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1 Introduction

The aim of this paper is to provide a theoretical foundation for the study of efficient interior-
point methods for problems that are extensions of linear programming. Standard form linear
programming problems minimize a linear function of a vector of variables subject to linear
equality constraints and the requirement that the vector belong to the nonnegative orthant
in n-dimensional Euclidean space. Here this cone is replaced by a possibly non-polyhedral
convex cone. Any convex programming problem can be expressed in this conical form.

Nesterov and Nemirovskii [7] have investigated the essential ingredients necessary to
extend several classes of interior-point algorithms for linear programming (inspired by Kar-
markar’s famous projective-scaling method [5]) to nonlinear settings. The key element is
that of a self-concordant barrier for the convex feasible region. This is a smooth convex
function defined on the interior of the set, tending to +oo as the boundary is approached,
that together with its derivatives satisfies certain Lipschitz continuity properties. The bar-
rier enters directly into functions used in path-following and potential-reduction methods,
but, perhaps as importantly, its Hessian at any point defines a local norm whose unit ball,
centered at that point, lies completely within the feasible region. Moreover, the Hessian
varies in a well-controlled way in the interior of this ball.

This paper is concerned with a special class of convex cones and associated barriers that
we term self-scaled. While they must satisfy certain apparently restrictive conditions, it
seems that this class includes some important instances, for example the cone of positive
semidefinite matrices and the second-order cone (to be defined below), as well as the non-
negative orthant in R". For such cones, the Hessian of the barrier at any interior point
maps the cone onto its dual cone, and vice versa when we consider the conjugate barrier.
In addition, for any pair of points, one in the interior of the original (primal) cone and the
other in the interior of the dual cone, there is some point at which the Hessian carries the
first into the second. Thus there is a very rich class of scaling transformations, which come
from the Hessians evaluated at the points of the cone itself (hence self-scaled).

The consequences of these conditions are quite extensive. For our purposes, the key re-
sults are the existence of a symmetric primal-dual scaling and the fact that good approxima-
tions of self-scaled barriers and their gradients extend far beyond unit balls defined by the lo-
cal norm, and in fact are valid up to a constant fraction of the distance to the boundary in any
direction. Using these ideas we are able to derive primal long-step potential-reduction and
path-following algorithms as well as a symmetric long-step primal-dual potential-reduction
method.

The first half of the paper defines self-scaled cones and barriers and then makes a thorough
study of their structure. We establish that most relevant properties of the nonnegative
orthant extend to this nonlinear setting. Section 2 defines our notions and gives examples.
In Section 3, we study the scaling transformations in detail and demonstrate symmetry
between the primal and dual cones with respect to the self-scaling property. Section 4
defines several measures of the distance to the boundary of a self-scaled cone and establishes
the approximation results, and then in Section 5 we examine the behavior of such barriers on
certain two-dimensional cones defined by “orthogonal” directions and derive an important



consequence.

The second half of the paper applies these results to the derivation of long-step primal
and symmetric primal-dual methods. Section 6 states formally the problems with which we
are concerned and our assumptions and then investigates the projections that are used in all
the algorithms to obtain search directions. Primal potential-reduction methods like those of
Karmarkar [5] and Gonzaga [4] are studied in Section 7, while Section 8 develops a symmetric
primal-dual algorithm extending that of Kojima, Mizuno, and Yoshise [6]. Finally, Section
9 gives some improvements possible in a primal path-following method like that of Nesterov
and Nemirovskii [7] when the cone is self-scaled. In particular, we give a new long-step update
for the barrier parameter and a new step-size rule in Newton’s method in this approach; this
is based on an extension of the quadratic convergence result of Roos and Vial [9] to the case
of self-scaled cones.

All these methods require O(v1n(1/€)) or O(y/v1n(1/€)) iterations to generate a feasi-
ble solution with objective function with ¢ of the optimal value, where v is a parameter of
the cone and barrier corresponding to n for the nonnegative orthant in R*. All are vari-
ants of methods already known for the standard linear programming case or for the more
general conic case, but we stress the improvements possible because the cone is assumed
self-scaled. For example, we indicate why Gonzaga’s affine-scaling potential-reduction algo-
rithm [4] might be more efficient when the coefficient used in the potential function is chosen
as 2v rather than v + /v because long steps can be taken while maintaining a guaranteed
reduction in the potential function and the reduction is likely to be much larger.

This paper is quite long and detailed. The reader may wish to omit some of the derivations
at a first reading. All of Section 2 should be read, with the possible exception of the
verification that the second-order cone is self-scaled. The proofs in Sections 3, 4, and 5 can
be omitted initially. The most important results are stated as theorems. All of Section 6
should be read, but the succeeding sections are largely independent of each other and can
be read separately.

In what follows we often refer to different statements of [7]. The corresponding references
we indicate by an upper-case asterisk. Thus, the reference T* (C*, D*, P*) 1.1.1 corresponds
to the first theorem (corollary, definition, proposition) in the first section of Chapter 1 of [7].

2 Definition and examples

Let K be a closed convex cone in a finite-dimensional real vector space E (of dimension at
Jeast 1) with dual space E*. We denote the corresponding scalar product by (s,z) forx € E,
s € E*. In what follows we assume that the interior of the cone K is nonempty and that K is
pointed (contains no straight line). Let F be a v-self-concordant logarithmically homogeneous
barrier for cone K (see D* 2.3.2). Recall that by definition, F' is a self-concordant barrier
for K (see D* 2.3.1) which for all z € int K and 7 > 0 satisfies the identity:

F(rz)= F(z) —vinT. (2.1)

Since K is a pointed cone, v > 1 in view of C* 2.3.3.



We will often use the following straightforward consequences of (2.1): for all z € int K
and 7 > 0,

Fl(ra) = %F’(m), F(ra) = %F"(m), (2.2)
F'(z)z = —F'(z), F"(z)[z]=—-2F"(z), (2.3)
<F/(:E),$> =—-v, (24)

(F'(z)z,z) = v, (F'(z), [F"(z)] ' F'(z)) = v (2.5)

(see P* 2.3.4).
Define the cone K* dual to K as follows:

K*:={s€ E*:(s,z) >0,Vz € K}.

Note that K* is also a pointed cone with nonempty interior. Let the function Fi on int K~
be conjugate to F', namely:

F.(s) := max{—(s,z) — F(z): z € K}. (2.6)

In accordance with T* 2.4.4, F, is a v-self-concordant logarithmically homogeneous barrier
for K*. We will often use the following properties of conjugate self-concordant barriers for
dual cones: for any = € int K and s € int K™,

— F'(z) eint K*, —F/(s) €intK, (2.7)
F(=F'(z)) = (F'(z),2) — F(z) = —v — F(z) (2.8)
(using (2.4)),
F(—=F\(s)) = —v — F.(s), (2.9)
F(~F'(2)) = —z, F'(-F(s))=—s, (2.10)
F"(—FJ(s)) = [FX(s)I7',  FI(=F'(z)) = [F"(2)] 7, (2.11)
F(z)+ Fu(s) > —v+vinv — vin(s, z), (2.12)
and the last inequality is satisfied as an equality if and only if s = —aF"(z) for some a >0

(see P* 2.4.1).

In this paper we consider cones and barriers of rather special type. As we will see later,
the properties of these cones are very close to those of the positive orthant. Let us give our
main definition.

Definition 2.1 Let K be a pointed cone with nonempty interior. We call this cone self-
scaled if there exists a v-self-concordant logarithmically homogeneous barrier F for cone K
such that for any w and z from int K,

F'"(w)z € int K* (2.13)

and

F(F"(w)z) = F(z) — 2F(w) — v. (2.14)

We call the barrier F' a v-self-scaled barrier for cone K.
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In what follows we always assume that cone K is self-scaled.

We will study properties of self-scaled cones and barriers in detail in the following sections.
Now let us give three important examples of such cones.

1. Positive orthant. For

K:={zeR :2¥W >0 i=1...n}
() denotes the ith component of ), we have
K*={seR":s9>0,i=1...n}.

Let us take "
F(z):=-)_In 2

1=1

(this barrier is n-logarithmically homogeneous, see [7], Example 3, p. 40). Then

i . . 1 )

and v = n. Note that F, is given by

Fu(s)==Ylns® —n

i=1

and therefore relations (2.13) and (2.14) are evidently satisfied.
2. Cone of positive semidefinite matrices. Let K be the cone of positive semidefinite

matrices:

K:={X e M,:(Xy,y) >0,Vy € R"},

where M, is the space of symmetric n x n-matrices. Then M, can be identified with M,
and we can use the usual inner product

(5,X):=>>" §(d) x(9) = Trace S X,

1=1 j=1
where Trace denotes the trace. Then
K*={SeM,:(Sy,y) >0,Vy € R"}.

Let us take
F(X):= —Indet X.

Note that
FI(X)= -X', F'(X)H = X 'HX™', VH € M,

and F is a logarithmically homogeneous v-self-concordant barrier with v = n (see [7], P*
5.4.5). The structure of the inverse Hessian for this barrier is also very simple:

[F"(X)|'H = XHX, VH € M,.
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The corresponding conjugate barrier is given by
F.(S)=—IndetS —n

and we see that conditions (2.13) and (2.14) are satisfied.

Note that in some applications the cone of positive semidefinite matrices is represented
in a slightly different form (see, for example, paper [2] devoted to the Truss Topology Design
Problem). Namely, consider the cone

K :=cd{(r,z, W)€ Rx R* x My, : 7> (W™ 'z,z), W €int K'}.

Note that the point (7,z, W) lies in the interior of cone K if and only if the matrix

X(r,z, W)= ( ; ;’5 )

is positive definite. This implies that cone K is self-scaled and the corresponding (n + 1)-
self-scaled barrier is given by

F(r,z2,W)= —Indet X(7,2,W) = —In(1 — (W lz,z)) — Indet W.
3. Second-order cone. Let
K :={(r,e) e R : 7 2|l = |1},
where || - || is the Euclidean norm on R". In this case
K*={(p,s) € R :p 2| s}

Let us take
F(r,z) = —ln(12- | = 112)

In accordance with [7], P* 5.4.3, F is a 2-self-concordant logarithmically homogeneous barrier

for K. Note that
F'(r,z) = ——-———-2 7
T2\ = )]

2 -1 0 4 2 72T
1 — i
P =iz (b ) i (e )
It can easily be seen that the conjugate barrier is given by
Fu(p,s) = —In(p’~ || s |*) =2+ 2In2.

Therefore for any (n,w) and (7,z) from int K we have:

o (1)-(2).

)



where

_ 2(r ([ w |I?) — 2n(w, )

(= w|?)? ’
o = A= lw e + 2((w, 2) = 77)w)
(= [l w [[2)? '

This implies that .
7= w61 s 1)
= (r(*+ | w I*) = 2n(w,z))* = || (1= | w )2 + 2({w, z) — Tn)w ||?

= 2 [ w [P = (= [ w0 IP)? | @ [P —dr%n? [ o |
— (= | 2 )= [ w [PV
Thus,
A= |z |)
s |P= ———t > 0.
F= s = G
Since

20?1 || & |2 47 [ w |2 —2n(w,2)) _ 2 || nr~ 20 — ' w |2
2 2 2)2 = 2 2)2 20,
(=l w?) (m*= 1| w [I?)
we conclude that (p, s) € int K*. Moreover,
Fup,s)=—In(p*= || s ||’) —2+2In2 = F(r,2) — 2F(n,w) — 2

and thus cone K is self-scaled.
In some applications the second-order cone arises in a “hyperbolic” form:

K:={(r,n,2) e RxRxR":m 2| z|? >0, n>0}.
Note that this cone is also self-scaled since

K ={(r,n,2) € Rx Rx R*: X7 +n) > /E(r — )2+ || = |12}

(see Theorem 2.1(ii)). The corresponding 2-self-scaled barrier for cone K is given by

F(r,n,z)=—In(rp— || z ||*).

In the next sections we will see that self-scaled cones and barriers have many interesting
properties. Let us present to conclude this section the combination rules which preserve the

self-scaling property.

Theorem 2.1 (i) Let E;, and E, be finite-dimensional linear spaces. If cone K; C E; 1s

self-scaled with v;-self-scaled barrier Fi, i = 1,2, then the cone

K = 1{1 XI{Z _(;El XE2

is also self-scaled, with v-self-scaled barrier given by F(z1,z;) = Fi(z1) + Fa(z2),
where v = vy + vo. The self-scaled barrier for the conjugate cone K* = KT x K3 is
the function defined by Fi(s1,89) := (F1)«(s1) + (F2)«(s2) with the same value of the

parameter v,



(ii) Let A be an automorphism of E. If a cone K C E 1s self-scaled with v-self-scaled
barrier F', then the cone

K:={z € E: Az € K}

is also self-scaled, with v-self-scaled barrier given by F(z) := F(Az). The v-self-scaled
barrier for the dual cone

K*={seR':A*se€ K"}

is given by F.(s) := F.(A™*s). (A* denotes the adjoint of A, and A™* the inverse of
A*.)

3 Self-dual transformations and scaling

This section begins our investigation of the special properties of self-scaled cones and barriers.
In particular, we show the existence of a scaling point, which relates any point z in int K
and any point s in int K*. Let us start from the following result.

Theorem 3.1 (i) For any w and z from int K we have:
FU(F"(w)z) = [F'(w)] " F'(2), (3.1)
FU(F"(w)z) = [F"(w)] ™ F"(@)[F"(w)] ™ (3.2)

(i1) Let wy and w, belong to int K. If there exists x € int K such that
F'(wy)z = F"(w2)z
then wy; = ws.
(i) Let us fir any w € int K. Then
K* = F'(w)K.

Proof:
Inequalities (3.1), (3.2) are obtained by differentiating the identity (2.14) with respect to .
Let us prove part (ii) of the theorem. For this, we choose any dual bases of £ and E* and
represent the Hessians F"(-) as symmetric positive definite matrices with respect to these
bases. Let

5= F"(wy)z = F"(ws)z.

Denote Q := [F"(x)]*/%. From (3.2) we have:
QF/(s)Q = (QIF"(w)]'@)* = (QIF"(w2)] Q)"

This implies that F”(w;) = F"(w;) since the symmetric positive definite square root of a
symmetric positive definite matrix is unique. Denote G := F"(w;) = F"(w;). From (2.3)
we have:

F'('wl) = —Gwl, F,(U)g) = —ng.



Therefore (since F' is convex),
0 S (F'(wl) — F’('LU2),’U)1 — UJ2> = -—(G(wl - ’LUQ), wy — w2)

and we conclude that w; = w, since G is positive definite.
Let us now prove part (iii). Of course, it is enough to prove that

int K* = F"(w)int K.

For any 3 € int K* let # := [F"(w)]~'3. Then, in view of (2.14), (3.1) and (2.4), for any
v € int K we have:

FL(3) 2 F(F"(w)v) + (3 — F'(w)v, F,(F"(w)v))
= F(v) — 2F(w) — v + (F'(v), & — v) = F(v) — 2F (w) + (F'(v), Z).
Further, let s = —F’(v). Then, by (2.9) and (2.10) we obtain:
F.(3) > F(—F.(s)) — 2F(w) — (s,&) = —F\(s) — v — 2F (w) — (s, 2).
Thus, we have proved that for any s € int K,
Fu(s) + (s,&) > —F.(38) — 2F (w) — v.
However, the function (of s) on the left hand side of this inequality is bounded below if and

only if & € int K (see [7], T* 2.4.2, T* 2.4.4). This proves part (iii). O

Let us now prove that Definition 2.1 leads to symmetric relations for the dual cone.

Proposition 3.1 Let K be a self-scaled cone with v-self-scaled barrier F(z). Then, for any
u and s from int K*, the point F!(u)s belongs to int K and

F(F!(u)s) = Fu(s) — 2F(u) — v. (3.3)

Proof:
Let us fix u, s € int K* and let w := —F!(u). Then by part (iii) of Theorem 3.1 there
exists € int K such that s = F"(w)z. Therefore

Fl'(uw)s = [F"(w)]'s=z €int K
(see (2.11)). Further, since Fi(s) = F.(F"(w)z), in view of (2.14) we have:
F.(s) = F(z) — 2F(w) — v = F(F!(u)s) — 2F(=F}(u)) — v = F(F/(u)s) + 2F.(u) + v
(see (2.8)). 0O
From now on we will present only the properties of the primal self-scaled cone and barrier.
The corresponding statements for the dual case have an absolutely symmetric form.

Thus, we have proved that any Hessian F"'(z) of a self-scaled barrier defines a one-to-one
linear mapping from the primal to the dual cone. Let us now prove a converse statement.
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Theorem 3.2 For each pair z € int K, s € int K*, there ezists a unique scaling point
z € int K such that
s = F"(z)x.

Moreover, F'(x) = F"(2)F!(s) and F"(z) = F"(2)F}(s)F"(z).

Proof:
Consider the function

$(w) = (s, w) — (F'(w),z).
In view of (2.6), (2.3), and (2.14), for any w € int K we have:

$(w) = (s,w) + (F"(w)z,w) > (s,w) — F(w) — Fu(F"(w)z) = (s,w) + F(w) = F(z) +v.

Note that all level sets of the right hand side of this inequality (as a function of w) are closed
and bounded. Therefore the function ¢ attains its minimum. Its minimizers are exactly the
solutions of the equation

s= F"(2)z

in z. But this equation has a unique solution by part (ii) of Theorem 3.1.
The expressions for the derivatives of the barrier F' follow from (3.1) and (3.2). a

Note that, if we set ¢ := —F'(z), then (2.11) implies that the theorem remains true with
z and s, K and K*, z and t, and F and F., interchanged. Thus the existence of a scaling
point is completely symmetric between K and K*.

In most applications, it is quite straightforward to compute z given z and s. For ex-
ample, if K = R}, then z = [diag (2)]/*[diag (s)]~/%, with e the vector of ones in R".
If K is the cone of positive semidefinite matrices, X € K, and S € K* = K, then
Z = X?(X1/2§X1/2)~1/2X1/2 The case of the second-order cone can also be worked
out easily if tediously.

Corollary 3.1 For any v,w € int K there exists z € int K such that
F'(v) = =F"(z)w.
Moreover, F'(w) = —F"(z)v and therefore

F'(v) — F'(w) = F'(z)(v — w).

Proof:
This statement is a straightforward consequence of the above theorem in view of Theorem
3.1 (iii). ]

Let us describe now some interesting properties of the derivatives of a self-scaled barrier.
For fixed w € K, denote

9(z) := —(F'(z),w).



Lemma 3.1 The function g is convez.

Proof:
Assume first that w € int K. Let us fix z € int K. We shall prove that for any z € int X' the
following inequality holds:

9(z) = —(F'(z),w) 2 —(F'(2),w) — (F"(2)w,z — z) = =2(F"(2), w) — (F"(z)w, ).
Note that in the proof of Theorem 3.2 we have already established that the function
—(F'(z),w) + (s, z)

(of z) attains its minimum for any s € int K*. In our case s = F"(z)w, which belongs to
int K* in view of Definition 2.1. Thus, the (unique) minimizer of this function can be found
from the equation

F'(z)w = F"(2)w;

it is z by part (ii) of Theorem 3.1. This establishes the inequality and hence the convexity
of g in this case.
The convexity of g defined by a boundary point w follows from continuity reasons. O

Corollary 3.2 (i) For any w € K and ¢ € int K the operator F"(x)[w] is negative
semidefinite.

(i) Let z € int K and z +p € K for somep € E. Then
F"(z)[p] < 2F"(x). (3.4)

(This inequality, and similar ones following, is with respect to the cone of posttive
semi-definite operators; thus it is equivalent to saying that the right hand side minus
the left hand side is positive semidefinite.)

(1ii) Let us fix a point z € int K. Then the function
h(z) = ([F"(2)] 7 F'(z), F'(2))
is strictly conver on int K.
(iv) The mapping ® := F':int K — —int K* is concave on int K with respect to K*.

Proof:
Part (i) of the corollary is a straightforward consequence of Lemma 3.1. For part (ii), let
w==z+p€ K. By part (i) and (2.3), for any v € E we have:

(F"(z)[plv, v) = (F"()[w]v,v) = (F"(z)[z]v, v) < 2(F"(2)v, v).
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In order to prove part (iii) we need only compute the Hessian of the function A:
() = 28" (@) [[F(2)] F(@)] + 28 @)L ()] F @),

and this is positive definite using part (i) since the point w := —[F"(z)]"'F'(z) belongs to
int K.

Let us now consider part (iv). In view of the definition of a concave mapping (see, for
example, [7], Section 5.1.2), we shall prove that for any z,w € int K

s := ®(z) + ¢'(z)(w — z) — B(w) € K.

Indeed, for any z € K we have:

([®(z + 7(w — 2)) — '(2)](w — 2), 2)d7

(s,2) = —

(F'(z 4+ 0(w — z))[w — z,w — z], 2)dOdT

(F"(z + 0(w — z))[2](w — z),w — z)dfdT > 0

|
O O O
O~y T

in view of (i). This implies that s € K*. a

4 Distance to the boundary

Here we introduce several functions which provide a measure of the distance to the boundary
of a convex cone with respect to some interior point z. In the general case, the only such
measure available is the local norm defined by the Hessian of the barrier function. The new
measures here allow us to obtain approximations of F' and F’ which are valid in a much
larger neighborhood of a point than one given by a bound on the local norm.

Let us fix ¢ € int K and let p € E. Denote

1
sup{a:z—ap€ K}’

o,(p) 1=
s0 0 < 0,(p) < 0o. Thus, ¢ — ap € int K for all

aelo )

(Here 1/0,(p) is interpreted as +oo if o,(p) = 0.)
It is clear that for any w € K we have:

ox(z —w) <1, ox(—w)=0.

11



Indeed,
o(—w)=0iff we K.

In particular,
ox(z) =1, ox(—z)=0.

It is also clear that for any A > 0 we have:
ax()‘p) = )\o'x(p) = a:v/z\(p)‘

For p € E and ¢ € E* denote
I p llai= (F"@)p. )%, | g 3= (g, [F"(2)] 7 g)2.
We also write, for s € int K*,

I 2 llei= ((FX()] 7 'p, )2, || g |2:= (q, FL(s)g) /™.

Using Theorem 3.2, we have the following intriguing symmetry result: for z € int K,
s € int K™,

Isllz = (s, [F"()]7's)!/? (s, [F"()] 7 [FL()] T F" ()] s) 2

= ([Fl(&)) e, e)'? = |z |, (4.1)

where z € int K is such that F"(z)z = s.

When K is the nonnegative orthant in R", o,(p) is the maximum component of the
scaled vector [diag (z)]~'p, and —o,(—p) is its minimum component, assuming the vector
has both nonnegative and nonpositive components; || p ||s is the Euclidean norm of this
scaled vector. Similarly, if K is the cone of positive semidefinite matrices, then ox(P) is the
largest eigenvalue of the (scaled) matrix X /2P X~1/2 if this is nonnegative, and || P ||x is
the Euclidean norm of the vector of its eigenvalues. Finally, in the case of the second-order
cone, || - ||(r,z) and o(;)(-) are easy to compute.

For any z € int K, u € E*, and v, w € E, we have the Cauchy-Schwartz inequalities

(F'(z)v,w) < ool w o

(ww) < il w e
Applying this with v = 2 and w = p, we find (using (2.3) and (2.5))
(—=F'(2),p) <l z llsll pllo= v [l P ]Iz - (4.2)

Another useful inequality comes from (F"(x)z,z —ap) > 0 as long as « € [0,1/0.(p)], which
yields
(—F'(z),p) < vou(p). (4.3)

In view of T 2.1.1,
{w:|w-=z]|.<1} CK.

12



Therefore
oo(p) <l pllzy o=(=p) <l Pz - (4.4)

Let us define also the corresponding measure for the dual cone. Let s € int K* and
g € E*. Denote

* _ 1 * __ %
US(Q) - sup{ﬂ -5 — ,Bq c I{*}’ Uib‘(q) - a—F'(z)(Q)'

Let z € intK, s € int K*, p € E, and ¢ € E*. As a straightforward consequence of the
definitions we get the following inequality:

(g,p) = 0:(q)(s,p) + 0(p){g, ) — 02(p)o3 () (s, ).

(For example, if o,(p) and o7(g) are positive, this follows from the fact that the scalar
product of  — p/o.(p) and s — ¢/o%(q) is nonnegative.) Since o.(—z) = 0, we obtain the
following particular case for p = —ux:

(g,2) < o3(g)(s, ).

In view of (2.4) this implies that
(q,7) < vou(q)”

for any q € E*.

The following theorem underlines the main difference between self-scaled and self-conco-
rdant barriers. By T* 1.1.1, for general self-concordant barriers, we can bound the Hessian
at a point z in terms of the Hessian at z only when ||z — z|| less than one.

Theorem 4.1 For any o € [0,1/0,(p)) the following inequality holds:

1 1

1+ aaz(—p))2F”($) < F(z—ap) < mF"(m)- (4.5)

Proof:

We first prove the right hand inequality. Let p := —p/a.(p) if ox(p) > 0, p := —p/o for
arbitrary o > 0 otherwise, so that £ + p € K. Let us fix a direction v € E. Consider the
following function:

$(8) := (F"(z(B)v,v), z(B):=z+pp, B€I0,1)
Note that
¢'(B) = (F"(z(8))[plv, v)-
Since z(8) + (1 — B)p € K, we have from (3.4):

2

(F"(@(B)iple.v) < 7

(F"(z(8))v,v)

13



This corresponds to the following inequality:

#(6) < T2—54(6).

Introducing 1(8) := In ¢(B3) we can rewrite this inequality as follows:

2
!
< —,
VB < =
This implies that

$(B) < $(0) — 21n(1 - B),
or, which is the same,

¢(0)

6) < 720
If o,(p) > 0, using the definition of ¢ and setting 8 = ao,(p) immediately yields the right
hand inequality of (4.5); otherwise, use the definition of ¢ and set 8 = ao, and then take
limits as o — 0 to get the result.

The inequality we have proved shows that F"(z +w) < F"(z) for any z € int K, w € K.
Hence if 0,(—p) = 0, the left hand inequality of (4.5) follows directly by substituting  — ap
for z and ap for w. Otherwise, we have

(x —ap) + (a+1/o(—p))p € K,

which shows that
o'w-ap(‘P) < O'w(_p)/(l + me(‘p))-

Then applying the right hand inequality of (4.5) again with = and z — ap interchanged and
the sign of p reversed yields the left hand inequality. a

Corollary 4.1 (i) For anyz € int K, w € K and a € [0,1) we have:

F'(z +w) < F'(z) < F” (m— = w) :

oz (w)

(ii) For any z, z € int K the following inequality holds:
F'(z) < o2(2)F"(2).

(i1i) For any z,w € int K we have:
1

) S FG) S ul) (@) (4.6)

where z € int K is such that F'(w) = —F"(z)z.
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Proof:
The left hand inequality in (i) is a direct consequence of the right hand inequality of (4.5)
since 0,(—w) = 0. The right hand inequality in (i) holds for the same reason: we simply say

that for
o

oz (w)

Vi=T—

we have z — v € K.
Further, from the definition of o,(z) we have:

w:=ox(z)z —z € K.

Therefore
F"(04(2)z) = F"(z + w) < F"(2).

It remains to use relation (2.2). Part (ii) is proved.

We now prove part (iii) of the corollary. (Note that Corollary 3.1 demonstrates the
existence of the required z.) Again, we assume that the Hessians F(-) are represented as
symmetric positive definite matrices with respect to dual bases of £ and £™. Let

Qu = [F"(@)] V2" (w)[F"(2)] 2, Q. = [F"(2)] 2 F"(2)[F"(2)] /2.
Note that in view of Theorem 3.1(i) and (2.11) we have:
F"(w) = F"(2)[F"(2)] 7 F"(2)

and therefore Q,, = Q2. Using (ii) we obtain

1
— I < Q< di(2)l.
Hence ]
<@, <oulx)l,
o £ Q< 0ule)
which yields the desired conclusion. O

Let us now prove two important inequalities. The first one provides bounds on the vari-
ation of a self-scaled barrier which we will use in the analysis of both our primal (potential-
reduction and path-following) and our primal-dual algorithms. Note that our result allows
good approximations even for long steps, i.e., those taking us a fixed fraction of the way to
the boundary of the cone K.

Theorem 4.2 Let z € int K and p € E be such that o,(p) > 0. Then for any o €
[0,1/0,(p)) we have:

F(z — ap) < F(z) — a{F'(2),p) + 212 (—aoy(p) ~ In(1 —aou(p)).  (47)




Proof:
Let p := —p/o.(p), and note that  + p € K. Consider the following function:

0(8) := F(z(8)), =(B):=z+pBp, BE€I01).
Note that in view of Theorem 4.1

0"(0)

0"(B) < ma B € [0,1).

Therefore 5 .
8(8) — 6(0) = / 0'(N)dA = 6'(0)8 + / / 6" (r)drd\
0 0 0
, v [ [ _drdd ,
<OB+00) [ [ G5 =0 OB +0"(0)(=p = In(1 - B).

00

It remains to use the concrete form of the function 6. O

We can follow the argument used in the proof of Theorem 4.1 in the case that o,(p) = 0.
Thus for p € K we get the following form of (4.7):

F(o+ap) < F(a)+ o(F(@) + 5 19 I (19)

We will often use the inequality (4.7) combined with the following simple result.

Proposition 4.1 (i) For any 7 > 0 the function

7—In(l1+7)
is monotonically increasing.
(it) For any T > —1 the function
7—In(1+47)
72
is monotonically decreasing.
(iti) For any 7 < 1 the function
—7 —In(l —7)
=

is monotonically increasing.
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Our second inequality estimates the second-order term in the Taylor approximation of the
gradient. It is very useful in the analysis of Newton’s method and path-following strategies.

Let
| ple= max{oz(p),oz(—p)}- (4.9)

Note that | p [z<|| p ||c- In the case of K = R this measure is exactly the infinity norm of
the vector [diag (z)]™'p.

Theorem 4.3 For any z,w € int K the following inequality holds:
| F'(w) — F'(z) = F"(z)(w —2) LS| w =2z - [fw—2z |5 .

Proof:
Let us choose z € int K such that F'(w) = —F"(z)z (which is possible by Corollary 3.1).
Then in view of Corollary 3.1,

F'(w) — F'(z) — F"(z)(w — z) = (F"(z) — F"(z))(w — z).
Let us estimate the matrix
Q = (F(2) ~ F"(@)[F"(w)] ™ (F"(2) - F"())

from above using the matrix F*(z). (We assume that the Hessians F"/(-) are represented as
symmetric positive definite matrices with respect to dual bases of E and E*.) Note that by
Theorem 3.2 and (2.11)

F"(w) = F"(2)[F"(2)] 7 F"(2).

Therefore
Q = F'(2)[F"(w)] 7 F"(2) — F"(2)[F"(w)] 7 F"(2)
—F"(2)[F"(w)] 7 F"(2) + F"(2)[F"(w)] 7 F(2)
— F(a) = 2P @[F ()] () + F ()P @) F ) @)
= [F"()]"*(Q. — I)*[F"(x)]"/?,
where

Q. = [F"(@)]'*[F" () " ()]
Note that in view of Corollary 4.1 (iii)

awl(a:)I <Q, <ox(w)l.
Therefore ,
e mfoto-s1- )

(note that at least one of the arguments of the maximum in the right hand side of the
inequality is nonnegative since o,(w)o,(z) > 1, see (4.6)).
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Further, denote p := w — z. Then for any & > 0 such that 2 — ap € K we have:
z—ap=(l+a)r—awe K.
Therefore o,(w) < 1+ 0,(p). Similarly, for any o > 1 such that  + ap € K we have:
z+ap=ow—(a—1)z € K,

and so 0,(z) < 1/(1 — 0.(—p)).
Thus, we have proved that
(Qz—'l)2 Slp ]nzv I.
By definition of @ this implies that
(Il F'(w) = F'(z) = F"(z)(w — z) |I1)* = (Q(w — z),w — z)

=((Q: = D[F"(&)]"*(w — ), [F"(@)]"*(w —2)) < p - I Pz -

5 Behavior of a self-scaled barrier along orthogomnal
feasible directions

Let us fix v € K, v # 0. Then there exists a point s € dK* such that (s,v) = 0. Let us fix
also z € int K. By part (iii) of Theorem 3.1 K* = F"(z)K. Therefore there exists a point
w € K such that s = F”(z)w. Thus, we can find a point w € 0K such that

(F"(z)v,w) = 0.

We will call direction w orthogonal to v with respect to z. The main result of this section is
that the self-scaled barrier F(-) is in a sense separable on the two-dimensional plane defined
by the directions v and w that passes through the point 2. Besides its intrinsic interest, we
use this to derive a key inequality to be used in the analysis of our primal-dual algorithm.
Let
D={z:2=2z+av+ fw, >0, 8 >0}

Lemma 5.1 For any z € D the following identities hold:
(F"(z)v,w) =0, (5.1)

(F"(@)wlo,0) = 0, (F"(2)[vlw,w) = 0. (5.2)
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Proof:
Let
P(a) = —(F'(z + av),w), a>0.

In view of Lemma 3.1 this function is convex. Therefore for any a > 0 we have:
P'(a) 2 ¢'(0) = =(F"(2)v,w) = 0.
However
Y(a) = —(F"(z + av)v,w) <0
from part (iii) of Theorem 3.1, and we conclude that

(F"(z 4+ av)v,w) =0

for any « > 0.

Now we can replace in this reasoning the point z by 7 = z + av for some fixed o« > 0 and
prove that (F"(z + fw)v,w) = 0 for any 8 > 0. Thus, identity (5.1) is proved.

The relations (5.2) are just the right derivatives of identity (5.1) with respect to « and
B respectively. 0O

Theorem 5.1 For any z = z + av + fw with a, B > 0 we have:

F(z) = F(z + av) + F(z + pw) — F(z), (5.3)
(F'(z),v) = (F'(z + av),v), (F'(z),w) = (F'(z + fw), w), (5.4)
(F"(z)v,v) = (F"(z + av)v,v), (F"(z)v,w) =0, (F'(z)w,w)= (F"(z+ fw)w, 112)55)

Proof:
Relations (5.4) and (5.5) can be obtained by differentiating (5.3) with respect to @ and f.
Therefore we need only prove (5.3).

In view of (5.1) we have:

F(z) = F(z+ av) = [ (F'(z+ av + Tw), w)dT

O~

B o
:/(F'(z—}-’rw —}—/ F'(z + pv + tw)v, w)dp)d
0 0

B
/F’(z—}—Tw wydr = F(z + fw) — F(z).

Let us now prove a very useful inequality.
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Theorem 5.2 For any z € int K and s € int K* we have:

v(v —1) §02

(F'(z), Fu(s)) > 7] +7 (%), (5.6)

where the point z € int K is such that s = F"(z)z.

(This theorem is an extension of Lemma 2.5 of Kojima, Mizuno, and Yoshise [6], and is used
similarly to prove constant decrease in a primal-dual potential function.)

Proof:

Note that from Theorem 3.2 F'(z) = F"(z)F.(s), and therefore the inequality (5.6) can be

rewritten as follows: ( ) 3
. viv —
(Il F'(z) I2)* > T + ;4'02(2)- (5.7)

Further, from the definition of the coefficient 0,(z) we have:
v:=o0x(2)z — z € OK.
Therefore z = (2 + v)/0.(z) and (5.7) is equivalent to the following inequality:

(1 PG +0) 2 2 T+ (59

(using (2.2)). We want to prove that (5.8) is true for any v € 9K. In fact, we prove the
stronger inequality

(www+vnmzz“(”‘” .Y (5.9)

z+o|f-1
To show that (5.9) implies (5.8), let

p=llz+v %

we then want to show that

(v—1)2+1>v(v—1)+§
p—1 T p 4’

Note that p >|| z+v ||2,,= v by part (i) of Corollary 4.1. The inequality above is equivalent
to

i—p(p—-— )= (v =1)(p—v) 20,

which holds for any p > v > 1 since the left hand side equals 2(p— 1+ [(p — v) — (v — 1)]?).
In order to establish (5.9) for any v € 9K, let w be a direction orthogonal to v with
respect to z. Define

PV p _ . #

(F'(z + v), w) (F'(z), w)
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(see (5.4) with a = 1, 8 =0). Then in view of (2.4) and (5.4)
(F'(z+v),z+v+Tw) = —v + 7(F'(2),w) = —v — p.

Therefore
)2 <(| F'z+0) I lz+v+7w 2.

Since w and v are orthogonal with respect to z, we have:
|2+ v+ 7w |i= p+27(F"(2)z,w) + 7* || w |17

Fll ,
(F@uww) o

= 9 2
pt+2pu+p Flz)w)? =

(we have used C* 2.3.1). Note that

pt2utpt=p—1+p+1)?"=(p-1) (1+@f_’_§_1})_2)

_(p=Dlp—w+v)

(v —1)
Combining these inequalities,
+p)° (v—1)°
FI + *\2 > __(_V___-_..— =1 + —
(1 P o) 17 2 i =14 g
which is exactly (5.9). 0

6 Problems, assumptions, and projections

In this section, we state the problems we are concerned with, list our assumptions, and then
prove some results about (oblique) projections and relate them to Euclidean orthogonal pro-
jections. These projections will frequently arise as search directions in algorithms described
in succeeding sections.

The problem we address is:

(P) min (c,z)

st. Az = b,
z € K,
where we assume that
A is a surjective linear operator from E to (6.1)

another finite-dimensional real vector space Y™.
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Here, b € Y* and ¢ € E*. The assumption that A is surjective is without loss of generality
(else replace Y* with its range).
The dual to problem (P) is then (see [3]):

(D) max (b,y)
s.t. A + s = ¢
s € K~

where A* denotes the adjoint of A, mapping Y to E*,and y € Y.
We make the following assumptions about (P) and (D):

S°(P) := {z € int K : Az = b} is nonempty, (6.2)

and
S%D) = {(y,s) €Y xint K* : A*y + s = c} is nonempty. (6.3)

These assumptions imply (see [7], T* 4.2.1) that both (P) and (D) have optimal solutions and
that their optimal values are equal, and that the sets of optimal solutions of both problems
are bounded (see [8]). Also, it is easy to see that, if z and (y, s) are feasible in (P) and (D)
respectively, then

(C,.’E) - (bay) - <S,:I:).

This quantity is the (nonnegative) duality gap.

For primal-dual algorithms, we will assume we have available a point zo € S°(P) and
a point (yo, 0) € S°(D) from which to start the iterations; primal algorithms only need to
have zo € S°(P) and a lower bound (o on the optimal value ¢* of (P) and (D).

Both kinds of algorithm obtain search directions by computing solutions to linear sy stems

of the form
Ap(u) = 0,

A*y(u) + F'(z)p(u) = wu,
where z is a fixed point in int K and u a point of E*. We seek y(u) in Y and p(u) in £.

(6.4)

Proposition 6.1 Under the assumptions above, there is a unique solution to (6.4).

We call the solution p(u) the projection of u into the kernel of A with respect to the positive
definite operator F"'(z).

Proof:

It is enough to show that the linear operator defined by the left hand side of (6.4) is injective,
since it maps the finite-dimensional vector space Y x E into its dual, which has the same
dimension. Thus we need to show that any solution (y(0),p(0)) with v = 0 is uniquely
zero. But taking the scalar product of the second set of equations with p(0) we obtain
(F"(2)p(0),p(0)) = 0, whence p(0) must be zero since F"(z) is positive definite. Then the
second set of equations yields A*y(0) = 0, which implies y(0) = 0 since A* is injective.
Alternatively, note that if we represent the linear transformation defined by the left hand
side of (6.4) with respect to dual bases of E and E* and Y and Y™, we get a symmmetric
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indefinite matrix of an invertible form that is standard in interior-point methods (the matrix
representing the surjective mapping A has full row rank). ]

Next we prove a simple proposition generalizing the fact that the square of the norm of
the projection of a vector is equal to the scalar product of the projection with the vector.

Proposition 6.2 If p(u) is a projection of u with respect to the positive definite operator
F"(z), then

Il p(w) [IZ= (u, p(w)). (6.5)
Proof:
From the definition, F”(z)p(u) = u — A*y(u). Taking the scalar product of both sides with
p(u) gives the result. O

Applying the Cauchy-Schwartz inequality to the right hand side of (6.5), we have
Il p(w) ||.<|| w ||Z. More generally, we have

Proposition 6.3 For anyy € Y the following inequality holds:
I p(w) l-<ll v — A%y |I7 - (6.6)
This inequality becomes an equality only when y is an ezact minimizer of the right hand side.

Proof:

Let us consider the following convex quadratic optimization problem:
min{—(u,p) + 3(F"(2)p,p) : Ap = 0}. (6.7)

Let p* be the optimal value and p* be the optimal solution of this problem. Note that p*
can be found from the following system of linear equations:

F'(z)p*+ A’y =u, Ap* =0,
where y € Y. Therefore we conclude that p* = p(u) and
pe = —(u,p7) + 3 {(F(2)p",p7) = =3 || p(w) |3

in view of Proposition 6.2.
Let us write the Lagrangean for the problem (6.7):

L(p.y) = —{u,p) + 3{(F"(2)p,p) + (AP, y)-
Therefore the problem dual to (6.7) is:

max{~1{u — A%y, [F"(z)] " (u — A"y)) 1y € Y}.
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Thus, we conclude that

—3 I p(w) I3= w2 =3(l u — A"y [2)°

foranyy €Y. m|

We now relate the projections above to Euclidean orthogonal projections. Note that we
can rewrite (6.4) as

Ap(u) = 0,
—A*y(u) + s(u) = 0, (6.8)
s(u) + F'(z)p(u) = w

Thus p(u) is in the kernel of A, s(u) in the range of A*, and the sum of s(u) and a transfor-
mation of p(u) equals the given vector u.

Let us choose dual bases for the spaces E and E*, and let H be the symmetric positive
definite matrix representing the transformation F"(z) with respect to these bases, of order
n := dim(E). Let V := R™ with the standard coordinate basis, so that V* can be identified
with V and the basis is then self-dual. V is then a Euclidean space with the usual inner
product and norm.

Let J be the mapping from E to V represented by the symmetric positive definite matrix
HY2, Then J* : V* = V — E* is also represented by this matrix, and thus J*J : B — E~
is represented by the matrix H, and thus coincides with F"(z). We have therefore factored
the operator F"(z) : E — E* into the product of two mappings from E to V and from V
to E*. (This factorization corresponds to a Cholesky factorization of the matrix H.) Then
(6.8) can be rewritten as

(AJ ) (Ip(w)) = 0,
—(AJ V)y(uw) + J*s(u) = 0, (6.9)
J*s(u) + Jp(u) = J*u,
which says that the vectors Jp(u) and J~*s(u), both in the Euclidean space V, lie respectively
in the kernel of AJ~! and the range of its adjoint, two complementary orthogonal subspaces
of V, and have as their sum the vector J™*u in V. They are therefore the orthogonal
projections of this vector into the appropriate subspaces.

(Note that, when K is the nonnegative orthant in £ := R", z and s in int X', and
z € int K so that F"(z)z = s, then F"(z) is represented with respect to the standard basis
as diag (s)[diag (z)]~! and thus J by the matrix [diag (s)]'/?[diag (z)]7*/2, which is the usual
scaling matriz used in primal-dual methods.)

Finally, let us discuss the arithmetical complexity of computing solutions to (6.8), either
to obtain just p(u) (for primal methods) or to get (p(u),y(u), s()) (for primal-dual methods).
We have seen that we can alternatively solve (6.9), which is a Euclidean projection or least-
squares problem, for which many methods are available. One simple scheme for solving
(6.8) is as follows. Usually the Hessians of self-scaled barriers have a rather simple form
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and it is not too difficult to invert them. Thus we first compute v := [F"(2)]"!u, thence
y(u) = (A[F"(z)] " A*)7 ! Av, and so obtain s(u) = A*y(u) and p(u) = [F"(2)] " (u — s(u)).
If all linear mappings are represented by matrices and Y is m-dimensional, this requires
the solution of a linear system with an m x m symmetric positive definite matrix and some
matrix multiplications.

7 Primal potential-reduction methods

In this section, we discuss extensions of two primal potential reduction methods for problem
(P), where assumptions (6.1)-(6.3) hold. (Such an extension of Karmarkar’s method [5] is
already given in [7], Section 4.3. But here we allow “long steps,” i.e., steps that typically go
a large fraction of the way to the boundary of K, whereas the theory in [7] only applies to
“short steps,” i.e., those which go only a fraction of the way to the boundary of a ball defined
by the local norm || - ||;.) We assume that we have available an initial point zo € S°(P) and
a lower bound (o on the optimal value of (P). We also assume that the objective function is
not constant on the feasible region of (P), so that it is strictly greater than the optimal value
at any point in S°(P).

For both algorithms, convergence is based on forcing a decrease in the primal potential
function, parametrized by ( < (*, defined by

®(x; ) = uln((e,2) — () + F(a). (7.1)

for various values of y. Our last assumption above implies that this is well-defined at all
points in S°(P). (In fact, this assumption is made only for convenience. If it fails, we may
apply the algorithms exactly as stated, except that if we ever generate a feasible solution
z and a lower bound { with (¢, z) = (, we terminate with an indication that z is exactly
optimal. In any case, the same complexity bounds hold.) The algorithms of this section are
guaranteed to generate a feasible solution z whose objective function value is within € of the
optimal value in O(vIn(1/¢)) iterations.

7.1 Karmarkar’s method

Here we assume further that the constraints Az = b can be written as Bz = 0,(d,z) = 1,
with d € K*. (This can always be achieved by replacing E by E x R, z by (z,7), K by
K x Ry, and the constraints by Az —br =0, 7 =1.) Let Y* be the range of B, so that
Y* = Y* x R, and let us write elements of Y as (y,¢) € Y x R. In this case, our problem
takes the form
(P) min (c,z)

s.t. Bx = 0,

(d, ) 1,

z € K,

I
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and its dual can be written as:

(D) max ¢
st. B + d{ + s = ¢
s € K~

where B* denotes the adjoint of B and y € Y. Under the assumptions we have made, this
has an optimal solution (y*,(*,s*), and (* equals the optimal value of (P).

We use the potential function ® of (7.1) with p := v, but extend it to {z € int K : Bz =
0}, by defining

®(z;¢) := vin(c — (d, z) + F(z).

Note that this function is homogeneous (of degree 0) in =z, since F' is v-logarithmically
homogeneous. Our first result shows that decreasing this potential function sufficiently
yields an approximately optimal solution to (P). From our assumptions,

K :={z e K : Bz =0, {c,z) < 7 := max({c, 20),0) + 1, (d,z) <1}
is bounded. The barrier F is bounded below on this set: let F denote its minimum there.

Theorem 7.1 Let z € S°(P) and ¢ € [(o,(*] be such that ®(z;() < ®(z0; (o) — A. Then,
as long as
A > vin({c,zo) — (o) + F(x0) — F,

{e,z) — ¢ < ({c,z0) — (o) - exp (Fﬁ%—-—@) - exp (—%) . (7.2)

we have

Proof:

Let A := max(1,{(c,z)/v) and Z := z/A. Then if z € K, A =1 and Z = z, while if not,
z € K with {¢,%) = 70. (We will show that the first case holds for A sufficiently large.) In
either case, since ® is homogeneous, our hypothesis implies that

(o= 631 < (el = o) (L) e (<2

14 v

and since # € K and thus F(z) > F, we deduce

(¢ —¢d,z) < ({¢,x0) — (o) - exp (W) - exp (——é> .

v

If z = %, this immediately yields the conclusion of the theorem. Suppose not. Then A>1
and

(c—(d,@) =7 — (/A2 14 (c;zo)/A = (/A 2 1,

and we deduce that
F - F —A
1 < ({e,z0) — (o) - exp (_______(3703 _) - exp (—V——> .
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But this contradicts our hypothesis on the size of A. a

From the theorem, it suffices to show that we can reduce ® by a constant at each iteration
(possibly adjusting the lower bound (), and then we will have an O(vIn(1/¢))-iteration
algorithm to obtain a feasible solution with objective value within € of the optimal value of
(P). (Here the O(-) notation hides additive constants that depend on the initial solution o
and the initial lower bound (o.) We now show how this can be achieved.

Suppose at any iteration we have # € S°(P) and C < (*. We then solve the two linear
systems

Bp(u) =
(F'(2),p(v)) =
Bry(u) + F'(2)p(u) + F"(2)p(u) =

for the two right hand sides u = ¢ and v = d, to get p(c) and p(d), etc. By Proposition 6.1
these have unique solutions. Note that we have

(e, &) = (B*y(c) + F'(#)p(c) + F"(2)p(c), &) = p(c)(F'(2),2) — (F'(2),p(¢)) = —vp(c)

so that p(c) = —{(c, #)/v, and similarly p(d) = —(d,&)/v = —1/v. Our search direction will
be of the form p := p(c) — (p(d) for some {. We may be able to choose ( = ¢, but sometimes
it is necessary to first update our lower bound.

Lower bounds will be derived from feasible solutions to (D). In order to try to find these,
let us define, for ¢ < ¢,

.

; (7.3)

9

OO

o(0) 1= (22 64 (0(0) - old) = ~(ute) = @) + (0(0) ~ o) (T

and
3(¢) = F"(2)2(C) = (p(c) — Cu(d))F'(2) + F"(2)(p(c) — ¢p(d))-
We then have
B*(ye — Cya) +3(¢) = ¢~ (d
so that, as long as §(¢) € K*, ( is a lower bound on the optimal value of (P) since it is the

value of a feasible solution to (D).
There are now two cases. If #({) ¢ int K, we set (t := {, choose the search direction as

p = p(c) — (*p(d), (7.5)

and note that by (7.4) v/({c,&) — (*) > 1/0z(—p), so that (c, &) — ¢(* < voz(—p). On the
other hand, if x(() € int K, then note that Z(() = Z(¢ ) (¢ — C)p, where p := p(d) + &/v.
In this case, we update C to

¢ri=(+ 1/%(4’)(15)- (7.6)
Then set the search direction again to p given by (7.5), and note that #((t) € 9K, so that

v/((c,2) — (t) = 1/os(—p) and (¢, &) — (T = voz(—p). Also, 3((T) = F"(2)2(¢*) € K~ by
part (iii) of Theorem 3.1, which implies that (* is a valid lower bound. We therefore have
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Lemma 7.1 After possibly updating the lower bound as shown above, we have {* < (* and,
with p given by (7.5),
(e,2) = ¢* < vos(—p)- (7.7)

O
This lemma generalizes a result of Anstreicher [1] for the case of standard linear program-

ming. Note that it implies (if # is not optimal) that oz(—p) > 0.
We need one more observation before we prove the main theorem of this subsection.
Applying Proposition 6.2 with p given by (7.5), we have

7 lI3= (c—(*d,p). (7.8)

We now see how these results and Theorem 4.2 enable us to establish a fixed decrease in
potential. For simplicity, let p; := oz(p) and p_ := gz(—p).

Theorem 7.2 Let the (possibly updated) lower bound {* and the search direction p be as
above. Then, for a suitable value of o, z* := & — ap lies in {z € int K : Bx = 0} and
satisfies
o 2 A
B(e*;¢") < 8(550) - HAE( 1) < 0(30) ~ (1 - In2), (7.9)
Pz

(Note that z+ may not be feasible, because it may not satisfy the constraint (d,z) = 1; but
because ® is homogeneous, we may take as our next iterate £+ := z*/(d,z*) and achieve
the same reduction in the potential function.)
Proof: ) i
Let A®(a) := &(% —ap; (t)—®(2;¢*). Since (* > ( and thus (2;(*) < ®(&;(), it suffices
to prove that A®(«) is suitably small for some positive a < 1/p;..

Let é:= ¢ — (*d. Then, from Theorem 4.2,

A®(a) = vin(1- o)+ F(2 —ap) - F(2)

vin (1 - ol2lt) + F(2 — ap) - F(2)

< vin(1- o) + F(z - ap) - F(2) (7.10)
2 2
< -—aﬂ% + “%!i[——am —In(1 — apy)]
21 1y _ el _
< —allplfG-+5;) -I;éfln(l apy).

The right hand side is minimized by choosing
1 1
= < —
P+ +pP- P+

a
and then z* lies in int K (and hence in {z € int K : Bz = 0}) and we have

2 2

p4+P- jo
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VI (LR JUEURS Sl
max{py, p- }? P+P- P p-
Let us write the expression in brackets as

max{1,72} max{l,7%}

In(1+7) =: ¢(7),

T T2

> 1, in view of Propsition 4.1(i), the

function g(7) is monotonically increasing, so that g(r) > g(1) = 1 —In2 > 0, while for

r < 1, in view of Propsition 4.1(ii), the function g(r) is monotonically decreasing, so that
g(r) > g(1)=1—1In2 > 0. Hence

where 7 := p;/p- > 0. Then we see that for 7 >

I 1 R )
A8(0) < ~ s e (1 = In2) = =l n2) < —(1 —In2).

This completes the proof. For future reference, we note that if p_ is replaced in (7.10) by
any A € (0,]| p ||z], the proof above can be applied to give

e T 11—
A%(e) < B (1= 1n2) < —(1—In2),
0

The algorithm is now clear. Given & € S°(P) and f < (*, first try to update the lower
bound as described above Lemma 7.1 to get (*, and hence define p from (7.5). Now choose
the step size a € [0, l/az(p)) so that (7.9) holds for ¥ := % — ap and set &7 1=zt /(d, zt).
Now &t and (* replace & and C and the iteration is finished. Starting with zo and (o, we
continue these iterations until (¢, Z) — ¢ < e, which, by Theorems 7.1 and 7.2, occurs within
O(v1n(1/¢)) iterations.

7.2 An affine potential-reduction method

Now we discuss a method that solves (P) without assuming that the constraints have a
special form. This algorithm extends that of Gonzaga in [4]. We use the potential function
® of (7.1), but here with g > v. We now let

Ki={zeK:Az=br,0<71<1,{c,z) < :=max({c,20),0) + 1}

which is again bounded by our assumptions. The barrier F' is bounded below on this set, and
we let F denote its minimum there. As before, we first show that decreasing the potential
function sufficiently is enough to give an approximately optimal solution to (P).

Theorem 7.3 Let z € S°(P) and { € [(o,(*] be such that ®(z;() < @(z05(0) — A. Then,
as long as

A 2 /Jhl((C, SCo) - CO) + F(:CO) - E)

e (Hei=E) oy (-2). (7.11)
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Proof:

We follow the argument of Theorem 7.1, letting A := max(1, (¢, z)/7) and & := /). Since
¢ > v, ® is not homogeneous, but we have instead ®(z; (/A) = ®(z;{)—(p—v)In A < ®(z;().
The rest of the proof is exactly as before. ]

Hence we wish to decrease ® by a constant at each iteration (possibly adjusting the lower
bound () in order to have an O(pIn(1/€))-iteration algorithm to obtain a feasible solution
with objective value within € of the optimal value of (P). As in the previous subsection, we
show how this can be achieved from any # € S°(P) and ¢ < (*.

First we solve the two linear systems

Ap(w) = 0,
A*y(u) + F"(#)p(v) = u, (7.12)
for u=c and u = d := F'(%). Noting that
Y= et @) (7.13)
we see that
pi=ple) + Mp(d), (7.14)
for A
A= A(C) = L‘""Z.Lﬁ (719

is A times the projection of the gradient of ®(-; () into the kernel of A. Our search direction
will have the form of p above where ( is a possibly updated lower bound on the optimal
value ¢* of (P). (Note that the search direction used in the previous subsection can also be
viewed as a scaled projection of this gradient, there into the kernel of B intersected with the
kernel of F'().)

We first consider the lower bound update. Note that, for any A € R,

A*(y(c) + Ay(d)) + F"(&)(p(c) + Ap(d)) — AF'(2) = c.
We therefore define
() :== AZ + p(c) + Ap(d) (7.16)

and

3(\) = F"(2)2(X) = F"(2)(p(c) + Ap(d)) — AF"(2).

Thus, as long as 5(\) € K*, (¢, #) — (5()),#) is a lower bound on the optimal value of (P)
since it is the value of a feasible solution to (D). The gap

(3(V),2) = (=F'(#),p(c)) + Al F'(2)

13)? — (F'(2), p(d)))
= (=F'(&),p(c)) + M|l F'(%) 12)*

)= 1 p(d) 112)
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is an increasing function of A, using Propositions 6.2 and 6.3. Thus we choose X as the
minimum X such that 3(A) € K* (or +oo if there is no such 1), and then set

A

C+ := max((, <c7 i) - (.§(5\),§;>), (717)

where the second argument of the “max” is taken to be —oo if A = oo. (Note that we could
use a similar update in our extension of Karmarkar’s algorithm, updating C whenever an
improvement is possible using some 3(() € K*.)

With this update, we set

= M¢H), pi=p(c) + Atp(d).
Lemma 7.2 If p > v + /v, then At <|| p ||z, while if p > 2v, then AT <|p 5.

Recall that | p |; is defined as max{oz(p),cz(—p)} (see (4.9)).

Proof:

Suppose At >|| p ||z or AT >| p |z, so that in either case AT > gz(—p). Then A*E +p € K,
so 3(AT) € K*. Now (7 is defined as the best lower bound that can be deduced from an s
of this form, so we have

(c,8) = (T < ((/\+) &) = (F"(2)(\*& + p), &)
= A(F"(2)2,2) + (F"(2)p, &) = Av + (= F'(2), ).

If u > v+ /v, we use (4.2), so that A* >|| p ||z implies
(&) = ¢ <X+ V| plle< (v + VAT < pAT,

contradicting At = ({¢, Z) — ()/p.
If 4 > 2v, we use (4.3), so that A* >| p |;> 0;(p) implies

(e, 2) — (T < At +vos(p) < 20t < pAt,

again contradicting the definition of A™. O

We can now show that a constant decrease in potential is possible. As above, let us write
p+ := 03(p) and p_ = 03(—p).

Theorem 7.4 Let the (possibly updated) lower bound {* and the search direction p be as
above.

(a) If o > v + /v, a suitable value of a can be chosen so that z% := & — ap lies in S°(P)
and satisfies

®(z*;¢*t) < 8(#;0) - (max{ﬂj H“; ”j})2(1-1n2) = ®(2;() — (1 —1n2). (7.18)
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(b) If p > 2v, a suitable value of a can be chosen so that z := & — ap lies in S°(P) and

satisfies
A 2 2 A 2 2
0(a*i¢h) < (&) - (L -2 =850 - PO -2 oo
< @(#¢) - (1—-1n2).
Proof:

Note first that, since Ap = 0, = — ap lies in S°(P) as long as « € (0,1/p;). Now, as in the
analysis of Karmarkar’s method, let A®(a) := ®(Z — ap; (t) — ®(3;¢*). Since ¢ > ¢ and
thus ®(2;¢*) < ®(2;(), it suffices to prove that A®(«a) is suitably less than 0.

We find

Ad(a) = pln(l (—ciT%)—{—F(a:—ap) F(z)
< —ep) — olF'(2),p) + Hi[—ap, —In(1 - apy)]

~F
e+ N F/(2),p) + “—”#[ apy — In(1 — apy )] (7.20)
% 12 12+ —ap, — In(1 — apy )]

—allplE G+ ) - I In(1 — apy).
If p > v+ /v, Lemma 7.2 yields At <|| p ||z, and we can substitute this in (7.20) to

get an upper bound on A®(a). As in the proof of Theorem 7.2, this bound is minimized by
taking

1 1
=— < —,
petllplle P+
and then we have Il
Pz
e e T L] DA
using the proof of Theorem 7.2, which gives (7.18).
On the other hand, if ¢ > 2v, Lemma 7.2 yields A* <| p |z, and substituting this in
(7.20) yields a different upper bound on A®(«a). Following the proof of Theorem 7.2, we
minimize this bound by taking

1 1
T e —_,
p+tlple p
and then we have
Ad(a) < — L 115 (1—1n2)
= (max{ps,|ple})? ’
which gives (7.19) as desired. .

Of course, this argument also naturally yields an O(pln(1/¢))-iteration algorithm to
obtain a feasible solution with objective value within € of the optimal value of (P). This is
the same complexity bound as before as long as we choose p = O(v).
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7.3 Remarks

In the previous subsection, we made a distinction between the cases with g > v + /v and
¢ > 2v which might have seemed irrelevant. However, in the first case, we were only able to
show a decrease in ® for « = 1/(p3+ || p llz) <1/ || p ||, i.e., only for a step within a unit
ball in the local norm, and the (bound on the) decrease was only 1 —In2 (see (7.18)). In
the second case, we could choose o = 1/(p4++ | p |z), which is typically a reasonable fraction
of the way to the boundary of K (for example, half way if p_ = p,), and the (bound on
the) decrease was then [|| p || / | p 12](1 — In2) (see (7.19)), typically much larger. For
Karmarkar’s algorithm, even with u = v, a large step and a typically large decrease in @ are
possible (see (7.9)).

Another interesting observation concerns the derivation of lower bounds. Given a current
iterate 2 and search direction p, the new iterate is of the form & — ap for some positive a.
However, if the lower bound is updated, it corresponds to a dual feasible solution with s
equal to a positive multiple of F"(£)(Z + ap) for some positive «, i.e., to a search in the
opposite direction (see (7.4),(7.16)).

8 Joint scaling primal-dual interior-point method

In this section we describe an algorithm that works symmetrically in the primal and dual
spaces. At each iteration it strives to decrease the symmetric primal-dual potential function
given by

¢(s,z) = (v + p)In(s, z) + F(z) + Fi(s),

where p is a constant at least equal to 1/, defined for z € S°(P) and (y,s) € S°(D). Recall
that (s,z) is the duality gap corresponding to feasible z and (y,s). We again assume (6.1)-
(6.3), and now we need to have available a point zo € S°(P) and a point (yo, s0) € S°(D).
As in the previous section, a suitable reduction in the potential function guarantees that
we have near-optimal solutions, here to both (P) and (D). Indeed, by [7], P* 4.5.1, we have

Theorem 8.1 Let z € S°(P), (y,s) € S%D) be such that ¢(z,s) < ¢(zo,50) — A. Then
A

where

R(z0, 50) := exp{(pIn{so, zo) + F(z0) + Fu(s0) — vIn(v) +v)/p}.
O

The theorem implies that, if we can assure a constant decrease in the potential function
at each iteration, we can obtain primal and dual feasible solutions that are within € of the
common optimal value in O(y/v In(1/¢)) iterations by choosing p = v4/v for constant v > 1,
an improvement of a factor of /v over the methods of the previous section. This symmetric
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primal-dual potential function was first used to establish such a complexity bound in Todd
and Ye [10] for a short-step symmetric primal-dual algorithm. Ye [11] obtained a long-step
algorithm which was not symmetric, and Kojima et al. [6] developed a symmetric primal-
dual method. Nesterov and Nemirovskii [7], Section 4.5, extended Ye’s algorithm to the
setting of general cones. Here we extend the method of Kojima et al. when the cones are
self-scaled:

1. Initialization. Choose zo € S°(P) and (yo, s0) € S°(D).

2. k-th iteration (k > 0).
a) Compute the scaling point z; € int K such that

S = F"(zk)xk,

and the coeflicient
o = 05, (2k).

b) Compute the displacement (Azx, As, Ayx) as a solution of the following system of
linear equations:

F"(zi)Azg + Asp = ug := lﬂ—sk + F'(zy), (8.1)
<sk7$k>

AAz, =0, A"Ayr + Asp=0.
c) Find oo, (Az) and o} (Asi) and set oy := max{0,(Azy), 0 (Ask)}. Choose the

initial step size
1

ok + Tk

of =

and find the step size a; from the condition

gb(:l?k — arAzg, S — akAsk) < ¢(wk — apAzg, Sk — &kASk).

d) Set

Thpr = Tk — OpATE,  Spp1 = Sk — pASE, Y1 = Yk — Ay
End of iteration.

Note that uy = ¢/ (x, si), the partial derivative of ¢ with respect to the z-variable. We
also observe that we can write (8.1) as

Azp + F,:’(tk)ASk = W = -—Vig—xk + F,:(Sk),
(3k9$k>
where t; := —F'(2;) so that F/(tx)sx = =&, and note that wj; = @' (zk, ). Thus the

direction choice is symmetric between K and K*. In addition, it is easy to see that 0% can
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equally be defined as o7, (tx), so the choice of step size is also symmetric. Finally, note the
similarity between (8. 1) *and the projection equations (6.8), demonstrating that Azy is the
projection of ¢! (zx, sx) into the kernel of A with respect to F"'(z), and similarly Asy is the
projection of ¢’(zx,sx) into the range of A* with respect to F)/(t). Alternatively, in the
Euclidean space V, the primal and dual steps (in that space) are the Euclidean projections
of the corresponding gradients (which happen to be equal).

Theorem 8.2 For any k > 0 the following inequality holds:

k41, Ske1) < D(Th,y S8) — ? +In (1 + ‘\?‘) .

Proof:
Let us analyze one iteration of the method. In order to simplify the notation let us omit all
indices denoting the number of the iteration. Denote H = F"(z).
Note that in view of Theorem 3.2
w2 o= (|lull)? = Y (s, HoVs) + 2425 (F"(2), H's) + (F'(2), H' F'(2))
= (selehleto) 4 (F(2), Fi(s)) = (F'(x), Fi(s) = 525 (8-2)
> <F’(m> F'( )) — 45

(recall that p > 4/v). On the other hand

I

= (HAz + As, H'(HAz + As)) =|| Az |12 +(]| As |17)* (8.3)
Let us introduce the function
A¢(a) = ¢(z — alz,s — als) — é(z, s).

Since

(s — aAs,z — alz) — (s,z) = —a((As,z)+ (s,Az))
—a({u — HAz,z) + (s, Az)) = —alu,z) = —ap

(see (2.4)), in view of Theorem 4.2 we have:

Ad(a) < (v +p)In (1 - @‘-’-‘%) ~ a(F'(z), Ac) + ) ‘?Z ”i( 02(Az) — In(1 — ao,(Az)))

! M aocl(As n(l — ac:(As — «a a
—a(As, F(s)) + (0 (Bs))? 5 (—ao;(As) —In(1 3(As))) < —alo + Az(a) + As(a),

where

Bo= A2 1 (P(e), M) + (s, FUo)),
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Ara) = % —aoy(Az) — In(1 — ao.(Ax))),

_WAasi?, . .
Ay(a) = (a;"(As))z( act(As) — In(1 — aoj(As)))-
Let us estimate each A(y separately.
In view of Theorem 3.2 and (2.4) we have:
v+p

(8, () = (708 4 (@) = 2, F(s))

= +(F'(z), Fi(s)) — (F'(2), Az).

_v(v+p)
(s, )

Therefore

Ao = (F'(z), Fi(s)) — St = 2.

Further, by Corollary 4.1 (ii)
| Az |Z<0® || Az |2, (8.4)

and therefore from (4.4) and (8.3),
0.(Az) <|| Az ||.< o || Az [l.< op (8.5)
and similarly o*(As) < op. Recalling & := max{0.(Az),0%(As)}, we have
max{o,(Az),0(As)} = & < op.

In view of Propsition 4.1(iii) and (8.4) we can estimate A;(c) as follows:

Agla) <

il A . .
— ——2(~ad —In(l - ad)).

The symmetric reasoning for A () leads to the following estimate:

(| As [1)°

As(a) < = (—ad — In(1 — ad)).

Therefore in view of (8.3) we conclude that

Ag(e) + As(a) < il (—ad — In(1 — ad))

5—2

and we come to the following inequality:

1 1 olu?
2 _
Ad(a) < —ac?y? (}_2 + 5) -3 In(1 — ).
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This is exactly the same form as the bound of (7.10), and is minimized by @ = & := 1/[0? +4],
which yields

2 2,2 = 2
_ proootu G p[r—In(147)
< e | I e s | st
Ag(a) < &+ 1n(1+02) [ ,

o2 o2 72
where 7 := &/0% < u/o. As before, in view of Proposition 4.1 (ii) the function in brackets
is decreasing in 7. Therefore we may replace 7 by its upper bound:

It remains to note that by (8.2) and Theorem 5.2 we have p/o > V3/2. O

(The reader may be confused by the presence of o2 above, especially in conjunction with o
in the expression for & Why is it squared? It turns out that o2 = o,(—F.(s)) = a;(—F"(=)),
but the proof would take us rather far afield. Thus the step size is expressed in terms of the
maximum steps to the boundary for z or s in the directions Az and —F](s) or the directions
As and —F'(z), and is at least half the minimum of these steps.)

In view of Theorems 8.1 and 8.2, if we choose p = v4/v for a constant v > 1, we have
the desired O(y/v1n(1/€))-iteration algorithm. In this algorithm, the fact that we have a
self-scaled barrier is used to assure the existence of the scaling point z (and hence get a
symmetric method) as well as to allow a long step.

9 Newton’s method and the path-following approach

Here we discuss the possibilities of applying to problem (P) the path-following approach, i.e.,
following the trajectory {z(7): T > 0}, where z(7) is the minimizer of the penalty function

P(r,z) :=1{c,z) + F(x)

over S°(P). Under assumptions (6.1)—(6.3), this trajectory is well-defined (see [7], [8]). Each
point z(7) is the unique solution of the following system:

e+ F'(z(r)) — A"y =0, Az(r)=0b, z€intK.

All complexity estimates for path-following methods are based on the behavior of New-
ton’s method as applied to minimizing the function (7, z) over S°(P). The complete de-
scription of this behavior in the case of general cones is presented in [7], Section 2.2. In this
section we improve several estimates of [7] using the specific properties of self-scaled cones.

Let us fix 7 > 0. Consider Newton’s method in the following form:
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1. Initialization Choose zo € S°(P).

2. kth iteration

a) Find the search direction p; := p(7, z), where p(7, ) is the solution of the following
system:

¢+ F'(z) — F'(z)p(r,z) — A*y(7,2) =0, Ap(r,z)=0,
and y(r,z) €Y.
b) Choose a step size aj; such that zx — agpy € int K.
c) Set Tpy1 = Tk — AkPk-

End of iteration.

We will consider two strategies for choosing aj. The first one can be applied at the initial
stages of the minimization process.

Theorem 9.1 Let us choose in Newton’s method
1

ap = .
T T+ on(pr)

Then for any k > 0 we have:

Brzen) < B(rma) — (125 (0 ()~ In(1 + 00, (1) 0.1)

<
< P(r ) = (L pr llow —In(l+ || px [l2)

Proof:
By Proposition 6.2
(re+ F'(zi), pe) = px II2, -

Therefore the first inequality of (9.1) is a direct consequence of the inequality (4.7). The
second follows from Proposition 4.1(ii). O

Let us introduce the following proximity measure:
w(r,z) =] p(7, @) || -
It is clear that = (7,2(7)) = 0. We will prove that the inequality
n(r,z) <1

defines a region of quadratic convergence of Newton’s method (with coefficient 1), so that in
this region we should choose a = 1. This result extends Theorem 2.1 of Roos and Vial [9].
Note that in view of Proposition 6.3 we have

m(r,z) <|| F'(z) + Te — A"y || . (9.2)

forany 7> 0,z €int K,and y € Y.
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Theorem 9.2 Let n(7,20) < 1 and let us choose in Newton’s method o = 1. Then
7 (7, k1) | Pk loy 7(7, 28) < 727, 28).
Proof:
Indeed, in view of (9.2) and the definition of py we have:
m(r,ek1) < || F(zra) + e — ATy(, k) N;w
= || P'(oks) — Pa) — F@) (i — 22) [y,

It remains to use Theorem 4.3. ]

Thus, we have demonstrated that using Newton’s method we can find a good approx-
imation to a point on the central path z(7). Let us prove that we can follow the central
path when 7 — oo by updating points in the region of quadratic convergence of Newton’s
method.

Consider the following scheme:

1. Initialization Choose a value 7o > 0 and a point o € S°(P) such that

2. kth iteration
a) Set vy = v(zy), where v(z) is the solution of the following linear system:
¢ — F'(zp)v(z) — A*)(z) =0, Av(z)=0,
and y(z) €Y.
b) Choose the tangent step size Ay as follows:
3

8/1 vk Lol 0% llz

ATk

Set (predictor step)
2p = Tk — ATRVE,  The1 = Tk + ATk,

c) Set (corrector step)
Thy1 = 25 — p(Tk+172k)-

End of iteration.

Theorem 9.3 The above path-following scheme preserves the condition
1
W(Tk,wk)gz, k:O,l,.... (93)

Further, for any k > 0, the following inequality holds:

3 “ Vg ”wk 3
> >11 4+ — . 9.4
Tet1 2 (1+8\/17+2\| T AL Wy A (94)
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Proof:
In view of Theorem 9.2, in order to prove (9.3) we shall prove that

7 (Thy1, 2k) < %
Therefore, by Proposition 6.3, it is enough to prove that
| F'(2k) + (e + Ari)e — A7 |I7,< 3

for some j € Y.
Indeed, let us choose
g = y(7k, Tk) + A7 (k).

Then

F'(zi) + (i + Amp)e — A*G = F'(zi) — F'(ay) + AneF"(zi)or + F"(2)p(73, Tk)
= F'(zi) = F'(zx) — F"(zi)(2x — 1) + F"(26)p(76, Tk)-

Therefore in view of Theorem 4.3 we have:
| F'(2k) + (76 + Ai)e — A |5, < AT | 0k oy - || 0k oy + | F*(zr)p(7e, ) 112, -

Note that from Theorem 4.1

1

F''(2.) >
&) 2 TR Ton )2

F'(zy).

This implies that

| F"(zk)p(e, z) 15, < (1 + A7 | vk o) 7 (Tk, Tk)

1 1 3 ]'Uk ka 11
<= =1 S\ Tonllr ) = 32
< ;0 +AR o ) = 5 (1 s\ ok Iy | = 32

Thus, we conclude that
9
| F'(zx) + (1% + Ai)e — AG 15, = + 55 <

Let us now prove inequality (9.4). Note that

3 H Uk “wk 3
Tegr = Tk + Amp = 75 + > Tt .
o 81| vk |z \l | vk o 8 | vk |z

Thus, we only have to prove that

1
” TEVk {kag \/17-{— —4— (95)
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Let us choose )

y= T—ky(Tk,mk)-

Then in view of Proposition 6.3 and the definitions of vk, p(7, zx) and y(7¢, zx) we have:

| vk lze < I Toe— T ATF I3,
| F'(zk) — F"(zi)p(7e, 21) — A" (y(7h, 28) — 77) ||z,
| F'(zx) — F"(zx)p(Te, zx) |17,

< | Fer) 15, + | F"(@0)p(me, 2e) [15,< VY + i-

Thus, (9.5) and therefore (9.4) is proved. O

Note that A7y, in part (b) of the algorithm is chosen in accordance with a kind of “large-

step” rule. Indeed, let
Vg

k=
Il o |z

Then the maximal step o* such that z; + a*t; € K is given by the formula:

« o ey

B lvklzk.

Note that o* > 1. And it is easy to see that our rule is

3War
8

2 = T — V.

Of course, this rule depends on worst-case behavior. We can alternatively increase 7; using
an adaptive rule, which could allow even faster increase.

Acknowledgment: The authors are grateful to Yinyu Ye for discussions that helped to
motivate the research in this paper.
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