solar year. Because the
system the Mayan priests developed was designed
mainly for calendar computations, they used
18 - 20 = 360 instead of 20? for the third position;
successive positions after the third had a multiplicative
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value 20, so that the place values turned out to be

1, 20, 360, 7200, 144,000, .. ..

Numerals were written vertically with the larger units
above, and missing positions were indicated by a sign

o>
Thus,

oo (2 x 144,000)
> (0% 7200)

—

= (16 x 360)

L Y )
—_— (7 % 20)
L J

= a1x1)

represents

2-144,000 + 0 - 7200 + 16 - 360
+7-204 11 =290,311.

Write the Mayan Priest numerals corresponding to

(a) 1492. (d) 57,942.
(b) 1999. (e) 123.456.
(c) 1066. () 3,040,279.
14. Convert these numerals from the Mayan Priest system
into ours.
(a) eeo (b)) = () e
_ = =
<« .e -
e <

61
I

L]
.
L ]
]

15. Perform the indicated operations shown here.

(@)

6!

Il

0L It

\
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Companies, 2007

31
(b)
o =
(©
(X X X o

Il

*

16. Multiply the given number by <3 (20), expressing
the result in the Mayan system. Describe a simple rule
for multiplying any Mayan number by 20; by 202.

L

XN

I

(Il

17. How many different symbols are required to write the
number 999,999 in (a) Egyptian hieroglyphics;
(b) Babylonian cuneiform; (c) lonian Greek numerals;
(d) Roman numerals; (¢) Chinese rod numerals;
(f) traditional Chinese numerals; and (g) Mayan
numerals?
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Inmost sciences one generation tears down what another has built and what one has established another
undoes. In Mathematics alone each generation builds a new story to an old structure.
HERMANN HANKEL

With the possible exception of astronomy, math-

2.1 The Rhmd Papyrus ematics is the oldest and most continuously pur-

sued of the exact sciences. Its origins lie shrouded
Egyptian Mathematical Papyri in the mists of antiquity. We are often told that in

mathematics all roads lead back to Greece. But
the Greeks themselves had other ideas about where mathematics began. A favored one is
represented by Aristotle, who in his Metaphysics wrote: “The mathematical sciences orig-
inated in the neighborhood of Egypt, because there the priestly class was allowed leisure.”
This is partly true, for the most spectacular advances in mathematics have occurred con-
temporaneously with the existence of a leisure class devoted to the pursuit of knowledge. A
more prosaic view is that mathematics arose from practical needs. The Egyptians required
ordinary arithmetic in the daily transactions of commerce and state government to fix taxes,
to calculate the interest on loans, to compute wages, and to construct a workable calendar.
Simple geometric rules were applied to determine boundaries of fields and the contents of
granaries. As Herodotus called Egypt the gift of the Nile, we could call geometry a sec-
ond gift. For with the annual flooding of the Nile Valley, it became necessary for purposes
of taxation to determine how much land had been gained or lost. This was the view of
the Greek commentator Proclus (A.D. 410-485), whose Commentary on the First Book of
Euclid’s Elements is our invaluable source of information on pre-Euclidean geometry:

According to most accounts geometry was first discovered among the Egyptians and originated
in the measuring of their lands. This was necessary for them because the Nile overflows and
obliterates the boundaries between their properties.

Although the initial emphasis was on utilitarian mathematics, the subject began eventually
to be studied for its own sake. Algebra evolved ultimately from the techniques of calculation,
and theoretical geometry began with land measurement.

Most historians date the beginning of the recovery of the ancient past in Egypt from
Napoleon Bonaparte’s ill-fated invasion of 1798. In April of that year, Napoleon set sail
from Toulon with an army of 38,000 soldiers crammed into 328 ships. He was intent
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on seizing Egypt and thereby threatening the land routes to the rich British possessions in
India. Although England’s Admiral Nelson destroyed much of the French fleet a month after
the army debarked near Alexandria, the campaign dragged on another 12 months before
Napoleon abandoned the cause and hurried back to France. Yet what had been a French
military disaster was a scientific triumph. Napoleon had carried with his expeditionary force
a commission on the sciences and arts, a carefully chosen body of 167 scholars—including
the mathematicians Gaspard Monge and Jean-Baptiste Fourier—charged with making a
comprehensive inquiry into every aspect of the life of Egypt in ancient and modern times.
The grand plan has been to enrich the world’s store of knowledge while softening the impact
of France’s military adventures by calling attention to the superiority of her culture.

The savants of the commission were captured by the British but generously allowed
to return to France with their notes and drawings. In due course, they produced a truly
monumental work with the title Déscription de I’Egypte. This work ran to 9 folio volumes
of text and 12 volumes of plates, published over 25 years. The text itself was divided into
four parts concerned respectively with ancient Egyptian civilization, monuments, modern
Egypt, and natural history. Never before or since has an account of a foreign land been made
so completely, so accurately, so rapidly, and under such difficult conditions.

The Déscription de I’Egypte, with its sumptuous and magnificently illustrated folios,
thrust the riches of ancient Egypt on a society accustomed to the antiquities of Greece
and Rome. The sudden revelation of a flourishing civilization, older than any known so
far, aroused immense interest in European cultural and scholarly circles. What made the
fascination even greater was that the historical records of this early society were in a script
that no one had been able to translate into a modern language. The same military campaign of
Napoleon provided the literary clue to the Egyptian past, for one of his engineers uncovered
the Rosetta Stone and realized its possible importance for deciphering hieroglyphics.

Most of our knowledge of the order of mathematics in Egypt is derived from two
sizable papyri, each named after its former owner—the Rhind Papyrus and the Golenischev
Papyrus. The latter is sometimes called the Moscow Papyrus, since it reposes in the Museum
of Fine Arts in Moscow. The Rhind Papyrus was purchased in Luxor, Egypt, in 1858 by
the Scotman A. Henry Rhind and was subsequently willed to the British Museum. When
the health of this young lawyer broke down, he visited the milder climate of Egypt and
became an archaeologist, specializing in the excavation of Theban tombs. It was in Thebes,
in the ruins of a small building near the Ramesseum, that the papyrus was said to have been
found.

The Rhind Papyrus was written in hieratic script (a cursive form of hieroglyphics better
adapted to the use of pen and ink) about 1650 B.C. by a scribe named Ahmes, who assured
us that it was the likeness of an earlier work dating to the Twelfth Dynasty, 1849—-1801 B.C.
Although the papyrus was originally a single scroll nearly 18 feet long and 13 inches high,
it came to the British Museum in two pieces, with a central portion missing. Perhaps the
papyrus had been broken apart while being unrolled by someone who lacked the skill for
handling such delicate documents, or perhaps there were two finders and each claimed a
portion. In any case, it appeared that a key section of the papyrus was forever lost to us,
until one of those chance events that sometimes occur in archeology took place. About four
years after Rhind had made his famous purchase, as American Egyptologist, Edwin Smith,
was sold what he thought was a medical papyrus. This papyrus proved to be a deception,
for it was made by pasting fragments of other papyri on a dummy scroll. At Smith’s death
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(in 1906), his collection of Egyptian antiquaries was presented to the New York Historical
Society, and in 1922, the pieces in the fraudulent scroll were identified as belonging to
the Rhind Papyrus. The decipherment of the papyrus was completed when the missing
fragments were brought to the British Museum and put in their appropriate places. Rhind
also purchased a short leather manuscript, the Egyptian Mathematical Leather Scroll, at the
same time as his papyrus; but owing to its very brittle condition, it remained unexamined
for more than 60 years.

A Key to Deciphering: The Rosetta Stone

It was possible to begin the translation of the Rhind Papyrus almost immediately because
of the knowledge gained from the Rosetta Stone. Finding this slab of polished black basalt
was the most significant event of Napoleon’s expedition. It was uncovered by officers of
Napoleon’s army near the Rosetta branch of the Nile in 1799, when they were digging the
foundations of a fort. The Rosetta Stone is made up of three panels, each inscribed in a
different type of writing: Greek down the bottom third, demotic script of Egyptian (a form
developed from hieratic) in the middle, and ancient hieroglyphic in the broken upper third.
The way to read Greek had never been lost; the way to read hieroglyphics and demotic
had never been found. It was inferred from the Greek inscription that the other two panels
carried the same message, so that here was a trilingual text from which the hieroglyphic
alphabet could be deciphered.

The importance of the Rosetta Stone was realized at once by the French, especially
by Napoleon, who ordered ink rubbings of it taken and distributed among the scholars of
Europe. Public interest was so intense that when Napoleon was forced to relinquish Egypt
in 1801, one of the articles of the treaty of capitulation required the surrender of the stone
to the British. Like all the rest of the captured artifacts, the Rosetta Stone came to rest in
the British Museum, where four plaster casts were made for the universities of Oxford,
Cambridge, Edinburgh, and Dublin, and its decipherment by comparative analysis began.
The problem turned out to be more difficult than imagined, requiring 23 years and the
intensive study of many scholars for its solution.

The final chapter of the mystery of the Rosetta Stone, like the first, was written by a
Frenchman, Jean Francois Champollion (1790-1832). The greatest of all names associated
with the study of Egypt, Champollion had had from his childhood a premonition of the
part he would play in the revival of ancient Egyptian culture. Story has it that at the age
of 11, he met the mathematician Jean-Baptise Fourier, who showed him some papyri and
stone tablets bearing hieroglyphics. Although assured that no one could read them, the
boy made the determined reply, “I will do it when I am older.” From then on, almost
everything Champollion did was related to Egyptology; at the age of 13 he was reading
three Eastern languages, and when he was 17, he was appointed to the faculty of the
University of Grenoble. By 1822 he had compiled a hieroglyphic vocabulary and given a
complete reading of the upper panel of the Rosetta Stone.

Through many years hieroglyphics had evolved from a system of pictures of complete
words to one that included both alphabetic signs and phonetic symbols. In the hieroglyphic
inscription of the Rosetta Stone, oval frames called “cartouches” (the French word for “car-
tridge”) were drawn around certain characters. Because these were the only signs showing
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THE ROSETTA STONE

The Rosetta Stone, bearing the same inscription in hieroglyphics, demotic script,
and Greek. (Copyright British Museum.)

special emphasis, Champollion reasoned that symbols enclosed by the cartouches repre-
sented the name of the ruler Ptolemy, mentioned in the Greek text. Champollion also secured
a copy of inscriptions on an obelisk, and its base pedestal, from Philae. The base had a Greek
dedication honoring Ptolemy and his wife Cleopatra (not the famous but ill-fated Cleopatra).
On the obelisk itself, which was carved in hieroglyphics, are two cartouches close together,
so it seemed probable that these outlined the Egyptian equivalents of their proper names.
Moreover, one of them contained the same hieroglyphic characters that filled the cartouches
found on the Rosetta Stone. This cross-check was enough to allow Champollion to make
a preliminary decipherment. From the royal names he established a correlation between
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individual hieroglyphics and Greek letters. In that instant in which hieroglyphics dropped
its shroud of insoluble mystery, Champollion, worn by the years of ceaseless effort, was
rumored to cry, “I’ve got it!” and fall into a dead faint.

As a fitting climax to a life’s study, Champollion wrote his Grammaire Egyptienne en
Encriture Hieroglyphique, published posthumously in 1843. In it, he formulated a system of
grammar and general decipherment that is the foundation on which all later Egyptologists
have worked. The Rosetta Stone had provided the key to understanding one of the great
civilizations of the past.

The Rhind Papyrus starts with a bold premise.

2.2 Egyptian Arithmetic Its content has to do with “a thorough study of
. S all things, insight into all that exists, knowledge
Early Egypuan Mult1phcat10n of all obscure secrets.” It soon becomes apparent

that we are dealing with a practical handbook of
mathematical exercises, and the only “secrets” are how to multiply and divide. Nonetheless,
the 85 problems contained therein give us a pretty clear idea of the character of Egyptian
mathematics. The Egyptian arithmetic was essentially “additive,” meaning that its tendency
was to reduce multiplication and division to repeated additions. Multiplication of two num-
bers was accomplished by successively doubling one of the numbers and then adding the
appropriate duplications to form the product. To find the product of 19 and 71, for instance,
assume the multiplicand to be 71, doubling thus:

71
142
284
568

1136

AN O BN

Here we stop doubling, for a further step would give a multiplier of 71 that is larger than
19. Because 19 = 1 4 2 + 16, let us put checks alongside these multipliers to indicate that
they should be added. The problem 19 times 71 would then look like this:

v 1 71
2 142
4 284
8 568
¥ 16 1136

totals 19 1349

Adding those numbers in the right-hand column opposite the checks, the Egyptian mathe-
matician would get the required answer, 1349; that is,

1349 =71+ 142+ 1136 = (1 + 24+ 16)71 =19 - 71.
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Had the number 19 been chosen as the multiplicand and 71 as the multiplier, the work
would have been arranged as follows:

v 1 19
2 38
v 4 76
8 152
16 304
32 608
¥ 64 1216

totals 71 1349

Because 71 = 1 + 2 4 4 4 64, one has merely to add these multiples of 19 to get, again,
1349.

The method of multiplying by doubling and summing is workable because every integer
(positive) can be expressed as a sum of distinct powers of 2; that is, as a sum of terms from
the sequence, 1, 2, 4, 8, 16, 32, ....Itis not likely that the ancient Egyptians actually proved
this fact, but their confidence therein was probably established by numerous examples. The
scheme of doubling and halving is sometimes called Russian multiplication because of its
use among the Russian peasants. The obvious advantage is that it makes memorizing tables
unnecessary.

Egyptian division might be described as doing multiplication in reverse—where the
divisor is repeatedly doubled to give the dividend. To divide 91 by 7, for example, a number
x is sought such that 7x = 91. This is found by redoubling 7 until a total of 91 is reached;
the procedure is shown herewith.

7~
14

28
56 »

totals 13 91

[e <IN NI NI

Finding that 7 + 28 4+ 56 = 91, one adds the powers of 2 corresponding to the checked
numbers, namely, 1 + 4 4+ 8 = 13, which gives the desired quotient. The Egyptian division
procedure has the pedagogical advantage of not appearing to be a new operation.

Division was not always as simple as in the example just given, and fractions would
often have to be introduced. To divide, say, 35 by 8, the scribe would begin by doubling the
divisor, 8, to the point at which the next duplication would exceed the dividend, 35. Then he
would start halving the divisor in order to complete the remainder. The calculations might
appear thus:

1 8

2 16

4 32
1

1y

1

1 2
1

Lo e

totals 4+ +3 35
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Doubling 16 gives 32, so that what is missing is 35 — 32 = 3. One first takes half of 8 to
get 4, then half of 4 to get 2, and finally half of this to arrive at 1; when the fourth and the
eighth are added, the needed 3 is obtained. Thus, the required quotient is 4 + le + %.

In another example, division of 16 by 3 might be effected as follows:

1 3
2 6

4 12
2

2 2

1

1 1

totals 5 + % 16

The sum of the entries in the left-hand column corresponding to the checks gives the quotient
S5+ % It is extraordinary that to get one-third of a number, the Egyptians first found two-
thirds of the number and then took one-half of the result. This is illustrated in more than a
dozen problems of the Rhind Papyrus.

When the Egyptian mathematician needed to compute with fractions, he was confronted
with many difficulties arising from his refusal to conceive of a fraction like % His com-
putational practice allowed him only to admit the so-called unit fractions; that is, fractions
of the form 1/n, where n is a natural number. The Egyptians indicated a unit fraction by
placing an elongated oval over the hieroglyphic for the integer that was to appear in the

1 2

. . o o . . .
denominator, so that }t was written as !} or 15 as 9. With the exception of % for which

there was a special symbol € all other fractions had to be decomposed into sums of unit
fractions, each having a different denominator. Thus, for instance, ¢ would be represented
as

6 1,1, 1, 1
7=3:titutx

Although it is true that g can be written in the form

6 _ 11 1 11,1

7=7t3titit+5
the Egyptians would have thought it both absurd and contradictory to allow such representa-
tions. In their eyes there was one and one part only that could be the seventh of anything. The

ancient scribe would probably have found the unit fraction equivalent of g by the following
conventional division of 6 by 7:

1 7

13+ o

TR

T

SN S

N
totals%+}¢+ﬁ+ﬁ 6
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The Unit Fraction Table

To facilitate such decomposition into unit fractions, many reference tables must have
existed, the simplest of which were no doubt committed to memory. At the beginning of
the Rhind Papyrus, there is such a table giving the breakdown for fractions with numerator
2 and denominator an odd number between 5 and 101. This table, which occupies about
one-third of the whole of the 18-foot roll, is the most extensive of the arithmetic tables to be
found among the ancient Egyptian papyri that have come down to us. The scribe first stated
what decomposition of 2/n he had selected; then, by ordinary multiplication, he proved
that his choice of values was correct. That is, he multiplied the selected expression by the
odd integer n to produce 2. Nowhere is there any inkling of the technique used to arrive at
the decomposition.

Fractions 2/n whose denominators are divisible by 3 all follow the general rule

2 1 1

3% 2k ek

Typical of these entries is % (the case k = 5), which is given as
2 1 1
5= 1T 50

If we ignore the representations for fractions of the form 2/(3k), then the remainder of the
2/n table reads as shown herewith.

Pl TR
-i+d = bt
T=stw % =13+t
i-iried  d-bedmemtd
T=utstas % =%1ms
Sodedet  d-hedd
=1t m 7=w+5m+m
A-hd fm ittt
2L 1,1 4 1 2 =1 L

29 24 58 174 232 77 44 308
FAN N AR UM
F=%tn s=wtmtatm
=%+t m =515
T=5ntmtm s=wtmtmtm
i-ieitbrd f-dtih

% =31t % =75 T 3 T 57
=%t 5 =31 T 7
HE ottt



0 ‘ Burton: The History of 2. Mathematics in Early Text © The McGraw-Hill
Mathematics: An Civilizations Companies, 2007
Introduction, Sixth Edition

Egyptian Arithmetic 41

Ever since the first translation of the papyrus appeared, mathematicians have tried
to explain what the scribe’s method may have been in preparing this table. Of the many
possible reductions to unit fractions, why is

2 1 1y 1

9=n1T7% 1t
chosen for n = 19 instead of, say,

2 _ 1,14 1o

=1 tst o

No definite rule has been discovered that will give all the results of the table.
The very last entry in the table, which is 2 divided by 101, is presented as

— NI

2 1 1
1 = 101 T 303 T 303 T &6
This is the only possible decomposition of % into no more than four different unit fractions
with all the denominators less than 1000; and is a particular case of the general formula

2 1 n 1 n 1 n 1

n n 2n 3n  6n
By the indicated formula, it is possible to produce a whole new 2 /n table consisting entirely
of four-term expressions:

%=%+%+é+18

=lahahth
P=dedadad
P=irhrhth

Although the scribe was presumably aware of this, nowhere did he accept these values
for this table (except in the last case, %), because there were so many other, “simpler”
representations available. To the modern mind it even seems that the scribe followed certain
principles in assembling his lists. We note that

Small denominators were preferred, with none greater than 1000.
The fewer the unit fractions, the better; and there were never more than four.

Denominators that were even were more desirable than odd ones, especially for the
initial term.

The smaller denominators came first, and no two were the same.

A small first denominator might be increased if the size of the others was thereby

2 _ 1o 1o, 1 2 _ 1, 1, 1
reduced (for example, 57 = 55 + 157 + 155 Was preferred to 57 = 15 + 156 + 779)-

Why—or even whether—these precepts were chosen, we cannot determine.
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Example. As an illustration of multiplying with fractions, let us find the product of
24 % and 1 + % + % Notice that doubling 1 + % + % gives 3 + %, which the Egyptian
mathematicians would have written 3 + % + 2L8 The work may be arranged as follows:

1 144414

1 1

2 3+ 7+ 55
1 1 1 1

3 a2taitum

1 1 1 1

¥ 1 atstxy

totals 2+ § 34l L

The mathematicians knew that twice the unit fraction 1/(2n) is the unit fraction 1/, so the
answer would appear as 3 + % + % + ﬁ.

Example. For a more difficult division involving fractions, let us look at a calculation
that occurs in Problem 33 of the Rhind Papyrus. One is required here to divide 37 by
1+ % + % + % In the standard form for an Egyptian division, the computation begins:

1 1+2+1+1
A
4 84+2+1+4L
8 18+4+1
16 36+2+1+ %
with the value for % recorded as i + ﬁ Now the sum 36 + % + i + 2—18 is close to 37.

By how much are we short? Or as the scribe would say, “What completes % + % + %
up to 17”” In modern notation, it is necessary to get a fraction x for which

2,14 1 _1.
5titxtx=1

or with the problem stated another way, a numerator y is sought that will satisfy
2,14 1 _
f+itxta=1L

where the denominator 84 is simply the least common multiple of the denominators, 3, 4,
and 28. Multiplying both sides of this last equation by 84 gives 56 + 21 +3 + y = 84,
and so y = 4. Therefore, the remainder that must be added to % + % + ﬁ to make 1 1is ;—4,
or 21—1 The next step is to determine by what amount we should multiply 1 + % + % + %
to get the required % This means solving for z in the equation

A+3+1+ D=4
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Multiplying through by 42 leads to 97z =2 orz = 917, which the Egyptian scribe found

to be equal to % + 67L9 + 7;—6. Thus, the whole calculation would proceed as follows:

1 1+2+4+1

A

4 8+2i+14+4

8 18+4+1

16 36+3+51+5% ¥
sttt o o

totals 16+ 3¢ + a5 + 775 37

The result of dividing 37 by 1+ 5 + 5 + 5 is 16 + 5 + g5 + 77¢-

Representing Rational Numbers

There are several modern ways of expanding a fraction with numerator other than 2 as
a sum of unit fractions. Suppose that % is required to be expanded. Because 9 =1+ 4 - 2,

one procedure might be to convert % to

9 1 2
75 =13 T4G3)

The fraction % could be reduced by means of the 2/n table and the results collected to give

a sum of unit fractions without repetitions:

)

_ 1 1 1 1
_ﬁ+4(§+§+m)
_ 1 1 1 1
=gttt

_ 2 1 1
=5tirt3

_ 1 1 1 1 1
=Gt+tsto)t3T %

—_
w

The final answer would then be
9 _ 1,1 1 1 1
Bm=2tstxtsntom

What makes this example work is that the denominators 8, 52, and 104 are all divisible
by 4. We might not always be so fortunate.

Although we shall not do so, it can be proved that every positive rational number is
expressible as a sum of a finite number of distinct unit fractions. Two systematic procedures
will accomplish this decomposition; for the lack of better names let us call these the splitting
method and Fibonacci’s method. The splitting method is based on the so-called splitting
identity

_
T n4+1 a4+

1
n
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which allows us to replace one unit fraction by a sum of two others. For instance, to handle
1% we first write

2 _ 1, 1
BT 1

and then split one of the fractions 5 into 1/20 +1/19 - 20, so that

1

9
2 _ 1, 1, 1

9 =1 txt w0
Again, in the case of 3 this method begins with

3 _

1, 1,1
s5=5Ts57Ts
and splits each of the last two unit fractions into 1/6 4+ 1/5 - 6; thus,

31 1 1 1 1
g—g-l—(g—i-%)-l-(g—l-m).

There are several avenues open to us at this point. Ignoring the obvious simplifications % = %
and & = . let us instead split tand Qlolinto the sums 1/7 4 1/6 - 7and 1/31 + 1/30 - 31,
respectively, to arrive at the decomposition
3_ 1,1, 1,141 1 1
5=s5tstntitan st o

In general, the method is as follows. Starting with a fraction m/n, first write

m 1 1 1

— =4 (=-+---4+-).

n n n n
m—1 summands

Now use the splitting identity to replace m — 1 instances of the unit fraction 1/n by

1 1
n+1+n(n—|—1)’

thereby getting

m 1 1

1 1 1
n_Z+n+1+nm+n+[Q+¢+nm+n)

1 1
+.”+<n+1+n(n+l)>]'

m — 2 summands

Continue in this manner. At the next stage, the splitting identity, as applied to

1 1
n+1 nn+1)
yields
ﬂ=l+ 1 . 1 n 1 n 1 n 1
n n n+1 nn+1) n+2 WMG+DN+2) nrn+1)+1
1

TSy o T R
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Although the number of unit fractions (and hence the likelihood of repetition) is increasing
at each stage, it can be shown that this process eventually terminates.

The second technique we want to consider is credited to the thirteenth-century Italian
mathematician Leonardo of Pisa, better known by his patronymic, Fibonacci. In 1202,
Fibonacci published an algorithm for expressing any rational number between 0 and 1 as
a sum of distinct unit fractions; this was rediscovered and more deeply investigated by
J. J. Sylvester in 1880. The idea is this. Suppose that the fraction a/b is given, where
0 < a/b < 1. First find the integer n; satisfying

1 a 1

np b ny — 1
or what amounts to the same thing, determine n, in such a way that n; — 1 < b/a < n;.
These inequalities imply that nja —a < b < nja, whence nja — b < a. Subtract 1/n;
from a /b and express the difference as a fraction, calling it a; /b;:

a 1 _ma— b _a
b ni a bnl a bl ’
This enables us to write a/b as
a 1 a;
b o ni bl ’

The important point is that a; = nja — b < a. In other words, the numerator a; of this new
fraction is smaller than the numerator a of the original fraction.
If a; = 1, there is nothing more to do. Otherwise, repeat the process with a;/b; now

playing the role of a /b to get

a 1 1 a

-—=— 4+ —+4+ —, where a, < a;.

b ni ny b2
At each successive stage, the numerator of the remainder fraction decreases. We must
eventually come to a fraction ay /by in which a; = 1; for the strictly decreasing sequence 1 <
ay < ay—j < --- < aj < a cannot continue indefinitely. Thus, the desired representation of
a/b is reached, with

a 1 N 1 T 1 n 1
b - ni ny Ny bk ’
a sum of unit fractions.
Let us examine several examples illustrating Fibonacci’s method.

Example. Take a/b = % To find ny, note that 9 < 1—29 < 10, and so %) <
hence, n; = 10. Subtraction gives

Sl
ol

2 1 20-19 1

19 10 19-10 190

2 2 _ 14 1
We may therefore represent 5 as 75 = 15 + 195-
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Example. For a more penetrating illustration, we turn to the fraction a/b = % once

again. Dividing 9 into 13, one gets 1 < 5 < 2, leading to 5 < 13

This means that the first unit fraction in the decomposition of % is % Now

9 1 _18-13 5

13 2 13-2 26

< 1; hence, n| = 2.

which implies that
9 _ 1,4 5
B=2t%

As expected, the numerator of the remainder fraction is less than the numerator of the

given fraction; that is, 5 < 9. Now repeat the process with the fraction %. Because
5< 25—6 < 6, we get % < 25—6 < é and n, = 6. Carrying out the arithmetic gives
1

30-26 4 1

26 6  26-6 156 39
in consequence of which

5 1, 1
% =561 39"

Putting the pieces together, we get our expansion for %:

The Rhind Papyrus contains several “comple-

Four Problems fI’OHl the Rhmd Papyrus tion” problems. These usually start with a sum

of unit fractions and seek further unit fractions
The Method Of False Position to be added, to obtain the value 1. Problem 22,
for instance, asks to complete % + % SO as to
produce the sum 1. In modern notation, the scribe performs the calculations by first selecting

a convenient number N and unit fractions 1/ny, ..., 1/n; in order to satisfy the equation
2 + 1 + ! + + ! N=N
330 m i -

It would follow from this that the expanded sum is equal to 1. Taking N to be 30—convenient,
as it is a common multiple of the given denominators—the scribe observed that

2 1
S+ —)30=20+1=21,
<3+30) +

which is 9 short of the desired 30. But

11
-+ —)30=6+3=0.
<5+1o) *

Adding the two equations gives

2+1+1+1 30 = 30
3 30 5 10 -
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and so the desired completion is

2 1 1 1 1

37305 0"
Much space is taken up in the Rhind Papyrus by practical problems concerning the equitable
division of loaves among a certain number of men or determining the amount of grain needed
for making beer. These problems were simple and did not go beyond a linear equation in
one unknown. Problem 24, for example, reads: “A quantity and its % added become 19.
What is the quantity?” Today with our algebraic symbolism, we should let x stand for the

quantity sought and the equation to be solved would be
X 8x
x+7_19 or 7 = 19.

Ahmes reasoned that because his notation did not admit the fraction %, “As many times
as 8 must be multiplied to give 19, just as many times must 7 be multiplied to give the
correct number.” The scribe was using the oldest and most universal procedure for treating
linear equations, the method of false position, or false assumption. Briefly, this method is
to assume any convenient value for the desired quantity, and by performing the operations
of the problem at hand, to calculate a number that can then be compared with a given number.
The true answer has the same relation to the assumed answer that the given number has to
the number thus calculated.

For instance, in solving the equation x + x/7 = 19, one assumes falsely that x = 7 (the
choice is convenient because x /7 is easy to calculate). The left-hand side of the equation
would then become 7 + ; = 8, instead of the required answer 19. Because 8 must be
multiplied by '879 =24 % + % to give the desired 19, the correct value of x is obtained by
multiplying the false assumption, namely, 7, by 2 + % + % The result is

x=Q2+51+3)7=16+1+4.

Actually, we could pose any convenient value for the unknown quantity, say x = a. If
a+a/7 = band bc = 19, then x = ac satisfies the equation x + x/7 = 19; for it is easily
seen that

! Ne=be=19
ac+7ac—<a+7>c— c=19.

We have seen that the Egyptians anticipated, at least in an elementary form, a favorite
method of the Middle Ages, the false position. Once the method was learned from the Arabs,
it became a prominent feature of European mathematics texts from the Liber Abaci (1202)
of Fibonacci to the arithmetics of the sixteenth century. As algebraic symbolism developed,
the rule disappeared from the more advanced works. Following is an example taken from
Liber Abaci. A certain man buys eggs at the rate of 7 for 1 denarius and sells them at a
rate of 5 for 1 denarius, and thus makes a profit of 19 denarii. The question is: How much
money did he invest? Algebraically, this problem would be expressed by the equation

Tx

?—leg
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The procedure of false position consists here in assuming 5 for the unknown; then % -5 —
5 = 2. This 2, in the expressive language of Fibonacci, “would be like 19” (it is related to
19 as 5 is to the sought number). Because 2(%) = 19, the correct answer is

x =58) =471

Notice that the number posed by Fibonacci for the unknown was not arbitrarily chosen—
when the coefficient of an unknown is a fraction, the number assumed for the unknown is
the denominator of the fraction.

Thus far we have considered the rule of false position in which a single guess was
made; but there was a variant that necessitated making two trials and noting the error due
to each. This cumbersome rule of double false position, as it was sometimes called, can be
explained as follows. To solve the equation ax + b = 0, let g; and g, be two guesses about
the value of x, and let f; and f, be the corresponding failures, that is, the values ag, + b
and ag, + b, which would equal zero if the guesses were right. Then

(1) agi+b=fi and 2) agr+b = f>.
On subtracting, it is clear that
3) a(gi—g)= f— fa

Multiplying equation (1) by g, and equation (2) by g; gives

agigx +bgr = fig and agog1 +bg1 = frg1.

When these last two equations are subtracted, the result is

) b(g2 — g1) = f182 — f28&1-
To finish the argument, divide equation (4) by equation (3) to get
_b_ fier— fa
a H—rhH
But because x = —b/a, the value of x is found to be

o= 182~ ha
fi—-fH
In summary, we have placed two false values for x in the expression ax + b, and from these

trials we have been able to get the correct solution to the equation ax + b = 0.
To make things more specific, let us look at an actual example, for instance, the equation

X+ ; =19, or equivalently, X+ ; —19=0.

We take two guesses about the value of x, say gy = 7 and g, = 14. Then
T+7-19=-11=f and 14+%-19=-3=Ff,.

It follows that the true value of x is
_ fige— g (=1DI4—(=3)7 133

I 1
= = =—=16+ -4+ -.
* hi=F (=11) - (=3) 8 +2+8
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Awkward as it seems, there is a certain element of simplicity in this primitive rule, and
no wonder it was used even in the late 1880s. In his Grounde of Artes, Robert Recorde
(1510-1558) wrote that he astonished his friends by proposing difficult questions and then,
with the rule of falsehood, finding the true result from the chance answers of “such children
or idiots that happened to be in the place.”

A Curious Problem

Getting back to the Rhind Papyrus, we can consider Problem 28 the earliest example of
a “think of a number” problem. Let us state this problem and Ahmes’s solution in modern
terms, adding a few clarifying details.

Example. Think of a number, and add % of this number to itself. From this sum subtract

_% its value and say what your answer is. Suppose the answer was 10. Then take away 11_0
of this 10, giving 9. Then this was the number first thought of.

Proof. If the original number was 9, then % is 6, which added makes 15. Then % of 15
is 5, which on subtraction leaves 10. That is how you do it.

Here the scribe was really illustrating the algebraic identity

()30 3) [l 3) 23] -

by a simple example, in this case using the number n = 9. Having disclosed his “obscure
secret,” he added a traditional concluding phrase, “And that is how you do it.”

Problem 79 is extremely concise and contains a curious set of data—which seems to
indicate an acquaintance with the sum of a geometric series:

Houses 7

Cats 49

1 2801 Mice 343

2 5602 Sheaves 2401

4 11,204 Hekats (measures of grain) 16,807
total 19,607 total 19,607

This catalog of miscellany has suggested some fanciful ideas. Certain authorities regard
these words as symbolic terminology given to the first five powers of 7. For at the right,
we have the summation of 7, 72, 73, 74, and 7° by actual addition. At the left, the sum
of the same series is given as 7 - 2801, with the multiplication carried out by the usual
method of duplication. Because 2801 = (7° — 1)/(7 — 1), the result

75 -1
7~2801:7<7 1>=7+72+73+74+75

is exactly what would be obtained by substitution in the modern formula for the sum S,, of
n terms of a geometric series:

" —1

r—1°

S, =a+ar+ar’*+---+ar" ' =a
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(We note in the problem before us that a = r = 7 and n = 5.) Was such a formula, even
for simpler cases, known to the Egyptians? There is no concrete evidence that it was. A
more plausible interpretation of what is intended is something of the sort: “In each of seven
houses there are seven cats; each cat kills seven mice; each mouse would have eaten seven
sheaves of wheat; and each sheaf of wheat was capable of yielding seven hekat measures
of grain. How much grain was thereby saved?” Or one may prefer the question, “Houses,
cats, mice, sheaves, and hekats of grain—how many of these were there in all?”

Some 3000 years after Ahmes, Fibonacci included in his Liber Abaci the same series
of powers of seven with one further term:

Seven old women were on the road to Rome;
Each woman had seven donkeys;

Each donkey carried seven sacks;

Each sack contained seven loaves of bread;
With each loaf were seven knives;

Each knife was in seven sheaths.

What is the total?

This rendering, coupled with the number seven, reminds us of an Old English children’s
rhyme, one version of which appears below:

As I was going to Saint Ives,

I met a man with seven wives.

Each wife had seven sacks;

Every sack had seven cats;

Every cat had seven Kkits;

Kits, cats, sacks, and wives,

How many were going to Saint Ives?

Here also, it is suggested that the sum total of a geometric progression be calculated, but
there is a joker in the actual wording of the first and last lines. While the surprise twist is
in all likelihood an Anglo-Saxon contribution, one can see how the same kind of problem
perpetuated itself throughout centuries.

The Rhind Papyrus closes with the following prayer, expressing the principal worries of
an agricultural community: “Catch the vermin and the mice, extinguish the noxious weeds;
pray to the God Ra for heat, wind, and high water.”

Egyptian Mathematics as Applied Arithmetic

Looking at the extant Egyptian mathematical manuscripts as a whole, we find that
they are nothing but collections of practical problems of the kind that are associated with
business and administrative transactions. The teaching of the art of calculation appears to
be the chief element in the problems. Everything is stated in terms of specific numbers, and
nowhere does one find a trace of what might properly be called a theorem or a general rule
of procedure. If the criterion for scientific mathematics is the existence of the concept of
proof, the ancient Egyptians confined themselves to “applied arithmetic.” Perhaps the best
explanation of why the Egyptians never got beyond this relatively primitive level is that
they had a natural, but unfortunate, idea of admitting only fractions with numerator one;
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Part of the Rhind Papyrus. (Copyright British Museum.)

thus even the simplest calculations became slow and laborious. It is hard to say whether the
symbolism prevented the use of fractions with other numerators or whether the exclusive
use of unit numerators was the reason for the symbolism they used to express fractions. The
handling of fractions always remained a special art in Egyptian mathematics and can best
be described as a retarding force on numerical procedures.

As evidenced by the Akhmin Papyrus (named after the city on the upper Nile where
it was discovered), it appears that the methods of the scribe Ahmes were still in vogue
centuries later. This document, written in Greek at some point between A.D. 500 and 800,
closely resembles the Rhind Papyrus. Its author, like his ancient predecessor Ahmes, gave
tables of fractions decomposed into unit fractions. Why did Egyptian mathematics remain
so remarkably the same for more than 2000 years? Perhaps the Egyptians entered their
discoveries in sacred books, and in later ages, it was considered heresy to modify the
method or result. Whatever the explanation, the mathematical attainments of Ahmes were
those of his ancestors and of his descendants.

2. Find, in the Egyptian fashion, the following

2.3 Problems quotients:
1. Use the Egyptian method of doubling to find the g;; 124;;8'
following products: © 479,
(a) 18-25. (b) 26-33. (d) 1060 =+ 12.

(c) 85-21. (d) 105-59. (e) 61-=8.
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Use the Egyptian method of multiplication to calculate
the following products:

@ (14354337

®) (I+5+DO+5+D.

© QC+Ha+i+h.

(a) Show that the product of by 1+ 3 —|— < 1s
equal to ¢ (Problem 12 of the thnd Papyrus)

(b) Show that the product of & 5+ ﬁ by 1 + + o
is equal to 3¢ (Problem 15 of the Rhind Papyrus).

Problem 30 of the Rhind Papyrus asks the reader to
find a quantity such that 2 + 5 of it will make 10. Do
this as the Egyptians would have done, first by
confirming that

BE+35)=9+2

and then determining by what amount % + % should

be multiplied to give 31—0
(a) Show that
2 11

n 3n

51

3n’

hence that 2/n can be expressed as a sum of unit
fractions whenever n is divisible by 5.
(b) Use part (a) to obtain the unit fraction

decompositions of 2 55 65, and < as given in the
Rhind Papyrus.
(a) Show that
2 11 31
n 2n 2n’

hence that 2/n can be expressed as a sum of unit
fractions whenever n is divisible by 3.
(b) Use part (a) to obtain the unit fraction

decompositions of 2 5T 75, and 3 2
Show that
2 11 4 11
mn mk nk’

where the number k = (m + n) / 2. Use this t0 get the
unit fraction decompositions of 2 and as given
in the Rhind Papyrus.

7° 35’

Verify that

2 1+1+1+1
2n  3n  6n

Chapter 2

10.

11.

12.

13.

14.

15.

16.

17.
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and use this fact to obtain the unit fraction
decomposition of as given in the Rhind Papyrus.

Suppose that 7 is divisible by 7. Find a formula similar
to that of Problem 6(a) that will represent 2/n as a sum
of unit fractions.

Using the 2/n table, write ] 5, 49, and as sums of

unit fractions without repetitions.

Represent 7 1 < and 35 4 sums of distinct unit
fractions using (a) the spllttmg identity and
(b) Fibonacci’s method.

Show that if n divides m + 1, the fraction n/m can
always be written as a sum of two unit fractions.
Illustrate this with a specific example.

Expand % as a sum of distinct unit fractions using the
splitting identity.

Find a unit fraction representation of % that involves at
least six terms. Do the same for Z.

Represent = and 5 as sums of distinct unit fractions
using Frbonaccr S method

A method for writing 2/n, where n is an odd number,
as a sum of unit fractions, proceeds as follows. Given
an integer m, put 2/n = 2m/(nm). If from among the
divisors of nm a set can be chosen whose sum equals
2m, take these divisors as the numerators of fractions
whose denominators are nm. The result is a unit
fraction decomp0s1t10n of 2/n. For 2 75> We might let
m = 12, so that 2 5= 22248 From the divisors 1, 2, 3, 4,
6,12, 19, ... of 228, it is possible to find four sets of
integers whose sums are each 24; specifically,

24=14+44+19=2+34+19
=2+4+6+12
=14+2+3+6+12.

Using these, one gets

pe=mtmtm=mtatn
B=mtmtm=mtetn
Bemtmtmtm-m s T
B=mstastostos Ty = ot

1 1
+38+ 19°

Applying this technique obtain unit fraction
expansions 0f and [Hmt Take m = 4 and
m =12, respectrvely]
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18.

19.

20.

24

Consider the following variation of Problem 17 for
writing 2/n as a sum of unit fractions. Choose an
integer N having a set of divisors whose sum is
2N — n, say,

N=d1M1 =d2M2=d3M3 and

Then
n d] d2 d3
2= 44242
N+N+N+N
n 1 1 1
—t et —+—

N M T M, My
whence 2/n can be decomposed as
2 1 1 1 1

n=N+M1n+M2n+M3n‘

In the case of -3,

18=2-9=6-3=9-2

we might take N = 18, so that

and
2-18=19+2+6+09.
Using these relations, one gets
2 _ 1 1 1 1
B=w Tty s
Apply this technique to obtain unit fraction expansions
for = and 2. [Hint: Take N = 12 and N = 36.]

Problems 3-6 of the Rhind Papyrus describe four
practical problems: the division of 6, 7, 8, and 9 loaves
equally among 10 men. Solve each of these problems
by false position, expressing the answers in unit
fractions.

Problems 25, 26, and 27 of the Rhind Papyrus are as
follows:

Problem 25. A quantity and its % added together
become 16. What is the quantity?

Problem 26. A quantity and its ;11 added together
become 15. What is the quantity?

Egyptian Geometry

Approximating the Area
of a Circle

© The McGraw-Hill
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Problem 27. A quantity and its é added together
become 21. What is the quantity?

Solve each of these problems by false position,
expressing the answers in unit fractions.

21. Problem 31 of the Rhind Papyrus states: A quantity
and its %, its %, and its % added together become 33.
What is the quantity? Using modern notation, this calls
for solving the equation

2x  x

X
—+ -+ - =33
x+3+2+7

Show that the scribe’s answer
_ 1 1 1 1 1 1 1
rx=ldt+itgtatmtmtat

. . 42 .33 28
is correct. | Hint: x = ——— =14+ —.
97 97
22. Solve Problem 32 of the Rhind Papyrus, which states:
A quantity, its _%, its i, added together becomes 2.
What is the quantity? Express the answer in the
Egyptian fashion.

23. In Problem 70 of the Rhind Papyrus, one is asked to
find the quotient when 100 is divided by
7+ % + i + é; do this. [Hint: At some point in the
calculation take % of 7+ % + }1 + é Also note that the
relation 8(7 + 1 + } + §) = 63 implies that
2044+ ns]

24. Problem 40 of the Rhind Papyrus concerns an
arithmetic progression of five terms. It states: Divide
100 loaves among 5 men so that the sum of the three
largest shares is 7 times the sum of the two smallest.

(a) Solve this problem by modern techniques.

(b) Using the method of false position, the scribe
assumed a common difference of 5 + % and the
smallest share of 1 (hence, the five shares are
1,6+ 1,12, 17 + 1,23). Obtain the correct
answer from these assumptions.

The generally accepted account of the origin of geome-
try is that it came into being in ancient Egypt, where the
yearly inundations of the Nile demanded that the size of
landed property be resurveyed for tax purposes. Indeed,
the name “geometry,” a compound of two Greek words
meaning “earth” and “measure,” seems to indicate that

the subject arose from the necessity of land surveying. The Greek historian Herodotus,
who visited the Nile about 460—455 B.C., described how the first systematic geometric

observations were made.
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They said also that this king [Sesostris] divided the land among all Egyptians so as to give each
one a quadrangle of equal size and to draw from each his revenues, by imposing a tax to be
levied yearly. But every one from whose part the river tore away anything, had to go to him and
notify what had happened. He then sent the overseers, who had to measure out by how much
the land had become smaller, in order that the owner might pay on what was left, in proportion
to the entire tax imposed. In this way, it appears to me, geometry originated.

Whatever opinion is ultimately adopted regarding the first steps in geometry, it does seem
safe to assume that in a country where cultivating even the smallest portion of fertile soil
was a matter of concern, land measurement became increasingly important. To this end
must be ascribed some of the remarkable results the Egyptians obtained in mathematics.

The task of surveying was performed by specialists whom the later Greeks called
rope-stretchers, or rope-fasteners, because their main tool apparently was a rope with knots
or marks at equal intervals. In a passage written about 420 B.C., the Greek philosopher
Democritus (460-370 B.C.) testifies that in his time the Egyptian surveyors still ranked
high among the great geometers, possessing a skill almost equal to his own. He proudly
boasted, “No one can surpass me in the construction of plane figures with proof, not even
the so-called rope-stretchers among the Egyptians.”

What occupied the Egyptian geometers of some 4000 years ago? The mathematical
papyri that have come down to us contain numerous concrete examples, without any theo-
retical motivation, of prescription-like rules for determining areas and volumes of the most
familiar plane and solid figures. Such rules of calculation must be recognized as strictly
empirical results, the accretion of ages of trial-and-error experience and observation. The
Egyptians sought useful facts relating to measurement, without having to demonstrate such
facts by any process of deductive reasoning. Some of their formulas were only approxi-
mately correct, but they gave results of sufficient acceptability for the practical needs of
everyday life.

In the great dedicatory inscription, of about 100 B.C., in the Temple of Horus at Edfu,
there are references to numerous four-sided fields that were gifts to the temple. For each
of these, the areas were obtained by taking the product of the averages of the two pairs of
opposite sides, that is, by using the formula

A=Ya+ob+d),

where a, b, ¢, and d are the lengths of the consecutive sides. The formula is obviously
incorrect. It gives a fairly accurate answer only when the field is approximately rectangular.
What is interesting is that this same erroneous formula for the area of a quadrilateral had
appeared 3000 years earlier in ancient Babylonia.

The geometrical problems of the Rhind Papyrus are those numbered 41-60, and are
largely concerned with the amounts of grain stored in rectangular and cylindrical granaries.
Perhaps the best achievement of the Egyptians in two-dimensional geometry was their
method for finding the area of a circle, which appears in Problem 50:

Example of a round field of a diameter 9 khet. What is its area? Take away % of the diameter,
namely 1; the remainder is 8. Multiply 8 times 8; it makes 64. Therefore it contains 64 setat of
land.
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The scribes’ process for finding the area of a circle can thus be simply stated: Subtract from
the diameter its é part and square the remainder. In modern symbols, this amounts to the

formula
d\* [8d\*
A = d —_ = = B s
9 9

where d denotes the length of the diameter of the circle. If we compare this with the actual
formula for the area of the circle, namely 7 d 2 /4, then

nd®  (8d\’
4 \9 )"

m=4(3)? =3.1605...

so that we get

for the Egyptian value of the ratio of the circle’s circumference to its diameter. This is a
close approximation to 3%, which many students find good enough for practical purposes.

In the Old Babylonian period (roughly 1800-1600 B.C.), the circumference of a circle
was found by taking three times its diameter. Putting this equal to wd, we see that their
calculation is equivalent to using 3 for the value of 7. The Hebrews used the same value in
the Old Testament, for example, in I Kings 7:23, wherein the dimensions of the bath in the
temple of Solomon are described. The verse was written about 650 B.C., and may have been
taken from temple records dating back to 900 B.C. It reads, “And he made a molten sea,
10 cubits from one brim to the other: it was round all about . .. : and a line of 30 cubits did
compass it round about.” A cuneiform tablet discovered at Susa by a French archaeological
expedition in 1936 (the interpretation of which was published in 1950) seems to indicate
that the Babylonian writer adopted 3;7,30 or 3% as the value of &. This is at least as good
as the approximation found by the Egyptians.

We have no direct knowledge about how the formula A = (8d/9)? for the area of a
circle was arrived at, but it is possible that Problem 48 of the Rhind Papyrus provides a
hint. In this problem, the usual statement of what the author proposed to do was replaced
by a figure that, although drawn quite roughly, most strongly suggests a square with four
triangles at the vertices. In the middle of the figure is the demotic sign for 9. Thus it appears
that the scribe formed an octagon from a square of side 9 units by

.

trisecting the sides and cutting off the four corner isosceles triangles (each triangle having an
area of % square units). The scribe may have concluded that the octagon was approximately
equal in area to the circle inscribed in the square, because some portions of the inscribed
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circle lie outside the octagon and some portions lie inside, and these appear to be roughly
equal.

1 9 |
I I

/T N
N

Now the area of the octagon equals the area of the original square less the areas of the
four isosceles triangles made up of the four cut-off corners; that is,

A=9>—4(2) = 63.

This is nearly the value that is obtained by taking d = 9 in the expression (84/9)*. Thus a
possible explanation of the area formula A = (84 /9)? is that it arose from considering the
octagon as a first approximation to the circle inscribed in a square.

Problem 52 of the Rhind Papyrus calls for finding the area of a trapezoid (described as
a truncated triangle) with apparently equal slanting sides; the lengths 6 and 4 of the parallel
sides and the length 20 of an oblique sides are given.

20

The calculation is carried out by means of the formula
1

Did the author of the papyrus think that the area of a trapezoid was half the sum of the
length of the parallel sides times the slant height, or was one oblique side intended to be
perpendicular to the parallel sides? In the latter case, he would have been correct. It is not
at all unlikely that the diagram, which is little more than a rough sketch, is badly drawn
and that one of the seemingly equal sides is really meant to be perpendicular to the parallel
sides.

The Volume of a Truncated Pyramid

There are only 25 problems in the Moscow Papyrus, but one of them contains the
masterpiece of ancient geometry. Problem 14 shows that the Egyptians of about 1850 B.C.
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were familiar with the correct formula for the volume of a truncated square pyramid (or
frustum). In our notation, this is

h
V= g(az +ab + b?),

where £ is the altitude and a and b are the lengths of the sides of the square base and square
top, respectively.

T\
i

The figure associated with Problem 14 looks like an isosceles trapezoid,

but the calculations indicate that the frustum of a square pyramid is intended. The exact text
in this connection may be given:

Example of calculating a truncated pyramid. If you are told: a truncated pyramid of 6 for the
vertical height by 4 on the base by 2 on the top: You are to square this 4; result 16. You are to
double 4; result 8. You are to square this 2; result 4. You are to add the 16 and the 8 and the 4;
result 28. You are to take % of 6; result 2. You are to take 28 twice; result 56. See, it is of 56.
You will find it right.

Although this solution deals with a particular problem and not with a general theorem, it
is still breathtaking; some historians of mathematics have praised this achievement as the
greatest of the Egyptian pyramids.
It is generally accepted that the Egyptians were acquainted with a formula for the
volume of the complete square pyramid, and that it probably was the correct one,
h ,

V=—-a".
3

In analogy with the formula A = %bh for the area of a triangle, the Egyptians may have
guessed that the volume of a pyramid was a constant times 2a”. We may suppose even that
they guessed the constant to be 1/3. But the formula

_h

V= 3(a2—|—ab+b2)
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e aliridh

Extract from the Mathematical Leather Scroll, containing simple relations between
fractions such as é + 1l8 = é. (Courtesy British Museum.)

could not very well be a guess. It could have been obtained only by some sort of geometric
analysis or by algebra from V = (h/3)a’. It is not, however, an easy task to reconstruct a
method by which they could have deduced the formula for the truncated pyramid with the
materials available to them.

Speculations About the Great Pyramid

Any survey of the mathematics of the Egyptians ought to include a brief reference to
the Great Pyramid at Gizeh, erected about 2600 B.C. by Khufu, whom the Greeks called
Cheops. It provides monumental evidence of an appreciation of geometric form and a
relatively high development of engineering construction, not to mention a very remarkable
social and governmental organization. According to Herodotus, 400,000 workmen labored
annually on the Great Pyramid for 30 years—four separate groups of 100,000, each group
employed for three months. (Calculations indicate that no more then 36,000 men could
have worked on the pyramid at one time without hampering one another’s movements.) Ten
years were spent constructing a road to a limestone quarry some miles distant, and over
this road were dragged 2,300,000 blocks of stone averaging 2% tons and measuring 3 feet
in each direction. These blocks were fitted together so perfectly that a knife blade cannot
be inserted in the joints.

What has impressed people down through the years is not the aesthetic quality of the
Great Pyramid but its size; it was the largest building of ancient times and one of the largest
ever erected. When it was intact, it rose 481.2 feet (the top 31 feet are now missing), its four
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sides inclined at an angle of about 51°51" with the ground, and the base occupied 13 acres—
an area equal to the combined base areas of the cathedrals of Florence and Milan, St. Peter’s
in Rome, and St. Paul’s Cathedral and Westminster Abbey in London. Even more amazing
was the accuracy with which it was put together. The base was almost a perfect square, no
one of the four sides differing from the mean length of 755.78 feet by more than 4% inches.
By using one of the celestial bodies, the Cheops builders were able to orient the sides of the
pyramid almost exactly with the four cardinal points of the compass, the error being only
fractions of 1°.

The Great Pyramid has down to the present fired adventurous minds to the wildest spec-
ulations. These pyramid mystics (or as they are sometimes uncharitably called, pyramidiots)
have ascribed to the ancient builders all sorts of metaphysical intentions and esoteric knowl-
edge. Among the extraordinary things claimed is that the pyramid was built so that half
the perimeter of the base divided by the height should be exactly equal to 7. While the
difference between the two values

2(755.7
m =3.1415926... and m=3.14123...
481.2

isonly 0.00036. . ., their closeness is merely accidental and has no basis in any mathematical
law.

The Egyptian priests, according to a fiction that has crept into the recent literature, told
Herodotus that the dimensions of the Great Pyramid were so chosen that the area of each
face would be the same as the area of a square with sides equal to the Pyramid’s height.
Writing 2b for the length of a side of the base, a for the altitude of a face triangle, and 4 for
the height of the pyramid, we find that Herodotus’s relation is expressed by the equation

2_ 1 _
W= 2(2b-a)=ab.

N\

The Pythagorean theorem tells us that because a is the hypotenuse of a right triangle with
legs b and h, then h? 4 b> = a?, or h?> = a®> — b?. Equating the two expressions for 72, we
get

a®> — b? = ab.

When both sides are divided by a2, this last equation becomes

b\> b . b\> (b
I—-{-) =—-, or equivalently, =) +(=)=1.
a a a a
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Now the value of the positive root of the quadratic equation x> + x = lisx = %(\/5 —1).
Then we get the ratio

b 1
Z = z(ﬁ— 1) = 0.6180339...,
a

the reciprocal of the “golden ratio,” a value that has proved significant many times in
mathematics and its applications.

How successful were the pyramid builders in achieving the golden ratio (if that, indeed,
was their aim)? Checking with the actual measurements taken at the Great Pyramid, we see
that

a=+h?+b2=/(481.22 + (377.89)2 = 611.85,

leading to the value

é=0.61762....
a

The theory that the Egyptians intended to use the golden ratio as a theoretical basis
for building the Great Pyramid seems to have been first set down by a certain John Taylor,
who in 1859 published The Great Pyramid, Why Was It Built and Who Built It? An amateur
mathematician, Taylor spent 30 years collecting and comparing measurements reported by
successive visitors to the Pyramid. Although he made a number of scale models of the
Pyramid, he never set eyes on it himself. Because the only passage in Herodotus’s History
concerning its size reads, “Its base is square, each side is 800 feet long and its height is the
same,” a leap of faith would be required to justify Taylor’s claim. Moreover, the dimensions
Herodotus recorded are themselves way off the mark.

Another theory that is often taken as gospel is that the total area of the pyramid can be
expressed in a way that leads to the golden ratio; that is, the area of the base is to the sum
of the areas of the triangular faces as this sum is to the sum of the areas of the faces and
base. Because the sum of the areas of the four face triangles is 4 - %(2ba) and the area of
the base is (2b)?, the claim reduces to the assertion that

4p>  4ab
4ab ~ dab + 4b%’

or in an equivalent form,

b a
a a+b
Using the previously calculated value for a, one finds that
611.85
- =0.61819...,
a+b 989.74

whence the quotients b/a and a/a 4 b are nearly the same. Whether this is a matter of
accident or design is open to speculation.

There are some wilder theories. Some people maintained, for instance, that the Egyp-
tians had erected the pyramids as dikes to keep the sands of the desert from moving and
covering the cultivated area along the Nile. A popular belief during the Middle Ages was
that they were granaries the captive Hebrews were forced to build for storing corn during
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the years of plenty. This legend has been preserved in the mosaics, done about A.D. 1250,
of the Church of Saint Mark in Venice. Part of the pictorial narrative of the story of Joseph
shows his brother being sent to fetch sheaves of grain from the pyramids. Speculation be-
gan to assume a more scientific appearance in 1864, when one highly regarded professor of
astronomy (Charles Piazzi Smyth, the astronomer royal of Scotland) worked out to his own
satisfaction a unit of measurement for the Great Pyramid, which he called the pyramid inch,
equal to 1.001 of our inches. Using this mystical “pyramid inch” to measure the bumps and
cracks along the walls of the interior passages and chambers, he concluded that the Great
Pyramid was designed by God as an instrument of prophecy, a so-called Bible in stone.
(The British Egyptologist Flinders Petrie wrote that he once caught one of the pyramid
cultists surreptitiously filing down a stone protuberance in order to make its measurements
conform to his theories.) If one knew how to read its message, there would be found in the
pyramid all sorts of significant information about the history and future of humanity: the
Great Flood, the birth of Christ, the beginning and end of World War I, and so on. When
Smyth dated the start of World War I as 1913, his believers jubilantly pointed out that he
had erred “by only one year.” Smyth and his followers posed fanciful, extravagant theories
about the “secrets” locked in the measurements of the Great Pyramid. Their near miss in
foretelling the date of the Great War notwithstanding, these many enthusiastic speculations
must be dismissed as stuff and nonsense.

Although we can be certain that the pyramid builders had already a fair knowledge of
geometry, singularly little mathematics of this period has come down to us. Our two chief
mathematical papyri, although different in age, may be said to represent the state of the
subject at the time 2000-1750 B.C. Reviewing everything, we are forced to conclude that
Egyptian geometry never advanced beyond an intuitive stage, in which the measurement of
tangible objects was the chief consideration. The geometry of that period lacked deductive
structure—there were no theoretical results, nor any general rules of procedure. It supplied
only calculations, and these sometimes approximate, for problems that had a practical
bearing in construction and surveying.

(c) Problem 58. If a pyramid (square) is 93% cubits
2.4 Problems high and the side of its base is 140 cubits long,
what is its seked? [Hint: Given an isosceles
triangle of base s and height &, we know that its
1. Solve the following geometrical problems from the seked equals S/2h, or the cotangent ratio of
Rhind Papyrus. trigonometry. The seked in this problem has been
associated with the slope of the lateral faces of

(a) Problem 41. A cylindrical granary of diameter 9 the Second Pyramid at Gizeh.]

cubits and height 10 cubits. What is the amount

of grain that goes into it? [Hins: Use the Egyptian 2. (a) The Babylonians generally determined the area
value for 7, namely 4 (g)z, to get the scribe’s of a circle by taking it as equal to ;5 the square of
answer. | the circle’s circumference. Show that this is

(b) Problem 51. Example of a triangle of land. equivalent to letting 7 = 3.
Suppose it is said to thee, what is the area of a (b) A Babylonian tablet excavated in 1936 asserts
triangle of side 10 khet and of base 4 khet? that when a more accurate determination of area
[Hint: The accompanying figure in the papyrus is is needed, the Il—z should be multiplied by
apparently intended to be a right-angled 0;57,36, that is, by %. What value for 7 does this

triangle.] correction factor yield?
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Archimedes (about 287-212 B.C.) in his book
Measurement of a Circle stated: The area of a circle is
to the square on its diameter as 11 to 14. Show that this
geometric rule leads to % for the value of 7.

The sixth-century Hindu mathematician Aryabhata had
the following procedure for finding the area of a circle:
Half the circumference multiplied by half the diameter
is the area of a circle. How accurate is this rule?

The Babylonians also knew a formula for the volume
of a truncated square pyramid, namely,

a+b\* 1 [/a—b\’
V=nh = ,
[( 2 )+3< 2 )
where £ is the altitude and a and b are the lengths of the

sides of the square (upper and lower) bases. Show that
this reduces to the formula of the Moscow Papyrus.

A Babylonian tablet has been discovered in which the
volume of the frustum of a cone is determined by using
the (erroneous) formula

V =3h(r* + R?),

where £ is the height and » and R are the radii of the
bases. Take h = 6, r = 4, and R = 2 and compare the
Babylonian result with the result from the correct
formula

V = 3nh(R*+rR+r?).

Heron of Alexandria (circa A.D. 75?) found the volume
of the frustum of a cone by calculations equivalent to
using the formula

V = imh(r + R),

where 4 is the height and r and R are the radii of the
bases. If % is taken for the value of 7, what answer
would Heron have gotten for h = 6,r =4, and R = 27

The text of Problem 10 of the Moscow Papyrus is
illegible at some points, but a calculation is performed,
using the equivalent of the formula

S=(1-1)*@dd,

which seems designed to give the surface area of a
hemispherical basket of diameter d = 4 % Show that
if4 (g)2 is set equal to 7, this yields the right formula
for the area of a hemisphere, namely d?/2.

(a) Starting with the area formula A = %xy sin 0 for
a triangle in terms of two sides and the angle

Chapter 2

10. (a)

© The McGraw-Hill
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between them, use the accompanying figure to
derive the formula

A= ‘{(adsinA +absin B
+ bcesin C + cd sin D)

for the area of a quadrilateral.

B

d
D c c

(b) Show that if A represents the area of the
quadrilateral in part (a), then

A< (a+C)(b+d)’
- 4

with equality holding if and only if the
quadrilateral is a rectangle. Thus, the ancient rule
for the area of a quadrilateral overestimates the
areas of all quadrilaterals that are not rectangles,
so that tax assessors could well have continued to
use this convenient formula long after they came
to suspect that it never led them to underestimate
the areas of quadrilateral fields.

Prove that of all triangles having two given sides
of lengths a and b, the one whose sides form a
right angle encompasses the maximum possible
area.

(b) Another formula giving the area of an arbitrary
quadrilateral is

A= —a)S—b)(S—c)NS—d)—T.

Here S = %(a + b + ¢ + d) is the semiperimeter
and

T = abed cos* (A + C)/2,

where A and C are a pair of opposite vertex
angles of the quadrilateral. Show that the
maximum possible area corresponding to the
given values a, b, c¢, and d occurs when the
angles A and C (and hence B and D also) are
supplementary.

11. While measuring the Great Pyramid, Charles Piazzi

Smyth (named for his godfather, Giuseppe Piazzi,
discoverer of the first known asteroid, Ceres) found a
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niche in the Queen’s Chamber that was 185 pyramid (b) The square root of 10 times the height of the
inches long. Use this dimension to verify that accuracy north wall in the Queen’s Chamber (182.4
of the following assertions Smyth made in his book pyramid inches) divided by the length of the
Our Inheritance in the Great Pyramid: Grand Niche is equal to r; that is,

(a) The length of the Grand Niche multiplied by 107 10(182.4)
is equal to the height of the Great Pyramid. = 185

Most of what we know about the mathematics developed

2.5 Babylonian Mathematics in Mesopotamia, first by the Sumerians and then later by
. the Akkadians and other people, is relatively new. This
A Tablet of RGCIpI‘OCFﬂS subject is called Babylonian mathematics, as if a single

people had created it. Hitherto the great emphasis had
been placed on the achievements of the Egyptians. For some time, it was known that the large
Babylonian collections at the British Museum and the Louvre abroad and at Yale, Columbia,
and the University of Pennsylvania in this country contained many undeciphered cuneiform
tablets of unusual types. The exhaustive studies of Otto Neugebauer, which reached fruition
in the 1930s, revealed these to be mathematical tables and texts, and thus a key to the
“reading” of their contents was found. Chiefly through the decipherment, translation, and
interpretation of this scholar, an entirely new light has been thrown on what the Babylonians
contributed to the development of ancient mathematics.

In investigating Babylonian mathematics, we are much less fortunate than with
Egyptian mathematics. Because the Babylonian mode of writing on clay tablets discouraged
the compilation of long treatises, there is nothing among the Babylonian records compara-
ble with the Rhind Papyrus. Nonetheless, several hundred mathematical tablets have been
recovered, many in an excellent state of preservation. The great majority of these (about
two-thirds) are “Old Babylonian,” which is to say that they belong roughly to the period
1800—1600 B.C. Through this rich mine of source material we now know that except possibly
for certain geometric rules, the Babylonians far outstripped the Egyptians in mathematics.
Although Babylonian mathematics too had strong empirical roots that are clearly present
in most of the tablets that have been translated, it seems to have tended towards a more
theoretical expression. (The Babylonians can claim priority in several discoveries, most
notably the Pythagorean theorem, usually ascribed to later mathematical schools.) The key
to the advances the Babylonians made appears to have been their remarkably facile num-
ber system. The excellent sexagesimal notation enabled them to calculate with fractions as
readily as with integers and led to a highly developed algebra. This was impossible for the
Egyptians, for whom every operation with fractions involved a multitude of unit fractions,
thereby making a difficult problem out of each division.

The Babylonians, freed by their remarkable system of numeration from the drudgery
of calculation, became indefatigable compilers of arithmetic tables, some of them extraor-
dinary in complexity and extent. Numerous tables give the squares of numbers 1 to 50, and
also the cubes, square roots, and cube roots of these numbers. A tablet now in the Berlin
Museum gives lists of not only n?andn’ forn =1,2,..., 20,30, 40, 50 but also the sum
n* + n3. Itis surmised that this was used in solving cubic equations that had been reduced to
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the form x* + x> = a. Another large group of tables deals with the reciprocals of numbers.
The standard format of such a table usually involves two columns of figures, such as

4 15
5 12
6 10
8 7;30
9 6;40
10 6
12 5
15 4
16 3:45
18 3;20

where the product of each pair of numbers is always 60. That is, each pair consists of a
number on the left-hand side and its sexagesimal reciprocal on the right-hand side. These
tables have certain gaps in them; missing are such numbers as 7, 11, 13, and 14, and
some others. The reason is that only finite sexagesimal fractions were comprehensible
to the Babylonians, and the reciprocals of these “irregular” numbers are nonterminating
sexagesimals. For instance, in the sexagesimal expansion for % the block 8,34,17 repeats
itself infinitely often:

1=0;8,34,17,8,34,17....

(The analogous situation occurs in our own system, in which the reciprocal of, say, 11—1 =
0.090909.... is infinite when expanded decimally.) When an irregular number like 7 does
appear in the first column, the statement is made that 7 does not divide, and an approximation
is given. A Sumerian tablet of 2500 B.C. calls for dividing the number 5,20,0,0 by 7; the
calculation is presented as

(5, 20,0, 0)0;8,34, 17, 8) = 45,42, 51; 22, 40,

where 5,20,0,0 has been multiplied by the reciprocal of 7 approximated to the fourth place.
A later table seems to give upper and lower bounds on the size of 1, namely,

8,34,16,59 < 1 < 8,34, 18,

We can picture the scope of some tables of reciprocals from a tablet in the Louvre—
dating from 350 B.C.—that comprises 252 entries of one-place to seventeen-place divisors,
and one-place to fourteen-place reciprocals. This table is a list of numbers n and n’ for
which the product nn’ equals 1 or some other power of 60. As a specific example, one line
contains the values

2,59, 21,40, 48, 54 20,4, 16, 22, 28, 44, 14, 57, 40, 4, 56, 17, 46, 40
which may be thought of as representing the product

(2-60° +59 - 60* +--- 448 - 60 + 54)
x(20 - 6013 +4-60'2 + .. +46 - 60 + 40) = 60".
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It appears that calculations of this magnitude were necessary in the work of the astronomers
of the time.

As suggested previously, the Babylonians did not carry out division by the clumsy
duplication method of the Egyptians. Instead, they interpreted a divided by b to mean that
a is multiplied by the reciprocal of b; that is, a/b = a(1/b). After having found, either in
a table or by calculation, the reciprocal of the divisor, they needed only to multiply it by
the dividend. For this purpose, the Babylonian scribes had at their disposal multiplication
tables, almost always giving the products of a certain number multiplied successively by
1,2,3,...18, 19, 20 and then by 30, 40, and 50. On one tablet of 1500 B.C. are tables of
7,10, 12%, 16, 24, each multiplied by the foregoing series of values. Thus, the procedure
for, say, 7 divided by 2 would be to multiply the reciprocal of 2 by 7:

7(0;30) = 0;210 = 3;30,

which is of course the sexagesimal notation for 3 %

The Babylonian Treatment of Quadratic Equations

Distinct from the table tablets are tablets that deal with algebraic and geometric prob-
lems. These generally present a sequence of closely related numerical problems, together
with the relevant calculations and answers; the text often terminates with the words “Such
is the procedure.” Although none of them gives general rules, the consistency with which
the problems were treated suggests that the Babylonians (unlike the Egyptians) had some
sort of theoretical approach to mathematics. The problems often seem to be intellectual
exercises, instead of treatises on surveying or bookkeeping, and they indicate an abstract
interest in numerical relations.

There are scores of clay tablets that indicated that the Babylonians of 2000 B.C. were
familiar with our formula for solving the quadratic equation. This is well illustrated by an
Old Babylonian text that contains the following problem:

I have added the area and two-thirds of the side of my square and it is 0;35. What is the side of
my square?

It is often possible to translate such problems directly into our symbolism by replacing
words like length (or side) and width by the letters x and y. In modern notation, we would
express the content of this problem as

242, __35
X +3x_60.

The details of solution are described by verbal instructions in the text as follows:

You take 1, the coefficient [of x]. Two-thirds of 1 is 0;40. Half of this, 0;20, you multiply by
0;20 and it [the result] 0;6,40 you add to 0;35 and [the result] 0;41,40 has 0;50 as its square
root. The 0;20, which you have multiplied by itself, you subtract from 0;50, and 0;30 is [the
side of ] the square.
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Old Babylonian cuneiform text containing 16 problems with solutions. (Copyright
British Museum.)

Converted to modern algebraic notation, these steps tell us that

= 4/0;6,40 4- 0;35 — 0;20

= 4/0;41,40 — 0;20
= 0;50 — 0;20 = 0;30.
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Thus, the Babylonian instructions amount to using a formula equivalent to the familiar rule

SNEET

for solving the quadratic equation x*> + ax = b. Although the Babylonian mathematician
had no “quadratic formula” that would solve all quadratic equations, the instructions in
these concrete examples are so systematic that we can be pretty certain they were intended
to illustrate a general procedure.

Historically, it is perhaps more appropriate to speak of rectangular instead of quadratic
equations, for it was the problem of rectangles that gave rise to these equations. In the
ancient world, the error was widespread that the area of a plane figure depended entirely on
its perimeter; people believed that the same perimeter always confined the same area. Army
commanders estimated the number of enemy soldiers according to the perimeter of their
camp, and sailors the size of an island according to the time for its circumnavigation. The
Greek historian Polybius tells us that in his time unscrupulous members of communal soci-
eties cheated their fellow members by giving them land of greater perimeter (but less area)
than what they chose for themselves; in this way they earned reputations for unselfishness
and generosity, while they really made excessive profits.

Evidently the problem of how the perimeter of a rectangle related to its area was
systematically investigated in antiquity. A typical problem in early Babylonian mathematics
was the following. Given the semiperimeter x 4+ y = a and the area xy = b of a rectangle,
find the length x and width y. How did they go about the solution? We can only speculate,
for there is no explicit indication anywhere in the mathematical texts of this period of how
one arrived at the result. The Babylonian mathematicians were empiricists and observers
who worked with tables that presented the facts in an orderly fashion. In all likelihood,
they must have constructed the tables for the different values the area might assume, the
perimeter being kept constant. Thus, for a rectangle whose semiperimeter x + y = a = 20,
the resulting area might have been tabulated for the variations of

a d a
x ==+ an ==-—-2z
2 ¢ Y=

where z is one of the numbers 0 through 9.

a a a\?
x:§+Z yZE—Z b=xy (5) —b

z=0 10 10 100
z=1 11 9 99 12
z=2 12 8 96 22
z=3 13 7 91 32
z=4 14 6 84 42
z=5 15 5 75 52
z= 16 4 64 62
z=17 17 3 51 72
z=28 18 2 36 82
z=9 19 1 19 92
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The lesson demonstrated by the numbers in the table is that the areas decrease with the
growth of z, and that the difference (a/2)*> — b always equals the square of z; that is,

(G -o=s

At some point, it surely dawned on the Babylonians that they could invert the procedure
and ascertain z from the value of (a/2)*> — b. This would give

=

and, as a result, the unknowns
=55 e =5 (5) -
TT3 2 andry= 2

In the beginning, these conclusions were established empirically through observation
of concrete facts; there was no logical speculations nor any deductive reasoning from proven
theorems. The best that can be said for the ancient approach is that it substituted patience for
brilliance. Later Babylonians would undoubtedly have realized that if the sum x +y =a
were given, then the larger quantity, say x, would exceed a/2 by a certain amount z. It is
evident that since the sum x + y is fixed, x can gain only what y loses. Thus,

a+ d a
X = an =——2z
2 Tt y=5 7%

the sum of which is a. Substituting these values in the equation xy = b leads to

(3499

whence

The implication is that

and so

e

The negative root was neglected, and this was usual until modern times. With the value of
z known, x and y can now be obtained:

R (R B
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This approach can be illustrated with a typical example. A cuneiform tablet in the
Yale Babylonian collection asks (in specific numbers) for the solution of the two algebraic
equations,

13 15
x—l—y=7, Xy =3.

The Babylonian method just described calls for setting x and y equal to 14—3, plus or minus
a correction z; that is,

X = % +z, y=7-z
Then the first equation is satisfied, because
sey=(B++($-) =29 -%
and the second equation xy = % becomes

(F+2) (¥ -9 =7

This reduced to

or

— 169 _ 15
=6 2 16"

[
—_
Nl
—_
wn
&
=)

Thus z = ZT’ and one finds immediately that

— 13,7 __ 13 _7_3
x=7+7=5 Y=%"31= 73

The same idea can be used if the difference x — y is initially given, instead of x + y.
Proceeding analogously, the Babylonians would have solved the system

xX—y=a, xy=»>b
by putting
x=z+% and y=2z-—

from which the solution then follows:

R N R

More complicated algebraic problems were reduced, by various devices, to the funda-
mental systems

xty=a, xy =b,

which we shall call normal form. For instance, one tablet contains the numerical equivalent
of the problem.

x—}—y:%, x+y+xy=14



Burton: The History of 2. Mathematics in Early Text © The McGraw-Hill ‘ e
Mathematics: An Civilizations Companies, 2007
Introduction, Sixth Edition

Chapter 2 Mathematics in Early Civilizations

The values of x and y are given as % and %, respectively, but the manner in which the

solution was found is not given. It was probably effected by subtracting the first equation
from the second, to get

— _ 35 _ 49
xy=x+y+xy—(x+y)=14-2=7=.

The problem then amounts to solving the system

35 49
X+y=%, Xy =%,
and by the procedure discussed earlier,
=317 _1 =3_71_1
r=ntu=1 Y= -"1u12<3

Two Characteristic Babylonian Problems

A standard type of Babylonian problem consisted in keeping the condition xy = b
fixed but varying the second equation to arrive at more elaborate expressions in x and y.
This is evidenced by another tablet, in which one is required to solve, in our notation,

xy = 600, (x + y)* 4+ 120(x — y) = 3700.

Apparently the Babylonians were aware of the algebraic identity (x 4+ y)? = (x — y)* +
4xy, which allowed them to convert (x 4 y)? to (x — y)? + 2400. When this substitution is
made, the second equation becomes

(x — y)* + 120(x — y) = 1300,

a quadratic in x — y. An application of their quadratic formula gives the value of x — y:

x—y= (‘—§O)Z+ 1300 — 22 = /4900 — 60 = 70 — 60 = 10.
The Babylonian mathematician would then need to solve the system of equations
x —y =10, xy = 600,

which would give no difficulty. In fact, the usual method of settingx = z+Sandy =z — 5
gives rise to the solution x = 30, y = 20.

The Babylonians knew about quadratic equations of the form x> 4+ ax = b and x*> =
ax + b; and their respective solutions

e AN O R

were clearly and expressly taught through numerous examples. The negative square root,
which would have led to a negative value of the solution x, was always neglected; nowhere
in Babylonian mathematics were negative solutions to quadratics recognized. The type
of quadratic x> + b = ax seems also to have been well known but transformed by all
sorts of ingenious devices to the system x + y = a, xy = b. The Babylonians’ experience
showed that x> 4+ b = ax led to two distinct solutions, namely, x = a/2 + \/(a/2)> — b
andx = a/2 — /(a/2)? — b. Yet the idea of two values for one and the same quantity must
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have seemed a logical absurdity to the Babylonians, something to be circumvented at all
costs.

Tablets at Yale University contain hundreds of similar problems (200 on one tablet
alone), without solutions, arranged in systematic order. Only a few tablets have been pre-
served, so there must have been thousands of problems in the original series. In one case,
the simultaneous equations for solution are

xy = 600, 1(x 4+ y)? — 60(x — y) = —100,

an extraordinary example of a negative number in the right-hand member. The concept of a
negative number standing by itself—as distinguished from an indicated subtraction—was
not current even in Europe 2500 years later.

In a final illustration of the algebraic character of Babylonian mathematics, let us
consider a problem in which a reed, the usual measuring rod, of unknown size is used to
measure the length and width of a rectangular field. The translated tablet reads:

I have areed. I know not its dimension. I broke off from it one cubit and walked 60 times along
the length. I restored to it what I have broken off, then walked 30 times along the width. The
area is 6,15. What is the original length of the reed?

The common unit for linear measures of land at the time was the ninda, or 12 cubits; thus,

% of a ninda was broken off from the rod of unknown dimension. If the original rod is

assumed to have size x, then the length of the field was 60(x — 11—2), because the field was
60 times as long as the shortened rod. When the cubit was returned to the rod, the width of
the field was 30 times the restored length of the complete rod, or 30x. Because the area of
the field is 375, it is found that

30x - 60 (x — &) = 375,
which leads to the quadratic equation
1800x” = 150x + 375.

On multiplying both sides of this equation by 1800, the author of the tablet would have
gotten

(1800x)* = 150(1800x) + 1800 - 375,
a quadratic in 1800x. And setting y = 1800x would give
y* = 150y + 1800 - 375.

The instructions given in the cuneiform text are equivalent to substituting in the familiar

formula
= J@ ol
2 2
for a root of y> = ay + b. Adapting the rule to the numbers of the present problem, one
gets

y= V5% + (1800)(375) + 75 = 825 + 75 = 900,

from which x = % ninda is determined.
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2.5 Problems

Write the fractions %, % and %0 in sexagesimal

1
notation by

(a) using the Babylonian method of finding the
reciprocal of the denominator and then
multiplying by the numerator; and

(b) multiplying numerator and denominator by
60 and simplifying.

A tablet in the Yale Babylonian collection reads:

I found a stone but did not weigh it; after I
added 1 and added {;, I weighed it: [result] 1
mina. What was the original weight of the
stone? The original weight was % mina, 8

shegels and 221 se.

Use the equivalence 1 mina = 60 shegels and a sheqel
= 180 se to verify the indicated solution.

[Hint: Call the original weight of the stone x, so that
x+x/7)+ ﬁ(x + x/7) = 60 shegqels.]

Find the solution to this ancient Babylonian problem.

There are two silver rings; 1 of the first ring and
ﬁ of the second ring are broken off, so that
what is broken off weighs 1 sheqgel. The first
diminished by its % weighs as much as the
second diminished by its ﬁ What did the silver
rings originally weigh?

[Hint: Consider the system of equations

XL,y _ 10y
711 7 11’

where x and y are the weights of the two rings.]

X y 1 67)6

A typical Babylonian problem of 1700 B.C. calls for
finding the sides of a rectangle given its semiperimeter
and area; that is, solve systems of equations of the type
X 4+ y = a, xy = b. Find the solution of the particular
system x + y = 10, xy = 16. [Hint: The Babylonians
might have used the identity

(x —y)?=(x+y)?—4xytofindx — y.]

Another Babylonian problem is

To the area of a rectangle, the excess of the
length over the width is added, giving 120;
moreover, the sum of the length and width is 24.
Find the dimensions of the rectangle.

Chapter 2
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[Hint: The problem can be put in the form of two
equations xy + x — y = 120, x + y = 24; if the
substitution y = z — 2 is made, the system becomes
X+ z=26,xz=144.]

Using the Babylonian procedures, solve each of these
systems:

(@ x—y=6,xy=16.
b)) x—y=4,xy=2I
c) x+y=38,xy=15.

On a Babylonian tablet, this problem is solved:

x+y =27, xy 4+ (x —y) = 183.

Solve by first letting z = y 4 2 to get the system
x4z =29, xz=2I10.

On a tablet in the British Museum, this problem is
solved:

‘What the length is, the depth is also [except for
a coefficient of 12]. A box is hollow. If I add its
volume to its cross section, and get 1;10, and if
the length measures 0;30, what is the width?

In solving this problem, let x, y, and z be the length,
width, and depth of the box, respectively, so that

z = 12x, xyz +xy = 1;10, x = 0;30.

A classical example of the quadratic equation in
Babylonian mathematics is found on a tablet in the
British Museum, which states:

I have added 7 times the side of my square to
11 times its surface to obtain 6;15. Reckon with
7 and 11.

Solve for the scribe’s answer of 0;30 for the side of the
square. [Hint: The injunction to “reckon with 7 and
11” means simply that 11x? + 7x = 6;15. Multiply
both sides of this equation by 11, thereby turning it
into a quadratic in 11x.]

Heron of Alexandria solved the quadratic equation
2x? + Zx + x = 212 by multiplying both sides by
11 - 14. Carry out Heron’s calculations to obtain x.

An old Babylonian text reads:
I have added the areas of my two squares;
[result] 25,25. [The side of] the second square is
% the side of the first plus 5.

Find the length of the sides of the two squares.
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12. Tabulate the values of n* + n? forn = 1ton = 10,
and use this table to solve the cubic equation
144x3 + 12x* = 48. [Hint: Multiply the given
equation by 12.]

13. Using the procedure indicated in the hint, solve each of
the following Babylonian problems:

(@) x =30,xy— (x —y)> = 500. [Hint: Subtract
the second equation from the square of the first to
get a quadratic in x — y. Solving this quadratic
leads to a system of the form x —y = a,
xy =b.]

(b) x+y=50,x>+y>+ (x — y)> = 1400. [Hint:
Subtract the square of the first equation from

©

(d

(e

()
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twice the second equation to get a quadratic in

x —y.]

xy = 600, (x + y)* + 60(x — y) = 3100. [Hint:
The formula (x + y)> = (x — y)> + 4xy leads to
a quadratic in x — y.]

xy = 600, 20(x + y) — (x — y)* = 900. [Hint:
The formula (x — y)> = (x + y)*> — 4xy leads to
a quadratic in x + y.]

xy = 600, x> + y> = 1300. [Hint: Square the
first equation to produce a system in u = x2 and
v=y"]

x —y =10, x2 + y? = 1300. [Hint: Subtract the
square of the first equation from the second
equation.]

Another oddity in the history of mathematics was brought

2.6 Plimpton 322 to light when the Babylonian clay tablet Plimpton 322
(catalog number 322 in the G. A. Plimpton collection at

A Tablet Conceming Columbia University) was deciphered by Neugebauer and

Number Triples Sachs in 1945. This tablet is written in Old Babylonian

script, which dates it somewhere between 1900 B.C. and
1600 B.C. The analysis of this extraordinary group of figures establishes beyond any doubt
that the so-called Pythagorean theorem was known to Babylonian mathematicians more than
athousand years before Pythagoras was born. We recall that Pythagoras’s result, which gives
the relation between the lengths of the sides of a right triangle, is expressed succinctly in

the formula x2 + y? = z%.

The text in question, Plimpton 322, is the right-hand part of a larger tablet with several
columns. As is evident from the break at the left-hand side, this tablet was originally larger.
The existence of modern glue on the break implies that the other part was lost after the
tablet was excavated. The tablet is further marred by a deep chip near the middle of the
right-hand edge and a flaked area in the top left corner. The list below conveys its contents.

119
3367
4601
12709
65
319
2291
799
481 (541)
4961
45
1679
161 (25921)
1771
56

169 1
4825 (11521) 2
6649 3
18541 4

97 5

481 6
3541 7
1249 8

769 9
8161 10

75 11
2929 12

289 13

3229 14

106 (53) 15
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Three columns of numbers are preserved, each with a heading. The last column contains
nothing but the numbers 1, 2, ..., 15, indicating that it enumerates the lines. The preceding
two columns are more interesting and are headed by words that might be translated as
“width” and “diagonal.” It is not difficult to verify that they form the leg and hypotenuse
of an integral-sided right triangle. In other words, if the numbers in the middle column are
squared and one subtracts from each of them the square of the corresponding number in the
first column, a perfect square results. For instance, the first row contains the equation

(169)* — (119)* = (120)°.

The text involves several errors, and in the list, the original readings on the tablet appear
in parentheses to the right of the corrected figures. In line 9, the occurrence of 541 instead
of 481 is undoubtedly a scribal error, because in sexagesimal notation, 541 is written 9,1
and 481 is written 8,1. In line 13, the scribe wrote the square of 161 in place of the number
itself, and the number in the last line is half the correct value. There remains an unexplained
error in the second line.

The question naturally arises about how the Babylonians derived the numbers x, y, and
7 satisfying the equation x> + y?> = z2. The values involved in Plimpton 322 are so large that
they could not have been obtained simply by guesswork; using trial-and-error methods, one
would have run across many simpler solutions before these. If the Babylonians possessed
a clearly discernible method for solving the Pythagorean equation, what was it? A clue is
found in a fourth, but incomplete, column along the broken left-hand edge of the Plimpton
tablet. It contains a list of the values z2/x2, which suggests that the relation x? + y* = z?

was reduced to
2 2
() -()=r
X X

If o = z/x and B = y/x, this becomes
o> — g =1.

The problem would then be to construct right triangles whose sides have the rational lengths
1, «, and B, where a? — B2 = 1. Now, the critical step is recognizing that this last equation
can be expressed as

(@ +B)a—p)=1

All the numbers concerned are rational, so if the product of two numbers is 1, they are
reciprocals. That is, one number must be m/n and the other n/m, where m and n are
integers. Setting
m n
o+ B =— and oa—pB=—,
n m
we find by addition that

and by subtraction that
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Babylonian tablet, Plimpton 322. (By courtesy of Columbia University.)

Consequently,

m? + n? m? —n?
(D a=—, B=—F——

2mn
But y = Bx and z = ax; if we now put x = 2mn, so as to get a solution in integers, it
follows that

X =2mn, y:mz—nz, 7 =m?+n>.

These are well-known formulas for finding right triangles with sides of integral length and
were used in Hellenistic times by Diophantus (circa 150), the most original mathematician
of late antiquity.

To arrive at these formulas, apart from the ability to add and subtract fractions, one
needs as the key result the algebraic formula

o’ — B = (a+ B)a — B).

This may have been discovered by consideration of a figure like the one herewith. The shaded
area a® — B2 can be dissected as shown and then rearranged as shown, that is, as a rectangle
with sides of length o + B and o — f. Hence, we have o> — 8% = (a + B)(a — B).




Burton: The History of 2. Mathematics in Early Text
Mathematics: An Civilizations
Introduction, Sixth Edition

76 Chapter 2

© The McGraw-Hill ‘ e

Companies, 2007

Mathematics in Early Civilizations

“ Fp
B
t

T

-

+

i)

The accompanying table exhibits the values of m and n that give rise to the solutions
in Plimpton 322. For example, taking m = 12 and n = 5 in formula (1), we arrive at

x=120 y=119,

z = 169.

The latter two numbers are entries in the first line of the tablet. The only exception is in line
11. Here the choice m =2 andn = 1 leads to x = 4, y = 3, and z = 5, and each of these
must be multiplied by 15 to produce the values listed. One interesting point that emerges
from examining the table is that m and n always factor into products of powers of 2, 3, and 5.

m n X =2mn y=m?—n? 7z =m?+n?
22.3 5 120 119 169
26 33 3456 3367 4825
3.5% 23 4800 4601 6649
53 2.33 13500 12709 18541
32 22 72 65 97
22.5 32 360 319 481
2.33 52 2700 2291 3541
23 3.5 960 799 1249
52 22.3 600 481 769
34 2%.5 6480 4961 8161
Exception 60 45 75
24.3 52 2400 1679 2929
3.5 23 240 161 289
2.52 33 2700 1771 3229
32 5 90 56 106

The lists of m and n that make up the first two columns of the table are such that their
reciprocals all have terminating sexagesimal expansions. If 1/N has the finite expansion

1 aj

N 60 602

a

ax
60k’
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then it can be written as 1/N = a/60, whence 60 = aN. The implication is that N
contains only the prime factors that appear in 60¢ and therefore in 60. But because 60 has
the factorization 60 = 2% - 3 - 5, the permissible factors of N are 2, 3, and 5; that is to say,
with suitable exponents «, 8, and y, we must have N = 2% - 3. 57,

It has been suggested that the values of z in the Plimpton tablet were not computed
directly from z = m? + n? but from the equivalent formula

z=(m +n)2 —2mn.

This proposal furnishes an intriguing explanation of the scribal error in line 2 of the tablet
(the case in which m = 2 = 64, n = 3° = 27). In using the displayed formula, the writer
may have made two mistakes. First, he or she may have added the term 2mn, when it should
have been subtracted; and then, in calculating the term itself, may have written 2 - 60 - 27,
where 2 - 64 - 27 was called for. This would produce the incorrect value

7 = (64 + 27)* + 3240 = 8281 + 3240 = 11521,
instead of

7 = (64 4 27)% — 3456 = 8281 — 3456 = 4825.

Babylonian Use of the Pythagorean Theorem

Some of the most impressive treasures of the Babylonian past have been unearthed at
Susa, capital of ancient Elam, a country bordering on Babylonia and often hostile to it. Susa
has been more or less continuously excavated and for a longer time than any other site in
southern Mesopotamia. Its shapeless mounds were identified by the British archaeologist
William Kennett Loftus, who directed his workmen in sinking the first trenches in 1854. But
large-scale excavations did not really begin until the French archaeological mission took
over the diggings in 1884. In 1902, the mission discovered in the acropolis of Susa one of
the outstanding landmarks in the history of humanity: the code of laws of King Hammurabi
I (circa 1750 B.C.). The code is carved on a well-polished column of black diorite, which
was carried back to Susa from Babylon as a trophy of war. Judged by present-day standards,
the 285 articles are a strange mixture of the most enlightened adjudication with the most
barbarous punishment. They stressed the principle of “equivalent retaliation,” according to
which a punishment would be the equivalent of the wrong done: “If a man has destroyed
the eye of an aristocrat, they shall destroy his eye.” Although Hammurabi used to be called
the first lawgiver, recent discoveries have shown that there were several earlier collections
of Sumerian legal decrees.

Of more mathematical interest is a group of tablets uncovered by the French at Susa
in 1936. These provide some of the oldest Babylonian examples of the use of the theorem
of Pythagoras. One tablet computes the radius r of a circle that circumscribes an isosceles
triangle of sides, 50, 50, and 60.
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A

40I7 r
B30 » 30 /€

The solution goes as follows. The Pythagorean theorem is used first with regard to triangle
ADBtoget AD = 40.Becauser = AE,wethenhave ED = 40 — r. A second application
of the Pythagorean theorem, this time to the triangle £ D B, leads to the equation

r? =30% + (40 — r)’,

which can be solved to give r = %, orr = 31;15.

Another Old Babylonian tablet contains the problem,

A beam of length 0;30 [stands in an upright position against a wall]. The upper end has slipped
down a distance 0;6. How far did the lower end move [from the wall]?

The answer is correctly found with the aid of the Pythagorean theorem.

The Cairo Mathematical Papyrus

Until recently, scholarly opinion had differed about whether the ancient Egyptians were
aware of even a single instance of the Pythagorean theorem, let alone acquainted with the
general validity of the proposition. It is well known that as early as 4000 years ago the
Egyptians had trained surveyors, the harpedonaptae, whose principal measuring instrument
was a stretched rope. The precise orientation of the foundations of the immense structures
of ancient Egypt with the four cardinal points of the compass led some historians to surmise
that these “rope stretchers” were able to construct right angles using ropes divided by two
knots into sections that were in the proportion 3:4:5. When the two ends of the rope were
tied and the sections drawn taut around pegs laid out at the three knots, the rope would take
the shape of a right triangle. However simple this approach may appear today, no surviving
document from antiquity confirms that it actually took place.

The so-called Cairo Mathematical Papyrus, unearthed in 1938 and first examined in
1962, establishes conclusively that the Egyptians of 300 B.C. not only knew that the (3, 4, 5)
triangle was right-angled, but also that the (5, 12, 13) and (20, 21, 29) triangles had this
property. Dating from the early Ptolemeic dynasties, this papyrus contains 40 problems of
a mathematical nature, of which 9 deal exclusively with the Pythagorean theorem. One,
for instance, translates as, “A ladder of 10 cubits has its foot 6 cubits from a wall; to what
height will it reach?”

Two problems are particularly interesting, because they demonstrate the advance in
Egyptian mathematical technique from the time of the Rhind Papyrus. These concern
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Tablet in the Yale Babylonian Collection, showing a square with its diagonals. (Yale
Babylonian Collection, Yale University.)

rectangles having areas of 60 square cubits and diagonals of 13 and 15 cubits. One is
required to find the lengths of their sides. Writing, say, the first of the problems in modern
notation, we have the system of equations

x2 4+ y? =169, xy = 60.

The scribe’s method of solution amounts to adding and subtracting 2xy = 120 from the
equation x? + y? = 169, to get

(x+y7 =28,  (x—y’=49;
or equivalently,
x+y=17, x—y="7.

From this it is found that 2y = 10, or y = 5, and asaresultx = 17 — 5 = 12.
The second problem,

x2 4 y? =225, xy = 60,

is similar, except that the square roots of 345 and 105 are to be found. There were several
methods for approximating the square root of a number that was not a perfect square. In this
case, the scribe used a formula generally attributed to Archimedes (287-212 B.C.), which is
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also found in Babylonian texts,

b
vait+b~a+ —.

2a

The approximations arrived at are

V35 =18 121~ 18+ L =184+ 1+ L
and
V105 = V102 +5~ 10+ 2 =10+ 1.

The Babylonians arrived at the geometric equivalent of Archimedes’ formula through
a procedure known as “square plus sides.” To obtain /N, the first step was to form a square
whose area a® was near to, but smaller than, N. The difference » = N — a2 was viewed as
the area of a rectangle with sides of length a and b/a. This rectangle was then bisected, and
its pieces appended to adjacent edges of the square:

a bl2a

a bla

IS}
Q
]

bl2a

The configuration produced could be interpreted as a square, provided that the missing
shaded corner piece is ignored. Because this new square has sides a + b/2a it follows that
aA+b~@+b / 2a)?, which then leads to the Archimedean approximation for J/N.

Among the Babylonian tablets seeking square roots, there is one from about 2000 B.c.
that asks for the diagonal of a rectangle with sides 0; 40 and 0; 10. After posing the problem,
the scribe gives the following instructions:

You square the base 0; 10 to get 0; 01, 40. Take the reciprocal of the height 0; 40 [result 1; 30]
and multiply by 0; 01, 40. You will see 0; 02, 30. Take its half. Add this 0; 01; 15 to 0;40. You
will see 0;41, 15, the diagonal.

Expressed in algebraic terms, the calculations carried out are

1 1
d= 0;40)?2 0;102=0;40+ - | —— 0;102=0;41,15,
V(0;40)2 + (0; 10) +2(O;4O)( )

which is recognized as a particular case of the approximation

b2
d=\/a2+b2%a+2—.
a
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2.6 Problems

1. In a Babylonian tablet, the following problem is found.
Given that the circumference of a circle is 60 units and
the length of a perpendicular from the center of a chord
of the circle to the circumference is 2 units, find the
length of the chord. In solving this problem, take
T =3.

2. An Old Babylonian tablet calls for finding the area of
an isosceles trapezoid whose sides are 30 units long
and whose bases are 14 and 50. Solve this problem.

14

50

3. In another tablet, one side of a right triangle is 50 units
long. Parallel to the other side and 20 units from this
side, a line is drawn that cuts off a right trapezoid of
area 5, 20 = 320 units. Find the lengths of the bases of
the trapezoid. [Hint: If A is the area of the original
triangle, then 320 + 15y = A = 25x, and
1(x 4 )20 = 320.]

50 Y
20| 5,20

4. In asimilar problem, a right triangle whose base is
30 units is divided into two parts by a line drawn
parallel to the base. It is given that the resulting right
trapezoid has an area larger by 7,0 = 420 than the

© The McGraw-Hill
Companies, 2007
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upper triangle, and that the difference between the
height y of the upper triangle and the height z of the
trapezoid is 20. If x is the length of the upper base of
the trapezoid, these statements lead to the relations
1z(x +30) = 1xy + 420, y — z = 20.

30

The problem calls for finding the values of the
unknown quantities x, y, and z. [Hint: By properties of
similar triangles, y/(y + z) = x/30.]

Another Old Babylonian problem calls for finding the
length of the sides of an isosceles trapezoid, given that
its area is 150, that the difference of its bases is 5 (that
is, by — b, = 5), and that its equal sides are 10 greater
than two-thirds of the sum of its bases (that is,

S =8 = %(bl + by) + 10).

by

by

Solve this problem using an incorrect Babylonian
formula for the area of a trapezoid, namely,
b +b
P + 0y 51+ 5 .
2 2
A Babylonian tablet of 2000 B.C. gives two methods
for calculating the diagonal d of a rectangle with sides
of length 40 and 10 units. The first leads (in specific
numbers) to the approximation

2ab?
3600’

where a is the larger side and b is the shorter side, and
the second method to the approximation

d~a+

2

d~ —.
a+2a

Check the accuracy of these approximations to /1700
by squaring the respective answers.
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7. Because a is smaller than ~/a? + b when b > 0,
whereas a + b/a is larger, the Babylonian
mathematician often approximated «/a? + b by taking
the average of these two values; that is,

:a'f-%’

0<b<ad.

Use this formula to get rational approximations to /2,
/5, and /17. [Hint: In the first case put a = tb=4%
in the second case, puta =2,b = 1.]

8. An iterative procedure for closer approximations to the
square root of a number that was not a square was
obtained by Heron of Alexandria. In his work Metrica
(discovered as recently as 1896 in Constantinople in a
manuscript dating from the eleventh or twelfth
century), he merely states a rule that amounts to the
following. If A is a nonsquare number and a? is the
nearest perfect square to it, so that A = a’ + b, a first
approximation to +/A is the average of the values a

and A/a; that is,
1 A
X = E a+ g .

This number can be used to get a more accurate

approximation,
1 + A
Xo,==x1+—),
2 2 : X1

and the process is repeated as often as desired.

(a) Find approximate square roots, through two
approximations, of the numbers Heron used to
explain his method, namely, 720 and 63.

(b) Show that Heron’s first approximation was
equivalent to a formula of Archimedes—which
in turn was a generalization of the Babylonian
method—namely,

\/azib%a:i:zﬁ.

a
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He is unworthy of the name of man who does not know that the diagonal of a square is incommensurable
with its side.

PLATO
_ . ' The Greeks made mathematics into one disci-
3.1 The Geometrlcal DISCOVGI'IGS Of Thales pline, transforming a varied collection of em-
pirical rules of calculation into an orderly and
Greece and the Aegean Area systematic unity. Although they were plainly

heirs to an accumulation of Eastern knowl-
edge, the Greeks fashioned through their own efforts a mathematics more profound, more
abstract (in the sense of being more remote from the uses of everyday life), and more
rational than any that preceded it. In ancient Babylonia and Egypt, mathematics had been
cultivated chiefly as a tool, either for immediate practical application or as part of the special
knowledge befitting a privileged class of scribes. Greek mathematics, on the other hand,
seems to have been a detached intellectual subject for the connoisseur. The Greeks’ habits of
abstract thought distinguished them from previous thinkers; their concern was not with, say,
triangular fields of grain but with “triangles” and the characteristics that must accompany
“triangularity.” This preference for the abstract concept can be seen in the attitude of the
different cultures toward the number +/2; the Babylonians had computed its approximations
to a high accuracy, but the Greeks proved that it was irrational. The notion of seeking after
knowledge for its own sake was almost completely alien to the older Eastern civilizations,
so that in the application of reasoning to mathematics, the Greeks completely changed the
nature of the subject. Plato’s inscription over the door of his Academy, “Let no man ignorant
of geometry enter here,” was not the admonition of an eccentric but rather a tribute to the
Greek conviction that through the spirit of inquiry and strict logic one could understand a
person’s place in an orderly universe.

All history is based on written documents. Although documentation concerning Egyp-
tian and Babylonian mathematics is often very precise, the primary sources that can give us
a clear picture of the early development of Greek mathematics are meager. In Greece, there
was no papyrus such as was available in Egypt, no clays as in Babylonia. Such “books” as
were written must have been very few; and with the passing of time and ravages of the ele-
ments, little original material has survived. Consequently, early Greek history is a morass of
myths, legends, and dubious anecdotes, preserved by writers who lived centuries later than

85
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the events under consideration. We depend on fragments and copies of copies many times
removed from the original document. However scrupulous the copyist may have been in
filling in obscure passages in an earlier text, we can never be sure how much the copyist had
to call on his or her own imagination or indeed, how well the copyist understood the original.

The Greeks were not always confined to the southeastern corner of Europe, their location
in modern times. Although the Egyptians had kept to themselves, the Greeks were great
travelers. Their colonization of the coasts and the offshore islands of Asia Minor from
the eleventh to the ninth century B.C. was a prologue to later large-scale movements from
mainland Greece. About the middle of the eighth century B.C., a network of Greek cities
was founded on the coastal reaches of the Mediterranean, with scattered settlements as
far afield as the eastern end of the Black Sea. Down to 650 B.C., the main vent for Greek
expansion was lower Italy and Sicily; the many flourishing colonies there caused the whole
area to be given the name Greece-in-the-West. Although the earlier migration to Asia Minor
was probably the result of the Dorian conquest of large portions of the Balkan Peninsula,
economic distress and political unrest in the homeland were the new incentives to spread
overseas. An increase in population caused a crisis in land ownership, as well as a serious
shortage of food. All these migrations not only provided an outlet for dissatisfied elements
of the population at home but also served to establish foreign markets and to lay the material
foundations of art, literature, and science. Although Hellenic culture had its beginnings in an
expanded Greece, in due course peninsular Greece became only a part of “Greater Greece.”
By 800 B.C., there was, broadly speaking, a unity of language and custom throughout the
ancient Mediterranean world.

The wave of colonization that took place outside of the Aegean from the eighth to
the sixth century B.C. paved the way for an extraordinary breakthrough of reason and the
attendant cultural advancement. Historians have called this phenomenon the Greek miracle.
The miracle of Greece was not single but twofold—first the unrivaled rapidity and variety
and quality of its achievement; then its success in permeating and imposing its values on
alien civilizations. For this, the colonies were like conduits through which Greek culture
flowed to the world of the “Barbarians,” and the older Egyptian and Babylonian cultures
streamed to the Greeks. It is remarkable that all the early Greek mathematics came from the
outposts in Asia Minor, southern Italy, and Africa, and not from mainland Greece. It is as if
the scanty Greek populations living next door to the more developed societies had their wits
sharpened by this contact, as well as having access to the knowledge gathered by them. The
most decisive of all Greek borrowings was the art of writing with the convenient Phoenician
alphabet. Each of the symbols of the Phoenician alphabet stood for a consonant; there were
no signs for vowels. The Phoenician alphabet had more consonant symbols than the Greek
language required, so the Greeks set out by selecting and adapting the consonant symbols
they needed. Thereafter, they assigned vowel values to the remaining symbols, adding
only such new signs as they needed (for instance «, which had a consonantal value in the
Phoenician alphabet, became the symbol for the vowel A in the Greek alphabet). As in other
matters, the Greek city-states vied with each other in the elaboration of the alphabet, with
as many as 10 different versions getting under way. Gradually, one of these local alphabets,
the Ionian, gained the ascendancy; and after its official adoption by Athens in 403 B.C., it
spread rapidly through the rest of Greece. Although the acceptance of alphabetic writing did
not initiate anything like popular education, the ease with which it could be learned made
possible a wider distribution of learning than had prevailed in the older cultures, where
reading and writing were the property of a priestly class. (Although the Phoenician traders
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eventually spread the new device throughout the Mediterranean world, the intelligentsia of
Egypt and Babylonia disdained the alphabet—possibly because they had invested lifetimes
in learning the elaborate ideograms that were the mysterious delight of specialists.)

Coinage in precious metals was invented in the Greek cities of Asia Minor about
700 B.C., stimulating trade and giving rise to a money economy based not only on agriculture
but also on movable goods. In rendering possible the accumulation of wealth, this new
money economy permitted the formation of a leisure class from which an intellectual
aristocracy could emerge. Aristotle recognized how important nonpractical activity is in the
advancement of knowledge when he wrote in his Metaphysics:

When all the inventions had been discovered, the sciences which are not concerned with the
pleasures and necessities of life were developed first in the lands where men began to have
leisure. This is the reason why mathematics originated in Egypt, for there the priestly class was
able to enjoy leisure.

In most ancient civilized societies, an educated elite, usually priests, directed the ac-
tivities of the community. Whether the priests were themselves the government (as in early
Babylonia) or merely its servants (as in Egypt), proficiency in writing and mathematics was
considered part of their special skills. In the structure of Egyptian bureaucracy, the man of
learning held a position of great privilege and potential power. The Greek historian Polybius
remarked that “the Egyptian priests obtained positions of leadership and respect because they
surpassed their fellows in knowledge.” Eastern learning was a mystery shared only by the
specialists and not destined for the citizenry. Although an able and ambitious man had some
opportunity to improve his lot through education, these hopes were seldom realized—just as
very few of Napoleon’s soldiers ever became field marshals. By contrast, Greek education
was far more broadly based and designed to produce gentleman amateurs. Perhaps the dif-
ference was that the Greeks had no powerful priesthood that could monopolize learning as
its own preserve; no sacred writings or rigid dogmas that required the mind’s subservience.
In any event, the first Greek intellectuals came not from the class of governmental managers
but from people of affairs, for whom business was a profession and learning a pastime.

Geography shaped the pattern of Greek political life. In Egypt and Babylonia, it was
easy to subject a large population to a single ruler, but in Greece, where every district was
separated from the next by mountains or the sea, central control by an absolute monarch
was impossible. Mountainous barriers were not enough to prevent invasion, but they were
enough to prevent one state from being merged with another. Patriotic loyalty was to the
native city—Athens, Corinth, Thebes, or Sparta—and not to Greece as a whole. In great
emergencies the Greek states acted collectively, seeing that they must unite or be destroyed.
During the Persian invasions of the later sixth and early fifth centuries B.C., they pooled their
fighting forces to defeat Darius at Marathon (490 B.C.) and Xerxes at Salamis (480 B.C.),
after a rearguard action by 300 Spartans at Thermopylae. On none of these occasions was the
union successful or long-lasting, because with each victory the city-states would promptly
fall out and exhaust themselves in long local wars. The lack of political unity made the
outcome inevitable. The end came when Philip II of Macedonia overpowered the mixed
Greek forces at the battle of Charonea in 338 B.C. and established himself as the head of all
the Greek states except Sparta. Philip died two years later, and the power passed into the
hands of his son, Alexander the Great, who achieved what no leader before had done. He
unified Greece and carried Greek civilization to the limits of the known world. In 323 B.C,,
when Alexander died at age 32, he ruled over conquests of more than 2 million square
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miles. But neither Greeks nor Greek culture vanished with the change of masters. The years
that followed—from the time of Alexander the Great into the first century B.C—formed a
brilliant period of history known to scholars as the Hellenistic Age.

The Dawn of Demonstrative Geometry: Thales of Miletos

The rise of Greek mathematics coincides in time with the general flowering of Greek
civilization in the sixth century B.C. (“Greek civilization” usually indicates a culture begin-
ning in the Iron Age and flourishing most brilliantly in the fifth and fourth centuries B.C.)
From the modest beginnings with the Pythagoreans, number theory and geometry devel-
oped rapidly, so that early Greek mathematics reached its zenith in the work of the great
geometers of antiquity—Euclid, Archimedes, and Apollonius. Thereafter, the discoveries
were less striking, although great names such as Ptolemy, Pappus, and Diophantus testify to
memorable accomplishments from time to time. These pioneering contributors exhausted
the possibilities of elementary mathematics to the extent that little significant progress was
made, beyond what we call Greek mathematics, until the sixteenth century. What is more
striking still is that almost all the really productive work was done in the relatively short
interval from 350 to 200 B.C., and not in the old Aegean world but by Greek immigrants in
Alexandria under the Ptolemies.

The first individuals with whom specific mathematical discoveries are traditionally
associated are Thales of Miletus (circa 625-547 B.C.) and Pythagoras of Samos (circa
580-500 B.C.). Thales was of Phoenician descent, born in Miletus, a city of Ionia, at a time
when a Greek colony flourished on the coast of Asia Minor. He seems to have spent his early
years engaged in commercial ventures, and it is said that in his travels he learned geometry
from the Egyptians and astronomy from the Babylonians. To his admiring countrymen of
later generations, Thales was known as the first of the Seven Sages of Greece, the only
mathematician so honored. In general, these men earned the title not so much as scholars as
through statesmanship and philosophical and ethical wisdom. Thales is supposed to have
coined the maxim “Know thyself,” and when asked what was the strangest thing he had
ever seen, he answered “An aged tyrant.”

Ancient opinion is unanimous in regarding Thales as unusually shrewd in politics and
commerce no less than in science, and many interesting anecdotes, some serious and some
fanciful, are told about his cleverness. On one occasion, according to Aristotle, after several
years in which the olive trees failed to produce, Thales used his skill in astronomy to calculate
that favorable weather conditions were due the next season. Anticipating an unexpectedly
abundant crop he bought up all of the olive presses around Miletus. When the season came,
having secured control of the presses, he was able to make his own terms for renting them
out and thus realized a large sum. Others say that Thales, having proved the point that it was
easy for philosophers to become rich if they wished, sold his olive oil at a reasonable price.

Another favorite story is related by Aesop. It appears that once one of Thales” mules,
loaded with salt for trade, accidentally discovered that if it rolled over in a stream, the
contents of its load would dissolve; on every trip thereafter, the beast deliberately repeated
the same stunt. Thales discouraged this habit by the expedient of filling the mule’s saddlebags
with sponges instead of salt. This, if not true, is certainly well invented and more in character
than the amusing tale Plato tells. One night, according to Plato, Thales was out walking and
looking at the stars. He looked so intently at the stars that he fell into a ditch, whereupon an
old woman attending him exclaimed, “How can you tell what is going on in the sky when
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you can’t see what is lying at your feet?” This anecdote was often quoted in antiquity to
illustrate the impractical nature of scholars.

As we have seen, the mathematics of the Egyptians was fundamentally a tool, crudely
shaped to meet practical needs. The Greek intellect seized on this rich body of raw material
and refined from it the common principles, thereby making the knowledge more general
and more comprehensible and simultaneously discovering much that was new. Thales is
generally hailed as the first to introduce using logical proof based on deductive reasoning
rather than on experiment and intuition to support an argument. Proclus (about 450), in his
Commentary on the First Book of Euclid’s Elements, declared:

Thales was the first to go into Egypt and bring back this learning [geometry] into Greece. He dis-
covered many propositions himself and he disclosed to his successors the underlying principles
of many others, in some cases his methods being more general, in others more empirical.

Modern reservations notwithstanding, if the mathematical attainments attributed to Thales
by such Greek historians as Herodotus and Proclus are accepted, he must be credited with
the following geometric propositions.

® An angle inscribed in a semicircle is a right angle.

e A circle is bisected by its diameter.

® The base angles of an isosceles triangle are equal.

e [f two straight lines intersect, the opposite angles are equal.
e The sides of similar triangles are proportional.

e  Two triangles are congruent if they have one side and two adjacent angles, respectively,
equal.

Because there is a continuous line from Egyptian to Greek mathematics, all of the listed
facts may well have been known to the Egyptians. For them, the statements would remain
unrelated, but for the Greeks they were the beginning of an extraordinary development in
geometry. Conventional history inclines in such instances to look for some individual to
whom the “miracle” can be ascribed. Thus, Thales is traditionally designated the father of
geometry, or the first mathematician. Although we are not certain which propositions are
directly attributable to him, it seems clear that Thales contributed something to the rational
organization of geometry—perhaps the deductive method. For the orderly development of
theorems by rigorous proof was entirely new and was thereafter a characteristic feature of
Greek mathematics.

Measurements Using Geometry

Several stories purport to illustrate Thales’ interest in Egypt. According to legend, his
most spectacular accomplishment while there was the indirect measurement of the height of
the Great Pyramid by means of shadows. There are two versions of the story, one describing
a very simple method of measurement and the other a more complex method. The earliest
version is that Thales observed the length of the shadow of the pyramid at that hour of the
day when a man’s shadow is the same length as himself. Plutarch improved on this when
he wrote in the Convivium:

Although he [the king of Egypt] admired you [Thales] for other things, yet he particularly
liked the manner by which you measured the height of the pyramid without any trouble or
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instrument; for, by merely placing your staff at the extremity of the shadow which the pyramid
casts, you formed, by the impact of the sun’s rays, two triangles and so showed that the height
of the pyramid was to the length of the staff in the same ratio as their respective shadows.

Both versions of the story depend on the same geometric proposition, namely, that the sides
of equiangular triangles are proportional. Thales, having thus conceived of two similar
triangles, argued that the height & of the pyramid was to the length 4’ of the staff as the
length s of the pyramid’s shadow was to the length s’ of the shadow cast by the staff when
it was held vertically:

h/h' =s/s'.

Thales knew already that the distance along each side of the base of the Great Pyramid was
756 feet and that his staff was 6 feet long. It was necessary only to measure the shadow
of the pyramid (the distance from the tip of the shadow to the center of the base of the
pyramid) and the shadow of the staff. It was 342 feet from the tip of the pyramid’s shadow
to the edge of the base, and the shadow of the staff measured 9 feet.

= = ~ ~ ér ~ ~
378 342 9
720

Now Thales had all the required dimensions, for three items of the proportion would give
him the missing fourth item. The height of the Great Pyramid was

/ 06 2
i — w = 2720 = 480 fee.
S

Another practical application of geometry attributed to Thales is determining how far
a ship at sea is from the shore. How he used his knowledge of geometry for this purpose
can only be conjectured. According to Proclus, Thales used the congruence theorem, which
asserts that a triangle is completely determined if one side and two adjacent angles are
known. The most probable assumption is that Thales, observing the ship from the top of
a lookout tower (say of height %) used the proportionality of the sides of two similar right
triangles. All he needed was a simple instrument with two legs forming a right angle, so
that he could mark off the point £ where the line of sight with the ship cut the leg parallel
to the ground. This would produce similar triangles ACB and DCE.

h =

C (Eye of observer)

i

D E (Point on rod)

Sea level
A (Base of tower) X

B (Ship)
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If x is the unknown distance of the ship, then by properties of similar triangles, one has

X I+ h

o1
or

. y(h+l)‘

)

The only objection to this approach is that it does not depend directly on the theorem
concerning two triangles in which corresponding sides and their adjacent angles are equal,
as Proclus implied.

Another possible approach is that to find the distance x from the shore A to the ship
B, one measures from A along a straight line perpendicular to AB an arbitrary length AC
and determines its midpoint D. From C, construct a line CE perpendicular to AC (in a
direction opposite to AB) and let E be the point on it which is in a straight line with B and
D. Clearly, C E has the same length as AB, and C E can be measured, so that A B is known.
This supposition is open to a different objection. It hardly seems credible that to ascertain
the distance of the ship, the observer should have had to reproduce and measure on land
an enormous triangle. Such an undertaking would have been so inconvenient as to deprive
Thales’ discovery of any practical value.

B (Ship)

E (Eye of observer)

It is more likely that triangle ECD was constructed smaller and similar to triangle BAD,
rather than congruent to it.

Among his contemporaries, Thales was more famous as an astronomer than as a math-
ematician. A legend that reappears from time to time is that he amazed his fellow Greeks
by predicting a solar eclipse in 585 B.C. Herodotus records that the event took place during
a battle between the Lydians and the Medes, and when day turned into night, the fighting
ceased. The warring kings were so awed that they concluded a lasting peace. Although
Thales’ fame as a scientist rests mainly on this achievement, it is almost impossible to
give credence to the tale. The astronomical records of that time were not accurate enough
to allow anything like a precise forecast. Thales may well have had some knowledge of
cycles of lunar eclipses—these were already known to the Babylonians—but his alleged
prediction of the year of a solar eclipse would only have been a fortunate guess. A likely
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explanation is that he happened to be the “wise man” known to the people who saw this
striking phenomenon, and so they assumed that Thales must have been able to foresee it.
Although Thales left no written record of any book or document behind him, he ranks
high among mathematicians for his pioneering contribution to the logical development
of geometry. He may even have been Pythagoras’s teacher; some sources tell that Thales
recognized the genius of the young Pythagoras, to whom he taught all that he knew.

The study of numbers in the abstract begins in

Pythagorean Mathematics sixth century B.C. Greece with Pythagoras and

the Pythagoreans. Our knowledge of the life of
Pythagoras and His Followers Pythagoras is scanty, and little can be said with

any certainty. Those scraps of information that
have filtered down to us come from early writers who vied with each other in inventing
fables concerning his travels, miraculous powers, and teachings. According to the best
estimates, Pythagoras was born between 580 and 569 B.C. on the Aegean island Samos.
He appears to have left Samos permanently as early as his eighteenth year to study in
Phoenicia and Egypt, and he may have extended his journeys as far eastward as Babylonia.
Some none-too-trustworthy sources say that when Egypt was conquered by the Persian king
Cambyses in 525 B.C., Pythagoras was carried back to Babylonia with the other Egyptian
captives. Other authorities indicate, however, that he followed Cambyses voluntarily. When
Pythagoras reappeared after years of wandering (around the age of 50), he sought out a favor-
able place for a school. Banned from his native Samos by the powerful tyrant Polycrates, he
turned westward and finally settled at Crotona, a prosperous Dorian colony in southern Italy.

Founding a school was not unusual in the Greek world. The distinctive feature of the
school of Pythagoras was that its aims were at once political, philosophical, and religious.
Formed of some 300 young aristocrats, the community had the character of a fraternity or a
secret society: it was a closely knit order in which all worldly goods were held in common.
The school tried rigidly to regulate the diet and way of life of its members, and to invoke
a common method of education. Pupils concentrated on four mathemata, or subjects of
study: arithmetica (arithmetic, in the sense of number theory as opposed to calculating),
harmonia (music), geometria (geometry), and astrologia (astronomy). This fourfold division
of knowledge became known in the Middle Ages as the “quadrivium,” to which was then
added the trivium of logic, grammar, and rhetoric—subjects connected with the use of
language. These seven liberal arts came to be looked on as the necessary and proper course
of study for the educated person.

Pythagoras divided those who attended his lectures into two grades of disciples: the
acoustici (or listeners) and the mathematici. After three years of listening in mute obedience
to Pythagoras’s voice from behind a curtain, a pupil could be initiated into the inner circle,
to whose members were confided the main doctrines of the school. Although women were
forbidden by law to attend public meetings, they were admitted to the master’s lectures. One
source indicates that there were at least 28 women in the select category of mathematici.
When Pythagoras was close to 60 years old, he married one of his pupils, Theano. She was
a remarkably able mathematician who not only inspired him during the latter years of his
life but continued to promulgate his system of thought after his death. (Some contradictory
sources say that Theano was Pythagoras’s daughter; yet others, that she was only a highly
gifted pupil, never his wife.)
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Pythagoras
(circa 580-500 B.C.)

(The Bettmann Archive.)

Pythagoras followed the custom of Eastern teachers by passing along his views by
word of mouth. He seems not to have committed any of his teachings to writing. And
furthermore, the members of his community were bound not to disclose to outsiders anything
taught by the master or discovered by others in the brotherhood as a result of the master’s
teaching. Legend has it that one talkative disciple was drowned in a shipwreck as the gods’
punishment for his public boast that he had added the dodecahedron to the set of regular
solids Pythagoras had enumerated. The symbol on which the members of the Pythagorean
community swore their oaths was the “tetractys,” or holy fourfoldness, which was supposed
to stand for the four elements: fire, water, air, and earth. The tetractys was represented
geometrically by an equilateral triangle made up of 10 dots, and arithmetically by the
number 1 +2 43 +4 = 10.

According to the Greek writer and satirist Lucian (120-180), Pythagoras asked someone
to count; when he had reached 4, Pythagoras interrupted, “Do you see? What you take to
be 4 is 10, a perfect triangle and our oath.”

Like other mystery cults of that time, the Pythagoreans had their strange initiations,
rites, and prohibitions. They refused, for example, to eat beans, drink wine, pick up anything
that had fallen, or stir a fire with an iron. They insisted, in addition to these curious taboos,
on a life of virtue, especially of friendship. From Pythagoreanism comes the story of Damon
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and Pythias. (Pythias, condemned to death for plotting against the king, was given leave
to arrange his affairs after Damon pledged his own life if his friend did not return.) The
five-pointed star, or pentagram, was used as a sign whereby members of the brotherhood
could recognize one another. It is told that a Pythagorean fell ill while traveling and failed
to survive, despite the nursing of a kind-hearted innkeeper. Before dying, he drew the
pentagram star on a board and begged his host to hang it outside. Some time later another
Pythagorean, passing by, noticed the symbol and after hearing the innkeeper’s tale, rewarded
him handsomely.

The Pythagoreans fancied that the soul could leave one’s body, either temporarily or
permanently, and that it could inhabit the body of another person or animal. As a result
of this doctrine of transmigration of souls, they would eat no meat or fish lest the animal
slaughtered be the abode of a friend. The Pythagoreans would not kill anything except as a
gift to the gods, and they would not even wear garments of wool, since wool is an animal
product. A story is told in which Pythagoras, coming across a small dog being thrashed, said,
“Stop the beating, for in this dog lives the soul of my friend; I recognize him by his voice.”

Accounts of Pythagoras’s death do not agree. What is clear is that political ideas were
gradually added to the other doctrines, and for a time, the autocratic Pythagoreans succeeded
in dominating the local government in Crotona and the other Greek cities in southern
Italy. About 500 B.C., there was a violent popular revolt in which the meetinghouse of the
Pythagoreans was surrounded and set afire. Only a few of those present survived. In several
accounts, Pythagoras himself is said to have perished in the inferno. Those with a sense of
drama would have us believe that Pythagoras’s disciples made a bridge over the fire with
their bodies, so that the master might escape the frenzied mob. It is said in these versions
that he fled to nearby Metapontum but in the ensuing flight, having reached a field of sacred
beans, chose to die at the hands of his enemies rather than trample down the plants. With
the death of Pythagoras, many members of the school emigrated to the Greek mainland,
some stayed behind for a time but by the middle of the fourth century B.C. all had left
Italy. Although the political influence of the Pythagoreans was destroyed, they continued
to exist for several centuries longer as a philosophical and mathematical order. To the end,
the dwindling band of exiles remained a secret society, leaving no written record, and with
notable self-denial, ascribing all their discoveries to the master.

What set the Pythagoreans apart from the other sects was the philosophy that “knowl-
edge is the greatest purification,” and to them knowledge meant mathematics. Never before
or since has mathematics had such an essential part in life and religion as it did with the
Pythagoreans. At the heart of their scheme of things was the belief that some sort of an
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operative reality existed behind the phenomena of nature, and that through the volition of
this supreme architect, the universe was created—that beneath the apparent multiplicity
and confusion of the world around us there was a fundamental simplicity and stability that
reason might discover. They further theorized that everything, physical and spiritual, had
been assigned its allotted number and form, the general thesis being “Everything is number.”
(By “number” was meant a positive integer.) All this culminated in the notion that without
the help of mathematics, a rational understanding of the ruling principles at work in the
universe would be impossible. Aristotle wrote in the Metaphysics:

The Pythagoreans ... devoted themselves to mathematics; they were the first to advance this
study and having been brought up in it they thought its principles were the principles of all
things.

About Pythagoras himself, we are told by another chronicler that “he seems to have attached
supreme importance to the study of arithmetic, which he advanced and took out of the domain
of commercial utility.”

Music provided the Pythagoreans with the best instance of their principle that “number”
was the cause of everything in nature. Tradition credits Pythagoras with the discovery that
notes sounded by a vibrating string depended on the string’s length, and in particular, that a
harmonious sound was produced by plucking two equally taut strings, one twice the length
of the other. In modern terms, the interval between these two notes is an octave. Similarly, if
one string were half again the length of the other, the shorter one would give off a note, called
a “fifth,” above that emitted by the longer; whereas if one were a third longer than the other a
“fourth” would be produced—one note four tones above the other. It was concluded that the
most beautiful musical harmonies corresponded to the simplest ratios of whole numbers,
namely, the ratios 2:1, 3:2, and 4:3 (the four numbers 1, 2, 3, and 4 being enshrined in the
famous Pythagorean tetractys, or triangle of dots).

The Pythagorean views on astronomy could be considered an extension of this doctrine
of harmonic intervals. Pythagoras held that each of the seven known planets, among which
he included the sun and the moon, was carried around the earth on a crystal sphere of its
own. Because it was surely impossible for such gigantic spheres to whirl endlessly through
space without generating any noise by their motion, each body would have to produce a
certain tone according to its distance from the center. The whole system created a celestial
harmony, which Pythagoras alone among all mortals could hear. This theory was the basis
for the idea of the “music of the spheres,” a continually recurring notion in medieval
astronomical speculation.

The Pythagorean doctrine was apparently a curious mixture of cosmic philosophy
and number mysticism, a sort of supernumerology that assigned to everything material
or spiritual a definite integer. Among the writings of the Pythagoreans, we find that 1
represented reason, because reason could produce only one consistent body of truths; 2
stood for man and 3 for woman; 4 was the Pythagorean symbol for justice, because it was
the first number to be the product of equals; 5 was identified with marriage, formed as it was
by the union of 2 and 3; 6 was the number of creation; and so forth. All the even numbers,
after the first even number, were separable into other numbers; hence they were prolific
and were considered feminine and earthy—and somewhat less highly regarded in general.
And because the Pythagoreans were a predominantly male society, they classified the odd
numbers, after the first one, as masculine and divine.



96

‘ Burton: The History of
Mathematics: An

3. The Beginnings of Greek | Text © The McGraw-Hill
Mathematics Companies, 2007

Introduction, Sixth Edition

Chapter 3 The Beginnings of Greek Mathematics

Although these speculations about numbers as models of “things” strike us as far-
fetched and fanciful today, it must be remembered that the intellectuals of the classical Greek
period were largely absorbed in philosophy and that these same men, because they possessed
intellectual interest, were the very ones who were laying the foundations for mathematics
as a system of thought. To Pythagoras and his followers, mathematics was largely a means
to an end, an end in which the human spirit was ennobled through a mystical contemplation
of the good and the beautiful. Only with the foundation of the School of Alexandria do we
enter a new phase in which mathematics is made into an intellectual exercise pursued for
its own sake, independent of its utilitarian applications.

Even though the Pythagoreans first studied numbers less for themselves than for the
things they represented, they were nonetheless led to recognize all sorts of new arithmetical
properties.

Nicomachus’s Introductio Arithmeticae

The most complete exposition that has come down to us of the arithmetic of Pythagoras
and his immediate successors is contained in the Introductio Arithmeticae of Nicomachus
of Gerasa (circa 100). Though Nicomachus did not contribute significant new mathematical
results, his Introductio Arithmeticae is noteworthy as the first systematic work in which
arithmetic was treated independent of geometry. The content is much the same as that of the
number-theoretic books of Euclid’s Elements (Books VII, VIII, and IX), but the approach
is different. Whereas Euclid represented numbers by straight lines with letters attached—a
system that allowed him to work with numbers in general without having to assign them
specific values—Nicomachus represented numbers by letters with definite values, thereby
having to resort to all sorts of circumlocution to distinguish among undetermined numbers.
Euclid always offered proofs of his propositions, a thing wholly lacking in Nicomachus.
At times, Nicomachus simply enunciated a general result and gave concrete examples of
it; on other occasions he left the general proposition to be inferred from the particular
examples presented alone.

Euclid did not share the philosophical proclivities (or more accurately, the Pythagorean
tendencies) of Nicomachus but held himself to a more strictly scientific level. Nicomachus’s
treatise was probably like this because he was not a creative mathematician and because he
intended his work to be a popular treatment of arithmetic designed to acquaint the beginner
with the important discoveries to that date.

Despite a lack of originality and a mathematical poverty, Nicomachus’s Introductio
became a leading textbook in the Latin West from the time it was written until the 1500s.
The Arab world also became acquainted with Greek arithmetic through a translation of the
Introductio by Thabit-ibn-Korra in the ninth century. Indeed, the influence of Nicomachus’s
treatise can be judged by the number of versions or commentaries that appeared in ancient
times and also by the number of authors who quoted it. An indication of the book’s renown
is that the second-century Greek writer Lucian, wishing to pay the highest compliment to
a calculator, said: “You reckon like Nicomachus of Gerasa.”

Sometime about 450 B.C., the Greeks adopted an alphabetic notation for representing
numbers; the first nine letters of the Greek alphabet were associated with the first nine
integers, the next nine letters represented the first nine integral multiples of 10, and the last
nine letters were used for the first nine integral multiples of 100. (Three older letters, not
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found in the present-day Greek alphabet, were introduced to make the required 27.) It is
unlikely that the early Pythagoreans had any number symbols, so they must have thought
of numbers in a strictly visual way, either as pebbles placed in the sand or as dots in certain
geometric patterns. Thus, numbers were classified as triangular, square, pentagonal, and
so on, according to the shapes made by the arrangement of the dots. Numbers that can be
represented in geometric form are nowadays called figurative, or polygonal, numbers; and
such were considered by Nicomachus in the Introductio. Pythagoras himself was acquainted
at least with the triangular numbers, and very probably with square numbers, and the other
polygonal numbers were treated by later members of his school.

The numbers 1, 3, 6, and 10 are examples of triangular numbers, because each of these
counts the number of dots that can be arranged evenly in an equilateral triangle.

A

(=1 t,=3 =6 t,=10

Similarly, the numbers 1, 4, 9, and 16 are said to be square numbers, because as dots they
can be depicted as squares.

L]
sp=1 s,=4 53=9 s,=16

One can read off some remarkable number-theoretic laws from such configurations. For
instance, the sum of two consecutive triangular numbers always equals the square number
whose “side” is the same as the “side” of the larger of the two triangles. This can be
confirmed geometrically by separating the dots with a slash and then counting them, as in
the accompanying figure. It is just as easy to prove the result by an algebraic argument.

S,=h+1 S3=h+1 Sy=t+iy

However, first notice how the triangular numbers are formed; each new one is obtained
from the previous triangular number by adding another row containing one more dot than
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the previous row added. Thus, if ¢, designates the nth triangular number, then

ty,=1ty_1+n
=tn—2+(n_1)+n

=t +24+3+---+(—1D+n
=14+2+3+---+(n—-1)+n.

Our plan is to fit together two triangles, each representing #, (hence, each consists of n rows
of dots), to produce a rectangular array whose sides are n and n + 1. In the next figure, for
example, n = 5.

It is clear that such an array contains n(n + 1) dots and so

2t, =nn+1),
or equivalently,

P nn—+1)

n — ) .

With this formula available, one sees easily that the nth square number s, is the sum of two
successive triangular numbers; for

2=n(n+1)+(n—1)n

=1, +t_1.
5 > + -1

Sy =n

Gathering up the pieces, we get as a bonus an expression for the sum of the first # numbers:

1
14243+ 4n= —”(”; ).
Likewise, a formula for the sum of the first # odd numbers can be found. The appropriate
starting point is the observation that a square made up of n dots on a side can be divided
into a smaller square of side n — 1 and an L-shaped border (a gnomon).
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L] L) L]
L[] L] L]

By repeating this subdivision, as in the next diagram, it becomes evident that the differences
between successive nested squares produce the sequence of odd numbers; consequently,

143454+---4+@2n—1)=n

The Pythagoreans may have proved this result by first considering the n equations

2 =1
22 -12=3
P_2=5

42 -3=7

n?—(m—172=2n-1.
Adding these equations, we get
P+ 1)4+@ =2+ 42— (n— 1)
=1434+5+--+Qn—1),
which reduces to

n=14+34+54+---4+@Qn—1.

The Theory of Figurative Numbers

The Pythagoreans could not have expected the theory of figurative numbers to attract
the attention of later scholars of the highest rank. In 1665, the mathematician-philosopher
Pascal wrote his Treatise on Figurative Numbers. In it, he asserted that every positive integer
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was the sum of three or fewer triangular numbers. For instance,
16 =6+ 10, 39 =34 15+ 21,
25=14+3+4+21, 150 = 6 + 66 + 78.

This remarkable result was conjectured by Fermat in a letter to Mersenne dated 1636 and
first proved by Gauss in 1801.
Another interesting pattern can be observed from the following equations:

B= 1=¢

P+2= 9=1]
P+2243= 36=1
B+2343+43=100=1].

So far, the right-hand column gives the sequence of squares of the triangular numbers. This
pattern leads one to suspect that the sum of the first n cubes equals the square of the nth
triangular number. For a formal verification, let us begin by noting that the algebraic identity

[k(k — 1) + 1] + [k(k — 1) + 3] + [k(k — 1) + 5]
+oo 4 [ktk— D+ 2k — D] =k°

can be used to produce cubes. Taking successively k = 1, 2, 3, ..., n in this formula pro-
duces the following set of equations:

1=1
345=23
74+94+11=33

13415417+ 19 =43

[n(n — D+ 1+ [n(n—1)+3]1+--+[n(n — 1)+ Q2n — 1] =n’.
Adding together these last n equations, one finds that
1+3+5+7+9+ -+ [n(n—-1)+(2n—1)]
=P 422 +3 +.. 407,

where the left-hand side consists of consecutive odd integers. The key to success lies in
calculating the number of terms that appear on the left. For this, let us write the last term as

nn—+1) {
2 ki
so that the expression in question involves the sum of all odd integers from 1 to

2[n(n + 1)/2] — 1, a total of n(n + 1)/2 terms. From what was proved earlier, we know
that the sum of the first n(n + 1)/2 odd integers equals [n(n + 1)/2]?; it turns out that

n(n+1) 2—l2
2 oo

n(n—1)+(2n—l)=n2+n—1=2[

13+23+33+~-~+n3=[
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This unexpected identity, relating sums of cubes to triangular numbers, goes back to the
first century and is usually attributed to Nicomachus himself.

Finding a formula for the sum of the squares of the first » numbers takes a bit more
effort. Let us first give a geometric argument for the case n = 4, using reasoning that can
be generalized for any positive integer n. We begin by placing square arrays containing 12,
22,32, and 47 dots adjacent to each other.

Next let us add horizontal rows consisting of 1, 3, 6, and 10 dots, respectively, to form a
rectangle of width 1 4+ 2 + 3 44 and height 4 4 1. This is pictured here geometrically.

Counting the dots in the squares and rows should make it clear that
P +2 4324+ (14+34+6+10) =1 +2+3+HE+ 1),
and consequently that

4.5.9
(1242243244 =10-5—-20=30 = .

Proceeding along similar lines, one can get a formula for
PP+22 43"+ 40,

where 7 is arbitrary. Simply place square arrays for 12, 22,32, ..., n? dots side by side and
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fit n rows of dots together, beginning with the shortest row on the bottom, to get a rectangle.

1+2+3+4+5 1
1+2+3+4

1+2+3 n=5)
2
1+2 2 5 5
2
1 » 3

2]

1 2 3 4 5

The dimensions of the rectangle are 1 +2 43 4 --- 4+ n by n + 1, so that it encompasses
a total of

A4+243 4 +mn+1)

dots. This gives one side of the desired identity. For the other side, we add the dots in
consecutive squares and rows, to arrive at the sum

(12422432 4. 4n?)
+1+0+2)+A+2+3)+--+1A+2+3+---+n)].
In algebraic form, our identity is
(12422432 + - +n?)
+0+0+2)+A+2+3)+---+A+2+3+---+n)]
=(1+24+3+---+n)n+1).
If welet S = 12 4+ 22 + 32 4+ ... 4 n2, this becomes
S+1+A+2)+A+243)+--+(1+24+3+---+n)]
=(1+2+3+---+nn+1).

The foregoing expression can be simplified by appealing to the fact that the sum of the first
k integers is k(k + 1)/2; after making the appropriate substitutions, we get

1-2 2.3 3.4 nn+1) n(n + 1)
S I —_— P = ,
+[ 2 + 2 + 2 + 2 i| 2
which can be written

n(n + 1)

1
S—i—E[l(l+1)+2(2—|—1)+3(3+1)+-~~+n(n+1)]= )

This yields

n(n + 1)?

1
SHSIAP+22 43 4 )+ (1L +243 4+l = ———,



Burton: The History of

Introduction, Sixth Edition

3. The Beginnings of Greek | Text © The McGraw-Hill ‘ @
Mathematics Companies, 2007

Pythagorean Mathematics 103

whence

1 nn—+1) _ n(n + 1)2
S+§|:S+ ) :|— 2 .

It now becomes a matter of solving for S

3S_n(n—i—1)2 _n(n+1)
27T 2 4
_ nn+1)2n+1)

4 s

which leads at once to
nn+ D2n+1)
6 .

All in all, we have shown that the sum of the first n squares has a simple expression in terms
of n; namely,

nn+1)2n+1)

— e

A strikingly original proof of the last result, propounded by the thirteenth-century mathe-
matician Fibonacci, comes from the identity

k(k + )2k + 1) = (k — Dk(2k — 1) 4 6k>.

P42 4324+ 40’ =

By putting k = 1,2, 3, ..., n in turn into this formula, one gets the set of equations
1-2.3=6-1
2.3.5=1-2-3+6-22
3.4.7=2-3.5+6-32

n—DnRn—1))=m—2)n—12n —3)+6(n — 1)
nn+DCn+1=m—DnCn—1)+ 6n2

What is important is that a common term appears on the left-hand and right-hand sides of
successive equations. When these n equations are added and common terms canceled, it is
easily shown that

nn+D2n+1)=6(1>+22+3%+ - +n?),

leading to the desired conclusion.

Zeno’s Paradox

Not very far from Crotona was the Eleatic school, a philosophical movement challeng-
ing the Pythagoreans’ doctrine that all natural phenomena can be expressed in some way
by whole numbers. This rival school took its name from the Ionian colony at Elea on the
western coast of southern Italy and had as its most prominent member Zeno (circa 450 B.C.).
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We know little of Zeno’s life other than Plato’s assertion that he went to Athens when nearly
40 years old, where he met with the youthful Socrates. Apparently Zeno was originally a
Pythagorean and, like Pythagoras, played an active part in the politics of his native city.
There is a widespread legend that he was tortured and killed by a tyrant of Elea whom he
had plotted to depose.

Zeno is remembered today for four clever paradoxes—preserved by Aristotle in his
Physics—about the reality of motion. In these, Zeno pointed out the logical absurdities
arising from the concept of “infinite divisibility” of time and space. The paradox most
often quoted concerns Achilles and a tortoise: Achilles, the swiftest runner in Greece, can
never catch a tortoise that has been given a head start. For, by the time Achilles reaches the
tortoise’s starting point, the animal will have moved to another point; by the time Achilles
reaches that point the tortoise will have advanced somewhat further. As the process continues
indefinitely, Achilles—though the faster runner—always advances on the slower tortoise
yet cannot overtake it.

Although Zeno’s argument confounded his contemporaries, a satisfactory explanation
incorporates a now-familiar idea, the notion of a “convergent infinite series.” The paradox
rests partly on the misconception that an infinite number of ever-shorter lengths (and,
similarly, time durations) must add up to an infinite total. But an infinite series may have
a finite sum. Suppose that Achilles runs 10 times as fast as the determined tortoise and
gives it an initial start of 100 yards; say, Achilles runs 10 yards per second. Consider the
distances he has to cover. They are successively 100 yards, 10 yards, 1 yard, 1/10 yard,
and so on. The total number of yards Achilles must travel in order to catch his slower
competitor is

1 1
1004+ 104+14+ —+—+---,
+ 10+ +10+100+

which forms a convergent geometric series with sum 111% yards. In the same elapsed

time (that is, llé seconds) the distance covered by the tortoise will be the sum of the
geometric series 10 + 1 + ]—10 + ﬁ + - -+, which is found to be 11% yards. Accordingly,
when Achilles has traversed 11 1% yards he will be dead even with the tortoise, and ahead
of him thereafter.

Of course Zeno knew perfectly well that Achilles would win a race with a tortoise,
but he was drawing attention to opposing theories on the nature of space and time. (There
is a frequently told anecdote that Diogenes the Cynic refuted Zeno’s argument, while the
latter was lecturing in Athens, simply by getting up and walking; but the story cannot
be true because Zeno and Diogenes were not contemporary.) The Eleatic mathematical
philosophers held that space and time are undivided wholes, or continua, that cannot be
broken down into small indivisible parts. This was at variance with the Pythagorean idea
that a line is made up of a series of points—Ilike tiny beads or “numerical atoms”—and that
time is likewise composed of a series of discrete moments. Zeno was partly responsible for
the subsequent course of Greek mathematical thought. For at heart, his famous paradoxes
were related to the application of infinite processes to geometry. Because of the inability
of the Greek geometers to answer them in a clear manner, they banished from mathematics
the use of methods that involved the concept of infinity and made a “horror of the infinite”
part of the Greek mathematical tradition.
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3.2 Problems

. Plutarch (about A.D. 100) stated that if a triangular
number is multiplied by 8, and 1 is added, then the
result is a square number. Prove that this is fact and
illustrate it geometrically in the case of 1,.

. Prove that the square of any odd multiple of 3 is the
difference of two triangular numbers, specifically
that

327 + DI* = toura — 3411

. Prove that if 7, is a triangular number, then 9z, + 1 is
also triangular.

. Write each of the following numbers as the sum of
three or fewer triangular numbers:

(a) 56, (b) 69, (c) 185 (d) 287.

. Forn > 1, establish the formula

@2n + 1 = (4t, + 1)> — (41,)°.

. Verify that 1225 and 41,616 are simultaneously square
and triangular numbers. [Hint: Finding an integer n
such that

1
f = @ — 1225

is equivalent to solving the quadratic equation
n?4+n—2450 =0.]

. An oblong number counts the number of dots in a

rectangular array having one more row than it has
columns; the first few of these numbers are

01=2 0,=6 03=12 04 =20

and in general, the nth oblong number is given by
0, = n(n + 1). Prove algebraically and geometrically
that

@ 0,=24446+---42n.

(b) Any oblong number is the sum of two equal
triangular numbers.

(C) on + n2 = by

d o,—n*=n.

() n’+20,+m+172=02n+1)>%.

® 0,=14+24+3+--+n+®m+1
+nm-D+m—-2)+---+3+2.

10.

11.
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In 1872, Lebesgue proved that (1) every positive
integer is the sum of a square number (possibly 0%) and
two triangular numbers and (2) every positive integer
is the sum of two square numbers and a triangular
number. Confirm these results in the cases of the
integers 9, 44, 81, and 100.

Display the consecutive integers 1 through n in two
rows as follows:

1 2 3
n—2 2 1

n—1 n
n n—1
If the sum obtained by adding the n columns vertically

is set equal to the sum obtained by adding the two rows
horizontally, what well-known formula results?

Derive the identity
[nn— D+ 11+ [nm—-1)+3]+---
+[n(n — 1)+ @2n - D] = n’,

where n is any positive integer.

For any integer n > 1, prove that:

@ 14+42434+---+n—1)+n

+(n—1+---+3+2+1=n%

1 1 1 1

T2 + 3 + 3.2 + -+ w1
n

CED)

[Hint: Use the splitting identity

1/k—=1/k+1)=1/k(k + 1)

to rewrite the left-hand side.]

() 1-242-343-44---+nn+1)

nn+ (n+2)

B S—
[Hint: Use the identity k(k + 1) = k> + k and
collect the squares.]

@ Ll
1-3 3.5 5.7

1 n

Qn—D@n+1) 2n+1

(b)

[Hint: Use the identity

1
2k — D2k + 1)

1 1 1
T2\ 2%k—-1 2k+1)°
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13.

14.

15.
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P4+3 4534+ 4+02n—1)>=n?@n>-1).
[Hint: Separate the left-hand side of the
identity

©

P42 +3 +...+Qn)

_[emen+D7
-5

into odd and even terms and solve for the sum of
odd cubes.]

Prove that the sum of a finite arithmetic series
equals the product of the number of terms and
half the sum of the two extreme terms; in
symbols, this reads

(a@+d)+@+2d)+@+3d)+---

(a+d)+(a+nd)]

+(a+nd)=n[ >

(b) Use the result of part (a) to confirm the identities
14447+ - +Gn-2)= @
and
14+3+5+---+@n—1)=n’
The identity

(1+2+3+--+n)

=P 4+22 43 4. n>1

was known as early as the first century. Provide a
derivation of it.

Prove the following formula for the sum of triangular
numbers, given by the Hindu mathematician
Aryabhata (circa 500):

nn+ 1)(n +2)

h+bHL+t+---+t, = 6

[Hint: Group the terms on the left-hand side in pairs,
replacing f,_; + t; by k?; consider the two cases where
n is odd and n is even.]

Archimedes (287-212 B.C.) also derived the formula

nn+1)2n+1)
6

for the sum of squares. Fill in any missing details in the

+n?=

P +22 437+

Chapter 3

16.
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following sketch of his proof. In the formula
n?=lk+ @ — k)P
= k> +2k(n — k) + (n — k)2,

let k take on the successive values 1,2,3,...,n — 1.
Add the resulting n — 1 equations, together with the
identity 2n> = 2n?, to arrive at

*)  (m+Dn*=2(1+22+3" 4 +n?
+2[1(n - 1)+ 2(n —-2)
+3n =3+ + @ - DI
Next, letk =1, 2,3, ..., n in the formula

K=k+2[1+2+3+--+(k—1)]
and add the n equations so obtained to get
(k) P+224+32 4+ 4n?
=(1+24+34+---+n)

+2[l(n — D +2(n—2)
+3n—-3)+---+m— DI
The desired result follows on combining (*) and (**).

The tetrahedral numbers count the number of dots in
pyramids built up of triangular numbers. If the base is
the triangle of side n, then the pyramid is formed by
placing similarly situated triangles upon it, each of
which has one less in its sides than that which precedes
1t.

T,=10

In general, the nth tetrahedral number 7, is given by
the formula

T,=ti +tr+t354+ - +1t,.
where #; is the kth triangular number. Prove that

n(n—l—l)(n—|—2)_n—|—l
6 T 6

[Hint: See Problem 14.]

T, =

2ty +n).
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17. Use the following facts to derive the formula
for the sum of the squares of the first n
integers:

2=1=T,
124+22=5=34+2-1=1+2T,
12422432 =14=64+2-4=1;+2T>,

© The McGraw-Hill ‘ @

Companies, 2007
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124224324+42=30=10+2-10

=1t + 275,
12422432 4+424+52=55=15+2-20
=15+ 2Ty,

where #, and T} are the kth triangular and tetrahedral
numbers, respectively.

3.3

Although tradition is unanimous in ascribing the

The Pythagorean PI’Oble so-called Pythagorean theorem to the great teacher
himself, we have seen that the Babylonians knew

Geometric Proofs of the the result for certain specific triangles at least a mil-
Pythagorean Theorem lennium earlier. We recall the theorem as “the area

of the square built upon the hypotenuse of a right
triangle is equal to the sum of the areas of the squares upon the remaining sides.” Because
none of the various Greek writers who attributed the theorem to Pythagoras lived within five
centuries of him, there is little convincing evidence to corroborate the general belief that the
master, or even one of his immediate disciples, gave the first rigorous proof of this character-
istic property of right triangles. Moreover, the persistent legend that when Pythagoras had
discovered the theorem, he sacrificed a hundred oxen to the Muses in gratitude for the inspira-
tion appears an unlikely story, because the Pythagorean ritual forbade any sacrifice in which
blood was shed. What is certain is that the school Pythagoras founded did much to increase
the interest in problems directly connected with the celebrated result that bears his name.
Still more are we in doubt about what line of demonstration the Greeks originally
offered for the Pythagorean theorem. If the methods of Book II of Euclid’s Elements were
used, it was probably a dissection type of proof similar to the following. A large square
of side a + b is divided into two smaller squares of sides a and b respectively, and two
equal rectangles with sides a and b, each of these two rectangles can be split into two equal
right triangles by drawing the diagonal c. The four triangles can be arranged within another
square of side a + b as shown in the second figure.

a b b a
b f b b
a
a a a
b
a b a b

Now the area of the same square can be represented in two ways: as the sum of the areas of
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two squares and two rectangles,
(a +b)* = a® + b* + 2ab;

and as the sum of the areas of a square and four triangles,
b
(@ + b) :c2+4<%>.

When the four triangles are deducted from the larger square in each figure, the resulting
areas are equal; or equivalently, ¢ = a® + b?. Therefore, the square on ¢ is equal to the
sum of the squares on a and b.

Such proofs by addition of areas are so simple that they may have been made earlier and
independently by other cultures (no record of the Pythagorean theorem appears, however,
in any of the surviving documents from ancient Egypt). In fact, the contemporary Chinese
civilization, which had grown up in effective isolation from both the Greek and Babylonian
civilizations, had a neater and possibly much earlier proof than the one just cited. This
is found in the oldest extant Chinese text containing formal mathematical theories, the
Arithmetic Classic of the Gnomon and the Circular Paths of Heaven. Assigning the date
of this work is difficult. Astronomical evidence suggests that the oldest parts go back to
600 B.C., but there is reason to believe that it has undergone considerable change since first
written. The first firm dates that we can connect with it are over a century later than the dates
for Nine Chapters on the Mathematical Art. A diagram in the Arithmetic Classic represents
the oldest known proof of the Pythagorean theorem.

B |4
a8

Ol 36

DN
Hy

>

E

(N3

=

/

The proof inspired by this figure was much admired for its simple elegance, and it later
found its way into the Vijaganita (Root Calculations) of the Hindu mathematician Bhaskara,
born in 1114. Bhaskara draws the right triangle four times in the square of the hypotenuse,
so that in the middle there remains a square whose side equals the difference between the
two sides of the right triangle. This last square and the four triangles are then rearranged to




Burton: The History of 3. The Beginnings of Greek | Text © The McGraw-Hill ‘ @
Mathematics: An Mathematics Companies, 2007
Introduction, Sixth Edition

The Pythagorean Problem 109

make up the areas of two squares, the lengths of whose sides correspond to the legs of the
right triangle. “Behold,” said Bhaskara, without adding a further word of explanation.

b a—b

Early Solutions of the Pythagorean Equation

The geometrical discovery that the sides of a right triangle were connected by a law
expressible in numbers led naturally to a corresponding arithmetical problem, which we
shall call the Pythagorean problem. This problem, one of the earliest problems in the theory
of numbers, calls for finding all right triangles whose sides are of integral length, that is,
finding all solutions in the positive integers of the Pythagorean equation

x2+y2 =72

A triple (x, y, z) of positive integers satisfying this equation is said to be a Pythagorean
triple.

Ancient tradition attributes to Pythagoras himself a partial solution of the problem,
expressed by the numbers

x=2n+1, y=2n2+2n, z=2n2+2n+1,

where n > 1 is an arbitrary integer. As is perhaps more often the rule than the exception in
such instances, the attribution of the name may readily be questioned.

Pythagoras presumably arrived at his solution by a relation that produces a square
number from the next smaller square number, namely

(1) Qk — 1)+ (k — 1> = k%

The strategy was to suppose that 2k — 1 is a perfect square. (This happens infinitely often;
for instance, if k = 3, then 2k — 1 = 32.) Letting 2k — 1 = m? and solving for k, we get
m? + 1 m? — 1

and k—1=
2 2

When these values are substituted in (1), it follows that
2, m?—1 2 m?+1 2
m = .
2 2

@ x=m,  y=

k=

whence
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satisfy the Pythagorean equation for any odd integer m > 1 (mm must be odd, because
m? = 2k — 1is odd). When m = 2n + 1, where n > 1, the numbers in (2) become

3) x=2n+1, y =2n®+2n, z=2n"4+2n+1,

which is Pythagoras’s result. Some of the Pythagorean triples that can be obtained from (3)
are given in the accompanying table.

n x y z
1 3 4 5
2 5 12 13
3 7 24 25
4 9 40 41
5 11 60 61

As one sees, Pythagoras’s solution has the special feature of producing right triangles having
the characteristic that the hypotenuse exceeds the larger leg by 1.

Another special solution in which the hypotenuse and a leg differ by 2 is ascribed to
the Greek philosopher Plato, to wit,

%) x = 2n, y=n2—1, z=n>+1.
This formula can be obtained, like the other, with the help of the relation (1); but now, we
apply it twice:
k+1)? =k +@2k+1)
=[k—1?+Qk—D]+2k+1=(k—1)>*+4k.
Substituting n? for k to make 4k a square, one arrives at the Platonic formula

@2n? 4+ 1> =12 = m> + 1%

Observe that from equations (4) it is possible to produce the Pythagorean triple (8, 15, 17),
which cannot be gotten from Pythagoras’s formula (3).

Neither of the aforementioned rules accounts for all Pythagorean triples, and it was
not until Euclid wrote his Elements that a complete solution to the Pythagorean problem
appeared. In Book X of the Elements, there is geometric wording to the effect that

®)) x = 2mn, y =m? —n?, z=m>+n?,

where m and n are positive integers, with m > n.

Inhis Arithmetica, Diophantus (third century) also stated that he could get right triangles
“with the aid of” two numbers m and n according to the formulas in equation (5). Diophantus
seems to have arrived at these formulas by the following reasoning. Given the equation
x? 4+ y? = 72, put y = kx — z, where k is any rational number. Then

ZZ_x2:y2:(kx_Z)2

= k?x? — 2kxz + 22,



Burton: The History of 3. The Beginnings of Greek | Text © The McGraw-Hill ‘ @
Mathematics: An Mathematics Companies, 2007
Introduction, Sixth Edition

The Pythagorean Problem 111

which leads to

—x? = k*x? — 2kxz,

or
—x = k*x — 2kz.
When this equation is solved for x, we get
2k
st
The implication is that
k k*—1
= KX — = —7.
Y Tttt

But k = m/n, with m and n integers (there is no harm in taking m > n), so that

2mn m? — n?

X = y=——2.
m2 + n?

- —Z7
mZ + nZ
If one sets z = m? + n? to obtain a solution in the integers, it is found immediately that

X =2mn, y:mz—nz, 7z =m?*+n?.
Our argument indicates that x, y, and z, as defined by the preceding formulas, satisfy the
Pythagorean equation. The converse problem of showing that any Pythagorean triple is
necessarily of this form is much more difficult. The details first appeared in the works of
Arab mathematicians around the tenth century.

The Crisis of Incommensurable Quantities

The most important achievement of the Pythagorean school in its influence on the
evolution of the number concept was the discovery of the “irrational.” The Pythagoreans
felt intuitively that any two line segments had a common measure; that is to say, starting
with two line segments, one should be able to find some third segment, perhaps very small,
that could be marked off a whole number of times on each of the given segments. From this
it would follow that the ratio of the lengths of the original line segments could be expressed
as the ratio of integers or as a rational number. (Recall that a rational number is defined as
the quotient of two integers a/b, where b # 0.) One can imagine the shattering effect of
the discovery that there exist some ratios that cannot be represented in terms of integers.
Who it was that first established this, or whether it was done by arithmetical or geometric
methods, will probably remain a mystery forever.

The oldest known proof dealing with incommensurable line segments corresponds in
its essentials to the modern proof that /2 is irrational. This is the proof of the incommen-
surability of the diagonal of a square with its side, and it is to be found in the tenth book
of Euclid’s Elements. A reference in one of Aristotle’s works, however, makes it clear that
the proof was known long before Euclid’s time. As in most classical demonstrations, the
method of argument was indirect. Thus, the negation of the desired conclusion is assumed,
and a contradiction is derived from the assumption.
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The reasoning goes as follows. If the diagonal AC and side AB of the square ABCD
have a common measure, say §, then there exist positive integers m and n satisfying

AC = mSé, AB =né.

The ratio of these segments is
AC m

AB n
To make matters simpler, let us suppose that any common factors of m and n have been
cancelled. Now
(AC)? . m?

(AB? ~ n?’

Applying the Pythagorean theorem to the triangle ABC, one gets (AC)?> = 2(AB)?, so that
the displayed equation becomes

m?
2 == ﬁ,
or 2n* = m?. The task is to show that this cannot happen.
Now 212, as a multiple of 2, is an even integer; hence m~ is even. What about m itself?
If m were odd, then m? would be odd, because the square of any odd integer must be odd.
Consequently, m is even, say, m = 2k. Substituting this value in the equation m? = 2n? and
simplifying, we get

2

2k> = n’.

By an argument similar to the one above, it can be concluded that n is an even number. The
net result is that m and n are both even (that is, each has a factor of 2), which contradicts
our initial assumption that they have no common factor whatsoever.

The Pythagoreans were not the first to consider the numerical value of +/2. An old
cuneiform tablet, now in the Yale Babylonian Collection, contains the diagram of a square
with its diagonals, as shown herewith.

In sexagesimal notation, the number 1;24,51,10 is equal to

24 51 10

1 A _’
+ 60 + 602 + 603
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which gives 1.414213 when translated into the decimal system. You should find this familiar,
for it is a very close approximation to /2 = 1.414213562 ... The meaning of the other
numbers in the diagram becomes clear when we multiply 1;24,51,10 by 30. The result is
42;25,35, the length of the diagonal of a square of side 30. Thus, the Babylonians not only
seemed to know that the diagonal of a square is +/2 times the length of its side, but also had
the arithmetic techniques to accurately approximate /2.

Theon’s Side and Diagonal Numbers

Theon of Smyrna (circa 130) devised a procedure for reaching closer and closer approx-
imations of +/2 by rational numbers. The computations involve two sequences of numbers,
the “side numbers” and the “diagonal numbers.” We begin with two numbers, one called
the first side and denoted by x, and the other the first diagonal and indicated by y;. The
second side and diagonal (x; and y,) are formed from the first, the third side and diagonal
(x3 and y3) from the second, and so on, according to the scheme

Xy = X1 + y1, y2 = 2x1 + y1,
X3 = X2 + y2, 3 =2x3 + y2,

In general, x,, and y, are obtained from the previous pair of side and diagonal numbers by
the formulas

Xp = Xn—1 + Yn—1, Yn = 2Xp—1 + Yn-1-
If we take x; = y; = 1 as the initial values, then

xx=1+1=2, yw=2-1+1=3,

x3=2+3=5, »=2-243=17,

x4 =5+7=12, ya=2-5+7=17.

The names side numbers and diagonal numbers hint that the quotients y, / x,, of the associated
pairs of these numbers come to approximate the ratio of the diagonal of a square to its side:

&_1 2 3 »3 7 Ya 17

X1 X2 2’ X3 5’ )C4_E’”“

This follows from the relation
(1) yi=2x2£1;

for the relation, if true, implies that

(2) =2+ (3)-

Because the value of (1/x,)* can be made as small as desired by taking n large enough, it
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appears that the ratio

tends to stay near some fixed number for large n. It can be shown that the fixed “limit” is
V/2. You can see how this works by considering the case n = 4. Here,

i\ _ (17
xa) \12
289
144
_288 1, (1 2
144 0 144 12)°
2
pZ 1
—=,/2 — .
oo\ (12)
The ratio y4/x4 differs from the true value of +/2 by less than % of 1 percent.

Now condition (1), which can be written y? — 2x2 = =1, can be justified by using the
algebraic identity

whence

) Qx +y)? = 2(x + y)* = 2x* =y

If x = X0, y = yo are any two numbers satisfying the equation y?> — 2x> = £1, then we
assert that x = xp + yo, ¥ = 2x¢ + ¥ is also a solution. For by virtue of (2),

y2 —2x% = (2x0 + yo)2 —2(xo + y0)2

Thus, when one solution of y? — 2x? = #1 is known, it is possible to find infinitely many
more solutions by using identity (2).

In the present situation, by the manner in which side and diagonal numbers are formed,
this means that if y> — 2x2 = 41 happens to hold for a certain value of n, then it must also
hold for n + 1, but with opposite sign. Setting x; = y; = 1, we see that y> — 2x2 = %1
holds when n = 1, and hence this equation is valid for every value of n thereafter. In
consequence, (1) is a correct identity for all n > 1.

It is natural to raise the question whether the notion of side numbers and diagonal
numbers can be used to obtain rational approximations to an arbitrary square root. Theon’s
original rule of formation was

Xn = Xp—1+ Yn—1, Yn = 2Xp_1 + Yn—1, n>2.

For 2 in the second equation, let us substitute a positive integer a (which is not a perfect
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square) to develop the following scheme:
Xy = X1+ y1,
X3 = X2+ y2,

X4 = X3+ 3,

Xn = Xp—1 + Yn—1,

Notice that

y}% = (axnfl + ynfl)2 = a2x

© The McGraw-Hill
Companies, 2007

Y2 =axy + y1,
y3 = axa + y»,

Y4 = ax3 +ys,

Yn = aXp—1 + Yn—1,

2

T 2ax,_1yn—1 + y,f,l,

2 2 2 2
ax; = a(X,—1 + yo—1)” = ax;_; +2ax, 1Y,—1 +ay,_,,

and so, on subtraction,

y: —ax? = (a*—a)x

3—1 + (1 - a)Y3_1

=(1- a)(yff1 — axrzlfl).

115

The import of this relation is that we have represented y> — ax? by an expression of the same
form, but with n replaced by n — 1. Repeating this transformation for the next expression,

we evidently arrive at the chain of equalities

y,% — ax,f =(1- a)(y,%_1 — ax,%_l)

=(1- a)z(y,%,z - ax,%,z)

=(- a)3(y,f_3 - axyzl—S)

= (1 —a)"~'(y} —axp),

and as a result,

Xn x2

(&>2:a+(1—m"%ﬁ—aﬁ>

, n>2.

From this, it can be concluded that as n increases, the right-hand term tends to zero, whence
the values y, /x, more and more closely approach the irrational number \/a.

For an illustration, consider the case of \/5; thatis,a = 3. If we take x; = 1, y; =2
as the initial side and diagonal numbers, then the foregoing formula reduces to

Xn x2

2 n—1
n =2
<Y_> I e

The successive rational approximations of /3 are

ynw_2 y»_5 y3_7

X1 1’ X2 3’ X3 4’

A variation of the above theme is afforded by starting with the algebraic identity

v _ 19y 26

x4—ﬁ, xs—E,....

3) (* +3x2)2 = 32xy)? = (»? — 3222
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If one solution, say x = xg, y = Yo, of the equation

yP—3x2=1
is known, then equation (3) indicates that a second solution can be found simply by letting
X =2x0y0, y = yé + 3x§. Indeed, on substitution,

y? = 3x% = (5 + 3x0)* — 3Qxox0)
=03 -3x)?=1=1
Thus we have a process for generating solutions of y> — 3x? = 1 from a single solution.
By the rule of formation,
X =2 a1, Ve = Vet + 3%,

a fresh solution x,,, y, can be derived from a previous one x,,_1, y,—1. Because x,, y, satisfy

o= 3x, =1,

or what amounts to the same thing,

) 1
ook
Xn Xn

the successive values (y,/x,)> will approach 3 increasingly closely; that is, the sequence
Yu/ X, provides a “very good” (in some sense) approximation of /3 by rational numbers.

Itis clear that the equation y> — 3x2 = 1 has at least one solution in the positive integers,
namely, x; = 1, y; = 2. We see then that

Xo=2xy1=2-1-2=4,
=y +3x=2*+3-1>=7
is also a solution. Thus new solutions are generated out of given ones. The next one is
X3 =2xy, =2-4-7 =56,
V3 =y§+3x§=72+3~42:97,

and so on. We have almost finished, for the sequence of rational approximations of the
irrational number +/3 is just

N 2 » 7 v 97 V4 18,817

xx 1 x4 x3 560 xy 10,8647

Let us now view a strictly geometric proof of the incommensurability of the diagonal
and side of a square. This argument, apparently older than the first, is in the spirit of the
arguments found in Euclid’s Elements. The basic idea is to show that we can build onto an
arbitrary square a sequence of smaller and smaller squares.

In the square ABCD, draw the arc BE to lay off the side AB = s; on the diagonal
AC = d;. Now draw the line EF perpendicular to d;, with F the point at which it intersects
BC. By one of the congruence theorems, it is easy to prove that the triangles BAF and FAE
are congruent; consequently, FB = F E, because they are congruent sides. Furthermore,
CEF is an isosceles right triangle, whence its legs CE and FE are equal.
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Next, construct a second square CEFG having sides s, = CE = d; — s; and diagonal
dy = CB — FB = 51 — 5. Laying off the sides s, = FE on the diagonal FC = d,, we
determine C H, which is then used as s3, the side of the third square. In this third square,
it is seen that s3 = d, — s and this diagonal d3 = CE — EI = s, — s3. The process can be
repeated over and over, obtaining successively smaller squares whose sides and diagonals
satisfy the relations

Sn :dnfl — Sn—1, dn = Sp—1 — Sn-

The geometric preliminaries completed, we assume that the diagonal and side of the
original square are commensurable and show that this leads to an impossible situation. If
these two lengths are commensurable, then they have a common measure §, so that there
exist integers M, and N; for which

51 = M6, dy = Nyé.
But then
sy =dy — 51 = (N1 — M)§ = M6,
dy = 51 — 52 = (M1 — M2)d = N,6,
where M, < M, and N, < N;. Repetition of the argument yields
1<--- <Mz <M, < M, 1<.-.-< N3 <N <N;.

We now come to the contradiction. Because there are only finitely many positive integers
less than M, and N|, these two sequences must terminate after a finite number of steps.
This contradicts the idea that our construction of squares can be carried out indefinitely.

Eudoxus of Cnidos

The discovery of irrational numbers caused great consternation among the Pythagore-
ans, for it challenged the adequacy of their philosophy that number was the essence of all
things. This logical scandal encouraged them to maintain the pledge of strict secrecy. Indeed,
their resolve is testified to by the very name given to these new entities, “the unutterable.”
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(The Greeks used the term logos, meaning “word” or “speech,” for the ratio of two integers.
Hence, when incommensurable lengths were described as alogos, the term carried a double
meaning: “not a ratio” and “not to be spoken.”) The knowledge that irrationals existed was
a dangerous secret to possess. Popular legend has it that the first Pythagorean to utter the
unutterable to an outsider was murdered—thrown off a ship to drown.

It fell to Eudoxus of Cnidos (408-355 B.C.) to resolve the crisis in the foundations
of mathematics. His great contribution was a revised theory of proportion applicable to
incommensurable as well as commensurable quantities. Everything was based on an elab-
orate definition of the ratio of magnitudes, but magnitudes themselves were left undefined.
Hence, the problem of defining irrational numbers as numbers was avoided entirely. The
immediate effect of Eudoxus’s approach was to drive mathematics into the hands of the
geometers. In the absence of a purely arithmetic theory of irrationals, the primacy of
the number concept was renounced. Geometry was held to be a more general doctrine
than the science of numbers, and for the next 2000 years, it served as the basis of almost all
rigorous mathematical reasoning.

The existence of incommensurable geometric quantities necessitated a thorough re-
casting of the foundations of mathematics, with an increased attention to logical rigor. It
was a formidable task and engaged the best efforts of the most notable mathematicians
of the fourth century B.C.: Theodorus, Theaetetus, Archytas, and Eudoxus. Theodorus of
Cyrene (born 470 B.C.), the mathematics tutor of the great philosopher Plato, is said to
have demonstrated geometrically that the sides of squares represented by /3, v/5, V6,
\/7, \/§, \/m, V11 , \/ﬁ, \/ﬁ, m, \/E, and /17 are incommensurable with a unit
length. That is, he proved the irrationality of the square roots of nonsquare integers from
3 to 17, “at which point,” Plato said, “for some reason he stopped.” Theaetetus of Athens
(415-369 B.C.), who was a pupil of Theodorus and a member of Plato’s school in Athens,
extended the result, demonstrating that the square root of any nonsquare integer is irrational.
Plato himself added to the theory by showing that a rational number could be the sum of
two irrationals. One of the few Pythagoreans to stay behind in southern Italy after the death
of Pythagoras, Archytas of Tarentum (428-347 B.C.) is reputed to have been the first to
study geometry on a circular cylinder, discovering in the process some of the properties of
its oblique section, the ellipse. He also devised an ingenious solution of the problem “to
double a cube” by means of cylindrical sections.

Perhaps the most brilliant Greek mathematician before Archimedes was Eudoxus. Born
about 408 B.C. in Cnidos on the Black Sea, he set out at the age of 23 to learn geometry from
Archytas in Tarentum and for several months, philosophy from Plato in Athens. Eudoxus,
too poor to live in Athens, lodged cheaply at the harbor town of Piraeus, where he had
first debarked; every day he walked the two miles to Plato’s Academy. Later he traveled
to Egypt, where he remained for 16 months. Thereafter he earned his living as a teacher,
founding a school at Cyzicus in northwestern Asia Minor that attracted many pupils. When
he was about 40 years old, Eudoxus made a second visit to Athens accompanied by a
considerable following of his own students; there he opened another school, which for a
time rivaled Plato’s. The reputation of Eudoxus rests on three grounds: his general theory of
proportion, the addition of numerous results on the study of the golden section (the division
of a line segment in extreme and mean ratio), and the invention of a process known as the
method of exhaustion. The procedure Eudoxus proposed was later refined by Archimedes
into a powerful tool for determining curvilinear areas, surfaces, and volumes—an important
precursor to the integral calculus.
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During this period, Greek mathematics began to be organized deductively on the basis
of explicit axioms. Its final axiomatic form was set forth in the 13 books of the Elements
that Euclid wrote about 300 B.C. In compiling the Elements, Euclid built on the experience
and achievements of his predecessors in the three centuries just past. Theaetetus’s elaborate
classification of higher types of irrationals is the subject matter of Book X of the Elements,
although Euclid must be credited with having arranged it into a logical whole. The Eudox-
ian theory of proportion—which is really a theory of real numbers—is incorporated into
Book V; and Book 1II is mostly a geometric rendition of Pythagorean arithmetic, wherein
Euclid represented numbers by line segments instead of the pictorial dot method the early

Pythagoreans favored.

3.3 Problems

1. (a) Establish the formula

b+ a—>b\? a+b\?
a — ) = .
2 2

(b) Show that a = 2n?, b = 2, gives rise to Plato’s
formula for Pythagorean triples, whereas
a = (2n + 1)%, b = 1, yields Pythagoras’s own
formula.

2. Find all right triangles with sides of integral length
whose areas are equal to their perimeters. [Hint: The
equations x*> + y? = z> and x + y + z = 1xy imply
that (x — 4)(y —4) = 8.]

3. For n > 3 a given integer, find a Pythagorean triple
having n as one of its members. [Hint: For n an odd
integer, consider the triple

L = 1), 207+ )
n,—(n"—1),=(n ;
2 2

for n even, consider the triple

(n, (*/4) — 1, (n*/4) + 1).]

4. Verify that (3, 4, 5) is the only Pythagorean triple
involving consecutive positive integers. [Hint:
Consider the Pythagorean triple (x, x + 1, x + 2) and
show that x = 3.]

5. (a) Establish that there are infinitely many

Pythagorean triples (x, y, z) in which x and y are

consecutive integers. [Hint: If (x, x + 1, 2)
happens to be a Pythagorean triple, so is
Bx+2z+1,3x+2z+2,4x + 32+ 2).]

(b) Find five Pythagorean triples of the form
(x,x+1,2).

6. Consider the sequence of quotients y,/x, of Theon’s

diagonal numbers to side numbers.

(a) Verify that the first, third, and fifth terms in this
sequence are getting successively larger, whereas
the second, fourth, and sixth terms are decreasing.

(b) Compute the difference between 2 and the square
of each term, through the first six terms; (v, /x, )?
should be getting nearer 2 at each stage,
alternating above and below, hence y, /x,
approximates +/2.

. Let two sequences of numbers be formed in

accordance with the following rule:

X = 2, yi = 3,
Xn = 3)(,1,1 + 2yn711
Yo =4%_1 4+ 3y forn > 2.

(a) Write out the first five numbers in each of the
above sequences.
(b) Show that

)’3 - 2x3 = y/%—l - 2x3—|’
whence
yf—in:ylz—lezz 1.

(c) From part (b), conclude that successive values of
Yu/X, are nearer and nearer approximations of
V2.

. Consider the sequence of numbers defined by the

following rule:

»

X =

Xp =

2
(x,,,l + ) forn > 1.
Xn—1

NSAR
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(a) Write out the first four terms of this sequence in
decimal form.

(b) Assuming that the terms x,, approach a number L

as n increases, show that L = +/2. [Hint: The
number L satisfies L = %(L +2/L).]

9. Prove that ﬁ and «/i are irrational by assuming that
each is rational and arguing until a contradiction is
reached.

10. Replace 2 by 3 in Theon’s definition of side numbers
and diagonal numbers, so that the rule of formation
becomes

Xn = Xp—1 + Yn—-1,
Yn = 3x,1 + Yn—1 n>2.

(a) Starting with x; = 1, y; = 2, write out the first
six numbers in each of the resulting sequences.

(b) Confirm for several values of n that when y, /x,
is in lowest terms,

y2—3xt=1lor —2.

(c) Assuming that the relation in part (b) holds for all
n, show that this implies that the successive ratios

Y /X, are approaching V3.
(d) Write out the first six values of y, /x, to get an
approximation +/3.

11. Archimedes (287-212 B.C.) in his book Measurement
of a Circle presented, without a word of justification,
the inequality

1351 265
70 V3 T
(a) As an explanation of the probable steps leading
to the left-hand bound, show first that

i) 26 — & =,/26> — 1 + (%)
> /267 — 1.

and then

1351 1 1
y 1351 _ 1 1
1) 780 15(6 52)
p—

(b) Obtain the right-hand bound in a similar manner
by replacing & with 2.

\

12. Because /3 is approximately %, one can put
V3 = (2 + 1/x), where x is unknown.

3. The Beginnings of Greek | Text
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13.

14.

15.

16.
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(a) Square both sides of this expression, neglect
1/x2, and solve the resulting linear equation for x
to get a second approximation of /3.

(b) Repeat this procedure once more to find a third
approximation.

(a) Given a positive integer n that is not a perfect
square, let a be the nearest square to n (above or
below n, as the case may be), so that n = a*+b.
Prove that

b
at — <
a

(b) Use part (a) to approximate /50, /63, and /75
by rational numbers.

Use the inequality of Problem 13 to get Archimedes’
bounds on +/3. [Hint: Take a =26 and b = 1.]

A standard proof of the Pythagorean theorem starts
with a right triangle ABC, with its right angles at C,
and then draws a perpendicular C D from C to the
hypotenuse AB.

(a) Prove that triangles ACD and CBD are both
similar to triangle ABC.

(b) For a triangle ABC with legs of lengths a and b
and with hypotenuse of length c, use the
proportionality of corresponding sides of similar
triangles to establish that a® + b* = ¢2.

For another proof of the Pythagorean theorem,
consider a right triangle ABC (with right angle at C)
whose legs have length a and b and whose hypotenuse
has length c. On the extension of side BC pick a point
D such that BAD is aright angle.
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17.

18.

19.

(a) From the similarity of triangles ABC and DBA,
show that AD = ac/b and DC = a?/b.

(b) Prove that a> + b> = c? by relating the area of
triangle ABD to the areas of triangles ABC and
ACD.

Several years before James Garfield became president
of the United States, he devised an original proof of the
Pythagorean theorem. It appeared in 1876 in the New
England Journal of Education. Starting with a right
triangle ABC, Garfield placed a congruent triangle
EAD as indicated in the figure. He then drew EB so as
to form a quadrilateral EBCD. Prove that a® + b = ¢?
by relating the area of the quadrilateral to the area of
the three triangles ABC, EAD, and EBA.

D a E

C B

The Pythagoreans defined the harmonic mean of a and
b, where a < b, to be the number / such that

For instance, the harmonic mean of 6 and 12 is 8,
because (8 — 6)/(12 — 8) = 6/12. Prove that A is the
harmonic mean of a and b if and only if / satisfies
either of the relations:

@ 1 1 1 1
a —— ===,
a h h b
® b= 2ab

T a+b

Pappus (circa 320) in his Mathematical Collection
provided a construction for the harmonic mean of the
segments OA and OB as follows. On the perpendicular
to OB at B lay off BC = BD, and let the perpendicular
to OB at A meet OC at the point E. Join ED, and let
H be the point at which ED cuts OB. Prove that

h = OH is the desired harmonic mean between

a = OA and b = OB. [Hint: From the similarity of

20.

21.

© The McGraw-Hill
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triangles OAE and OBC, as well as of triangles HAE
and HBD, infer that a/b = AH/HB.]

Establish the “perfect proportion”
a _ 2ab/(a + b)
(a+b)/2 b

between the arithmetic and harmonic means of two
numbers a and b.

The division of a line segment into two unequal parts
so that the whole segment will have the same ratio to
its larger part that its larger part has to its smaller part
is called the golden section. A classical
ruler-and-compass construction for the golden section
of a segment AB is as follows. At B erect BC equal
and perpendicular to AB. Let M be the midpoint of
AB, and with M C as a radius, draw a semicircle
cutting AB extended in D and E. Then the segment
BE laid off on AB gives P, the golden section.

G

(a) Show that ADBC is similar to ACBE, whence
DB/BC = BC/BE.

(b) Subtract 1 from both sides of the equality in
part (a) and substitute equals to conclude that
AB/AP = AP/PB.

(c) Prove that the value of the common ratio in part
(b) is (ﬁ + 1)/2, which is the “golden ratio.”
[Hint: Replace PB by AB — AP to see that
AB?> — AB - AP — AP? = 0. Divide this
equation by A P? to get a quadratic equation in
the ratio AB/AP.]

(d) A golden rectangle is a rectangle whose sides are
in the ratio (+/5 + 1)/2. (The golden rectangle
has dimensions pleasing to the eye, and was used
for the measurements of the facade of the
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Parthenon and other Greek temples.) Verify that opposite the common vertex had length 1. Show that
both the rectangles AEFG and BEFC are golden the hypotenuse of the nth triangle in this sequence has
rectangles. length </n + 1. (The reason Theodorus stopped at +/17

Theodorus of Cyrene (circa 400 B.C.) who was the
mathematics teacher of Plato, showed how to construct
a line segment of length /n for any positive integer n.
Prove the following,

(a) Given an odd integer n, then /n is represented
by the leg of a right triangle whose hypotenuse is
(n + 1)/2 and whose other leg is (n — 1)/2.

(b) Given an even integer n, then /7 is represented
by half of the leg of a right triangle whose
hypotenuse is n + 1 and whose other legisn — 1.

It has been suggested that Theodorus also obtained
/1 (2 < n < 17) by constructing a spiral-like figure
consisting of a sequence of right triangles having a
common vertex, so that in each triangle the leg

Three Construction Problems

is that at the next step, wherein v/ 18 would be
constructed, the figure cuts across the initial axis for
the first time.)

The mathematician who dominated the sec-
ond half of the fifth century B.C. was Hip-

Of Antiquity pocrates of Chios (460-380 B.C.), who is to be

distinguished from his more celebrated con-
temporary Hippocrates of Cos, the father of
) Greek medicine. Like Thales, Hippocrates be-
of the Circle gan his life as a merchant and ended as a

teacher; but being less shrewd than Thales,
Hippocrates was robbed of his money. Accounts differ on whether he was swindled by
customhouse collectors at Byzantium or whether his ships were plundered on the high seas
by Athenian pirates. At any rate, with his property lost, Hippocrates went to Athens to
prosecute the offenders in the law courts. Obliged to stay for many years (perhaps from
450 to 430 B.C.), he attended the lectures of several philosophers. There is good reason to
believe that the Pythagoreans were settled in Athens at that time, so he may have come
under their influence even though he had no Pythagorean teacher in the formal sense. Ul-
timately, Hippocrates attained such a proficiency in geometry that he became one of the
first to support himself openly by accepting fees for teaching mathematics. If as some
say, the Pythagoreans taught him what he knew of arithmetic and geometry, then by the
standards of the time he betrayed their trust by selling the secrets of mathematics to any-
one who would pay the price. (A more charitable interpretation is that the Pythagoreans,
moved by Hippocrates’ misfortune, allowed him to earn money by teaching their geom-
etry.) Aristotle spoke unflatteringly of Hippocrates: “It is well known that persons stupid
in one respect are by no means so in all others; thus Hippocrates, though a competent
geometer, seems in other regards to be stupid and lacking in sense.” The Greeks, indeed,
were likely to view any man a fool who through his own simplicity was cheated out of his
possessions.

Hippocrates and the Quadrature



Burton: The History of 3. The Beginnings of Greek | Text © The McGraw-Hill ‘ @
Mathematics: An Mathematics Companies, 2007
Introduction, Sixth Edition

Three Construction Problems of Antiquity 123

By the middle of the fifth century, so many geometric theorems had been established
that it became increasingly necessary to tighten the proofs and put all this material in good
logical order. Proclus told how Hippocrates composed a work on the elements of geometry,
anticipating the better-known Elements of Euclid by more than a century. No trace of this
first textbook on geometry remains, however (in fact, no mathematical treatise of the fifth
century has survived). Although Hippocrates’ book may have started a significant tradition,
it would have had the shortcomings of a pioneering work, and been rendered obsolete
by Euclid’s Elements. Hippocrates did originate the now familiar pattern of presenting
geometry as a chain of propositions, a form in which other propositions can be derived on
the basis of earlier ones. Among other innovations, he introduced the use of letters of the
alphabet to designate points and lines in geometric figures.

When Hippocrates arrived in Athens, three special problems—the quadrature of the
circle, the duplication of the cube, and the trisection of a general angle—were already
engaging the attention of geometers. These problems have remained landmarks in the
history of mathematics, a source of stimulation and fascination for amateurs and scholars
alike through the ages.

The achievement on which Hippocrates’ fame chiefly rests has to do with the first of
these problems, the quadrature of the circle. This problem, sometimes called the “squaring
of the circle,” can be stated simply: Is it possible to construct a square whose area shall
be equal to the area of a given circle? The problem is much deeper than it first appears,
because the important factor is how the square is to be constructed. Tradition has it that
Plato (429348 B.C.) insisted that the task be performed with straightedge and compass
only. In this method the assumption is that each instrument will be used for a single, specific
operation:

1. With the straightedge, a line can be drawn through two given points.

2. With the compass, a circle with a given center and radius can be drawn.

It is not permissible to use these two instruments in any other way; in particular, neither
device is to be used for transferring distances, so that the straightedge cannot be graduated
or marked in any way, and the compass must be regarded as collapsing as soon as either
point is lifted off the paper. A point or a line is said to be constructible by straightedge and
compass if it can be produced from given geometric quantities with these two tools, using
them in the prescribed way only a finite number of times.

In the strict Greek sense of construction, the quadrature problem remained unsolved
in spite of vigorous efforts by the Greek and other, later geometers. The futility of their
attempts was demonstrated in the nineteenth century, when mathematicians were at last
able to prove that it is impossible to square the circle by straightedge and compass alone. As
it turns out, the test of constructibility under these instrumental limitations uses the ideas
of algebra, not geometry, and involves concepts unknown in antiquity or the Middle Ages.
Squaring the circle is equivalent to constructing a line segment whose length is /7 times
the radius of the circle. Thus, the impossibility of constructing such a line segment by means
laid down by the Greeks would be proved if it could be shown that /7 is not a constructible
length. The argument hinges on the transcendental nature of the number 7; that is, 7 is not
the root of any polynomial equation with rational coefficients. (The transcendence of = was
established by Lindemann in 1882 in a long and intricate proof.)
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Plato
(429-348 B.C.)

(The Bettmann Archive.)

Even early investigators must have suspected that the allowable means were inadequate
for solving this quadrature problem; for when they failed to find a construction involving
merely circles and straight lines, they introduced special higher curves assumed to be already
drawn. Here they were successful. Hippias of Elis (circa 425 B.C.), a near contemporary
of Hippocrates, invented a new curve called the quadratrix, for the express purpose of
squaring the circle. His solution was perfectly legitimate, but did not satisfy the restriction
Plato had laid down. Hearing that Hippias had devised a sliding apparatus by which his
curve could be drawn, Plato rejected the solution on the grounds that it was mechanical and
not geometrical. Plutarch (Convivial Questions) describes Plato as saying: “For in this way
the whole good of geometry is set aside and destroyed, since it is reduced to things of the
sense and prevented from soaring among eternal images of thought.”

Hippocrates’ attempts at squaring the circle led him to discover that there are certain
plane regions with curved boundaries that are squarable. More specifically, he showed
that two lunes (a lune is the moon-shaped figure bounded by two circular arcs of unequal
radii) could be drawn, whose areas were together equal to the area of a right triangle. This
was accomplished as follows. Starting with an isosceles right triangle ABC, he constructed
semicircles on the three sides as in the diagram.




Burton: The History of 3. The Beginnings of Greek | Text © The McGraw-Hill ‘ @
Mathematics: An Mathematics Companies, 2007
Introduction, Sixth Edition

Three Construction Problems of Antiquity 125

Hippocrates apparently knew that the areas of two circles were proportional to the
squares of the lengths of their diameters. Thus,

Area semicircle on AB _ AB?

Area semicircle on AC ~ AC?’

This ratio must equal 2; for the Pythagorean theorem, as applied to triangle ABC, allows
AB? = AC? + CB? = 2AC?. Hence, the semicircle on A B has twice the area of the semi-
circle on AC. From this, Hippocrates was led to conclude that the sum of the areas of the
two small semicircles equaled the area of the larger one. The next step was to subtract the ar-
eas III and IV common to both. The figure shows that the areas remaining—namely, the sum
of the areas I and II of the two lunes and the area of triangle ABC—are equal. But triangle
ABC has area 3(AC - BC) = 3AC?, so that

Area lune I 4+ area lune II = %AC 2

To put it another way, lune I has an area equivalent to half that of triangle ABC,

1/1 AC\?
Arealunel= = ( -AC? )= —) .
2\2 2

and the “square of the lune” has been found. Hippocrates thus provided the first example
in mathematics of a curvilinear area that admits exact quadrature.

Having shown that the lune could be squared, Hippocrates next tried to square the circle
by a similar argument. To this end, he took an isosceles trapezoid ABCD formed by the
diameter of a circle and three consecutive sides of half of a regular hexagon inscribed in
the circle. Further semicircles were then described, having as diameters the sides AB, BC,
and C D of the hexagon, as well as the radius O D of the original circle. Hippocrates proved
that the area of the trapezoid ABCD equaled the sum of areas of the three lunes I, II, and III
plus the area of the semicircle on O D.

‘l
B C
o
A U D

Because the squares of the diameters are to each other as the areas of the respective
semicircles,

Area semicircle on OD _ OD? OD? 1

Area semicircle on AD  AD? (ODy? — 4

But each of the sides AB, BC, and CD is equal to the radius OD, from which it follows
that each of the small semicircles has area a quarter that of the large semicircle. Knowing
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this, one concludes that the area of the semicircle on AD is the same as the total area
of four semicircles—the three semicircles on the equal sides of the half-hexagon and the
semicircle on the radius OD. If the parts common to both of these areas (to wit, the shaded
segments lying between the hexagon and the circumference of the semicircle) are removed,
the remaining areas will be equal. In other words, the lunes I, II, and III together with the
semicircle on OD will have an area equivalent to that of the trapezoid ABCD:

Area trapezoid ABCD = area lune I + area lune II 4 area lune III
+ area semicircle on OD.

If it were possible to subtract from this sum three squares with areas equal to the areas of
the three lunes, then we could construct a rectangle equal in area to the semicircle on OD;
twice that rectangle would then be equivalent to the circle on OD. As any rectangle can be
converted to a square having the same area, the circle would have been squared.

Hippocrates’ work on lunes has been preserved through the writings of the sixth-
century commentator Simplicius and is indeed the only sizable fragment of classical Greek
(pre-Alexandrian) mathematics that has been transmitted to us as originally composed.
According to Simplicius, Hippocrates believed that he had actually succeeded in obtaining
the quadrature of the circle by the argument as we have described it. He did not, needless
to say, solve the squaring of the circle.

The mistake lay in assuming that every lune can be squared; whereas this was shown
possible only in the special case with which Hippocrates had concerned himself. What he
proved for the lune on the side of an inscribed isosceles triangle need not be true for the lune
on the side of an inscribed half-hexagon. Actually it is unlikely that Hippocrates, one of the
most competent of geometers, would have made such a blunder. He may have hoped that
in due course these lune quadratures would lead to the squaring of the circle. But it must
have been a mistake on the part of the commentator to think that Hippocrates had claimed
to have squared the circle when he had not done so.

The Duplication of the Cube

Another famous construction problem that concerned geometers of the time was the
duplication of the cube; in other words, finding the edge of a cube having a volume twice
that of a given cube. Just how the duplication problem originated is a matter of conjecture.
Perhaps it dates back to the early Pythagoreans who had succeeded in doubling the square—
if upon the diagonal of a given square a new square is constructed, then the new square has
exactly twice the area of the original square. After this accomplishment, it would be only
natural to extend the problem to three dimensions.

Tradition, however, provides us with a more romantic tale. According to the account
that has prevailed most widely, the Athenians appealed to the oracle at Delos in 430 B.C. to
learn what they should do to alleviate a devastating plague that had inflicted great suffering
on their city and caused the death of their leader, Pericles. The oracle replied that the existing
altar of Apollo should be doubled in size. Because the altar was in the form of a cube, the
problem was to duplicate the cube. Thoughtless builders merely constructed a cube whose
edge was twice as long as the edge of the altar. At this, legend has it, the indignant god
made the pestilence even worse than before. When the error was discovered, a deputation
of citizens was sent to consult Plato on the matter. Plato told them that “the god has given
this oracle, not because he wanted an altar of double the size, but because he wished in
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setting this task before them to reproach the Greeks for their neglect of mathematics and
their contempt of geometry.” Whether the plague was actually abated or whether it simply
ran its course is not known, but because of the oracle’s response, the problem of duplicating
the cube is often referred to as the “Delian problem.”

History is confused, and there are at least two legends on the subject. We are also told
that the poet Euripedes (485—406 B.C.) mentioned the Delian problem in one of his tragedies,
now lost. In this version, the origin of the problem is traced to King Minos, who is represented
as wishing to erect a tomb to his son Glaucus. Feeling that the dimensions proposed were
too undignified for a royal monument, the king exclaimed, ‘“You have enclosed too small
a space; quickly double it, without spoiling the beautiful (cubical) form.” In each of these
accounts, the problem seems to have had its genesis in an architectural difficulty.

Here too, the first real progress in solving the duplication problem was made by Hip-
pocrates. He showed that it can be reduced to finding, between a given line and another line
twice as long, two mean proportionals. (That is, two lines are inserted between the given
lines so that the four are in geometric proportion.) In our present notation, if a and 2a are
the two given lines, and x and y are the mean proportionals that could be inserted between
them, then the lengths a, x, y, and 2a are in geometric progression, which is to say

a x y
x oy 2a

The first two ratios imply that x> = ay. From the second pair of ratios, we see that y*> = 2ax.
These equations are combined into

whence it appears that
x} =2d°.

In other words, the cube that has edge x will have double the volume of a given cube of
edge a.

Hippocrates did not succeed in finding the mean proportionals by constructions using
only straightedge and compass, those instruments to which Plato had limited geometry.
Nevertheless the reduction of a problem in solid geometry to one in plane geometry was in
itself a significant achievement. From this time on, the duplication of the cube was always
attacked in the form in which Hippocrates stated it: How may two mean proportionals be
found between two given straight lines?

The Trisection of an Angle

Although Hippocrates advanced two of the three famous construction problems, he made
no progress with trisecting an angle. The bisection of an angle with only straightedge and
compass is one of the easiest of geometrical constructions, and early investigators had no
reason to suspect that dividing an angle into three equal parts under similar restrictions
might prove impossible. Some angles can obviously be trisected. In the special case of the
right angle POQ, the construction is found as follows. With O as a center, draw a circle of
any radius intersecting the sides of the angle in points A and B. Now draw a circle with
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center at B and passing through O. The two circles will intersect in two points, one of which
will be a point C in the interior of angle POQ.

Q

B
—

0 /A P
Triangle BOC is equilateral, hence equiangular; therefore /COB = 60°. But then
LCOA =90° — 60° =30° = %(900),

and line OC is a trisector of the right angle.

For 2000 years mathematicians sought in vain to trisect an arbitrary angle. In 1837,
Pierre Wantzel (1814-1848) of the Ecole Polytechnique in Paris supplied the first rigor-
ous proof of the impossibility of trisecting any given angle by straightedge and compass
alone. In the same paper, published in Liouville’s Journal de Mathématiques, Wantzel also
demonstrated the futility of duplicating the cube in the manner specified. The key to this
conclusion was the conversion of the two geometric problems to questions in the theory of
equations. Wantzel obtained simple algebraic criteria that would permit the solution of a
polynomial equation with rational coefficients to be geometrically constructed by means of
a straightedge and compass. The classical geometric problems of trisection and duplication
lead to cubic equations that do not satisfy Wantzel’s conditions, and thus the corresponding
constructions cannot be carried out.

If the restrictions imposed by the Greeks are relaxed, there are a variety of ways
of dividing an angle into three equal parts. The simplest solution of the problem is to
allow oneself the liberty of marking the straightedge. The following technique of rotating a
marked straightedge until certain conditions are satisfied was devised by Archimedes. Let
POQ be the angle to be trisected. With the vertex O as center, draw a circle of any radius r
intersecting PO in A and QO in B. Now lay off the distance r on a straightedge. By shifting
the straightedge around, you can get a certain position in which it passes through the point B,
while the endpoints of the r segment lie on the circle (at C) and the diameter AOA’ extended
(at D). The line through the points B, C, and D is now drawn with the aid of the straightedge.

With these preliminaries accomplished, we undertake to show that angle ODC is one-
third of angle AOB. First observe that by its construction, CD = OC = r, so that triangle
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ODC is isosceles; hence /COD = /ODC. Because an exterior angle in a triangle is equal
to the sum of the nonadjacent interior angles, it follows that in triangle COD,

LOCB = /COD + £ODC = 2/0DC.

Also, in the isosceles triangle OCB, we have /OCB = /OBC. Another appeal to the exterior
angle theorem (this time applied to triangle ODB) leads to the equality

(AOB = (ODB + /OBC = LODC + LOBC.
These various observations can be brought together to give
[AOB = /ODC + LOBC
= /0ODC+ LOCB
= /0DC+2/.0DC =3.0DC,

which accomplishes our aim. It is worth emphasizing that the usual rules for straightedge
and compass constructions have been violated, because the straightedge was marked. That
is, the points C and D were determined by sliding the straightedge to the proper position
to make CD equal to r.

2. The following solution to the continued mean
3.4 Problems proportionals problem is often attributed to Plato,
although it could hardly be his in view of his objection
to mechanical constructions. Consider two right
triangles ABC and BCD, lying on the same side of the
common leg BC (see the figure). Suppose that the
hypotenuses AC and BD intersect perpendicularly at
the point P, and are constructed in such a way that
AP = a and DP = 2a. Prove that x = BP and y = CP
are the required mean proportionals between a and 2a,
that is, that

1. For a variation of Hippocrates’ argument that the area
of a lune could be reduced to the area of a circle, begin
with a square ABCD and construct a semicircle on its
diagonal. With the point D as a center and AD as
radius, draw a circular arc from A to C, as in the
figure. Prove that the area of the lune, shaded in the
figure, is equal to the area of triangle ABC. [Hint:

Similar circular sections (the region between a chord a_x _ ¥y
and the arc subtended by the chord) have areas x 'y 2a
proportional to the squares of the lengths of their
chords. Apply this fact to the similar sections I
and I1.] D
B
I
A C

[

[Hint: When parallel lines are cut by a third line,
alternate interior angles are equal. Conclude therefore
D that the triangles APB, CPB, and DPC are similar.]
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Apollonius (circa 225 B.C.) solved the problem of
inserting two mean proportionals between segments of
lengths a and 2a. He first constructed a rectangle
ABCD, with AB = a and AD = 2a, letting E be the
point at which the diagonals bisected one another. With
E as a center, he then drew a circle cutting the
extensions of AB and AD at points P and Q,
respectively, so that P, C, and Q all lay on a straight
line. (Apollonius is said to have invented a mechanical
device by which this last step could be made.) For such
a figure, establish that

(a) The triangles PAQ, PBC, and CDQ are similar,

whence
g_i_a-i-y
X 20 2a+4x’
P
y
B < Z /,C
~
a|lG— Z
A 2a D «x 0

(b) Triangles EFQ and EGP are right triangles with
equal hypotenuses, whence

e (= (300)

or
Qa+x)x =(a+y)y.

(¢) Segments DQ = x and BP = y are the two mean
proportionals between a and 2a:

Y

x
y  2a’

a
X

The Greek mathematician Menaechmus (circa 350
B.C.), the tutor of Alexander the Great, obtained a
purely theoretical solution to the duplication problem
based on finding the point of intersection of certain
“conic sections.” To duplicate a cube of edge a, he
constructed two parabolas having a common vertex
and perpendicular axes, so that one parabola had a
focal chord (latus rectum) of length a and the other a
chord of length 2a. Prove that the abscissa x of the
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point of intersection of the two parabolas satisfies the
condition x* = 2a*; the sought-for x, the cube’s edge,
is thereby obtained.

~

y? =2ax

(x, y)

(a/2,0)

The trisection of a given angle can also be
accomplished by a construction due to Nicomedes
(circa 240 B.C.). Let ZAOB be a given angle. Through
the point B, draw two lines, one perpendicular to the
other side of ZAOB at C and one parallel to it. Now
mark the length a = 20B on a straightedge and slide
the straightedge so that it passes through the point O,
while the endpoints of the a segment lie on BC

and BD (at P and Q, respectively, so that

PQ =a).

al2
P

A
0 c

Verify each of the following assertions:

(a) If M is the midpoint of PQ, then
/MOB = /BMO. [Hint: The midpoint of the
hypotenuse of a right triangle is equidistant from
the endpoints of its sides.]

(b) By the exterior angle theorem, as applied to
triangle BMQ, we find that ZBMP =
/MBQ + /MQB.

(¢) (AOQ = /BQO.

(d) (AOB = [AOQ + (QOB = 3/BQO.
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6. Nicomedes solved the problem of duplicating the cube (d) Segments DQ = x and BP = y are the two mean
by an argument like that of Apollonius. First, construct proportionals between a and 2a:
arectangle ABCD with AB = a and AD = 2a. Let M
be the midpoint of AD and N the midpoint of AB, and a_r_ 21
y a

let the segments CM and BA be extended to meet in G.
Take the point F on the perpendicular FN to be such
that FB = a. Now draw BH parallel to GF and draw
FP to cut segment AB produced in P, with P so
chosen that HP = a. (To accomplish this last step,
Nicomedes invented a special plane curve, and even an
apparatus that would draw it, called the conchoid.)
Prolong the line PC until it meets AD extended

in Q.

P
a
H
z B 2a C
a
F N u
7 M D X 0
G
Establish that
(a) The triangles PAQ, PBC, and CDQ are similar,
whence
a_y _a +vy
x 2a 2a+=x

(b) The triangles PBH and PGF are similar, whence

a z+a

y_y+2a’

ora/z =y/2a,sothat z = x.

(¢) The triangles FNB and FNP have FN as a
common side, and so

O )

or

X _y+a

y x+42a’

Isaac Newton (1642—1727) suggested the following
construction for duplicating the cube. Given a
segment AB, erect a perpendicular BR to AB and draw
BT so that angle ABT equals 120°. Let D be the point
on BT such that if AD is drawn meeting BR at C, then
CD = AB.

A
c
a
b \C y E
B <5 I R
[
a
:x
I
D
T

Establish that if DE is drawn perpendicular to BR, each
of the following will be true:

(a) Triangles ABC and DEC are similar, whence

(b)
1 _ DE
ﬁ =tan30° = BE
X a?

=b+y " ab+bc’

(c) The result of squaring the last equation and

substituting b*> = ¢? — a? is

AQa +¢) =2a°Qa + ¢).

(d) Since ¢* = 2a?, the cube of side AC is double
the cube of side AB.

To find a fourth proportional to given line segments
with lengths a, b, and c, first construct two
noncollinear rays emanating from a point O. On these
rays mark off segments OA and OC of lengths a and c,
respectively, and connect the points A and C so as to
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form a triangle. On the ray on which the length a has
been marked, now lay off a segment AB of length b.
Finally, construct a line through the point B parallel to
the side AC of the triangle constructed earlier, and
intersecting the other ray in a point D. If the segment
CD has length x, show that x satisfies the

proportion
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= |0
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The curve usually called the quadratrix was invented by

The Quadratrix Of HlpplElS Hippias of Elis (born about 460 B.C.) to trisect an angle. The

curve acquired its name from its later use in the quadrature
Rise of the SOphiStS of the circle. Like his contemporary Hippocrates, Hippias

was one of the first to teach for money, one of the so-called
sophists. The word “sophist,” much like the word “tyrant,” did not originally have a deroga-
tory meaning although it soon came to receive one. The term first meant “wise man” and
only later did it take on the connotation of one who reasons adroitly and speciously, rather
than soundly.

The sophists were itinerant teachers, usually from Asia Minor or the Aegean Islands,
who had acquired learning and experience through wide travel. Whereas the disciples of
Pythagoras were forbidden to accept fees for sharing their knowledge, the sophists, less
hampered by tradition, had no such qualms. Shortly after the middle of the fifth century
B.C. several of these wandering lecturers—some of them reputable scholars, some outright
imposters—arrived in Athens to vend their wares. There was a ready market for their talents
among the prosperous Athenians, and success there ensured one’s reputation throughout
Greece, Sicily, and Italy.

The sophists took all knowledge as their province, but their central subject was the art
of disputation. They professed to be able to teach their students to speak with clarity and
persuasion, with the appearance of logic, on any topic whatever, and to defend either side
of a question successfully. This laid them open to the charge of training in cleverness rather
than virtue. Their opponents claimed that the sophists taught youth “to prove that black
is white and to make the worse appear the better.” In spite of the criticisms against them,
they were very much in demand. Wealthy people took pride in entrusting the education of
their sons to the best and most famous sophists. In the end, their commercialism and the
extravagant claims made for their instruction turned Plato and others against them, and gave
the term ““sophist” its present meaning.

Because most of what we know about Hippias’s life and character comes from two
dialogues of Plato in which sophists are castigated, it is hard to judge him fairly. In the
Platonic dialogues named after him, Hippias was pictured as an arrogant, boastful buffoon.
He was made to say that he had earned more money than any other two contemporary sophists
and had gained, in spite of the competition from the illustrious Protagoras of Abdera (in
Thrace), huge sums on his Sicilian lecture tour. His claims were further recounted—that if
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he had received no lecture fees in Sparta and had not been invited to teach its youth, it was
only because Spartan law prohibited foreign teaching. Hippias came from Elis, a small state
in the northwest corner of the Peloponnesus, whose inhabitants had charge of the games
that took place every fourth year on the plains of Olympia.

In Plato’s writing, Hippias boasted that on his previous visit to the Olympic festival
everything that he wore was of his own making, not merely his garments, but also his seal
ring, oil flask, and sandals. He was said to have brought with him epics, tragedies, and all
kinds of prose compositions of his own fashioning, and to have been prepared to lecture
on music, letters, and the art of memory. The secret of Hippias’s wide knowledge seems to
have been his exceptional memory. If he once heard a string of fifty names, for instance,
he could repeat them all in correct order. The dialogues Hippias Major and Hippias Minor,
since they were caricatures, are unreliable as portraits—yet they must surely have recorded
enough of Hippias’s eccentricities that his contemporaries would have recognized him.

Hippias of Elis

Although we know of no other mathematics that we can attribute to him, Hippias’s
reputation rests securely on his invention of the quadratrix. It is the first example of a curve
that could not be drawn by the traditionally required straightedge and compass but had to
be plotted point by point. The quadratrix is described by a double motion as follows.

M y \ N
/ N\
[/

[/ 7\
=1\

A H G D

Let a straight line segment AE rotate clockwise about A with a constant velocity from the
position AB to the position AD, so that a quadrant BED of a circle is described. At the same
moment that the radius AE leaves its initial position AB, a line MN leaves BC and moves
down with a constant velocity toward AD, always remaining parallel to AD. Both these
motions are so timed that AE and MN will reach their ultimate position AD at the same
moment. Now, at any given instant in their simultaneous movement, the rotating radius and
the moving straight line will intersect at a point (F is a typical point). The locus of these
points of intersection is the quadratrix. If FH is the perpendicular to AD, then the property
of the quadratrix is that

/BAD _ AB arc BED

JEAD _ FH  arcED
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It is worth noting that the definition does not actually locate any point of the quadratrix
on AD. If the rotating radius and moving straight line are made to end their motions together,
then they will both coincide with AD, hence will not intersect one another at a unique point.
The point of the quadratrix on AD (namely the point G) can be located only as a limit.

W |

To see the ease with which the quadratrix can be used to trisect an angle, suppose that
the given angle is ZXAY . Place this angle at the center of a circle within which the quadratrix
is constructed, and let XA cut the curve at F'. Draw FH perpendicular to AD and trisect FH.
Through the point P of trisection, draw MN parallel to AD, meeting the quadratrix at Q.
Now join AQ and extend it to meet the quadrant in the point R. Then /DAR is the required
angle. From the definition of the quadratrix, it is easy to prove that

(DAR PH (FH) 1

/DAE ~ FH  FH 3

in consequence of which ZDAR = 1/DAE = 1/XAY.

The use of the quadratrix in finding a square equal in area to a given circle is a more
sophisticated matter and might not have been obvious to Hippias. Pappus, in his large
compendium Mathematical Collection, made the statement:

For the squaring of the circle, there was used by Dinostratus, Nicomedes, and some other more
recent geometers a certain curve which took its name from this property; for it is called by
them “square-forming” [quadratrix].

Hence, any ascription of the curve to Hippias is lacking. And as for Dinostratus (circa
350 B.C.), nothing more is known of his work than is disclosed by this passage, which
should remind us of the scantiness of testimony on Greek mathematics and its practition-
ers. Although there is no universal opinion, Hippias is usually credited with inventing the
quadratrix as a device for trisecting angles, and Dinostratus with first applying it to the
quadrature of the circle.

Dinostratus’s solution of the squaring of the circle, as transmitted to us by Pappus,
requires one to know the position of G, the point at which the quadratrix meets the line AD.
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If it is assumed that G can be found, Pappus’s proposition as he established it is
arc BED  AB
AB  AG’
This is proved by a double reductio ad absurdum argument, and provides one of the ear-
liest examples in Greek mathematics of the indirect method of reasoning Euclid used so

extensively.
B c
E
L F
A H G K D

If the ratio (arc BED)/AB is not equal to AB/AG, then it must equal AB/AK, where
either AK > AG or AK < AG. Let us begin by assuming that AK > AG. With A as center
and AK as radius, draw a quarter circle KFL, intersecting the quadratrix at F' and the side
AB at L. Join AF and extend it to meet the circumference BED at E; also, from F draw FH
perpendicular to AD. Since corresponding arcs of a circle are proportional to their radii,

arc BED AB

arc KFL _ AK ;
and if the hypothesis is correct, we must have

arc BED AB

TAB  AK

from which it follows that AB = arc KFL. But by the defining property of the quadratrix, it
is known that

AB __arc BED __arc KFL
FH  arcED = arc FK'

and it was just proved that AB = arc KFL. Therefore, the last relation tells us that FH =
arc FK. But this is absurd, for the perpendicular is shorter than any other curve or line from
F to AD. Thus the possibility that AK > AG is ruled out. If AK < AG, a contradiction is
reached in the same manner; hence, we are left with AK = AG and (arc BED)/AB = AB/AG.

The quadrature problem just described is the quadrature of a quadrant, and Pappus took
for granted that from this, one would be able to arrive at a square equal in area to a circle.
For squaring the circle, we shall use Proposition 14 of Book II of Euclid’s Elements: To
construct a square equal to a given rectilinear figure. Let a circle of radius » be given. Using
the quadratrix, a line segment of length s can be obtained for which

c/4
— =

r
N
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where C is the circumference of the circle. Once the length s is available, it is possible
to construct a line segment which is the fourth proportional to r, » and s (see Problem 8
of Section 3.4). The resulting segment will be equal in length to ¢ = C/4, the quadrant
arc of the circle. Because the area A of the circle is half the product of its radius and its
circumference, we have

1 Cc
A=—-rC=2r{-—)=2rq.
2 4

A rectangle with 2r as one side and g as the other will have area equal to A, a square equal
in area to the rectangle is easily constructed by means of a semicircle. This is equivalent
to taking the side x of the required square to be the mean proportional between the line
segments 2r and ¢,

2r

The Grove of Academia: Plato’s Academy

Most sophists had no permanent residence. They engaged their lecture halls, collected
their fees for courses of instruction, and then departed. But by the early fourth century B.C,,
many of them had given up their itinerant practices and established themselves in Athens.
The city began to gain a reputation for scholarship that attracted students from near and far.
To use Hippias’s words—at least those given in Plato’s Dialogues—Athens had become
“the very headquarters of Greek wisdom.”

The most celebrated of the new schools to open in Athens was the Academy of Plato,
where Aristotle was a student. As a disciple of Socrates, Plato (429-348 B.C.) had found it
expedient to leave Athens after his master was sentenced to drink poison. For a dozen years,
he traveled in the Mediterranean world, stopping in Egypt, Sicily, and southern Italy. In
Italy, Plato became familiar with the tenets of the Pythagoreans, which may partly explain
his appreciation of the universal value of mathematics. On his way back to Greece he
was sold as a slave by the ship’s captain but was quickly ransomed by his friends. About
387 B.C., Plato returned to his native city to establish himself as a philosopher. In a grove
in the suburbs of Athens, Plato founded a school that became, in a sense, the spiritual
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A mosaic from Pompeii depicting the Academy of Plato. (The Bettmann Archive.)

ancestor of our Western institutions of higher learning. The land originally belonged to the
hero Academos, so that it was called the grove of Academia; and therefore the new school
of philosophy was named the Academy. After the fashion of that time, legal recognition
was secured by making the Academy a religious brotherhood, dedicated to the worship of
the Muses. Accordingly, it had chapels dedicated to these divinities. The Academy was
the intellectual center of Greece for 900 years, until permanently closed in 529 A.D. by the
Christian Emperor Justinian as a place of pagan and perverse learning.

It is through Plato that mathematics reached the place in higher education that it still
holds. He was convinced that the study of mathematics furnished the finest training of the
mind and hence was indispensable for philosophers and for those who would govern his ideal
state. Because he expected those seeking admission to the Academy to be well grounded in
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geometry, he caused to be displayed over its portals the warning inscription, “Let no man
ignorant of geometry enter here.” It is reported that one of Plato’s successors as a teacher in
the Academy turned away an applicant who knew no geometry, saying, “Depart, for thou
hast not the grip of philosophy.” Whether or not these stories are true, there is no question
that in contrast to the sophists who looked down on the teaching of the abstract concepts
of the scientist, Plato gave mathematics a favored place in the curriculum of the Academy.
The importance of arithmetical training, in his view, is that “arithmetic has a very great
and elevating effect, compelling the mind to reason about abstract number.” In speaking of
the virtues of mathematics he was, of course, espousing the cause of pure mathematics; by
comparison, he thought its practical utility was of no account. Plato carried his dislike of
“applied mathematics” to the extreme of protesting the use of mechanical instruments in
geometry, restricting the subject to those figures that could be drawn by straightedge and
compass.

Plato was primarily a philosopher rather than a mathematician. So far as mathematics
is concerned, it is not known that he made any original contribution to the subject matter;
but as one who inspired and directed other research workers, he performed as great a service
as any of his contemporaries did. According to the Greek commentator Proclus:

Plato ... caused mathematics in general, and geometry in particular, to make great advances,
by reason of his well-known zeal for the study, for he filled his writings with mathematical
discourses, and on every occasion exhibited the remarkable connection between mathematics
and philosophy.

Most of the mathematical advances that came during the middle of the fourth century B.C.
were made by the friends and pupils of Plato. Proclus, after giving us a list of names of
those who contributed to the subject at that time, went on to say, “All these frequented
the Academy and conducted their investigations in common.” The hand of Plato is also
seen in the increased attention given to proof and the methodology of reasoning; accurate
definitions were formulated, hypotheses clearly laid down, and logical rigor required. This
collective legacy paved the way for the remarkable systemization of mathematics in Euclid’s
Elements.

About 300 B.C., the Platonic Academy found a rival, the Museum, which Ptolemy I
set up in Alexandria for teaching and research. The talented mathematicians and scientists
for the most part left Athens and adjourned to Alexandria. Although the main center of
mathematics had shifted, the direct descendant of Plato’s Academy retained its preeminence
in philosophy until the Emperor Justinian suppressed the philosophical schools of Athens,
decreeing that only those of the orthodox faith should engage in teaching. Edward Gibbon,
in The Decline and Fall of the Roman Empire, saw Justinian’s legislation of 529 as the death
knell of classical antiquity, the triumph of Christian ignorance over pagan learning.

The Gothic arms were less fatal to the schools of Athens than the establishment of a new religion
whose minister superseded the exercise of reason, resolved every question by an article of faith,
and condemned the infidel or sceptic to eternal flame. ... The golden chain, as it was fondly
styled, continued . . . until the edict of Justinian, which imposed perpetual silence on the schools
of Athens.

Beyond 529, the institution of higher learning that Plato had founded ceased to be an
instrument of Greek education.
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3.5 Problems

1. Complete Dinostratus’s proof of the quadrature of the
quarter-circle by showing that the assumption
AK < AG leads to a contradiction. [Hint: Show that in
the accompanying figure, arc PK = FK, is a
contradiction. ]

B C B a C
E
F
(r, 0)
, a /i
L r/
I
I
6
A K G D A H G D

2. (a) Show that in modern polar coordinates, the
equation of the quadratrix is

2a6
sin@’

where 0 is the angle made by the radius vector
with AD, and r is the length of the radius vector
and a the side of the square ABCD.

(b) Verify that AG = limy_, r exists, that in fact,
AG =2a/m.

3. Proposition 14 of Book II of Euclid’s Elements solves
the construction: To describe a square that shall be
equal (in area) to a given rectilinear figure. Prove that
if ABCD is the given rectangle, AE is the diameter of a
semicircle, and BFGH is a square, then the square is
equal in area to the rectangle.

F

X

D a C

4. Show how Dinostratus, having found a line segment
whose length was one-fourth the circumference of a
circle, might have used the following theorem—stated
by Archimedes in his Measurement of a Circle—to
help square the circle: The area of any circle is equal to
the area of the right triangle that has an altitude equal
to radius of the circle and a base equal to the
circumference.
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The tomahawk-shaped instrument shown in the
accompanying figure can be used to solve the trisection
problem. (PQ = QR = RS, with PTR a semicircle on
PR as diameter, UR perpendicular to PS.) If ZAOB is
the angle to be trisected, place the tomahawk on the
angle so that S lies on OA, the line segment UR passes
through O, and the semicircle with diameter PR is
tangent to OB at T'. Prove that the triangles OTQ,
ORQ, and ORS are all congruent, whence /ROA is
one-third of ZAOB.

The limagon (from the Latin word for “snail,” limax)
was discovered by Etienne Pascal (1588—-1640), father
of the better-known Blaise Pascal. The curve is based
on the circle C of radius 1 with

1 (r, 0)

\

center at (1, 0); for it is defined to be the set of all
points whose distance from the circle C measured
along a line through the origin is constantly equal to 1,
the radius of C. Prove that the equation of the limagon
in polar coordinates is » = 1 + 2 cos 6, hence in
rectangular coordinates is (x* + y? — 2x)? = x% + y?.
[Hint: The polar equation of the circle C is

r =2cosb.]
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7.  Although the limagon was invented for other purposes,
it was later shown to afford a method for trisecting
arbitrary angles. Let ABC be any central angle in a
circle with center B = (1, 0) and radius 1. Draw the
limagon for the circle and let BA extended cut the
limagon in the point D. Let the line from the origin O
to D meet the circle at E, as shown in the figure. Prove
that angle BDE is one-third as large as angle ABC.
[Hint: /ABC = /BOD + /BDO = /BEO + /BDE =
(BDE + [EBD + /BDE = 3/BDE.]
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It is the glory of geometry that from so few principles, fetched from without, it is able to accomplish

so much.
ISAACNEWTON
Toward the end of the fourth century B.C., the scene of
4.1 Euchd and the Elements mathematical activity shifted from Greece to Egypt. The
battle of Chaeronea, won by Philip of Macedon in 338 B.C.,
A Center of Learning: saw the extinction of Greek freedom as well as the decay of
The Museum productive genius on its native soil. Two years later, Philip

was murdered by a discontented noble and was succeeded
by his 20-year-old son, Alexander the Great. Alexander conquered a great part of the known
world within 12 years, from 334 B.C. to his death in 323 B.C., at the age of 33. Because his
armies were mainly Greek, he spread Greek culture over wide sections of the Near East.
What followed was a new chapter of history, known as the Hellenistic (or Greek-like) Age,
which lasted for three centuries, until the Roman Empire was established.

Alexander’s great monument in Egypt was the city that still bears his name, Alexandria.
Having taken and destroyed the Phoenician seaports in a victorious march down the Eastern
Mediterranean, Alexander was quick to see the potential for a new maritime city (a sort of
Macedonian Tyre) near the westernmost mouth of the Nile. But he could do little more than
lay out the site, because he departed for the conquest of Persia soon afterward. The usual
story is that Alexander, with no chalk at hand to mark off the streets, used barley from the
commissary instead. This seemed like a good idea until clouds of birds arrived from the
delta and ate the grain as fast as it was thrown. Disturbed that this might be a bad omen,
Alexander consulted a soothsayer, who concluded that the gods were actually showing that
the new city would prosper and give abundant riches.

At Alexander’s death, one of his leading generals, Ptolemy, became governor of Egypt
and completed the foundation of Alexandria. The city had the advantage of a superb harbor
and docking facilities for 1200 ships, so it became with the shortest possible delay the
trading center of the world, the commercial junction point of Asia, Africa, and Europe.
Alexandria soon outshone and eclipsed Athens, which was reduced to the status of an
impoverished provincial town. For nearly a thousand years, it was the center of Hellenistic
culture, growing in the later years of the Ptolemaic dynasty to an immense city of a million
people. Following its sacking by the Arabs in A.D. 641, the building of Cairo in 969, and
the discovery of a shipping route around the Cape of Good Hope, Alexandria withered
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away, and by the time of the Napoleonic expedition its population had dwindled to a mere
4000.

The early Ptolemies devoted themselves to making Alexandria the center of intellectual
life for the whole eastern Mediterranean area. Here they built a great center of learning in the
so-called Museum (seat of the Muses), a forerunner of the modern university. The leading
scholars of the times—scientists, poets, artists, and writers—came to Alexandria by special
invitation of the Ptolemies, who offered them hospitality as long as they wished to stay. At
the Museum, they had leisure to pursue their studies, access to the finest libraries, and the
opportunity of discussing matters with other resident specialists. Besides free board and
exemption from taxes, the members were granted salary stipends, the only demand being
that they give regular lectures in return. These fellows of the Museum lived at the king’s
expense in luxurious conditions, with lecture rooms for their discussions, a colonnaded
walkway in which to stroll, and a vast dining hall, where they took their meals together.
The poet Theocritus, enjoying the bounty, hailed Ptolemy as “the best paymaster a free
man can have.” And another sage, Ctesibius of Chalcis, when asked what he gained from
philosophy, candidly replied, “Free dinners.”

Built as a monument to the splendor of the Ptolemies, the Museum was nonetheless
a milestone in the history of science, not to mention royal patronage. It was intended as
an institution for research and the pursuit of learning, rather than for education; and for
two centuries scholars and scientists flocked to Egypt. At its height, this center must have
had several hundred specialists, whose presence subsequently attracted many pupils eager
to develop their own talents. Although one poet of the time contemptuously referred to
the Museum as a birdcage in which scholars fattened themselves while engaging in trivial
argumentation, science and mathematics flourished with remarkable success. Indeed, it is
frequently observed that in the history of mathematics there is only one other span of about
200 years that can be compared for productivity to the period 300-100 B.C., namely the
period from Kepler to Gauss (1600-1850).

Scholars could not get along without books, so the first need was to collect manuscripts;
when these were sufficiently abundant, a building was required to hold them. Established
almost simultaneously with the Museum and adjacent to it was the great Alexandrian library,
housing the largest collection of Greek works in existence. There had of course been libraries
before it, but not one possessed the resources that belonged to the Ptolemies. Manuscripts
were officially sought throughout the world, and their acquisition was vigorously pressed
by agents who were commissioned to borrow old works for copying if they could not
otherwise be obtained; travelers to Alexandria were required to surrender any books that
were not already in the library. Many stories are told of the high-handed methods by which
the priceless manuscripts were acquired. One legend has it that Ptolemy III borrowed from
Athens the rolls kept by the state containing the authorized texts of the writers Aeschylus,
Sophocles, and Euripides. Although he had to make a deposit as a guarantee that the precious
volumes would be returned, Ptolemy kept the original rolls and sent back the copies (needless
to say, he forfeited the deposit). A staff of trained scribes catalogued the books, edited the
texts that were not in good condition, and explained those works of the past that were not
easily understood by a new generation of Greeks.

The Alexandrian library was not entirely without rivals in the ancient world. The
most prominent rival was in Pergamon, a city in western Asia Minor. To prevent
Pergamon from acquiring copies of their literary treasures, the jealous Ptolemies, it is said,
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prohibited the export of papyrus from Egypt. Early writers were careless with numbers
and often exaggerated the size of the library. Some accounts speak of the main collec-
tion at the library as having grown to 300,000 or even 500,000 scrolls in Caesar’s time
(48 B.C.), with an additional 200,000 placed in the annex called the Serapeum. The col-
lection had been built partly by the purchase of private libraries, one of which, according
to tradition, was Aristotle’s. After the death of Aristotle, his personal papers passed into
the hands of a collector who, fearing that they would be confiscated for the library at
Pergamon, hid all the manuscripts in a cave. The scrolls were badly damaged by insects
and moisture, and the Alexandrian copyists made so many errors when restoring the texts
that they no longer agreed with the versions of Aristotle’s works already housed in the
library.

Euclid’s Life and Writings

Before the Museum passed into oblivion in A.D. 641, it produced many distinguished
scholars who were to determine the course of mathematics for many centuries: Euclid,
Archimedes, Eratosthenes, Apollonius, Pappus, Claudius Ptolemy, and Diophantus. Of
these, Euclid (circa 300 B.C.) is in a special class. Posterity has come to know him as the
author of the Elements of Geometry, the oldest Greek treatise on mathematics to reach us
in its entirety. The Elements is a compilation of the most important mathematical facts
available at that time, organized into 13 parts, or books, as they were called. (Systematic
expositions of geometry had appeared in Greece as far back as the fifth century B.C., but
none have been preserved, for the obvious reason that all were supplanted by Euclid’s
Elements.) Although much of the material was drawn from earlier sources, the superbly
logical arrangement of the theorems and the development of proofs displays the genius of
the author. Euclid unified a collection of isolated discoveries into a single deductive system
based on a set of initial postulates, definitions, and axioms.

Few books have been more important to the thought and education of the Western
world than Euclid’s Elements. Scarcely any other book save the Bible has been more widely
circulated or studied; for 20 centuries, the first six books were the student’s usual introduction
to geometry. Over a thousand editions of the Elements have appeared since the first printed
version in 1482; and before that, manuscript copies dominated much of the teaching of
mathematics in Europe. Unfortunately, no copy of the work has been found that actually
dates from Euclid’s own time. Until the 1800s, most of the Latin and English editions were
based ultimately on a Greek revision prepared by Theon of Alexandria (circa 365) some
700 years after the original work had been written. But in 1808, it was discovered that a
Vatican manuscript that Napoleon had appropriated for Paris represented a more ancient
version than Theon’s; from this, scholars were able to reconstruct what appears to be the
definitive text.

Although the fame of Euclid, both in antiquity and in modern times, rests almost
exclusively on the Elements, he was the author of at least 10 other works covering a wide
variety of topics. The Greek text of his Data, a collection of 95 exercises probably intended
for students who had completed the Elements, is the only other text by Euclid on pure
geometry to have survived. A treatise, Conic Sections, which formed the foundation of the
first four books of Apollonius’s work on the same subject, has been irretrievably lost, and
so has a three-volume work called Porisms (the term porism in Greek mathematics means
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Euclid
(circa 300 B.C.)

(Smithsonian Institution.)

“a corollary”). The latter is the most grievous loss, for it apparently was a book on advanced
geometry, perhaps an ancient counterpart to analytic geometry.

As with the other great mathematicians of ancient Greece, we know remarkably little
about the personal life of Euclid. That Euclid founded a school and taught in Alexandria is
certain, but nothing more is known save that, the commentator Proclus has told us, he lived
during the reign of Ptolemy I. This would indicate that he was active in the first half of the
third century B.C. It is probable that he received his own mathematical training in Athens
from the pupils of Plato. Two anecdotes that throw some light on the personality of the
man have filtered down to us. Proclus, who wrote a commentary to the Elements, related
that King Ptolemy once asked him if there was not a shorter way to learning geometry
than through the Elements, to which he replied that there is “no royal road to geometry”—
implying thereby that mathematics is no respecter of persons. The other story concerns a
youth who began to study geometry with Euclid and inquired, after going through the first
theorem, “But what shall I get by learning these things?” After insisting that knowledge
was worth acquiring for its own sake, Euclid called his servant and said, “Give this man a
coin, since he must make a profit from what he learns.” The rebuke was probably adapted
from a maxim of the Pythagorean brotherhood that translates roughly as, “A diagram and
a step (in knowledge), not a diagram and a coin.”

For more than two thousand years Euclid has been the hon-

Euclidean Geometry ored spokesman of Greek geometry, that most splendid cre-
ation of the Greek mind. Since his time, the study of the

Euchd’s Foundatlon Elements, or parts thereof, has been essential to a liberal ed-

for Geometry ucation. Generation after generation has regarded this work

as the summit and crown of logic, and its study as the best
way of developing facility in exact reasoning. Abraham Lincoln at the age of 40, while
still a struggling lawyer, mastered the first six books of Euclid, solely as training for his
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mind. Only within the last hundred years has the Elements begun to be supplanted by
modern textbooks, which differ from it in logical order, proofs of propositions, and ap-
plications, but little in actual content. (The first real pedagogical improvement was by
Adrien-Marie Legendre, who in his popular Eléments de Géométrie, rearranged and sim-
plified the propositions of Euclid. His book ran from an initial edition in 1794 to a twelfth
in 1823.) Nevertheless, Euclid’s work largely remains the supreme model of a book in pure
mathematics.

Anyone familiar with the intellectual process realizes that the content of the Elements
could not be the effort of a single individual. Unfortunately, Euclid’s achievement has so
dimmed our view of those who preceded him that it is not possible to say how far he advanced
beyond their preparatory work. Few, if any, of the theorems established in the Elements are
of his own discovery; Euclid’s greatness lies not so much in the contribution of original
material as in the consummate skill with which he organized a vast body of independent
facts into the definitive treatment of Greek geometry and number theory. The particular
choice of axioms, the arrangement of the propositions, and the rigor of demonstration are
personally his own. One result follows another in strict logical order, with a minimum of
assumptions and very little that is superfluous. So vast was the prestige of the Elements in
the ancient world that its author was seldom referred by name but rather by the title “The
Writer of the Elements” or sometimes simply “The Geometer.”

Euclid was aware that to avoid circularity and provide a starting point, certain facts
about the nature of the subject had to be assumed without proof. These assumed statements,
from which all others are to be deduced as logical consequences, are called the “axioms” or
“postulates.” In the traditional usage, a postulate was viewed as a “self-evident truth”; the
current, more skeptical view is that postulates are arbitrary statements, formulated abstractly
with no appeal to their “truth” but accepted without further justification as a foundation for
reasoning. They are in a sense the “rules of the game” from which all deductions may
proceed—the foundation on which the whole body of theorems rests.

Euclid tried to build the whole edifice of Greek geometrical knowledge, amassed since
the time of Thales, on five postulates of a specifically geometric nature and five axioms
that were meant to hold for all mathematics; the latter he called common notions. (The
first three postulates are postulates of construction, which assert what we are permitted to
draw.) He then deduced from these 10 assumptions a logical chain of 465 propositions,
using them like stepping-stones in an orderly procession from one proved proposition to
another. The marvel is that so much could be obtained from so few sagaciously chosen
axioms.

Abruptly and without introductory comment, the first book of the Elements opens with
alist of 23 definitions. These include, for instance, what a point is (“‘that which has no parts™)
and what a line is (“being without breadth”). The list of definitions concludes: “Parallel
lines are straight lines which, being in the same plane and being produced indefinitely in
both directions, do not meet one another in either direction.” These would not be taken as
definitions in a modern sense of the word but rather as naive descriptions of the notions used
in the discourse. Although obscure and unhelpful in some respects, they nevertheless suffice
to create certain intuitive pictures. Some technical terms that are used, such as circumference
of a circle, are not defined at all, whereas other terms, like 7hombus, are included among the
definitions but nowhere used in the work. It is curious that Euclid, having defined parallel
lines, did not give a formal definition of parallelogram.
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Euclid then set forth the 10 principles of reasoning on which the proofs in the Elements
were based, introducing them in the following way:

Postulates

Let the following be postulated:

A straight line can be drawn from any point to any other point.
A finite straight line can be produced continuously in a line.

A circle may be described with any center and distance.

All right angles are equal to one another.

ok W=

If a straight line falling on two straight lines makes the interior angles on the same
side less than two right angles, then the two straight lines, if produced indefinitely
meet on that side on which are the angles less than two right angles.

Common Notions

Things that are equal to the same thing are also equal to one another.
If equals are added to equals, the wholes are equal.
If equals are subtracted from equals, the remainders are equal.

Things that coincide with one another are equal to one another.

ok Wb =

The whole is greater than the part.

Postulate 5, better known as Euclid’s parallel postulate, has become one of the most
famous and controversial statements in mathematical history. It asserts that if two lines /
and [’ are cut by a transversal ¢ so that the angles a and b add up to less than two right angles,
then [ and /" will meet on that side of # on which these angles lie. The remarkable feature
of this postulate is that it makes a positive statement about the whole extent of a straight
line, a region for which we have no experience and that is beyond the reach of possible
observation.

r / b

Those geometers who were disturbed by the parallel postulate did not question that its
content was a mathematical fact. They questioned only that it was not brief, simple, and
self-evident, as postulates were supposed to be; its complexity suggested that it should be a
theorem instead of an assumption. The parallel postulate is actually the converse of Euclid’s
Proposition 27, Book I, the thinking ran, so it should be provable. It was thought impossible
for a geometric statement not to be provable if its converse was provable. There is even
some suggestion that Euclid was not wholly satisfied with his fifth postulate; he delayed its
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application until he could advance no further without it, though its earlier use would have
simplified some proofs.

Almost from the moment the Elements appeared and continuing into the nineteenth cen-
tury, mathematicians have tried to derive the parallel postulate from the first four postulates,
believing that these other axioms were adequate for a complete development of Euclidean
geometry. All these attempts to change the status of the famous assertion from “postulate”
to “theorem” ended in failure, for each attempt rested on some hidden assumption that was
equivalent to the postulate itself. Futile so far as the main objective was concerned, these
efforts led nevertheless to the discovery of non-Euclidean geometries, in which Euclid’s
axioms except the parallel postulate all hold and in which Euclid’s theorems except those
based on the parallel postulate all are true. The mark of Euclid’s mathematical genius is
that he recognized that the fifth postulate demanded explicit statement as an assumption,
without a formal proof.

Detailed scrutiny for over 2000 years has revealed numerous flaws in Euclid’s treatment
of geometry. Most of his definitions are open to criticism on one ground or another. It is
curious that while Euclid recognized the necessity for a set of statements to be assumed at
the outset of the discourse, he failed to realize the necessity of undefined terms. A definition,
after all, merely gives the meaning of a word in terms of other, simpler words—or words
whose meaning is already clear. These words are in their turn defined by even simpler
words. Clearly the process of definition in a logical system cannot be continued backward
without an end. The only way to avoid the completion of a vicious circle is to allow certain
terms to remain undefined.

Euclid mistakenly tried to define the entire technical vocabulary that he used. Inevitably
this led him into some curious and unsatisfactory definitions. We are told not what a point
and a line are but rather what they are not: “A point is that which has not parts.” “A line is
without breadth.” (What, then, is part or breadth?) Ideas of “ point” and “line” are the most
elementary notions in geometry. They can be described and explained but cannot satisfac-
torily be defined by concepts simpler than themselves. There must be a start somewhere
in a self-contained system, so they should be accepted without rigorous definition.

Perhaps the greatest objection that has been raised against the author of the Elements is
the woeful inadequacy of his axioms. He formally postulated some things, yet omitted any
mention of others that are equally necessary for his work. Aside from the obvious failure to
state that points and lines exist or that the line segment joining two points is unique, Euclid
made certain tacit assumptions that were used later in the deductions but not granted by
the postulates and not derivable from them. Quite a few of Euclid’s proofs were based on
reasoning from diagrams, and he was often misled by visual evidence. This is exemplified
by the argument used in his very first proposition (more a problem than a theorem). It
involved the familiar construction of an equilateral triangle on a given line segment as base.

PROPOSITION 1

For a line segment AB, there is an equilateral triangle having the segment as one of its
sides.

Proof. Using Postulate 3, describe a circle with center A and radius AB passing
through point B. Now, with center B and radius AB, describe a circle passing through
A. From the point C, in which the two circles cut one another, draw the segments CA
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and CB (Postulate 1 allows this), thereby forming a triangle ABC. It is seen that AC =
AB and BC = AB because they are radii of the same circle. It then follows from
Common Notion 1 that AB = BC = AC, and so triangle ABC is equilateral.

\/

There is only one problem with all this. On the basis of spatial intuition, one feels
certain that the two circles will intersect at a point C and will not, somehow or other, slip
through each other. Yet the purpose of an axiomatic theory is precisely to provide a system of
reasoning free of the dependence on intuition. The whole proposition fails if the circles we
are told to construct do not intersect, and there is unhappily nothing in Euclid’s postulates
that guarantees that they do. To remedy this situation, one must add a postulate that will
ensure the “continuity” of lines and circles. Later mathematicians satisfactorily filled the
gap with the following:

If a circle or line has one point outside and one point inside another circle, then it has two
points in common with the circle.

The mere statement of the postulate involves notions of “inside” and “outside” that do
not explicitly appear in the Elements. If geometry is to fulfill its reputation for logical
perfection, considerable attention must be paid to the meaning of such terms and to the
axioms governing them.

During the last 25 years of the nineteenth century, many mathematicians attempted to
give a complete statement of the postulates needed for proving all the long-familiar the-
orems of Euclidean geometry. They tried, that is, to supply such additional postulates as
would give explicitness and form to the ideas that Euclid left intuitive. By far the most
influential treatise on geometry of modern times was the work of the renowned German
mathematician David Hilbert (1862—1943). Hilbert, who worked in several areas of mathe-
matics during a long career, published in 1899 his main geometrical work, Grundlagen der
Geometrie (Foundations of Geometry). In it he rested Euclidean geometry on 21 postulates
involving six undefined terms—with which we should contrast Euclid’s five postulates and
no undefined terms.

Book I of the Elements

The 48 propositions of the first book of the Elements deal mainly with the properties of
straight lines, triangles, and parallelograms—what today we should call elementary plane
geometry. Much of this material is familiar to any student who has had a traditional high-
school course in plane and solid geometry. Although we shall not examine all these results
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in detail, Proposition 4 is one that deserves a close look. This proposition is called the
side-angle-side theorem, for it contains the familiar criterion for congruence of triangles,
namely, two triangles are congruent if two sides and the included angle of one are congruent
to the corresponding sides and included angle of the other. We have used the word congruent
where Euclid spoke of equality. When he referred to two angles (or for that matter, two line
segments) as “equal,” he meant that they could be made to coincide. For our purposes, it is
safe to think of congruent objects as having the same size and shape.

Euclid tried to give a proof of the side-angle-side theorem by picking up one triangle
and superimposing it on the other triangle so that the remaining parts of the two triangles
fitted. His argument, which was supposedly valid by Common Notion 4, ran substantially as
follows: Given AABC and AA’B'C’, where AB= A'B’, /A = /A’,and AC = A’C’, move
AABC so as to place point A on point A" and side AB on side A’B’. Because AB = A’B’,
point B must fall on point B’. Because /A = /A’, the side AC has the same direction as
side A’C’, and because of the equal lengths of AC and A’C’, the points C and C’ fall on
each other. Now, if B and B’ coincide and C and C’ coincide, so must the connecting line
segments BC and B’C’. The two triangles coincide in all respects, so it follows that they
are congruent.

Although this “principle of superposition” may seem reasonable enough in dealing with
material triangles made of wire or wood, its legitimacy has been questioned for working with
conceptual entities whose properties exist only because they have been postulated. Indeed,
the prominent British logician Bertrand Russell (1872—-1970) spoke of superposition in no
uncertain terms as a “tissue of nonsense.” The chief criticism is that in assuming that a
triangle can be moved about without any alteration in its internal structure, when it is only
known that two sides and an included angle remain constant, one is really assuming that
these determine the rigidity of the triangle. Thus, in postulating the possibility of movement
without change in form or magnitude, congruence itselfis actually being postulated. Euclid’s
proof is therefore a vicious circle of reasoning. It has been conjectured that Euclid felt
reluctant to use superposition in proving congruence and did so sparingly in the Elements but
could not dispense with it entirely, for lack of a better method. Present-day mathematicians
avoid the difficulty by taking the side-angle-side theorem as an axiom from which the other
congruence theorems are then derived. At any rate, Euclid’s approach to the problem of
congruence was logically deficient.

Perhaps the most famous of the earlier propositions of Book I is Proposition 5, which
states, “In an isosceles triangle, the angles at the base are congruent to one another.” (Here,
by angles at the base is meant the angles opposite the two congruent sides.) This proposition
sometimes marked the limit of the instruction in Euclid in the universities of the Middle
Ages. Itis historically interesting as having been called “elefuga,” a medieval term meaning
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“the flight of the fools,” because at this point the student usually abandoned geometry.
Another name commonly used for Proposition 5 is pons asinorum, a Latin phrase signifying
“bridge of fools,” or “bridge of asses,” although opinion is not unanimous about the exact
implication of the title. The name might have been suggested by the difficulties that poor
geometers have with the proposition; anyone unable to proceed beyond it must be a fool. A
more generous interpretation is that the diagram that accompanies Euclid’s proof resembles
a trestlebridge so steep that a horse could not climb the ramp, though a sure-footed animal
such as an ass could. Perhaps only the sure-footed student could proceed beyond this stage
in geometry. Here is an abbreviated proof of Euclid’s Proposition 5. The contention is that
in a triangle ABC, where AB = AC, one has /ABC = /ACB. To validate this, select points
F and G on the extensions of sides AB and AC such that AF = AG.

A

F G

Then triangles AFC and AGB will be congruent, by the side-angle-side proposition. In-
deed, they have a common angle at A, while AC = AB and AF = AG. By the definition
of congruent triangles, all the corresponding parts are equal, so that the bases FC = GB,
LACF = [/ABG, and /AFC = /AGB. It is worth noticing too that

FB=AF —AB =AG - AC = GC.

The implication is that triangles BFC and CGB are themselves congruent (also by the
side-angle-side proposition), whence as corresponding angles, /BCF = /CBG. This last
equality, together with the fact that /ABG = /ACF, tells us that

/ABG — /CBG = [ACF — /BCF,

or /ABC = /ACB.

Fortunately, there is a far simpler proof of this proposition (attributed to Pappus of
Alexandria, A.D. 300), which requires no auxiliary lines whatever. The pertinent observation
is that nowhere in the statement of the side-angle-side proposition is it required that the two
triangles be distinct. The details are as follows. Given the isosceles triangle ABC, where
AB = AC, think of it in two ways, one way as triangle ABC and the other as triangle ACB.
Thus, there is a correspondence between AABC and AACB with vertices A, B, and C
corresponding to vertices A, C, and B, respectively. Under this correspondence, AB = AC,
AC = AB, and /BAC = /CAB. Thus, two sides and an included angle are congruent to
the parts that correspond to them, whence the triangles are congruent. This means that all
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A page from the first printed edition of Euclid’s Elements. Published in Latin in
1482. (Courtesy of Burndy Library.)

the parts in one triangle are equal to the corresponding parts in the other triangle, and in
particular, /ABC = /ACB, which was to be proved.

A A
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A result about triangles that Euclid found very useful in his development of geometry is
the exterior angle theorem. This theorem is the embodiment of practically all the Euclidean
axioms, for nearly all are used in its proof.

PROPOSITION 16 If one of the sides of a triangle is produced, then the exterior angle is greater than either
opposite interior angle.

Proof. Let ABC be any triangle and pick D to be any point on the extension of side BC
through C. Call E the midpoint of AC; extend the line segment BE to a point F' so that
BE = EF. Because AE = EC, BE = EF, and /AEB = /FEC (vertical angles are equal

by Proposition 15), the triangles AEB and FEC are congruent, from the side-angle-side
proposition. The result is that /BAE = /FCE. But according to Common Notion 5, the
whole is greater than any of its parts, so that /DCA > /FCE. Hence the exterior angle

/DCA is greater than /BAE, which is an opposite interior angle of this triangle.

Likewise, by extending side AC to a point G, it can be shown that /GCB > /ABC.
Because /GCB and /DCA are vertical angles (hence equal), we immediately have
/DCA greater than /ABC, the other opposite interior angle.

Aside from the fact that the existence of midpoints must first be established, the main
flaw in this argument is Euclid’s assumption from his diagram that if the segment BE is
extended, the point F is always “inside” angle DCA. On the basis of the postulates, he
assumes—as distinct from the diagram—there is nothing to justify this conclusion. If the
diagram is drawn instead on the curved surface of a sphere, then when BE is extended
its own length to F', the point F' ends up on the far side of the sphere, and BF may be so
long that F falls “outside” angle DCA. Instead of having /DCA > /FCE, just the reverse
would be true.
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The underlying difficulty is that in making his so-called proof, Euclid took it for granted
that a line is infinite. The critical postulate in this regard, Postulate 2, asserts merely that a
line can be produced continuously—that it is endless or boundless—but does not necessarily
imply that a line is infinite. On a sphere, where the role of a line is played by a great circle (a
circle that has the same center as the sphere itself), a line that is produced from a given point
will eventually return to that point. Because Euclid was not thinking of such a possibility,
he apparently had no misgivings in proceeding on the basis of Postulate 2.

The first 26 propositions of the Elements develop theorems on congruent triangles,
on isosceles triangles, and on the construction of perpendiculars. One also finds among
the results the exterior angle theorem and the fact that the sum of two sides of a triangle is
greater than the third side. The subject matter is based mainly on very ancient sources. There
is a definite change of character beginning with Proposition 27; here, Euclid introduced the
theory of parallels, but still without making use of his parallel postulate.

Euclid defined two lines as parallel if they did not intersect, that is, if no point lay on
both of them. Euclid could have used the exterior angle theorem, although he did not do so,
to prove the existence of parallel lines. (Or he could have added an extra postulate to the
effect that parallel lines actually existed.) To see that this is possible, let [ be any line and at
each of two distinct points A and B on [ erect a perpendicular to [ (Proposition 11 allows
this). If these perpendiculars were to meet at a point C, then in triangle ABC the exterior
angle at B and the opposite interior angle at A, since they are right angles, would be equal.
Because Proposition 16 is then violated, the two perpendiculars to / cannot meet; in other
words, they are parallel.

B

To make the next proposition precise, we require a definition. Suppose that a line
t (called a “transversal”) intersects lines [/ and " at two distinct points A and B. In the
accompanying figure, angles c, d, e, and f are called interior angles, while a, b, g, h are
exterior angles. The usual language is to refer to the pair of angles ¢ and e (d and f) as
“alternate interior angles,” b and /1 (a and g) as “alternate exterior angles.”
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The eight angles may also be grouped into four pairs of corresponding angles; angles a and
e form such a pair of corresponding angles, and so do the pairs » and f, c and g, and d and .
With this terminology at hand, let us consider another proposition.

PROPOSITION 27

If two lines are cut by a transversal so as to form a pair of congruent alternate interior
angles, then the lines are parallel.

Proof. Referring to the figure, let the transversal ¢ intersect lines / and I at points A
and B, so as to form a pair of alternate interior angles, say, /b and Zc, which are equal.
To achieve a contradiction, assume that lines / and /’ are not parallel. Then they will
meet at a point C that lies, let us say, on the right side of ¢ so as to form a triangle ABC.
It can be concluded that an exterior angle (in this case, /b) is congruent to an opposite
interior angle of triangle ABC (namely, Zc). But we know that this is impossible, for an
exterior angle of a triangle is always greater than either opposite interior angle. In
consequence, / and " are parallel.

Proposition 27 implies that if two lines are perpendicular to the same line, then the two
lines are parallel. From this fact, it is an easy matter to establish that through any point P
that is not on a given line /, there passes a line [’ that is parallel to /. All we need do is drop
a perpendicular from P to the line / with foot at Q (Proposition 12 allows this) and at P
to erect a line ' that is perpendicular to PQ (the construction is given in Proposition 11).
Because [ and !’ have a common perpendicular, they must be parallel, with I’ through P.

Let us pass over Proposition 28, which is just a variation of Proposition 27, and next
examine Euclid’s Proposition 29. It states the converses of the preceding two propositions.
To this point, all the results have been obtained without any reference to the parallel postulate.
They are, as we say, independent of it and would still be valid if the fifth postulate were
deleted, or replaced by another one compatible with the remaining postulates and common
notions. To prove Proposition 29, we must use the parallel postulate for the first time.

PROPOSITION 29

A transversal falling on two parallel lines makes the alternate interior angles congruent
to one another, the corresponding angles congruent, and the sum of the interior angles on
the same side of the transversal congruent to two right angles.

Proof. Suppose that the lines and angles are labeled as in the figure. We conclude at
once that because Za and /b are supplementary angles, Za plus /b equals two right
angles (this is the content of Proposition 13). If Za > /c, then /a + /b > /c + /b, and
b + /c would be less than two right angles. It would follow
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from Postulate 5 that / and /" must meet to the right of #. But this contradicts that / and
[’ are parallel. Thus, it cannot happen that /a > /c, or to put it in the affirmative,

La < /c. A like contradiction arises when we assume that the inequality Za < /c
holds; therefore Za = /c. Because Zc and /e are vertical angles, they are equal, whence
/a = /e. Finally, observe that the sum Za + /b equals two right angles and Za = /c,
so that the sum /b + /c of the interior angles /b and /c equals two right angles.

It is worth noticing that Propositions 27 and 29 both provide proofs by contradiction,
sometimes called reductio ad absurdum proofs. This is an important form of reasoning that
consists in showing that if the conclusion is not accepted, then absurd or impossible results
must follow. The element that produces the contradiction is different in each proposition. In
Proposition 27, one ends up contradicting the exterior angle theorem, whereas in the case
of Proposition 29, it is the parallel postulate that provides the absurdity.

Moving further with these ideas, we look at another important result, namely Proposi-
tion 30.

PROPOSITION 30 Two lines parallel to the same line are parallel to one another.

Proof. Suppose that each of the lines / and [’ is parallel to the line k. We claim that / is
also parallel to /”. Let these lines be cut by the transversal ¢, as indicated in the figure.
Because ¢ has fallen on the parallel lines / and k, the angle a equals the angle b by
Proposition 29. Likewise, since ¢ has fallen on the parallel lines k£ and /', the angles b
and c are equal. But then Za = /c (this is Common Notion 1). Because these are
alternate interior angles, it is apparent by Proposition 27 that / and [’ are parallel.

One implication of Proposition 30 is that through a point P not on a given line /, there
cannot be more than one line parallel to /. The argument is as follows. Suppose there were
two distinct lines through P, each parallel to /; then from Proposition 30, they would be
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parallel to each other. This would, by the meaning of parallel, contradict that the lines
intersect at P.

We should stress this last point before temporarily abandoning the subject of parallel
lines. Euclid did not require the parallel postulate to know that parallel lines exist, or what is
more important, that it is possible to construct a parallel to a given line through an external
point. The primary effect of Postulate 5 is to ensure that there exists only one line parallel
to the given line through a point not on the line.

Throughout Book I, Euclid went forward in a logical chain of propositions until his
final goal was reached. The work on parallel lines culminates with the result that the sum of
the angles of a triangle is congruent to two right angles. The proof rests on Proposition 29
and hence implicitly involves the parallel postulate. It is surprising how many notable
consequences of Euclidean geometry besides the properties of parallel lines stem, directly
or indirectly, from this postulate.

PROPOSITION 32

In any triangle, the sum of the three interior angles is equal to two right angles.

Proof. Given a triangle ABC with angles a, b, and c, extend the side AB to a point D
and through B draw a line / parallel to side AC.

But /¢ = /e, since they are alternate interior angles formed by / and AC with BC.
Similarly, Proposition 29 guarantees that Za = /d. Now, the sum /b 4 /e + /d equals
two right angles (this is the content of Proposition 13), and so the sum of the interior
angles of AABC must equal two right angles.

Euclid’s Proof of the Pythagorean Theorem

Book I closes—in Propositions 47 and 48—with a remarkably clever proof of the
Pythagorean theorem and its converse. Although few of the propositions and proofs in the
Elements are Euclid’s own discoveries, this proof of the Pythagorean theorem is usually
ascribed to Euclid himself. Proclus wrote, “I admire the writer of the Elements not only that
he gave a very clear proof of this proposition, but that in the sixth book, he also explained
the more general proposition by means of an irrefutable argument.” On the surface, this
suggests that the proof at the end of Book I was Euclid’s own; some authorities contend that
it was first advanced by Eudoxus, who antedated Euclid by at least a generation, and the
version in which the theory of proportion is applied to the sides of similar triangles bears
the mark of Thales.
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The proof of the Pythagorean theorem found in Proposition 47 involves the contents
of Book I only. The feeling that the reasoning is artificial and unnecessarily intricate led the
German philosopher Arthur Schopenhauer (1788-1860) to dismiss the demonstration with
the contemptuous remark that it was not an argument but a “mousetrap.” Thus, among the
many different names applied to Euclid’s proof, it is not uncommonly called “the mousetrap
proof.”
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The diagram herewith illustrates Euclid’s proof. Given a right triangle ABC, with right
angle at C, erect squares on each of the sides. Next, draw the perpendicular from C to AB
and DE, meeting these sides at the points J and K, respectively. The key observation is that
the rectangle AJKD has twice the area of the triangle CAD:

(1) AJKD = 2(ACAD).

This is because each figure has the same base AD and the same altitude AJ. In like manner,
since the lower square AFGC and the triangle FAB have the same base AF and the same
altitude AC, the area of the square is twice the area of the triangle:

2) AFGC =2(AFAB).

Now the two triangles CAD and FAB are congruent by the side-angle-side theorem (AC =
AF, /CAD = /CAB + /DAB = /CAB + /CAF = /FAB, and AD = AB), hence have the
same area; that is,

3) ACAD = AFAB.

Putting relations (1) and (2) together, we conclude at once that

4 AJKD = AFGC.
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By exactly the same reasoning, it can be demonstrated that the rectangle BEKJ and square
BCHI are of equal area:

(5) BEKJ = BCHI.

But a glance at the diagram shows that the area of the square on the hypotenuse is the sum
of the areas of the two rectangles AJKD and BEKJ. Thus,

(6) ABED = AJKD + BEK/J
= AFGC + BCHI
and, with a change of notation, the theorem obtains:
AB* = AC* + CB*.

The Pythagorean theorem is immediately followed in the Elements by a proof of its
converse: If in a triangle ABC the square on one of the sides (say BC) is equal to the sum
of the squares on the other two sides, the angle contained by these other two sides is a right
angle. For the proof, Euclid constructed a right triangle congruent to the given triangle.
Specifically, the procedure would be to lay off a line segment AD perpendicular to AC and
equal in length to AB.

D A B

By hypothesis, AC> + AB?> = BC?, and the Pythagorean theorem (as applied to ACAD)
implies that AD*> + AC?> = CD?. Because AD = AB, the implication is that BC*> = CD?,
whence BC = CD. It follows that triangles CAD and CAB are congruent, for their corre-
sponding sides are congruent. Thus /ZCAB = /CAD, a right angle.

Euclid’s similarity proof of the Pythagorean theorem (Proposition 31 of Book VI)
had to be delayed, since the plan of the Elements called for the theory of proportion to
be expounded in Books V and VI. It depends on a property that is characteristic of right
triangles: A perpendicular from the vertex C of the right angle to the hypotenuse divides
triangle ABC into two similar right triangles ADC and BDC. Observe that each of the new
right triangles so formed and the original triangle are equiangular and hence similar. As
regards triangles ABC and ADC, for instance, we have /A = /A, since it is common to
both triangles, and ZACB = /ADC, for these are both right angles. The sum of the angles
in any triangle equals two right angles, so it is equally clear that /B = /ACD.

Because in Euclidean geometry it is proved that corresponding sides of similar triangles
are proportional,

c a b
- =— and - =—.
a x y
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c

These proportionality relations imply that
a’>=cx and b*=cy
and, by addition, that
A+ =cx+cy=ctx+y) =c

You may have gathered that the Elements is not a perfect model of mathematical
reasoning; critical investigation reveals numerous flaws in its logical structure. The truth is
that so far as Euclid’s aim was to place geometry on an unimpeachable foundation, he failed
in the attempt. This is not to belittle the work; it was a magnificent achievement, a giant
step forward marking the real beginning of axiomatic mathematics. Although some of its
underpinnings have needed shoring up, Euclid’s Elements is still a grand work, worthy of
study. “This wonderful book,” wrote Sir Thomas Heath, “with all its imperfections, which
are indeed slight enough when account is taken of the date at which it appeared, is and will
remain the greatest mathematical textbook of all time.”

Book II on Geometric Algebra

Book II of the Elements could be called a treatise on geometric algebra, because it
is algebraic in substance but geometric in treatment. Algebraic problems are cast entirely
in geometric language and solved by geometric methods. Lacking any adequate algebraic
symbolism, Euclid found it necessary to represent numbers by line segments.

C
ab b a? a
A a B A a B

Thus, the product ab (as we write it) of two numbers is thought of as the area of a rectangle
with sides whose lengths are the two numbers a and b. Euclid referred to the product as
the “rectangle contained by AB = a and BC = b”; in place of a2, he spoke of “the square
on AB.” Various algebraic identities, even complicated ones, were presented by Euclid in
purely geometric form. For instance, the identity

(a + b)* = a*> + 2ab + b*
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was pictured in terms of the diagram

a b
b ab b?
a a® ab

and was quaintly stated in Proposition 4 of Book II as: “If a straight line be cut at random
(into two parts a and b), the square on the whole is equal to the square on the two parts and
twice the rectangle contained by the parts.”

By Euclid’s time, Greek geometric algebra had reached a stage of development where
it could be used to solve simple equations involving unknown quantities. The equations
were given a geometric interpretation and solved by constructive methods; the answers to
these constructions were line segments whose lengths corresponded to the unknown values.
The linear equation ax = bc, for example, was viewed as an equality between areas ax and
bc. Consequently, the Greeks would solve this equation by first constructing a rectangle
ABCD with sides AB = b and BC = c and then laying off AE = a on the extension of
AB. One produces the line segment ED through D to meet the extension of BC in a point
F and completes the rectangle EBFH. It is clear that KH = CF is the desired quantity
x, for the rectangle KDGH (or ax) is equal in area to the rectangle ABCD (or bc); this
can be seen by removing equal small triangles from the equal large triangles EHF and
EBF.

E a A b B
bc c

K 2 C
ax X

H G F

When it came to quadratic equations, Euclid reduced them to the geometric equivalent
of one of the forms

x(x +a) = b, x(x —a) = b, x(a —x) =1,

which were then solved by applying theorems on areas. He was not the first to expound on
this technique, for according to the Commentary of Proclus, “These things are ancient and
the discovery of the Muse of the Pythagoreans.”

The method of applying areas was fundamental in Euclid’s work, and this was, strictly
speaking, not so much a case of applying an area as of constructing a figure. In its simplest
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form, the process consists of constructing a rectangle of unknown height x so that its base

lies on a given line segment AB, but in such a way that the area of the rectangle either

exceeds a specified value R by the square x? or falls short of R by the square x°.

R X

® — = —
—

A X B A

Let us see how Euclid actually used this method. Proposition 5 of Book II of the
Elements was designed to teach the solution of the quadratic equation

x> +b*=ax, a>?2b.

The procedure was disguised by the peculiar geometric garb in which the Greeks were
forced to clothe their results. We are told, to a given line segment AB = a apply the rect-
angle AQFG of known area b? in such a way that it shall fall short (from the rectangle on
the entire segment AB) by a square figure, say x2. In brief, this calls for constructing the
figure herewith.

b2 2

Suppose that the applied rectangle is erected on y as a base and the “deficient” square
on x as a base; then the segment AB has length x + y = a, while the applied rectangle
corresponds to xy = b%. (One should recognize this as an Old Babylonian algebra problem.)
Furthermore,

x% + b* = area ABLG = ax,

so that this “application of area” is the geometric equivalent of solving the equation
x2 4+ b? = ax.

How does one go about producing the square of area x> specified in the quadratic
equation? The answer is to be found in Proposition 28 of Euclid’s Book VI, a construction
proposition, which states: Given a straight line AB, construct along this line a rectangle equal
to a given area b?, assuming that the rectangle falls short of AB by an amount filled out by
another rectangle (or square). We are instructed to erect at P, the midpoint of line AB = a,
a perpendicular PE equal in length to b; then with E as a center and radius a/2, we draw
an arc cutting AB at the point Q. Then the line segment OB has length equal to the solution
of the quadratic equation x> + b> = ax. For it can be proved that (AQ)(QB) = (PE)?, and
when QB is set equal to x, this amounts to the statement that (a — x)x = b>.
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2
al2 —x /
4 P / o °
For geometric verification that (AQ)(QB) = (PE)?, construct a rectangle ABLG having
width BL = OB and complete the squares PBDC and QBLF on PB and OB as sides. The

diagram that Euclid used for this purpose is shown. From various theorems on areas, it can
be seen that

AQFG + HFKC = (APHG + PQFH) + HFKC

= PBLH + FLDK + HFKC
= (PB)~.
a—Xx
A P O x B
X
G H F L
al2
C K D

Because the rectangle AQFG has area (AQ)(QF) = (AQ)(QB) and HFKC = (PQ)?, we get
(AQ)(OB) + (PQ)* = (PB)”.

All of this is, of course, formulated in geometric language. As Euclid expressed it in
Proposition 5 of Book II: If a straight line is cut into equal and unequal parts, the rectangle
contained by the unequal parts of the whole together with the square on the straight line
between the points of section is equal to the square on the half.

All that is needed to complete the argument is an appeal to the Pythagorean theorem.
This leads directly to

(AQ)(OB) = (PB)* — (PQ)* = (PEY’,

or with the appropriate substitutions, (@ — x)x = b%. The conclusion: AB = a has been
divided into two segments AQ and OB, and the length of the segment OB is the number x
for which x> + b* = ax.

In the same spirit, Proposition 6 of Book II enables one to solve the quadratic equation

x> +ax = b2,

or written another way, the equation (x + a)x = b*. The method of solution by application
of areas would be to say: To a given line segment AB = a, apply the rectangle AQKF of
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known area b? in such a way that it will exceed (the rectangle on the whole segment AB) by
a square figure, say x2. This requires constructing a figure as shown. If the applied rectangle
is erected upon the segment AQ = y as a base, then

y—Xx=a, xy = b,

ax X 2

Y

What Euclid wanted to teach is nothing more than the geometric solution of another
Babylonian problem.

To get the rectangle AQKF, which is equal in area to b and has one side containing
the line AB, we use a construction Euclid described in his sixth book (Proposition 29). At
the endpoint B of AB = a, erect a perpendicular BE equal in length to b; then with

al2 al2 x
A P B 0

the midpoint P of AB as center and radius PE, draw an arc cutting the extension of AB
at the point Q. We maintain that the rectangle with sides AQ and BQ will be equal to the
square on BE;; that is

(AQ)(BQ) = (BE)*.

The diagram Euclid provided for a demonstration is as shown, where PODC and BOKH
are squares described on PQ and BQ, respectively.

A P a2 B x O
" X
K

F G al2 +x
C L D

Regarding areas, it is evident that
AQKF + GHLC = (APGF + PQKG) + GHLC
= HKLD + POKG + GHLC
= (PQ)*.
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Because the rectangle AQKF has an area equal to (AQ)(QK) = (AQ)(BQ) and GHLC is a
square of side PB, the foregoing equation can be expressed as

(AQ)(BQ) + (PB)* = (PQ)*.

Euclid translated all this into ponderous geometric verbiage in Proposition 6: If a straight
line is bisected and produced to any point, then the rectangle contained by the whole (with
the added straight line) together with the square on half the line bisected is equal to the
square on the straight line made up of the half and the part added.

At this point, the Pythagorean theorem comes to the rescue again, for the last-written
equation reduces to

(AQ)(BQ) = (PQ)* — (PB)’ = (BE)’ = b’.

We have only to put AB = a and BQ = x to see that the length of the segment BQ is the
value required to satisfy the equation

(x + a)x = b°.

The special case for which a = b provides us with the opportunity to introduce what
the celebrated astronomer Johannes Kepler called “one of the two Jewels of Geometry” (the
second is the theorem of Pythagoras). For the construction used in solving the quadratic
(x 4+ a)x = a* amounts to dividing a given line segment AB into what is called the “golden
section.” Translated into mathematical language, the golden section means that the segment
AB = a is cut at a point C so that the whole segment is in the same ratio to the larger part
CB = x as CBis to the other part, AC = a — x. Stated otherwise, it produces the relation

a X
- = , X >a—Xx.
X a—x

This, in turn, leads to the quadratic equation x(x + a) = a? already mentioned, the positive
root of which is

x =ta(W/5-1).

When a = 1, the value x = %(«/5 — 1) is the reciprocal of the “golden ratio”—that is,
0.6180339....

Let us review Euclid’s construction for the golden section of a line segment AB = a.
At the endpoint B of AB, erect a perpendicular BE equal in length to a; with the midpoint
P of AB as center and radius PE, draw an arc cutting the extension of AB at the point Q.
Take B as center and radius BQ, and draw an arc meeting AB at C. The point C divides the
segment AB in the ratio sought.
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Construction of the Regular Pentagon

Much of the history of classical mathematics could be written around the idea of the
golden section. It appears again in Book IV of the Elements with regard to the inscription
(with the two traditional instruments, straightedge and compass) of certain regular polygons
in a circle. You may recall that a regular polygon is a convex polygon with all its sides equal
in length and with equal angles at each vertex. When a regular polygon of n sides is
inscribed in a circle, the central angle formed by the radii drawn to two consecutive vertices
has measure 360°/n. The Greeks were able to solve the problem of inscribing in a circle
a regular polygon of an assigned number of sides when the number was 3, 4, 5, 6, 15, or
twice the number of any inscribable polygon. The first case in which they failed concerned
a regular polygon of 7 sides.

The construction of a regular pentagon (polygon of 5 sides), the division of a circle
into 5 equal parts and the construction of an angle equal to 360°/5 = 72° are equivalent
problems. The solution is taught in Propositions 10 and 11 of Book IV; Euclid relied on
forming an isosceles triangle having each of the base angles equal to twice the remaining
angle. This made the summit angle 36° and each of the angles at the base equal to 72°, thereby
permitting the construction of both the regular pentagon and regular decagon (polygon of
10 sides).

72° 72°

In following the Greek method for constructing regular polygons of 5 and 10 sides,
one would proceed as follows. Pick an arbitrary line segment AB = a for the radius of a
circle and solve the quadratic equation x(x + a) = a? to get a line segment whose length is
x= %a(\/g — 1). This is equivalent to cutting AB in golden section by a point C and letting
x = AC. As we shall presently see, x will be the side of an inscribed decagon, or what
amounts to the same thing, x can be stepped off as a chord in the circle of radius AB = a
exactly 10 times. To confirm this, let us construct the isosceles triangle ABD having as its
sides two radii AB = AD of the circle, and as its base BD a segment of length x. Also lay
off the segment CD. By virtue of the condition a/x = x/(a — x), we have

AB AC

AC ~ CB
or, since AB =AD and AC = DB,

AD DB

DB~ CB’
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Another point to notice is that /ZADB = /ABD, as base angles of an isosceles triangle;
these are marked o in the figure. The upshot of all this is that triangles ADB and CBD
are similar, for they have two pairs of corresponding sides proportional and the included
angles equal. Then ZDAB equals ZCDB, because these are corresponding angles in similar
triangles (they are marked B). A little calculating with angles tells us that /ZDCB = /DBC,
whence CD = DB = x. Indeed, more is true: ZADC equals /BAD, since each is a base
angle of the isosceles triangle ACD.

With the routine work out of the way, we are now ready to sum up. Because the sum
of the angles of triangle DAB must equal two right angles, it can be concluded that

180° = /DAB + /ADB + /DBA

=B8+a+a
=pB+28+28,
and as a result,
= 180° _ 360
5

Segment BD subtends a central angle of 36°, so it is the side of a regular inscribed decagon
and will go 10 times as a chord within the circle of radius AB. The regular pentagon is
drawn by selecting every other point as a vertex.

The regular pentagon had a particular appeal to the early Pythagoreans, because its
diagonals formed the star pentagram, the sign of recognition of the society. Although it is
highly likely that Euclid’s method of constructing a pentagon was known to Pythagoras
or his immediate disciples, no statement about the extent of their mathematical knowledge
can be other than tentative. What is known is that Proclus, whose works inform us con-
cerning the history of Greek geometry, wrote that Eudoxus (circa 370 B.C.) greatly added
to the number of theorems that Plato originated concerning the “section,” meaning the
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golden section. This is the first reference we have of the name for such a division of a line
segment.

Having taken the opportunity to digress a little, let us now return to the main theme
of the section. We saw earlier how the realization that certain geometric magnitudes are
not expressible by whole numbers shook the foundations of the Pythagorean doctrine,
which maintained that “everything is number.” It meant that such a simple equation as
x2 =2 had no solution in their domain of (rational) numbers. The dilemma was resolved
by putting algebra in a geometric dress; numbers came to be represented by line segments
and geometric constructions were substituted for algebraic operations, so that products, for
instance, corresponded to rectangular areas. Once the greater applicability of geometry was
realized, geometric argument became the basis for all rigorous mathematics.

The geometric algebra, a theory of line segments and areas, of Book II of Euclid’s
Elements was the culmination of the Greek attempt to cope with the irrational through
geometry. The book consists of propositions that appear on the surface to belong to geometry,
but have content that is entirely algebraic. In particular, the treatment of quadratic problems
is reduced to one of the equations

x(x +a) = b, x(a —x) = b, x(x —a) = b,

which are then solved geometrically by means of “application of area,” so that the roots
appear as line segments. Although the individual solutions by area are awkward, involving
as they do intricate constructions of plane figures, they follow exactly the same pattern as the
earlier Babylonian algebraic calculations. The geometric algebra of the Elements is nothing
more than a transposition of an inherited body of Babylonian procedures to geometric form.
The chief difference is that, where Babylonian calculations only give a solution to quadratic
equations if the square root can be found exactly (otherwise, a convenient approximation
is accepted), Greek geometric algebra always gives an answer—a line segment is produced
that may very well represent an irrational number.

By embodying all mathematics except the theory of whole numbers in geometry, the
Greeks swept the difficulties of the irrational under the rug, so to speak. The cumbersome
techniques of geometric algebra allowed the Greeks to solve quadratic equations, but without
assuming the existence of irrational numbers. This essentially alien garb, with all its clumsy
verbiage and overwhelming diagrams, retarded progress in algebra for many centuries.
For although linear and quadratic equations can be expressed clearly in the language of
geometric algebra, higher-degree equations are effectively precluded from consideration. It
is paradoxical that a religious controversy in the minds of the Pythagoreans, the worshipers
of mathematics, should have had such a profoundly deleterious effect on its growth.

Greek geometric algebra had to await a translation into a formal symbolic language
before a satisfactory divorce of algebraic calculation from geometry could take place. His-
torically, the systematic attempt to “symbolize” arithmetic and algebra operations is a rela-
tively recent phenomenon, the decisive contribution of sixteenth-century mathematics. By
the 1500s, negative rational numbers and zero were in regular use in practical calculations,
but mathematicians still lacked a clear conception of irrational numbers. The German alge-
braist Michael Stifel (1486—1567), for instance, in his Arithmetica Integra of 1544, argued:

We are moved and compelled to assert that they truly are numbers, compelled that is, by the
results which follow from their use. On the other hand ... just as an infinite number is not a
number, so an irrational number is not a true number, but lies hidden in some sort of cloud of
infinity.
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Problems 1-10 contain propositions from Book I of Euclid’s
Elements. In each instance, prove the indicated result.

1.

3.
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Doubt about the soundness of irrational numbers was expressed in the stigma numerus
surdus (“inaudible number”), the phrase coming from the word surdus, “deaf or mute”—
a Latin translation of an Arabic translation of the Greek alogos (‘“‘irrational number”).
Mathematicians such as Stifel pragmatically manipulated irrational numbers uncritically,
without seriously questioning their precise meaning or nature, until the late 1800s. Then
the question of the logical structure of the real number system was faced squarely. In an
epoch-making essay entitled Continuity and Irrational Numbers (1872), Richard Dedekind
finally established the theory of irrational numbers on a logical foundation, free from the
extraneous influence of geometry.

D

/

4. Proposition 18. If one side of a triangle is greater than a
second side, then the angle opposite the first is greater than
the angle opposite the second. [Hint: In AABC, for
AC > AB, choose a point D on AC such that AD = AB; use
the fact that ZADB is an exterior angle of ABCD.]

Proposition 6. If two angles of a triangle are congruent
with one another, then the sides opposite these angles
will also be congruent. [Hint: Let ABC be a triangle

in which /CAB = /CBA. If AC # BC, say, AC > BC,

A
then choose a point D on AC such that AD = BC.]

/

C
D C
5. Proposition 26. Two triangles are congruent if they have
one side and two adjacent angles of one congruent with a
A B side and two adjacent angles of the other. [Hint: Let AABC
and ADEF be such that /B = /E, /C = /F, and
BC = EF.If AB # DE, say AB > DE, choose a point G on
Proposition 15. If two lines cut one another, then they AB for which BG = ED.]
make vertical angles that are equal. [Hint: Appeal to
Proposition 13, which says that if a ray is drawn from a A
point on a line, then the sum of the pair of G
supplementary angles formed is equal to two right
angles.]
a B
B C B C
P B D
Y
A D
o B
. E F
Proposition 17. In a triangle, the sum of any two
angles is less than two right angles. [Hint: In AABC, 6. Proposition 28. Two lines intersected by a third line
extend segment BC to a point D and use the exterior are parallel if the sum of the two interior angles on the

angle theorem.] same side of the transversal is equal to two right
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7.

10.

angles. [Hint: In the figure for this problem,
a + B = 180°. Use Proposition 13.]

Proposition 33. If two opposite sides of a quadrilateral
are equal and parallel, then the other two sides are also
equal and parallel (hence, the quadrilateral is a
parallelogram). [Hint: In the quadrilateral shown, let
AB = DC, and assume that AB and CD are parallel.
Show that AABC is congruent with AADC.]

A B

Proposition 35. Two parallelograms that have the same
base and lie between the same parallel lines are equal
in area to one another.

[Hint: In the figure, let ABCD and BCFE be
parallelograms, and let AD and EF lie on a line parallel
to BC. Show that AABE is congruent with ADCF'.]

Proposition 37. Two triangles that have the same base
and lie between the same parallel lines are equal in
area to one another.

[Hint: In the figure, let ABC and DBC be triangles such
that AD is parallel to BC. Consider the parallelograms
EBCA and FCBD.]

Proposition 41. If a parallelogram and a triangle have
the same base and lie between the same parallel lines,

11.

12.
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then [the area of] the parallelogram is double [the area
of] the triangle.

[Hint: In the figure, let ABCD be a parallelogram and
EBC be a triangle, with AD and E on a line parallel to
BC. Consider the triangles ABC and EBC.]

In Mathematical Collection, Pappus (circa 320) gave
the following generalization of the Pythagorean
theorem, which applies to all triangles, whether right
triangles or not.

Let ABC be any triangle and ABDE and ACFG be
arbitrary parallelograms described externally on AB
and AC. Suppose that DE and FG intersect at the point
H when extended, and draw BL equal and parallel to
HA. Then (in area)

BLMC = ABDE + ACFG.

Prove Pappus’s theorem. [Hint: First extend HA, BL,
and MC until they meet LM, DE, and FG, respectively.
Now, apply Proposition 35 to the parallelograms
ABDE and ABKH, and also to ACFG and ACJH.]

The Greeks constructed a line segment of length /n,
where n is a positive integer, as follows. First write n
as n - 1; then make AB = n and BC = 1. Draw a
semicircle on AC as diameter. Erect BD perpendicular
to AC at B, meeting the semicircle at the point D. By
similar triangles, prove that the length of BD equals

Jn.
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Although Euclid’s great work is entitled Ele-
ments of Geometry, its subject matter extends
far beyond what we would now regard as high-
Euclidean Divisibility Properties school geometry. Three of the books of the

Elements (namely, VII, VIII, and IX), contain-
ing a total of 102 propositions, are devoted to arithmetic in the Greek sense. That is to say,
they deal mainly with the nature and properties of what are called the “natural numbers”
or the “positive integers.” Euclid was building on earlier foundations, because much of the
substance of these arithmetical books can be traced to the Pythagoreans. Again he must be
accorded the credit of having imposed a logical order on the whole. Many of the results
had been long known but not always rigorously proved. Any earlier works on the theory
of numbers that may have been written are no longer extant, so that it is impossible to say
which proofs were supplied to Euclid and which were his own discoveries.

Euclid was particularly interested in questions pertaining to divisibility, and he prop-
erly emphasized the function of the prime numbers. In Book IX, the last of the books
on number theory, many significant theorems can be found. Of these the most celebrated
is Proposition 20, which reads, “Prime numbers are more than any assigned multitude
of prime number.” What we have here is the famous assertion that there are infinitely
many primes. Proposition 14 contains the essence of what today is called the funda-
mental theorem of arithmetic—any integer greater than 1 can be written as a product of
primes in exactly one way. Proposition 35 gives a derivation of the formula for finding
the sum of numbers in geometric progression; and the following, and last, proposition in
Book IX establishes a criterion for forming “perfect numbers” (the nomenclature is no doubt
Pythagorean).

As Euclid possessed no algebraic symbolism, he was forced to represent arbitrary
numbers by line segments marked by one letter, or by two letters placed at the ends of the
segment. His proofs, which were given in a verbal form, as opposed to the modern symbolic
form, did not make use of geometry. In Books VII, VIII, and IX, no geometrical figures
were used for indeed none were necessary. Although Euclid may have adopted the language
“plane numbers” and “solid numbers” to refer to products of two and three numbers, these
were represented throughout the text not by rectangles or volumes but by segments.

Book VII begins with a variety of definitions that serve all three arithmetical books,
including those of prime and composite numbers. Where Euclid phrased these in terms of
line segments, we shall use modern notation and wording.

Definition

An integer b is said to be divisible by an integer a # 0, in symbols a | b, if there exists
some integer ¢ such that b = ac. One writes a}b to indicate that b is not divisible by a.

Thus, 39 is divisible by 13, since 39 = 13 - 3. However, 10 is not divisible by 3; for
there is no integer c that makes the statement 10 = 3c true.

There is other language for expressing the divisibility relation a | . We might say that a
divides b, a is a divisor of b, that a is a factor of b, or that b is a multiple of a. Notice too that
in the definition given there is a restriction on the divisor a; whenever the notation a | b is
used, the understanding is that a is different from zero. Because Euclid always represented
numbers by line segments, he did not use the phrases “is a divisor of” or “is a multiple of.”
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Liber I, 1

Iem, fub aquaiibus reclis lineis contentum | & ba-
fim BC baz EF aqualem babebunt 5 evetque tri-
angulums BAC triangelo EDF aquale , ac reli-
qus angels B, C veliguis angulis B F aquales
cvunk o wrevgue nirk we o fub quibus aqualiar lareva
[ubtenduntur.
Si pun&tum D punéto A applicetur, &-refta
DE re@tz AB {uperponatur, cader punéum E
in B, quia DE* == AB. Ttem refta DT cadet a &y
in AC, quizang. A *=D. Quinetiam pun-
&um E punéto C coincidet, quia AC * = DF.
Ergd reltx EF, BC, ciim toidem habeant ter-
minos, b congruent, & proinde zquales funt. b 14. o5, W
Quare risngula BAC, EDF; & anguli B, E;
itémq; anguli C, F- eriam congruunt, & a-

quantur, Qod erat Demondtsandum,

Pror. V.,

A Hofceltum triangulorum ARC
gies ad bafim flnt ampuli ABC,
ACB imer fe funt aquales> Ei
produitis aqualibus veftu lines
B L AB, A Caqui fub bafe funt an-
gesi CBD, BCE tarer fe «-
quales erunt.
D v *Accipce AF = AD, &, 44,
E junge CD,ac B F. b pf
Quoniam  in :triangulis € b
ACD,ABF funt ABc = AC,& AF4=AD, d conjir.
angulisq; A communisferit ang. ABF= ACD; ¢ + *
&ang, AFB ¢ = ADC, & bas. BF-=DC;
tem FC!— DB. ergd in wiangulis BF C, £ 1 ax.
BDC serivang. FCB, = DBC. Q.ED.Trem 8 4 1.
ideo ang. FBC == DCB. atqui ang. ABF b= b »r-
ACD.ergo ang ABC*=ACB. Q.E. D. X % =
. Leroilarium.
Hinc, Onne wiangulum zquilaterum et
qucq; xquiangulum,
Prop.

Euclid’s proof that the base angles of an isosceles triangle are equal. From Isaac

Barrow’s edition of Euclid’s Elements (1665). (From An Introduction to the History of
Mathematics, 6/E, copyright ©1990 by Saunders College Publishing, a division of Holt, Rinehart and
Winston, Inc., reprinted by permission of the publisher.)

Instead, he replaced these by “measures” and “is measured by,” respectively. For Euclid, a
number b was measured by another number a if b = ac for some third number c.

Euclid, in representing numbers by line segments, would never have considered a
negative number. But in the modern view, the divisors of an integer always occur in pairs.
If a is a divisor of b, then so is —a; indeed, b = ac implies that b = (—a)(—c). To find all
the divisors of a given integer, it suffices to obtain the positive divisors and then adjoin to
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them their negatives. For this reason we shall usually limit ourselves—as Euclid did for his
own reasons—to positive divisors.

It will be helpful to list a number of simple facts involving the concept of divisor. For
integers a, b, and c, the following hold:

1. a|0,1]a,a]a.

2. allifandonlyifa = =+1.

3. Ifa|bandc|d,thenac|bd.

4. Ifa|bandb|c,thena|c.

5. albandb|aifandonlyifa = +£b.

6. Ifa|banda]c,thena|(bx + cy) for any integers x and y.

We shall establish assertion 6, leaving the verification of the other parts as an exercise.
Now the relations a | b and a | ¢ ensure that there exist integers r and s satisfying b = ar
and ¢ = as. But then

bx 4+ cy = arx +asy = a(rx +sy),

whatever the choice of x and y. Because rx + sy is itself an integer, the last-written equation
says simply that a | (bx + cy), as desired.

It is convenient to call an expression of the form bx + cy, where x and y are integers,
a linear combination of b and c. Note that b + ¢ and b — ¢ are both linear combinations of
b and ¢ (in the first instance take x = y = 1; in the second let x = 1, y = —1). Hence, as
a special case of assertion 6, we see thatif a |band a|c,thena | (b +c)anda | (b — ¢).

Classifying positive integers greater than 1 as either prime or composite is very impor-
tant in number theory; because of the fundamental theorem of arithmetic, many properties
of integers can be deduced from properties of primes. Fact assertion 1 tells us that any
integer a > 1 is divisible to £1 and by =%a, divisors that are frequently named improper
divisors. If they exhaust the divisors of a, then a is said to be a prime number. Put somewhat
differently we have this definition.

Definition

Aninteger p > 1 is called a prime number, or simply a prime, if its only positive divisors
are 1 and p. An integer that is greater than 1 and not a prime is termed composite.

Among the first 10 positive integers, 2, 3, 5, and 7 are all primes, whereas 4, 6, 8,9, and
10 are composite numbers. Note that the integer 2 is the only even prime, and according
to our definition, the number 1 is distinguished in the sense of being neither prime nor
composite. To illustrate Euclid’s language, let us record his way of defining a prime: “A
prime number is that which is measured by a unit (that is, by 1) alone.”

Itis often of interest to find out whether two given numbers have any factors in common,
and if so which ones.

Definition

If a and b are arbitrary integers, then an integer d is said to be a common divisor of a
and b if we have both d |a and d | b.
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Because 1 divides each integer, 1 is a common divisor of a and b. Hence, any pair of
integers possesses at least one positive common divisor. In fact, if either @ and b is nonzero,
then a finite number of positive common divisors exist. Among these, there is one that
is the largest, called the greatest common divisor of a and b, and denoted by the symbol
gcd (a, b).

Example. The positive divisors of 12 are 1, 2, 3, 4, 6, and 12, and the positive divisors of
30are 1, 2, 3, 5, 6, 10, 15, and 30; hence, the positive common divisors of 12 and 30 are
1,2, 3, and 6. Because 6 is the largest of these integers, it follows that gcd (12, 30) = 6.

The Algorithm of Euclid

To obtain the greatest common divisor of two integers, we could always proceed as in
the last example by listing all their positive divisors and picking out the largest one common
to each; but this is cumbersome for large numbers. A more efficient process is given early
in the seventh book of the Elements. Although there is historical evidence that this method
predates Euclid by at least a century, it today goes under the name “Euclidean algorithm.”

Euclid’s procedure relies on a result so basic that it is often taken for granted: the division
theorem. Roughly, the theorem asserts that an integer a can be divided by a positive integer
b in such a way that the remainder is smaller than b. An exact statement of this fact follows.

DIVISION For integers a and b, with b > 0, there exist unique integers q and r satisfying
THEOREM

a=gqb+r, 0<r<b.

The integers g and r are called the quotient and the remainder in the division of a by b. We
accept the division theorem without proof, noting that b is a divisor of a if and only if the
remainder 7 in the division of a by b is zero.

In examining the division theorem, let us take & = 7. Then, for the choicesa = 1, -2,
28, and —59, one gets the representations

1=0-7+1
2=(=1)-7+5
28=4-740

=59 =(-9)-7+4.

The aim is to focus attention not so much on the division theorem as on its use in
finding greatest common divisors. To this end, let a and b be two integers whose greatest
common divisor is desired; there is no harm in assuming that @ > b > 0. The first step is
to apply the division theorem to a and b, to get

a=qb+r, 0<r <b.
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If it happens that r; = 0, then b | a, and since b | b also, gcd (a, b) = b. If r| # 0, divide b
by r; to produce integers g, and r; satisfying

b = qori + 12, 0<r <.
If r, = 0, then we stop; otherwise, we go on as before, dividing r; by r,, to obtain
ry =qsra +rs, 0<r3<n.

This division continues until some zero remainder appears, say at the (n + 1)st stage, at
whichr,_; isdivided by r,,. A zero remainder must occur sooner or later, since the decreasing
sequence b > r; > rp > --- > (0 cannot contain more than b integers.

The result is the following system of equations:

a=qb+r, 0<r <b,

b = qor + 12, 0<r<ry,

ry = qsra +rs3, 0 <r3 <,
r'n—3 = {4n—1rn—2 +rn—la 0 <TIp—1 <rp-2,
rn72ZQnrn71+rn9 O<rn<rn71a

Fn—1 = Y4n+1rn +O

We argue that r,,, the last nonzero remainder that appears in this algorithm, is equal to gcd
(a, b).Nowr, | r,—1 by the last equation of the above system. From the equation immediately
preceding, it follows that r,, | r,—5; for r,_; is a linear combination of r, and r,,_;, both of
which are divisible by r,,. Working backward through these equations, we find that r,, divides
each of the preceding remainders r. Finally 7, | b, and from the first equationa = qb + ry,
we get r,, | a. Therefore, r, is a positive common divisor of @ and b.

Next, suppose that d is an arbitrary positive common divisor of a and b. The first of
the equations tells us that d | r;. It is clear, in going down the list of the equations, that d
divides r,, r3, ... and ultimately r, also. But d | r,,, with d and r, both positive integers,
implies that d < r,. In consequence, r,, is the largest of the positive common divisors of a
and b; that is, ged (a, b) = r,,.

There is another important point that deserves mention. Namely, gcd (a, b) can always
be expressed as a linear combination of the integers a and b. To verify this, we fall back on
the Euclidean algorithm. Starting with the next-to-last equation arising from the algorithm,
we write 7, as

Iy =Fp—2 — gnln-1,
a linear combination of r,_; and r,_,. Now solve the preceding equation in the algorithm
for r,,_; and substitute to
Fn =Tn—2 — qn("n—3 — qn—1rn-2)
= (1 + gngn-1rn—2 + (=gn)rn—3.

This eliminates r,,_; and represents r,, as a linear combination of r,,_, and r,,_3. Continuing
backward through the system of equations, we successively eliminate the remainders r,,—1,
Fn—2, ..., F2, r; until a stage is reached at which r, = gcd (a, b) is expressed as a linear
combination of a and b.
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To summarize, what we have obtained is the following:

THEOREM For integers a and b, of which both are not zero, there exist integers x and y such that
gcd (a, b) = ax + by.
||

Example. Letus see how the Euclidean algorithm works in a concrete case by calculating,
say, ged (12,378, 3054). The appropriate applications of the division algorithm produce
the equations

12,378 =4 - 3054 + 162
3054 = 18 - 162 4- 138
162 =1-138+24
138 =5-24418
24=1-18+6
18=3-6+0.

Our previous discussion tells us that the last nonzero remainder appearing above, namely
the integer 6, is the greatest common divisor of 12,378 and 3054:

6 = ged (12,378, 3054).

To represent 6 as a linear combination of the integers 12,378 and 3054, we start with the
next-to-last of the displayed equations and successively eliminate the remainders 18, 24,
138, and 162:

6=24—18
=24 — (138 —-5-24)
=6-24—138
=6(162 — 138) — 138
=6-162—7-138
=6-162 —7(3054 — 18 - 162)
=132.162 —7-3054
= 132(12,378 — 4 - 3054) — 7 - 3054
= 132-12,378 + (—535)3054.
Thus, we have
6 = ged (12,378, 3054) = 12,378x + 3054y,

where x = 132 and y = —535. It might be well to record that this is not the only way
to express the integer 6 as a linear combination of 12,378 and 3054. Among other
possibilities, one could add and subtract 3054 - 12,378 to get

6 = (132 + 3054)12,378 + (—535 — 12,378)3054
= 3186 - 12,378 + (—12,913)3054.
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It may happen that 1 and —1 are the only common divisors of a given pair of integers,
whence gcd (a, b) = 1. For example,

ged (2,5) = ged (9, 16) = ged (27,35) = 1.

This situation occurs often enough to prompt a definition:

Definition

Two integers a and b are said to be relatively prime, or prime to each other, whenever
ged (a,b) = 1.

We should emphasize that it is possible for a pair of integers to be relatively prime with-
out either integer being a prime. On the other hand, if p is a prime number, then gcd (a, p) =
1 if and only if pJa. This is true because the only positive divisors of p are 1 and p itself,
so that either gcd (a, p) = 1 or ged (a, p) = p. The latter case holds provided that p|a.

The next theorem characterizes relatively prime integers in terms of linear combina-
tions.

THEOREM Let a and b be integers, of which both are not zero. Then a and b are relatively prime if
and only if there exist integers x and y such that 1 = ax + by.

Proof. If a and b are relatively prime, so that ged (a, b) = 1, then our last theorem
guarantees the existence of integers x and y satisfying 1 = ax + by. As for the other
direction, suppose that 1 = ax + by for some choices of x and y, and that d =

gcd (a, b). Because d|a and d|b, we must have d|(ax + by) or d|1. Because d is a
positive integer, this last divisibility condition forces d = 1, and the desired conclusion
follows.

This result leads to an observation that is useful in certain situations.

COROLLARY!1 Ifged (a, b) = d, then ged (a/d, b/d) = 1.

Proof. Before starting with the proof proper, we should observe that although a/d and
b/d have the appearance of fractions, they are in fact integers, since d is a divisor of
both a and b. Because ged (a, b) = d, it is possible to find integers x and y such that
d = ax + by. On dividing both sides of this equation by d, one obtains the expression

I =(a/d)x +(/d)y.

Because a/d and b/d are integers, an appeal to the theorem is legitimate. The
conclusion is that a/d and b/d are relatively prime.

In illustration of the corollary, we observe that gcd (12, 30) = 6 and
gcd (12/6,30/6) = ged (2,5) =1,

as expected.
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It is not true, without imposing an extra condition, that a|c and b|c together yield ab|c.
For instance, 6|24 and 8|24, but clearly 6 - 8/24. Were 6 and 8 relatively prime, of course,
the situation would be altered. This brings us to another corollary.

COROLLARY2 If a|c and b|c, with gcd (a, b) = 1, then ab|c.
Proof. Because a|c and b|c, there exist integers r and s for which ¢ = ar = bs. Also,
the condition gcd (a, b) = 1 allows us to write 1 = ax + by for suitable choices of
integers x and y. If this last equation is multiplied by c, it appears that
c=c-1=clax 4+ by) =acx + bcy.
If the appropriate substitutions are now made on the right-hand side, then
¢ = a(bs)x + b(ar)y = ab(sx +ry)
or as a divisibility statement, ab|c.
||
Proposition 24 of Book VII of Euclid’s Elements seems mild enough, but it is funda-
mentally important in number theory. In modern notation, it may be stated as follows.
EUCLID’S If albc, with ged (a, b) = 1, then a|c.
LEMMA

Proof. We start again by writing 1 = ax + by, where x and y are integers.
Multiplication of this equation by ¢ produces

c=1-c=(ax +by)c =acx + bcy.

Because alac and a|bc, it follows that a|(acx + bcy), which may be restated as a|c.

If a and b are not relatively prime, then the conclusion of Euclid’s lemma may fail to
hold. A specific example: 129 - 8, but 129 and 12/8.

The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic, otherwise known as the “unique factorization
theorem,” asserts that any integer greater than 1 can be represented as a product of primes,
and that the product is unique apart from the order in which the factors appear. Although
this theorem is sometimes attributed to Euclid, it apparently was not expressly stated before
1801, when Gauss featured it in his Disquisitiones Arithmeticae. The nearest that Euclid
himself came to this result was Proposition 14 of Book IX: “If a number be the least that
is measured by prime numbers, it will not be measured by any other prime number except
those originally measuring it.” Some authorities argue that Euclid’s failure to “discover”
the fundamental theorem stems from his inability to form products wherein the number
of factors is unspecified. Others argue that the theorem asserts the existence of a certain
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representation, and that the Greeks could not conceive of the existence of anything that was
not constructible by elementary geometry.

Because every number either is a prime or, by the fundamental theorem, can be broken
down into unique prime factors and no further, the primes serve as the “building blocks”
from which all other integers can be made. Accordingly, the prime numbers have intrigued
mathematicians through the ages, and although many remarkable theorems relating to their
distribution in the sequence of positive integers have been proved, even more remarkable is
what remains unproved. The open questions can be counted among the outstanding unsolved
problems of all mathematics.

To begin on a simple note, we observe that the prime 3 divides the integer 36. We may
write 36 as the product

6-6, or 9.4, or 12-3, or 18-2;

and in each instance, 3 divides at least one of the factors involved in the product. This is
typical of the general situation, and the precise result can be stated.

THEOREM

If p is a prime and plab, then p|a or p|b.

Proof. If p|a, then we need go no further, so let us assume that pfa. Since the only
positive divisors of p (hence, the only candidates for the value of gcd (a, p)) are 1 and
p itself, this implies that gcd (a, p) = 1. Citing Euclid’s lemma, it follows imme-

diately that p|b.
||

This theorem extends to products with more than two factors. We state the result without
proof.

COROLLARY

If p is a prime and pla,a; - - - ay, then p|ay for some k, where 1 <k < n.

Let us next show that any composite number is divisible by a prime (Proposition 31,
Book VII). For a composite number n, there exists an integer d satisfying the conditions
dln and 1 < d < n. Among all such integers d, choose p to be the smallest. Then p must
be a prime number. Otherwise, it too would possess a divisor g with 1 < g < p; but g|p
and p|n imply that g |n, which contradicts our choice of p as the smallest divisor, not equal
to 1, of n. Thus, there exists a prime p with p|n.

With this preparation we arrive at the fundamental theorem of arithmetic. As indicated
earlier, the theorem asserts that every integer larger than 1 can be factored into primes in
essentially one way; the linguistic ambiguity “essentially” means that the representation 2 -
3 - 2isnotconsidered different from 2 - 2 - 3 as a factorization of 12. The precise formulation
is given as follows.



@ ‘ Burton: The History of 4. The Alexandrian School: | Text © The McGraw-Hill
Mathematics: An Euclid Companies, 2007
Introduction, Sixth Edition

Euclid’s Number Theory 181

FUNDAMENTAL Every positive integer n > 1 is either a prime or can be expressed as a product of primes;
THEOREM OF this representation is unique, apart from the order in which the factors occur.

ARITHMETIC

Proof. Either n is a prime or it is composite. In the first case there is nothing to prove.
If n is composite, then there exists a prime divisor of n, as we have shown. Thus, n may
be written as n = pyn;, where p; is prime and 1 < n; < n. If n| is prime, then we
have our representation. In the contrary case, the argument is repeated to produce a
second prime number p; such that n; = pn,; that is,

n = pipana, 1 <ny <ny.

If n, is a prime, then it is not necessary to go further. Otherwise, write n, = p3n3, with
p3 a prime; hence,

n = pi1pap3ns, 1 < n3 <ns.
The decreasing sequence
n>n;>ny>--->1

cannot continue indefinitely, so that after a finite number of steps n; is a prime, say py.
This leads to the prime factorization

n=pipz--- pk-

The second part of the proof—the uniqueness of the prime factorization—is more
difficult. To this purpose let us suppose that the integer n can be represented as a
product of primes in two ways; say,

n=pip2---Pr=4q192" s, r=s,
where the p; and g; are all primes, written in increasing order, so that
PL=p2=- =D and gL <q<---<gqs.

Because pi|q19> - - - g5, we know that p;|g; for some value of k. Being a prime, g; has
only two divisors, 1 and itself. Because p; is greater than 1, we must conclude that

P1 = qi; but then it must be that p; > ¢g;. An entirely similar argument (starting with

q) rather than p;) yields ¢; > py, so that in fact p; = q,. We can cancel this common
factor and obtain

pap3 - Pr=4q2q3- - (gs.

Now repeat the process to get p» = ¢»; cancel again, to see that

P3pP4- - Pr=43q4" ;.
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Continue in this fashion. If the inequality » < s held, we should eventually arrive at the
equation

1 =¢qr119r42- - gs,
which is absurd, since each g; > 1. It follows that r = s and that
pl ZQI»PZZQL--«vPr zqrv
making the two factorizations of n identical. The proof is now complete.
||
Of course, several of the primes that appear in the factorization of a given integer n may
be repeated (as is the case with 360 =2-2-2.3.3.5). By collecting the equal primes
and replacing them by a single factor, we could write n in the so-called standard form
n:pllc]plzcz...pzf”
where each k; is a positive integer and each p; is a prime with p; < pp < --- < p,.
Toillustrate: The standard form of the integer 360 is 360 = 23 - 32 - 5. Further examples
are
4725=3%.5.7 and 17,640 =2°.3%.5.7%
We cannot resist giving another proof of the irrationality of /2, this time using the
fundamental theorem of arithmetic.
THEOREM The number /2 is irrational.

Proof. Suppose to the contrary that +/2 is a rational number, say, v/2 = a /b, where a
and b are both integers with ged (a, b) = 1. Squaring, we get a> = 2b?, so that b|a>. If
b > 1, then the fundamental theorem guarantees the existence of a prime p such that
p|b. From p|b and b|a?, it follows that p|a?; but then p|a, hence ged (a, b) > p. We
therefore arrive at a contradiction, unless b = 1. If this happens, then a? = 2, which is
impossible (we assume you are willing to grant that no integer can be multiplied by
itself to give 2). Our original supposition that 4/2 is a rational number is untenable; so
it must be an irrational number.

An Infinity of Primes

By this time, you are probably asking, Is there a prime number that is the largest, or do
the primes go on forever? The answer is to be found in a very ingenious, yet quite simple,
proof given by Euclid (Proposition 20, Book IX) in his Elements. In general terms, what he
showed is that beyond each prime another and larger prime can be found. The actual details
follow; the argument is Euclid’s, although the words and modern notation are not.
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THEOREM There are an infinite number of primes.
Proof. Write the primes 2, 3,5, 7, 11, ... in ascending order. For any particular prime

p, consider the number
N=2-3-5-7-11---p)+1.

That is, form the product of all the primes from 2 to p, and increase this product by
one. Because N > 1, we can use the fundamental theorem to conclude that N is
divisible by some prime ¢. But none of the primes 2, 3, 5, ..., p divides N. For if ¢
were one of these primes, then on combining the relation ¢|2 -3 -5 - - p with g|n, we
would get g|[(N —2-3-5--- p), or what is the same thing, ¢g|1. The only positive
divisor of the integer 1 is 1 itself, and since ¢ > 1, the contradiction is obvious.
Consequently, there exists a new prime ¢ larger than p.

Euclid’s proof demonstrates the existence of some prime larger than p; but we do not
necessarily arrive at the very next prime after p when we use the method indicated by his
proof. For example, this process yields 59 as a prime beyond 13:

N=2-3-5-7-11-13)4+1=230,031 =59 509

Frequently, there are a great many primes between the prime p considered and the one
obtained in the manner the proof suggests.

How can we determine, given a particular integer, whether it is prime or composite,
and if it is composite, how can we actually find a nontrivial divisor? The most obvious
approach is successive division of the integer in question by each of the numbers preceding
it; if none of them (except 1) serves as a divisor, then the integer must be a prime. Although
this method is very simple, it cannot be regarded as useful in practice. For even if one is
undaunted by large calculations, the amount of work involved may be prohibitive.

Composite numbers have a property that enables us to reduce materially the necessary
computations. If an integera > 1 is composite, it canbe writtenasa = bc,where | < b < a
and 1 < ¢ < a. Assuming that b < ¢, we get b? <bc=a,andsob < JJa.Because b > 1,
there is for b at least one prime factor p. Then p < b < \/a; furthermore, because p|b and
bla, it follows that p|a. The point is simply this: A composite number a will always possess
a prime divisor p satisfying p < /a.

In testing the primality of a specific integer a > 1, it therefore suffices to divide a by
those primes not exceeding /a (presuming, of course, the availability of a list of primes up
to \/a). This can be clarified by considering the integer a = 509. Because 22 < /509 < 23,
we need only try out the primes that are not larger than 22 as possible divisors, namely, the
primes 2, 3, 5, 7, 11, 13, 17, and 19. Dividing 509 by each of these in turn, we find that
none serves as a divisor of 509. The conclusion is that 509 is a prime number.

Example. The foregoing technique provides a practical means for determining the
standard form of an integer, say a = 2093. Because 45 < 4/2093 < 46, it is enough to
examine the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, and 43. By trial, the
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first of these to divide 2093 is 7, with 2093 = 7 - 299. As regards the integer 299, the
seven primes less than 18 (note that 17 < /299 < 18 are 2,3,5,7,11, 13, and 17.
The first prime divisor of 299 is 13, and carrying out the required division, we obtain
299 = 13- 23. But 23 is itself a prime, whence 2093 has exactly three prime factors,

namely 7, 13, and 23:

4.3 Problems

Given integers a, b, and c, verify that

(a) Ifalb,thenalbc.

(b) Ifalb and a|c, then a?|bc.

(c) albif and only if ac|bc, provided ¢ # 0.
(d) Ifal(a+ b),thenalb.

(e) Ifalband cl|d, then ac|bd.

2. Show that if a|b, then (—a)|b, a|(—b), and (—a)|(—b).

For any positive number #, it can be shown that there
exists an even integer a that is representable as the sum
of two odd primes in 7 different ways. Confirm that the
integers 66, 96, and 108 can be written as the sum of
two primes in six, seven, and eight ways, respectively.

A conjecture of Lagrange (1775) asserts that every odd
integer greater than 5 can be written as a sum p + 2q,
where p and g are both primes. Verify that this holds
for all such odd integers through 75.

Find an example to show that the following conjecture
is not true: Every positive integer can be written in the
form p + a?, where p is a prime (or else equal to 1)
and a > 0.

Prove that the only prime of the form n® — 1 is 7.
[Hint: Factorn® —1as (n — D)(n?> +n + 1).]

Find a set of four consecutive odd integers of which
three are primes, and a set of five consecutive odd
integers of which four are primes.

Although the answer is not known, it appears that each
positive multiple of 6 can be written as the difference
of two primes. Confirm this as far as 90.

Consider the primes arranged in their natural order
2,3,5,7,....Itis conjectured that beginning with 3,
every other prime can be composed of the addition and
subtraction of all smaller primes (and 1), each taken

10.

11.

12.

13.

14.

15.

16.

2093 =7-13-23.

once. For example:

3=1+2, 7=1-2+3+5,
13=142-3-5+7+11
=—-1+2+3+5-7+11.

Show that this also holds for 19, 29, 37, and 43.
Establish each of these statements.

(a) The square of any integer is of the form either 4n
or4n + 1.

(b) The square of any odd integer is of the form
8n + 1. [Hint: Any odd integer is of the form
4k + 1 or4k + 3.]

(c) The square of any integer not divisible by 2 or 3
is of the form 12n + 1. [Hint: By the division
theorem, an integer can be represented in one of
the forms 6k, 6k + 1, 6k + 2, 6k + 3, 6k + 4, or
6k +5.]

For any arbitrary integer a, show that 2|a(a + 1) and
3la(a + 1)(a + 2).

Prove that if a is an integer not divisible by 3, then
3|(@® —1).

Verify that the difference of two consecutive squares is
never divisible by 2; that is, 2 does not divide
(a + 1)*> — a® for any choice of a.

For a positive integer a, show that ged (a, 0) = a,
gcd (a, 1) =1, and ged (a, a) = a.

Find gcd (143, 277), ged (136, 232), and
ged (272, 1479).

Use the Euclidean algorithm to obtain integers x and y
satisfying:

(@) ged (56,72) = 56x + 72y.

(b) ged (24, 138) = 24x + 138y.

(c) ged (119,272) = 119x + 272y.

(d) ged (1769, 2378) = 1769x + 2378y.
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Prove that any two consecutive integers are relatively
prime, that is, gcd (a, a + 1) = 1 for any integer a.

Establish that the product of any three consecutive
integers is divisible by 6, and the product of any four
consecutive integers is divisible by 24.

22,

23.
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Prove that the only prime p for which3p +1isa
perfect square is p = 5. [Hint: If 3p + 1 = a?, then
3p=a’—1=(@+ a-1)]

It has been conjectures that every even integer can be
written as the difference of two consecutive primes in

Given that p is a prime and p|a”, show that p"|a".

an infinite number of ways. For example,

4=11-7=17-13=23-19
=47 -43=131-127T=---.

Express the integer 6 as the difference of two
consecutive primes in 10 ways.

24. Determine whether the integer 701 is prime by testing
all primes p < +/701 as possible divisors. Do the same

for the integer 1009.

(a) Find all prime numbers that divide 40! (recall
that40! =1-2-3-4-.-40).

(b) Find the prime factorization of the integers 1234;
10,140; and 36,000.

(a) An unanswered question is whether there are
infinitely many primes that are 1 more than a
power of 2, such as 5 = 2% + 1. Find two more of
these primes.

(b) Itis equally uncertain whether there are infinitely

many primes that are 1 less than a power of 2,
such as 3 = 22 — 1. Find four more of these

primes.

Eratosthenes, the Wise Man
of Alexandria

25.
26.

Prove that ,/p is irrational for any prime p.

Use the division theorem to show that every prime
except 2 and 3 is of the form 6n + 1 or 6n + 5.

Another Alexandrian mathematician whose work in
number theory remains significant is Eratosthenes
(276-194 B.C.). Eratosthenes was born in Cyrene, a
Greek colony just west of Egypt and under Ptole-
maic domination, but spent most of his working days
in Alexandria. At some time during his early life he
studied at Plato’s school in Athens. When about 30 years of age Eratosthenes was invited
to Alexandria by King Ptolemy III to serve as tutor for his son and heir. Later, Eratos-
thenes assumed the most prestigious position in the Hellenistic world, chief librarian at the
Museum, a post he was to hold for the last 40 years of his life. It is reported that in old age
he lost his sight, and unwilling to live when he was no longer able to read, he committed
suicide by refusing to eat.

Eratosthenes was acknowledged to be the foremost scholar of his day and was undoubt-
edly one of the most learned men of antiquity. An author of extraordinary versatility, he
wrote works (of which only some fragments and summaries remain) on geography, philos-
ophy, history, astronomy, mathematics, and literary criticism; and he also composed poetry.
Eratosthenes was given two nicknames that are significant in light of the prodigious range
of his interests. In honor of his varied accomplishments, his friends called him Pentathis, a
name applied to the champion in five athletic events—hence, to men who tried their hands at
everything. His detractors felt that in attempting too many specialities, Eratosthenes failed
to surpass his contemporaries in any one of them. They dubbed him Beta (the second letter
of the Greek alphabet), insinuating that while Eratosthenes stood at least second in all fields,
he was first in none. Perhaps a kinder explanation of this second nickname is that certain
lecture halls in the Museum were marked with letters, and Eratosthenes was given the name
of the room in which he taught.

The Sieve of Eratosthenes
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The habitable world according to Eratosthenes. (From A Short History of Scientific Ideas by
Charles Singer. Reproduced by permission of Oxford University Press.)

Although Eratosthenes could be regarded as among a second echelon in many endeav-
ors, he was certainly not beta in the fields of geography and mathematics. His three-volume
Geographica, now lost except for fragments, was the first scientific attempt to put geo-
graphical studies on a sound mathematical basis. In this work, he discussed the arguments
for a spherical earth and described the position of various land masses in the known world.
Eratosthenes’ actual mapping of the populated quarters of the earth was based on hearsay
and speculation, but it was the most accurate map of the world that had yet appeared and
the first to use a grid of meridians of longitude and parallels of latitude. He regarded the
inhabited lands as placed wholly in the northern hemisphere, surrounded by a continu-
ous body of ocean. Eratosthenes made the first suggestion for the circumnavigation of
the globe when he observed: “If it were not for the vast extent of the Atlantic Sea one
might sail from Iberia (Spain) to India along one and the same parallel.” The vast amount
of quantitative data accumulated by Eratosthenes as head of the largest library of antiqg-
uity made his Geographica the prime authority for centuries; the longitude and latitude
of 8000 places on earth were given, as well as numerous estimates of distances between
locations.

As a mathematician, Eratosthenes produced as his chief work a solution of the fa-
mous Delian problem of doubling the cube and the invention of a method for finding
prime numbers. His mechanical contrivance for effecting duplication, called a mesolabium,
or mean-finder, consisted of a rectangular framework along which three rectangular
plates (marked with their diagonals) of height equal to the width of the frame slide
in three grooves, moving independently of one another and able to overlap. Suppose
that the original positions of the rectangular plates are shown as in the figure, where
AP and FQ are the sides of the frame and ARGF, RSHG, and STIH are the plates that
slide.
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If the first plate remains stationary while the second slides under the first, and the third
under the second, to a position in which the points A, B, C, and D

A R R § S T
< < P
\
\
N
2a D
y
X a
E
F G H 1 ¢

are brought into line, then the result looks like the preceding figure. Draw a straight line
through the collinear points A, B, C, and D, meeting the side FQ at E. From the theory of
similar triangles, we then obtain

HE BE GE

GE AE FE’

while
BG GE CH HE
AF _FE " BG  GE
Tying the various relations together, we see that
CH BG
BG ~ AF’
By similar reasoning,
DI CH
CH ™ BG’

and so DI, CH, BG, and AF are in continued proportion. On setting DI = a, AF = 2a,
CH = x, and BG = y, we get

y 2’

which makes apparent the conclusion that x and y are the required mean proportionals
between the lengths a and 2a. Put another way: If a is the length of the edge of a given
cube, the cube that has edge x will have volume double the original one’s.

Eratosthenes was so pleased with his contrivance for solving the Delian problem that
he had a monument erected to Ptolemy III on which the proof was inscribed, and he also
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caused the mean-finder to be cast in bronze. What could be more curious behavior—the best
way Eratosthenes could think of to thank and flatter the king was to dedicate the solution of
an esoteric mathematical problem to him! Of course, any mechanical solution was not as
“pure” as straightedge and compass constructions would be, and as such would be abhorrent
to the principles of Plato.

We have seen that if an integer a > 1 is not divisible by a prime p < ./a, then a itself
is necessarily a prime. Eratosthenes used this fact as the basis of a clever technique, called
the sieve of Eratosthenes, for finding all primes less than a given integer n. The scheme
calls for writing down the integers from 2 to n in their natural order and then systematically
eliminating all the composite numbers by striking out all multiples 2p, 3p, 4p, ... of the
primes p < /n. The integers that are left on the list—that do not fall through the “sieve”—
are primes.

To see by example how this works, suppose that we want to find all primes not exceeding
100. Recognizing that 2 is a prime, we begin by crossing out all even integers from our
listing, except 2 itself. The first of the remaining integers is 3, which must be a prime. We
keep 3, but strike out all higher multiples of 3, so that 6,9, 12, ... are now removed. The
smallest integer after 3 not yet deleted is 5. It is not divisible by either 2 or 3 (otherwise it
would have been canceled), hence is also a prime. Because all proper multiples of 5 are
composite numbers, we next remove 10, 15, 20, .. ., retaining 5 itself. The first surviving
integer 7 is a prime, for it is not divisible by 2, 3, or 5, the only primes that precede it. After
the proper multiples of 7, the largest prime less than /100 = 10, have been eliminated,
all composite integers in the sequence 2, 3, 4, ..., 100 have fallen through the sieve. The
positive integers that remain, to wit 2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59,61, 67,71, 73,79, 83, 89, 97, are all the primes less than 100.

The accompanying table represents the result of the completed sieve. The multiples of
2 are crossed out by \; the multiples of 3 are crossed out by /; the multiples of 5 are crossed
out by —; the multiples of 7 are crossed out by ~.

2 3 ¥ 5 % 7 Ry g o

11 »® 13 M 15 I\ 17 2] 19 26

2¢ 02X 23 X 25 2 2 2% 29 36
31 3 3B M 3% 3% 37 38 20

41 A% 43 M 45 26 47T XK 49 30
51 % 53 M 55 A6« ¥ 58 59 o6
61 & 6% B 65 66 67 68 69 2y

71 773 ™5 A M 79 3¢

il 8 B¢ 8 % %7 ¥ 89 94
e ) 93 M 95 9% 97 A% W 86

Measurement of the Earth

Today Eratosthenes is best remembered for having devised a practical method for cal-
culating the earth’s circumference. Although his was not the first or last such estimate made
in antiquity, it was far more accurate than all previous estimates. The extraordinary thing
about Eratosthenes’ achievement is its simplicity. His procedure was based on estimates of
the arc of the great circle through Alexandria and Syene, the city that today is called Aswan.
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The two cities had certain advantages. They were thought to be on the same meridian; the
distance between them had been measured by a bematistes, or surveyor, trained to walk
with equal steps and count them, and had been found to be 5000 stadia; and travelers had
commented on the curious fact that in Syene, at the time of the summer solstice, the sun at
noon cast no shadow from an upright stick. This meant that Syene was directly under the
Tropic of Cancer, or at least, nearly so. Story has it that Eratosthenes confirmed the position
of the tropic by observing the water in a deep well. At noontime of the summer solstice,
the bottom was completely illuminated by the sun’s rays, the edge of the well casting no
shadow at all on the water below.

Because the sun is so vastly distant from the earth, its rays may be regarded as striking
the earth in parallel lines. Eratosthenes argued that at noon on the day of the summer solstice,
the continuation of a line through the well at Syene would pass through the center of the
earth, the sun being directly overhead. At the same time at Alexandria, the sun was found to
cast a shadow indicating that the sun’s angular position from zenith was o = 7° 12 = 3282 ,
or % of a complete circle. In making this determination, Eratosthenes apparently used a
sundial consisting of a hemispherical bowl with a vertical pointer at its center to cast a
shadow; the direction and height of the sun could be read off by observing the sun’s shadow
with lines drawn on the concave interior. Now an imaginary line drawn through the vertical
pointer of the sundial would pass through the center of the earth and there form an angle
with the line through the well at Syene. This central angle would have to equal ¢, according
to the theorem that asserts that the alternate interior angles formed by a transversal cutting a
pair of parallel lines are equal. In brief, the angle the sun’s rays would make with the pointer
of the sundial would equal the angle subtended at the earth’s center by the arc connecting
Alexandria and Syene.

Pointer casts
a shadow

lexandria Parallel rays /
from sun

Shadow to
be measured

Center of
earth
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Assuming that the sundial at Alexandria, the well at Syene, the center of the earth,
and the center of the sun when directly over Syene all lay in the same plane, Eratosthenes
inferred that

o 5000 360°

360°  circumference’ * 50 °

and there was but one unknown (the earth’s circumference) in the equation. This gave him
50 times the 5000 stadia, or 250,000 stadia, for the entire circumference of the earth. For
some reason not known to us (perhaps to account for any error that existed in measuring the
distance between Alexandria and Syene), he added an extra 2000 to this figure to conclude
that the desired circumference was 252,000 stadia. Unfortunately, there was more than
one kind of stadium used for measuring distance. If it is assumed that Eratosthenes used
Egyptian stadia of 516.73 feet each, then his 252,000 stadia work out to the incredibly
excellent value of 24,662 miles, just 245 miles less than the true value. The ancient world
certainly accepted Eratosthenes’ measurement as the best possible. Pliny (A.D. 23-79), the
Roman naturalist, said it was so bold and subtle a feat that it would be a shame not to accept
the figure, and he even recorded divine sanction of it.

Such a close estimate must, however, be regarded as somewhat accidental. Although
the method was sound in theory, the accuracy of the answer would have to depend on
the precision with which the basic data could be determined. Eratosthenes made several
compensating errors. The figure of 51—0 of the circle for the difference in latitude is near the
truth, but Syene is not directly on the tropic, Alexandria is not on the same meridian (it
lies about 3° to the west of Syene), and the direct distance between the two places is 4530
stadia, not 5000. This does not matter very much, because Eratosthenes’ achievement lies
in his method; for a man who was regarded as a “second-stringer” in the Alexandrian era
of Greek mathematics, it showed the touch of genius.

The Almagest of Claudius Prolemy

Any discussion of Alexandria must take into account the advances made in astron-
omy, a branch of science completely dependent on mathematics. For fourteen centuries,
the accepted blueprint of the solar system was that of the Alexandrian Claudius Ptolemy
(A.D. 100-170). Ptolemy did for astronomy what Euclid did for geometry; by incorporating
a brilliant power of synthesis and exposition with original genius, he reduced the works of
his predecessors to a matter of “historical interest” with little chance of survival. His great
treatise Syntaxis Mathematica (The Mathematical System), or the Almagest, as it became
known to the Arabs and medieval Europeans, was destined to remain the supreme author-
ity on astronomy until the publication of Copernicus’s De Revolutionibus (1543). We are
ignorant of most of the events in Ptolemy’s life, except for the knowledge that he was a
native of Egypt and that his numerous astronomical observations were made in the period
between A.D. 127 and 151, probably at the Museum.

The very name of Ptolemy’s masterpiece has its own curious history. The Greeks called
it Megale Syntaxis (the Great Collection). Later translators from Greek into Arabic, either
through admiration or carelessness, combined the Arabic article al with the superlative
megiste to form the hybrid word almagisti, “The greatest,” whence the Latin Almagestum
and colloquial Almagest, by which name it has been known ever since.
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Claudius Ptolemy
(circa 145)

(The Bettmann Archive.)

Ptolemy came at the end of a long line of Greek thinkers who viewed the earth as the
fixed and immovable center of the universe, around which the planets swung in concentric
circles. To assert that the earth was at any place other than the center of the heavens was
to deny humans their position of supremacy in the universe, to believe that human affairs
were no more significant to the gods than those of other planets. Some astronomers, notably
Aristarchus of Samos, proposed the heliocentric hypothesis—that the earth and the planets
all revolved in circles about a fixed sun—but it was rejected for various reasons. One did
not have to be trained in astronomy to observe that the earth seemed stable under the
feet, that lighter bodies did not fly into the air, or that projectiles shot straight upward
did not fall farther to the west. Archimedes advanced the more scientific argument that if
the earth were in motion, its distance from the stars would vary, and this apparently was
not so.

According to the Pythagorean prejudice for the beauty and perfection of the circle, the
motion of the sun and planets had to be circular. However, their deviation from circular
orbits was great enough to have been observed and to require explanation. To reduce celes-
tial motion to combinations of circular movements, the Greek astronomer Apollonius had
worked out an ingenious scheme of epicycles, or small circles having their centers on the
circumferences of other circles. In the epicycle system, each planet travels around the earth
in a large circle, called a “deferent”; this circle does not represent the true path of the planet,
but rather the path of the center of a small circle, the epicycle, around which the planet
revolves. Claudius Ptolemy, to rationalize these ideas with his accumulated observations,
proposed the notion of eccentric solar motion. His system as described by the Almagest
was perhaps as complicated, relative to his own time, as Einstein’s relativity theory is to
our time.

It will be enough for our purposes to say that Ptolemy set the earth eccentrically within
the main circle representing the deferent of the planet and made the center of the epicycle
move with uniform velocity, not about the center of the deferent, but about an offset point.
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This latter point, called the “equant,” or equalizing point, lay at an equal distance from the
earth on the opposite side of the circle. The equant was a remarkable invention that not
only allowed Ptolemy to describe important features of planetary motion in terms of circles
but also fitted the observational data available in the second century. It obviously had the
motion appear the fastest when the deferent was near the terrestrial observer and slowest at
the opposite point; and that was the explanation of why the sun appeared sometimes near
the earth and sometimes farther away.

The chief flaw in Ptolemy’s system lay in its mistaken premise of an earth-centered
universe. Yet the heliocentric theory was not ignored. Ptolemy devoted a column or two
to the refutation of this theory, thereby preserving it for the ages to ponder on and for
Copernicus to develop. Copernicus was still plagued by epicycles and the matter was not
resolved until Kepler (1609) observed that the planets moved, not in Pythagoras’s ideal
circle, but in elliptical orbits. As soon as Kepler made this radical break with tradition,
everything fell into place.

Prolemy’s Geographical Dictionary

A work that exerted almost as much influence on succeeding centuries as the Almagest
did was Ptolemy’s Geographike Syntaxis (Geographical Directory). Written in eight books,
it is an attempt to summarize the geographical knowledge of the habitable world as known
at that time, that is, the continents of Europe, Asia, and Africa. The Geography was accom-
panied by a collection of maps, a general map of the world and 26 others showing regional
details. Ptolemy developed his own manner of representing the curved surface of the earth
on a plane surface. He divided the circumference of the globe into 360 parts, or degrees, as
they came to be called, and covered the surface with a network of meridians and parallels.
In choosing an arbitrary prime meridian, Ptolemy drew a line passing through the western-
most of the Fortunate Islands (the Canaries), but was mistaken by about 7° in his idea of the
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distance of these islands from the mainland. On his world map, he sought to reproduce on
a flat surface the contour of the globe by representing the parallels and meridians as curved
lines, with the meridians converging to the poles; for the smaller regional maps, a simple
rectangular grid was considered sufficient.

A glance at Ptolemy’s map will reveal a somewhat misleading picture of the known
world. Its length from his own zero meridian in the Fortunate Islands to the city of Sera in
China covers 180° (as against 126° in reality), with the result that the westward distance
from western Europe to eastern Asia is much less than it should be. He was ignorant of
the peninsular shape of India, so Ptolemy completely distorted the southern coastline of
Asia; and the island of Ceylon is exaggerated to 14 times its actual size. He somehow
assumed that the land mass of China ran far to the south and then to the west until it
joined the east coast of Africa, thereby making the Indian Ocean a landlocked sea. The
distortion of Ptolemy’s world map is partly due to his rejection of Eratosthenes’ estimate
of the earth’s circumference, and his adoption of the less appropriate estimate of 180,000
stadia. This figure is too small by nearly 5000 miles, or about one-quarter of the correct
distance.

The main part of the Geography is an exhaustive gazetteer of some 8000 places, ar-
ranged by regions, with their supposed latitudes and longitudes. Although Ptolemy gave the
impression that his coordinates were based on astronomical observation, he relied largely
on Roman road-itineraries (official lists of stopping-places on the roads of the empire,
with distances between them) and on reports accumulated from traders and travelers who
came to Alexandria. Because he worked from this sketchy data, it is not surprising that the

The habitable world according to Ptolemy. (From Ancient Times by James Henry Breasted,
©1916 by James Henry Breasted. Reproduced by permission of Ginn and Company.)
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positions he gave for many localities outside the well-known Mediterranean area were
grossly inaccurate. Paris, for instance, was put opposite the mouth of the Loire River. But
Ptolemy came remarkably close to the truth when he described the Nile as formed by two
rivers flowing from two lakes a little south of the equator (these are Victoria and Albert
Nyanza), a fact of geography that was not confirmed until the nineteenth century.

Ptolemy’s geographical treatise had its effect on western Europe much later than his
Almagest did. It was translated into Latin in 1409, not from an Arabic manuscript but from a
Greek one brought from Constantinople. Although initially printed in 1475, the first printed
edition to be accompanied by maps, drawn by medieval cartographers from coordinates
contained in the text, was published in Rome in 1478. Columbus possessed a copy of
this latter edition. The Latin Geography was received with great deference, partly because
the author represented the world approximately as it had been known for many centuries
and partly because of the mistaken conception that he had used rigorous mathematical
methods for determining places. Besides, the scholars of the early fifteenth century had no
reliable criteria for criticizing Ptolemy. The maps based on this information, despite their
many errors, were vastly superior to those previously available and covered many areas not
usually touched by marine charts of the day.

Ptolemy’s diminution of the distance between Europe and Asia by some 50° latitude
fortified Columbus’s belief that he could easily reach the Orient by sailing westward across
the Atlantic—perhaps even induced him to undertake his great voyage of discovery. Indeed,
Columbus died in the conviction that the land he had first sighted was an outlying island of
southeastern India; and the error is perpetuated in the application of the name “Indian” to
the natives of the American continents.

If BE is drawn so that /ABE = /DBC, complete the
details of the following proof of Ptolemy’s theorem:

(a) The triangles ABE and DBC are similar, whence

1. In the Almagest, Ptolemy proved a geometrical result

known today as “Ptolemy’s theorem.” If ABCD is a AB AE
(convex) quadrilateral inscribed in a circle, then the BD _ CD
product of the diagonals is equal to the sum of the

products of the two pairs of opposite sides. In (b) (ABD = /ABE + (EBD
symbols:

= /DBC+ (EBD = [EBC.

AC-BD =AB-CD + BC-AD.

(c) The triangles ABD and EBC are similar, whence

B
AD  BD
C EC  BC’
(d) The result of adding AB - CD = AE - BD and
BC-AD =EC-BDis
D

AC-BD =AB-CD + BC-AD.
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2. LetAB and AC, where AB < AC, be two chords of a approximation to &. [Hint: m =

circle terminating at an endpoint A of the diameter AD. circumference,/diameter ~ (360 chord 1°)
diameter
B < (¢) From Ptolemy’s value chord 120° = 103;55,23
a-B and using the fact that /3 = 2 sin 60°, obtain his
approximation to /3.
B

A D 5. Supply the missing details in the following proof of the

formula for the area K of a triangle in terms of its sides
a, b, and ¢, namely

K = \/s(s —a)(s —b)(s —¢),
If /CDA = « and /BDA = B, show that Ptolemy’s s=1a+b+o).
theorem leads to

(This formula appears in Heron’s Metrica, and a proof
c_ . . is worked out in his Dioptra. According to Arabic
— =sina cos B — cosa sin 3, . . .
AD tradition the result was known earlier to Archimedes,

S .. . . who undoubtedly had a proof of it.)
a result which is reminiscent of the trigonometric

formula for sin(a — B).

A

3. Use Ptolemy’s theorem to prove that if P lies on the

arc AB of the circumcircle of the equilateral triangle
ABC, then PC = PA + PB.

E
F,
4. Like other Greek geometers, Ptolemy used chords of §‘

angles rather than sines. Sines were invented much

later, around the fifth century, by the Hindu

astronomers. Book I of the Almagest contains a table B

giving the lengths of the chords of central angles in a J D
circle of radius 60, increasing by half a degree at a time

from 1/2° to 180°.

(a) Derive the relation
chord 2o = 120 sin«

between Ptolemy’s value for the length of a chord
corresponding to angle 2« and the sine of a. In triangle ABC, inscribe a circle with center O,
touching the sides BC, AC, and AB at points D, E, and
F, respectively. Extend segment CB to H so that
Y HB = AF; also draw OL perpendicular to OC to cut
BC at J and meet the perpendicular to BC at B in the
Chord 2«

point L. Then

(@) K = 3(BO(OD) + 3(AC)OE) + 3(AB)(OF) =
s(OD) = (HC)(OD).
(b) LCLB+ (BOC = 180° and
/BOC + (AOF = 180°, so that /CLB = /AOF.

(b) From Ptolemy’s value chord 1° = 1;2,50 and () Triangles AOF and CLB are similar, hence

using an inscribed 360-gon to approximate the BC _ BC _ BL _ BL _ BJ
circumference of a circle, obtain his BH AF OF OD JD’
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BC BJ CH BD = = ’

@) o= 41="% 41 implies that — = ——. s =a + ¢ = b+ d. Now apply Brahmagupta’s
BH JD BH JD formula.]

© (CH)? BD-CD BD-CD

€ = = . . . .
CH-HB _ JD.CD (OD)? 8. Estab1.13h the .follo-wmg'resul't due to Brahmag'upta. Ifa

(f) K2 = (CH?OD) quadrilateral inscribed in a circle has perpendicular

diagonals meeting at a point P, then any line through
=CH-HB - BD - DC P that is perpendicular to a side of the quadrilateral
=s(s —a)is = b)(s — o), will bisect the opposite side.

where a = BC, b = AC, and ¢ = AB.

6. The Hindu mathematician Brahmagupta (circa 600) I D

discovered a formula for the area K of a quadrilateral
inscribed in a circle:

K = /(s —a)(s — b)(s — c)(s — d),

B
where a, b, ¢, and d are the sides of the quadrilateral I

and s = %(a ~+ b + ¢ + d) is its semiperimeter. Prove

that Heron’s formula is a special case of c
Brahmagupta’s formula.
7. If a quadrilateral with sides a, b, c, and d is inscribed [Hint: If XY is perpendicular to BC, then
in one circle and circumscribed about another, show
that its area K is given by /DPX = /BPY = /PCY = /ACB
K = Vabed — /ADB = /XDP,
[Hint: Use the fact that the tangents to a circle from an so that triangle XPD is isosceles. Similarly, triangle
external point are equal in length to conclude that XPA is isosceles. ]

The work of Archimedes (about 287-212 B.C.)

4.5 Archimedes epitomizes Alexandrian mathematics. Considered
’ the greatest creative genius of the ancient world,
The Ancient World’s Genius Archimedes lived a generation or two after Eu-

clid and was a contemporary of Eratosthenes. We
know few details of his life, though several fanciful stories have clustered around his name.
Archimedes was the son of the astronomer Phidias and was born in Syracuse, a Greek
settlement on the southeastern coast of Sicily. At the time, it was the largest city in the
Hellenistic world. According to Plutarch, Archimedes came from the same royal family as
the city’s ruler, King Hieron II. This enlightened dictator reigned, according to the historian
Polybius, for 54 years “without killing, exiling, or injuring a single citizen, which is indeed
the most remarkable of all things.” Archimedes almost certainly visited Egypt, and because
he corresponded regularly with several scholars at the Museum in Alexandria, it is likely
that he studied at that center of Greek science. He spent most of his productive years in
Syracuse, however, where under Hieron’s protection and patronage, he devoted himself
whole heartedly to study and experiment. Archimedes earned great renown in antiquity for
his mathematical writings, his mechanical inventions, and the brilliant way in which he
conducted the defense of his native city during the Second Punic War (218-201 B.C.). It is
well attested that he perished in the indiscriminate slaughter that followed the sacking of
Syracuse by Roman troops.
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Archimedes’ mechanical skill together with his theoretical knowledge enabled him to
devise a series of ingenious contrivances. Of these the most famous is the Archimedean
screw, a pump still used in parts of the world. Archimedes apparently invented it during his
visit to Egypt for the purpose of raising canal water over levees into irrigated fields. It was
later used for pumping water out of mines and from ships’ holds. The simple and useful
device consists of a long tube, open at both ends and containing a continuous screw or spiral
piece of metal of the same length as the cylinder. When the lower end of the tube is tilted
into the standing water and the spiral insert is rotated, water is carried to the top and flows
out of the cylinder’s upper opening.

Several of the stories about Archimedes that have come down to us relate to his skill
as an engineer, for it is natural that his mechanical inventions would have a broader appeal
than his more specialized mathematical achievements. One familiar legend concerns his
exploit in launching a large ship. When King Hieron was amazed at the great weights
that Archimedes could move by means of levers, cogwheels, and pulleys, Archimedes is
reported to have boasted that if he had a fixed fulcrum to work with he could move anything:
“Give me a place to stand and I will move the earth.” Hieron asked Archimedes to reduce
the problem to practice, and pointed out the difficulty that his men were experiencing with
a ship so heavy that it could not be launched from the slips in the usual way. Archimedes
designed a combination of levers and pulleys that (in the words of that man of letters,
Plutarch) he alone “while sitting far off, with no great effort, but only holding the end of
a compound pulley quietly in his hand and pulling at it, drew the ship along smoothly and
safely as if she were moving through the water.” The same story was told by Proclus, who
represented Hieron as operating the pulley himself and crying out in amazement, “From
this day forth Archimedes is to be believed in everything that he may say.”

Despite his mechanical talents, Archimedes was far more concerned with theoreti-
cal studies than with discoveries connected with practical needs, regarding these as the
“diversions of geometry at play.” In The Life of Marcellus, Plutarch went on to say:

Though these inventions had obtained for him the reputation of more than human sagacity, he
yet would not deign to leave behind him any written work on these subjects, but, regarding as
ignoble and vulgar the business of mechanics and every sort of art which is directed towards
use and profit, he placed his whole ambition in those speculations whose beauty and subtlety
are untainted by any admixture of the common needs of life.

Although Archimedes was not greatly interested in the practical applications of his
knowledge, he was usually willing to help his admiring friend and patron, King Hieron,
with a problem. One of the best-known stories tells of his success in determining the purity
of a golden crown. It appears that Hieron, on gaining power in Syracuse, had a crown of
pure gold made as an offering to the gods. The weight of the completed crown matched
the weight of the gold that had been assigned to the goldsmith; yet Hieron suspected that
the maker had appropriated some of the gold, replacing it with an equal weight of silver.
Being unable to verify his suspicion, Hieron consulted Archimedes. The story has it that
the great scientist suddenly realized how to settle the question while he was at the public
baths of the city. Getting into the tub, he observed that the lower his body submerged into
the water the more water overflowed the top of the tub. This gave him the idea that if
the goldsmith had actually debased the crown by alloying it with silver, the crown would
displace a greater volume when immersed in water than would a quantity of gold equal to
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the weight of the crown; for pure gold would be more dense than an alloy of gold and the
lighter metal silver. The Roman architect Vitruvius related that Archimedes, recognizing
the value of this method of solution,

without a moment’s delay and transported with joy . .. jumped out of the tub and rushed home
naked, crying out in a loud voice that he had found what he was seeking; for as he ran, he
shouted repeatedly in Greek, “Eureka, eureka!” [“] have found it, I have found it!”]

Whether Archimedes actually dashed naked through the streets of Syracuse, as alleged, is
a matter of speculation; but the common people cheerfully believed such a story, because
it made a great man look ridiculous.

The widest fame Archimedes enjoyed in the classical world came from the active part
he took in defending his city against the Romans. During the third century B.C., Rome and
the African city-state Carthage were locked in the bitter Punic wars. It was clear to the
Romans that their mastery of southern Italy would be threatened if ever a hostile power
controlled Sicily. While King Hieron was still alive, Syracuse remained Rome’s loyal ally;
but Hieron died in 215 B.C. and was succeeded by his 15-year-old grandson, who fell
under the influence of courtiers in the pay of Carthage. Roman forces under a tough and
businesslike general named Marcellus, seizing the opportunity to annex the whole of Sicily,
attacked Syracuse by land and sea. Geographically the site was a natural fortress, and
Archimedes, then an old man of 75, personally directed the defense.

A vivid account of this famous siege was given by Plutarch in his writing on the life of
Marcellus. He told how Archimedes used his engineering skill to construct ingenious war
machines, by which he inflicted great losses on the Romans. The city walls were fortified
with a series of powerful catapults and crossbows set to throw a hail of missiles at specified
ranges, so that however close the attackers came, they were always under fire. The assault
by sea was repulsed by devices that could be run out from the walls to drop huge stones
or masses of lead through the planking of the galleys beneath. Cranes caught the bows of
the vessels with grapnels, lifted them out of the water, and dropped them stern-first from a
height. Plutarch wrote that the Roman soldiers were in abject terror and refused to advance.

If they only saw a rope or piece of wood extending beyond the walls, they took flight exclaiming
that Archimedes had once again invented a new machine for their destruction.

But the tale that Archimedes set the enemy ships on fire by concentrating the sun’s rays
on them through the use of great concave mirror, though repeated by many later writers, is
probably not true. (Such a device was, however, used in defending Constantinople in 514.)
After a two-year siege, the Romans temporarily withdrew their forces and the overconfident
Syracusans relaxed their vigilance. When the defenders had feasted and drunk their fill at
a religious festival, pro-Roman sympathizers inside the city directed the enemy to a weak
point in the walls. Marcellus gave explicit orders to his officers that the life and house of
Archimedes should be spared; but before they could locate the great scientist, he had been
slain by a common soldier.

The account of how Archimedes met his death has been told in various forms. According
to the traditional story, he was absorbed in a geometrical problem whose diagram was
drawn in the sand. As the shadow of the approaching Roman soldier fell over his diagrams,
the agitated mathematician called out, “Don’t spoil my circles!” The soldier, insulted at
having orders thus given to him, retaliated by drawing his sword. Another legend has it
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The death of Archimedes during the siege of Syracuse. (The Bettmann Archive.)

that Archimedes was slain by looters who supposed that his astronomical instruments,
constructed of polished brass, were actually made of gold.

Marcellus deeply regretted the death of Archimedes and erected an elaborate monument
in his honor. Archimedes had expressed the wish to friends that his tomb should bear
the figure of a sphere inscribed in a right cylinder, in memory of his discovery of the
relation between the two bodies (the volume of the sphere is equal to two-thirds that of
the circumscribing cylinders). In building his tomb, the Romans complied with his wish.
Many centuries later, the Roman orator Cicero identified the monument by means of this
inscription. His account in Tuscalan Disputations of how he found it in a ruined state,
neglected by the people of Syracuse, is worth repeating:

When I was questor [B.C. 75] I hunted out his grave, which was unknown to the people
of Syracuse, since they entirely denied its existence, and I found it completely covered and
surrounded by brambles and thorn-bushes. . . . Slaves sent in with sickles cleared and uncovered
the place. When a passage had been made to it, we approached the pedestal facing us: the
epigram was apparent with about half of the little verse worn away. And thus one of the noblest
cities of Greece, once indeed a very great seat of learning, would have been ignorant of the
monument of its most brilliant citizen, except that it was revealed by a man of Arpinum [Cicero].

The tomb has since disappeared and its exact location is unknown.
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Estimating the Value of 7

A survey of the contents of a few of Archimedes’ principal works is enough to re-
veal the wide range of subjects he studied and the surprising ingenuity with which he
treated them. The dozen items that have come down to us were preserved by a school of
Byzantine mathematicians in Constantinople; between the sixth and tenth centuries, they
made it their objective to collect and copy the dispersed treatises of Archimedes. These
have greatly lost their original form, having suffered the linguistic transformation from
the Sicilian-Doric dialect into Attic Greek. Unlike the Elements of Euclid, the works that
have immortalized Archimedes were never popular in antiquity; where Euclid worked up
existing material into systematic treatises that any educated student would understand,
Archimedes aimed at producing small tracts of limited scope addressed to the most eminent
mathematicians of the day. “It is not possible,” wrote Plutarch several centuries later, “to
find in all geometry more difficult and more intricate questions, or more simple and lucid
explanations.”

It was Archimedes’ practice first to send statements of his results, with the request that
the other mathematicians discover the proofs for themselves; the complete treatise, with
its supporting evidence, would follow thereafter. He was not above enunciating theorems
he knew to be false so that “those vain mathematicians who claim to discover everything,
without ever giving their proofs, may be deceived into saying that they have discovered the
impossible.”

Of all his mathematical achievements, Archimedes seems to have taken chief pride in
those contained in On the Sphere and Cylinder. Written in two books, some 53 propositions
in all, it begins with a prefatory letter announcing the main results obtained. Archimedes
indicated that he was publishing them for the first time so that expert mathematicians could
examine the proofs and judge their value. Those propositions selected for mention included:

1. The surface of a sphere is four times the area of a great circle of the sphere [or as we
would say, S = 4mr?].

2. If about a sphere there is circumscribed a cylinder whose height is equal to the
diameter of the sphere, then the volume of the cylinder is three halves of the volume
of the sphere; and the surface of the circumscribing cylinder, including its bases, is
three halves of the surface of the sphere.

Then follow some definitions and assumptions. Of the five assumptions, there is a famous
one, a property that Archimedes himself attributed to Eudoxus. This is usually known today
as the postulate of Archimedes: Of two unequal line segments, some finite multiple of
the shorter one will exceed the longer. Using this, Archimedes derived the above results,
plus numerous others relative to the area or volume of figures bounded by curved lines or
surfaces.

Book II of On the Sphere and Cylinder treats some problems and theorems suggested
by the first book. In his work on segments of a sphere, Archimedes was confronted with
the solution of a cubic equation. This occurs in Proposition 4 of Book II, which poses one
of the great problems of Greek geometry—to pass a plane through a sphere in such a way
that the volumes of the segments cut off are in a given ratio.
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The problem can be analyzed as follows. Suppose 2r is the diameter of the given
sphere. It is required to find a plane cutting this diameter at right angles so that the segments
into which the sphere is divided have their volumes in a given ratio, say m/n. Because the
volume of a spherical segment of height /4, cut from a sphere of radius r, is given by the
formula V = wh?(r — h/3), we must have

h@r—h m

k2G3r—k) n’
If k is eliminated by the relation & + k = 2r, this becomes

nh*Q3r — h) = mQr — h)*(r + h)
=mh? = 3h%r + 4r3),

or what amounts to the same thing,
(m + n)h> = 3r(m + n)h* + 4mr’ = 0,
a cubic equation in which the term containing / is missing. This can be written

3r—h 4r?
mr/(m+n)  h%’
and Archimedes treated it as a particular instance of the more general equation

a—x ¢
b x%

Archimedes promised to provide a complete solution to the equation and then to apply it
to the particular case at hand; but either the explanation was omitted or else this part of the text
has been lost. The details were found centuries later in a fragment of a manuscript, which is
usually attributed to Archimedes because it was written in the Sicilian-Doric dialect he used.
The reconstructed solution proceeds in much the same way that the geometer Menaechmus
attacked the Delian problem—by finding the intersection of conics. That is, both members

of (a — x)/b = ¢*/x* are equated to a/y. This leads to two equations,

= (7)
x=|—)y, (a—x)y =ab,
a

which represent, respectively, a parabola and a hyperbola. The points of intersection of
these two conics will furnish the solutions of x%*(a — x) = bc?. The fragment also proves
that if bc?> = 4a>/27, then the curves touch at the point for which x = 2a/3, while if
bc? < 4a/27, there are two solutions. Except for a simple cubic encountered by Diophantus
of Alexandria in the first half of the fourth century, interest in cubic equations disappeared
after Archimedes, not to reappear in the history of European mathematics for more than a
thousand years.

Of the works of Archimedes known in the Middle Ages, the most popular, and the first
to be translated into Latin, was The Measurement of a Circle. It is a short treatise, perhaps a
part of a longer work, comprising only three propositions. The object of the first is to show
that the area of a circle can be calculated as soon as its circumference is known.
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PROPOSITION 1

The area of any circle is equal to the area of a right triangle in which one of the sides
about the right angle is equal to the radius, and the other to the circumference of the circle.

The next proposition (whose proof we include) establishes that if the circumference of a
circle is 3% of the diameter, then the area of the circle is to the square of its diameter as 11
is to 14. Archimedes could not have originally placed it before Proposition 3, because the
approximation depends on the result of that proposition.

PROPOSITION 2

The area of a circle is to the square on its diameter as 11 to 14, very nearly.

Proof. Take a circle with diameter AB and let a square CDEF be circumscribed about
it. Produce the side CD so that DG is twice CD and GH is one-seventh CD. Because
the areas of triangle ACG and ACD are in the ratio 21:7 and ACD and AGH are in the
ratio 7:1, triangle ACH and triangle ACD are in the ratio 22:7. But the square CDEF is
four times the triangle ACD, and therefore the triangle ACH is to the square CDEF as
22:28, or 11:14. The triangle ACH equals the circle, since AC equals the radius and CH
equals the circumference (which will be shown in Proposition 3 to be very nearly 3% of
the diameter). Thus the circle and the square CDEF are in the ratio 11:14, very nearly.

C/ D/ G_y
A

The most important proposition in The Measurement of a Circle contains Archimedes’
estimate of the numerical value of 7. He did not call it 7. The symbol 7 for the ratio of the
circumference of a circle to its diameter was not used by Archimedes or any other Greek
mathematician. It was introduced in 1706 by an obscure English writer, William Jones, in
his Synopsis Palmariorum Matheseos, or a New Introduction to the Mathematics. In this
book for beginners, Jones published the circumferences-to-diameter ratio to 100 decimal
places, all correct. It was not until the usage given it by Leonhard Euler in the famous
Introductio in Analysin Infinitorum (1748) that the letter 7 was definitely adopted for this
ratio, no doubt because it is the first letter of the Greek word perimetros (perimeter).

The approach Archimedes took in obtaining a value for 7 was based on the follow-
ing fact: the circumference of a circle lies between the perimeters of the inscribed and
circumscribed regular polygons of 7 sides, and as n increases, the deviation of the circum-
ference from the two perimeters becomes smaller. This type of demonstration has since
become known as the “method of exhaustion”—not for what it does to the user, but because
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the difference in area between the polygons and the circle is gradually exhausted. Although
it amounts to considering the circle as the limit of the inscribed (or circumscribed) polygons
as the number of sides increases indefinitely, there is no direct passage to the limit. For the
Greek mathematician never thought of the process as continued for an infinite number of
steps; he considered it only carried out in finite stages to a desired degree of accuracy.

In calculating a suitable approximation for 7, Archimedes successively inscribed and
circumscribed regular polygons of 6, 12, 24, 48, and 96 sides within and without the circle.
The choice for the number of sides was natural. Of all the regular polygons, the hexagon
is most easily inscribed. Simply mark off from any point on the circumference chords of
a length equal to the radius of the circle until all six vertices, say, A, B, C, D, E, and F,
are obtained. When tangents are drawn to the circle A, B, C, D, E, and F, another regular
hexagon is produced, one that circumscribes the circle.

From the regular hexagon, the regular inscribed 12-sided polygon is constructed by bisect-
ing the arc subtended on the circumscribed circle by each side of the hexagon, using the
additional points thus found and the original vertices to form the required dodecagon. Con-
tinuing in this way, by repeated bisection of arcs, Archimedes obtained the regular polygons
of 12, 24, 48, and 96 sides from the hexagon.

If p, and P, represent the perimeters of the inscribed and circumscribed regular poly-
gons of n sides, and C the circumference of the circle, it follows that

P6 < P12 < P2 < pag < pog < -+ < pp <C
<Pn<"-<P96<P48<P24<P12<P6.

Both of these sequences are bounded monotonic sequences, and hence each has a limit; and
it can be proved that the limits are the same, with C their common value. Moreover, P, is
the harmonic mean of p, and P,, and p;, is the geometric mean of p, and Py,:

2p, P,
e p2n=\/pnp2n-

pnt+ Py
Starting from the perimeters pg = 3d and P = 24/3d, where d is the diameter of the circle,
one can use these recursion relations to compute P,, and p,, successively until the values
Pos and poe required by Archimedes are reached. Assuming the inequality

P2n =
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as known without further explanation, Archimedes found that

10 9 - 66 96 - 153 10
34— )d < 20y & and P < =2 < (342)d,
( 71) 20171 ¢ =P "= 46731 ( 70)

whence the final result

The result of Archimedes’ computation was expressed as this proposition.

PROPOSITION 3

The circumference of any circle exceeds three times its diameter by a part that is less than
% but more than % of the diameter.

The approximation of 27—2 is often called the Archimedean value of 7. Because % ~ 3.1429
is less than 0.2 percent larger than the actual value of 7 and is such a simple number for
ordinary calculation, it was good enough for most purposes in antiquity. Archimedes could
theoretically have provided a better estimate of 7w using polygons of 192 or 384 sides,
but the arithmetic—made difficult in any case by the clumsy Greek alphabetic number
symbols—would have been prohibitive.

Historians of science have focused considerable attention on the attempts of early
societies to arrive at an approximate value for the ratio of a circle’s circumference to its
diameter (that is, the number 1), perhaps because the increasing accuracy of the results
seems to offer a measure of the mathematical skill of the culture at that time. The ancient
Chinese were considerably more advanced in arithmetic calculation than their Western
contemporaries, so it is not surprising that they obtained remarkably accurate values for
7. Texts from the pre-Christian era generally used 3 as an approximation for 7, but from
the first century mathematicians in China were searching for better estimates. Liu Hsin
(circa 23) employed 3.1547, and Chang Heng (78—139) used the value /10, whose decimal
approximation is 3.1622; or the fraction 92/29, whose decimal approximation is 3.1724.

By taking the ratio of the perimeter of a regular inscribed polygon to the diameter
of a circle enclosing the polygon, third century mathematicians obtained more accurate
approximations. Liu Hui, in his commentary on the Nine Chapters of the Mathematical Art,
used a polygon of 384 sides to derive for 7 the bounds

3.141024 < m < 3.142904,

and with a 3072-sided polygon found his best value for 7, namely 3.14159. In the fifth
century, the brilliant mathematician and astronomer Tsu Chung-Chi (430-501) refined the
method to obtain

3.1415926 < 7 < 3.1415927;

and, from these, gave the fraction 22/7 as an “inaccurate” value for  and 355/113 as the
“accurate” value. This latter value yields  correct to six decimal places. Comparable ra-
tional approximations were not attained in the Western world until the sixteenth century
when the Dutch fortress engineer Adriaan Anthonizoon (1527-1607) derived anew the
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ratio 355/113. No fraction with denominator less than 113 gives a closer approximation
to mr; in fact, 355/113 is such a good rational estimate that no better one is reached until
52,163/16,604. By using the Archimedean method on a polygon of 26? sides, the indefatiga-
ble Ludolph van Ceulen (1540-1610) carried the value of 7 correctly to 35 decimal places.
(This computational feat was considered so extraordinary that his widow had all 35 digits
of the “Ludolphine number” carved upon his tombstone.) His was one of the last major
attempts to evaluate 7 by the method of perimeters; thereafter, the techniques of calculus
prevailed.

The Sand-Reckoner

The Sand-Reckoner of Archimedes was a computational accomplishment of another
kind. It contained a new system of notation for expressing numbers in excess of one hundred
million, for which Greek mathematics had not yet developed any characters. Archimedes
contrived a procedure for counting in units of ten thousand myriads, 10® in our notation,
and used exponents for ordering his classes of magnitudes. To demonstrate that his system
would adequately describe enormously large numbers, he undertook to enumerate the grains
of sand that the finite universe, bounded by the sphere of the fixed stars, could hold. (Like
other astronomers of the time, Archimedes believed the universe to be a sphere whose
center was the immobile earth and whose radius equaled the distance from the earth to the
sun.)

To give a reasonable maximum bound on the dimension of the universe, Archimedes
quoted certain earlier views on the size of the celestial bodies. Like most earlier astronomers,
he assumed that the earth had a diameter greater than that of the moon but less than that of
the sun, and that the diameter of the sun was 30 times the diameter of the moon. (The factor
30 was a convenient exaggeration of the traditional estimate of 20.) If the diameters of the
sun, moon, earth, and universe are represented by D with suitable subscripts, this means
postulating that

Dgyn = 30Dmoon < 30 Dearin-
By aclever geometric argument, Archimedes proved that the perimeter of a regular polygon
of 1000 sides inscribed in a circle of diameter D,,;, was greater than 3 Dy;, and at the same
time less than 1000 Dy,,; hence,

3Dyniv < 1000Dgyn, < 30,000 Degrin.

For the circumference of the earth, he took a then accepted value of 300,000 stadia, but in
order to be on the safe side multiplied by a factor of 10, thereby assuming that

Dearin < 1,000,000 stadia.

Archimedes concluded from these assumptions that for the diameter of the universe as far
as the sun,

Duniv < 109 stadia.
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To make good his boast, Archimedes next supposed that a grain of sand had minute but
definite size. Underestimating the size of a grain of sand, he proposed that 10,000 grains
of sand would be needed to fill the space of a poppy seed and that 40 poppy seeds lined up
in a row would exceed one finger-breadth. Therefore (using V = %nD3 < D?) a sphere of
diameter one finger-breadth would contain at most 64,000 poppy seeds, consequently at most
640 million grains of sand—in any event, no more than 1 billion = 10° grains. Taking one
stadium to be less than 10,000 = 10* finger-breadths, Archimedes then found the number of
grains of sand in a sphere of diameter 1 stadium to be fewer than 10°(10*)> = 10?!. A secure
upper bound for the grains in a sphere with diameter 10'° stadia was 10%'(10'°)* = 10°!,
or as Archimedes put it, “one thousand units of the seventh order of numbers.”

The figure just mentioned gives the number of grains of sand needed to fill up the
“conventional universe.” To demonstrate the practicality of his method beyond any doubt,
Archimedes also referred to the view of Aristarchus of Samos (sometimes called the
Copernicus of antiquity) that the universe was heliocentric, with the earth revolving around
the sun. He showed that a universe of the dimensions Aristarchus proposed in On the Size
and Distance of the Sun and Moon had room for only fewer than 10%° grains of sand.
Archimedes concluded the discussion with the following words:

These things will appear incredible to the numerous persons who have not studied mathematics;
but to those who are conversant therewith and have given thought to the distances and the sizes
of the earth, the sun, and the moon, and of the whole universe, the proof will carry conviction.

The treatise On Spirals contains 28 propositions dealing with the properties of the curve
now known appropriately as the spiral of Archimedes. It is described in the words of the
inventor himself:

If a straight line [half-ray] one extremity of which remains fixed be made to revolve at a uniform
rate in the plane until it returns to the position from which it started, and if, at the same time
as the straight line is revolving, a point moves at a uniform rate along the straight line, starting
from the fixed extremity, the point will describe a spiral in the plane.

In modern polar coordinates, the equation connecting the length r of the radius vector
with the angle 6 through which the line has revolved from its initial position is r = a#f,
where a > 0 is some constant. For let OA be the revolving half-line, O the fixed extremity,
and P the point that moves away from O along OA. If OP =r and AOP = 0, then the
characteristic property of the Archimedean spiral requires /6 to be constant.

P=(r,0)
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In the view of the modern mathematician, perhaps the greatest mathematical achieve-
ment of Archimedes, and certainly one of the most fascinating results, was his calculation
of the area enclosed by the first loop of the spiral (corresponding to 0 < § < 2x) and the
fixed line. As he put it: “The space bounded by the spiral and the initial line after one
complete revolution is equal to one-third of the circle described from the fixed extremity
as center, with radius that part of the initial line over which the moving point advances in
one revolution.” This is equivalent to the modern formulation A = %n(Zﬂa)z. Nowadays,
a problem of this kind is made easy by the use of integral calculus. Archimedes, in its stead,
used the method of exhaustion; he divided the spiral curve into numerous equal parts and
circumscribed and inscribed circular sectors, adding up their areas.

The method of exhaustion is traditionally attributed to Eudoxus of Cnidos
(390-337 B.C.), although Euclid and Archimedes used it most frequently and to greater
advantage. The method plays a leading part in Book XII of the Elements, where it was used
to prove that the areas of circles are to one another as the squares of their diameters, and
also that the volumes of pyramids that are of the same height and have triangular bases
are proportional to the areas of their bases. Archimedes subsequently exploited exhaustive
techniques in finding the areas of curvilinear plane figures and volumes bounded by curved
surfaces. The method is encountered in Archimedes’ work in two main forms. One version
consists in enclosing the geometric figure whose area or volume is sought between two
others, which can be calculated and can be shown to approach each other indefinitely. The
essence of the other approach is to inscribe suitably chosen figures within the figure for
which the area or volume is required; then in some fashion the area or volumes of the
inscribed figures are increased until the difference between them and the quantity to be
calculated becomes arbitrarily small. The phrase “method of exhaustion” was not used by
the ancient Greeks to describe this procedure but introduced by the Jesuit mathematician
Gregory St. Vincent in his Opus Geometricum (1647).

Quadrature of a Parabolic Segment

Archimedes used the method in the Quadrature of a Parabola to find the area of the
segment formed by drawing any chord of the parabola. Archimedes begins to “exhaust” the
area of the parabolic segment by inscribing in it a triangle of the same base as the segment
and of a height equal to the height of the segment. (By “height of a parabolic segment”
we mean the distance from the chord to the point on the parabola at which the tangent
is parallel to the chord.) The other two sides of the inscribed triangle provide two new
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parabolic segments; in each of these another triangle is inscribed in the same way, with
the process continued as far as desired to build up an inscribed polygon as the sum of a
sequence of triangles. In this way, Archimedes found that the segment cut off by the chord
had an area equal to % the area of the first triangle constructed.

B

Archimedes’ argument is typical of his general approach in determining areas or vol-
umes by exhaustion, so it is worth looking at more closely. In the parabolic segment bounded
by the chord AB, Archimedes constructed a triangle ABC having AB for its base and the
point C for the third vertex. At C, the tangent to the parabola was parallel to the chord. (It
is proved that C is the point on the curve that has the greatest perpendicular distance from
the base AB.) Let the area of triangle ABC be denoted by A. In each of the two smaller
segments cut off by the chords AC and CB, Archimedes similarly inscribed triangles ADC
and CEB. From the properties of the parabola, he demonstrated that each of the two new
triangles had an area equal to éA; hence, the area of ADC and CEB together equaled iA.
Next, more triangles were constructed with vertices on the parabola and bases on the new
chords AD, DC, CE, and EB. Each of these four triangles had an area equal to % that of
triangle ADC, or equal to (1/8%)A, so that this set of triangles added (1/4?)A to the area of
the inscribed figure. Continuing, Archimedes obtained a sequence of polygonal figures by
adding an ever-increasing number of triangles to the original triangle ABC. The area of the
nth such polygon is given by

A1 1 1 1 1
( ~|—4+42+43+~~+4n>.

This is a finite geometric progression of ratio % whose sum,

s[5-50) ]

measures areas closer and closer to the area required. At this point, the modern mathemati-
cian would use the limit concept to conclude that the parabolic segment has an area of g—‘A.
Archimedes, who did not have a symbol for this notion, instead proved by a double reductio
ad absurdum argument that if the polygons exhausted the parabolic segment, then its area
could be neither greater nor less than %A.

In 1906, the Greek text of yet another work by Archimedes was discovered almost by
accident in the library of a monastery in Constantinople. A Danish philologist, Johan Ludvig
Heiberg, was drawn there by the report of a tenth-century parchment manuscript that seemed

o



@ ‘ Burton: The History of 4. The Alexandrian School: | Text © The McGraw-Hill
Mathematics: An Euclid Companies, 2007
Introduction, Sixth Edition

Archimedes 209

originally to have had mathematical content (a so-called palimpsest). Sometime between
the twelfth and fourteenth centuries, monks had washed off the earlier text to provide
space for a collection of prayers and liturgies, a not uncommon practice caused by the high
cost of parchment. Fortunately, most of the expunged contents could be deciphered with
a magnifying glass. The manuscript contained fragments of many treatises of Archimedes
that had sufficiently wide circulation to be preserved elsewhere; it also contained the only
surviving copy of a largely unknown work entitled 7he Method. Historians had been aware
of the existence of The Method through allusions by ancient writers, such as Heron, but
it had been believed irretrievably lost. Sent as a letter to Eratosthenes, it recalled certain
mathematical results that Archimedes had propounded without proof on a former occasion;
and it went on to acquaint Eratosthenes with the method that had been used in reaching these
and many other conclusions. Anticipating the view of modern integral calculus, Archimedes
asserted that surfaces were to be considered “made up” of an infinity of parallel lines and that
solids of revolution were “filled up” by circles. But Archimedes did not regard such intuitive
reasoning as a proof, only as an investigation preliminary to a rigorous demonstration by
the method of exhaustion. By this ingenious method, he found the surface areas, volumes,
and centers of gravity of numerous solids of revolution. Although these achievements are
remarkable anticipations of results found later in the integral calculus, we must be careful
not to impute to Archimedes the idea expressed in the calculus; for the concept of limit,
which lies at the very heart of the subject, was entirely alien to his arguments.

In the preface to The Method, Archimedes says, “I presume there will be some among
the present as well as future generations who by means of the method here explained will
be enabled to find other theorems which have not yet fallen to our share.” Unfortunately, his
hope of finding successors to continue his work remained unfulfilled. After Archimedes’
time, the trend of Greek mathematics was in other directions; and more than eighteen
centuries were to pass before Newton and Leibniz took up the task of developing the
classical method of exhaustion into the principles constituting the calculus.

Apollonius of Perga: The Conics

The last of the three great geometers who flourished in the period of 300 to 200 B.c. was
Apollonius, a younger contemporary of Archimedes. Apollonius was born in the Greek city
of Perga, close to the southeast coast of Asia Minor. As a youth, he went to Alexandria—
perhaps to study at the Museum with the successors to Euclid—and resided there for many
years to lecture and compose the first draft of his famous Conics. Later, Apollonius moved
to Pergamum, which had a newly founded university and library modeled after those in
Alexandria. While there, he became acquainted with the geometer Eudemus of Pergamum,
to whom he subsequently dedicated the first three books of the Conics.

Apollonius wrote 11 works, only 2 of which have survived, and he is particularly
renowned for his Conics. It contains a wealth of 389 propositions organized into eight
books. The first four books have come down to us in the original Greek, the next three are
preserved in Arabic translation, while the last is lost. The study of the three curves that
we call “conic sections” was not a new topic with Apollonius, although he did introduce
the familiar names parabola, hyperbola, and ellipse. Proclus’s Commentary tells us that
Menaechmus, a pupil of Eudoxus and a member of Plato’s Academy, discovered these
curves some time around 350 B.c. The initial four books of the Conics make up a systematic
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exposition and improvement of much that was previously set forth, with the remaining books
devoted to original material. Apollonius’s treatment of the theory of conics was so admired
that it was he, rather than Euclid, who in antiquity earned the title The Great Geometer.

Apollonius defined a circular conic as being generated by a rotating line that traverses a
circle, while also passing through a fixed point not in the plane of the circle. A right circular
cone is one whose axis is perpendicular to the circle’s plane.

Prior to Apollonius, geometers treated the conic sections as arising from three types
of right circular cones, distinguished by their vertex angles. They cut each cone by a plane
perpendicular to the generating line. Depending on whether the cone’s vertex angle was
right, obtuse, or acute, the resulting curve was a parabola, a hyperbola, or an ellipse. The
earlier investigators called these curves the section of a right-angled cone, the section of an
obtuse-angled cone, and the section of an acute-angled cone. Both Euclid and Archimedes
are known to have approached the subject from this point of view. Apollonius’s decisive
achievement was to show that all three curves could be obtained from any cone simply by
varying the inclination at which the intersecting plane meets the generating line.

Using the method of “application of areas” favored by Euclid, Apollonius derived the
geometric counterparts of the Cartesian equations of the conics. Consider, for instance, the
case of the parabola. Let A be the vertex and the line AB be the axis of symmetry. Suppose
P is any point on the parabola and Q is the foot of the perpendicular from P to AB. Now at
A erect a line L perpendicular to AB. On L mark off a segment AR equal in length to that of
the latus rectum of the conic. (The latus rectum or parameter is the chord passing through
the parabola’s focus F and is perpendicular to AB.)

L
R S
Pl

i
I
i
: B

A 1

0 IF

1
1
1
1
I
I

Apollonius was able geometrically to construct a rectangle of area (PQ)?> having the segment
AR as one side and AQ as the other side. This led him to the defining equation of the parabola,

(PQ)* = (AR)(AQ).

The expression can be formulated algebraically by naming the segments AQ and PQ as x
and y, respectively, and denoting as p the constant length AR. We then have the modern
equation y?> = px for the parabola.

Nowadays, a parabola is usually defined as the locus of all points equally distant
from a fixed point (the focus) and a fixed line (the directrix.) Other than oblique reference,
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Apollonius never attached a name to the focus of a conic—it was introduced as a mathe-
matical term by Johannes Kepler in 1604—nor was the notion of directrix mentioned in his
writings.

Apollonius is also credited with significant accomplishments in optics and astronomy,
especially planetary theory. He is reported to have earned the nickname Epsilon, because
the Greek letter € is shaped like the crescent of the moon to which he devoted considerable
study. One early writer said that Apollonius determined the distance of the moon from
earth to be five million stadia, about 600,000 miles; but the figure seems unlikely, as it is
some two and a half times too great. (The astronomer Hipparchus of Nicaea (ca. 190-120
B.C.) gave the moon’s distance as 60% earth’s radii of 242,000 miles, quite close to the
modern figure of 239,770 miles.) To account for the asymmetry in the orbit of the planet
Mars, Apollonius broke with tradition by asserting that its apparently circular orbit was not
about the center of the earth but about some point far distant from the earth. His conjecture
anticipates the work of Kepler, who showed that Mars travels in an elliptical path around the
sun.

Apollonius is often remembered for a celebrated geometrical problem that he posed
in his lost treatise, On Tangencies. Known today as the Problem of Apollonius, it says:
Given three circles, construct a fourth circle that is tangent to each of the given ones. When
Francois Vieta reconstructed the contents of On Tangencies in 1600, the circles problem
became a focus of activity for many of the outstanding mathematicians of the seventeenth
century.

and whose height equals the radius of the
sphere.

2. Prove that if a sphere is inscribed in a right circular

1. Verify the following results from Book I of cylinder whose height is equal to the diameter of the
Archimedes’ On the Sphere and Cylinder: sphere, then:
(a) Proposition 13. The surface area of any right (2)  The volume of the cylinder is % the volume of the
circular cylinder, excluding its bases, is equal to sphere.
the area of a circle whose radius is the mean (b) The surface area of the cylinder, including its
proportional between the side of the cylinder and bases, is % the surface area of the sphere.
the diameter of the base of the cylinder. 3. Prove Archimedes’ “theorem of the broken chord”: If
(b) Proposition 14. The lateral area of any isosceles AB and BC make up any broken chord in a circle
cone, excluding the base, is equal to the area of (where BC > AB), and M is the midpoint of the arc
the circle whose radius is the mean proportional ABC and MF the perpendicular to the longer chord,
between the side of the cone and the radius of the then F is the midpoint of the broken chord. That is,
circle that is the base of the cone. AB + BF = FC. [Hint: Extend chord BC to D, so that
(c) Proposition 15. The lateral area of any isosceles FD = FC; then AMBA is congruent to AMBD.]
cone has the same ratio to the area of its base as
the side of the cone has to the radius of the circle M
that is the base of the cone. RS 74 IR
(d) Proposition 33. The surface area of any sphere is D == 51 7 F C
equal to four times the area of a great circle of the //
sphere. A
(e) Proposition 34. The volume of any sphere is

equal to four times the volume of the cone
whose base equals a great circle of the sphere,
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To find a formula for the length of the side of a regular
inscribed polygon of 2n sides in terms of the length of
the side of the regular polygon of n sides, proceed as
follows. Let PR = S, be the side of a regular n-gon
inscribed in a circle of radius 1. Through the center

O of the circle, draw a perpendicular to PR, bisecting
PR at T and meeting the circle at Q; then PQ = OR =
Sy, are sides of the inscribed regular 2n-gon. Prove
that

SZ
(@ O*=OR*—TR=1— o

2
Q2

b) QT2=(1—OT)2=<1—4$”>.
() S}, =0T +TR*=2— /452

Q S2n

For regular polygons inscribed in a circle of radius 1,
use S = 1 to conclude that

S =v2-43,
S =2 — V24 /3,

S43:\/2—\/2+\/2+x/§,
S%=\/2—\/2+\/2+\/2+«/§,

and hence that m &~ 4859 ~ 3.14103 ~ %, which was
the value Archimedes found.

In the Book of Lemmas (a collection of 13 geometrical
propositions that has come down to us only in an
Arabic translation), Archimedes introduced a figure
that, owing to its shape, is known as the arbelos, or
“shoemaker’s knife.”
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If a straight line AB is divided into two parts at C and if
on one side of AB are described semicircles with AB,
AC, and CB as diameters, then the region included
between the circumferences of the three semicircles is
the shoemaker’s knife. Prove that if PC is the straight
line perpendicular to AB at C, then the area of the
shoemaker’s knife equals the area of the circle whose
diameter is PC. [Hint:

AB?> = AC* + BC? +2AC-BC =

AC? + BC* +2PC% ]

. Prove that if the common external tangent to the two

smaller semicircles in the shoemaker’s knife touches
these curves at R and S, then RS and PC bisect each
other, and R, S, P, and C lie on the circle whose
diameter is PC.

. The Book of Lemmas also contains a geometrical

figure called the ““salinon,” or “salt cellar.” Take

AC = DB on the diameter AB of a semicircle. Then
describe semicircles, with AC and DB as the diameters,
on the same side of AB as the given semicircle; also
describe a semicircle, with CD as the diameter, on the
other side of the given semicircle. The region bounded
by the circumference of the semicircles is the salt
cellar. Prove that if PQ is the line of symmetry of the
figure, then the area of the salt cellar equals the area of
the circle whose diameter is PQ.

P
C D
A\Q/B
Q

. Use the techniques of calculus to show that the area

bounded by the first complete turn of the spiral r = a6
and the initial line is equal to one-third of the “first
circle” (that is, the circle with radius 27 a).
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10. Like Hippias’s quadratrix, the spiral of Archimedes
can be used to trisect an angle and square the circle.
Given a spiral, place the angle to be trisected so that
the vertex and the initial side of the angle coincide with
the initial point of the spiral and the initial position OA
of the rotating ray. Let the terminal side of the angle
intersect the spiral of P. Trisect the segment OP at the
points Q and R, and draw circles with center at O and
with OQ and OR as radii. Prove that if these circles
meet the spiral in points U and V/, then the lines OU
and OV will trisect LZAOP.

11. A clever solution to the problem of the quadrature of
the circle is achieved by means of the spiral of
Archimedes. Given a circle with center at O and radius
a, draw the spiral whose equation in polar coordinates
is r = af and whose initial point is O. Prove that
when the rotating ray is revolved perpendicular to its
initial position OA, the segment OP will have a length
equal to one-fourth the circumference of the circle.
Show how this resolves the quadrature problem.

12. If OA is the initial line and A the end of the first
revolution of the spiral, and if the tangent to the spiral
at A is drawn, then the perpendicular to OA at O will
meet the tangent at some point B. Establish that the
length of the segment OB is equal to the circumference
of the circle with radius OA; hence, the area of AAOB
is equal to the area of this circle. [Hint: The slope of
the tangent at A is 27.]

© The McGraw-Hill
Companies, 2007
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The Twilight of Greek Mathematics:
Diophantus

When we cannot use the compass of mathematics or the touch of experience . . . it is certain that we

cannot take a single step forward.
VOLTAIRE

The end of the third century B.C. saw the

5.1  The Decline of Alexandrian Mathematics close of the Golden Age of Greek mathe-

matics. As the next century wore on, polit-
The Waning of the Golden Age ical strife and anarchic conditions in Egypt

proved more and more stifling to original
scientific work and scholarship at the Alexandrian Museum. Ptolemy VII, the victor in a
power struggle in 146 B.C—unheedful of his predecessors’ enlightened policies toward
the arts and sciences—banished from Egypt all those scientists and scholars who had not
demonstrated their loyalty to him. Alexandria’s loss enriched the rest of the Mediterranean
world, for learning was noticeably stimulated in those places to which the exiled Alexandrian
scholars fled. According to Athenaeus of Naucratis:

The King sent many Alexandrians into exile, filling the islands and towns with men who had
been close to his brother—philologists, philosophers, mathematicians, musicians, painters,
physicians and other professional men. The refugees, reduced by poverty to teaching what they
knew, instructed many other men.

Until Diophantus once more brought fame to the Museum, Alexandria no longer enjoyed
the primacy that it had once held over leading Eastern centers of learning.

The last two centuries of the pre-Christian era saw the steady and relentless growth
of Roman power. When Rome began to expand outside of peninsular Italy, it first gained
mastery over the western half of the Mediterranean basin. Syracuse, though protected by
ingenious military machines that the mathematician Archimedes had devised, yielded to
siege in 212 B.C., as Carthage did in 202 B.C. Then, after 200 B.C., the Roman armies
turned eastward into Greece and Asia Minor. Greece proper was conquered in 146 B.C.,
and by 64 B.C. Mesopotamia had fallen before the Roman legions. On the Ides of March in
44 B.C., the daggers of Brutus, Cassius, and their fellow conspirators brought an abrupt end
to the reign of Julius Caesar. After Caesar’s death the Roman world was ruled by Caesar’s
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grandnephew Octavian (who later received the honorific title Augustus) in the West; and in
the East by Mark Antony in association with Cleopatra, Queen of Egypt. In the inevitable
clash with Antony, Octavian’s general Agrippa won a decisive naval battle at Actium off
the west coast of Greece in 31 B.C. The suicides of Antony and Cleopatra in the following
year ended the Ptolemaic dynasty. Nothing remained for Octavian but to incorporate Egypt
into the dominions of the Roman people.

On August 1, 30 B.C., Octavian entered Alexandria in triumph. He visited the tomb of
Alexander the Great, laying a crown of gold upon the glass coffin and scattering flowers to
pay his respects. The Macedonian king whose body lay before him had lived only to the age
of 32. Octavian at 32 was now the sole ruler of a world-state stretching from the Euphrates
to Scotland and from the Danube to the Sahara.

With the passing of Cleopatra, Egypt was reduced to the status of a province in the
Roman Empire. During Octavian’s reign the empire consisted of Italy and more than thirty
provinces of varying size and importance. Egypt was a Roman province of a peculiar kind;
it was like a vast private estate of the emperor. With the annual sailing of the grain fleet from
Alexandria, the country could send enough grain to satisfy Italy’s needs for four months of
every year. Because an ambitious Egyptian governor might try to starve out Rome itself,
Octavian decided that it would be unsafe to put such manifest temptation in the hands of
a senator. He determined instead, against all tradition, to rule the land through a military
commander, whom he titled the Prefect of Alexandria and Egypt. Further, he ordained that
no senator should set foot in the new province without the emperor’s express permission.

The beginning of Roman rule brought a period of tranquility to Alexandria, in which
the city enjoyed reasonable prosperity. It was the second city of the empire and still the
greatest port on the Mediterranean Sea, with an active trade reaching westward and north-
ward to Italy, Greece, and Asia Minor, and eastward as far as India. With some justification,
Edward Gibbon, in his six-volume Decline and Fall of the Roman Empire (1776) could
say, “If a man were called to fix the period in the history of the world during which the
condition of the human race was most happy and prosperous, he would, without hesita-
tion, name that which elapsed from the death of Domitian to the accession of Commodus
(96-180 A.D.).” For Rome at its height brought to the Mediterranean peoples the blessings
of Pax Romana, a durable peace the like of which had not previously been seen over so large
an area and has never been seen again. With the passage of time, unfortunately, this sense
of security was rarely to exist in Alexandria. The story of Roman Egypt is a sad record of
short-sighted exploitation by an absentee landlord, leading inevitably to economic distress,
mismanagement, and constant civil unrest. The population of Alexandria was a mixture
of different cultures and ethnic groups—Greeks, Christians, Jews, and native Egyptians—
who, it became increasingly clear, were unable to live together in one society without the
subjugation of one group by another. By A.D. 200, the city was plagued by large, unruly
mobs who at the slightest provocation sought to vent their frustrations in brawls and blood-
shed. The relative stability of the 300-year reign of the Ptolemies had given way to an era
of street riots and political confusion, during which the commercial and intellectual glories
of Alexandria slowly but surely deteriorated.

The question of when and why Greek mathematics began to wane is both controversial
and complex. Although it is always perilous to fix dividing lines in the study of history, one
may safely say that under Roman rule the overall picture was one of declining mathematical
activity and originality. The new masters of the Mediterranean were a practical and utilitarian
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people, who never showed any inclination or aptitude for extensive theoretical studies. It is
remarkable that although the Roman and Greek civilizations existed over roughly the same
centuries—750 B.C. to A.D. 450—in all that time there appeared no Roman mathematician of
note. The chief Roman concern was the application of arithmetic and geometry to impressive
engineering projects: viaducts, bridges, roads that survive even today, public buildings, and
land surveys. Even among the Roman engineers, the small amount of mathematics they
required could be applied in practice without any grasp of the theory behind it. Agrippa for
instance, in carrying out Julius Caesar’s plan of surveying the empire, was obliged to call
in specialists from Alexandria to carry out the measurements. Cicero’s attitude illustrated
the Roman intellectuals’ contempt for theoretical knowledge. In Tuscalan Disputations he
recorded:

The Greeks held the geometer in the highest honor; accordingly nothing made more brilliant
progress among them than mathematics. But we have established as the limits of this art its
usefulness in measuring and counting.

It would be wrong to conclude that Alexandrian mathematics immediately deteriorated
with Roman neglect, or that the intellectual stagnation could not be temporarily arrested
by exceptional individuals working in particular fields. There were occasional rallies, as in
the period 250-350, when the extraordinary talents of Diophantus and Pappus succeeded in
making their age a “silver age” of Greek mathematics. But cultural interests in the Roman
world were by this time so completely alienated from mathematics that their brilliant work
aroused but slight and passing attention.

The Spread of Christianity

Soon after the foundation of the Roman Empire a new movement developed in
Alexandria, and also in many other parts of the empire, which was to accelerate the demise
of Greek learning. This was the development of Christianity. The new religion began as a
sect within Palestinian Judaism, spread throughout the Roman world in spite of sporadic
but repeated imperial repression, and finally won official recognition as the religion of the
empire. This reversal in condition, from enemy of the government to subsidized state religion
subordinate to the emperor, was to transform the future of Europe and the Mediterranean
world.

It seems that initially the Christians were merely an annoyance to the Roman state in
their stiff-necked refusal to acknowledge the divinity of the emperor, and the movement
was allowed to develop with little interference. In the second and third centuries, as the
Roman Empire was racked with internal crises and frequent invasions from without, the
Church became a scapegoat on which to blame these catastrophes. As one Church father of
the time, Tertulian, observed:

If the Tiber reaches the walls, if the Nile fails to reach the fields, if the heaven withholds its
rain, if the earth quakes, if there is famine, if there is pestilence, at once the cry is raised, “The
Christians to the lions!”

When in 249-250 the Germanic tribes momentarily broke through the frontier defenses (in
268 even taking Athens for a short time), the emperor issued an order that all citizens should
worship the traditional gods of the Roman state to gain divine support in this time of trouble.
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The Christians could not make the necessary sacrifices; the result was a series of savage
outbursts of violence against them. The Church was still relatively small and uninfluential,
comprising not more than one-third of the population in the Greek-speaking eastern part of
the empire and less than 10 percent of the Latin-speaking inhabitants in the west. Had the
repressions continued for a longer time the growth of the Christian movement might well
have been slowed or even stopped. As it was, most emperors felt that in desperate times
it was better to conciliate factions than to identify scapegoats. Even the most extended
and sweeping persecution, the Great Persecution (303) initiated by Diocletian, was almost
entirely restricted to the eastern empire, lasting for 8 years in its European provinces and
10 years in North Africa and Asia.

The fourth century saw the conversion to Christianity of a Roman emperor and the
subsequent imposition of Christianity as the single official religion in the entire empire. One
of the principal instigators of the Great Persecution, the Emperor Galerius, who died in 311,
repented while mortally ill. Apparently thinking that the god of the Christians was punishing
him, he issued an edict of universal toleration, which not only ended active persecution but
also made Christianity a legal religion for the first time. Constantine the Great, who came
to the throne in 312, went further; he became the first emperor to adhere personally to the
Christian faith. Later in life Constantine recounted that while crossing the Alps, some time
before his conquest of Italy, he had seen a flaming cross in the sky with the words, “By
this sign you shall conquer.” It was also reported that the day before his victorious battle
of the Milvian Bridge outside Rome he was bidden, in a dream, to mark the shields of his
troops with some symbol of Christianity. Although Constantine made Christianity a favored
religion, he realized that the vast majority of his subjects were pagan, and he did not try to
make his religion the only recognized one. Like many Christians of the time, Constantine
himself put off his baptism until he lay on his deathbed—when presumably he could sin no
more. In 392, Emperor Theodosius, a devout Christian, promulgated laws closing all the
pagan temples in the empire and forbidding the exercise of pagan ceremonies of any kind,
even those conducted in the privacy of the home. By the time Theodosius died, in 395, the
empire was officially Christian.

By the fourth century, the great days of Greek mathematical thought were past. Scholars
were beginning to turn their intellectual interests and energies to the debates on theological
questions. The spirit of the early Church was not a spirit of scientific inquiry, for doctrines of
faith were not demonstrable in terms of logic. Christianity looked inward to the mysteries of
the soul, not outward to the mysteries of the natural world. Most of the significant Christian
thinkers of the fourth century ridiculed physical science and mathematics, promoting the
Bible as the source of all knowledge. The position taken by Saint Augustine was emblematic
of an age that preferred revelation to reason: “The words of the Scripture have more authority
than the whole human intellect.” Certainly the idea that truth depends on divine revelation is
not uniquely Christian; nevertheless, the recent success of the new religion created a climate
of opinion increasingly hostile to pagan scientists and scholars. Whereas Christians were
formerly persecuted, they now took steps to apply against paganism the proscriptions once
enforced against them. Unfortunately, all Greek learning was identified with paganism, and
Alexandrian mobs could rely on the encouragement of the Roman emperors as they looted
libraries as well as pagan temples. In a period of growing antirationalism, the destruction
of ancient learning was of little consequence to the majority of the people. The days of the
Museum as an island of reason in a sea of ignorance were finally at an end.
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Constantinople, A Refuge for Greek Learning

The next few centuries were unhappy times for the empire as a whole. There were
constant civil wars as one usurper after another rose to claim the title of emperor. Few
successful claimants maintained themselves on the throne for as long as 10 years. No
single emperor was strong enough to deal with external threats and internal usurpations
in every part of the empire at the same time, so Constantine was forced in 330 to found a
new Christian capital on the old site of Byzantium. He renamed it Constantinople, which
remained its name until 1930; the city then became known as Istanbul. After 330, the
empire was more or less permanently divided into an eastern and a western half. In the
fifth century, the Roman state in the west disintegrated before the onslaught of the invading
Germanic peoples, the so-called barbarian invasions. First, Britain was overrun by the
invading Saxons. Then the Vandals and kindred tribes ravaged Gaul and moved into Spain.
Finally the Visigoths, followed by the Huns under Attila, sacked Italy. By this time the
Church, in the person of the bishop of Rome, had taken the place of the emperor as the
defender of the eternal city; twice, in 452 and again in 455, the pope went out from Rome
to negotiate with the barbarian chiefs and implore them to spare the capital. The year 476 is
taken by most historians as the symbolic end of the western empire. For then, the imperial
forces (by now entirely German) elected one of their own generals to replace the reigning
emperor and to rule under the title King of the Germans in Italy. In truth, the death knell
of the empire had sounded years before; there was a visible lack of loyalty to empire and
emperor, and by the fifth century, few cared to save the Roman state in the West.

The eastern territories around Constantinople, which had been largely spared these
invasions, remained independent and isolated for nearly a thousand years after the empire
in the West had slipped into the hands of the Germans. While Europe was blanketed with
barbarism and general illiteracy, the spark of Greek learning was kept alive in the Eastern
Roman, or Byzantine, Empire. Science and mathematics, to be sure, were as dormant in one
half of the empire as the other. But a knowledge of the Alexandrian tradition never com-
pletely died out in the East; although Byzantine scholars did not attempt original research
on their own account, they were actively engaged in preserving and multiplying copies of
the works of antiquity. Eight centuries would elapse before Western Europe had a second
opportunity to acquaint itself with the treasures of Greek civilization. Without the efforts
of the Byzantine copyists, most of the ancient scientific and literary texts would have been
lost forever. There might never have been a Renaissance.

From the time of the discovery of irrational num-

5.2 The Arithmetica bers, Greek mathematics had veered away from

the purely arithmetical approach. One result was
Diophantus’s Number Theory that all algebraic problems, even to the solution

of simple equations, were cast in a clumsy and
inflexible geometric mold. With Diophantus, next to Pappus the last great mathematician
of classical antiquity, came an emancipation of algebra.

Practically nothing is known of Diophantus as an individual, save that he lived in
Alexandria about the year 250. Although his works were written in Greek and he displayed
the Greek genius for theoretical abstraction, Diophantus was most likely a Hellenized
Babylonian. What personal particulars we have of his career come from the wording of an
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Woodcut of the temple of knowledge, showing the gradations from the Seven Liberal
Arts to the theology of Peter Lombard. (From Margarita Philosophica (1508) of Gregor Reisch.)

epigram problem (apparently dating from the fourth century) to the effect: His boyhood
lasted for é of his life; his beard grew after ﬁ more; after % more he married, and his son
was born five years later; the son lived to half his father’s age and the father died four years
after his son. If x was the age at which Diophantus died, the equation becomes

1 1. 1. 1 —
Xt prtsx+5+5x+4=x,

and he must have reached an age of x = 84, but in what year or even in what century is not
certain.
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The great work on which the reputation of Diophantus rests in his Arithmetica, which
may be described as the earliest treatise devoted to algebra. Only 6 books out of the original
13 have been preserved; the missing books were apparently lost at a very early date, probably
before the tenth century, for there is no indication that the Arabs ever possessed them. Of
the other works attributed to Diophantus, we know little except for their titles. Fragments
of a tract on polygonal numbers have come down to us, and the Arithmetica alludes to the
existence of a collection of theorems referred to as The Porisms, but this is lost in its entirety.

Like the Rhind Papyrus, the Arithmetica is an assortment of individual problems, 189
in all, with their solutions. The apparent object was to teach the method of solution of certain
problems in which it is required to find rational numbers satisfying prescribed conditions.
First, a word about the notation. Before Diophantus, algebra was rhetorical, that is to say,
the results were reached by verbal argument without recourse to symbols or abbreviations
of any kind. One of Diophantus’s main contributions was the “syncopation” of algebra.
“Syncopated algebra,” as it is called, is more a case of shorthand for expressing much
used quantities and operations than of abstract symbolism in our sense. Diophantus had
stenographic abbreviations for the unknown, successive powers of the unknown up through
the sixth, equality, subtraction, and reciprocals.

Instead of our customary x, he used the symbol ¢ for unknown quantities; this is
perhaps a fusion of «p, the first two letters of arithmos, the Greek word for “number.”
The square of the unknown was denoted by AT, the first two letters of the word dunamis,
meaning “power.” Similarly, K™ represented the cube of the unknown quantity, coming from
the Greek word kubos, for “cube.” For higher powers, he used the following abbreviating
symbols:

AT A (for square-square) indicates x*,
AKT (for square-cube) indicates x>,

KK™ (for cube-cube) indicates x°.

Diophantus did not go beyond the sixth power, since he had no occasion to use a higher
power in solving any of his problems.

The sign for subtraction was " something like an inverted v; and ¢ acted as an equals
sign, connecting two sides of an equation. He had no symbol for addition but relied on
juxtaposition, that is, putting terms alongside one another. In Diophantus’s system of nota-
tion, the coefficients of the different powers of the unknown were represented by ordinary
numerals following the power symbol:

K'35 means 35x3.

(To avoid confusion, we have retained Arabic numerals; Diophantus would have written
K™ Ae for 35x3, where Ae stands for 35.) When there were units in the addition, they were
indicated by M—an abbreviation for the Greek work monades, meaning “units”—with the
appropriate numeral:

KT'35M12 means 35x3 + 12.

Because Diophantus had no addition symbol, in an expression containing several terms with
different signs, he had to place all negative terms together after the sign for subtraction.
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Thus, the expression x* — 5x2 4 8x — 2 would appear as
KY1¢8MAY5M2.

Since most of the problems in the Arithmetica require the determination of several quan-
tities, Diophantus worked under a serious notational handicap. For want of other symbols
besides ¢ to represent variables, he was compelled to reduce all his problems, no matter how
complicated, to equations in one unknown. Either he expressed the other unknown quan-
tities in terms of the one symbol, or he assigned them arbitrary values consistent with the
conditions of the problem. All these eliminations were done beforehand, as a preliminary
to the actual work.

Only positive rational answers were admitted, and Diophantus felt satisfied when he
had found a single solution. (It made no difference to him whether the solution was integral
or rational.) Diophantus had no concept of negative quantities, although he allowed for
subtraction as an operation. Thus, in Problem 2 of Book V, we find his description of
the equation 4x + 20 = 4 as “absurd,” because it would lead to the “impossible” solution
x = —4. As he said, “The 4 ought to be some number greater than 20.” It will be seen that
his methods varied from case to case, and there was not a trace in his work of a systematic
theory. Each question required its own special technique, which would often not serve for
the most closely related problems.

Problems from the Arithmetica

We shall now describe several typical problems from the Arithmetica, though in modern
notation. These will tell you more about the ingenuity of Diophantus’s methods than any
summary of this work could hope to do.

1. Book I, Problem 17. Find four numbers such that when any three of them are added
together, their sum is one of four given numbers. Say the given sums are 20, 22, 24,
and 27.
Let x be the sum of all four numbers. Then the numbers are just x — 20, x — 22,
x — 24, and x — 27. (For instance, if (1) 4+ (2) + (3) = 20, then when (4) is added to
both sides of this equation, x = (1) + (2)+ 3)+ 4) =20+ @) or(4) =x —20.) It
follows that

X = (x —20) + (x — 22) + (x — 24) + (x — 27)

and so 3x = 93, or x = 31. The required numbers are therefore 11, 9, 7, and 4.

2. BookII, Problem 8. Divide a given square number, say 16, into the sum of two
squares.
Let one of the required squares be x2. Then 16 — x? must be equal to a square.
Here Diophantus was satisfied to choose a particular instance of a perfect square, in
this case the number (2x — 4)2, so that

16 — x? = (2x — 4)%.

Diophantus’s choice of (2x — 4)? was designed to eliminate the constant terms from
the foregoing equation; he could just as well have picked (3x — 4)2. The result was
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the equation

5x% = 16x,
with (positive) solution x = 15—6. Therefore one square would be %, and the other,
16 — 256 _ 144 )
25 — 25°

Book II, Problem 20. Find two numbers such that the square of either added to the
other gives a square.

Diophantus chose the numbers to be x and 2x + 1. If these are used, the square of
the first plus the second automatically becomes a square, no matter what the value of
x, thereby satisfying one condition:

X4+ Qx+1)=x+1>%
The square of the second number plus the first is
@x + 1)? +x = 4x* + 5x + L.

To make this expression into a square, Diophantus assumed that it would equal
(2x — 2)?. The effect would be to produce a linear equation in x, which would also
happen if one used (2x — 3)? or (2x — 4)? instead of (2x — 2)2. Then

4x? +5x +1 = 2x —2)> = 4x* — 8x + 4,
leading to the equation 13x = 3, or x = % The desired numbers are % and %.

Book 11, Problem 13. Find a number such that if two given numbers, say 6 and 7, are
subtracted from it, both remainders are squares.

Call the number x, so that the problem is one of making x — 6 and x — 7 into
perfect squares. Let

2

XxX—6=ua and x —7=5b%

Here, we see an approach that comes close to a “method” in Diophantus’s work: the
use of the algebraic identity

a* —b* = (a + b)a — b).

The difference a> — b?> = (x — 6) — (x — 7) = 1 is resolved into two suitably chosen
factors, from which a and b can be obtained. If one takes 2 and % as the factors, setting

a+b=2 and a—b=1,

thena = 3 and b = 3. It follows that

25
16

9

.X_6= x_7=E7

whence x = % is the number sought.

Book 111, Problem 17. Find two numbers such that their product added to either one or
to their sum gives a square.
Call the numbers in question x and 4x — 1. Then

x(4x — 1)+ x = 4x? = (2x)?,
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so that one condition is satisfied immediately. Now it is also required that each of the
expressions

x@x — D4+ @Gx — D4+ x=4x> +4x — 1
and
x(@x =D+ @x — 1) =4x>+3x — 1

has to be a square. Diophantus’s method of solution again depends on using the
identity

a’> — b* = (a + b)(a — b).

It involves taking the difference between 4x2 + 4x — 1 and 4x? + 3x — 1, namely, x,
separating this into the two factors 4x and i, and equating one factor with a 4+ b and
the other with a — b. But

a+b=4x, a—b= i
implies that @ = §(4x + ;) and b = §(4x — 7). Thus
4x? +4x — 1 = [$(4x + DHP?
4x* +3x — 1 = [$(4x — DI,

from either of which equations we arrive at the value x = %. The two numbers are

65 36
therefore 8 and 354"

Book 111, Problem 21. Divide a given number, for instance 20, into two parts and find
a square whose addition to either of the parts produces a square.
Let (1) and (2) be the two parts of 20, and take

X+ 2x + 1= (x + 1)
to be the added square. The conditions require that each of the expressions
M+ @*+2x+1)
and
Q)+ @*+2x+1)

should be squares. Diophantus observed that when x? 4 2x + 1 was added to either
2x + 3 or 4x + 8, a perfect square resulted:

Cx4+3)+ &2 +2x+1)=(x +2)7,
and
Gx+8) + (x> +2x+1) = (x +3)%

Taking 2x 4 3 and 4x + 8 as the two parts of 20 gives 6x + 11 = 20, whence x = %

The two parts of 20 are therefore 6 and 14, while the added square is %.
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There are other possibilities. If Diophantus had called the square to be added x>
and used the relations

(Ax +4) + x2 = (x +2)?
6x +9) + x? = (x +3)%,

then the two required parts of 20 would be ?—g and %
7. Book VI, Problem 19. Find a right triangle such that its area added to one of its legs
gives a square and its perimeter is a cube.
Using the formula for right triangles attributed to Pythagoras, Diophantus called

the sides
2x+1,  2x%4+2x, 27420+ 1
The perimeter of the triangle would then be
47 +6x +2=202x + D(x + 1).

It is difficult to make a quadratic a cube, and Diophantus, noticing the factor x + 1 in
the expression for the perimeter, considered in turn the triangle
2x + 1 2x2 4+ 2x + 1

PR 2-x’
x+1 x+1

obtained by dividing each of the sides by x + 1. This new triangle would have
perimeter 2(2x + 1) and area Q@x2+x)/(x + 1. Adding the latter value to
(2x 4+ 1)/(x + 1), one finds that

2% 4+x  2x+1 _(2x+1)(x+1)
x+1 x+1 x+1

The problem requires x to be chosen so that 2x + 1 is a square and 2(2x + 1) is a
cube, that is, finding a cube that is twice a square. The obvious choice is
22x +1)=8,0rx = %, which leads to the triangle with sides %, 3, and %

=2x+1.

Diophantus was not the first to propose or solve in-

5.3 Diophantine Equations in Greece, determinate problems of second degree. Arithmetical
India, and China problems clothed in poetic garb were a common type

of mathematical recreation long before his time. Per-

The Cattle Problem of haps the most difficult of these—in the sense that it

leads to excessively large numbers—is the famous
“cattle problem.” This appears in a memorandum
that, according to its heading, Archimedes sent to
Eratosthenes with instructions that it “be solved by those in Alexandria who occupy them-
selves with such matters.” In essence, the problem is to calculate “the number of oxen of
the Sun, which once grazed upon the isle Thrinacia [Sicily].” The wording appears to hark
back to the twelfth book of Homer’s Odyssey, in which the following line occurs: “Next you
will reach the island of Thrinacia, where in great numbers feed many oxen and fat sheep of
the Sun.”

Archimedes
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The cattle problem requires that one find the number of bulls and cows of each of four
colors—eight unknown quantities. The first part of the problem connects the unknowns by
seven simple linear equations. To add to the problem’s complexity, the second part subjects
the unknowns to the additional conditions that the sum of a certain pair must be a perfect
square while the sum of another certain pair must be a triangular number. To be specific, if
W, X,Y,and Z denote the numbers of white, black, spotted, and brown bulls, and if w, x,
y, and z are the numbers of cows of the corresponding colors, then the relations among the
numbers of bulls are

_ 3 _ 9 __ 13
W=:X+72, X=5Y+Z Y=3W+7Z
and among the numbers of cows,
w=LX+x), x=x¥+y., y=1#Z+2, z=BW+uw)

and also W + X is a square number and Y + Z is a triangular number. When reduced to a
single equation, the problem involves solving the equation

x? — 4,729,494y =1,

where y is a multiple of 9314. The problem led to what would later be known as the Pell
equation. The name originated in the mistaken notion of Leonhard Euler that the English
mathematician John Pell (1611-1685) was the author of the method of solution that was
really the work of his countryman Lord Brouncker. Although the historical error has long
been recognized, Pell’s name is the one that is indelibly attached to the equation.

Many tried to solve the cattle problem, but the large numbers required to satisfy the nine
conditions discouraged investigators. It was not until an article published by A. Amthor in
1880 that there was serious progress. By expanding /4,729,494 as a continued fraction,
Amthor concluded that the number of cattle must be 776..., where the dots represent
206,542 unknown decimal digits. In 1889 a surveyor and civil engineer, A. H. Bell, under-
took to determine the exact figures needed to express Amthor’s result. After nearly four
years of computation by himself and two others who constituted the Hillsboro Mathematics
Club of Hillsboro, Illinois, Bell specified what he believed to be 32 of the leftmost digits
and 12 of the rightmost digits. The first complete solution of Archimedes’ problem was
given by H. C. Williams, R. A. German, and C. R. Zarnke in 1965, using a computer. They
confirmed that the total number of the “cattle of the sun” is an enormous integer written in
206,545 digits, the first 30 and last 12 of which Bell correctly calculated.

A clearer idea of the magnitude of the answer can be obtained by considering the space
it would take to print it. If we assume that 15 printed digits take up 1 inch of space, the
number would be over % of a mile long. The resulting value is so large that the island of
Sicily, whose area is about 7 million acres, could not contain all the cattle. Moreover, there
are 1397 bulls for each cow, aratio that could lead to serious difficulties in herd management.

We have seen that Archimedes speculated about very large numbers, for the Sand-
Reckoner was an attempt to prove that his system could be used to express the number of
grains of sand in a sphere the size of the universe. But given the magnitude of the values
required to fulfill the conditions of the cattle problem and the great difficulty inherent
in the work, it is hardly likely that the famous geometer of Syracuse or the Alexandrian
mathematicians came anywhere near its solution. They probably displayed the equations
involved and left the matter at that.
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Early Mathematics in India

Owing to its geometric significance, it is not surprising that the Pythagorean equation
x2 4+ y? = 22 received attention earlier than the conceptually simpler first-degree equation
ax + by = ¢, wherea, b, and ¢ are known integers. Although the theory required for solving
the latter equation is found in Euclid’s Elements, it does not appear in the extant works of
subsequent Greek writers. Possibly Diophantus considered the equation too trivial to be
included in the Arithmetica. Most of his problems involved making expressions of first- or
second-degree terms into squares or cubes. The earliest attempts to solve the indeterminate
equation ax + by = c¢ by a general method were made in India, beginning about the fifth
century, in the work of the Hindu mathematicians Aryabhata (born 476), Brahmagupta
(circa 600), Mahavira (circa 850), and Bhaskara (1114-1185).

Alexander’s invasion of India, and the founding of Greek kingdoms within India and
on its borders, immensely stimulated the communication of ideas between Asia and the
Mediterranean world. It seems likely that Indian mathematics was directly influenced and
inspired by the Greeks at an early stage and affected by Chinese traditions at a later time.
The whole question of which methods were evolved by the Indians themselves is the subject
of much conjecture. Initially, their mathematics developed as an outgrowth of astronomy,
and it is no accident that a substantial part of what has come down to us appeared as
chapters in works on astronomy. Indeed there seem to have been no separate mathematical
texts. Because the writers lacked algebraic symbolism, they expressed problems in verse
and with a flowery style. This both pleased and attracted readers and aided the memory.
Little emphasis was placed on demonstrations, so that sometimes there would be only an
illustrating figure and the author’s comment, “Behold.”

In the period from 400 to 1200, the Indians developed a system of mathematics superior,
in everything except geometry, to that of the Greeks. Among those who contributed to the
subject, the noted astronomer Aryabhata investigated the summation of arithmetic and
geometric series, drew up a table of sines of angles in the first quadrant, and tried to solve
quadratic and linear indeterminate equations. In the Aryabhatiya, he calculated the value of
7 as follows:

Add four to one hundred, multiply by eight and then add sixty-two thousand; the result is
approximately the circumference of a circle of diameter twenty thousand. By this rule the
relation of the circumference to diameter is given.

In other words,

circumference N 8(100 + 4) + 62,000 _ 62,832
diameter 20,000 ~ 20,000

a remarkably close approximation. Brahmagupta, who lived more than a century after
Aryabhata, based his work largely on what his illustrious predecessor had done. His practice,
however, of taking +/10 as the “neat value” of 7 was somewhat of a step backward. He
introduced negative numbers (the term mentioned was equivalent to our word negative)
and developed a satisfactory rule for obtaining two roots of a quadratic equation, even
in cases in which one of them was negative. Brahmagupta also gave the formula A =
V(s —a)(s — b)(s — ¢)(s — d) for the area of a cyclic quadrilateral whose sides are a, b, c,
and d and whose semiperimeter is s.

= 3.1416,
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Chapter 5 The Twilight of Greek Mathematics: Diophantus

The most enduring contribution of Aryabhata and Brahmagupta was to the study of
indeterminate equations, the favorite subject of Diophantus. Although they repeated many
of Diophantus’s problems, the approach was different. Where Diophantus sought to solve
equations in the rational numbers, the Indian mathematicians admitted only positive integers
as solutions. Nowadays, in honor of Diophantus, any equation in one or more unknowns
that is to be solved for integral values of the unknowns is called a diophantine equation.
The term is somewhat misleading, for it seems to imply that a particular equation is under
consideration, whereas what is important is the nature of the required solutions.

Although Aryabhata apparently knew of a method for finding a solution of the linear
diophantine equation ax + by = ¢, Brahmagupta was the first to obtain all possible inte-
gral solutions. In this he advanced beyond Diophantus, who had been content to give one
particular solution of an indeterminate equation.

The condition for solvability of this equation is easy to state; the diophantine equation
ax + by = ¢ admits a solution if and only if d|c, where d = gcd (a, b). We know that there
are integers 7 and s for which @ = dr and b = ds. If a solution of ax + by = c exists, so
that axo 4+ byy = c for suitable x( and yy, then

¢ = axo+ byy = drxg + dsyy = d(rxo + syo),

which simply says