
ptg999

ptg999

ptg999

ptg999

Praise for the First Edition of TCP/IP Illustrated, Volume 1: The Protocols

“This is sure to be the bible for TCP/IP developers and users. Within minutes of picking
up the text, I encountered several scenarios that had tripped up both my colleagues and
myself in the past. Stevens reveals many of the mysteries once held tightly by the ever-
elusive networking gurus. Having been involved in the implementation of TCP/IP for
some years now, I consider this by far the finest text to date.”

—Robert A. Ciampa, network engineer, Synernetics, division of 3COM

“While all of Stevens’ books are readable and technically excellent, this new opus is awe-
some. Although many books describe the TCP/IP protocols, Stevens provides a level of
depth and real-world detail lacking from the competition. He puts the reader inside
TCP/IP using a visual approach and shows the protocols in action.”

—Steven Baker, networking columnist, Unix Review

“TCP/IP Illustrated, Volume 1, is an excellent reference for developers, network admin-
istrators, or anyone who needs to understand TCP/IP technology. TCP/IP Illustrated is
comprehensive in its coverage of TCP/IP topics, providing enough details to satisfy the
experts while giving enough background and commentary for the novice.”

—Bob Williams, vice president, Marketing, NetManage, Inc.

“. . . [T]he difference is that Stevens wants to show as well as tell about the protocols.
His principal teaching tools are straightforward explanations, exercises at the ends of
chapters, byte-by-byte diagrams of headers and the like, and listings of actual traffic as
examples.”

—Walter Zintz, UnixWorld

“Much better than theory only. . . . W. Richard Stevens takes a multihost-based configu-
ration and uses it as a travelogue of TCP/IP examples with illustrations. TCP/IP Illus-
trated, Volume 1, is based on practical examples that reinforce the theory—distinguishing
this book from others on the subject, and making it both readable and informative.”

—Peter M. Haverlock, consultant, IBM TCP/IP Development

“The diagrams he uses are excellent and his writing style is clear and readable. In sum,
Stevens has made a complex topic easy to understand. This book merits everyone’s atten-
tion. Please read it and keep it on your bookshelf.”

—Elizabeth Zinkann, sys admin

“W. Richard Stevens has produced a fine text and reference work. It is well organized
and very clearly written with, as the title suggests, many excellent illustrations expos-
ing the intimate details of the logic and operation of IP, TCP, and the supporting cast of
protocols and applications.”

—Scott Bradner, consultant, Harvard University OIT/NSD

ptg999

This page intentionally left blank

ptg999

TCP/IP Illustrated, Volume 1

Second Edition

ptg999

This page intentionally left blank

ptg999

TCP/IP Illustrated, Volume 1

The Protocols

Second Edition

Kevin R. Fall
W. Richard Stevens

Originally written by Dr. W. Richard Stevens.

Revised by Kevin Fall.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg999

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Fall, Kevin R.

TCP/IP illustrated.—2nd ed. / Kevin R. Fall, W. Richard Stevens.
 p. cm.

Stevens’ name appears first on the earlier edition.
Includes bibliographical references and index.
ISBN-13: 978-0-321-33631-6 (v. 1 : hardcover : alk. paper)
ISBN-10: 0-321-33631-3 (v. 1 : hardcover : alk. paper) 1. TCP/IP (Computer network protocol)

I. Stevens, W. Richard. II. Title.
 TK5105.55.S74 2012
 004.6’2—dc23

2011029411

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-33631-6
ISBN-10: 0-321-33631-3
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, November 2011

ptg999

To Vicki, George, Audrey, Maya, Dylan, and Jan,
for their insight, tolerance, and support
through the long nights and weekends.

—Kevin

ptg999

This page intentionally left blank

ptg999

ix

Contents

 Foreword xxv

Preface to the Second Edition xxvii

Adapted Preface to the First Edition xxxiii

 Chapter 1 Introduction

 1.1 Architectural Principles 2

1.1.1 Packets, Connections, and Datagrams 3

1.1.2 The End-to-End Argument and Fate Sharing 6

1.1.3 Error Control and Flow Control 7

1.2 Design and Implementation 8

1.2.1 Layering 8

1.2.2 Multiplexing, Demultiplexing, and Encapsulation in Layered

Implementations 10

1.3 The Architecture and Protocols of the TCP/IP Suite 13

1.3.1 The ARPANET Reference Model 13

1.3.2 Multiplexing, Demultiplexing, and Encapsulation in TCP/IP 16

1.3.3 Port Numbers 17

1.3.4 Names, Addresses, and the DNS 19

1.4 Internets, Intranets, and Extranets 19

 1.5 Designing Applications 20

1.5.1 Client/Server 20

1.5.2 Peer-to-Peer 21

1.5.3 Application Programming Interfaces (APIs) 22

ptg999

x Contents

 1.6 Standardization Process 22

1.6.1 Request for Comments (RFC) 23

1.6.2 Other Standards 24

1.7 Implementations and Software Distributions 24

1.8 Attacks Involving the Internet Architecture 25

 1.9 Summary 26

 1.10 References 28

Chapter 2 The Internet Address Architecture 3

 2.1 Introduction 31

2.2 Expressing IP Addresses 32

2.3 Basic IP Address Structure 34

2.3.1 Classful Addressing 34

2.3.2 Subnet Addressing 36

2.3.3 Subnet Masks 39

2.3.4 Variable-Length Subnet Masks (VLSM) 41

2.3.5 Broadcast Addresses 42

2.3.6 IPv6 Addresses and Interface Identifiers 43

2.4 CIDR and Aggregation 46

2.4.1 Prefixes 47

2.4.2 Aggregation 48

 2.5 Special-Use Addresses 50

2.5.1 Addressing IPv4/IPv6 Translators 52

2.5.2 Multicast Addresses 53

2.5.3 IPv4 Multicast Addresses 54

2.5.4 IPv6 Multicast Addresses 57

2.5.5 Anycast Addresses 62

 2.6 Allocation 62

2.6.1 Unicast 62

2.6.2 Multicast 65

2.7 Unicast Address Assignment 65

2.7.1 Single Provider/No Network/Single Address 66

2.7.2 Single Provider/Single Network/Single Address 67

2.7.3 Single Provider/Multiple Networks/Multiple Addresses 67

2.7.4 Multiple Providers/Multiple Networks/Multiple Addresses

(Multihoming) 68

ptg999

Contents xi

2.8 Attacks Involving IP Addresses 70

 2.9 Summary 71

 2.10 References 72

Chapter 3 Link Layer 79

 3.1 Introduction 79

3.2 Ethernet and the IEEE 802 LAN/MAN Standards 80

3.2.1 The IEEE 802 LAN/MAN Standards 82

3.2.2 The Ethernet Frame Format 84

3.2.3 802.1p/q: Virtual LANs and QoS Tagging 89

3.2.4 802.1AX: Link Aggregation (Formerly 802.3ad) 92

3.3 Full Duplex, Power Save, Autonegotiation, and 802.1X Flow Control 94

3.3.1 Duplex Mismatch 96

3.3.2 Wake-on LAN (WoL), Power Saving, and Magic Packets 96

3.3.3 Link-Layer Flow Control 98

3.4 Bridges and Switches 98

3.4.1 Spanning Tree Protocol (STP) 102

3.4.2 802.1ak: Multiple Registration Protocol (MRP) 111

3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 111

3.5.1 802.11 Frames 113

3.5.2 Power Save Mode and the Time Sync Function (TSF) 119

3.5.3 802.11 Media Access Control 120

3.5.4 Physical-Layer Details: Rates, Channels, and Frequencies 123

3.5.5 Wi-Fi Security 129

3.5.6 Wi-Fi Mesh (802.11s) 130

3.6 Point-to-Point Protocol (PPP) 130

3.6.1 Link Control Protocol (LCP) 131

3.6.2 Multi link PPP (MP) 137

3.6.3 Compression Control Protocol (CCP) 139

3.6.4 PPP Authentication 140

3.6.5 Network Control Protocols (NCPs) 141

3.6.6 Header Compression 142

3.6.7 Example 143

 3.7 Loopback 145

3.8 MTU and Path MTU 148

3.9 Tunneling Basics 149

3.9.1 Unidirectional Links 153

ptg999

xii Contents

3.10 Attacks on the Link Layer 154

 3.11 Summary 156

 3.12 References 157

Chapter 4 ARP: Address Resolution Protocol 165

 4.1 Introduction 165

 4.2 An Example 166

4.2.1 Direct Delivery and ARP 167

 4.3 ARP Cache 169

4.4 ARP Frame Format 170

 4.5 ARP Examples 171

4.5.1 Normal Example 171

4.5.2 ARP Request to a Nonexistent Host 173

4.6 ARP Cache Timeout 174

 4.7 Proxy ARP 174

4.8 Gratuitous ARP and Address Conflict Detection (ACD) 175

 4.9 The arp Command 177

4.10 Using ARP to Set an Embedded Device’s IPv4 Address 178

4.11 Attacks Involving ARP 178

 4.12 Summary 179

 4.13 References 179

Chapter 5 The Internet Protocol (IP) 18

 5.1 Introduction 181

5.2 IPv4 and IPv6 Headers 183

5.2.1 IP Header Fields 183

5.2.2 The Internet Checksum 186

5.2.3 DS Field and ECN (Formerly Called the ToS Byte or IPv6 Traffic Class) 188

5.2.4 IP Options 192

5.3 IPv6 Extension Headers 194

5.3.1 IPv6 Options 196

5.3.2 Routing Header 200

5.3.3 Fragment Header 203

 5.4 IP Forwarding 208

5.4.1 Forwarding Table 208

5.4.2 IP Forwarding Actions 209

ptg999

Contents xiii

5.4.3 Examples 210

5.4.4 Discussion 215

 5.5 Mobile IP 215

5.5.1 The Basic Model: Bidirectional Tunneling 216

5.5.2 Route Optimization (RO) 217

5.5.3 Discussion 220

5.6 Host Processing of IP Datagrams 220

5.6.1 Host Models 220

5.6.2 Address Selection 222

5.7 Attacks Involving IP 226

 5.8 Summary 226

 5.9 References 228

Chapter 6 System Configuration: DHCP and Autoconfiguration 233

 6.1 Introduction 233

6.2 Dynamic Host Configuration Protocol (DHCP) 234

6.2.1 Address Pools and Leases 235

6.2.2 DHCP and BOOTP Message Format 236

6.2.3 DHCP and BOOTP Options 238

6.2.4 DHCP Protocol Operation 239

6.2.5 DHCPv6 252

6.2.6 Using DHCP with Relays 267

6.2.7 DHCP Authentication 271

6.2.8 Reconfigure Extension 273

6.2.9 Rapid Commit 273

6.2.10 Location Information (LCI and LoST) 274

6.2.11 Mobility and Handoff Information (MoS and ANDSF) 275

6.2.12 DHCP Snooping 276

6.3 Stateless Address Autoconfiguration (SLAAC) 276

6.3.1 Dynamic Configuration of IPv4 Link-Local Addresses 276

6.3.2 IPv6 SLAAC for Link-Local Addresses 276

6.4 DHCP and DNS Interaction 285

6.5 PPP over Ethernet (PPPoE) 286

6.6 Attacks Involving System Configuration 292

 6.7 Summary 292

 6.8 References 293

ptg999

xiv Contents

Chapter 7 Firewalls and Network Address Translation (NAT) 299

 7.1 Introduction 299

 7.2 Firewalls 300

7.2.1 Packet-Filtering Firewalls 300

7.2.2 Proxy Firewalls 301

7.3 Network Address Translation (NAT) 303

7.3.1 Traditional NAT: Basic NAT and NAPT 305

7.3.2 Address and Port Translation Behavior 311

7.3.3 Filtering Behavior 313

7.3.4 Servers behind NATs 314

7.3.5 Hairpinning and NAT Loopback 314

7.3.6 NAT Editors 315

7.3.7 Service Provider NAT (SPNAT) and Service Provider IPv6

Transition 315

7.4 NAT Traversal 316

7.4.1 Pinholes and Hole Punching 317

7.4.2 UNilateral Self-Address Fixing (UNSAF) 317

7.4.3 Session Traversal Utilities for NAT (STUN) 319

7.4.4 Traversal Using Relays around NAT (TURN) 326

7.4.5 Interactive Connectivity Establishment (ICE) 332

7.5 Configuring Packet-Filtering Firewalls and NATs 334

7.5.1 Firewall Rules 335

7.5.2 NAT Rules 337

7.5.3 Direct Interaction with NATs and Firewalls: UPnP, NAT-PMP,

and PCP 338

7.6 NAT for IPv4/IPv6 Coexistence and Transition 339

7.6.1 Dual-Stack Lite (DS-Lite) 339

7.6.2 IPv4/IPv6 Translation Using NATs and ALGs 340

7.7 Attacks Involving Firewalls and NATs 345

 7.8 Summary 346

 7.9 References 347

Chapter 8 ICMPv4 and ICMPv6: Internet Control Message Protocol 353

 8.1 Introduction 353

8.1.1 Encapsulation in IPv4 and IPv6 354

 8.2 ICMP Messages 355

8.2.1 ICMPv4 Messages 356

ptg999

Contents xv

8.2.2 ICMPv6 Messages 358

8.2.3 Processing of ICMP Messages 360

8.3 ICMP Error Messages 361

8.3.1 Extended ICMP and Multipart Messages 363

8.3.2 Destination Unreachable (ICMPv4 Type 3, ICMPv6 Type 1)

and Packet Too Big (ICMPv6 Type 2) 364

8.3.3 Redirect (ICMPv4 Type 5, ICMPv6 Type 137) 372

8.3.4 ICMP Time Exceeded (ICMPv4 Type 11, ICMPv6 Type 3) 375

8.3.5 Parameter Problem (ICMPv4 Type 12, ICMPv6 Type 4) 379

8.4 ICMP Query/Informational Messages 380

8.4.1 Echo Request/Reply (ping) (ICMPv4 Types 0/8, ICMPv6 Types

129/128) 380

8.4.2 Router Discovery: Router Solicitation and Advertisement

(ICMPv4 Types 9, 10) 383

8.4.3 Home Agent Address Discovery Request/Reply (ICMPv6 Types

144/145) 386

8.4.4 Mobile Prefix Solicitation/Advertisement (ICMPv6 Types 146/147) 387

8.4.5 Mobile IPv6 Fast Handover Messages (ICMPv6 Type 154) 388

8.4.6 Multicast Listener Query/Report/Done (ICMPv6 Types

130/131/132) 388

8.4.7 Version 2 Multicast Listener Discovery (MLDv2) (ICMPv6

Type 143) 390

8.4.8 Multicast Router Discovery (MRD) (IGMP Types 48/49/50,

ICMPv6 Types 151/152/153) 394

8.5 Neighbor Discovery in IPv6 395

8.5.1 ICMPv6 Router Solicitation and Advertisement (ICMPv6 Types

133, 134) 396

8.5.2 ICMPv6 Neighbor Solicitation and Advertisement (IMCPv6 Types

135, 136) 398

8.5.3 ICMPv6 Inverse Neighbor Discovery Solicitation/Advertisement

(ICMPv6 Types 141/142) 401

8.5.4 Neighbor Unreachability Detection (NUD) 402

8.5.5 Secure Neighbor Discovery (SEND) 403

8.5.6 ICMPv6 Neighbor Discovery (ND) Options 407

8.6 Translating ICMPv4 and ICMPv6 424

8.6.1 Translating ICMPv4 to ICMPv6 424

8.6.2 Translating ICMPv6 to ICMPv4 426

8.7 Attacks Involving ICMP 428

ptg999

xvi Contents

 8.8 Summary 430

 8.9 References 430

Chapter 9 Broadcasting and Local Multicasting (IGMP and MLD) 435

 9.1 Introduction 435

 9.2 Broadcasting 436

9.2.1 Using Broadcast Addresses 437

9.2.2 Sending Broadcast Datagrams 439

 9.3 Multicasting 441

9.3.1 Converting IP Multicast Addresses to 802 MAC/Ethernet Addresses 442

9.3.2 Examples 444

9.3.3 Sending Multicast Datagrams 446

9.3.4 Receiving Multicast Datagrams 447

9.3.5 Host Address Filtering 449

9.4 The Internet Group Management Protocol (IGMP) and Multicast Listener

Discovery Protocol (MLD) 451

9.4.1 IGMP and MLD Processing by Group Members (“Group

Member Part”) 454

9.4.2 IGMP and MLD Processing by Multicast Routers (“Multicast

Router Part”) 457

9.4.3 Examples 459

9.4.4 Lightweight IGMPv3 and MLDv2 464

9.4.5 IGMP and MLD Robustness 465

9.4.6 IGMP and MLD Counters and Variables 467

9.4.7 IGMP and MLD Snooping 468

9.5 Attacks Involving IGMP and MLD 469

 9.6 Summary 470

 9.7 References 471

Chapter 10 User Datagram Protocol (UDP) and IP Fragmentation 473

 10.1 Introduction 473

 10.2 UDP Header 474

 10.3 UDP Checksum 475

 10.4 Examples 478

10.5 UDP and IPv6 481

10.5.1 Teredo: Tunneling IPv6 through IPv4 Networks 482

ptg999

Contents xvii

 10.6 UDP-Lite 487

 10.7 IP Fragmentation 488

10.7.1 Example: UDP/IPv4 Fragmentation 488

10.7.2 Reassembly Timeout 492

10.8 Path MTU Discovery with UDP 493

10.8.1 Example 493

10.9 Interaction between IP Fragmentation and ARP/ND 496

10.10 Maximum UDP Datagram Size 497

10.10.1 Implementation Limitations 497

10.10.2 Datagram Truncation 498

10.11 UDP Server Design 498

10.11.1 IP Addresses and UDP Port Numbers 499

10.11.2 Restricting Local IP Addresses 500

10.11.3 Using Multiple Addresses 501

10.11.4 Restricting Foreign IP Address 502

10.11.5 Using Multiple Servers per Port 503

10.11.6 Spanning Address Families: IPv4 and IPv6 504

10.11.7 Lack of Flow and Congestion Control 505

10.12 Translating UDP/IPv4 and UDP/IPv6 Datagrams 505

10.13 UDP in the Internet 506

10.14 Attacks Involving UDP and IP Fragmentation 507

 10.15 Summary 508

 10.16 References 508

Chapter 11 Name Resolution and the Domain Name System (DNS) 51

 11.1 Introduction 511

11.2 The DNS Name Space 512

11.2.1 DNS Naming Syntax 514

11.3 Name Servers and Zones 516

 11.4 Caching 517

11.5 The DNS Protocol 518

11.5.1 DNS Message Format 520

11.5.2 The DNS Extension Format (EDNS0) 524

11.5.3 UDP or TCP 525

11.5.4 Question (Query) and Zone Section Format 526

11.5.5 Answer, Authority, and Additional Information Section Formats 526

11.5.6 Resource Record Types 527

ptg999

xviii Contents

11.5.7 Dynamic Updates (DNS UPDATE) 555

11.5.8 Zone Transfers and DNS NOTIFY 558

11.6 Sort Lists, Round-Robin, and Split DNS 565

11.7 Open DNS Servers and DynDNS 567

11.8 Transparency and Extensibility 567

11.9 Translating DNS from IPv4 to IPv6 (DNS64) 568

11.10 LLMNR and mDNS 569

 11.11 LDAP 570

11.12 Attacks on the DNS 571

 11.13 Summary 572

 11.14 References 573

Chapter 12 TCP: The Transmission Control Protocol (Preliminaries) 579

 12.1 Introduction 579

12.1.1 ARQ and Retransmission 580

12.1.2 Windows of Packets and Sliding Windows 581

12.1.3 Variable Windows: Flow Control and Congestion Control 583

12.1.4 Setting the Retransmission Timeout 584

12.2 Introduction to TCP 584

12.2.1 The TCP Service Model 585

12.2.2 Reliability in TCP 586

12.3 TCP Header and Encapsulation 587

 12.4 Summary 591

 12.5 References 591

Chapter 13 TCP Connection Management 595

 13.1 Introduction 595

13.2 TCP Connection Establishment and Termination 595

13.2.1 TCP Half-Close 598

13.2.2 Simultaneous Open and Close 599

13.2.3 Initial Sequence Number (ISN) 601

13.2.4 Example 602

13.2.5 Timeout of Connection Establishment 604

13.2.6 Connections and Translators 605

 13.3 TCP Options 605

13.3.1 Maximum Segment Size (MSS) Option 606

ptg999

Contents xix

13.3.2 Selective Acknowledgment (SACK) Options 607

13.3.3 Window Scale (WSCALE or WSOPT) Option 608

13.3.4 Timestamps Option and Protection against Wrapped

Sequence Numbers (PAWS) 608

13.3.5 User Timeout (UTO) Option 611

13.3.6 Authentication Option (TCP-AO) 612

13.4 Path MTU Discovery with TCP 612

13.4.1 Example 613

13.5 TCP State Transitions 616

13.5.1 TCP State Transition Diagram 617

13.5.2 TIME_WAIT (2MSL Wait) State 618

13.5.3 Quiet Time Concept 624

13.5.4 FIN_WAIT_2 State 625

13.5.5 Simultaneous Open and Close Transitions 625

 13.6 Reset Segments 625

13.6.1 Connection Request to Nonexistent Port 626

13.6.2 Aborting a Connection 627

13.6.3 Half-Open Connections 628

13.6.4 TIME-WAIT Assassination (TWA) 630

13.7 TCP Server Operation 631

13.7.1 TCP Port Numbers 632

13.7.2 Restricting Local IP Addresses 634

13.7.3 Restricting Foreign Endpoints 635

13.7.4 Incoming Connection Queue 636

13.8 Attacks Involving TCP Connection Management 640

 13.9 Summary 642

 13.10 References 643

Chapter 14 TCP Timeout and Retransmission 647

 14.1 Introduction 647

14.2 Simple Timeout and Retransmission Example 648

14.3 Setting the Retransmission Timeout (RTO) 651

14.3.1 The Classic Method 651

14.3.2 The Standard Method 652

14.3.3 The Linux Method 657

14.3.4 RTT Estimator Behaviors 661

14.3.5 RTTM Robustness to Loss and Reordering 662

ptg999

xx Contents

 14.4 Timer-Based Retransmission 664

14.4.1 Example 665

 14.5 Fast Retransmit 667

14.5.1 Example 668

14.6 Retransmission with Selective Acknowledgments 671

14.6.1 SACK Receiver Behavior 672

14.6.2 SACK Sender Behavior 673

14.6.3 Example 673

14.7 Spurious Timeouts and Retransmissions 677

14.7.1 Duplicate SACK (DSACK) Extension 677

14.7.2 The Eifel Detection Algorithm 679

14.7.3 Forward-RTO Recovery (F-RTO) 680

14.7.4 The Eifel Response Algorithm 680

14.8 Packet Reordering and Duplication 682

14.8.1 Reordering 682

14.8.2 Duplication 684

 14.9 Destination Metrics 685

 14.10 Repacketization 686

14.11 Attacks Involving TCP Retransmission 687

 14.12 Summary 688

 14.13 References 689

Chapter 15 TCP Data Flow and Window Management 69
15.1 Introduction 691

 15.2 Interactive Communication 692

 15.3 Delayed Acknowledgments 695

 15.4 Nagle Algorithm 696

15.4.1 Delayed ACK and Nagle Algorithm Interaction 699

15.4.2 Disabling the Nagle Algorithm 699

15.5 Flow Control and Window Management 700

15.5.1 Sliding Windows 701

15.5.2 Zero Windows and the TCP Persist Timer 704

15.5.3 Silly Window Syndrome (SWS) 708

15.5.4 Large Buffers and Auto-Tuning 715

 15.6 Urgent Mechanism 719

15.6.1 Example 720

15.7 Attacks Involving Window Management 723

ptg999

Contents xxi

 15.8 Summary 723

 15.9 References 724

Chapter 16 TCP Congestion Control 727

 16.1 Introduction 727

16.1.1 Detection of Congestion in TCP 728

16.1.2 Slowing Down a TCP Sender 729

16.2 The Classic Algorithms 730

16.2.1 Slow Start 732

16.2.2 Congestion Avoidance 734

16.2.3 Selecting between Slow Start and Congestion Avoidance 736

16.2.4 Tahoe, Reno, and Fast Recovery 737

16.2.5 Standard TCP 738

16.3 Evolution of the Standard Algorithms 739

16.3.1 NewReno 739

16.3.2 TCP Congestion Control with SACK 740

16.3.3 Forward Acknowledgment (FACK) and Rate Halving 741

16.3.4 Limited Transmit 742

16.3.5 Congestion Window Validation (CWV) 742

16.4 Handling Spurious RTOs—the Eifel Response Algorithm 744

16.5 An Extended Example 745

16.5.1 Slow Start Behavior 749

16.5.2 Sender Pause and Local Congestion (Event 1) 750

16.5.3 Stretch ACKs and Recovery from Local Congestion 754

16.5.4 Fast Retransmission and SACK Recovery (Event 2) 757

16.5.5 Additional Local Congestion and Fast Retransmit Events 759

16.5.6 Timeouts, Retransmissions, and Undoing cwnd Changes 762

16.5.7 Connection Completion 766

16.6 Sharing Congestion State 767

 16.7 TCP Friendliness 768

16.8 TCP in High-Speed Environments 770

16.8.1 HighSpeed TCP (HSTCP) and Limited Slow Start 770

16.8.2 Binary Increase Congestion Control (BIC and CUBIC) 772

16.9 Delay-Based Congestion Control 777

16.9.1 Vegas 777

16.9.2 FAST 778

ptg999

xxii Contents

16.9.3 TCP Westwood and Westwood+ 779

16.9.4 Compound TCP 779

 16.10 Buffer Bloat 781

16.11 Active Queue Management and ECN 782

16.12 Attacks Involving TCP Congestion Control 785

 16.13 Summary 786

 16.14 References 788

Chapter 17 TCP Keepalive 793

 17.1 Introduction 793

 17.2 Description 795

17.2.1 Keepalive Examples 797

17.3 Attacks Involving TCP Keepalives 802

 17.4 Summary 802

 17.5 References 803

Chapter 18 Security: EAP, IPsec, TLS, DNSSEC, and DKIM 805

 18.1 Introduction 805

18.2 Basic Principles of Information Security 806

18.3 Threats to Network Communication 807

18.4 Basic Cryptography and Security Mechanisms 809

18.4.1 Cryptosystems 809

18.4.2 Rivest, Shamir, and Adleman (RSA) Public Key Cryptography 812

18.4.3 Diffie-Hellman-Merkle Key Agreement (aka Diffie-Hellman or DH) 813

18.4.4 Signcryption and Elliptic Curve Cryptography (ECC) 814

18.4.5 Key Derivation and Perfect Forward Secrecy (PFS) 815

18.4.6 Pseudorandom Numbers, Generators, and Function Families 815

18.4.7 Nonces and Salt 816

18.4.8 Cryptographic Hash Functions and Message Digests 817

18.4.9 Message Authentication Codes (MACs, HMAC, CMAC, and GMAC) 818

18.4.10 Cryptographic Suites and Cipher Suites 819

18.5 Certificates, Certificate Authorities (CAs), and PKIs 821

18.5.1 Public Key Certificates, Certificate Authorities, and X.509 822

18.5.2 Validating and Revoking Certificates 828

18.5.3 Attribute Certificates 831

ptg999

Contents xxiii

18.6 TCP/IP Security Protocols and Layering 832

18.7 Network Access Control: 802.1X, 802.1AE, EAP, and PANA 833

18.7.1 EAP Methods and Key Derivation 837

18.7.2 The EAP Re-authentication Protocol (ERP) 839

18.7.3 Protocol for Carrying Authentication for Network Access (PANA) 839

18.8 Layer 3 IP Security (IPsec) 840

18.8.1 Internet Key Exchange (IKEv2) Protocol 842

18.8.2 Authentication Header (AH) 854

18.8.3 Encapsulating Security Payload (ESP) 858

18.8.4 Multicast 864

18.8.5 L2TP/IPsec 865

18.8.6 IPsec NAT Traversal 865

18.8.7 Example 867

18.9 Transport Layer Security (TLS and DTLS) 876

18.9.1 TLS 1.2 877

18.9.2 TLS with Datagrams (DTLS) 891

18.10 DNS Security (DNSSEC) 894

18.10.1 DNSSEC Resource Records 896

18.10.2 DNSSEC Operation 902

18.10.3 Transaction Authentication (TSIG, TKEY, and SIG(0)) 911

18.10.4 DNSSEC with DNS64 915

18.11 DomainKeys Identified Mail (DKIM) 915

18.11.1 DKIM Signatures 916

18.11.2 Example 916

18.12 Attacks on Security Protocols 918

 18.13 Summary 919

 18.14 References 922

Glossary of Acronyms 933

Index 963

ptg999

This page intentionally left blank

ptg999

xxv

Foreword

Rarely does one find a book on a well-known topic that is both historically and
technically comprehensive and remarkably accurate. One of the things I admire
about this work is the “warts and all” approach that gives it such credibility. The
TCP/IP architecture is a product of the time in which it was conceived. That it has
been able to adapt to growing requirements in many dimensions by factors of a
million or more, to say nothing of a plethora of applications, is quite remarkable.
Understanding the scope and limitations of the architecture and its protocols is a
sound basis from which to think about future evolution and even revolution.

During the early formulation of the Internet architecture, the notion of “enter-
prise” was not really recognized. In consequence, most networks had their own
IP address space and “announced” their addresses in the routing system directly.
After the introduction of commercial service, Internet Service Providers emerged
as intermediaries who “announced” Internet address blocks on behalf of their cus-
tomers. Thus, most of the address space was assigned in a “provider dependent”
fashion. “Provider independent” addressing was unusual. The net result (no pun
intended) led to route aggregation and containment of the size of the global rout-
ing table. While this tactic had benefits, it also created the “multi-homing” prob-
lem since users of provider-dependent addresses did not have their own entries
in the global routing table. The IP address “crunch” also led to Network Address
Translation, which also did not solve provider dependence and multi-homing
problems.

Reading through this book evokes a sense of wonder at the complexity that
has evolved from a set of relatively simple concepts that worked with a small num-
ber of networks and application circumstances. As the chapters unfold, one can
see the level of complexity that has evolved to accommodate an increasing number
of requirements, dictated in part by new deployment conditions and challenges, to
say nothing of sheer growth in the scale of the system.

The issues associated with securing “enterprise” users of the Internet also led
to firewalls that are intended to supply perimeter security. While useful, it has
become clear that attacks against local Internet infrastructure can come through

ptg999

xxvi Foreword

internal compromises (e.g., an infected computer is put onto an internal network
or an infected thumb-drive is used to infect an internal computer through its USB
port).

It has become apparent that, in addition to a need to expand the Internet
address space through the introduction of IP version 6, with its 340 trillion tril-
lion trillion addresses, there is also a strong need to introduce various security-
enhancing mechanisms such as the Domain Name System Security Extension
(DNSSEC) among many others.

What makes this book unique, in my estimation, is the level of detail and atten-
tion to history. It provides background and a sense for the ways in which solutions
to networking problems have evolved. It is relentless in its effort to achieve preci-
sion and to expose remaining problem areas. For an engineer determined to refine
and secure Internet operation or to explore alternative solutions to persistent prob-
lems, the insights provided by this book will be invaluable. The authors deserve
credit for a thorough rendering of the technology of today’s Internet.

Woodhurst Vint Cerf
June 2011

ptg999

xxvii

Preface to the Second Edition

Welcome to the second edition of TCP/IP Illustrated, Volume 1. This book aims
to provide a detailed, current look at the TCP/IP protocol suite. Instead of just
describing how the protocols operate, we show the protocols in operation using
a variety of analysis tools. This helps you better understand the design decisions
behind the protocols and how they interact with each other, and it simultaneously
exposes you to implementation details without your having to read through the
implementation’s software source code or set up an experimental laboratory. Of
course, reading source code or setting up a laboratory will only help to increase
your understanding.

Networking has changed dramatically in the past three decades. Originally a
research project and object of curiosity, the Internet has become a global commu-
nication fabric upon which governments, businesses, and individuals depend. The
TCP/IP suite defines the underlying methods used to exchange information by
every device on the Internet. After more than a decade of delay, the Internet and
TCP/IP itself are now undergoing an evolution, to incorporate IPv6. Throughout
the text we will discuss both IPv6 and the current IPv4 together, but we high-
light the differences where they are important. Unfortunately, they do not directly
interoperate, so some care and attention are required to appreciate the impact of
the evolution.

The book is intended for anyone wishing to better understand the current set
of TCP/IP protocols and how they operate: network operators and administrators,
network software developers, students, and users who deal with TCP/IP. We have
included material that should be of interest to both new readers as well as those
familiar with the material from the first edition. We hope you will find the cover-
age of the new and older material useful and interesting.

Comments on the First Edition

Nearly two decades have passed since the publication of the first edition of TCP/IP
Illustrated, Volume 1. It continues to be a valuable resource for both students and
pro fessionals in understanding the TCP/IP protocols at a level of detail difficult to

ptg999

xxviii Preface to the Second Edition

obtain in competing texts. Today it remains among the best references for detailed
information regarding the operation of the TCP/IP protocols. However, even the
best books con cerned with information and communications technology become
dated after a time, and the TCP/IP Illustrated series is no exception. In this edition,
I hope to thoroughly update the pio neering work of Dr. Stevens with coverage of
new material while maintaining the exceptionally high standard of presentation
and detail common to his numerous books.

The first edition covers a broad set of protocols and their operation, ranging
from the link layer all the way to applications and net work management. Today,
covering this breadth of material compre hensively in a single volume would
produce a very lengthy text indeed. For this reason, the second edition focuses
specifically on the core protocols: those relatively low-level protocols used most
frequently in providing the basic services of configuration, naming, data delivery,
and security for the Internet. Detailed discussions of applications, routing, Web
services, and other important topics are postponed to subsequent volumes.

Considerable progress has been made in improving the robustness and com-
pliance of TCP/IP implementations to their corresponding specifications since the
publication of the first edition. While many of the examples in the first edition
highlight implementation bugs or noncompliant behaviors, these problems have
largely been addressed in cur rently available systems, at least for IPv4. This fact
is not terribly surprising, given the greatly expanded use of the TCP/IP protocols
in the last 18 years. Misbe having implementations are a comparative rarity, which
attests to a certain maturity of the protocol suite as a whole. The problems encoun-
tered in the operation of the core protocols nowadays often relate to intentional
exploitation of infrequently used protocol features, a form of security concern that
was not a primary focus in the first edition but one that we spend considerable
effort to address in the second edition.

The Internet Milieu of the Twenty-first Century

The usage patterns and importance of the Internet have changed considerably
since the publication of the first edition. The most obvious watershed event was
the creation and subsequent intense commercial ization of the World Wide Web
starting in the early 1990s. This event greatly accelerated the availability of the
Internet to large numbers of people with various (some times conflicting) motiva-
tions. As such, the protocols and systems originally imple mented in a small-scale
environment of academic cooperation have been stressed by limited availability of
addresses and an increase of security concerns.

In response to the security threats, network and security administrators have
intro duced special control elements into the network. It is now common practice to
place a firewall at the point of attachment to the Internet, for both large enterprises
as well as small businesses and homes. As the demand for IP addresses and secu-
rity has increased over the last decade, Network Address Translation (NAT) is now
supported in virtually all current-gen eration routers and is in widespread use. It

ptg999

Preface to the Second Edition xxix

has eased the pressure on Internet address availability by allowing sites to obtain
a comparatively small number of routable Inter net addresses from their service
providers (one for each simultaneously online user), yet assign a very large num-
ber of addresses to local computers without further coordination. A consequence
of NAT deployment has been a slowing of the migration to IPv6 (which provides
for an almost incomprehensi bly large number of addresses) and interoperability
problems with some older protocols.

As the users of personal computers began to demand Internet connectivity
by the mid-1990s, the largest supplier of PC software, Microsoft, abandoned its
original policy of offering only proprietary alternatives to the Internet and instead
undertook an effort to embrace TCP/IP compatibility in most of its products.
Since then, personal computers running their Windows operating system have
come to dominate the mix of PCs presently connected to the Internet. Over time,
a significant rise in the number of Linux-based systems means that such systems
now threaten to displace Microsoft as the fron trunner. Other operating systems,
including Oracle Solaris and Berkeley’s BSD-based systems, which once repre-
sented the majority of Internet-connected systems, are now a comparatively small
component of the mix. Apple’s OS X (Mach-based) operating system has risen as
a new contender and is gaining in popularity, especially among portable com-
puter users. In 2003, portable computer (laptop) sales exceeded desktop sales as
the majority of personal computer types sold, and their prolifer ation has sparked
a demand for widely deployed, high-speed Internet access supported by wire-
less infrastructure. It is projected that the most common method for accessing the
Internet from 2012 and beyond will be smartphones. Tablet computers also repre-
sent an important growing contender.

Wireless networks are now available at a large number of locations such as
restaurants, airports, coffeehouses, and other public places. They typically pro-
vide short-range free or pay-for-use (flat-rate) high-speed wireless Internet con-
nections using hardware com patible with commonly used office or home local
area network installations. A set of alternative “wireless broadband” technolo-
gies based on cellular telephone standards (e.g., LTE, HSPA, UMTS, EV-DO) are
becoming widely available in developed regions of the world (and some develop-
ing regions of the words that are “leapfrogging” to newer wireless technology),
offering longer-range operation, often at somewhat reduced bandwidths and with
volume-based pricing. Both types of infrastructure address the desire of users to
be mobile while accessing the Internet, using either portable computers or smaller
devices. In either case, mobile end users accessing the Internet over wireless net-
works pose two significant technical challenges to the TCP/IP protocol archi-
tecture. First, mobility affects the Internet’s routing and addressing structure by
breaking the assumption that hosts have addresses assigned to them based upon
the identity of their nearby router. Second, wireless links may experience outages
and therefore cause data to be lost for reasons other than those typical of wired
links (which generally do not lose data unless too much traffic is being injected
into the network).

ptg999

xxx Preface to the Second Edition

Finally, the Internet has fostered the rise of so-called peer-to- peer applica-
tions forming “overlay” networks. Peer-to-peer applications do not rely on a cen-
tral server to accomplish a task but instead deter mine a set of peer computers with
which they can communicate and interact to accom plish a task. The peer computers
are operated by other end users and may come and go rapidly compared to a fixed
server infrastructure. The “overlay” concept cap tures the fact that such interact-
ing peers themselves form a network, overlaid atop the conventional TCP/IP-based
network (which, one may observe, is itself an overlay above the underlying physi-
cal links). The development of peer-to-peer applications, while of intense interest
to those who study traffic flows and electronic commerce, has not had a profound
impact on the core protocols described in Volume 1 per se, but the concept of overlay
networks has become an important consideration for networking technology more
generally.

Content Changes for the Second Edition

Regarding content in the text, the most important changes from the first edition
are a restructuring of the scope of the overall text and the addition of significant
material on security. Instead of attempting to cover nearly all common protocols
in use at every layer in the Internet, the present text focuses in detail first on the
non-security core protocols in widespread use, or that are expected to be in wide-
spread use in the near future: Ethernet (802.3), Wi-Fi (802.11), PPP, ARP, IPv4, IPv6,
UDP, TCP, DHCP, and DNS. These protocols are likely to be encountered by sys-
tem administrators and users alike.

In the second edition, security is covered in two ways. First, in each appropriate
chapter, a section devoted to describing known attacks and their countermeasures
relating to the protocol described in the chapter is included. These descriptions
are not presented as a recipe for construct ing attacks but rather as a practical indi-
cation of the kinds of problems that may arise when protocol implementations (or
specifications, in some cases) are insufficiently robust. In today’s Internet, incom-
plete specification or lax implementation practice can lead to mission-critical sys-
tems being compromised by even relatively unsophisticated attacks.

The second important discussion of security occurs in Chapter 18, where
security and cryptography are studied in some detail, including protocols such as
IPsec, TLS, DNSSEC, and DKIM. These protocols are now understood to be impor-
tant for implementing any service or application expected to maintain integrity
or secure operation. As the Internet has increased in commercial importance, the
need for security (and the number of threats to it) has grown proportionally.

Although IPv6 was not included in the first edition, there is now reason to
believe that the use of IPv6 may increase significantly with the exhaustion of
unallocated IPv4 address groups in February 2011. IPv6 was conceived largely
to address the problems of IPv4 address depletion and, and while not nearly as
common as IPv4 today, is becoming more important as a grow ing number of
small devices (such as cellular telephones, household devices, and envi ronmental

ptg999

Preface to the Second Edition xxxi

sensors) become attached to the Internet. Events such as the World IPv6 Day (June
8, 2011) helped to demonstrate that the Internet can continue to work even as the
underlying protocols are modified and augmented in a significant way.

A second consideration for the structure of the second edition is a deemphasis
of the protocols that are no longer commonly used and an update of the descrip-
tions of those that have been revised substantially since the publication of the
first edition. The chapters covering RARP, BOOTP, NFS, SMTP, and SNMP have
been removed from the book, and the discussion of the SLIP protocol has been
abandoned in favor of expanded coverage of DHCP and PPP (including PPPoE).
The function of IP forwarding (described in Chapter 9 in the first edition) has
been integrated with the overall description of the IPv4 and IPv6 protocols in
Chapter 5 of this edition. The discussion of dynamic routing protocols (RIP, OSPF,
and BGP) has been removed, as the latter two protocols alone could each conceiv-
ably merit a book-long discussion. Starting with ICMP, and continuing through IP,
TCP, and UDP, the impact of operation using IPv4 versus IPv6 is discussed in any
cases where the difference in operation is significant. There is no specific chapter
devoted solely to IPv6; instead, its impact relative to each existing core protocol is
described where appropriate. Chapters 15 and 25–30 of the first edition, which are
devoted to Internet applications and their supporting protocols, have been largely
removed; what remains only illustrates the operation of the underlying core pro-
tocols where necessary.

Several chapters covering new material have been added. The first chapter
begins with a general introduction to networking issues and architecture, followed
by a more Internet-specific orienta tion. The Internet’s addressing architecture is
covered in Chapter 2. A new chapter on host configuration and how a system “gets
on” the network appears as Chapter 6. Chapter 7 describes firewalls and Network
Address Translation (NAT), including how NATs are used in partitioning address
space between routable and nonroutable portions. The set of tools used in the first
edition has been expanded to include Wireshark (a free network traffic monitor
application with a graphical user interface).

The target readership for the second edition remains identical to that of the
first edition. No prior knowledge of networking concepts is required for approach-
ing it, although the advanced reader should benefit from the level of detail and
references. A rich collection of references is included in each chapter for the inter-
ested reader to pursue.

Editorial Changes for the Second Edition

The general flow of material in the second edition remains similar to that of the
first edition. After the introductory material (Chapters 1 and 2), the protocols are
presented in a bottom-up fashion to illustrate how the goal of network communi-
cation presented in the introduction is realized in the Internet architecture. As in
the first edition, actual packet traces are used to illustrate the operational details
of the protocols, where appropriate. Since the publication of the first edition, freely

ptg999

xxxii Preface to the Second Edition

available packet cap ture and analysis tools with graphical interfaces have become
available, extending the capabilities of the tcpdump program used in the first
edition. In the present text, tcpdump is used when the points to be illustrated
are easily con veyed by examining the output of a text-based packet capture tool.
In most other cases, however, screen shots of the Wireshark tool are used. Please
be aware that some output listings, including snapshots of tcpdump output, are
wrapped or simplified for clarity.

The packet traces shown typically illustrate the behavior of one or more parts
of the network depicted on the inside of the front book cover. It represents a broad-
band-connected “home” environment (typically used for client access or peer-to-
peer net working), a “public” environment (e.g., coffee shop), and an enterprise
environment. The operating systems used for examples include Linux, Windows,
FreeBSD, and Mac OS X. Various versions are used, as many different OS versions
are in use on the Internet today.

The structure of each chapter has been slightly modified from the first edi-
tion. Each chapter begins with an introduction to the chapter topic, followed in
some cases by historical notes, the details of the chapter, a summary, and a set of
references. A section near the end of most chapters describes security concerns
and attacks. The per-chapter references represent a change for the second edition.
They should make each chapter more self-contained and require the reader to
perform fewer “long-distance page jumps” to find a reference. Some of the refer-
ences are now enhanced with WWW URLs for easier access online. In addition,
the reference format for papers and books has been changed to a some what more
compact form that includes the first initial of each author’s last name fol lowed by
the last two digits of the year (e.g., the former [Cerf and Kahn 1974] is now short-
ened to [CK74]). For the numerous RFC references used, the RFC number is used
instead of the author names. This follows typical RFC conventions and has the
side benefit of grouping all the RFC references together in the reference lists.

On a final note, the typographical conventions of the TCP/IP Illustrated series
have been maintained faithfully. However, the present author elected to use an
editor and typesetting package other than the Troff system used by Dr. Stevens
and some other authors of the Addison-Wesley Professional Computing Series col-
lection. Thus, the particular task of final copyediting could take advantage of the
significant expertise of Barbara Wood, the copy editor generously made available
to me by the publisher. We hope you will be pleased with the results.

Berkeley, California Kevin R. Fall
September 2011

ptg999

xxxiii

Adapted Preface
to the First Edition

Introduction

This book describes the TCP/IP protocol suite, but from a different perspective
than other texts on TCP/IP. Instead of just describing the protocols and what they
do, we’ll use a popular diagnostic tool to watch the protocols in action. Seeing how
the protocols operate in varying circumstances provides a greater understanding
of how they work and why certain design decisions were made. It also provides
a look into the implementation of the protocols, without having to wade through
thousands of lines of source code.

When networking protocols were being developed in the 1960s through
the 1980s, expensive, dedicated hardware was required to see the packets going
“across the wire.” Extreme familiarity with the protocols was also required to
comprehend the packets displayed by the hardware. Functionality of the hard-
ware analyzers was limited to that built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous work-
station to monitor a local area network [Mogul 1990]. Just attach a workstation to
your network, run some publicly available software, and watch what goes by on
the wire. While many people consider this a tool to be used for diagnosing network
problems, it is also a powerful tool for understanding how the network protocols
operate, which is the goal of this book.

This book is intended for anyone wishing to understand how the TCP/IP pro-
tocols operate: programmers writing network applications, system administrators
responsible for maintaining computer systems and networks utilizing TCP/IP,
and users who deal with TCP/IP applications on a daily basis.

ptg999

xxxiv Adapted Preface to the First Edition

Typographical Conventions

When we display interactive input and output we’ll show our typed input in a
bold font, and the computer output like this. Comments are added in italics.

bsdi % telnet svr4 discard connect to the discard server
Trying 140.252.13.34... this line and next output by Telnet client
Connected to svr4.

Also, we always include the name of the system as part of the shell prompt (bsdi
in this example) to show on which host the command was run.

Note

Throughout the text we’ll use indented, parenthetical notes such as this to
describe historical points or implementation details.

We sometimes refer to the complete description of a command on the Unix man-
ual as in ifconfig(8). This notation, the name of the command followed by a
number in parentheses, is the normal way of referring to Unix commands. The
number in parentheses is the section number in the Unix manual of the “manual
page” for the command, where additional information can be located. Unfortu-
nately not all Unix systems organize their manuals the same, with regard to the
section numbers used for various groupings of commands. We’ll use the BSD-
style section numbers (which is the same for BSD-derived systems such as SunOS
4.1.3), but your manuals may be organized differently.

Acknowledgments

Although the author’s name is the only one to appear on the cover, the combined
effort of many people is required to produce a quality text book. First and fore-
most is the author’s family, who put up with the long and weird hours that go into
writing a book. Thank you once again, Sally, Bill, Ellen, and David.

The consulting editor, Brian Kernighan, is undoubtedly the best in the busi-
ness. He was the first one to read various drafts of the manuscript and mark it up
with his infinite supply of red pens. His attention to detail, his continual prodding
for readable prose, and his thorough reviews of the manuscript are an immense
resource to a writer.

Technical reviewers provide a different point of view and keep the author
honest by catching technical mistakes. Their comments, suggestions, and (most
importantly) criticisms add greatly to the final product. My thanks to Steve Bel-
lovin, Jon Crowcroft, Pete Haverlock, and Doug Schmidt for comments on the
entire manuscript. Equally valuable comments were provided on portions of the
manuscript by Dave Borman for his thorough review of all the TCP chapters, and
to Bob Gilligan who should be listed as a coauthor for Appendix E.

ptg999

Adapted Preface to the First Edition xxxv

An author cannot work in isolation, so I would like to thank the following per-
sons for lots of small favors, especially by answering my numerous e-mail ques-
tions: Joe Godsil, Jim Hogue, Mike Karels, Paul Lucchina, Craig Partridge, Thomas
Skibo, and Jerry Toporek.

This book is the result of my being asked lots of questions on TCP/IP for which
I could find no quick, immediate answer. It was then that I realized that the easi-
est way to obtain the answers was to run small tests, forcing certain conditions to
occur, and just watch what happens. I thank Peter Haverlock for asking the prob-
ing questions and Van Jacobson for providing so much of the publicly available
software that is used in this book to answer the questions.

A book on networking needs a real network to work with along with access
to the Internet. My thanks to the National Optical Astronomy Observatories
(NOAO), especially Sidney Wolff, Richard Wolff, and Steve Grandi, for providing
access to their networks and hosts. A special thanks to Steve Grandi for answer-
ing lots of questions and providing accounts on various hosts. My thanks also to
Keith Bostic and Kirk McKusick at the U.C. Berkeley CSRG for access to the latest
4.4BSD system.

Finally, it is the publisher that pulls everything together and does whatever is
required to deliver the final product to the readers. This all revolves around the
editor, and John Wait is simply the best there is. Working with John and the rest
of the professionals at Addison-Wesley is a pleasure. Their professionalism and
attention to detail show in the end result.

Camera-ready copy of the book was produced by the author, a Troff die-hard,
using the Groff package written by James Clark.

Tucson, Arizona W. Richard Stevens
October 1993

ptg999

This page intentionally left blank

ptg999

1

1

Introduction

Effective communication depends on the use of a common language. This is true
for humans and other animals as well as for computers. When a set of common
behaviors is used with a common language, a protocol is being used. The first defi-
nition of a protocol, according to the New Oxford American Dictionary, is

The official procedure or system of rules governing affairs of state or diplomatic
occasions.

We engage in many protocols every day: asking and responding to questions,
negotiating business transactions, working collaboratively, and so on. Computers
also engage in a variety of protocols. A collection of related protocols is called a
protocol suite. The design that specifies how various protocols of a protocol suite
relate to each other and divide up tasks to be accomplished is called the architec-
ture or reference model for the protocol suite. TCP/IP is a protocol suite that imple-
ments the Internet architecture and draws its origins from the ARPANET Reference
Model (ARM) [RFC0871]. The ARM was itself influenced by early work on packet
switching in the United States by Paul Baran [B64] and Leonard Kleinrock [K64],
in the U.K. by Donald Davies [DBSW66], and in France by Louis Pouzin [P73].
Other protocol architectures have been specified over the years (e.g., the ISO pro-
tocol architecture [Z80], Xerox’s XNS [X85], and IBM’s SNA [I96]), but TCP/IP has
become the most popular. There are several interesting books that focus on the
history of computer communications and the development of the Internet, such as
[P07] and [W02].

It is worth mentioning that the TCP/IP architecture evolved from work that
addressed a need to provide interconnection of multiple different packet-switched
computer networks [CK74]. This was accomplished using a set of gateways (later
called routers) that provided a translation function between each otherwise incom-
patible network. The resulting “concatenated” network or catenet (later called inter-
network) would be much more useful, as many more nodes offering a wide variety
of services could communicate. The types of uses that a global network might
offer were envisioned years before the protocol architecture was fully developed.

ptg999

2 Introduction

In 1968, for example, J. C. R. Licklider and Bob Taylor foresaw the potential uses
for a global interconnected communication network to support “supercommuni-
ties” [LT68]:

Today the on-line communities are separated from one another functionally as
well as geographically. Each member can look only to the processing, storage and
software capability of the facility upon which his community is centered. But
now the move is on to interconnect the separate communities and thereby trans-
form them into, let us call it, a supercommunity. The hope is that interconnection
will make available to all members of all the communities the programs and data
resources of the entire supercommunity . . . The whole will constitute a labile net-
work of networks—ever-changing in both content and configuration.

Thus, it is apparent that the global network concept underpinning the ARPA-
NET and later the Internet was designed to support many of the types of uses we
enjoy today. However, getting to this point was neither simple nor obvious. The
success resulted from paying careful attention to design and engineering, innova-
tive users and developers, and the availability of sufficient resources to move from
concept to prototype and, eventually, to commercial networking products.

This chapter provides an overview of the Internet architecture and TCP/IP
protocol suite, to provide some historical context and to establish an adequate
background for the remaining chapters. Architectures (both protocol and physi-
cal) really amount to a set of design decisions about what features should be sup-
ported and where such features should be logically implemented. Designing an
architecture is more art than science, yet we shall discuss some characteristics of
architectures that have been deemed desirable over time. The subject of network
architecture has been undertaken more broadly in the text by Day [D08], one of
few such treatments.

1.1 Architectural Principles

The TCP/IP protocol suite allows computers, smartphones, and embedded devices
of all sizes, supplied from many different computer vendors and running totally
different software, to communicate with each other. By the turn of the twenty-first
century it has become a necessity for modern communication, entertainment, and
commerce. It is truly an open system in that the definition of the protocol suite and
many of its implementations are publicly available at little or no charge. It forms
the basis for what is called the global Internet, or the Internet, a wide area network
(WAN) of about two billion users that literally spans the globe (as of 2010, about
30% of the world’s population). Although many people consider the Internet and
the World Wide Web (WWW) to be interchangeable terms, we ordinarily refer to
the Internet in terms of its ability to provide basic communication of messages
between computers. We refer to WWW as an application that uses the Internet for

ptg999

Section 1.1 Architectural Principles 3

communication. It is perhaps the most important Internet application that brought
Internet technology to world attention in the early 1990s.

Several goals guided the creation of the Internet architecture. In [C88], Clark
recounts that the primary goal was to “develop an effective technique for mul-
tiplexed utilization of existing interconnected networks.” The essence of this
statement is that the Internet architecture should be able to interconnect multiple
distinct networks and that multiple activities should be able to run simultane-
ously on the resulting interconnected network. Beyond this primary goal, Clark
provides a list of the following second-level goals:

• Internet communication must continue despite loss of networks or gateways.

• The Internet must support multiple types of communication services.

• The Internet architecture must accommodate a variety of networks.

• The Internet architecture must permit distributed management of its
resources.

• The Internet architecture must be cost-effective.

• The Internet architecture must permit host attachment with a low level of
effort.

• The resources used in the Internet architecture must be accountable.

Many of the goals listed could have been supported with somewhat different
design decisions from those ultimately selected. However, a few design options
were gaining momentum when these architectural principles were being formu-
lated that influenced the designers in the particular choices they made. We will
mention some of the more important ones and their consequences.

1.1.1 Packets, Connections, and Datagrams

Up to the 1960s, the concept of a network was based largely on the telephone net-
work. It was developed to connect telephones to each other for the duration of a
call. A call was normally implemented by establishing a connection from one party
to another. Establishing a connection meant that a circuit (initially, a physical elec-
trical circuit) was made between one telephone and another for the duration of a
call. When the call was complete, the connection was cleared, allowing the circuit
to be used by other users’ calls. The call duration and identification of the connec-
tion endpoints were used to perform billing of the users. When established, the
connection provided each user a certain amount of bandwidth or capacity to send
information (usually voice sounds). The telephone network progressed from its
analog roots to digital, which greatly improved its reliability and performance.
Data inserted into one end of a circuit follows some preestablished path through
the network switches and emerges on the other side in a predictable fashion,

ptg999

4 Introduction

usually with some upper bound on the time (latency). This gives predictable ser-
vice, as long as a circuit is available when a user needs one. Circuits allocate a
pathway through the network that is reserved for the duration of a call, even if
they are not entirely busy. This is a common experience today with the phone
network—as long as a call is taking place, even if we are not saying anything, we
are being charged for the time.

One of the important concepts developed in the 1960s (e.g., in [B64]) was the
idea of packet switching. In packet switching, “chunks” (packets) of digital informa-
tion comprising some number of bytes are carried through the network somewhat
independently. Chunks coming from different sources or senders can be mixed
together and pulled apart later, which is called multiplexing. The chunks can be
moved around from one switch to another on their way to a destination, and
the path might be subject to change. This has two potential advantages: the net-
work can be more resilient (the designers were worried about the network being
physically attacked), and there can be better utilization of the network links and
switches because of statistical multiplexing.

When packets are received at a packet switch, they are ordinarily stored in buf-
fer memory or queue and processed in a first-come-first-served (FCFS) fashion. This
is the simplest method for scheduling the way packets are processed and is also
called first-in-first-out (FIFO). FIFO buffer management and on-demand schedul-
ing are easily combined to implement statistical multiplexing, which is the pri-
mary method used to intermix traffic from different sources on the Internet. In
statistical multiplexing, traffic is mixed together based on the arrival statistics or
timing pattern of the traffic. Such multiplexing is simple and efficient, because if
there is any network capacity to be used and traffic to use it, the network will be
busy (high utilization) at every bottleneck or choke point. The downside of this
approach is limited predictability—the performance seen by any particular appli-
cation depends on the statistics of other applications that are sharing the network.
Statistical multiplexing is like a highway where the cars can change lanes and
ultimately intersperse in such a way that any point of constriction is as busy as it
can be.

Alternative techniques, such as time-division multiplexing (TDM) and static mul-
tiplexing, typically reserve a certain amount of time or other resources for data on
each connection. Although such techniques can lead to more predictability, a fea-
ture useful for supporting constant bit rate telephone calls, they may not fully uti-
lize the network capacity because reserved bandwidth may go unused. Note that
while circuits are straightforwardly implemented using TDM techniques, virtual
circuits (VCs) that exhibit many of the behaviors of circuits but do not depend on
physical circuit switches can be implemented atop connection-oriented packets.
This is the basis for a protocol known as X.25 that was popular until about the
early 1990s when it was largely replaced with Frame Relay and ultimately digital
subscriber line (DSL) technology and cable modems supporting Internet connectiv-
ity (see Chapter 3).

ptg999

Section 1.1 Architectural Principles 5

The VC abstraction and connection-oriented packet networks such as X.25
required some information or state to be stored in each switch for each connec-
tion. The reason is that each packet carries only a small bit of overhead informa-
tion that provides an index into a state table. For example, in X.25 the 12-bit logical
channel identifier (LCI) or logical channel number (LCN) serves this purpose. At each
switch, the LCI or LCN is used in conjunction with the per-flow state in each switch
to determine the next switch along the path for the packet. The per-flow state is
established prior to the exchange of data on a VC using a signaling protocol that
supports connection establishment, clearing, and status information. Such net-
works are consequently called connection-oriented.

Connection-oriented networks, whether built on circuits or packets, were the
most prevalent form of networking for many years. In the late 1960s, another option
was developed known as the datagram. Attributed in origin to the CYCLADES
[P73] system, a datagram is a special type of packet in which all the identify-
ing information of the source and final destination resides inside the packet itself
(instead of in the packet switches). Although this tends to require larger packets,
per-connection state at packet switches is no longer required and a connectionless
network could be built, eliminating the need for a (complicated) signaling proto-
col. Datagrams were eagerly embraced by the designers of the early Internet, and
this decision had profound implications for the rest of the protocol suite.

One other related concept is that of message boundaries or record markers. As
shown in Figure 1-1, when an application sends more than one chunk of infor-
mation into the network, the fact that more than one chunk was written may or

Figure 1-1 Applications write messages that are carried in protocols. A message boundary is the position or
byte offset between one write and another. Protocols that preserve message boundaries indicate
the position of the sender’s message boundaries at the receiver. Protocols that do not preserve
message boundaries (e.g., streaming protocols like TCP) ignore this information and do not make
it available to a receiver. As a result, applications may need to implement their own methods to
indicate a sender’s message boundaries if this capability is required.

ptg999

6 Introduction

may not be preserved by the communication protocol. Most datagram protocols
preserve message boundaries. This is natural because the datagram itself has a
beginning and an end. However, in a circuit or VC network, it is possible that an
application may write several chunks of data, all of which are read together as one
or more different-size chunks by a receiving application. These types of protocols
do not preserve message boundaries. In cases where an underlying protocol fails
to preserve message boundaries but they are needed by an application, the appli-
cation must provide its own.

1.1.2 The End-to-End Argument and Fate Sharing

When large systems such as an operating system or protocol suite are being
designed, a question often arises as to where a particular feature or function
should be placed. One of the most important principles that influenced the design
of the TCP/IP suite is called the end-to-end argument [SRC84]:

The function in question can completely and correctly be implemented only with
the knowledge and help of the application standing at the end points of the com-
munication system. Therefore, providing that questioned function as a feature of
the communication itself is not possible. (Sometimes an incomplete version of the
function provided by the communication system may be useful as a performance
enhancement.)

This argument may seem fairly straightforward upon first reading but can
have profound implications for communication system design. It argues that cor-
rectness and completeness can be achieved only by involving the application or
ultimate user of the communication system. Efforts to correctly implement what
the application is “likely” to need are doomed to incompleteness. In short, this
principle argues that important functions (e.g., error control, encryption, delivery
acknowledgment) should usually not be implemented at low levels (or layers; see
Section 1.2.1) of large systems. However, low levels may provide capabilities that
make the job of the endpoints somewhat easier and consequently may improve
performance. A nuanced reading reveals that this argument suggests that low-
level functions should not aim for perfection because a perfect guess at what the
application may require is unlikely to be possible.

The end-to-end argument tends to support a design with a “dumb” network
and “smart” systems connected to the network. This is what we see in the TCP/IP
design, where many functions (e.g., methods to ensure that data is not lost, con-
trolling the rate at which a sender sends) are implemented in the end hosts where
the applications reside. The selection of which functions are implemented together
in the same computer or network or software stack is the subject of another related
principle known as fate sharing [C88].

Fate sharing suggests placing all the necessary state to maintain an active
communication association (e.g., virtual connection) at the same location with

ptg999

Section 1.1 Architectural Principles 7

the communicating endpoints. With this reasoning, the only type of failure that
destroys communication is one that also destroys one or more of the endpoints,
which obviously destroys the overall communication anyhow. Fate sharing is one
of the design philosophies that allows virtual connections (e.g., those implemented
by TCP) to remain active even if connectivity within the network has failed for a
(modest) period of time. Fate sharing also supports a “dumb network with smart
end hosts” model, and one of the ongoing tensions in today’s Internet is what
functions reside in the network and what functions do not.

1.1.3 Error Control and Flow Control

There are some circumstances where data within a network gets damaged or lost.
This can be for a variety of reasons such as hardware problems, radiation that
modifies bits while being transmitted, being out of range in a wireless network,
and other factors. Dealing with such errors is called error control, and it can be
implemented in the systems constituting the network infrastructure, or in the sys-
tems that attach to the network, or some combination. Naturally, the end-to-end
argument and fate sharing would suggest that error control be implemented close
to or within applications.

Usually, if a small number of bit errors are of concern, a number of mathemati-
cal codes can be used to detect and repair the bit errors when data is received or
while it is in transit [LC04]. This task is routinely performed within the network.
When more severe damage occurs in a packet network, entire packets are usu-
ally resent or retransmitted. In circuit-switched or VC-switched networks such as
X.25, retransmission tends to be done inside the network. This may work well for
applications that require strict in-order, error-free delivery of their data, but some
applications do not require this capability and do not wish to pay the costs (such
as connection establishment and potential retransmission delays) to have their
data reliably delivered. Even a reliable file transfer application does not really care
in what order the chunks of file data are delivered, provided it is eventually satis-
fied that all chunks are delivered without errors and can be reassembled back into
the original order.

As an alternative to the overhead of reliable, in-order delivery implemented
within the network, a different type of service called best-effort delivery was
adopted by Frame Relay and the Internet Protocol. With best-effort delivery, the
network does not expend much effort to ensure that data is delivered without
errors or gaps. Certain types of errors are usually detected using error-detecting
codes or checksums, such as those that might affect where a datagram is directed,
but when such errors are detected, the errant datagram is merely discarded with-
out further action.

If best-effort delivery is successful, a fast sender can produce information at
a rate that exceeds the receiver’s ability to consume it. In best-effort IP networks,
slowing down a sender is achieved by flow control mechanisms that operate out-
side the network and at higher levels of the communication system. In particular,

ptg999

8 Introduction

TCP handles this type of problem, and we shall discuss it in detail in Chapters 15
and 16. This is consistent with the end-to-end argument: TCP, which resides at the
end hosts, handles rate control. It is also consistent with fate sharing: the approach
allows some elements of the network infrastructure to fail without necessarily
affecting the ability of the devices outside the network to communicate (as long as
some communication path continues to operate).

1.2 Design and Implementation

Although a protocol architecture may suggest a certain approach to implemen-
tation, it usually does not include a mandate. Consequently, we make a distinc-
tion between the protocol architecture and the implementation architecture, which
defines how the concepts in a protocol architecture may be rendered into exis-
tence, usually in the form of software.

Many of the individuals responsible for implementing the protocols for the
ARPANET were familiar with the software structuring of operating systems, and
an influential paper describing the “THE” multiprogramming system [D68] advo-
cated the use of a hierarchical structure as a way to deal with verification of the
logical soundness and correctness of a large software implementation. Ultimately,
this contributed to a design philosophy for networking protocols involving mul-
tiple layers of implementation (and design). This approach is now called layering
and is the usual approach to implementing protocol suites.

1.2.1 Layering

With layering, each layer is responsible for a different facet of the communica-
tions. Layers are beneficial because a layered design allows developers to evolve
different portions of the system separately, often by different people with some-
what different areas of expertise. The most frequently mentioned concept of pro-
tocol layering is based on a standard called the Open Systems Interconnection (OSI)
model [Z80] as defined by the International Organization for Standardization
(ISO). Figure 1-2 shows the standard OSI layers, including their names, numbers,
and a few examples. The Internet’s layering model is somewhat simpler, as we
shall see in Section 1.3.

Although the OSI model suggests that seven logical layers may be desirable
for modularity of a protocol architecture implementation, the TCP/IP architec-
ture is normally considered to consist of five. There was much debate about the
relative benefits and deficiencies of the OSI model, and the ARPANET model that
preceded it, during the early 1970s. Although it may be fair to say that TCP/IP
ultimately “won,” a number of ideas and even entire protocols from the ISO pro-
tocol suite (protocols standardized by ISO that follow the OSI model) have been
adopted for use with TCP/IP (e.g., IS-IS [RFC3787]).

ptg999

Section 1.2 Design and Implementation 9

As described briefly in Figure 1-2, each layer has a different responsibility.
From the bottom up, the physical layer defines methods for moving digital infor-
mation across a communication medium such as a phone line or fiber-optic cable.
Portions of the Ethernet and Wireless LAN (Wi-Fi) standards are here, although
we do not delve into this layer very much in this text. The link or data-link layer
includes those protocols and methods for establishing connectivity to a neighbor
sharing the same medium. Some link-layer networks (e.g., DSL) connect only two
neighbors. When more than one neighbor can access the same shared network, the
network is said to be a multi-access network. Wi-Fi and Ethernet are examples of
such multi-access link-layer networks, and specific protocols are used to mediate
which stations have access to the shared medium at any given time. We discuss
these in Chapter 3.

Moving up the layer stack, the network or internetwork layer is of great interest
to us. For packet networks such as TCP/IP, it provides an interoperable packet for-
mat that can use different types of link-layer networks for connectivity. The layer
also includes an addressing scheme for hosts and routing algorithms that choose
where packets go when sent from one machine to another. Above layer 3 we find
protocols that are (at least in theory) implemented only by end hosts, including
the transport layer. Also of great interest to us, it provides a flow of data between
sessions and can be quite complex, depending on the types of services it provides

Figure 1-2 The standard seven-layer OSI model as specified by the ISO. Not all protocols are implemented by
every networked device (at least in theory). The OSI terminology and layer numbers are widely
used.

ptg999

10 Introduction

(e.g., reliable delivery on a packet network that might drop data). Sessions rep-
resent ongoing interactions between applications (e.g., when “cookies” are used
with a Web browser during a Web login session), and session-layer protocols may
provide capabilities such as connection initiation and restart, plus checkpointing
(saving work that has been accomplished so far). Above the session layer we find
the presentation layer, which is responsible for format conversions and standard
encodings for information. As we shall see, the Internet protocols do not include a
formal session or presentation protocol layer, so these functions are implemented
by applications if needed.

The top layer is the application layer. Applications usually implement their
own application-layer protocols, and these are the ones most visible to users.
There is a wide variety of application-layer protocols, and programmers are con-
stantly inventing new ones. Consequently, the application layer is where there is
the greatest amount of innovation and where new capabilities are developed and
deployed.

1.2.2 Multiplexing, Demultiplexing, and Encapsulation in Layered
Implementations

One of the major benefits of a layered architecture is its natural ability to perform
protocol multiplexing. This form of multiplexing allows multiple different protocols
to coexist on the same infrastructure. It also allows multiple instantiations of the
same protocol object (e.g., connections) to be used simultaneously without being
confused.

Multiplexing can occur at different layers, and at each layer a different sort of
identifier is used for determining which protocol or stream of information belongs
together. For example, at the link layer, most link technologies (such as Ethernet
and Wi-Fi) include a protocol identifier field value in each packet to indicate which
protocol is being carried in the link-layer frame (IP is one such protocol). When
an object (packet, message, etc.), called a protocol data unit (PDU), at one layer is
carried by a lower layer, it is said to be encapsulated (as opaque data) by the next
layer down. Thus, multiple objects at layer N can be multiplexed together using
encapsulation in layer N - 1. Figure 1-3 shows how this works. The identifier at
layer N - 1 is used to determine the correct receiving protocol or program at layer
N during demultiplexing.

In Figure 1-3, each layer has its own concept of a message object (a PDU) corre-
sponding to the particular layer responsible for creating it. For example, if a layer
4 (transport) protocol produces a packet, it would properly be called a layer 4 PDU
or transport PDU (TPDU). When a layer is provided a PDU from the layer above it,
it usually “promises” to not look into the contents of the PDU. This is the essence
of encapsulation—each layer treats the data from above as opaque, uninterpre-
table information. Most commonly a layer prepends the PDU with its own header,
although trailers are used by some protocols (not TCP/IP). The header is used for
multiplexing data when sending, and for the receiver to perform demultiplexing,

ptg999

Section 1.2 Design and Implementation 11

based on a demultiplexing (demux) identifier. In TCP/IP networks such identifiers
are commonly hardware addresses, IP addresses, and port numbers. The header
may also include important state information, such as whether a virtual circuit is
being set up or has already completed setup. The resulting object is another PDU.

One other important feature of layering suggested by Figure 1-2 is that in pure
layering not all networked devices need to implement all the layers. Figure 1-4
shows that in some cases a device needs to implement only a few layers if it is
expected to perform only certain types of processing.

In Figure 1-4, a somewhat idealized small internet includes two end systems, a
switch, and a router. In this figure, each number corresponds to a type of protocol
at a particular layer. As we can see, each device implements a different subset of
the layer stack. The host on the left implements three different link-layer protocols
(D, E, and F) with corresponding physical layers and three different transport-
layer protocols (A, B, and C) that run on a single type of network-layer protocol.
End hosts implement all the layers, switches implement up to layer 2 (this switch
implements D and G), and routers implement up to layer 3. Routers are capable
of interconnecting different types of link-layer networks and must implement the
link-layer protocols for each of the network types they interconnect.

Figure 1-3 Encapsulation is usually used in conjunction with layering. Pure encapsulation involves
taking the PDU of one layer and treating it as opaque (uninterpreted) data at the layer
below. Encapsulation takes place at each sender, and decapsulation (the reverse opera-
tion) takes place at each receiver. Most protocols use headers during encapsulation; a few
also use trailers.

ptg999

12 Introduction

The internet of Figure 1-4 is somewhat idealized because today’s switches and
routers often implement more than the protocols they are absolutely required to
implement for forwarding data. This is for a number of reasons, including man-
agement. In such circumstances, devices such as routers and switches must some-
times act as hosts and support services such as remote login. To do this, they
usually must implement transport and application protocols.

Although we show only two hosts communicating, the link- and physical-
layer networks (labeled as D and G) might have multiple hosts attached. If so,
then communication is possible between any pair of systems that implement the
appropriate higher-layer protocols. In Figure 1-4 we can differentiate between an
end system (the two hosts on either side) and an intermediate system (the router in
the middle) for a particular protocol suite. Layers above the network layer use end-
to-end protocols. In our picture these layers are needed only on the end systems.
The network layer, however, provides a hop-by-hop protocol and is used on the two
end systems and every intermediate system. The switch or bridge is not ordinarily
considered an intermediate system because it is not addressed using the internet-
working protocol’s addressing format, and it operates in a fashion that is largely
transparent to the network-layer protocol. From the point of view of the routers
and end systems, the switch or bridge is essentially invisible.

A router, by definition, has two or more network interfaces (because it con-
nects two or more networks). Any system with multiple interfaces is called multi-
homed. A host can also be multihomed, but unless it specifically forwards packets
from one interface to another, it is not called a router. Also, routers need not be

Figure 1-4 Different network devices implement different subsets of the protocol stack. End hosts tend to
implement all the layers. Routers implement layers below the transport layer, and switches imple-
ment link-layer protocols and below. This idealized structure is often violated because routers and
switches usually include the ability to act as a host (e.g., to be managed and set up) and therefore
need an implementation of all of the layers even if they are rarely used.

ptg999

Section 1.3 The Architecture and Protocols of the TCP/IP Suite 13

special hardware boxes that only move packets around an internet. Most TCP/IP
implementations, for example, allow a multihomed host to act as a router also,
if properly configured to do so. In this case we can call the system either a host
(when an application such as File Transfer Protocol (FTP) [RFC0959] or the Web is
used) or a router (when it is forwarding packets from one network to another). We
will use whichever term makes sense given the context.

One of the goals of an internet is to hide all of the details of the physical lay-
out (the topology) and lower-layer protocol heterogeneity from the applications.
Although this is not obvious from our two-network internet in Figure 1-4, the
application layers should not care (and do not care) that even though each host
is attached to a network using link-layer protocol D (e.g., Ethernet), the hosts are
separated by a router and switch that use link-layer G. There could be 20 rout-
ers between the hosts, with additional types of physical interconnections, and the
applications would run without modification (although the performance might be
somewhat different). Abstracting the details in this way is what makes the con-
cept of an internet so powerful and useful.

1.3 The Architecture and Protocols of the TCP/IP Suite

So far we have discussed architecture, protocols, protocol suites, and implemen-
tation techniques in the abstract. In this section, we discuss the architecture and
particular protocols that constitute the TCP/IP suite. Although this has become the
established term for the protocols used on the Internet, there are many protocols
beyond TCP and IP in the collection or family of protocols used with the Inter-
net. We begin by noting how the ARPANET reference model of layering, which
ultimately formed the basis for the Internet’s protocol layering, differs somewhat
from the OSI layering discussed earlier.

1.3.1 The ARPANET Reference Model

Figure 1-5 depicts the layering inspired by the ARPANET reference model, which
was ultimately adopted by the TCP/IP suite. The structure is simpler than the OSI
model, but real implementations include a few specialized protocols that do not fit
cleanly into the conventional layers.

Starting from the bottom of Figure 1-5 and working our way up the stack,
the first layer we see is 2.5, an “unofficial” layer. There are several protocols that
operate here, but one of the oldest and most important is called the Address Reso-
lution Protocol (ARP). It is a specialized protocol used with IPv4 and only with
multi-access link-layer protocols (such as Ethernet and Wi-Fi) to convert between
the addresses used by the IP layer and the addresses used by the link layer. We
examine this protocol in Chapter 4. In IPv6 the address-mapping function is part
of ICMPv6, which we discuss in Chapter 8.

ptg999

14 Introduction

At layer number 3 in Figure 1-5 we find IP, the main network-layer protocol
for the TCP/IP suite. We discuss it in detail in Chapter 5. The PDU that IP sends to
link-layer protocols is called an IP datagram and may be as large as 64KB (and up
to 4GB for IPv6). In many cases we shall use the simpler term packet to mean an
IP datagram when the usage context is clear. Fitting large packets into link-layer
PDUs (called frames) that may be smaller is handled by a function called fragmenta-
tion that may be performed by IP hosts and some routers when necessary. In frag-
mentation, portions of a larger datagram are sent in multiple smaller datagrams
called fragments and put back together (called reassembly) when reaching the des-
tination. We discuss fragmentation in Chapter 10.

Throughout the text we shall use the term IP to refer to both IP versions 4 and
6. We use the term IPv6 to refer to IP version 6, and IPv4 to refer to IP version 4,
currently the most popular version. When discussing architecture, the details of
IPv4 versus IPv6 matter little. When we delve into the way particular addressing
and configuration functions work (Chapter 2 and Chapter 6), for example, these
details will become more important.

Because IP packets are datagrams, each one contains the address of the layer
3 sender and recipient. These addresses are called IP addresses and are 32 bits long
for IPv4 and 128 bits long for IPv6; we discuss them in detail in Chapter 2. This
difference in IP address size is the characteristic that most differentiates IPv4 from
IPv6. The destination address of each datagram is used to determine where each
datagram should be sent, and the process of making this determination and send-
ing the datagram to its next hop is called forwarding. Both routers and hosts per-
form forwarding, although routers tend to do it much more often. There are three

Figure 1-5 Protocol layering based on the ARM or TCP/IP suite used in the Internet. There are no official ses-
sion or presentation layers. In addition, there are several “adjunct” or helper protocols that do not
fit well into the standard layers yet perform critical functions for the operation of the other proto-
cols. Some of these protocols are not used with IPv6 (e.g., IGMP and ARP).

ptg999

Section 1.3 The Architecture and Protocols of the TCP/IP Suite 15

types of IP addresses, and the type affects how forwarding is performed: unicast
(destined for a single host), broadcast (destined for all hosts on a given network),
and multicast (destined for a set of hosts that belong to a multicast group). Chapter
2 looks at the types of addresses used with IP in more detail.

The Internet Control Message Protocol (ICMP) is an adjunct to IP, and we label
it as a layer 3.5 protocol. It is used by the IP layer to exchange error messages and
other vital information with the IP layer in another host or router. There are two
versions of ICMP: ICMPv4, used with IPv4, and ICMPv6, used with IPv6. ICMPv6
is considerably more complex and includes functions such as address autocon-
figuration and Neighbor Discovery that are handled by other protocols (e.g., ARP)
on IPv4 networks. Although ICMP is used primarily by IP, it is also possible for
applications to use it. Indeed, we will see that two popular diagnostic tools, ping
and traceroute, use ICMP. ICMP messages are encapsulated within IP data-
grams in the same way transport layer PDUs are.

The Internet Group Management Protocol (IGMP) is another protocol adjunct to
IPv4. It is used with multicast addressing and delivery to manage which hosts are
members of a multicast group (a group of receivers interested in receiving traffic for
a particular multicast destination address). We describe the general properties of
broadcasting and multicasting, along with IGMP and the Multicast Listener Discov-
ery protocol (MLD, used with IPv6), in Chapter 9.

At layer 4, the two most common Internet transport protocols are vastly dif-
ferent. The most widely used, the Transmission Control Protocol (TCP), deals with
problems such as packet loss, duplication, and reordering that are not repaired
by the IP layer. It operates in a connection-oriented (VC) fashion and does not
preserve message boundaries. Conversely, the User Datagram Protocol (UDP) pro-
vides little more than the features provided by IP. UDP allows applications to send
datagrams that preserve message boundaries but imposes no rate control or error
control.

TCP provides a reliable flow of data between two hosts. It is concerned with
things such as dividing the data passed to it from the application into appropri-
ately sized chunks for the network layer below, acknowledging received packets,
and setting timeouts to make certain the other end acknowledges packets that
are sent, and because this reliable flow of data is provided by the transport layer,
the application layer can ignore all these details. The PDU that TCP sends to IP is
called a TCP segment.

UDP, on the other hand, provides a much simpler service to the application
layer. It allows datagrams to be sent from one host to another, but there is no
guarantee that the datagrams reach the other end. Any desired reliability must
be added by the application layer. Indeed, about all that UDP provides is a set
of port numbers for multiplexing and demultiplexing data, plus a data integrity
checksum. As we can see, UDP and TCP differ radically even though they are at
the same layer. There is a use for each type of transport protocol, which we will
see when we look at the different applications that use TCP and UDP.

ptg999

16 Introduction

There are two additional transport-layer protocols that are relatively new
and available on some systems. As they are not yet very widespread, we do not
devote much discussion to them, but they are worth being aware of. The first is the
Datagram Congestion Control Protocol (DCCP), specified in [RFC4340]. It provides a
type of service midway between TCP and UDP: connection-oriented exchange of
unreliable datagrams but with congestion control. Congestion control comprises
a number of techniques whereby a sender is limited to a sending rate in order to
avoid overwhelming the network. We discuss it in detail with respect to TCP in
Chapter 16.

The other transport protocol available on some systems is called the Stream
Control Transmission Protocol (SCTP), specified in [RFC4960]. SCTP provides reli-
able delivery like TCP but does not require the sequencing of data to be strictly
maintained. It also allows for multiple streams to logically be carried on the same
connection and provides a message abstraction, which differs from TCP. SCTP
was designed for carrying signaling messages on IP networks that resemble those
used in the telephone network.

Above the transport layer, the application layer handles the details of the par-
ticular application. There are many common applications that almost every imple-
mentation of TCP/IP provides. The application layer is concerned with the details
of the application and not with the movement of data across the network. The
lower three layers are the opposite: they know nothing about the application but
handle all the communication details.

1.3.2 Multiplexing, Demultiplexing, and Encapsulation in TCP/IP

We have already discussed the basics of protocol multiplexing, demultiplexing,
and encapsulation. At each layer there is an identifier that allows a receiving sys-
tem to determine which protocol or data stream belongs together. Usually there is
also addressing information at each layer. This information is used to ensure that
a PDU has been delivered to the right place. Figure 1-6 shows how demultiplexing
works in a hypothetical Internet host.

Although it is not really part of the TCP/IP suite, we shall begin bottom-up
and mention how demultiplexing from the link layer is performed, using Ethernet
as an example. We discuss several link-layer protocols in Chapter 3. An arriving
Ethernet frame contains a 48-bit destination address (also called a link-layer or
MAC—Media Access Control—address) and a 16-bit field called the Ethernet type.
A value of 0x0800 (hexadecimal) indicates that the frame contains an IPv4 data-
gram. Values of 0x0806 and 0x86DD indicate ARP and IPv6, respectively. Assum-
ing that the destination address matches one of the receiving system’s addresses,
the frame is received and checked for errors, and the Ethernet Type field value is
used to select which network-layer protocol should process it.

Assuming that the received frame contains an IP datagram, the Ethernet
header and trailer information is removed, and the remaining bytes (which con-
stitute the frame’s payload) are given to IP for processing. IP checks a number of
items, including the destination IP address in the datagram. If the destination

ptg999

Section 1.3 The Architecture and Protocols of the TCP/IP Suite 17

address matches one of its own and the datagram contains no errors in its header
(IP does not check its payload), the 8-bit IPv4 Protocol field (called Next Header
in IPv6) is checked to determine which protocol to invoke next. Common values
include 1 (ICMP), 2 (IGMP), 4 (IPv4), 6 (TCP), and 17 (UDP). The value of 4 (and
41, which indicates IPv6) is interesting because it indicates the possibility that an
IP datagram may appear inside the payload area of an IP datagram. This violates
the original concepts of layering and encapsulation but is the basis for a powerful
technique known as tunneling, which we discuss more in Chapter 3.

Once the network layer (IPv4 or IPv6) determines that the incoming datagram
is valid and the correct transport protocol has been determined, the resulting data-
gram (reassembled from fragments if necessary) is passed to the transport layer
for processing. At the transport layer, most protocols (including TCP and UDP)
use port numbers for demultiplexing to the appropriate receiving application.

1.3.3 Port Numbers

Port numbers are 16-bit nonnegative integers (i.e., range 0–65535). These numbers
are abstract and do not refer to anything physical. Instead, each IP address has
65,536 associated port numbers for each transport protocol that uses port numbers

Figure 1-6 The TCP/IP stack uses a combination of addressing information and protocol demul-
tiplexing identifiers to determine if a datagram has been received correctly and, if so,
what entity should process it. Several layers also check numeric values (e.g., checksums)
to ensure that the contents have not been damaged in transit.

ptg999

18 Introduction

(most do), and they are used for determining the correct receiving application. For
client/server applications (see Section 1.5.1), a server first “binds” to a port num-
ber, and subsequently one or more clients establish connections to the port num-
ber using a particular transport protocol on a particular machine. In this sense,
port numbers act more like telephone number extensions, except they are usually
assigned by standards.

Standard port numbers are assigned by the Internet Assigned Numbers
Authority (IANA). The set of numbers is divided into special ranges, including the
well-known port numbers (0–1023), the registered port numbers (1024–49151), and
the dynamic/private port numbers (49152–65535). Traditionally, servers wishing to
bind to (i.e., offer service on) a well-known port require special privileges such as
administrator or “root” access.

The range of well-known ports is used for identifying many well-known ser-
vices such as the Secure Shell Protocol (SSH, port 22), FTP (ports 20 and 21), Telnet
remote terminal protocol (port 23), e-mail/Simple Mail Transfer Protocol (SMTP,
port 25), Domain Name System (DNS, port 53), the Hypertext Transfer Protocol or Web
(HTTP and HTTPS, ports 80 and 443), Interactive Mail Access Protocol (IMAP and
IMAPS, ports 143 and 993), Simple Network Management Protocol (SNMP, ports 161
and 162), Lightweight Directory Access Protocol (LDAP, port 389), and several others.
Protocols with multiple ports (e.g., HTTP and HTTPS) often have different port
numbers depending on whether Transport Layer Security (TLS) is being used with
the base application-layer protocol (see Chapter 18).

Note

If we examine the port numbers for these standard services and other standard
TCP/IP services (Telnet, FTP, SMTP, etc.), we see that most are odd numbers.
This is historical, as these port numbers are derived from the NCP port numbers.
(NCP, the Network Control Protocol, preceded TCP as a transport-layer protocol
for the ARPANET.) NCP was simplex, not full duplex, so each application required
two connections, and an even-odd pair of port numbers was reserved for each
application. When TCP and UDP became the standard transport layers, only a
single port number was needed per application, yet the odd port numbers from
NCP were used.

The registered port numbers are available to clients or servers with special
privileges, but IANA keeps a reserved registry for particular uses, so these port
numbers should generally be avoided when developing new applications unless
an IANA allocation has been procured. The dynamic/private port numbers are
essentially unregulated. As we will see, in some circumstances (e.g., on clients)
the value of the port number matters little because the port number being used
is transient. Such port numbers are also called ephemeral port numbers. They are
considered to be temporary because a client typically needs one only as long as the
user running the client needs service, and the client does not need to be found by

ptg999

Section 1.4 Internets, Intranets, and Extranets 19

the server in order to establish a connection. Servers, conversely, generally require
names and port numbers that do not change often in order to be found by clients.

1.3.4 Names, Addresses, and the DNS

With TCP/IP, each link-layer interface on each computer (including routers) has
at least one IP address. IP addresses are enough to identify a host, but they are
not very convenient for humans to remember or manipulate (especially the long
addresses used with IPv6). In the TCP/IP world, the DNS is a distributed database
that provides the mapping between host names and IP addresses (and vice versa).
Names are set up in a hierarchy, ending in domains such as .com, .org, .gov, .in,
.uk, and .edu. Perhaps surprisingly, DNS is an application-layer protocol and
thus depends on the other protocols in order to operate. Although most of the
TCP/IP suite does not use or care about names, typical users (e.g., those using Web
browsers) use names frequently, so if the DNS fails to function properly, normal
Internet access is effectively disabled. Chapter 11 looks into the DNS in detail.

Applications that manipulate names can call a standard API function (see
Section 1.5.3) to look up the IP address (or addresses) corresponding to a given
host’s name. Similarly, a function is provided to do the reverse lookup—given an
IP address, look up the corresponding host name. Most applications that take a host
name as input also take an IP address. Web browsers support this capability. For
example, the Uniform Resource Locators (URLs) http://131.243.2.201/index.
html and http://[2001:400:610:102::c9]/index.html can be typed into a Web
browser and are both effectively equivalent to http://ee.lbl.gov/index.html (at
the time of writing; the second example requires IPv6 connectivity to be successful).

1.4 Internets, Intranets, and Extranets

As suggested previously, the Internet has developed as the aggregate network
resulting from the interconnection of constituent networks over time. The lower-
case internet means multiple networks connected together, using a common proto-
col suite. The uppercase Internet refers to the collection of hosts around the world
that can communicate with each other using TCP/IP. The Internet is an internet,
but the reverse is not true.

One of the reasons for the phenomenal growth in networking during the
1980s was the realization that isolated groups of stand-alone computers made
little sense. A few stand-alone systems were connected together into a network.
Although this was a step forward, during the 1990s we realized that separate
networks that could not interoperate were not as valuable as a bigger network
that could. This notion is the basis for the so-called Metcalfe’s Law, which states
roughly that the value of a computer network is proportional to the square of the
number of connected endpoints (e.g., users or devices). The Internet idea, and its
supporting protocols, would make possible the interconnection of different net-
works. This deceptively simple concept turns out to be remarkably powerful.

http://ee.lbl.gov/index.html

ptg999

20 Introduction

The easiest way to build an internet is to connect two or more networks with
a router. A router is often a special-purpose device for connecting networks. The
nice thing about routers is that they provide connections to many different types
of physical networks: Ethernet, Wi-Fi, point-to-point links, DSL, cable Internet ser-
vice, and so on.

Note

These devices are also called IP routers, but we will use the term router. Historically
these devices were called gateways, and this term is used throughout much of the
older TCP/IP literature. Today the term gateway is used for an application-layer
gateway (ALG), a process that connects two different protocol suites (say, TCP/IP
and IBM’s SNA) for one particular application (often electronic mail or file transfer).

In recent years, other terms have been adopted for different configurations of
internets using the TCP/IP protocol suite. An intranet is the term used to describe a
private internetwork, usually run by a business or other enterprise. Most often, the
intranet provides access to resources available only to members of the particular
enterprise. Users may connect to their (e.g., corporate) intranet using a virtual private
network (VPN). VPNs help to ensure that access to potentially sensitive resources in
an intranet is made available only to authorized users, usually using the tunneling
concept we mentioned previously. We discuss VPNs in more detail in Chapter 7.

In many cases an enterprise or business wishes to set up a network containing
servers accessible to certain partners or other associates using the Internet. Such
networks, which also often involve the use of a VPN, are known as extranets and
consist of computers attached outside the serving enterprise’s firewall (see Chap-
ter 7). Technically, there is little difference between an intranet, an extranet, and
the Internet, but the usage cases and administrative policies are usually different,
and therefore a number of these more specific terms have evolved.

1.5 Designing Applications

The network concepts we have touched upon so far provide a fairly simple service
model [RFC6250]: moving bytes between programs running on different (or, occa-
sionally, the same) computers. To do anything useful with this capability, we need
networked applications that use the network for providing services or perform-
ing computations. Networked applications are typically structured according to a
small number of design patterns. The most common of these are client/server and
peer-to-peer.

1.5.1 Client/Server

Most network applications are designed so that one side is the client and the other
side is the server. The server provides some type of service to clients, such as

ptg999

Section 1.5 Designing Applications 21

access to files on the server host. We can categorize servers into two classes: itera-
tive and concurrent. An iterative server iterates through the following steps:

I1. Wait for a client request to arrive.

I2. Process the client request.

I3. Send the response back to the client that sent the request.

I4. Go back to step I1.

The problem with an iterative server occurs when step I2 takes a long time.
During this time no other clients are serviced. A concurrent server, on the other
hand, performs the following steps:

C1. Wait for a client request to arrive.

C2. Start a new server instance to handle this client’s request. This may involve
creating a new process, task, or thread, depending on what the underly-
ing operating system supports. This new server handles one client’s entire
request. When the requested task is complete, the new server terminates.
Meanwhile, the original server instance continues to C3.

C3. Go back to step C1.

The advantage of a concurrent server is that the server just spawns other
server instances to handle the client requests. Each client has, in essence, its own
server. Assuming that the operating system allows multiprogramming (essen-
tially all do today), multiple clients are serviced concurrently. The reason we cat-
egorize servers, and not clients, is that a client normally cannot tell whether it is
talking to an iterative server or a concurrent server. As a general rule, most servers
are concurrent.

Note that we use the terms client and server to refer to applications and not
to the particular computer systems on which they run. The very same terms are
sometimes used to refer to the pieces of hardware that are most often used to exe-
cute either client or server applications. Although the terminology is thus some-
what imprecise, it works well enough in practice. As a result, it is common to find
a server (in the hardware sense) running more than one server (in the application
sense).

1.5.2 Peer-to-Peer

Some applications are designed in a more distributed fashion where there is no
single server. Instead, each application acts both as a client and as a server, some-
times as both at once, and is capable of forwarding requests. Some very popular
applications (e.g., Skype [SKYPE], BitTorrent [BT]) are of this form. These applica-
tions are called peer-to-peer or p2p applications. A concurrent p2p application may

ptg999

22 Introduction

receive an incoming request, determine if it is able to respond to the request, and
if not forward the request on to some other peer. Thus, the set of p2p applications
together form a network among applications, also called an overlay network. Such
overlays are now commonplace and can be extremely powerful. Skype, for exam-
ple, has grown to be the largest carrier of international telephone calls. According
to some estimates, BitTorrent was responsible for more than half of all Internet
traffic in 2009 [IPIS].

One of the primary problems in p2p networks is called the discovery problem.
That is, how does one peer find which other peer(s) can provide the data or service
it wants in a network where peers may come and go? This is usually handled by
a bootstrapping procedure whereby each client is initially configured with the
addresses and port numbers of some peers that are likely to be operating. Once
connected, the new participant learns of other active peers and, depending on the
protocol, what services or files they provide.

1.5.3 Application Programming Interfaces (APIs)

Applications, whether p2p or client/server, need to express their desired network
operations (e.g., make a connection, write or read data). This is usually supported
by a host operating system using a networking application programming interface
(API). The most popular API is called sockets or Berkeley sockets, indicating where it
was originally developed [LJFK93].

This text is not a programming text, but occasionally we refer to a feature of
TCP/IP and whether that feature is provided by the sockets API or not. All of the
programming details with examples for sockets can be found in [SFR04]. Modi-
fications to sockets intended for use with IPv6 are also described in a number
of freely available online documents [RFC3493][RFC3542][RFC3678][RFC4584]
[RFC5014].

1.6 Standardization Process

Newcomers to the TCP/IP suite often wonder just who is responsible for specify-
ing and standardizing the various protocols and how they operate. A number
of organizations represent the answer to this question. The group with which
we will most often be concerned is the Internet Engineering Task Force (IETF)
[RFC4677]. This group meets three times each year in various locations around
the world to develop, discuss, and agree on standards for the Internet’s “core”
protocols. Exactly what constitutes “core” is subject to some debate, but common
protocols such as IPv4, IPv6, TCP, UDP, and DNS are clearly in the purview of
IETF. Attendance at IETF meetings is open to anyone, but it is not free.

IETF is a forum that elects leadership groups called the Internet Architec-
ture Board (IAB) and the Internet Engineering Steering Group (IESG). The IAB is
chartered to provide architectural guidance to activities in IETF and to perform a

ptg999

Section 1.6 Standardization Process 23

number of other tasks such as appointing liaisons to other standards-defining orga-
nizations (SDOs). The IESG has decision-making authority regarding the creation
and approval of new standards, along with modifications to existing standards.
The “heavy lifting” or detailed work is generally performed by IETF working
groups that are coordinated by working group chairs who volunteer for this task.

In addition to the IETF, there are two other important groups that interact
closely with the IETF. The Internet Research Task Force (IRTF) explores protocols,
architectures, and procedures that are not deemed mature enough for standard-
ization. The chair of the IRTF is a nonvoting member of IAB. The IAB, in turn,
works with the Internet Society (ISOC) to help influence and promote worldwide
policies and education regarding Internet technologies and usage.

1.6.1 Request for Comments (RFC)

Every official standard in the Internet community is published as a Request for
Comments, or RFC. RFCs can be created in a number of ways, and the publisher of
RFCs (called the RFC editor) recognizes multiple document streams corresponding
to the way an RFC has been developed. The current streams (as of 2010) include
the IETF, IAB, IRTF, and independent submission streams. Prior to being accepted
and published (permanently) as an RFC, documents exist as temporary Internet
drafts while they receive comments and progress through the editing and review
process.

All RFCs are not standards. Only so-called standards-track category RFCs
are considered to be official standards. Other categories include best current prac-
tice (BCP), informational, experimental, and historic. It is important to realize that
just because a document is an RFC does not mean that the IETF has endorsed it
as any form of standard. Indeed, there exist RFCs on which there is significant
disagreement.

The RFCs range in size from a few pages to several hundred. Each is identi-
fied by a number, such as RFC 1122, with higher numbers for newer RFCs. They
are all available for free from a number of Web sites, including http://www.rfc-
editor.org. For historical reasons, RFCs are generally delivered as basic text files,
although some RFCs have been reformatted or authored using more advanced file
formats.

A number of RFCs have special significance because they summarize, clarify,
or interpret particular sets of other standards. For example, [RFC5000] defines
the set of all other RFCs that are considered official standards as of mid-2008 (the
most recent such RFC at the time of writing). An updated list is available at the
current standards Web site [OIPSW]. The Host Requirements RFCs ([RFC1122] and
[RFC1123]) define requirements for protocol implementations in Internet IPv4
hosts, and the Router Requirements RFC [RFC1812] does the same for routers. The
Node Requirements RFC [RFC4294] does both for IPv6 systems.

http://www.rfc-editor.org
http://www.rfc-editor.org

ptg999

24 Introduction

1.6.2 Other Standards

Although the IETF is responsible for standardizing most of the protocols we dis-
cuss in this text, other SDOs are responsible for defining protocols that merit our
attention. The most important of these groups include the Institute of Electrical
and Electronics Engineers (IEEE), the World Wide Web Consortium (W3C), and
the International Telecommunication Union (ITU). In their activities relevant to
this text, IEEE is concerned with standards below layer 3 (e.g., Wi-Fi and Ethernet),
and W3C is concerned with application-layer protocols, specifically those related
to Web technologies (e.g., HTML-based syntax). ITU, and more specifically ITU-T
(formerly CCITT), standardizes protocols used within the telephone and cellular
networks, which is becoming an ever more important component of the Internet.

1.7 Implementations and Software Distributions

The historical de facto standard TCP/IP implementations were from the Computer
Systems Research Group (CSRG) at the University of California, Berkeley. They
were distributed with the 4.x BSD (Berkeley Software Distribution) system and
with the BSD Networking Releases until the mid-1990s. This source code has been
the starting point for many other implementations. Today, each popular operating
system has its own implementation. In this text, we tend to draw examples from
the TCP/IP implementations in Linux, Windows, and sometimes FreeBSD and
Mac OS (both of which are derived from historical BSD releases). In most cases,
the particular implementation matters little.

Figure 1-7 shows a chronology of the various BSD releases, indicating the
important TCP/IP features we cover in later chapters. It also shows the years when
Linux and Windows began supporting TCP/IP. The BSD Networking Releases
shown in the second column were freely available public source code releases con-
taining all of the networking code, both the protocols themselves and many of the
applications and utilities (e.g., the Telnet remote terminal program and FTP file
transfer program).

By the mid-1990s, the Internet and TCP/IP were well established. All subse-
quent popular operating systems support TCP/IP natively. Research and devel-
opment of new TCP/IP features, previously found first in BSD releases, are now
typically found first in Linux releases. Windows has recently implemented a new
TCP/IP stack (starting with Windows Vista) with many new features and native
IPv6 capability. Linux, FreeBSD, and Mac OS X also support IPv6 without setting
any special configuration options.

ptg999

Section 1.8 Attacks Involving the Internet Architecture 25

1.8 Attacks Involving the Internet Architecture

Throughout the text we shall briefly describe attacks and vulnerabilities that
have been discovered in the design or implementation of the topic we are dis-
cussing. Few attacks target the Internet architecture as a whole. However, it is
worth observing that the Internet architecture delivers IP datagrams based on
destination IP addresses. As a result, malicious users are able to insert whatever
IP address they choose into the source IP address field of each IP datagram they
send, an activity called spoofing. The resulting datagrams are delivered to their

Figure 1-7 The history of software releases supporting TCP/IP up to 1995. The various BSD releases pioneered
the availability of TCP/IP. In part because of legal uncertainties regarding the BSD releases in the
early 1990s, Linux was developed as an alternative that was initially tailored for PC users. Micro-
soft began supporting TCP/IP in Windows a couple of years later.

ptg999

26 Introduction

destinations, but it is difficult to perform attribution. That is, it may be difficult or
impossible to determine the origin of a datagram received from the Internet.

Spoofing can be combined with a variety of other attacks seen periodically on
the Internet. Denial-of-service (DoS) attacks usually involve using so much of some
important resource that legitimate users are denied service. For example, sending
so many IP datagrams to a server that it spends all of its time just processing the
incoming packets and performing no other useful work is a type of DoS attack.
Other DoS attacks may involve clogging the network with so much traffic that
no other packets can be sent. This is often accomplished by using many sending
computers, forming a distributed DoS (DDoS) attack.

Unauthorized access attacks involve accessing information or resources in an
unauthorized fashion. This can be accomplished with a variety of techniques such
as exploiting protocol implementation bugs to take control of a system (called
0wning the system and turning it into a zombie or bot). It can also involve vari-
ous forms of masquerading such as an attacker’s agent impersonating a legitimate
user (e.g., by running with the user’s credentials). Some of the more pernicious
attacks involve taking control of many remote systems using malicious software
(malware) and using them in a coordinated, distributed fashion (called botnets).
Programmers who intentionally develop malware and exploit systems for (illegal)
profit or other malicious purposes are generally called black hats. So-called white
hats do the same sorts of technical things but notify vulnerable parties instead of
exploit them.

One other concern with the Internet architecture is that the original Internet
protocols did not perform any encryption in support of authentication, integrity,
or confidentiality. Consequently, malicious users could usually ascertain private
information by merely observing packets in the network. Those with the ability
to modify packets in transit could also impersonate users or alter the contents of
messages. Although these problems have been reduced significantly thanks to
encryption protocols (see Chapter 18), old or poorly designed protocols are still
sometimes used that are vulnerable to simple eavesdropping attacks. Given the
prevalence of wireless networks, where it is relatively easy to “sniff” the packets
sent by others, such older or insecure protocols should be avoided. Note that while
encryption may be enabled at one layer (e.g., on a link-layer Wi-Fi network), only
host-to-host encryption (IP layer or above) protects information across the mul-
tiple network segments an IP datagram is likely to traverse on its way to its final
destination.

1.9 Summary

This chapter has been a whirlwind tour of concepts in network architecture and
design in general, plus the TCP/IP protocol suite in particular that we discuss in
detail in later chapters. The Internet architecture was designed to interconnect
different existing networks and provide for a wide range of services and protocols

ptg999

 Section 1.9 Summary 27

operating simultaneously. Packet switching using datagrams was chosen for its
robustness and efficiency. Security and predictable delivery of data (e.g., bounded
latency) were secondary concerns.

Based on their understanding of layered and modular software design in
operating systems, the early implementers of the Internet protocols adopted a
layered design that employs encapsulation. The three main layers in the TCP/IP
protocol suite are the network layer, transport layer, and application layer, and we
mentioned the different responsibilities of each. We also mentioned the link layer
because it relates so closely with the TCP/IP suite. We shall discuss each in more
detail in subsequent chapters.

In TCP/IP, the distinction between the network layer and the transport layer is
critical: the network layer (IP) provides an unreliable datagram service and must
be implemented by all systems addressable on the Internet, whereas the transport
layers (TCP and UDP) provide an end-to-end service to applications running on
end hosts. The primary transport layers differ radically. TCP provides in-ordered
reliable stream delivery with flow control and congestion control. UDP provides
essentially no capabilities beyond IP except port numbers for demultiplexing and
an error detection mechanism. Unlike TCP, however, it supports multicast delivery.

Addresses and demultiplexing identifiers are used by each layer to avoid con-
fusing protocols or different associations/connections of the same protocol. Link-
layer multi-access networks often use 48-bit addresses; IPv4 uses 32-bit addresses
and IPv6 uses 128-bit addresses. The TCP and UDP transport protocols use dis-
tinct sets of port numbers. Some port numbers are assigned by standards, and oth-
ers are used temporarily, usually by client applications when communicating with
servers. Port numbers do not represent anything physical; they are merely used as
a way for applications that want to communicate to rendezvous.

Although port numbers and IP addresses are usually enough to identify the
location of a service on the Internet, they are not very convenient for humans to
remember or use (especially IPv6 addresses). Consequently, the Internet uses
a hierarchical system of host names that can be converted to IP addresses (and
back) using DNS, a distributed database application running on the Internet. DNS
has become an essential component of the Internet infrastructure, and efforts are
under way to make it more secure (see Chapter 18).

An internet is a collection of networks. The common building block for an
internet is a router that connects the networks at the IP layer. The “capital-I” Inter-
net is an internet that spans the globe and interconnects nearly two billion users
(as of 2010). Private internets are called intranets and are usually connected to the
Internet using special devices (firewalls, discussed in Chapter 10) that attempt to
prevent unauthorized access. Extranets usually consist of a subset of an institu-
tion’s intranet that is designed to be accessed by partners or affiliates in a limited
way.

Networked applications are usually designed using a client/server or peer-
to-peer design pattern. Client/server is more popular and traditional, but peer-
to-peer designs have also seen tremendous success. Whatever the design pattern,

ptg999

28 Introduction

applications invoke APIs to perform networking tasks. The most common API for
TCP/IP networks is called sockets. It was provided with BSD UNIX distributions,
software releases that pioneered the use of TCP/IP. By the late 1990s the TCP/IP
protocol suite and sockets API were available on every popular operating system.

Security was not a major design goal for the Internet architecture. Determin-
ing where packets originate can be difficult for a receiver, as end hosts can easily
spoof source IP addresses in unsecured IP datagrams. Distributed DoS attacks
also remain an ongoing challenge because victim end hosts can be collected
together to form botnets that can carry out DDoS and other attacks, sometimes
without the system owners’ knowledge. Finally, early Internet protocols did little
to ensure privacy of sensitive information, but most of those protocols are now
deprecated, and modern replacements use encryption to provide confidential and
authenticated communications between hosts.

1.10 References

[B64] P. Baran, “On Distributed Communications: 1. Introduction to Distributed
Communications Networks,” RAND Memorandum RM-3420-PR, Aug. 1964.

[BT] http://www.bittorrent.com

[C88] D. Clark, “The Design Philosophy of the DARPA Internet Protocols,” Proc.
ACM SIGCOMM, Aug. 1988.

[CK74] V. Cerf and R. Kahn, “A Protocol for Packet Network Intercommunica-
tion,” IEEE Transactions on Communications, COM-22(5), May 1974.

[D08] J. Day, Patterns in Network Architecture: A Return to Fundamentals (Prentice
Hall, 2008).

[D68] E. Dijkstra, “The Structure of the ‘THE’-Multiprogramming System,” Com-
munications of the ACM, 11(5), May 1968.

[DBSW66] D. Davies, K. Bartlett, R. Scantlebury, and P. Wilkinson, “A Digital
Communications Network for Computers Giving Rapid Response at Remote
Terminals,” Proc. ACM Symposium on Operating System Principles, Oct. 1967.

[I96] IBM Corporation, Systems Network Architecture—APPN Architecture Reference,
Document SC30-3422-04, 1996.

[IPIS] Ipoque, Internet Study 2008/2009, http://www.ipoque.com/resources/
internet-studies/internet-study-2008_2009

[K64] L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay
(McGraw-Hill, 1964).

[LC04] S. Lin and D. Costello Jr., Error Control Coding, Second Edition (Prentice
Hall, 2004).

http://www.bittorrent.com
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009

ptg999

 Section 1.10 References 29

[LJFK93] S. Leffler, W. Joy, R. Fabry, and M. Karels, “Networking Implementation
Notes—4.4BSD Edition,” June 1993.

[LT68] J. C. R. Licklider and R. Taylor, “The Computer as a Communication
Device,” Science and Technology, Apr. 1968.

[OIPSW] http://www.rfc-editor.org/rfcxx00.html

[P07] J. Pelkey, Entrepreneurial Capitalism and Innovation: A History of Computer
Communications 1968–1988, available at http://historyofcomputercommunica-
tions.info

[P73] L. Pouzin, “Presentation and Major Design Aspects of the CYCLADES
Computer Network,” NATO Advanced Study Institute on Computer Communi-
cation Networks, 1973.

[RFC0871] M. Padlipsky, “A Perspective on the ARPANET Reference Model,”
Internet RFC 0871, Sept. 1982.

[RFC0959] J. Postel and J. Reynolds, “File Transfer Protocol,” Internet RFC 0959/
STD 0009, Oct. 1985.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

[RFC1123] R. Braden, ed., “Requirements for Internet Hosts—Application and
Support,” Internet RFC 1123/STD 0003, Oct. 1989.

[RFC1812] F. Baker, ed., “Requirements for IP Version 4 Routers,” Internet RFC
1812, June 1995.

[RFC3493] R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens, “Basic
Socket Interface Extensions for IPv6,” Internet RFC 3493 (informational), Feb.
2003.

[RFC3542] W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei, “Advanced
Sockets Application Program Interface (API) for IPv6,” Internet RFC 3542 (infor-
mational), May 2003.

[RFC3678] D. Thaler, B. Fenner, and B. Quinn, “Socket Interface Extensions for
Multicast Source Filters,” Internet RFC 3678 (informational), Jan. 2004.

[RFC3787] J. Parker, ed., “Recommendations for Interoperable IP Networks Using
Intermediate System to Intermediate System (IS-IS),” Internet RFC 3787 (informa-
tional), May 2004.

[RFC4294] J. Loughney, ed., “IPv6 Node Requirements,” Internet RFC 4294 (infor-
mational), Apr. 2006.

[RFC4340] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” Internet RFC 4340, Mar. 2006.

http://www.rfc-editor.org/rfcxx00.html
http://historyofcomputercommunications.info
http://historyofcomputercommunications.info

ptg999

30 Introduction

[RFC4584] S. Chakrabarti and E. Nordmark, “Extension to Sockets API for
Mobile IPv6,” Internet RFC 4584 (informational), July 2006.

[RFC4677] P. Hoffman and S. Harris, “The Tao of IETF—A Novice’s Guide to the
Internet Engineering Task Force,” Internet RFC 4677 (informational), Sept. 2006.

[RFC4960] R. Stewart, ed., “Stream Control Transmission Protocol,” Internet RFC
4960, Sept. 2007.

[RFC5000] RFC Editor, “Internet Official Protocol Standards,” Internet RFC 5000/
STD 0001 (informational), May 2008.

[RFC5014] E. Nordmark, S. Chakrabarti, and J. Laganier, “IPv6 Socket API for
Source Address Selection,” Internet RFC 5014 (informational), Sept. 2007.

[RFC6250] D. Thaler, “Evolution of the IP Model,” Internet RFC 6250 (informa-
tional), May 2011.

[SFR04] W. R. Stevens, B. Fenner, and A. Rudoff, UNIX Network Programming,
Volume 1, Third Edition (Prentice Hall, 2004).

[SKYPE] http://www.skype.com

[SRC84] J. Saltzer, D. Reed, and D. Clark, “End-to-End Arguments in System
Design,” ACM Transactions on Computer Systems, 2(4), Nov. 1984.

[W02] M. Waldrop, The Dream Machine: J. C. R. Licklider and the Revolution That
Made Computing Personal (Penguin Books, 1992).

[X85] Xerox Corporation, Xerox Network Systems Architecture—General Information
Manual, XNSG 068504, 1985.

[Z80] H. Zimmermann, “OSI Reference Model—The ISO Model of Architecture
for Open Systems Interconnection,” IEEE Transactions on Communications, COM-
28(4), Apr. 1980.

http://www.skype.com

ptg999

31

2

The Internet Address
Architecture

2.1 Introduction

This chapter deals with the structure of network-layer addresses used in the Inter-
net, also known as IP addresses. We discuss how addresses are allocated and
assigned to devices on the Internet, the way hierarchy in address assignment aids
routing scalability, and the use of special-purpose addresses, including broadcast,
multicast, and anycast addresses. We also discuss how the structure and use of
IPv4 and IPv6 addresses differ.

Every device connected to the Internet has at least one IP address. Devices
used in private networks based on the TCP/IP protocols also require IP addresses.
In either case, the forwarding procedures implemented by IP routers (see Chapter
5) use IP addresses to identify where traffic is going. IP addresses also indicate
where traffic has come from. IP addresses are similar in some ways to telephone
numbers, but whereas telephone numbers are often known and used directly by
end users, IP addresses are often shielded from a user’s view by the Internet’s DNS
(see Chapter 11), which allows most users to use names instead of numbers. Users
are confronted with manipulating IP addresses when they are required to set up
networks themselves or when the DNS has failed for some reason. To understand
how the Internet identifies hosts and routers and delivers traffic between them,
we must understand the role of IP addresses. We are therefore interested in their
administration, structure, and uses.

When devices are attached to the global Internet, they are assigned addresses
that must be coordinated so as to not duplicate other addresses in use on the net-
work. For private networks, the IP addresses being used must be coordinated to
avoid similar overlaps within the private networks. Groups of IP addresses are
allocated to users and organizations. The recipients of the allocated addresses then

ptg999

32 The Internet Address Architecture

assign addresses to devices, usually according to some network “numbering plan.”
For global Internet addresses, a hierarchical system of administrative entities helps
in allocating addresses to users and service providers. Individual users typically
receive address allocations from Internet service providers (ISPs) that provide both
the addresses and the promise of routing traffic in exchange for a fee.

2.2 Expressing IP Addresses

The vast majority of Internet users who are familiar with IP addresses understand
the most popular type: IPv4 addresses. Such addresses are often represented in
so-called dotted-quad or dotted-decimal notation, for example, 165.195.130.107.
The dotted-quad notation consists of four decimal numbers separated by periods.
Each such number is a nonnegative integer in the range [0, 255] and represents
one-quarter of the entire IP address. The dotted-quad notation is simply a way of
writing the whole IPv4 address—a 32-bit nonnegative integer used throughout
the Internet system—using convenient decimal numbers. In many circumstances
we will be concerned with the binary structure of the address. A number of Inter-
net sites, such as http://www.subnetmask.info and http://www. subnet-
calculator.com, now contain calculators for converting between formats of
IP addresses and related information. Table 2-1 gives a few examples of IPv4
addresses and their corresponding binary representations, to get started.

Table 2-1 Example IPv4 addresses written in dotted-quad and binary notation

Dotted-Quad Representation Binary Representation

0.0.0.0 00000000 00000000 00000000 00000000

1.2.3.4 00000001 00000010 00000011 00000100

10.0.0.255 00001010 00000000 00000000 11111111

165.195.130.107 10100101 11000011 10000010 01101011

255.255.255.255 11111111 11111111 11111111 11111111

In IPv6, addresses are 128 bits in length, four times larger than IPv4 addresses,
and generally speaking are less familiar to most users. The conventional notation
adopted for IPv6 addresses is a series of four hexadecimal (“hex,” or base-16) num-
bers called blocks or fields separated by colons. An example IPv6 address containing
eight blocks would be written as 5f05:2000:80ad:5800:0058:0800:2023:1d71. Although
not as familiar to users as decimal numbers, hexadecimal numbers make the task
of converting to binary somewhat simpler. In addition, a number of agreed-upon
simplifications have been standardized for expressing IPv6 addresses [RFC4291]:

http://www.subnetmask.info
http://www.subnet-calculator.com
http://www.subnet-calculator.com

ptg999

Section 2.2 Expressing IP Addresses 33

1. Leading zeros of a block need not be written. In the preceding example, the
address could have been written as 5f05:2000:80ad:5800:58:800:2023:1d71.

2. Blocks of all zeros can be omitted and replaced by the notation ::. For exam-
ple, the IPv6 address 0:0:0:0:0:0:0:1 can be written more compactly as ::1.
Similarly, the address 2001:0db8:0:0:0:0:0:2 can be written more compactly
as 2001:db8::2. To avoid ambiguities, the :: notation may be used only once
in an IPv6 address.

3. Embedded IPv4 addresses represented in the IPv6 format can use a form
of hybrid notation in which the block immediately preceding the IPv4 por-
tion of the address has the value ffff and the remaining part of the address
is formatted using dotted-quad. For example, the IPv6 address ::ffff:10.0.0.1
represents the IPv4 address 10.0.0.1. This is called an IPv4-mapped IPv6
address.

4. A conventional notation is adopted in which the low-order 32 bits of the
IPv6 address can be written using dotted-quad notation. The IPv6 address
::0102:f001 is therefore equivalent to the address ::1.2.240.1. This is called
an IPv4-compatible IPv6 address. Note that IPv4-compatible addresses are
not the same as IPv4-mapped addresses; they are compatible only in the
sense that they can be written down or manipulated by software in a way
similar to IPv4 addresses. This type of addressing was originally required
for transition plans between IPv4 and IPv6 but is now no longer required
[RFC4291].

Table 2-2 presents some examples of IPv6 addresses and their binary representa-
tions.

Table 2-2 Examples of IPv6 addresses and their binary representations

Hex Notation Binary Representation

5f05:2000:80ad:5800:58:800:2023:1d71 0101111100000101 0010000000000000
1000000010101101 0101100000000000

0000000001011000 0000100000000000

0010000000100011 0001110101110001

::1 0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000001

::1.2.240.1 or ::102:f001 0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000100000010 1111000000000001

ptg999

34 The Internet Address Architecture

In some circumstances (e.g., when expressing a URL containing an address)
the colon delimiter in an IPv6 address may be confused with another separator
such as the colon used between an IP address and a port number. In such circum-
stances, bracket characters, [and], are used to surround the IPv6 address. For
example, the URL

http://[2001:0db8:85a3:08d3:1319:8a2e:0370:7344]:443/

refers to port number 443 on IPv6 host 2001:0db8:85a3:08d3:1319:8a2e:0370:7344
using the HTTP/TCP/IPv6 protocols.

The flexibility provided by [RFC4291] resulted in unnecessary confusion due
to the ability to represent the same IPv6 address in multiple ways. To remedy this
situation, [RFC5952] imposes some rules to narrow the range of options while
remaining compatible with [RFC4291]. They are as follows:

1. Leading zeros must be suppressed (e.g., 2001:0db8::0022 becomes
2001:db8::22).

2. The :: construct must be used to its maximum possible effect (most zeros
suppressed) but not for only 16-bit blocks. If multiple blocks contain equal-
length runs of zeros, the first is replaced with ::.

3. The hexadecimal digits a through f should be represented in lowercase.

In most cases, we too will abide by these rules.

2.3 Basic IP Address Structure

IPv4 has 4,294,967,296 possible addresses in its address space, and IPv6 has 340,282,3
66,920,938,463,463,374,607,431,768,211,456. Because of the large number of addresses
(especially for IPv6), it is convenient to divide the address space into chunks. IP
addresses are grouped by type and size. Most of the IPv4 address chunks are even-
tually subdivided down to a single address and used to identify a single network
interface of a computer attached to the Internet or to some private intranet. These
addresses are called unicast addresses. Most of the IPv4 address space is unicast
address space. Most of the IPv6 address space is not currently being used. Beyond
unicast addresses, other types of addresses include broadcast, multicast, and
anycast, which may refer to more than one interface, plus some special-purpose
addresses we will discuss later. Before we begin with the details of the current
address structure, it is useful to understand the historical evolution of IP addresses.

2.3.1 Classful Addressing

When the Internet’s address structure was originally defined, every unicast IP
address had a network portion, to identify the network on which the interface using

ptg999

Section 2.3 Basic IP Address Structure 35

the IP address was to be found, and a host portion, used to identify the particular host
on the network given in the network portion. Thus, some number of contiguous bits
in the address became known as the net number, and remaining bits were known as
the host number. At the time, most hosts had only a single network interface, so the
terms interface address and host address were used somewhat interchangeably.

With the realization that different networks might have different numbers of
hosts, and that each host requires a unique IP address, a partitioning was devised
wherein different-size allocation units of IP address space could be given out to
different sites, based on their current and projected number of hosts. The parti-
tioning of the address space involved five classes. Each class represented a differ-
ent trade-off in the number of bits of a 32-bit IPv4 address devoted to the network
number versus the number of bits devoted to the host number. Figure 2-1 shows
the basic idea.

Figure 2-1 The IPv4 address space was originally divided into five classes. Classes A, B, and C were
used for assigning addresses to interfaces on the Internet (unicast addresses) and for
some other special-case uses. The classes are defined by the first few bits in the address:
0 for class A, 10 for class B, 110 for class C, and so on. Class D addresses are for multicast
use (see Chapter 9), and class E addresses remain reserved.

Here we see that the five classes are named A, B, C, D, and E. The A, B, and
C class spaces were used for unicast addresses. If we look more carefully at this
addressing structure, we can see how the relative sizes of the different classes and
their corresponding address ranges really work. Table 2-3 gives this class struc-
ture (sometimes called classful addressing structure).

ptg999

36 The Internet Address Architecture

Table 2-3 The original (“classful”) IPv4 address space partitioning

Class Address Range

High-
Order
Bits Use

Fraction
of Total

Number
of Nets

Number
of Hosts

A 0.0.0.0–127.255.255.255 0 Unicast/special 1/2 128 16,777,216
B 128.0.0.0–191.255.255.255 10 Unicast/special 1/4 16,384 65,536
C 192.0.0.0–223.255.255.255 110 Unicast/special 1/8 2,097,152 256
D 224.0.0.0–239.255.255.255 1110 Multicast 1/16 N/A N/A
E 240.0.0.0–255.255.255.255 1111 Reserved 1/16 N/A N/A

The table indicates how the classful addressing structure was used primar-
ily to have a way of allocating unicast address blocks of different sizes to users.
The partitioning into classes induces a trade-off between the number of available
network numbers of a given size and the number of hosts that can be assigned
to the given network. For example, a site allocated the class A network number
18.0.0.0 (MIT) has 224 possible addresses to assign as host addresses (i.e., using
IPv4 addresses in the range 18.0.0.0–18.255.255.255), but there are only 127 class A
networks available for the entire Internet. A site allocated a class C network num-
ber, say, 192.125.3.0, would be able to assign only 256 hosts (i.e., those in the range
192.125.3.0–192.125.3.255), but there are more than two million class C network
numbers available.

Note

These numbers are not exact. Several addresses are not generally available for
use as unicast addresses. In particular, the first and last addresses of the range
are not generally available. In our example, the site assigned address range
18.0.0.0 would really be able to assign as many as 224 - 2 = 16,777,214 unicast IP
addresses.

The classful approach to Internet addressing lasted mostly intact for the first
decade of the Internet’s growth (to about the early 1980s). After that, it began to
show its first signs of scaling problems—it was becoming too inconvenient to cen-
trally coordinate the allocation of a new class A, B, or C network number every time
a new network segment was added to the Internet. In addition, assigning class A
and B network numbers tended to waste too many host numbers, whereas class C
network numbers could not provide enough host numbers to many new sites.

2.3.2 Subnet Addressing

One of the earliest difficulties encountered when the Internet began to grow was
the inconvenience of having to allocate a new network number for any new net-
work segment that was to be attached to the Internet. This became especially

ptg999

Section 2.3 Basic IP Address Structure 37

cumbersome with the development and increasing use of local area networks
(LANs) in the early 1980s. To address the problem, it was natural to consider a
way that a site attached to the Internet could be allocated a network number cen-
trally that could then be subdivided locally by site administrators. If this could be
accomplished without altering the rest of the Internet’s core routing infrastruc-
ture, so much the better.

Implementing this idea would require the ability to alter the line between the
network portion of an IP address and the host portion, but only for local purposes
at a site; the rest of the Internet would “see” only the traditional class A, B, and C
partitions. The approach adopted to support this capability is called subnet address-
ing [RFC0950]. Using subnet addressing, a site is allocated a class A, B, or C net-
work number, leaving some number of remaining host bits to be further allocated
and assigned within a site. The site may further divide the host portion of its base
address allocation into a subnetwork (subnet) number and a host number. Essen-
tially, subnet addressing adds one additional field to the IP address structure, but
without adding any bits to its length. As a result, a site administrator is able to
trade off the number of subnetworks versus the number of hosts expected to be on
each subnetwork without having to coordinate with other sites.

In exchange for the additional flexibility provided by subnet addressing, a
new cost is imposed. Because the definition of the Subnet and Host fields is now
site-specific (not dictated by the class of the network number), all routers and hosts
at a site require a new way to determine where the Subnet field of the address and
the Host field of the address are located within the address. Before subnets, this
information could be derived directly by knowing whether a network number
was from class A, B, or C (as indicated by the first few bits in the address). As an
example, using subnet addressing, an IPv4 address might have the form shown in
Figure 2-2.

Figure 2-2 An example of a subnetted class B address. Using 8 bits for the subnet ID provides for
256 subnets with 254 hosts on each of the subnets. This partitioning may be altered by
the network administrator.

ptg999

38 The Internet Address Architecture

Figure 2-2 is an example of how a class B address might be “subnetted.”
Assume that some site in the Internet has been allocated a class B network num-
ber. The first 16 bits of every address the site will use are fixed at some particular
number because these bits have been allocated by a central authority. The last 16
bits (which would have been used only to create host numbers in the class B net-
work without subnets) can now be divided by the site network administrator as
needs may dictate. In this example, 8 bits have been chosen for the subnet number,
leaving 8 bits for host numbers. This particular configuration allows the site to
support 256 subnetworks, and each subnetwork may contain up to 254 hosts (now
the first and last addresses for each subnetwork are not available, as opposed to
losing only the first and last addresses of the entire allocated range). Recall that
the subnetwork structure is known only by hosts and routers where the subnet-
ting is taking place. The remainder of the Internet still treats any address associ-
ated with the site just as it did prior to the advent of subnet addressing. Figure 2-3
shows how this works.

Figure 2-3 A site is allocated the classical class B network number 128.32. The network administra-
tor decides to apply a site-wide subnet mask of 255.255.255.0, giving 256 subnetworks
where each subnetwork can hold 256 – 2 = 254 hosts. The IPv4 address of each host on
the same subnet has the subnetwork number in common. All of the IPv4 addresses of
hosts on the left-hand LAN segment start with 128.32.1, and all of those on the right start
with 128.32.2.

ptg999

Section 2.3 Basic IP Address Structure 39

This figure shows a hypothetical site attached to the Internet with one border
router (i.e., one attachment point to the Internet) and two internal local area net-
works. The value of x could be anything in the range [0, 255]. Each of the Ethernet
networks is an IPv4 subnetwork of the overall network number 128.32, a class B
address allocation. For other sites on the Internet to reach this site, all traffic with
destination addresses starting with 128.32 is directed by the Internet routing sys-
tem to the border router (specifically, its interface with IPv4 address 137.164.23.30).
At this point, the border router must distinguish among different subnetworks
within the 128.32 network. In particular, it must be able to distinguish and sepa-
rate traffic destined for addresses of the form 128.32.1.x from those destined for
addresses of the form 128.32.2.x. These represent subnetwork numbers 1 and 2,
respectively, of the 128.32 class B network number. In order to do this, the router
must be aware of where the subnet ID is to be found within the addresses. This is
accomplished by a configuration parameter we will discuss next.

2.3.3 Subnet Masks

The subnet mask is an assignment of bits used by a host or router to determine how
the network and subnetwork information is partitioned from the host information
in a corresponding IP address. Subnet masks for IP are the same length as the cor-
responding IP addresses (32 bits for IPv4 and 128 bits for IPv6). They are typically
configured into a host or router in the same way as IP addresses—either statically
(typical for routers) or using some dynamic system such as the Dynamic Host Con-
figuration Protocol (DHCP; see Chapter 6). For IPv4, subnet masks may be written
in the same way an IPv4 address is written (i.e., dotted-decimal). Although not
originally required to be arranged in this manner, today subnet masks are struc-
tured as some number of 1 bits followed by some number of 0 bits. Because of this
arrangement, it is possible to use a shorthand format for expressing masks that
simply gives the number of contiguous 1 bits in the mask (starting from the left).
This format is now the most common format and is sometimes called the prefix
length. Table 2-4 presents some examples for IPv4.

Table 2-4 IPv4 subnet mask examples in various formats

Dotted-Decimal
Representation

Shorthand
(Prefix Length) Binary Representation

128.0.0.0 /1 10000000 00000000 00000000 00000000

255.0.0.0 /8 11111111 00000000 00000000 00000000

255.192.0.0 /10 11111111 11000000 00000000 00000000

255.255.0.0 /16 11111111 11111111 00000000 00000000

255.255.254.0 /23 11111111 11111111 11111110 00000000

255.255.255.192 /27 11111111 11111111 11111111 11100000

255.255.255.255 /32 11111111 11111111 11111111 11111111

ptg999

40 The Internet Address Architecture

Table 2-5 presents some examples for IPv6.
Masks are used by routers and hosts to determine where the network/sub-

network portion of an IP address ends and the host part begins. A bit set to 1 in
the subnet mask means the corresponding bit position in an IP address should be
considered part of a combined network/subnetwork portion of an address, which
is used as the basis for forwarding datagrams (see Chapter 5). Conversely, a bit
set to 0 in the subnet mask means the corresponding bit position in an IP address
should be considered part of the host portion. For example, in Figure 2-4 we can
see how the IPv4 address 128.32.1.14 is treated when a subnet mask of 255.255.255.0
is applied to it.

Table 2-5 IPv6 subnet mask examples in various formats

Hex Notation
Shorthand
(Prefix Length) Binary Representation

ffff:ffff:ffff:ffff:: /64 1111111111111111 1111111111111111

1111111111111111 1111111111111111

0000000000000000 0000000000000000

0000000000000000 0000000000000000

ff00:: /8 1111111100000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

Figure 2-4 An IP address can be combined with a subnet mask using a bitwise AND operation in
order to form the network/subnetwork identifier (prefix) of the address used for routing.
In this example, applying a mask of length 24 to the IPv4 address 128.32.1.14 gives the
prefix 128.32.1.0/24.

Here we see how each bit in the address is ANDed with each corresponding
bit in the subnet mask. Recalling the bitwise AND operation, a result bit is only
ever a 1 if the corresponding bits in both the mask and the address are 1. In this
example, we see that the address 128.32.1.14 belongs to the subnet 128.32.1.0/24.
In Figure 2-3, this is precisely the information required by the border router to

ptg999

Section 2.3 Basic IP Address Structure 41

determine to which subnetwork a datagram destined for the system with address
128.32.1.14 should be forwarded. Note again that the rest of the Internet routing
system does not require knowledge of the subnet mask because routers outside
the site make routing decisions based only on the network number portion of
an address and not the combined network/subnetwork or host portions. Conse-
quently, subnet masks are purely a local matter at the site.

2.3.4 Variable-Length Subnet Masks (VLSM)

So far we have discussed how a network number allocated to a site can be sub-
divided into ranges assigned to multiple subnetworks, each of the same size and
therefore able to support the same number of hosts, based on the operational expec-
tations of the network administrator. We now observe that it is possible to use a
different-length subnet mask applied to the same network number in different por-
tions of the same site. Although doing this complicates address configuration man-
agement, it adds flexibility to the subnet structure because different subnetworks
may be set up with different numbers of hosts. Variable-length subnet masks (VLSM)
are now supported by most hosts, routers, and routing protocols. To understand
how VLSM works, consider the network topology illustrated in Figure 2-5, which
extends Figure 2-3 with two additional subnetworks using VLSM.

Figure 2-5 VLSM can be used to partition a network number into subnetworks with a differing
number of hosts on each subnet. Each router and host is configured with a subnet mask
in addition to its IP address. Most software supports VLSM, except for some older rout-
ing protocols (e.g., RIP version 1).

ptg999

42 The Internet Address Architecture

In the more complicated and realistic example shown in Figure 2-5, three dif-
ferent subnet masks are used within the site to subnet the 128.32.0.0/16 network:
/24, /25, and /26. Doing so provides for a different number of hosts on each sub-
net. Recall that the number of hosts is constrained by the number of bits remain-
ing in the IP address that are not used by the network/subnet number. For IPv4
and a /24 prefix, this allows for 32 – 24 = 8 bits (256 hosts); for /25, half as many
(128 hosts); and for /26, half further still (64 hosts). Note that each interface on
each host and router depicted is now given both an IP address and a subnet mask,
but the mask differs across the network topology. With an appropriate dynamic
routing protocol running among the routers (e.g., OSPF, IS-IS, RIPv2), traffic is
able to flow correctly among hosts at the same site or to/from the outside of the
site across the Internet.

Although it may not seem obvious, there is a common case where a subnet-
work contains only two hosts. When routers are connected together by a point-
to-point link requiring an IP address to be assigned at each end, it is common
practice to use a /31 network prefix with IPv4, and it is now also a recommended
practice to use a /127 prefix for IPv6 [RFC6164].

2.3.5 Broadcast Addresses

In each IPv4 subnetwork, a special address is reserved to be the subnet broadcast
address. The subnet broadcast address is formed by setting the network/subnet-
work portion of an IPv4 address to the appropriate value and all the bits in the Host
field to 1. Consider the left-most subnet from Figure 2-5. Its prefix is 128.32.1.0/24.
The subnet broadcast address is constructed by inverting the subnet mask (i.e.,
changing all the 0 bits to 1 and vice versa) and performing a bitwise OR opera-
tion with the address of any of the computers on the subnet (or, equivalently, the
network/subnetwork prefix). Recall that the result of a bitwise OR operation is 1
if either input bit is 1. Using the IPv4 address 128.32.1.14, this computation can be
written as shown in Figure 2-6.

Figure 2-6 The subnet broadcast address is formed by ORing the complement of the subnet mask
with the IPv4 address. In this case of a /24 subnet mask, all of the remaining 32 – 24
= 8 bits are set to 1, giving a decimal value of 255 and the subnet broadcast address of
128.32.1.255.

ptg999

Section 2.3 Basic IP Address Structure 43

As shown in the figure, the subnet broadcast address for the subnet
128.32.1.0/24 is 128.32.1.255. Historically, a datagram using this type of address as
its destination has also been known as a directed broadcast. Such a broadcast can,
at least theoretically, be routed through the Internet as a single datagram until
reaching the target subnetwork, at which point it becomes a collection of broad-
cast datagrams that are delivered to all hosts on the subnetwork. Generalizing
this idea further, we could form a datagram with the destination IPv4 address
128.32.255.255 and launch it into the Internet attached to the network depicted in
Figure 2-3 or Figure 2-5. This would address all hosts at the target site.

Note

Directed broadcasts were found to be such a big problem from a security point of
view that they are effectively disabled on the Internet today. [RFC0919] describes
the various types of broadcasts for IPv4, and [RFC1812] suggests that support
for forwarding directed broadcasts by routers should not only be available but
enabled by default. This policy was reversed by [RFC2644] so that by default
routers must now disable the forwarding of directed broadcasts and are even free
to omit support for the capability altogether.

In addition to the subnet broadcast address, the special-use address
255.255.255.255 is reserved as the local net broadcast (also called limited broadcast),
which is never forwarded by routers. (See Section 2.5 for more detail on special-
use addresses.) Note that although routers may not forward broadcasts, subnet
broadcasts and local net broadcasts destined for the same network to which a
computer is attached should be expected to work unless explicitly disabled by
end hosts. Such broadcasts do not require action by a router; link-layer broadcast
mechanisms, if available, are used for supporting them (see Chapter 3). Broadcast
addresses are typically used with protocols such as UDP/IP (Chapter 10) or ICMP
(Chapter 8) because these protocols do not involve two-party conversations as in
TCP/IP. IPv6 lacks any broadcast addresses; for places where broadcast addresses
might be used in IPv4, IPv6 instead uses exclusively multicast addresses (see
Chapter 9).

2.3.6 IPv6 Addresses and Interface Identifiers

In addition to being longer than IPv4 addresses by a factor of 4, IPv6 addresses
also have some additional structure. Special prefixes used with IPv6 addresses
indicate the scope of an address. The scope of an IPv6 address refers to the portion
of the network where it can be used. Important examples of scopes include node-
local (the address can be used only for communication on the same computer),
link-local (used only among nodes on the same network link or IPv6 prefix), or
global (Internet-wide). In IPv6, most nodes have more than one address in use,
often on the same network interface. Although this is supported in IPv4 as well, it

ptg999

44 The Internet Address Architecture

is not nearly as common. The set of addresses required in an IPv6 node, including
multicast addresses (see Section 2.5.2), is given in [RFC4291].

Note

Another scope level called site-local using prefix fec0::/10 was originally sup-
ported by IPv6 but was deprecated for use with unicast addressing by [RFC3879].
The primary problems include how to handle such addresses given that they may
be reused in more than one site and a lack of clarity on precisely how to define
a “site.”

Link-local IPv6 addresses (and some global IPv6 addresses) use interface iden-
tifiers (IIDs) as a basis for unicast IPv6 address assignment. IIDs are used as the
low-order bits of an IPv6 address in all cases except where the address begins with
the binary value 000, and as such they must be unique within the same network
prefix. IIDs are ordinarily 64 bits long and are formed either directly from the
underlying link-layer MAC address of a network interface using a modified EUI-64
format [EUI64], or by another process that randomizes the value in hopes of pro-
viding some degree of privacy against address tracking (see Chapter 6).

In IEEE standards, EUI stands for extended unique identifier. EUI-64 identifi-
ers start with a 24-bit Organizationally Unique Identifier (OUI) followed by a 40-bit
extension identifier assigned by the organization, which is identified by the first 24
bits. The OUIs are maintained and allocated by the IEEE registration authority
[IEEERA]. EUIs may be “universally administered” or “locally administered.” In
the Internet context, such addresses are typically of the universally administered
variety.

Many IEEE standards-compliant network interfaces (e.g., Ethernet) have used
shorter-format addresses (48-bit EUIs) for years. The only significant difference
between the EUI-48 and EUI-64 formats is their length (see Figure 2-7).

Figure 2-7 The EUI-48 and EUI-64 formats defined by the IEEE. These are used within IPv6 to form
interface identifiers by inverting the u bit.

ptg999

Section 2.3 Basic IP Address Structure 45

The OUI is 24 bits long and occupies the first 3 bytes of both EUI-48 and EUI-
64 addresses. The low-order 2 bits of the first bytes of these addresses are desig-
nated the u and g bits, respectively. The u bit, when set, indicates that the address
is locally administered. The g bit, when set, indicates that the address is a group or
multicast-type address. For the moment, we are concerned only with cases where
the g bit is not set.

An EUI-64 can be formed from an EUI-48 by copying the 24-bit OUI value from
the EUI-48 address to the EUI-64 address, placing the 16-bit value 1111111111111110
(hex FFFE) in the fourth and fifth bytes of the EUI-64 address, and then copying
the remaining organization-assigned bits. For example, the EUI-48 address 00-11-
22-33-44-55 would become 00-11-22-FF-FE-33-44-55 in EUI-64. This mapping is the
first step used by IPv6 in constructing its interface identifiers when such under-
lying EUI-48 addresses are available. The modified EUI-64 used to form IIDs for
IPv6 addresses simply inverts the u bit.

When an IPv6 interface identifier is needed for a type of interface that does not
have an EUI-48-bit address provided by its manufacturer, but has some other type
of underlying address (e.g., AppleTalk), the underlying address is left-padded with
zeros to form the interface identifier. Interface identifiers created for interfaces
that lack any form of other identifier (e.g., tunnels, serial links) may be derived
from some other interface on the same node (that is not on the same subnet) or
from some identifier associated with the node. Lacking any other options, manual
assignment is a last resort.

2.3.6.1 Examples
Using the Linux ifconfig command, we can investigate the way a link-local IPv6
address is formed:

Linux% ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:30:48:2A:19:89
 inet addr:12.46.129.28 Bcast:12.46.129.127
 Mask:255.255.255.128
 inet6 addr: fe80::230:48ff:fe2a:1989/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1359970341 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1472870787 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:4021555658 (3.7 GiB) TX bytes:3258456176 (3.0 GiB)
 Base address:0x3040 Memory:f8220000-f8240000

Here we can see how the Ethernet’s hardware address 00:30:48:2A:19:89 is
mapped to an IPv6 address. First, it is converted to EUI-64, forming the address
00:30:48:ff:fe:2a:19:89. Next, the u bit is inverted, forming the IID value
02:30:48:ff:fe:2a:19:89. To complete the link-local IPv6 address, we use
the reserved link-local prefix fe80::/10 (see Section 2.5). Together, these form
the complete address, fe80::230:48ff:fe2a:1989. The presence of /64 is the

ptg999

46 The Internet Address Architecture

standard length used for identifying the subnetwork/host portion of an IPv6
address derived from an IID as required by [RFC4291].

Another interesting example is from a Windows system with IPv6. In this
case, we see a special tunnel endpoint, which is used to carry IPv6 traffic through
networks that otherwise support only IPv4:

c:\> ipconfig /all
...
Tunnel adapter Automatic Tunneling Pseudo-Interface:

 Connection-specific DNS Suffix . : foo
 Description : Automatic Tunneling
 Pseudo-Interface

 Physical Address. : 0A-99-8D-87
 Dhcp Enabled. : No
 IP Address. : fe80::5efe:10.153.141.135%2
 Default Gateway :
 DNS Servers : fec0:0:0:ffff::1%2
 fec0:0:0:ffff::2%2
 fec0:0:0:ffff::3%2
 NetBIOS over Tcpip. : Disabled
...

In this case, we can see a special tunneling interface called ISATAP [RFC5214].
The so-called physical address is really the hexadecimal encoding of an IPv4
address: 0A-99-8D-87 is the same as 10.153.141.135. Here, the OUI used (00-
00-5E) is the one assigned to the IANA [IANA]. It is used in combination with
the hex value fe, indicating an embedded IPv4 address. This combination is
then combined with the standard link-local prefix fe80::/10 to give the address
fe80::5efe:10.153.141.135. The %2 appended to the end of the address is called
a zone ID in Windows and indicates the interface index number on the computer
corresponding to the IPv6 address. IPv6 addresses are often created by a process
of automatic configuration, a process we discuss in more detail in Chapter 6.

2.4 CIDR and Aggregation

In the early 1990s, after the adoption of subnet addressing to ease one form of
growing pains, the Internet started facing a serious set of scaling problems. Three
particular issues were considered so important as to require immediate attention:

1. By 1994, over half of all class B addresses had already been allocated. It was
expected that the class B address space would be exhausted by about 1995.

2. The 32-bit IPv4 address was thought to be inadequate to handle the size of
the Internet anticipated by the early 2000s.

ptg999

Section 2.4 CIDR and Aggregation 47

3. The number of entries in the global routing table (one per network num-
ber), about 65,000 in 1995, was growing. As more and more class A, B, and
C routing entries appeared, routing performance would suffer.

These three issues were attacked by a group in the IETF called ROAD (for
ROuting and ADdressing), starting in 1992. They considered problems 1 and 3 to
be of immediate concern, and problem 2 as requiring a long-term solution. The
short-term solution they proposed was to effectively remove the class breakdown
of IP addresses and also promote the ability to aggregate hierarchically assigned
IP addresses. These measures would help problems 1 and 3. IPv6 was envisioned
to deal with problem 2.

2.4.1 Prefixes

In order to help relieve the pressure on the availability of IPv4 addresses (espe-
cially class B addresses), the classful addressing scheme was generalized using a
scheme similar to VLSM, and the Internet routing system was extended to support
Classless Inter-Domain Routing (CIDR) [RFC4632]. This provided a way to conve-
niently allocate contiguous address ranges that contained more than 255 hosts but
fewer than 65,536. That is, something other than single class B or multiple class
C network numbers could be allocated to sites. Using CIDR, any address range
is not predefined as being part of a class but instead requires a mask similar to a
subnet mask, sometimes called a CIDR mask. CIDR masks are not limited to a site
but are instead visible to the global routing system. Thus, the core Internet routers
must be able to interpret and process masks in addition to network numbers. This
combination of numbers, called a network prefix, is used for both IPv4 and IPv6
address management.

Eliminating the predefined separation of network and host number within an
IP address makes finer-grain allocation of IP address ranges possible. As with class-
ful addressing, dividing the address spaces into chunks is most easily achieved by
grouping numerically contiguous addresses for use as a type or for some particu-
lar special purpose. Such groupings are now commonly expressed using a prefix
of the address space. An n-bit prefix is a predefined value for the first n bits of an
address. The value of n (the length of the prefix) is typically expressed as an inte-
ger in the range 0–32 for IPv4 and 0–128 for IPv6. It is generally appended to the
base IP address following a / character. Table 2-6 gives some examples of prefixes
and their corresponding IPv4 or IPv6 address ranges.

In the table, the bits defined and fixed by the prefix are enclosed in a box.
The remaining bits may be set to any combination of 0s and 1s, thereby cover-
ing the possible address range. Clearly, a smaller prefix length corresponds to a
larger number of possible addresses. In addition, the earlier classful addressing
approach is easily generalized by this scheme. For example, the class C network
number 192.125.3.0 can be written as the prefix 192.125.3.0/24 or 192.125.3/24.
Classful A and B network numbers can be expressed using /8 and /16 prefix
lengths, respectively.

ptg999

48 The Internet Address Architecture

2.4.2 Aggregation

Removing the classful structure of IP addresses made it possible to allocate IP
address blocks in a wider variety of sizes. Doing so, however, did not address
the third concern from the list of problems; it did not help to reduce the number
of routing table entries. A routing table entry tells a router where to send traffic.
Essentially, the router inspects the destination IP address in an arriving datagram,
finds a matching routing table entry, and from the entry extracts the “next hop”
for the datagram. This is somewhat like driving to a particular address in a car
and in every intersection along the way finding a sign indicating what direction
to take to get to the next intersection on the way to the destination. If you consider
the number of signs that would have to be present at every intersection for every
possible destination neighborhood, you get some sense of the problem facing the
Internet in the early 1990s.

At the time, few techniques were known to dramatically reduce the number
of routing table entries while maintaining shortest-path routes to all destinations
in the Internet. The best-known approach was published in a study of hierarchical
routing [KK77] in the late 1970s by Kleinrock and Kamoun. They observed that if
the network topology were arranged as a tree1 and addresses were assigned in a
way that was “sensitive” to this topology, very small routing tables could be used
while still maintaining shortest-path routes to all destinations. Consider Figure 2-8.

In this figure, circles represent routers and lines represent network links
between them. The left-hand and right-hand sides of the diagram show tree-
shaped networks. The difference between them is the way addresses have been
assigned to the routers. In the left-hand (a) side, addresses are essentially ran-
dom—there is no direct relationship between the addresses and the location of

1. In graph theory, a tree is a connected graph with no cycles. For a network of routers and links, this
means that there is only one simple (nonduplicative) path between any two routers.

Table 2-6 Examples of prefixes and their corresponding IPv4 or IPv6 address range

Prefix Prefix (Binary) Address Range

0.0.0.0/0 00000000 00000000 00000000 00000000 0.0.0.0–255.255.255.255
128.0.0.0/1 10000000 00000000 00000000 00000000 128.0.0.0–255.255.255.255
128.0.0.0/24 10000000 00000000 00000000 00000000 128.0.0.0–128.0.0.255
198.128.128.192/27 11000110 10000000 10000000 11000000 198.128.128.192–198.128.128.223
165.195.130.107/32 10100101 11000011 10000010 01101011 165.195.130.107
2001:db8::/32 0010000000000001 0000110110111000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

2001:db8::–2001:db8:ffff:ffff

ptg999

Section 2.4 CIDR and Aggregation 49

the routers in the tree. On the right-hand (b) side of the diagram, the addresses
are assigned based upon where the router is located in the tree. If we consider
the number of entries each top router requires, we see that there is a significant
difference.

The root (top) of the tree on the left is the router labeled 19.12.4.8. In order to
know a next hop for every possible destination, it needs an entry for all the routers
“below” it in the tree: 190.16.11.2, 86.12.0.112, 159.66.2.231, 133.17.97.12, 66.103.2.19,
18.1.1.1, 19.12.4.9, and 203.44.23.198. For any other destination, it simply routes to the
cloud labeled “Other Parts of the Network.” This results in a total of nine entries.
In contrast, the root of the right-hand tree is labeled 19.0.0.1 and requires only three
entries in its routing table. Note that all of the routers on the left side of the right
tree begin with the prefix 19.1 and all to the right begin with 19.2. Thus, the table
in router 19.0.0.1 need only show 19.1.0.1 as the next hop for any destination start-
ing with 19.1, whereas 19.2.0.1 is the next hop for any destination starting with 19.2.
Any other destination goes to the cloud labeled “Other Parts of the Network.” This
results in a total of three entries. Note that this behavior is recursive—any router
in the (b) side of the tree never requires more entries than the number of links it
has. This is a direct result of the special method used to assign the addresses. Even

Figure 2-8 In a network with a tree topology, network addresses can be assigned in a special way so as to limit
the amount of routing information (“state”) that needs to be stored in a router. If addresses are
not assigned in this way (left side), shortest-path routes cannot be guaranteed without storing an
amount of state proportional to the number of nodes to be reached. While assigning addresses in
a way that is sensitive to the tree topology saves state, if the network topology changes, a reassign-
ment of addresses is generally required.

ptg999

50 The Internet Address Architecture

if more routers are added to the (b)-side tree, this nice property is maintained.
This is the essence of the hierarchical routing idea from [KK77].

In the Internet context, the hierarchical routing idea can be used in a specific
way to reduce the number of Internet routing entries that would be required other-
wise. This is accomplished by a procedure known as route aggregation. It works by
joining multiple numerically adjacent IP prefixes into a single shorter prefix (called
an aggregate or summary) that covers more address space. Consider Figure 2-9.

Figure 2-9 In this example, the arrows indicate aggregation of two address prefixes to form one;
the underlined prefixes are additions in each step. In the first step, 190.154.27.0/26
and 190.154.27.64.0/26 can be aggregated because they are numerically adjacent, but
190.154.27.192/26 cannot. With the addition of 190.154.27.128/26, they can all be aggre-
gated together in two steps to form 190.154.27.0/24. With the final addition of the adjacent
190.154.26.0/24, the aggregate 190.154.26.0/23 is produced.

We start with three address prefixes on the left in Figure 2-9. The first two,
190.154.27.0/26 and 190.154.27.64/26, are numerically adjacent and can therefore
be combined (aggregated). The arrows indicate where aggregation takes place.
The prefix 190.154.27.192/26 cannot be aggregated in the first step because it is not
numerically adjacent. When a new prefix, 190.154.27.128/26, is added (underlined),
the 190.154.27.192/26 and 190.154.27.128/26 prefixes may be aggregated, forming
the 190.154.27.128/25 prefix. This aggregate is now adjacent to the 190.154.27.0/25
aggregate, so they can be aggregated further to form 190.154.27.0/24. When the
prefix 190.154.26.0/24 (underlined) is added, the two class C prefixes can be aggre-
gated to form 190.154.26.0/23. In this way, the original three prefixes and the two
that were added can be aggregated into a single prefix.

2.5 Special-Use Addresses

Both the IPv4 and IPv6 address spaces include a few address ranges that are used
for special purposes (and are therefore not used in assigning unicast addresses).
For IPv4, these addresses are given in Table 2-7 [RFC5735].

ptg999

Section 2.5 Special-Use Addresses 51

In IPv6, a number of address ranges and individual addresses are used for
specific purposes. They are listed in Table 2-8 [RFC5156].

For both IPv4 and IPv6, address ranges not designated as special, multicast, or
reserved are available to be assigned for unicast use. Some unicast address space
(prefixes 10/8, 172.16/12, and 192.168/16 for IPv4 and fc00::/7 for IPv6) is reserved
for building private networks. Addresses from these ranges can be used by coop-
erating hosts and routers within a site or organization, but not across the global
Internet. Thus, these addresses are sometimes called nonroutable addresses. That
is, they will not be routed by the public Internet.

The management of private, nonroutable address space is entirely a local deci-
sion. The IPv4 private addresses are very common in home networks and for the
internal networks of moderately sized and large enterprises. They are frequently
used in combination with network address translation (NAT), which rewrites IP
addresses inside IP datagrams as they enter the Internet. We discuss NAT in detail
in Chapter 7.

Table 2-7 IPv4 special-use addresses (defined January 2010)

Prefix Special Use Reference

0.0.0.0/8 Hosts on the local network. May be used only as a source IP
address.

[RFC1122]

10.0.0.0/8 Address for private networks (intranets). Such addresses
never appear on the public Internet.

[RFC1918]

127.0.0.0/8 Internet host loopback addresses (same computer). Typically
only 127.0.0.1 is used.

[RFC1122]

169.254.0.0/16 “Link-local” addresses—used only on a single link and
generally assigned automatically. See Chapter 6.

[RFC3927]

172.16.0.0/12 Address for private networks (intranets). Such addresses
never appear on the public Internet.

[RFC1918]

192.0.0.0/24 IETF protocol assignments (IANA reserved). [RFC5736]
192.0.2.0/24 TEST-NET-1 addresses approved for use in documentation.

Such addresses never appear on the public Internet.
[RFC5737]

192.88.99.0/24 Used for 6to4 relays (anycast addresses). [RFC3068]
192.168.0.0/16 Address for private networks (intranets). Such addresses

never appear on the public Internet.
[RFC1918]

198.18.0.0/15 Used for benchmarks and performance testing. [RFC2544]
198.51.100.0/24 TEST-NET-2. Approved for use in documentation. [RFC5737]
203.0.113.0/24 TEST-NET-3. Approved for use in documentation. [RFC5737]
224.0.0.0/4 IPv4 multicast addresses (formerly class D); used only as

destination addresses.
[RFC5771]

240.0.0.0/4 Reserved space (formerly class E), except 255.255.255.255. [RFC1112]
255.255.255.255/32 Local network (limited) broadcast address. [RFC0919]

[RFC0922]

ptg999

52 The Internet Address Architecture

2.5.1 Addressing IPv4/IPv6 Translators

In some networks, it may be attractive to perform translation between IPv4 and
IPv6 [RFC6127]. A framework for this has been developed for unicast translations
[RFC6144], and one is currently under development for multicast translations [IDv-
4v6mc]. One of the basic functions is to provide automated, algorithmic translation
of addresses. Using the “well-known” IPv6 prefix 64:ff9b::/96 or another assigned
prefix, [RFC6052] specifies how this is accomplished for unicast addresses.

The scheme makes use of a specialized address format called an IPv4-embed-
ded IPv6 address. This type of address contains an IPv4 address inside an IPv6
address. It can be encoded using one of six formats, based on the length of the IPv6
prefix, which is required to be one of the following: 32, 40, 48, 56, 64, or 96. The
formats available are shown in Figure 2-10.

In the figure, the prefix is either the well-known prefix or a prefix unique to
the organization deploying translators. Bits 64–71 must be set to 0 to maintain
compatibility with identifiers specified in [RFC4291]. The suffix bits are reserved
and should be set to 0. The method to produce an IPv4-embedded IPv6 address
is then simple: concatenate the IPv6 prefix with the 32-bit IPv4 address, ensur-
ing that the bits 63–71 are set to 0 (inserting if necessary). Append the suffix as
0 bits until a 128-bit address is produced. IPv4-embedded IPv6 addresses using

Table 2-8 IPv6 special-use addresses (defined April 2008)

Prefix Special Use Reference

::/0 Default route entry. Not used for addressing. [RFC5156]
::/128 The unspecified address; may be used as a source IP address. [RFC4291]
::1/128 The IPv6 host loopback address; not used in datagrams sent

outside the local host.
[RFC4291]

::ffff:0:0/96 IPv4-mapped addresses. Such addresses never appear in
packet headers. For internal host use only.

[RFC4291]

::{ipv4-address}/96 IPv4-compatible addresses. Deprecated; not to be used. [RFC4291]
2001::/32 Teredo addresses. [RFC4380]
2001:10::/28 Overlay Routable Cryptographic Hash Identifiers. Such

addresses never appear on the public Internet.
[RFC4843]

2001:db8::/32 Address range used for documentation and for examples.
Such addresses never appear on the public Internet.

[RFC3849]

2002::/16 6to4 addresses of 6to4 tunnel relays. [RFC3056]
3ffe::/16 Used by 6bone experiments. Deprecated; not to be used. [RFC3701]
5f00::/16 Used by 6bone experiments. Deprecated; not to be used. [RFC3701]
fc00::/7 Unique, local unicast addresses; not used on the global

Internet.
[RFC4193]

fe80::/10 Link-local unicast addresses. [RFC4291]

ff00::/8 IPv6 multicast addresses; used only as destination addresses. [RFC4291]

ptg999

Section 2.5 Special-Use Addresses 53

the 96-bit prefix option may be expressed using the convention for IPv6-mapped
addresses mentioned previously (Section 2.2(3) of [RFC4291]). For example,
embedding the IPv4 address 198.51.100.16 with the well-known prefix produces
the address 64:ff9b::198.51.100.16.

2.5.2 Multicast Addresses

Multicast addressing is supported by IPv4 and IPv6. An IP multicast address (also
called group or group address) identifies a group of host interfaces, rather than a
single one. Generally speaking, the group could span the entire Internet. The
portion of the network that a single group covers is known as the group’s scope
[RFC2365]. Common scopes include node-local (same computer), link-local (same
subnet), site-local (applicable to some site), global (entire Internet), and administra-
tive. Administrative scoped addresses may be used in an area of the network that
has been manually configured into routers. A site administrator may configure
routers as admin-scope boundaries, meaning that multicast traffic of the associated
group is not forwarded past the router. Note that the site-local and administrative
scopes are available for use only with multicast addressing.

Under software control, the protocol stack in each Internet host is able to join
or leave a multicast group. When a host sends something to a group, it creates a
datagram using one of its own (unicast) IP addresses as the source address and
a multicast IP address as the destination. All hosts in scope that have joined the

Figure 2-10 IPv4 addresses can be embedded within IPv6 addresses, forming an IPv4-embedded
IPv6 address. Six different formats are available, depending on the IPv6 prefix length in
use. The well-known prefix 64:ff9b::/96 can be used for automatic translation between
IPv4 and IPv6 unicast addresses.

ptg999

54 The Internet Address Architecture

group should receive any datagrams sent to the group. The sender is not generally
aware of the hosts receiving the datagram unless they explicitly reply. Indeed, the
sender does not even know in general how many hosts are receiving its datagrams.

The original multicast service model, described so far, has become known as
any-source multicast (ASM). In this model, any sender may send to any group; a
receiver joins the group by specifying only the group address. A newer approach,
called source-specific multicast (SSM) [RFC3569][RFC4607], uses only a single sender
per group (also see the errata to [RFC4607]). In this case, when joining a group,
a host specifies the address of a channel, which comprises both a group address
and a source IP address. SSM was developed to avoid some of the complexities in
deploying the ASM model. Although neither form of multicast is widely available
throughout the Internet, it seems that SSM is now the more likely candidate for
adoption.

Understanding and implementing wide area multicasting has been an ongo-
ing effort within the Internet community for more than a decade, and a large
number of protocols have been developed to support it. Full details of how global
Internet multicasting works are therefore beyond the scope of this text, but the
interested reader is directed to [IMR02]. Details of how local IP multicast operates
are given in Chapter 9. For now, we shall discuss the format and meaning of IPv4
and IPv6 multicast addresses.

2.5.3 IPv4 Multicast Addresses

For IPv4, the class D space (224.0.0.0–239.255.255.255) has been reserved for
supporting multicast. With 28 bits free, this provides for the possibility of 228 =
268,435,456 host groups (each host group is an IP address). This address space is
divided into major sections based on the way they are allocated and handled with
respect to routing [IP4MA]. Those major sections are presented in Table 2-9.

The blocks of addresses up to 224.255.255.255 are allocated for the exclusive
use of certain application protocols or organizations. These are allocated as the
result of action by the IANA or by the IETF. The local network control block is
limited to the local network of the sender; datagrams sent to those addresses are
never forwarded by multicast routers. The All Hosts group (224.0.0.1) is one group
in this block. The internetwork control block is similar to the local network control
range but is intended for control traffic that needs to be routed off the local link.
An example from this block is the Network Time Protocol (NTP) multicast group
(224.0.1.1) [RFC5905].

The first ad hoc block was constructed to hold addresses that did not fall into
either the local or internetwork control blocks. Most of the allocations in this range
are for commercial services, some of which do not (or never will) require global
address allocations; they may eventually be returned in favor of GLOP2 address-
ing (see the next paragraphs). The SDP/SAP block contains addresses used by

2. GLOP is not an acronym but instead simply a name for a portion of address space.

ptg999

Section 2.5 Special-Use Addresses 55

applications such as the session directory tool (SDR) [H96] that send multicast
session announcements using the Session Announcement Protocol (SAP) [RFC2974].
Originally a component of SAP, the newer Session Description Protocol (SDP)
[RFC4566] is now used not only with IP multicast but also with other mechanisms
to describe multimedia sessions.

The other major address blocks were created somewhat later in the evolution of
IP multicast. The SSM block is used by applications employing SSM in combination
with their own unicast source IP address in forming SSM channels, as described
previously. In the GLOP block, multicast addresses are based on the autonomous
system (AS) number of the host on which the application allocating the address
resides. AS numbers are used by Internet-wide routing protocols among ISPs in
order to aggregate routes and apply routing policies. Each such AS has a unique
AS number. Originally, AS numbers were 16 bits but have now been extended to
32 bits [RFC4893]. GLOP addresses are generated by placing a 16-bit AS number in
the second and third bytes of the IPv4 multicast address, leaving room for 1 byte to
represent the possible multicast addresses (i.e., up to 256 addresses). Thus, it is pos-
sible to map back and forth between a 16-bit AS number and the GLOP multicast
address range associated with an AS number. Although this computation is simple,
several online calculators have been developed to do it, too.3

3. For example, http://gigapop.uoregon.edu/glop/.

Table 2-9 Major sections of IPv4 class D address space used for supporting multicast

Range (Inclusive) Special Use Reference

224.0.0.0–224.0.0.255 Local network control; not forwarded [RFC5771]
224.0.1.0–224.0.1.255 Internetwork control; forwarded normally [RFC5771]
224.0.2.0–224.0.255.255 Ad hoc block I [RFC5771]
224.1.0.0–224.1.255.255 Reserved [RFC5771]
224.2.0.0–224.2.255.255 SDP/SAP [RFC4566]
224.3.0.0–224.4.255.255 Ad hoc block II [RFC5771]
224.5.0.0–224.255.255.255 Reserved [IP4MA]
225.0.0.0–231.255.255.255 Reserved [IP4MA]
232.0.0.0–232.255.255.255 Source-specific multicast (SSM) [RFC4607]

[RFC4608]
233.0.0.0–233.251.255.255 GLOP [RFC3180]
233.252.0.0–233.255.255.255 Ad hoc block III

(233.252.0.0/24 is reserved for documentation)

[RFC5771]

234.0.0.0–234.255.255.255

235.0.0.0–238.255.255.255

Unicast-prefix-based IPv4 multicast addresses

Reserved

[RFC6034]

[IP4MA]
239.0.0.0–239.255.255.255 Administrative scope [RFC2365]

http://gigapop.uoregon.edu/glop/

ptg999

56 The Internet Address Architecture

The most recent of the IPv4 multicast address allocation mechanisms associates
a number of multicast addresses with an IPv4 unicast address prefix. This is called
unicast-prefix-based multicast addressing (UBM) and is described in [RFC6034]. It is
based on a similar structure developed earlier for IPv6 that we discuss in Section
2.5.4. The UBM IPv4 address range is 234.0.0.0 through 234.255.255.255. A unicast
address allocation with a /24 or shorter prefix may make use of UBM addresses.
Allocations with fewer addresses (i.e., a /25 or longer prefix) must use some other
mechanism. UBM addresses are constructed as a concatenation of the 234/8 pre-
fix, the allocated unicast prefix, and the multicast group ID. Figure 2-11 shows the
format.

Figure 2-11 The IPv4 UBM address format. For unicast address allocations of /24 or shorter, associ-
ated multicast addresses are allocated based on a concatenation of the prefix 234/8, the
assigned unicast prefix, and the multicast group ID. Allocations with shorter unicast
prefixes therefore contain more unicast and multicast addresses.

To determine the set of UBM addresses associated with a unicast allocation,
the allocated prefix is simply prepended with the 234/8 prefix. For example, the
unicast IPv4 address prefix 192.0.2.0/24 has a single associated UBM address,
234.192.0.2. It is also possible to determine the owner of a multicast address by
simply “left-shifting” the multicast address by 8 bit positions. We know that the
multicast address range 234.128.32.0/24 is allocated to UC Berkeley, for example,
because the corresponding unicast IPv4 address space 128.32.0.0/16 (the “left-
shifted” version of 234.128.32.0) is owned by UC Berkeley (as can be determined
using a WHOIS query; see Section 2.6.1.1).

UBM addresses may offer advantages over the other types of multicast
address allocations. For example, they do not carry the 16-bit restriction for AS
numbers used by GLOP addressing. In addition, they are allocated as a conse-
quence of already-existing unicast address space allocations. Thus, sites wishing
to use multicast addresses already know which addresses they can use without
further coordination. Finally, UBM addresses are allocated at a finer granular-
ity than GLOP addresses, which correspond to AS number allocations. In today’s
Internet, a single AS number may be associated with multiple sites, frustrating the
simple mapping between address and owner supported by UBM.

The administratively scoped address block can be used to limit the distribu-
tion of multicast traffic to a particular collection of routers and hosts. These are
the multicast analogs of private unicast IP addresses. Such addresses should not
be used for distributing multicast into the Internet, as most of them are blocked at
enterprise boundaries. Large sites sometimes subdivide administratively scoped

ptg999

Section 2.5 Special-Use Addresses 57

multicast addresses to cover specific useful scopes (e.g., work group, division, and
geographical area).

2.5.4 IPv6 Multicast Addresses

For IPv6, which is considerably more aggressive in its use of multicast, the prefix
ff00::/8 has been reserved for multicast addresses, and 112 bits are available for
holding the group number, providing for the possibility of

2112 = 5,192,296,858,534,827,628,530,496,329,220,096

groups. Its general format is as shown in Figure 2-12.

Figure 2-12 The base IPv6 multicast address format includes 4 flag bits (0, reserved; R, contains ren-
dezvous point; P, uses unicast prefix; T, is transient). The 4-bit Scope value indicates the
scope of the multicast (global, local, etc.). The Group ID is encoded in the low-order 112
bits. If the P or R bit is set, an alternative format is used.

The second byte of the IPv6 multicast address includes a 4-bit Flags field and a
4-bit Scope ID field in the second nibble. The Scope field is used to indicate a limit
on the distribution of datagrams addressed to certain multicast addresses. The
hexadecimal values 0, 3, and f are reserved. The hex values 6, 7, and 9 through d
are unassigned. The values are given in Table 2-10, which is based on Section 2.7
of [RFC4291].

Table 2-10 Values of the IPv6 Scope field

Value Scope

0 Reserved
1 Interface-/machine-local
2 Link-/subnet-local
3 Reserved
4 Admin
5 Site-local
6–7 Unassigned
8 Organizational-local
9–d Unassigned

e Global
f Reserved

ptg999

58 The Internet Address Architecture

Many IPv6 multicast addresses allocated by the IANA for permanent use
intentionally span multiple scopes. Each of these is defined with a certain offset
relative to every scope (such addresses are called scope-relative or variable-scope
for this reason). For example, the variable-scope multicast address ff0x::101 is
reserved for NTP servers by [IP6MA]. The x indicates variable scope; Table 2-11
shows some of the addresses defined by this reservation.

Table 2-11 Example permanent variable-scope IPv6 multicast address reservations for NTP (101)

Address Meaning

ff01::101 All NTP servers on the same machine
ff02::101 All NTP servers on the same link/subnet
ff04::101 All NTP servers within some administratively defined scope
ff05::101 All NTP servers at the same site
ff08::101 All NTP servers at the same organization
ff0e::101 All NTP servers in the Internet

In IPv6, the multicast address format given in Figure 2-12 is used when the
P and R bit fields are set to 0. When P is set to 1, two alternative methods exist
for multicast addresses that do not require global agreement on a per-group basis.
These are described in [RFC3306] and [RFC4489]. In the first, called unicast-prefix-
based IPv6 multicast address assignment, a unicast prefix allocation provided by an
ISP or address allocation authority also effectively allocates a collection of multicast
addresses, thereby limiting the amount of global coordination required for avoid-
ing duplicates. With the second method, link-scoped IPv6 multicast, interface identi-
fiers are used, and multicast addresses are based on a host’s IID. To understand
how these various formats work, we need to first understand the use of the bit
fields in the IPv6 multicast address in more detail. They are defined in Table 2-12.

Table 2-12 IPv6 multicast address flags

Bit Field
(Flag) Meaning Reference

R Rendezvous point flag (0, regular; 1, RP address included) [RFC3956]
P Prefix flag (0, regular; 1, address based on unicast prefix) [RFC3306]
T Transient flag (0, permanently assigned; 1, transient) [RFC4291]

The T bit field, when set, indicates that the included group address is tempo-
rary or dynamically allocated; it is not one of the standard addresses defined in
[IP6MA]. When the P bit field is set to 1, the T bit must also be set to 1. When this
happens, a special format of IPv6 multicast addresses based on unicast address
prefixes is enabled, as shown in Figure 2-13.

ptg999

Section 2.5 Special-Use Addresses 59

We can see here how using unicast-prefix-based addressing changes the for-
mat of the multicast address to include space for a unicast prefix and its length,
plus a smaller (32-bit) group ID. The purpose of this scheme is to provide a way
of allocating globally unique IPv6 multicast addresses without requiring a new
global mechanism for doing so. Because IPv6 unicast addresses are already allo-
cated globally in units of prefixes (see Section 2.6), it is possible to use bits of this
prefix in multicast addresses, thereby leveraging the existing method of unicast
address allocation for multicast use. For example, an organization receiving a uni-
cast prefix allocation of 3ffe:ffff:1::/48 would also consequently receive a unicast-
based multicast prefix allocation of ff3x:30:3ffe:ffff:1::/96, where x is any valid
scope. SSM is also supported using this format by setting the prefix length and
prefix fields to 0, effectively requiring the prefix ff3x::/32 (where x is any valid
scope value) for use in all such IPv6 SSM multicast addresses.

To create unique multicast addresses of link-local scope, a method based on
IIDs can be used [RFC4489], which is preferred to unicast-prefix-based allocation
when only link-local scope is required. In this case, another form of IPv6 multicast
address structure is used (see Figure 2-14).

Figure 2-13 IPv6 multicast addresses can be created based upon unicast IPv6 address assignments
[RFC3306]. When this is done, the P bit field is set to 1, and the unicast prefix is carried
in the address, along with a 32-bit group ID. This form of multicast address allocation
eases the need for global address allocation agreements.

Figure 2-14 The IPv6 link-scoped multicast address format. Applicable only to link- (or smaller)
scoped addresses, the multicast address can be formed by combining an IPv6 interface
ID and a group ID. The mapping is straightforward, and all such addresses use prefixes
of the form ff3x:0011/32, where x is the scope ID and is less than 3.

The address format shown in Figure 2-14 is very similar to the format in Fig-
ure 2-13, except that the Prefix Length field is set to 255, and instead of a prefix
being carried in the subsequent field, an IPv6 IID is instead. The advantage of

ptg999

60 The Internet Address Architecture

this structure over the previous one is that no prefix need be supplied in forming
the multicast address. In ad hoc networks where no routers may be available, an
individual machine can form unique multicast addresses based on its own IID
without having to engage in a complex agreement protocol. As stated before, this
format works only for link- or node-local multicast scoping, however. When larger
scopes are required, either unicast-prefix-based addressing or permanent multi-
cast addresses are used. As an example of this format, a host with IID 02-11-22-33-
44-55-66-77 would use multicast addresses of the form ff3x:0011:0211:2233:4455:66
77:gggg:gggg, where x is a scope value of 2 or less and gggg:gggg is the hexadeci-
mal notation for a 32-bit multicast group ID.

The bit field we have yet to discuss is the R bit field. It is used when unicast-
prefix-based multicast addressing is used (the P bit is set) along with a multicast
routing protocol that requires knowledge of a rendezvous point.

Note

A rendezvous point (RP) is the IP address of a router set up to handle multicast
routing for one or more multicast groups. RPs are used by the PIM-SM proto-
col [RFC4601] to help senders and receivers participating in the same multicast
group to find each other. One of the problems encountered in deploying Internet-
wide multicast has been locating rendezvous points. This scheme overloads the
IPv6 multicast address to include an RP address. Therefore, it is simple to find an
RP from a group address by just selecting the appropriate subset of bits.

When the P bit is set, the modified format for a multicast address shown in
Figure 2-15 is used.

Figure 2-15 The unicast IPv6 address of an RP can be embedded inside an IPv6 multicast address
[RFC3956]. Doing so makes it straightforward to find an RP associated with an address
for routing purposes. An RP is used by the multicast routing system in order to coordi-
nate multicast senders with receivers when they are not on the same subnetwork.

The format shown in Figure 2-15 is similar to the one shown in Figure 2-13,
but SSM is not used (so the prefix length cannot be zero). In addition, a new 4-bit
field called the RIID is introduced. To form the IPv6 address of an RP based on
a multicast address of the form in Figure 2-15, the number of bits indicated in
the Prefix Length field are extracted from the Prefix field and placed as the upper
bits in a fresh IPv6 address. Then, the contents of the RIID field are used as the

ptg999

Section 2.5 Special-Use Addresses 61

low-order 4 bits of the RP address. The rest is filled with zeros. As an example,
consider a multicast address ff75:940:2001:db8:dead:beef:f00d:face. In this case,
the scope is 5 (site-local), the RIID field has the value 9, and the prefix length is
0x40 = 64 bits. The prefix itself is therefore 2001:db8:dead:beef, so the RP address
is 2001:db8:dead:beef::9. More examples are given in [RFC3956].

As with IPv4, there are a number of reserved IPv6 multicast addresses. These
addresses are grouped by scope, except for the variable-scope addresses men-
tioned before. Table 2-13 gives a list of the major reservations from the IPv6 multi-
cast space. Consult [IP6MA] for additional information.

Table 2-13 Reserved addresses within the IPv6 multicast address space

Address Scope Special Use Reference

ff01::1 Node All nodes [RFC4291]
ff01::2 Node All routers [RFC4291]
ff01::fb Node mDNSv6 [IDChes]

ff02::1 Link All nodes [RFC4291]
ff02::2 Link All routers [RFC4291]
ff02::4 Link DVMRP routers [RFC1075]
ff02::5 Link OSPFIGP [RFC2328]
ff02::6 Link OSPFIGP designated routers [RFC2328]
ff02::9 Link RIPng routers [RFC2080]
ff02::a Link EIGRP routers [EIGRP]
ff02::d Link PIM routers [RFC5059]
ff02::16 Link MLDv2-capable routers [RFC3810]
ff02::6a Link All snoopers [RFC4286]
ff02::6d Link LL-MANET-routers [RFC5498]
ff02::fb Link mDNSv6 [IDChes]
ff02::1:2 Link All DHCP agents [RFC3315]
ff02::1:3 Link LLMNR [RFC4795]
ff02::1:ffxx:xxxx Link Solicited-node address range [RFC4291]

ff05::2 Site All routers [RFC4291]
ff05::fb Site mDNSv6 [IDChes]
ff05::1:3 Site All DHCP servers [RFC3315]

ff0x:: Variable Reserved [RFC4291]
ff0x::fb Variable mDNSv6 [IDChes]
ff0x::101 Variable NTP [RFC5905]
ff0x::133 Variable Aggregate Server Access Protocol [RFC5352]
ff0x::18c Variable All ACs address (CAPWAP) [RFC5415]

ff3x::/32 (Special) SSM block [RFC4607]

ptg999

62 The Internet Address Architecture

2.5.5 Anycast Addresses

An anycast address is a unicast IPv4 or IPv6 address that identifies a different host
depending on where in the network it is used. This is accomplished by configur-
ing Internet routers to advertise the same unicast routes from multiple locations in
the Internet. Thus, an anycast address refers not to a single host in the Internet, but
to the “most appropriate” or “closest” single host that is responding to the anycast
address. Anycast addressing is used most frequently for finding a computer that
provides a common service [RFC4786]. For example, a datagram sent to an anycast
address could be used to find a DNS server (see Chapter 11), a 6to4 gateway that
encapsulates IPv6 traffic in IPv4 tunnels [RFC3068], or RPs for multicast routing
[RFC4610].

2.6 Allocation

IP address space is allocated, usually in large chunks, by a collection of hierarchi-
cally organized authorities. The authorities are generally organizations that allo-
cate address space to various owners—usually ISPs or other smaller authorities.
Authorities are most often involved in allocating portions of the global unicast
address space, but other types of addresses (multicast and special-use) are also
sometimes allocated. The authorities can make allocations to users for an undeter-
mined amount of time, or for a limited time (e.g., for running experiments). The
top of the hierarchy is the IANA [IANA], which has wide-ranging responsibil-
ity for allocating IP addresses and other types of numbers used in the Internet
protocols.

2.6.1 Unicast

For unicast IPv4 and IPv6 address space, the IANA delegates much of its allocation
authority to a few regional Internet registries (RIRs). The RIRs coordinate with each
other through an organization formed in 2003 called the Number Resource Orga-
nization (NRO) [NRO]. At the time of writing (mid-2011), the set of RIRs includes
those shown in Table 2-14, all of which participate in the NRO. Note in addition
that, as of early 2011, all the remaining unicast IPv4 address space held by IANA
for allocation had been handed over to these RIRs.

These entities typically deal with relatively large address blocks [IP4AS]
[IP6AS]. They allocate address space to smaller registries operating in countries
(e.g., Australia and Singapore) and to large ISPs. ISPs, in turn, provide address
space to their customers and themselves. When users sign up for Internet ser-
vice, they are ordinarily provided a (typically small) fraction or range of their
ISP’s address space in the form of an address prefix. These address ranges are
owned and managed by the customer’s ISP and are called provider-aggregatable
(PA) addresses because they consist of one or more prefixes that can be aggregated
with other prefixes the ISP owns. Such addresses are also sometimes called non-
portable addresses. Switching providers typically requires customers to change the

ptg999

 Section 2.6 Allocation 63

IP prefixes on all computers and routers they have that are attached to the Internet
(an often unpleasant operation called renumbering).

An alternative type of address space is called provider-independent (PI) address
space. Addresses allocated from PI space are allocated to the user directly and
may be used with any ISP. However, because such addresses are owned by the
customer, they are not numerically adjacent to the ISP’s own addresses and are
therefore not aggregatable. An ISP being asked to provide routing for a customer’s
PI addresses may require additional payment for service or simply not agree to
support such a configuration. In some sense, an ISP that agrees to provide routing
for a customer’s PI addresses is taking on an extra cost relative to other customers
by having to increase the size of its routing tables. On the other hand, many sites
prefer to use PI addresses, and might be willing to pay extra for them, because
it helps to avoid the need to renumber when switching ISPs (avoiding what has
become known as provider lock).

2.6.1.1 Examples
It is possible to use the Internet WHOIS service to determine how address space
has been allocated. For example, we can form a query for information about the
IPv4 address 72.1.140.203 by accessing the corresponding URL http://whois.
arin.net/rest/ip/72.1.140.203.txt:

NetRange: 72.1.140.192 - 72.1.140.223
CIDR: 72.1.140.192/27
OriginAS:
NetName: SPEK-SEA5-PART-1
NetHandle: NET-72-1-140-192-1
Parent: NET-72-1-128-0-1
NetType: Reassigned
RegDate: 2005-06-29
Updated: 2005-06-29
Ref: http://whois.arin.net/rest/net/NET-72-1-140-192-1

Table 2-14 Regional Internet registries that participate in the NRO

RIR Name Area of Responsibility Reference

AfriNIC—African Network
Information Center

Africa http://www.afrinic.net

APNIC—Asia Pacific Network
Information Center

Asia/Pacific Area http://www.apnic.net

ARIN—American Registry for
Internet Numbers

North America http://www.arin.net

LACNIC—Regional Latin
America and Caribbean IP
Address Registry

Latin America and some
Caribbean islands

http://lacnic.net/en/index.html

RIPE NCC—Réseaux IP
Européens

Europe, Middle East,
Central Asia

http://www.ripe.net

http://whois.arin.net/rest/net/NET-72-1-140-192-1
http://www.afrinic.net
http://www.apnic.net
http://www.arin.net
http://lacnic.net/en/index.html
http://www.ripe.net
http://whois.arin.net/rest/ip/72.1.140.203.txt
http://whois.arin.net/rest/ip/72.1.140.203.txt

ptg999

64 The Internet Address Architecture

Here we see that the address 72.1.140.203 is really part of the network called
SPEK-SEA5-PART-1, which has been allocated the address range 72.1.140.192/27.
Furthermore, we can see that SPEK-SEA5-PART-1’s address range is a portion of
the PA address space called NET-72-1-128-0-1. We can formulate a query for
information about this network by visiting the URL http://whois.arin.net/
rest/net/NET-72-1-128-0-1.txt:

NetRange: 72.1.128.0 - 72.1.191.255
CIDR: 72.1.128.0/18
OriginAS:
NetName: SPEAKEASY-6
NetHandle: NET-72-1-128-0-1
Parent: NET-72-0-0-0-0
NetType: Direct Allocation
RegDate: 2004-09-09
Updated: 2009-05-19
Ref: http://whois.arin.net/rest/net/NET-72-1-128-0-1

This record indicates that the address range 72.1.128.0/18 (called by the “han-
dle” or name NET-72-1-128-0-1) has been directly allocated out of the address
range 72.0.0.0/8 managed by ARIN. More details on data formats and the vari-
ous methods ARIN supports for WHOIS queries can be found at [WRWS].

We can look at a different type of result using one of the other RIRs. For exam-
ple, if we search for information regarding the IPv4 address 193.5.93.80 using
the Web query interface at http://www.ripe.net/whois, we obtain the follow-
ing result:

% This is the RIPE Database query service.
% The objects are in RPSL format.
%
% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db-terms-conditions.pdf
%
% Note: This output has been filtered.
% To receive output for a database update, use the "-B" flag.
% Information related to '193.5.88.0 - 193.5.95.255'
inetnum: 193.5.88.0 - 193.5.95.255
netname: WIPONET
descr: World Intellectual Property Organization
descr: UN Specialized Agency
descr: Geneva
country: CH
admin-c: AM4504-RIPE
tech-c: AM4504-RIPE
status: ASSIGNED PI
mnt-by: CH-UNISOURCE-MNT
mnt-by: DE-COLT-MNT
source: RIPE # Filtered

http://whois.arin.net/rest/net/NET-72-1-128-0-1.txt:
http://whois.arin.net/rest/net/NET-72-1-128-0-1.txt:
http://whois.arin.net/rest/net/NET-72-1-128-0-1
http://www.ripe.net/whois

ptg999

Section 2.7 Unicast Address Assignment 65

Here, we can see that the address 193.5.93.80 is a portion of the 193.5.88.0/21
block allocated to WIPO. Note that the status of this block is ASSIGNED PI, mean-
ing that this particular block of addresses is of the provider-independent variety.
The reference to RPSL indicates that the database records are in the Routing Policy
Specification Language [RFC2622][RFC4012], used by ISPs to express their routing
policies. Such information allows network operators to configure routers to help
minimize Internet routing instabilities.

2.6.2 Multicast

In IPv4 and IPv6, multicast addresses (i.e., group addresses) can be described based
on their scope, the way they are determined (statically, dynamically by agreement,
or algorithmically), and whether they are used for ASM or SSM. Guidelines have
been constructed for allocation of these groups ([RFC5771] for IPv4; [RFC3307] for
IPv6) and the overall architecture is detailed in [RFC6308]. The groups that are
not of global scope (e.g., administratively scoped addresses and IPv6 link-scoped
multicast addresses) can be reused in various parts of the Internet and are either
configured by a network administrator out of an administratively scoped address
block or selected automatically by end hosts. Globally scoped addresses that are
statically allocated are generally fixed and may be hard-coded into applications.
This type of address space is limited, especially in IPv4, so such addresses are
really intended for uses applicable to any Internet site. Algorithmically deter-
mined globally scoped addresses can be created based on AS numbers, as in
GLOP, or an associated unicast prefix allocation. Note that SSM can use globally
scoped addresses (i.e., from the SSM block), administratively scoped addresses, or
unicast-prefix-based IPv6 addresses where the prefix is effectively zero.

As we can see from the relatively large number of protocols and the complex-
ity of the various multicast address formats, multicast address management is a
formidable issue (not to mention global multicast routing [RFC5110]). From a typi-
cal user’s point of view, multicasting is used rarely and may be of limited concern.
From a programmer’s point of view, it may be worthwhile to support multicast
in application designs, and some insight has been provided into how to do so
[RFC3170]. For network administrators faced with implementing multicast, some
interaction with the service provider is likely necessary. In addition, some guide-
lines for multicast address allocation have been developed by vendors [CGEMA].

2.7 Unicast Address Assignment

Once a site has been allocated a range of unicast IP addresses, typically from its
ISP, the site or network administrator must determine how to assign addresses in
the address range to each network interface and how to set up the subnet structure.
If the site has only a single physical network segment (e.g., most private homes),
this process is relatively straightforward. For larger enterprises, especially those

ptg999

66 The Internet Address Architecture

receiving service from multiple ISPs and that use multiple physical network seg-
ments distributed over a large geographical area, this process can be complicated.
We shall begin to see how this works by looking at the case where a home user
uses a private address range and a single IPv4 address provided by an ISP. This is
a common scenario today. We then move on to provide some introductory guid-
ance for more complicated situations.

2.7.1 Single Provider/No Network/Single Address

The simplest type of Internet service that can be obtained today is to receive a single
IP address (typically IPv4 only in the United States) from an ISP to be used with a
single computer. For services such as DSL, the single address might be assigned as
the end of a point-to-point link and might be temporary. For example, if a user’s
computer connects to the Internet over DSL, it might be assigned the address
63.204.134.177 on a particular day. Any running program on the computer may send
and receive Internet traffic, and any such traffic will carry the source IPv4 address
63.204.134.177. Even a host this simple has other active IP addresses as well. These
include the local “loopback” address (127.0.0.1) and some multicast addresses, includ-
ing, at a minimum, the All Hosts multicast address (224.0.0.1). If the host is running
IPv6, at a minimum it is using the All Nodes IPv6 multicast address (ff02::1), any
IPv6 addresses it has been assigned by the ISP, the IPv6 loopback address (::1), and a
link-local address for each network interface configured for IPv6 use.

To see a host’s active multicast addresses (groups) on Linux, we can use the
ifconfig and netstat commands to see the IP addresses and groups in use:

Linux% ifconfig ppp0
ppp0 Link encap:Point-to-Point Protocol
 inet addr:71.141.244.213
 P-t-P:71.141.255.254 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1492 Metric:1
 RX packets:33134 errors:0 dropped:0 overruns:0 frame:0
 TX packets:41031 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:3
 RX bytes:17748984 (16.9 MiB) TX bytes:9272209 (8.8 MiB)

Linux% netstat -gn
IPv6/IPv4 Group Memberships
Interface RefCnt Group
--------------- ------ ---------------------
lo 1 224.0.0.1
ppp0 1 224.0.0.251
ppp0 1 224.0.0.1
lo 1 ff02::1

Here we see that the point-to-point link associated with the device ppp0
has been assigned the IPv4 address 71.141.244.213; no IPv6 address has been
assigned. The host system does have IPv6 enabled, however, so when we inspect

ptg999

Section 2.7 Unicast Address Assignment 67

its group memberships we see that it is subscribed to the IPv6 All Nodes multicast
group on its local loopback (lo) interface. We can also see that the IPv4 All Hosts
group is in use, in addition to the mDNS (multicast DNS) service [IDChes]. The
mDNS protocol uses the static IPv4 multicast address 224.0.0.251.

2.7.2 Single Provider/Single Network/Single Address

Many Internet users who own more than one computer find that having only a
single computer attached to the Internet is not an ideal situation. As a result, they
have home LAN or WLAN networks and use either a router or a computer acting
as a router to provide connectivity to the Internet. Such configurations are very
similar to the single-computer case, except the router forwards packets from the
home network to the ISP and also performs NAT (see Chapter 7; also called Inter-
net Connection Sharing (ICS) in Windows) by rewriting the IP addresses in packets
being exchanged with the customer’s ISP. From the ISP’s point of view, only a
single IP address has been used. Today, much of this activity is automated, so the
need for manual address configuration is minimal. The routers provide automatic
address assignment to the home clients using DHCP. They also handle address
assignment for the link set up with the ISP if necessary. Details of DHCP operation
and host configuration are given in Chapter 6.

2.7.3 Single Provider/Multiple Networks/Multiple Addresses

Many organizations find that the allocation of a single unicast address, especially
if it is only temporarily assigned, is insufficient for their Internet access needs.
In particular, organizations intending to run Internet servers (such as Web sites)
generally wish to have an IP address that does not change over time. These sites
also often have multiple LANs; some of them are internal (separated from the
Internet by firewalls and NAT devices), and others may be external (providing
services to the Internet). For such networks, there is typically a site or network
administrator who must decide how many IP addresses the site requires, how
to structure subnets at the site, and which subnets should be internal and which
external. The arrangement shown in Figure 2-16 is typical for small and medium-
size enterprises.

In this figure, a site has been allocated the prefix 128.32.2.64/26, providing
up to 64 (minus 2) routable IPv4 addresses. The “DMZ” network (“demilitarized
zone” network, outside the primary firewall; see Chapter 7) is used to attach serv-
ers that can be accessed by users on the Internet. Such computers typically pro-
vide Web access, login servers, and other services. These servers are assigned IP
addresses from a small subset of the prefix range; many sites have only a few
public servers. The remaining addresses from the site prefix are given to the NAT
router as the basis for a “NAT pool” (see Chapter 7). This router can rewrite data-
grams entering and leaving the internal network using any of the addresses in
its pool. The network setup in Figure 2-16 is convenient for two primary reasons.

ptg999

68 The Internet Address Architecture

First, the separation of the internal network from the DMZ helps protect internal
computers from damage should the DMZ servers be compromised. In addition,
this setup partitions the IP address assignment. Once the border router, DMZ, and
internal NAT router have been set up, any address structure can be used inter-
nally, where many (private) IP addresses are available. Of course, this example
is only one way of setting up small enterprise networks, and other factors such
as cost might ultimately drive the way routers, networks, and IP addresses are
deployed for any particular small or medium-size enterprise.

2.7.4 Multiple Providers/Multiple Networks/Multiple Addresses (Multihoming)

Some organizations that depend on Internet access for their continued operations
attach to the Internet using more than one provider (called multihoming) in order
to provide for redundancy in case of failure, or for other reasons. Because of CIDR,

Figure 2-16 A typical small to medium-size enterprise network. The site has been allocated 64
public (routable) IPv4 addresses in the range 128.32.2.64/26. A “DMZ” network holds
servers that are visible to the Internet. The internal router provides Internet access for
computers internal to the enterprise using NAT.

ptg999

Section 2.7 Unicast Address Assignment 69

organizations with a single ISP tend to have PA IP addresses associated with that
ISP. If they obtain a second ISP, the question arises as to what IP addresses should
be used in each of the hosts. Some guidance has been developed for operating
with multiple ISPs, or when transitioning from one to another (which raises some
similar concerns). For IPv4, [RFC4116] discusses how either PI or PA addresses can
be used for multihoming. Consider the situation shown in Figure 2-17.

Figure 2-17 Provider-aggregatable and provider-independent IPv4 addresses used in a hypothetical
multihomed enterprise. Site operators tend to prefer using PI space if it is available. ISPs
prefer PA space because it promotes prefix aggregation and reduces routing table size.

Here, a (somewhat) fictitious site S has two ISPs, P1 and P2. If it uses PA address
space from P1’s block (12.46.129.0/25), it advertises this prefix at points C and D to
P1 and P2, respectively. The prefix can be aggregated by P1 into its 12/8 block in
advertisements to the rest of the Internet at point A, but P2 is not able to aggregate
it at point B because it is not numerically adjacent to its own prefix (137.164/16).
In addition, from the point of view of some host in the other parts of the Internet,
traffic for 12.46.129.0/25 tends to go through ISP P2 rather than ISP P1 because the
prefix for site S is longer (“more specific”) than when it goes through P1. This is
a consequence of the way the longest matching prefix algorithm works for Internet
routing (see Chapter 5 for more details). In essence, a host in the other parts of the
Internet could reach the address 12.46.129.1 via either a matching prefix 12.0.0.0/8
at point A or the prefix 12.46.129.0/25 at point B. Because each prefix matches (i.e.,
contains a common set of prefix bits with the destination address 12.46.129.1), the
one with the larger or longer mask (larger number of matching bits) is preferred,

ptg999

70 The Internet Address Architecture

which in this case is P2. Thus, P2 is in the position of being unable to aggregate the
prefix from S and also winds up carrying most of S’s traffic.

If site S decides to use PI space instead of PA space, the situation is more symmet-
ric. However, no aggregation is possible. In this case, the PI prefix 198.134.135.0/24
is advertised to P1 and P2 at points C and D, respectively, but neither ISP is able
to aggregate it because it is not numerically adjacent to either of the ISPs’ address
blocks. Thus, both ISPs advertise the identical prefix 198.134.135.0/24 at points A
and B. In this fashion the “natural” shortest-path computations in Internet rout-
ing can take place, and site S can be reached by whichever ISP is closer to the host
sending to it. In addition, if site S decides to switch ISPs, it does not have to change
its assigned addresses. Unfortunately, the inability to aggregate such addresses
can be a concern for future scalability of the Internet, so PI space is in relatively
short supply.

Multihoming for IPv6 has been the subject of study within the IETF for
some time, resulting in the Multi6 architecture [RFC4177] and the Shim6 proto-
col [RFC5533]. Multi6 outlines a number of approaches that have been proposed
for handling the issue. Broadly, the options mentioned include using a routing
approach equivalent to IPv4 multihoming mentioned previously, using the capa-
bilities of Mobile IPv6 [RFC6275], and creating a new method that splits the iden-
tification of nodes away from their locators. Today, IP addresses serve as both
identifiers (essentially a form of name) and locators (an address understood by the
routing system) for a network interface attached to the Internet. Providing a sepa-
ration would allow the network protocol implementation to function even if the
underlying IP address changes. Protocols that provide this separation are some-
times called identifier/locator separating or id/loc split protocols.

Shim6 introduces a “shim” network-layer protocol that separates the “upper-
layer protocol identifier” used by the transport protocols from the IP address.
Multihoming is achieved by selecting which IP address (locator) to use based
on dynamic network conditions and without requiring PI address allocations.
Communicating hosts (peers) agree on which locators to use and when to switch
between them. Separation of identifiers from locators is the subject of several other
efforts, including the experimental Host Identity Protocol (HIP) [RFC4423], which
identifies hosts using cryptographic host identifiers. Such identifiers are effec-
tively the public keys of public/private key pairs associated with hosts, so HIP
traffic can be authenticated as having come from a particular host. Security issues
are discussed in more detail in Chapter 18.

2.8 Attacks Involving IP Addresses

Given that IP addresses are essentially numbers, few network attacks involve only
them. Generally, attacks can be carried out when sending “spoofed” datagrams (see
Chapter 5) or with other related activities. That said, IP addresses are now being
used to help identify individuals suspected of undesirable activities (e.g., copyright

ptg999

 Section 2.9 Summary 71

infringement in peer-to-peer networks or distribution of illegal materials). Doing
this can be misleading for several reasons. For example, in many circumstances
IP addresses are only temporary and are reassigned to different users at different
times. Therefore, any errors in accurate timekeeping can easily cause databases
that map IP addresses to users to be incorrect. Furthermore, access controls are not
widely and securely deployed; it is often possible to attach to the Internet through
some public access point or some unintentionally open wireless router in some-
one’s home or office. In such circumstances, the unsuspecting home or business
owner may be targeted based on IP address even though that person was not the
originator of traffic on the network. This can also happen when compromised hosts
are used to form botnets. Such collections of computers (and routers) can now be
leased on what has effectively become an Internet-based black market for carrying
out attacks, serving illicit content, and other misdeeds [RFC4948].

2.9 Summary

The IP address is used to identify and locate network interfaces on devices
throughout the Internet system (unicast addresses). It may also be used for iden-
tifying more than one such interface (multicast, broadcast, or anycast addresses).
Each interface has a minimum of one 32-bit IPv4 address (when IPv4 is being
used) and usually has several 128-bit addresses if using IPv6. Unicast addresses
are allocated in blocks by a hierarchically structured set of administrative entities.
Prefixes allocated by such entities represent a chunk of unicast IP address space
typically given to ISPs that in turn provide addresses to their users. Such prefixes
are usually a subrange of the ISP’s address block (called provider-aggregatable or
PA addresses) but may instead be owned by the user (called provider-indepen-
dent or PI addresses). Numerically adjacent address prefixes (PA addresses) can
be aggregated to save routing table space and improve scalability of the Internet.
This approach arose when the Internet’s “classful” network structure consist-
ing of class A, B, and C network numbers was abandoned in favor of classless
inter-domain routing (CIDR). CIDR allows for different sizes of address blocks to
be assigned to organizations with different needs for address space; essentially,
CIDR enables more efficient allocation of address space. Anycast addresses are
unicast addresses that refer to different hosts depending on where the sender is
located; such addresses are often used for discovering network services that may
be present in multiple locations.

IPv6 unicast addresses differ somewhat from IPv4 addresses. Most important,
IPv6 addresses have a scope concept, for both unicast and multicast addresses,
that specifically indicates where an address is valid. Typical scopes include node-
local, link-local, and global. Link-local addresses are often created based on a stan-
dard prefix in combination with an IID that can be based on addresses provided
by lower-layer protocols (such as hardware/MAC addresses) or random values.
This approach aids in autoconfiguration of IPv6 addresses.

ptg999

72 The Internet Address Architecture

Both IPv4 and IPv6 support addressing formats that refer to more than one
network interface at a time. Broadcast and multicast addresses are supported in
IPv4, but only multicast addresses are supported in IPv6. Broadcast allows for one-
to-all communication, whereas multicast allows for one-to-many communication.
Senders send to multicast groups (IP addresses) that act somewhat like television
channels; the sender has no direct knowledge of the recipients of its traffic or
how many receivers there are on a channel. Global multicast in the Internet has
evolved over more than a decade and involves many protocols—some for routing,
some for address allocation and coordination, and some for signaling that a host
wishes to join or leave a group. There are also many types and uses of IP multi-
cast addresses, both in IPv4 and (especially) in IPv6. Variants of the IPv6 multi-
cast address format provide ways for allocating groups based on unicast prefixes,
embedding routing information (RP addresses) in groups, and creating multicast
addresses based on IIDs.

The development and deployment of CIDR was arguably the last fundamen-
tal change made to the Internet’s core routing system. CIDR was successful in
handling the pressure to have more flexibility in allocating address space and
for promoting routing scalability through aggregation. In addition, IPv6 was pur-
sued at the time (early 1990s) with much energy, based on the belief that a much
larger number of addresses would be required soon. Unforeseen at the time, the
widespread use of NAT (see Chapter 7) has since significantly delayed adoption of
IPv6 by not requiring every host attached to the Internet to have a unique address.
Instead, large networks using private address space are now commonplace. Ulti-
mately, however, the number of available routable IP addresses will eventually
dwindle to zero, so some change will be required. In February 2011 the last five /8
IPv4 address prefixes were allocated from the IANA, one to each of the five RIRs.
On April 15, 2011, APNIC exhausted all of its allocatable prefixes. The remain-
ing prefixes held by various RIRs are expected to remain unallocated for only a
few years at most. A current snapshot of IPv4 address utilization can be found at
[IP4R].

2.10 References

[CGEMA] Cisco Systems, “Guidelines for Enterprise IP Multicast Address
Allocation,” 2004, http://www.cisco.com/warp/public/cc/techno/tity/prodlit/
ipmlt_wp.pdf

[EIGRP] B. Albrightson, J. J. Garcia-Luna-Aceves, and J. Boyle, “EIGRP—A Fast
Routing Protocol Based on Distance Vectors,” Proc. Infocom, 2004.

[EUI64] Institute for Electrical and Electronics Engineers, “Guidelines for 64-Bit
Global Identifier (EUI-64) Registration Authority,” Mar. 1997,http://standards.
ieee.org/regauth/oui/tutorials/EUI64.html

http://www.cisco.com/warp/public/cc/techno/tity/prodlit/ipmlt_wp.pdf
http://www.cisco.com/warp/public/cc/techno/tity/prodlit/ipmlt_wp.pdf
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

ptg999

 Section 2.10 References 73

[H96] M. Handley, “The SDR Session Directory: An Mbone Conference Schedul-
ing and Booking System,” Department of Computer Science, University College
London, Apr. 1996, http://cobweb.ecn.purdue.edu/~ace/mbone/mbone/sdr/
intro.html

[IANA] Internet Assigned Numbers Authority, http://www.iana.org

[IDChes] S. Cheshire and M. Krochmal, “Multicast DNS,” Internet draft-
cheshire-dnsext-multicastdns, work in progress, Oct. 2010.

[IDv4v6mc] S. Venaas, X. Li, and C. Bao, “Framework for IPv4/IPv6 Multicast
Translation,” Internet draft-venaas-behave-v4v6mc-framework, work in progress,
Dec. 2010.

[IEEERA] IEEE Registration Authority, http://standards.ieee.org/regauth

[IMR02] B. Edwards, L. Giuliano, and B. Wright, Interdomain Multicast Routing:
Practical Juniper Networks and Cisco Systems Solutions (Addison-Wesley, 2002).

[IP4AS] http://www.iana.org/assignments/ipv4-address-space

[IP4MA] http://www.iana.org/assignments/multicast-addresses

[IP4R] IPv4 Address Report, http://www.potaroo.net/tools/ipv4

[IP6AS] http://www.iana.org/assignments/ipv6-address-space

[IP6MA] http://www.iana.org/assignments/ipv6-multicast-addresses

[KK77] L. Kleinrock and F. Kamoun, “Hierarchical Routing for Large Networks,
Performance Evaluation and Optimization,” Computer Networks, 1(3), 1977.

[NRO] Number Resource Organization, http://www.nro.net

[RFC0919] J. C. Mogul, “Broadcasting Internet Datagrams,” Internet RFC 0919/
BCP 0005, Oct. 1984.

[RFC0922] J. C. Mogul, “Broadcasting Internet Datagrams in the Presence of Sub-
nets,” Internet RFC 0922/STD 0005, Oct. 1984.

[RFC0950] J. C. Mogul and J. Postel, “Internet Standard Subnetting Procedure,”
Internet RFC 0950/STD 0005, Aug. 1985.

[RFC1075] D. Waitzman, C. Partridge, and S. E. Deering, “Distance Vector Multi-
cast Routing Protocol,” Internet RFC 1075 (experimental), Nov. 1988.

[RFC1112] S. E. Deering, “Host Extensions for IP Multicasting,” Internet RFC
1112/STD 0005, Aug. 1989.

 [RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

http://cobweb.ecn.purdue.edu/~ace/mbone/mbone/sdr/intro.html
http://cobweb.ecn.purdue.edu/~ace/mbone/mbone/sdr/intro.html
http://www.iana.org
http://standards.ieee.org/regauth
http://www.iana.org/assignments/ipv4-address-space
http://www.iana.org/assignments/multicast-addresses
http://www.potaroo.net/tools/ipv4
http://www.iana.org/assignments/ipv6-address-space
http://www.iana.org/assignments/ipv6-multicast-addresses
http://www.nro.net

ptg999

74 The Internet Address Architecture

[RFC1812] F. Baker, ed., “Requirements for IP Version 4 Routers,” Internet RFC
1812/STD 0004, June 1995.

[RFC1918] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear,
“Address Allocation for Private Internets,” Internet RFC 1918/BCP 0005, Feb.
1996.

[RFC2080] G. Malkin and R. Minnear, “RIPng for IPv6,” Internet RFC 2080, Jan.
1997.

[RFC2328] J. Moy, “OSPF Version 2,” Internet RFC 2328/STD 0054, Apr. 1988.

[RFC2365] D. Meyer, “Administratively Scoped IP Multicast,” Internet RFC 2365/
BCP 0023, July 1998.

[RFC2544] S. Bradner and J. McQuaid, “Benchmarking Methodology for Net-
work Interconnect Devices,” Internet RFC 2544 (informational), Mar. 1999.

[RFC2622] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T.
Bates, D. Karrenberg, and M. Terpstra, “Routing Policy Specification Language
(RPSL),” Internet RFC 2622, June 1999.

[RFC2644] D. Senie, “Changing the Default for Directed Broadcasts in Routers,”
Internet RFC 2644/BCP 0034, Aug. 1999.

[RFC2974] M. Handley, C. Perkins, and E. Whelan, “Session Announcement Pro-
tocol,” Internet RFC 2974 (experimental), Oct. 2000.

[RFC3056] B. Carpenter and K. Moore, “Connection of IPv6 Domains via IPv4
Clouds,” Internet RFC 3056, Feb. 2001.

[RFC3068] C. Huitema, “An Anycast Prefix for 6to4 Relay Routers,” Internet RFC
3068, June 2001.

[RFC3170] B. Quinn and K. Almeroth, “IP Multicast Applications: Challenges
and Solutions,” Internet RFC 3170 (informational), Sept. 2001.

[RFC3180] D. Meyer and P. Lothberg, “GLOP Addressing in 233/8,” Internet RFC
3180/BCP 0053, Sept. 2001.

[RFC3306] B. Haberman and D. Thaler, “Unicast-Prefix-Based IPv6 Multicast
Addresses,” Internet RFC 3306, Aug. 2002.

[RFC3307] B. Haberman, “Allocation Guidelines for IPv6 Multicast Addresses,”
Internet RFC 3307, Aug. 2002.

[RFC3315] R. Droms, ed., J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney,
“Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” Internet RFC 3315,
July 2003.

[RFC3569] S. Bhattacharyya, ed., “An Overview of Source-Specific Multicast
(SSM),” Internet RFC 3569 (informational), July 2003.

ptg999

 Section 2.10 References 75

[RFC3701] R. Fink and R. Hinden, “6bone (IPv6 Testing Address Allocation)
Phaseout,” Internet RFC 3701 (informational), Mar. 2004.

[RFC3810] R. Vida and L. Costa, eds., “Multicast Listener Discovery Version 2
(MLDv2) for IPv6,” Internet RFC 3810, June 2004.

[RFC3849] G. Huston, A. Lord, and P. Smith, “IPv6 Address Prefix Reserved for
Documentation,” Internet RFC 3849 (informational), July 2004.

[RFC3879] C. Huitema and B. Carpenter, “Deprecating Site Local Addresses,”
Internet RFC 3879, Sept. 2004.

[RFC3927] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic Configuration of
IPv4 Link-Local Addresses,” Internet RFC 3927, May 2005.

[RFC3956] P. Savola and B. Haberman, “Embedding the Rendezvous Point (RP)
Address in an IPv6 Multicast Address,” Internet RFC 3956, Nov. 2004.

[RFC4012] L. Blunk, J. Damas, F. Parent, and A. Robachevsky, “Routing Policy
Specification Language Next Generation (RPSLng),” Internet RFC 4012, Mar.
2005.

[RFC4116] J. Abley, K. Lindqvist, E. Davies, B. Black, and V. Gill, “IPv4 Multihom-
ing Practices and Limitations,” Internet RFC 4116 (informational), July 2005.

[RFC4177] G. Huston, “Architectural Approaches to Multi-homing for IPv6,”
Internet RFC 4177 (informational), Sept. 2005.

[RFC4193] R. Hinden and B. Haberman, “Unique Local IPv6 Unicast Addresses,”
Oct. 2005.

[RFC4286] B. Haberman and J. Martin, “Multicast Router Discovery,” Internet
RFC 4286, Dec. 2005.

[RFC4291] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,”
Internet RFC 4291, Feb. 2006.

[RFC4380] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs),” Internet RFC 4380, Feb. 2006.

[RFC4423] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP) Archi-
tecture,” Internet RFC 4423 (informational), May 2006.

[RFC4489] J.-S. Park, M.-K. Shin, and H.-J. Kim, “A Method for Generating Link-
Scoped IPv6 Multicast Addresses,” Internet RFC 4489, Apr. 2006.

[RFC4566] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description
Protocol,” Internet RFC 4566, July 2006.

[RFC4601] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol Inde-
pendent Multicast-Sparse Mode (PIM-SM): Protocol Specification (Revised),”
Internet RFC 4601, Aug. 2006.

ptg999

76 The Internet Address Architecture

[RFC4607] H. Holbrook and B. Cain, “Source-Specific Multicast for IP,” Internet
RFC 4607, Aug. 2006.

[RFC4608] D. Meyer, R. Rockell, and G. Shepherd, “Source-Specific Protocol Inde-
pendent Multicast in 232/8,” Internet RFC 4608/BCP 0120, Aug. 2006.

[RFC4610] D. Farinacci and Y. Cai, “Anycast-RP Using Protocol Independent Mul-
ticast (PIM),” Internet RFC 4610, Aug. 2006.

[RFC4632] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The Inter-
net Address Assignment and Aggregation Plan,” Internet RFC 4632/BCP 0122,
Aug. 2006.

[RFC4786] J. Abley and K. Lindqvist, “Operation of Anycast Services,” Internet
RFC 4786/BCP 0126, Dec. 2006.

[RFC4795] B. Aboba, D. Thaler, and L. Esibov, “Link-Local Multicast Name Reso-
lution (LLMNR),” Internet RFC 4795 (informational), Jan. 2007.

[RFC4843] P. Nikander, J. Laganier, and F. Dupont, “An IPv6 Prefix for Overlay
Routable Cryptographic Hash Identifiers (ORCHID),” Internet RFC 4843 (experi-
mental), Apr. 2007.

[RFC4893] Q. Vohra and E. Chen, “BGP Support for Four-Octet AS Number
Space,” Internet RFC 4893, May 2007.

[RFC4948] L. Andersson, E. Davies, and L. Zhang, eds., “Report from the IAB
Workshop on Unwanted Traffic March 9–10, 2006,” Internet RFC 4948 (informa-
tional), Aug. 2007.

[RFC5059] N. Bhaskar, A. Gall, J. Lingard, and S. Venaas, “Bootstrap Router (BSR)
Mechanism for Protocol Independent Multicast (PIM),” Internet RFC 5059, Jan.
2008.

[RFC5110] P. Savola, “Overview of the Internet Multicast Routing Architecture,”
Internet RFC 5110 (informational), Jan. 2008.

[RFC5156] M. Blanchet, “Special-Use IPv6 Addresses,” Internet RFC 5156 (infor-
mational), Apr. 2008.

[RFC5214] F. Templin, T. Gleeson, and D. Thaler, “Intra-Site Automatic Tunnel
Addressing Protocol (ISATAP),” Internet RFC 5214 (informational), Mar. 2008.

[RFC5352] R. Stewart, Q. Xie, M. Stillman, and M. Tuexen, “Aggregate Server
Access Protocol (ASAP),” Internet RFC 5352 (experimental), Sept. 2008.

[RFC5415] P. Calhoun, M. Montemurro, and D. Stanley, eds., “Control and Pro-
visioning of Wireless Access Points (CAPWAP) Protocol Specification,” Internet
RFC 5415, Mar. 2009.

ptg999

 Section 2.10 References 77

[RFC5498] I. Chakeres, “IANA Allocations for Mobile Ad Hoc Network
(MANET) Protocols,” Internet RFC 5498, Mar. 2009.

[RFC5533] E. Nordmark and M. Bagnulo, “Shim6: Level 3 Multihoming Shim
Protocol for IPv6,” Internet RFC 5533, June 2009.

[RFC5735] M. Cotton and L. Vegoda, “Special Use IPv4 Addresses,” Internet RFC
5735/BCP 0153, Jan. 2010.

[RFC5736] G. Huston, M. Cotton, and L. Vegoda, “IANA IPv4 Special Purpose
Address Registry,” Internet RFC 5736 (informational), Jan. 2010.

[RFC5737] J. Arkko, M. Cotton, and L. Vegoda, “IPv4 Address Blocks Reserved
for Documentation,” Internet RFC 5737 (informational), Jan. 2010.

[RFC5771] M. Cotton, L. Vegoda, and D. Meyer, “IANA Guidelines for IPv4 Mul-
ticast Address Assignments,” Internet RFC 5771/BCP 0051, Mar. 2010.

[RFC5952] S. Kawamura and M. Kawashima, “A Recommendation for IPv6
Address Text Representation,” Internet RFC 5952, Aug. 2010.

[RFC5905] D. Mills, J. Martin, ed., J. Burbank, and W. Kasch, “Network Time
Protocol Version 4: Protocol and Algorithms Specification,” Internet RFC 5905,
June 2010.

[RFC6034] D. Thaler, “Unicast-Prefix-Based IPv4 Multicast Addresses,” Internet
RFC 6034, Oct. 2010.

[RFC6052] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li, “IPv6
Addressing of IPv4/IPv6 Translators,” Internet RFC 6052, Oct. 2010.

[RFC6217] J. Arkko and M. Townsley, “IPv4 Run-Out and IPv4-IPv6 Co-Existence
Scenarios,” Internet RFC 6127 (experimental), May 2011.

[RFC6144] F. Baker, X. Li, C. Bao, and K. Yin, “Framework for IPv4/IPv6 Transla-
tion,” Internet RFC 6144 (informational), Apr. 2011.

[RFC6164] M. Kohno, B. Nitzan, R. Bush, Y. Matsuzaki, L. Colitti, and T. Narten,
“Using 127-Bit IPv6 Prefixes on Inter-Router Links,” Internet RFC 6164, Apr. 2011.

[RFC6275] C. Perkins, ed., D. Johnson, and J. Arkko, “Mobility Support in IPv6,”
Internet RFC 3775, July 2011.

[RFC6308] P. Savola, “Overview of the Internet Multicast Addressing Architec-
ture,” Internet RFC 6308 (informational), June 2011.

[WRWS] http://www.arin.net/resources/whoisrws

http://www.arin.net/resources/whoisrws

ptg999

This page intentionally left blank

ptg999

79

3

Link Layer

3.1 Introduction

In Chapter 1, we saw that the purpose of the link layer in the TCP/IP protocol suite
is to send and receive IP datagrams for the IP module. It is also used to carry a
few other protocols that help support IP, such as ARP (see Chapter 4). TCP/IP sup-
ports many different link layers, depending on the type of networking hardware
being used: wired LANs such as Ethernet, metropolitan area networks (MANs) such
as cable TV and DSL connections available through service providers, and wired
voice networks such as telephone lines with modems, as well as the more recent
wireless networks such as Wi-Fi (wireless LAN) and various wireless data ser-
vices based on cellular technlology such as HSPA, EV-DO, LTE, and WiMAX. In
this chapter we shall look at some of the details involved in using the Ethernet and
Wi-Fi link layers, how the Point-to-Point Protocol (PPP) is used, and how link-layer
protocols can be carried inside other (link- or higher-layer) protocols, a technique
known as tunneling. Covering the details of every link technology available today
would require a separate text, so we instead focus on some of the most commonly
used link-layer protocols and how they are used by TCP/IP.

Most link-layer technologies have an associated protocol format that describes
how the corresponding PDUs must be constructed in order to be carried by the
network hardware. When referring to link-layer PDUs, we usually use the term
frame, so as to distinguish the PDU format from those at higher layers such as
packets or segments, terms used to describe network- and transport-layer PDUs,
respectively. Frame formats usually support a variable-length frame size ranging
from a few bytes to a few kilobytes. The upper bound of the range is called the
maximum transmission unit (MTU), a characteristic of the link layer that we shall
encounter numerous times in the remaining chapters. Some network technolo-
gies, such as modems and serial lines, do not impose their own maximum frame
size, so they can be configured by the user.

ptg999

80 Link Layer

3.2 Ethernet and the IEEE 802 LAN/MAN Standards

The term Ethernet generally refers to a set of standards first published in 1980 and
revised in 1982 by Digital Equipment Corp., Intel Corp., and Xerox Corp. The first
common form of Ethernet is now sometimes called “10Mb/s Ethernet” or “shared
Ethernet,” and it was adopted (with minor changes) by the IEEE as standard number
802.3. Such networks were usually arranged like the network shown in Figure 3-1.

Figure 3-1 A basic shared Ethernet network consists of one or more stations (e.g., workstations,
supercomputers) attached to a shared cable segment. Link-layer PDUs (frames) can be
sent from one station to one or more others when the medium is determined to be free.
If multiple stations send at the same time, possibly because of signal propagation delays,
a collision occurs. Collisions can be detected, and they cause sending stations to wait a
random amount of time before retrying. This common scheme is called carrier sense,
multiple access with collision detection.

Because multiple stations share the same network, this standard includes a
distributed algorithm implemented in each Ethernet network interface that con-
trols when a station gets to send data it has. The particular method, known as
carrier sense, multiple access with collision detection (CSMA/CD), mediates which
computers can access the shared medium (cable) without any other special agree-
ment or synchronization. This relative simplicity helped to promote the low cost
and resulting popularity of Ethernet technology.

With CSMA/CD, a station (e.g., computer) first looks for a signal currently
being sent on the network and sends its own frame when the network is free.
This is the “carrier sense” portion of the protocol. If some other station happens
to send at the same time, the resulting overlapping electrical signal is detected as
a collision. In this case, each station waits a random amount of time before try-
ing again. The amount of time is selected by drawing from a uniform probability
distribution that doubles in length each time a subsequent collision is detected.

ptg999

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 81

Eventually, each station gets its chance to send or times out trying after some
number of attempts (16 in the case of conventional Ethernet). With CSMA/CD,
only one frame is traveling on the network at any given time. Access methods such
as CSMA/CD are more formally called Media Access Control (MAC) protocols.
There are many types of MAC protocols; some are based on having each station
try to use the network independently (contention-based protocols like CSMA/
CD), and others are based on prearranged coordination (e.g., by allocating time
slots for each station to send).

Since the development of 10Mb/s Ethernet, faster computers and infrastruc-
ture have driven the need for ever-increasing speeds in LANs. Given the popu-
larity of Ethernet, significant innovation and effort have managed to increase its
speed from 10Mb/s to 100Mb/s to 1000Mb/s to 10Gb/s, and now to even more.
The 10Gb/s form is becoming popular in larger data centers and large enterprises,
and speeds as high as 100Gb/s have been demonstrated. The very first (research)
Ethernet ran at 3Mb/s, but the DIX (Digital, Intel, Xerox) standard ran at 10Mb/s
over a shared physical cable or set of cable segments interconnected by electri-
cal repeaters. By the early 1990s, the shared cable had largely been replaced by
twisted-pair wiring (resembling telephone wires and often called “10BASE-T”).
With the development of 100Mb/s (also called “fast Ethernet,” the most popular
version of which is known as “100BASE-TX”), contention-based MAC protocols
have become less popular. Instead, the wiring between each LAN station is often
not shared but instead provides a dedicated electrical path in a star topology. This
can be accomplished with Ethernet switches, as shown in Figure 3-2.

Figure 3-2 A switched Ethernet network consists of one or more stations, each of which is attached
to a switch port using a dedicated wiring path. In most cases where switched Ethernet is
used, the network operates in a full-duplex fashion and the CSMA/CD algorithm is not
required. Switches may be cascaded to form larger Ethernet LANs by interconnecting
switch ports, sometimes called “uplink” ports.

ptg999

82 Link Layer

At present, switches are commonly used, providing each Ethernet station with
the ability to send and receive data simultaneously (called “full-duplex Ethernet”).
Although half-duplex (one direction at a time) operation is still supported even by
1000Mb/s Ethernet (1000BASE-T), it is rarely used relative to full-duplex Ethernet.
We shall discuss how switches process PDUs in more detail later.

One of the most popular technologies used to access the Internet today is
wireless networking, the most common for wireless local area networks (WLANs)
being an IEEE standard known as Wireless Fidelity or Wi-Fi, and sometimes
called “wireless Ethernet” or 802.11. Although this standard is distinct from the
802 wired Ethernet standards, the frame format and general interface are largely
borrowed from 802.3, and all are part of the set of IEEE 802 LAN standards. Thus,
most of the capabilities used by TCP/IP for Ethernet networks are also used for
Wi-Fi networks. We shall explore each of these in more detail. First, however, it
is useful to get a bigger picture of all of the IEEE 802 standards that are relevant
for setting up home and enterprise networks. We also include references to those
IEEE standards governing MAN standards, including IEEE 802.16 (WiMAX) and
the standard for media-independent handoffs in cellular networks (IEEE 802.21).

3.2.1 The IEEE 802 LAN/MAN Standards

The original Ethernet frame format and operation were described by industry
agreement, mentioned earlier. This format was known as the DIX format or Eth-
ernet II format. This type of Ethernet network, with slight modification, was later
standardized by the IEEE as a form of CSMA/CD network, called 802.3. In the
world of IEEE standards, standards with the prefix 802 define the operations of
LANs and MANs. The most popular 802 standards today include 802.3 (essen-
tially Ethernet) and 802.11 (WLAN/Wi-Fi). These standards have evolved over
time and have changed names as freestanding amendments (e.g., 802.11g) are
ultimately incorporated in revised standards. Table 3-1 shows a fairly complete
list of the IEEE 802 LAN and MAN standards relevant to supporting the TCP/IP
protocols, as of mid-2011.

Table 3-1 LAN and MAN IEEE 802 standards relevant to the TCP/IP protocols (2011)

Name Description Official Reference

802.1ak Multiple Registration Protocol (MRP) [802.1AK-2007]
802.1AE MAC Security (MACSec) [802.1AE-2006]
802.1AX Link Aggregation (formerly 802.3ad) [802.1AX-2008]
802.1d MAC Bridges [802.1D-2004]
802.1p Traffic classes/priority/QoS [802.1D-2004]
802.1q Virtual Bridged LANs/Corrections to MRP [802.1Q-2005/Cor1-2008]
802.1s Multiple Spanning Tree Protocol (MSTP) [802.1Q-2005]

ptg999

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 83

Name Description Official Reference

802.1w Rapid Spanning Tree Protocol (RSTP) [802.1D-2004]

802.1X Port-Based Network Access Control (PNAC) [802.1X-2010]

802.2 Logical Link Control (LLC) [802.2-1998]

802.3 Baseline Ethernet and 10Mb/s Ethernet [802.3-2008] (Section One)

802.3u 100Mb/s Ethernet (“Fast Ethernet”) [802.3-2008] (Section Two)

802.3x Full-duplex operation and flow control [802.3-2008]
802.3z/802.3ab 1000Mb/s Ethernet (“Gigabit Ethernet”) [802.3-2008] (Section

Three)
802.3ae 10Gb/s Ethernet (“Ten-Gigabit Ethernet”) [802.3-2008] (Section Four)
802.3ad Link Aggregation [802.1AX-2008]

802.3af Power over Ethernet (PoE) (to 15.4W) [802.3-2008] (Section Two)

802.3ah Access Ethernet (“Ethernet in the First Mile
(EFM)”)

[802.3-2008] (Section Five)

802.3as Frame format extensions (to 2000 bytes) [802.3-2008]
802.3at Power over Ethernet enhancements (“PoE+”, to

30W)
[802.3at-2009]

802.3ba 40/100Gb/s Ethernet [802.3ba-2010]

802.11a 54Mb/s Wireless LAN at 5GHz [802.11-2007]

802.11b 11Mb/s Wireless LAN at 2.4GHz [802.11-2007]

802.11e QoS enhancement for 802.11 [802.11-2007]

802.11g 54Mb/s Wireless LAN at 2.4GHz [802.11-2007]
802.11h Spectrum/power management extensions [802.11-2007]

802.11i Security enhancements/replaces WEP [802.11-2007]
802.11j 4.9–5.0GHz operation in Japan [802.11-2007]

802.11n 6.5–600Mb/s Wireless LAN at 2.4 and 5GHz
using optional MIMO and 40MHz channels

[802.11n-2009]

802.11s (draft) Mesh networking, congestion control Under development

802.11y 54Mb/s wireless LAN at 3.7GHz (licensed) [802.11y-2008]

802.16 Broadband Wireless Access Systems (WiMAX) [802.16-2009]

802.16d Fixed Wireless MAN Standard (WiMAX) [802.16-2009]
802.16e Fixed/Mobile Wireless MAN Standard (WiMAX) [802.16-2009]

802.16h Improved Coexistence Mechanisms [802.16h-2010]

802.16j Multihop Relays in 802.16 [802.16j-2009]

802.16k Bridging of 802.16 [802.16k-2007]
802.21 Media Independent Handovers [802.21-2008]

Table 3-1 LAN and MAN IEEE 802 standards relevant to the TCP/IP protocols (2011) (continued)

ptg999

84 Link Layer

Other than the specific types of LAN networks defined by the 802.3, 802.11,
and 802.16 standards, there are some related standards that apply across all of
the IEEE standard LAN technologies. Common to all three of these is the 802.2
standard that defines the Logical Link Control (LLC) frame header common among
many of the 802 networks’ frame formats. In IEEE terminology, LLC and MAC
are “sublayers” of the link layer, where the LLC (mostly frame format) is generally
common to each type of network and the MAC layer may be somewhat different.
While the original Ethernet made use of CSMA/CD, for example, WLANs often
make use of CSMA/CA (CA is “collision avoidance”).

Note

Unfortunately the combination of 802.2 and 802.3 defined a different frame format
from Ethernet II until 802.3x finally rectified the situation. It has been incorpo-
rated into [802.3-2008]. In the TCP/IP world, the encapsulation of IP datagrams
is defined in [RFC0894] and [RFC2464] for Ethernet networks, although the older
LLC/SNAP encapsulation remains published as [RFC1042]. While this is no lon-
ger much of an issue, it was once a source of concern, and similar issues occa-
sionally arise [RFC4840].

The frame format has remained essentially the same until fairly recently. To
get an understanding of the details of the format and how it has evolved, we now
turn our focus to these details.

3.2.2 The Ethernet Frame Format

All Ethernet (802.3) frames are based on a common format. Since its original speci-
fication, the frame format has evolved to support additional functions. Figure 3-3
shows the current layout of an Ethernet frame and how it relates to a relatively new
term introduced by IEEE, the IEEE packet (a somewhat unfortunate term given its
uses in other standards).

The Ethernet frame begins with a Preamble area used by the receiving inter-
face’s circuitry to determine when a frame is arriving and to determine the amount
of time between encoded bits (called clock recovery). Because Ethernet is an asyn-
chronous LAN (i.e., precisely synchronized clocks are not maintained in each Eth-
ernet interface card), the space between encoded bits may differ somewhat from
one interface card to the next. The preamble is a recognizable pattern (0xAA typi-
cally), which the receiver can use to “recover the clock” by the time the start frame
delimiter (SFD) is found. The SFD has the fixed value 0xAB.

Note

The original Ethernet encoded bits using a Manchester Phase Encoding (MPE)
with two voltage levels. With MPE, bits are encoded as voltage transitions rather
than absolute values. For example, the bit 0 is encoded as a transition from -0.85
to +0.85V, and a 1 bit is encoded as a +0.85 to -0.85V transition (0V indicates

ptg999

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 85

that the shared wire is idle). The 10Mb/s Ethernet specification required network
hardware to use an oscillator running at 20MHz, because MPE requires two clock
cycles per bit. The bytes 0xAA (10101010 in binary) present in the Ethernet pre-
amble would be a square wave between +0.85 and -0.85V with a frequency of
10MHz. Manchester encoding was replaced with different encodings in other Eth-
ernet standards to improve efficiency.

This basic frame format includes 48-bit (6-byte) Destination (DST) and Source
(SRC) Address fields. These addresses are sometimes known by other names such
as “MAC address,” “link-layer address,” “802 address,” “hardware address,” or
“physical address.” The destination address in an Ethernet frame is also allowed
to address more than one station (called “broadcast” or “multicast”; see Chap-
ter 9). The broadcast capability is used by the ARP protocol (see Chapter 4) and
multicast capability is used by the ICMPv6 protocol (see Chapter 8) to convert
between network-layer and link-layer addresses.

Following the source address is a Type field that doubles as a Length field. Ordi-
narily, it identifies the type of data that follows the header. Popular values used
with TCP/IP networks include IPv4 (0x0800), IPv6 (0x86DD), and ARP (0x0806).
The value 0x8100 indicates a Q-tagged frame (i.e., one that can carry a “virtual
LAN” or VLAN ID according to the 802.1q standard). The size of a basic Ethernet
frame is 1518 bytes, but the more recent standard extended this size to 2000 bytes.

Figure 3-3 The Ethernet (IEEE 802.3) frame format contains source and destination addresses, an overloaded
Length/Type field, a field for data, and a frame check sequence (a CRC32). Additions to the basic
frame format provide for a tag containing a VLAN ID and priority information (802.1p/q) and
more recently for an extensible number of tags. The preamble and SFD are used for synchroniz-
ing receivers. When half-duplex operation is used with Ethernet running at 100Mb/s or more,
additional bits may be appended to short frames as a carrier extension to ensure that the collision
detection circuitry operates properly.

ptg999

86 Link Layer

Note

The original IEEE (802.3) specification treats the Length/Type field as a Length
field instead of a Type field. The field is thereby overloaded (used for more than
one purpose). The trick is to look at the value of the field. Today, if the value in the
field is greater than or equal to 1536, the field must contain a type value, which
is assigned by standards to have values exceeding 1536. If the value of the field
is 1500 or less, the field indicates the length. The full list of types is given by
[ETHERTYPES].

Following the Destination and Source Address fields, [802.3-2008] provides for
a variable number of tags that contain various protocol fields defined by other
IEEE standards. The most common of these are the tags used by 802.1p and 802.1q,
which provide for virtual LANs and some quality-of-service (QoS) indicators. These
are discussed in Section 3.2.3.

Note

The current [802.3-2008] standard incorporates the frame format modifications
of 802.3 as that provides for a maximum of 482 bytes for holding “tags” to be car-
ried with each Ethernet frame. These larger frames, called envelope frames, may
be up to 2000 bytes in length. Frames containing 802.1p/q tags, called Q-tagged
frames, are also envelope frames. However, not all envelope frames are neces-
sarily Q-tagged frames.

Following the fields discussed so far is the data area or payload portion of the
frame. This is the area where higher-layer PDUs such as IP datagrams are placed.
Traditionally, the payload area for Ethernet has always been 1500 bytes, represent-
ing the MTU for Ethernet. Most systems today use the 1500-byte MTU size for
Ethernet, although it is generally possible to configure a smaller value if this is
desired. The payload sometimes is padded (appended) with 0 bytes to ensure that
the overall frame meets the minimum length requirements we discuss in Section
3.2.2.2.

3.2.2.1 Frame Check Sequence/Cyclic Redundancy Check (CRC)
The final field of the Ethernet frame format follows the payload area and provides
an integrity check on the frame. The Cyclic Redundancy Check (CRC) field at the
end includes 32 bits and is sometimes known as the IEEE/ANSI standard CRC32
[802.3-2008]. To use an n-bit CRC for detection of data transmission in error, the
message to be checked is first appended with n 0 bits, forming the augmented mes-
sage. Then, the augmented message is divided (using modulo-2 division) by an (n
+ 1)-bit value called the generator polynomial, which acts as the divisor. The value
placed in the CRC field of the message is the one’s complement of the remainder of
this division (the quotient is discarded). Generator polynomials are standardized

ptg999

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 87

for a number of different values of n. For Ethernet, which uses n = 32, the CRC32
generator polynomial is the 33-bit binary number 100000100110000010001110110
110111. To get a feeling for how the remainder is computed using long (mod-2)
binary division, we can examine a simpler case using CRC4. The ITU has stan-
dardized the value 10011 for the CRC4 generator polynomial in a standard called
G.704 [G704]. If we wish to send the 16-bit message 1001111000101111, we first
begin with the long (mod-2) binary division shown in Figure 3-4.

 1000011000000101

10011 10011110001011110000
 10011

 00001
 00000

 00011
 00000

 00110
 00000

 01100
 00000

 11000
 10011

 10111
 10011

 01000
 00000

 10001
 10011

 00101
 00000

 01011
 00000

 10111
 10011

 01000
 00000

 10000
 10011

 01110
 00000

 11100
 10011

 1111

Quotient (Discarded)

Message

Remainder

Figure 3-4 Long (mod-2) binary division demonstrating the computation of a CRC4

ptg999

88 Link Layer

In this figure, we see that the remainder after division is the 4-bit value 1111.
Ordinarily, the one’s complement of this value (0000) would be placed in a CRC or
Frame Check Sequence (FCS) field in the frame. Upon receipt, the receiver performs
the same division and checks whether the value in the FCS field matches the com-
puted remainder. If the two do not match, the frame was likely damaged in transit
and is usually discarded. The CRC family of functions can be used to provide a
strong indicator of corrupted messages because any change in the bit pattern is
highly likely to cause a change in the remainder term.

3.2.2.2 Frame Sizes
There is both a minimum and a maximum size of Ethernet frames. The minimum
is 64 bytes, requiring a minimum data area (payload) length of 48 bytes (no tags).
In cases where the payload is smaller, pad bytes (value 0) are appended to the end
of the payload portion to ensure that the minimum length is enforced.

Note

The minimum was important for the original 10Mb/s Ethernet using CSMA/CD.
In order for a transmitting station to know which frame encountered a collision, a
limit of 2500m (five 500m cable segments with four repeaters) was placed upon
the length of an Ethernet network. Given that the propagation rate for electrons
in copper is about .77c or 231M m/s, and given the transmission time of 64 bytes
to be (64 * 8/10,000,000) = 51.2µs at 10Mb/s, a minimum-size frame could con-
sume about 11,000m of cable. With a maximum of 2500m of cable, the maximum
round-trip distance from one station to another is 5000m. The designers of Eth-
ernet included a factor of 2 overdesign in fixing the minimum frame size, so in all
compliant cases (and many noncompliant cases), the last bit of an outgoing frame
would still be in the process of being transmitted after the time required for its sig-
nal to arrive at a maximally distant receiver and return. If a collision is detected,
the transmitting station thus knows with certainty which frame collided—the one
it is currently transmitting. In this case, the station sends a jamming signal (high
voltage) to alert other stations, which then initiate a random binary exponential
backoff procedure.

The maximum frame size of conventional Ethernet is 1518 bytes (including
the 4-byte CRC and 14-byte header). This value represents a sort of trade-off: if
a frame contains an error (detected on receipt by an incorrect CRC), only 1.5KB
need to be retransmitted to repair the problem. On the other hand, the size limits
the MTU to not more than 1500 bytes. In order to send a larger message, multiple
frames are required (e.g., 64KB, a common larger size used with TCP/IP networks,
would require at least 44 frames).

The unfortunate consequence of requiring multiple Ethernet frames to hold a
larger upper-layer PDU is that each frame contributes a fixed overhead (14 bytes
header, 4 bytes CRC). To make matters worse, Ethernet frames cannot be squished
together on the network without any space between them, in order to allow the

ptg999

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 89

Ethernet hardware receiver circuits to properly recover data from the network and
to provide the opportunity for other stations to interleave their traffic with the
existing Ethernet traffic. The Ethernet II specification, in addition to specifying a
7-byte preamble and 1-byte SFD that precedes any Ethernet frame, also specifies
an inter-packet gap (IPG) of 12 byte times (9.6µs at 10Mb/s, 960ns at 100Mb/s, 96ns
at 1000Mb/s, and 9.6ns at 10,000Mb/s). Thus, the per-frame efficiency for Ethernet
II is at most 1500/(12 + 8 + 14 + 1500 + 4) = 0.975293, or about 98%. One way to
improve efficiency when moving large amounts of data across an Ethernet would
be to make the frame size larger. This has been accomplished using Ethernet jumbo
frames [JF], a nonstandard extension to Ethernet (in 1000Mb/s Ethernet switches
primarily) that typically allows the frame size to be as large as 9000 bytes. Some
environments make use of so-called super jumbo frames, which are usually under-
stood to carry more than 9000 bytes. Care should be taken when using jumbo
frames, as these larger frames are not interoperable with the smaller 1518-byte
frame size used by most legacy Ethernet equipment.

3.2.3 802.1p/q: Virtual LANs and QoS Tagging

With the growing use of switched Ethernet, it has become possible to interconnect
every computer at a site on the same Ethernet LAN. The advantage of doing this
is that any host can directly communicate with any other host, using IP and other
network-layer protocols, and requiring little or no administrator configuration. In
addition, broadcast and multicast traffic (see Chapter 9) is distributed to all hosts
that may wish to receive it without having to set up special multicast routing proto-
cols. While these represent some of the advantages of placing many stations on the
same Ethernet, having broadcast traffic go to every computer can create an unde-
sirable amount of network traffic when many hosts use broadcast, and there may
be some security reasons to disallow complete any-to-any station communication.

To address some of these problems with running large, multiuse switched
networks, IEEE extended the 802 LAN standards with a capability called virtual
LANs (VLANs) in a standard known as 802.1q [802.1Q-2005]. Compliant Ethernet
switches isolate traffic among hosts to common VLANs. Note that because of this
isolation, two hosts attached to the same switch but operating on different VLANs
require a router between them for traffic to flow. Combination switch/router
devices have been created to address this need, and ultimately the performance of
routers has been improved to match the performance of VLAN switching. Thus,
the appeal of VLANs has diminished somewhat, in favor of modern high-perfor-
mance routers. Nonetheless, they are still used, remain popular in some environ-
ments, and are important to understand.

Several methods are used to specify the station-to-VLAN mapping. Assign-
ing VLANs by port is a simple and common method, whereby the switch port
to which the station is attached is assigned a particular VLAN, so any station so
attached becomes a member of the associated VLAN. Other options include MAC-
address-based VLANs that use tables within Ethernet switches to map a station’s

ptg999

90 Link Layer

MAC address to a corresponding VLAN. This can become difficult to manage if
stations change their MAC addresses (which they do sometimes, thanks to the
behavior of some users). IP addresses can also be used as a basis for assigning
VLANs.

When stations in different VLANs are attached to the same switch, the switch
ensures that traffic does not leak from one VLAN to another, irrespective of the
types of Ethernet interfaces being used by the stations. When multiple VLANs
must span multiple switches (trunking), it becomes necessary to label Ethernet
frames with the VLAN to which they belong before they are sent to another
switch. Support for this capability uses a tag called the VLAN tag (or header),
which holds 12 bits of VLAN identifier (providing for 4096 VLANs, although VLAN
0 and VLAN 4095 are reserved). It also contains 3 bits of priority for supporting
QoS, defined in the 802.1p standard, as indicated in Figure 3-3. In many cases, the
administrator must configure the ports of the switch to be used to send 802.1p/q
frames by enabling trunking on the appropriate ports. To make this job somewhat
easier, some switches support a native VLAN option on trunked ports, meaning
that untagged frames are by default associated with the native VLAN. Trunking
ports are used to interconnect VLAN-capable switches, and other ports are typi-
cally used to attach stations. Some switches also support proprietary methods for
VLAN trunking (e.g., the Cisco Inter-Switch Link (ISL) protocol).

802.1p specifies a mechanism to express a QoS identifier on each frame. The
802.1p header includes a 3-bit-wide Priority field indicating a QoS level. This
standard is an extension of the 802.1q VLAN standard. The two standards work
together and share bits in the same header. With the 3 available bits, eight classes
of service are defined. Class 0, the lowest priority, is for conventional, best-effort
traffic. Class 7 is the highest priority and might be used for critical routing or net-
work management functions. The standards specify how priorities are encoded in
packets but leave the policy that governs which packets should receive which class,
and the underlying mechanisms implementing prioritized services, to be defined
by the implementer. Thus, the way traffic of one priority class is handled relative to
another is implementation- or vendor-defined. Note that 802.1p can be used inde-
pendently of VLANs if the VLAN ID field in the 802.1p/q header is set to 0.

The Linux command for manipulating 802.1p/q information is called vcon-
fig. It can be used to add and remove virtual interfaces associating VLAN IDs to
physical interfaces. It can also be used to set 802.1p priorities, change the way vir-
tual interfaces are identified, and influence the mapping between packets tagged
with certain VLAN IDs and how they are prioritized during protocol processing
in the operating system. The following commands add a virtual interface to inter-
face eth1 with VLAN ID 2, remove it, change the way such virtual interfaces are
named, and add a new interface:

Linux# vconfig add eth1 2
Added VLAN with VID == 2 to IF -:eth1:-
Linux# ifconfig eth1.2

ptg999

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 91

eth1.2 Link encap:Ethernet HWaddr 00:04:5A:9F:9E:80
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
Linux# vconfig rem eth1.2
Removed VLAN -:eth1.2:-
Linux# vconfig set_name_type VLAN_PLUS_VID
Set name-type for VLAN subsystem. Should be visible in
 /proc/net/vlan/config
Linux# vconfig add eth1 2
Added VLAN with VID == 2 to IF -:eth1:-
Linux# ifconfig vlan0002
vlan0002 Link encap:Ethernet HWaddr 00:04:5A:9F:9E:80
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Here we can see that the default method of naming virtual interfaces in Linux
is based on concatenating the associated physical interface with the VLAN ID. For
example, VLAN ID 2 associated with the interface eth1 is called eth1.2. This
example also shows how an alternative naming method can be used, whereby the
VLANs are enumerated by the names vlan<n> where <n> is the identifier of the
VLAN. Once this is set up, frames sent on the VLAN device are tagged with the
VLAN ID, as expected. We can see this using Wireshark, as shown in Figure 3-5.

Figure 3-5 Frames tagged with the VLAN ID as shown in Wireshark. The default columns and set-
tings have been changed to display the VLAN ID and raw Ethernet addresses.

ptg999

92 Link Layer

This figure shows an ARP packet (see Chapter 4) carried on VLAN 2. We can
see that the frame size is 60 bytes (not including CRC). The frame is encapsulated
using the Ethernet II encapsulation with type 0x8100, indicating a VLAN. Other
than the VLAN header, which indicates that this frame belongs to VLAN 2 and
has priority 0, this frame is unremarkable. All the other fields are as we would
expect with a regular ARP packet.

3.2.4 802.1AX: Link Aggregation (Formerly 802.3ad)

Some systems equipped with multiple network interfaces are capable of bonding or
link aggregation. With link aggregation, two or more interfaces are treated as one in
order to achieve greater reliability through redundancy or greater performance by
splitting (striping) data across multiple interfaces. The IEEE Amendment 802.1AX
[802.1AX-2008] defines the most common method for performing link aggregation
and the Link Aggregation Control Protocol (LACP) to manage such links. LACP uses
IEEE 802 frames of a particular format (called LACPDUs).

Using link aggregation on Ethernet switches that support it can be a cost-
effective alternative to investing in switches with high-speed network ports. If
more than one port can be aggregated to provide adequate bandwidth, higher-
speed ports may not be required. Link aggregation may be supported not only on
network switches but across multiple network interface cards (NICs) on a host com-
puter. Often, aggregated ports must be of the same type, operating in the same
mode (i.e., half- or full-duplex).

Linux has the capability to implement link aggregation (bonding) across dif-
ferent types of devices using the following commands:

Linux# modprobe bonding
Linux# ifconfig bond0 10.0.0.111 netmask 255.255.255.128
Linux# ifenslave bond0 eth0 wlan0

This set of commands first loads the bonding driver, which is a special type
of device driver supporting link aggregation. The second command creates the
bond0 interface with the IPv4 address information provided. Although providing
the IP-related information is not critical for creating an aggregated interface, it is
typical. Once the ifenslave command executes, the bonding device, bond0, is
labeled with the MASTER flag, and the eth0 and wlan0 devices are labeled with
the SLAVE flag:

bond0 Link encap:Ethernet HWaddr 00:11:A3:00:2C:2A
 inet addr:10.0.0.111 Bcast:10.0.0.127 Mask:255.255.255.128
 inet6 addr: fe80::211:a3ff:fe00:2c2a/64 Scope:Link
 UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
 RX packets:2146 errors:0 dropped:0 overruns:0 frame:0
 TX packets:985 errors:0 dropped:0 overruns:0 carrier:0
 collisions:18 txqueuelen:0
 RX bytes:281939 (275.3 KiB) TX bytes:141391 (138.0 KiB)

ptg999

Section 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 93

eth0 Link encap:Ethernet HWaddr 00:11:A3:00:2C:2A
 UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
 RX packets:1882 errors:0 dropped:0 overruns:0 frame:0
 TX packets:961 errors:0 dropped:0 overruns:0 carrier:0
 collisions:18 txqueuelen:1000
 RX bytes:244231 (238.5 KiB) TX bytes:136561 (133.3 KiB)
 Interrupt:20 Base address:0x6c00
wlan0 Link encap:Ethernet HWaddr 00:11:A3:00:2C:2A
 UP BROADCAST SLAVE MULTICAST MTU:1500 Metric:1
 RX packets:269 errors:0 dropped:0 overruns:0 frame:0
 TX packets:24 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:38579 (37.6 KiB) TX bytes:4830 (4.7 KiB)

In this example, we have bonded together a wired Ethernet interface with
a Wi-Fi interface. The master device, bond0, is assigned the IPv4 address infor-
mation we would typically assign to either of the individual interfaces, and it
receives the first slave’s MAC address by default. When IPv4 traffic is sent out of
the bond0 virtual interface, there are a number of possibilities as to which of the
slave interfaces will carry it. In Linux, the options are selected using arguments
provided when the bonding driver is loaded. For example, a mode option deter-
mines whether round-robin delivery is used between the interfaces, one interface
acts as a backup to the other, the interface is selected based on performing an XOR
of the MAC source and destination addresses, frames are copied to all interfaces,
802.3ad standard link aggregation is performed, or more advance load-balancing
options are used. The second mode is used for high-availability systems that can
fail over to a redundant network infrastructure if one link has ceased function-
ing (detectable by MII monitoring; see [BOND] for more details). The third mode
is intended to choose the slave interface based on the traffic flow. With enough
different destinations, traffic between the two stations is pinned to one interface.
This can be useful when trying to minimize reordering while also trying to load-
balance traffic across multiple slave interfaces. The fourth mode is for fault toler-
ance. The fifth mode is for use with 802.3ad-capable switches, to enable dynamic
aggregation over homogeneous links.

The LACP protocol is designed to make the job of setting up link aggregation
simpler by avoiding manual configuration. Typically the LACP “actor” (client) and
“partner” (server) send LACPDUs every second once enabled. LACP automati-
cally determines which member links can be aggregated into a link aggregation
group (LAG) and aggregates them. This is accomplished by sending a collection of
information (MAC address, port priority, port number, and key) across the link. A
receiving station can compare the values it sees from other ports and perform the
aggregation if they match. Details of LACP are covered in [802.1AX-2008].

ptg999

94 Link Layer

3.3 Full Duplex, Power Save, Autonegotiation, and 802.1X
Flow Control

When Ethernet was first developed, it operated only in half-duplex mode using
a shared cable. That is, data could be sent only one way at one time, so only one
station was sending a frame at any given point in time. With the development of
switched Ethernet, the network was no longer a single piece of shared wire, but
instead many sets of links. As a result, multiple pairs of stations could exchange
data simultaneously. In addition, Ethernet was modified to operate in full duplex,
effectively disabling the collision detection circuitry. This also allowed the physi-
cal length of the Ethernet to be extended, because the timing constraints associ-
ated with half-duplex operation and collision detection were removed.

In Linux, the ethtool program can be used to query whether full duplex is
supported and whether it is being used. This tool can also display and set many
other interesting properties of an Ethernet interface:

Linux# ethtool eth0
Settings for eth0:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: Yes
 Speed: 10Mb/s
 Duplex: Half
 Port: MII
 PHYAD: 24
 Transceiver: internal
 Auto-negotiation: on
 Current message level: 0x00000001 (1)
 Link detected: yes
Linux# ethtool eth1
Settings for eth1:
 Supported ports: [TP]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Advertised auto-negotiation: Yes
 Speed: 100Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 0
 Transceiver: internal
 Auto-negotiation: on

ptg999

Section 3.3 Full Duplex, Power Save, Autonegotiation, and 802.1X Flow Control 95

 Supports Wake-on: umbg
 Wake-on: g
 Current message level: 0x00000007 (7)
 Link detected: yes

In this example, the first Ethernet interface (eth0) is attached to a half-duplex
10Mb/s network. We can see that it is capable of autonegotiation, which is a mecha-
nism originating with 802.3u to enable interfaces to exchange information such
as speed and capabilities such as half- or full-duplex operation. Autonegotiation
information is exchanged at the physical layer using signals sent when data is
not being transmitted or received. We can see that the second Ethernet interface
(eth1) also supports autonegotiation and has set its rate to 100Mb/s and operation
mode to full duplex. The other values (Port, PHYAD, Transceiver) identify the
physical port type, its address, and whether the physical-layer circuitry is internal
or external to the NIC. The current message-level value is used to configure log
messages associated with operating modes of the interface; its behavior is spe-
cific to the driver being used. We discuss the wake-on values after the following
example.

In Windows, details such as these are available by navigating to Control Panel
| Network Connections and then right-clicking on the interface of interest, select-
ing Properties, and then clicking the Configure box and selecting the Advanced
tab. This brings up a menu similar to the one shown in Figure 3-6 (this particular
example is from an Ethernet interface on a Windows 7 machine).

Figure 3-6 Advanced tab of network interface properties in Windows (7). This control allows the
user to supply operating parameters to the network device driver.

ptg999

96 Link Layer

In Figure 3-6, we can see the special features that can be configured using the
adapter’s device driver. For this particular adapter and driver, 802.1p/q tags can
be enabled or disabled, as can flow control and wake-up capabilities (see Section
3.3.2). The speed and duplex can be set by hand, or to the more typical autonego-
tiation option.

3.3.1 Duplex Mismatch

Historically, there have been some interoperability problems using autonegotia-
tion, especially when a computer and its associated switch port are configured
using different duplex configurations or when autonegotiation is disabled at one
end of the link but not the other. In this case, a so-called duplex mismatch can occur.
Perhaps surprisingly, when this happens the connection does not completely fail
but instead may suffer significant performance degradation. When the network
has moderate to heavy traffic in both directions (e.g., during a large data trans-
fer), a half-duplex interface can detect incoming traffic as a collision, triggering
the exponential backoff function of the CSMA/CD Ethernet MAC. At the same
time, the data triggering the collision is lost and may require higher-layer proto-
cols such as TCP to retransmit. Thus, the performance degradation may be noticed
only when there is sufficient traffic for the half-duplex interface to be receiving
data at the same time it is sending, a situation that does not generally occur under
light load. Some researchers have attempted to build analysis tools to detect this
unfortunate situation [SC05].

3.3.2 Wake-on LAN (WoL), Power Saving, and Magic Packets

In both the Linux and Windows examples, we saw some indication of power man-
agement capabilities. In Windows the Wake-Up Capabilities and in Linux the Wake-
On options are used to bring the network interface and/or host computer out of
a lower-power (sleep) state based on the arrival of certain kinds of packets. The
kinds of packets used to trigger the change to full-power state can be configured.
In Linux, the Wake-On values are zero or more bits indicating whether receiv-
ing the following types of frames trigger a wake-up from a low-power state: any
physical-layer (PHY) activity (p), unicast frames destined for the station (u), mul-
ticast frames (m), broadcast frames (b), ARP frames (a), magic packet frames (g),
and magic packet frames including a password. These can be configured using
options to ethtool. For example, the following command can be used:

Linux# ethtool –s eth0 wol umgb

This command configures the eth0 device to signal a wake-up if any of the
frames corresponding to the types u, m, g, or b is received. Windows provides a
similar capability, but the standard user interface allows only magic packet frames
and a predefined subset of the u, m, b, and a frame types. Magic packets contain

ptg999

Section 3.3 Full Duplex, Power Save, Autonegotiation, and 802.1X Flow Control 97

a special repeated pattern of the byte value 0xFF. Often, such frames are sent as a
form of UDP packet (see Chapter 10) encapsulated in a broadcast Ethernet frame.
Several tools are available to generate them, including wol [WOL]:

Linux# wol 00:08:74:93:C8:3C
Waking up 00:08:74:93:C8:3C...

The result of this command is to construct a magic packet, which we can view
using Wireshark (see Figure 3-7).

Figure 3-7 A magic packet frame in Wireshark begins with 6 0xFF bytes and then repeats the MAC
address 16 times.

The packet shown in Figure 3-7 is mostly a conventional UDP packet, although
the port numbers (1126 and 40000) are arbitrary. The most unusual part of the
packet is the data area. It contains an initial 6 bytes with the value 0xFF. The rest
of the data area includes the destination MAC address 00:08:74:93:C8:3C repeated
16 times. This data payload pattern defines the magic packet.

ptg999

98 Link Layer

3.3.3 Link-Layer Flow Control

Operating an extended Ethernet LAN in full-duplex mode and across segments of
different speeds may require the switches to buffer (store) frames for some period
of time. This happens, for example, when multiple stations send to the same des-
tination (called output port contention). If the aggregate traffic rate headed for a
station exceeds the station’s link rate, frames start to be stored in the intermediate
switches. If this situation persists for a long time, frames may be dropped.

One way to mitigate this situation is to apply flow control to senders (i.e., slow
them down). Some Ethernet switches (and interfaces) implement flow control by
sending special signal frames between switches and NICs. Flow control signals to
the sender that it must slow down its transmission rate, although the specification
leaves the details of this to the implementation. Ethernet uses an implementation
of flow control called PAUSE messages (also called PAUSE frames), specified by
802.3x [802.3-2008].

PAUSE messages are contained in MAC control frames, identified by the
Ethernet Length/Type field having the value 0x8808 and using the MAC control
opcode of 0x0001. A receiving station seeing this is advised to slow its rate. PAUSE
frames are always sent to the MAC address 01:80:C2:00:00:01 and are used only
on full-duplex links. They include a hold-off time value (specified in quantas equal
to 512 bit times), indicating how long the sender should pause before continuing
to transmit.

The MAC control frame is a frame format using the regular encapsulation
from Figure 3-3, but with a 2-byte opcode immediately following the Length/Type
field. PAUSE frames are essentially the only type of frames that uses MAC control
frames. They include a 2-byte quantity encoding the hold-off time. Implementation
of the “entire” MAC control layer (basically, just 802.3x flow control) is optional.

Using Ethernet-layer flow control may have a significant negative side effect,
and for this reason it is typically not used. When multiple stations are sending
through a switch (see the next section) that is becoming overloaded, the switch
may naturally send PAUSE frames to all hosts. Unfortunately, the utilization of
the switch’s memory may not be symmetric with respect to the sending hosts, so
some may be penalized (flow-controlled) even though they were not responsible
for much of the traffic passing through the switch.

3.4 Bridges and Switches

The IEEE 802.1d standard specifies the operation of bridges, and thus switches,
which are essentially high-performance bridges. A bridge or switch is used to join
multiple physical link-layer networks (e.g., a pair of physical Ethernet segments) or
groups of stations. The most basic setup involves connecting two switches to form
an extended LAN, as shown in Figure 3-8.

ptg999

Section 3.4 Bridges and Switches 99

Switches A and B in the figure have been interconnected to form an extended
LAN. In this particular example, client systems are connected to A and servers
to B, and ports are numbered for reference. Note that every network element,
including each switch, has its own MAC address. Nonlocal MAC addresses are
“learned” by each bridge over time so that eventually every switch knows the port
upon which every station can be reached. These lists are stored in tables (called
filtering databases) within each switch on a per-port (and possibly per-VLAN) basis.
As an example, after each switch has learned the location of every station, these
databases would contain the information shown in Figure 3-9.

Figure 3-8 A simple extended Ethernet LAN with two switches. Each switch port has a number for
reference, and each station (including each switch) has its own MAC address.

Station Port
00:17:f2:a2:10:3d 2
00:c0:19:33:0a:2e 1
00:0d:66:4f:02:03

00:0d:66:4f:02:04 3
00:30:48:2b:19:82 3
00:30:48:2b:19:86 3

Switch A’s Database

Station Port
00:17:f2:a2:10:3d 9
00:c0:19:33:0a:2e 9
00:0d:66:4f:02:03 9
00:0d:66:4f:02:04

00:30:48:2b:19:82 10
00:30:48:2b:19:86 11

Switch B’s Database

Figure 3-9 Filtering databases on switches A and B from Figure 3-8 are created over time (“learned”)
by observing the source address on frames seen on switch ports.

When a switch (bridge) is first turned on, its database is empty, so it does
not know the location of any stations except itself. Whenever it receives a frame
destined for a station other than itself, it makes a copy for each of the ports other
than the one on which the frame arrived and sends a copy of the frame out of each

ptg999

100 Link Layer

one. If switches (bridges) never learned the location of stations, every frame would
be delivered across every network segment, leading to unwanted overhead. The
learning capability reduces overhead significantly and is a standard feature of
switches and bridges.

Today, most operating systems support the capability to bridge between net-
work interfaces, meaning that a standard computer with multiple interfaces can
be used as a bridge. In Windows, for example, interfaces may be bridged together
by navigating to the Network Connections menu from the Control Panel, high-
lighting the interfaces to bridge, right-clicking the mouse, and selecting Bridge
Connections. When this is done, a new icon appears that represents the bridging
function itself. Most of the normal network properties associated with the inter-
faces are gone and instead appear on the bridge device (see Figure 3-10).

Figure 3-10 In Windows, the bridge device is created by highlighting the network interfaces to be
bridged, right-clicking, and selecting the Bridge Network Interfaces function. Once the
bridge is established, further modifications are made to the bridge device.

Figure 3-10 shows the Properties panels for the network bridge virtual device
on Windows 7. The bridge device’s properties include a list of the underlying
devices being bridged and the set of services running on the bridge (e.g., the
Microsoft Networks client, File and Printer Sharing, etc.). Linux works in a similar
way, using command-line arguments. We use the topology shown in Figure 3-11
for this example.

ptg999

Section 3.4 Bridges and Switches 101

The simple network in Figure 3-11 uses a Linux-based PC with two Ethernet
ports as a bridge. Attached to port 2 is a single station, and the rest of the network
is attached to port 1. The following commands enable the bridge:

Linux# brctl addbr br0
Linux# brctl addif br0 eth0
Linux# brctl addif br0 eth1
Linux# ifconfig eth0 up
Linux# ifconfig eth1 up
Linux# ifconfig br0 up

This series of commands creates a bridge device br0 and adds the interfaces
eth0 and eth1 to the bridge. Interfaces can be removed using the brctl delif
command. Once the interfaces are established, the brctl showmacs command
can be used to inspect the filter databases (called forwarding databases or fdbs in
Linux terminology):

Linux# brctl show
bridge name bridge id STP enabled interfaces
br0 8000.0007e914a9c1 no eth0 eth1

Linux# brctl showmacs br0
port no mac addr is local? ageing timer
 1 00:04:5a:9f:9e:80 no 0.79
 2 00:07:e9:14:a9:c1 yes 0.00
 1 00:08:74:93:c8:3c yes 0.00
 2 00:14:22:f4:19:5f no 0.81
 1 00:17:f2:e7:6d:91 no 2.53
 1 00:90:f8:00:90:b7 no 17.13

The output of this command reveals one other detail about bridges. Because
stations may move around, have their network cards replaced, have their MAC
address changed, or other things, once the bridge discovers that a MAC address

Figure 3-11 In this simple topology, a Linux-based PC is configured to operate as a bridge between
the two Ethernet segments it interconnects. As a learning bridge, it accumulates tables
of which port should be used to reach the various other systems on the extended LAN.

ptg999

102 Link Layer

is reachable via a certain port, this information cannot be assumed to be correct
forever. To deal with this issue, each time an address is learned, a timer is started
(commonly defaulted to 5 minutes). In Linux, a fixed amount of time associated
with the bridge is applied to each learned entry. If the address in the entry is not
seen again within the specified “ageing” time, the entry is removed, as indicated
here:

Linux# brctl setageing br0 1
Linux# brctl showmacs br0
port no mac addr is local? ageing timer
 1 00:04:5a:9f:9e:80 no 0.76
 2 00:07:e9:14:a9:c1 yes 0.00
 1 00:08:74:93:c8:3c yes 0.00
 2 00:14:22:f4:19:5f no 0.78
 1 00:17:f2:e7:6d:91 no 0.00

Here, we have set the ageing value unusually low for demonstration pur-
poses. When an entry is removed because of aging, subsequent frames for the
removed destination are once again sent out of every port except the receiving one
(called flooding), and the entry is placed anew into the filtering database. The use
of filtering databases and learning is really a performance optimization—if the
tables are empty, the network experiences more overhead but still functions. Next
we turn our attention to the case where more than two bridges are interconnected
with redundant links. In this situation, flooding of frames could lead to a sort of
flooding catastrophe with frames looping forever. Obviously, we require a way of
dealing with this problem.

3.4.1 Spanning Tree Protocol (STP)

Bridges may operate in isolation, or in combination with other bridges. When more
than two bridges are in use (or in general when switch ports are cross-connected),
the possibility exists for a cascading, looping set of frames to be formed. Consider
the network shown in Figure 3-12.

Assume that the switches in Figure 3-12 have just been turned on and their
filtering databases are empty. When station S sends a frame, switch B replicates
the frame on ports 7, 8, and 9. So far, the initial frame has been “amplified” three
times. These frames are received by switches A, D, and C. Switch A produces cop-
ies of the frame on ports 2 and 3. Switches D and C produce more copies on ports
20, 22 and 13, 14, respectively. The amplification factor has grown to 6, with copies
of the frames traveling in both directions among switches A, C, and D. Once these
frames arrive, the forwarding databases begin to oscillate as the bridge attempts to
figure out which port is really the one through which station S should be reached.
Obviously, this situation is intolerable. If it were allowed to occur, bridges used in
such configurations would be useless. Fortunately, there is a protocol that is used
to avoid this situation called the Spanning Tree Protocol (STP). We describe STP in

ptg999

Section 3.4 Bridges and Switches 103

some detail to explain why some approach to duplicate suppression is needed for
bridges and switches. In the current standard [802.1D-2004], conventional STP is
replaced with the Rapid Spanning Tree Protocol (RSTP), which we describe after the
conventional STP preliminaries.

STP works by disabling certain ports at each bridge so that topological loops
are avoided (i.e., no duplicate paths between bridges are permitted), yet the topol-
ogy is not partitioned—all stations can be reached. Mathematically, a spanning
tree is a collection of all of the nodes and some of the edges of a graph such that
there is a path or route from any node to any other node (spanning the graph), but
there are no loops (the edge set forms a tree). There can be many spanning trees on
a graph. STP finds one of them for the graph formed by bridges as nodes and links
as edges. Figure 3-13 illustrates the idea.

Figure 3-12 An extended Ethernet network with four switches and multiple redundant links. If
simple flooding were used in forwarding frames through this network, a catastrophe
would occur because of excess multiplying traffic (a so-called broadcast storm). This
type of situation requires the use of the STP.

Figure 3-13 Using STP, the B-A, A-C, and C-D links have become active on the spanning tree. Ports
6, 7, 1, 2, 13, 14, and 20 are in the forwarding state; all other ports are blocked (i.e., not
forwarding). This keeps frames from looping and avoids broadcast storms. If a configu-
ration change occurs or a switch fails, the blocked ports are changed to the forwarding
state and the bridges compute a new spanning tree.

ptg999

104 Link Layer

In this figure, the dark lines represent the links in the network selected by STP
for forwarding frames. None of the other links are used—ports 8, 9, 12, 21, 22, and
3 are blocked. With STP, the various problems raised earlier do not occur, as frames
are created only as the result of another frame arriving. There is no amplification.
Furthermore, looping is avoided because there is only one path between any two
stations. The spanning tree is formed and maintained by bridges using a distrib-
uted algorithm running in each bridge.

As with forwarding databases, STP must deal with the situation where bridges
are turned off and on, interface cards are replaced, or MAC addresses are changed.
Clearly, such changes could affect the operation of the spanning tree, so the STP
adapts to these changes. The adaptation is implemented using an exchange of
special frames called Bridge Protocol Data Units (BPDUs). These frames are used
for forming and maintaining the spanning tree. The tree is “grown” from a bridge
elected by the others and known as the “root bridge.”

As mentioned previously, there are many possible spanning trees for a given
network. Determining which one might be the best to use for forwarding frames
depends on a set of costs that can be associated with each link and the location of
the root bridge. Costs are simply integers that are (recommended to be) inversely
proportional to the link speeds. For example, a 10Mb/s link has a recommended
cost of 100, and 100Mb/s and 1000Mb/s links have recommended cost values of 19
and 4, respectively. STP operates by computing least-cost paths to the root bridge
using these costs. If multiple links must be traversed, the corresponding cost is
simply the sum of the link costs.

3.4.1.1 Port States and Roles
To understand the basic operation of STP, we need to understand the operation of
the state machine for each port at each bridge, as well as the contents of BPDUs.
Each port in each bridge may be in one of five states: blocking, listening, learning,
forwarding, and disabled. The relationship among them can be seen in the state
transition diagram shown in Figure 3-14.

The normal transitions for ports on the spanning tree are indicated in Figure
3-14 by solid arrows, and the smaller arrows with dashed lines indicate changes
due to administrative configuration. After initialization, a port enters the blocking
state. In this state, it does not learn addresses, forward frames, or transmit BPDUs,
but it does monitor received BPDUs in case it needs to be included in the future on
a path to the root bridge, in which case the port transitions to the listening state. In
the listening state, the port is now permitted to send as well as receive BPDUs but
not learn addresses or forward data. After a typical forwarding delay timeout of
15s, a port enters the learning state. Here it is permitted to do all procedures except
forward data. It waits another forwarding delay before entering the forwarding
state and commencing to forward frames.

Related to the port state machine, each port is said to have a role. This termi-
nology becomes more important with RSTP (see Section 3.4.1.6). A port may have
the role of root port, designated port, alternate port, or backup port. Root ports are those

ptg999

Section 3.4 Bridges and Switches 105

ports at the end of an edge on the spanning tree headed toward the root. Desig-
nated ports are ports in the forwarding state acting as the port on the least-cost
path to the root from the attached segment. Alternate ports are other ports on an
attached segment that could also reach the root but at higher cost. They are not in
the forwarding state. A backup port is a port connected to the same segment as a
designated port on the same bridge. Thus, backup ports could easily take over for
a failing designated port without disrupting any of the rest of the spanning tree
topology but do not offer an alternate path to the root should the entire bridge fail.

3.4.1.2 BPDU Structure
To determine the links in the spanning tree, STP uses BPDUs that adhere to the
format shown in Figure 3-15.

The format shown in Figure 3-15 applies to both the original STP as well as
the newer RSTP (see Section 3.4.1.6). BPDUs are always sent to the group address
01:80:C2:00:00:00 (see Chapter 9 for details of link-layer group and Internet multi-
cast addressing) and are not forwarded through a bridge without modification. In
the figure, the DST, SRC, and L/T (Length/Type) fields are part of the conventional
Ethernet (802.3) header of the frame carrying the example BPDU. The 3-byte LLC/
SNAP header is defined by 802.1 and for BPDUs is set to the constant 0x424203.
Not all BPDUs are encapsulated using LLC/SNAP, but this is a common option.

TOPOLOGY
CHANGE

TOPOLOGY
CHANGE

TOPOLOGY
CHANGE

Figure 3-14 Ports transition among four major states in normal STP operation. In the blocking state,
frames are not forwarded, but a topology change or timeout may cause a transition to
the listening state. The forwarding state is the normal state for active switch ports car-
rying data traffic. The state names in parentheses indicate the port states according to
the RSTP.

ptg999

106 Link Layer

The Protocol (Prot) field gives the protocol ID number, set to 0. The Version
(Vers) field is set to 0 or 2, depending on whether STP or RSTP is in use. The Type
field is assigned similarly. The Flags field contains Topology Change (TC) and Topol-
ogy Change Acknowledgment (TCA) bits, defined by the original 802.1d standard.
Additional bits are defined for Proposal (P), Port Role (00, unknown; 01, alternate;
10, root; 11, designated), Learning (L), Forwarding (F), and Agreement (A). These are
discussed in the context of RSTP in Section 3.4.1.6. The Root ID field gives the iden-
tifier of the root bridge in the eyes of the sender of the frame, whose MAC address
is given in the Bridge ID field. Both of these ID fields are encoded in a special way
that includes a 2-byte Priority field immediately preceding the MAC address. The
priority values can be manipulated by management software in order to force the
spanning tree to be rooted at any particular bridge (Cisco, for example, uses a
default value of 0x8000 in its Catalyst switches).

The root path cost is the computed cost to reach the bridge specified in the
Root ID field. The PID field is the port identifier and gives the number of the port
from which the frame was sent appended to a 1-byte configurable Priority field
(default 0x80). The Message A (MsgA) field gives the message age (see the next
paragraph). The Maximum Age (MaxA) field gives the maximum age before time-
out (default: 20s). The Hello Time field gives the time between periodic transmis-
sions of configuration frames. The Forward Delay (Forw Delay) field gives the time
spent in the learning and listening states. All of the age and time fields are given
in units of 1/256s.

Figure 3-15 BPDUs are carried in the payload area of 802 frames and exchanged between bridges to estab-
lish the spanning tree. Important fields include the source, root node, cost to root, and topol-
ogy change indication. With 802.1w and [802.1D-2004] (including Rapid STP or RSTP), additional
fields indicate the state of the ports.

ptg999

Section 3.4 Bridges and Switches 107

The Message Age field is not a fixed value like the other time-related fields.
When the root bridge sends a BPDU, it sets this field to 0. Any bridge receiving the
frame emits frames on its non-root ports with the Message Age field incremented by
1. In essence, the field acts as a hop count, giving the number of bridges by which
the BPDU has been processed before being received. When a BPDU is received on
a port, the information it contains is kept in memory and participates in the STP
algorithm until it is timed out, which happens at time (MaxA – MsgA). Should
this time pass on a root port without receipt of another BPDU, the root bridge is
declared “dead” and the bridge starts the root bridge election process over again.

3.4.1.3 Building the Spanning Tree
The first job of STP is to elect the root bridge. The root bridge is discovered as
the bridge in the network (or VLAN) with the smallest identifier (priority com-
bined with MAC address). When a bridge initializes, it assumes itself to be the
root bridge and sends configuration BPDUs with the Root ID field matching its
own bridge ID, but if it detects a bridge with a smaller ID, it ceases sending its own
frames and instead adopts the frame it received containing the smaller ID to be the
basis for further BPDUs it sends. The port where the BPDU with the smaller root
ID was received is then marked as the root port (i.e., the port on the path to the root
bridge). The remaining ports are placed in either blocked or forwarding states.

3.4.1.4 Topology Changes
The next important job of STP is to handle topology changes. Although we could
conceivably use the basic database aging mechanism described earlier to adapt to
changing topologies, this is a poor approach because the aging timers can take a
long time (5 minutes) to delete incorrect entries. Instead, STP incorporates a way
to detect topology changes and inform the network about them quickly. In STP, a
topology change occurs when a port has entered the blocking or forwarding states.
When a bridge detects a connectivity change (e.g., a link goes down), the bridge noti-
fies its parent bridges on the tree to the root by sending topology change notification
(TCN) BPDUs out of its root port. The next bridge on the tree to the root acknowl-
edges the TCN BPDUs to the notifying bridge and also forwards them on toward
the root. Once informed of the topology change, the root bridge sets the TC bit field
in subsequent periodic configuration messages. Such messages are relayed by every
bridge in the network and are received by ports in either the blocking or forwarding
states. The setting of this bit field allows bridges to reduce their aging time to that of
the forward delay timer, on the order of seconds instead of the 5 minutes normally
recommended for the aging time. This allows database entries that may now be
incorrect to be purged and relearned more quickly, yet it also allows stations that
are actively communicating to not have their entries deleted erroneously.

3.4.1.5 Example
In Linux, the bridge function disables STP by default, on the assumption that
topologies are relatively simple in most cases where a regular computer is being

ptg999

108 Link Layer

used as a bridge. To enable STP on the example bridge we are using so far, we can
do the following:

 Linux# brctl stp br0 on

The consequences of executing this command can be inspected as follows:

Linux# brctl showstp br0

br0

 bridge id 8000.0007e914a9c1
 designated root 8000.0007e914a9c1
 root port 0 path cost 0
 max age 19.99 bridge max age 19.99
 hello time 1.99 bridge hello time 1.99
 forward delay 14.99 bridge forward delay 14.99
 ageing time 0.99
 hello timer 1.26 tcn timer 0.00
 topology change timer 3.37 gc timer 3.26

 flags TOPOLOGY_CHANGE TOPOLOGY_CHANGE_DETECTED

eth0 (0)
 port id 0000 state forwarding
 designated root 8000.0007e914a9c1 path cost 100
 designated bridge 8000.0007e914a9c1 message age timer 0.00
 designated port 8001 forward delay timer 0.00

 designated cost 0 hold timer 0.26

 flags

eth1 (0)
 port id 0000 state forwarding
 designated root 8000.0007e914a9c1 path cost 19
 designated bridge 8000.0007e914a9c1 message age timer 0.00
 designated port 8002 forward delay timer 0.00
 designated cost 0 hold timer 0.26

 flags

Here we can see the STP setup for a simple bridged network. The bridge
device, br0, holds information for the bridge as a whole. This includes the bridge
ID (8000.0007e914a9c1), derived from the smallest MAC address on the PC-
based bridge (port 1) of Figure 3-11. The major configuration parameters (e.g., hello
time, topology change timer, etc.) are given in seconds. The flags values indicate
a recent topology change, which is expected given the fact that the network was
recently connected. The rest of the output describes per-port information for eth0

ptg999

Section 3.4 Bridges and Switches 109

(bridge port 1) and eth1 (bridge port 2). Note that the path cost for eth0 is about
ten times greater than the cost of eth1. This is consistent with the observation that
eth0 is a 10Mb/s Ethernet network and eth1 is a full-duplex 100Mb/s network.

We can use Wireshark to look at a BPDU. In Figure 3-16 we see the contents
of a 52-byte BPDU. The length of 52 bytes (less than the Ethernet minimum of 64
bytes because the Linux capture facility removed the padding) is derived from
the Length/Type field of the Ethernet header by adding 14, in this case giving the
length of 52. The destination address is the group address, 01:80:C2:00:00:00, as
expected. The payload length is 38 bytes, the value contained in the Length field.
The SNAP/LLC field contains the constant 0x424243, and the encapsulated frame
is a spanning tree (version 0) frame. The rest of the protocol fields indicate that the
station 00:07:e9:14:a9:c1 believes it is the root of the spanning tree, using priority
32768 (a low priority), and the BPDU has been sent from port 2 with priority 0x80.
It also indicates a maximum age of 20s, a hello time of 2s, and a forwarding delay
of 15s.

Figure 3-16 Wireshark showing a BPDU. The Ethernet destination is a group address for bridges
(01:80:c2:00:00:00).

ptg999

110 Link Layer

3.4.1.6 Rapid Spanning Tree Protocol (RSTP) (Formerly 802.1w)
One of the perceived problems with conventional STP is that a change in topology
is detected only by the failure to receive a BPDU in a certain amount of time. If
the timeout is large, the convergence time (time to reestablish data flow along the
spanning tree) could be larger than desired. The IEEE 802.1w standard (now part
of [802.1D-2004]) specifies enhancements to the conventional STP and adopts the
new name Rapid Spanning Tree Protocol (RSTP). The main improvement in RSTP
over STP is to monitor the status of each port and upon indication of failure to
immediately trigger a topology change indication. In addition, RSTP uses all 6 bits
in the Flag field of the BPDU format to support agreements between bridges that
avoid some of the need for timers to initiate protocol operations. It reduces the
normal STP five port states to three (discarding, learning, and forwarding, as
indicated by the state names in parentheses in Figure 3-14). The discarding state
in RSTP absorbs the disabled, blocking, and listening states in conventional STP.
RSTP also creates a new port role called an alternate port, which acts as an immedi-
ate backup should a root port cease to operate.

RSTP uses only one type of BPDU, so there are no special topology change
BPDUs, for example. RSTP BPDUs, as they are called, use version and type num-
ber 2 instead of 0. In RSTP, any switch detecting a topology change sends BPDUs
indicating a topology change, and any switch receiving them clears its filtering
databases immediately. This change can significantly affect the protocol’s con-
vergence time. Instead of waiting for the topology change to migrate to the root
bridge and back followed by the forwarding delay wait time, entries are cleared
immediately. Overall, convergence time can be cut from tens of seconds down to a
fraction of a second in most cases.

RSTP makes a distinction between edge ports (those attached only to end sta-
tions) and normal spanning tree ports and also between point-to-point links and
shared links. Edge ports and ports on point-to-point links do not ordinarily form
loops, so they are permitted to skip the listening and learning states and move
directly to the forwarding state. Of course, the assumption of being an edge port
could be violated if, for example, two ports were cross-connected, but this is han-
dled by reclassifying ports as spanning tree ports if they ever carry any form of
BPDUs (simple end stations do not normally generate BPDUs). Point-to-point links
are inferred from the operating mode of the interface; if the interface is running in
full-duplex mode, the link is classified as a point-to-point link.

In regular STP, BPDUs are ordinarily relayed from a notifying or root bridge.
In RSTP, BPDUs are sent periodically by all bridges as “keepalives” to determine
if connections to neighbors are operating properly. This is what most higher-layer
routing protocols do also. If a bridge fails to receive an updated BPDU within
three times the hello interval, the bridge concludes that it has lost its connection
with its neighbor. Note that in RSTP, topology changes are not induced as a result
of edge ports being connected or disconnected as they are in regular STP. When
a topology change is detected, the notifying bridge sends BPDUs with the TC bit

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 111

field set, not only to the root but also to all other bridges. Doing so allows the
entire network to be notified of the topology change much faster than with con-
ventional STP. When a bridge receives these messages, it flushes all table entries
except those associated with edge ports and restarts the learning process.

Many of RSTP’s features were developed by Cisco Systems and other compa-
nies that had for some time provided proprietary enhancements to regular STP in
their products. The IEEE committee incorporated many of these enhancements into
the updated 802.1d standard, which covers both types of STP, so extended LANs
can run regular STP on some segments and RSTP on others (although the RSTP
benefits are lost). RSTP has been extended to include VLANs [802.1Q-2005]—a
protocol called the Multiple Spanning Tree Protocol (MSTP). This protocol retains
the RSTP (and hence STP) BPDU format, so backward compatibility is possible,
but it also supports the formation of multiple spanning trees (one for each VLAN).

3.4.2 802.1ak: Multiple Registration Protocol (MRP)

The Multiple Registration Protocol (MRP) provides a general method for registering
attributes among stations in a bridged LAN environment. [802.1ak-2007] defines
two particular “applications” of MRP called MVRP (for registering VLANs) and
MMRP (for registering group MAC addresses). MRP replaces the earlier GARP
framework; MVRP and MMRP replace the older GVRP and GMRP protocols,
respectively. All were originally defined by 802.1q.

With MVRP, once an end station is configured as a member of a VLAN, this
information is communicated to its attached switch, which in turn propagates
the fact of the station’s participation in the VLAN to other switches. This allows
switches to augment their filtering tables based on station VLAN IDs and allows
changes of VLAN topology without necessarily triggering a recalculation of the
existing spanning tree via STP. Avoiding STP recalculation was one of the reasons
for migrating from GVRP to MVRP.

MMRP is a method for stations to register their interest in group MAC
addresses (multicast addresses). This information may be used by switches to
establish the ports through which multicast traffic must be delivered. Without
such a facility, switches would have to broadcast all multicast traffic, potentially
leading to unwanted overhead. MMRP is a layer 2 protocol with similarities to
IGMP and MLD, layer 3 protocols, and the “IGMP/MLD snooping” capability sup-
ported in many switches. We discuss IGMP, MLD and snooping in Chapter 9.

3.5 Wireless LANs—IEEE 802.11(Wi-Fi)

One of the most popular technologies being used to access the Internet today is
wireless fidelity (Wi-Fi), also known by its IEEE standard name 802.11, effectively
a wireless version of Ethernet. Wi-Fi has developed to become an inexpensive,
highly convenient way to provide connectivity and performance levels acceptable

ptg999

112 Link Layer

for most applications. Wi-Fi networks are easy to set up, and most portable com-
puters and smartphones now include the necessary hardware to access Wi-Fi
infrastructure. Many coffee shops, airports, hotels, and other facilities include
Wi-Fi “hot spots,” and Wi-Fi is even seeing considerable advancement in develop-
ing countries where other infrastructure may be difficult to obtain. The architec-
ture of an IEEE 802.11 network is shown in Figure 3-17.

Figure 3-17 The IEEE 802.11 terminology for a wireless LAN. Access points (APs) can be connected
using a distribution service (DS, a wireless or wired backbone) to form an extended
WLAN (called an ESS). Stations include both APs and mobile devices communicating
together that form a basic service set (BSS). Typically, an ESS has an assigned ESSID that
functions as a name for the network.

The network in Figure 3-17 includes a number of stations (STAs). Typically
stations are organized with a subset operating also as access points (APs). An AP
and its associated stations are called a basic service set (BSS). The APs are generally
connected to each other using a wired distribution service (called a DS, basically a
“backbone”), forming an extended service set (ESS). This setup is commonly termed
infrastructure mode. The 802.11 standard also provides for an ad hoc mode. In this
configuration there is no AP or DS; instead, direct station-to-station (peer-to-peer)
communication takes place. In IEEE terminology, the STAs participating in an
ad hoc network form an independent basic service set (IBSS). A WLAN formed from
a collection of BSSs and/or IBSSs is called a service set, identified by a service set
identifier (SSID). An extended service set identifier (ESSID) is an SSID that names a
collection of connected BSSs and is essentially a name for the LAN that can be up
to 32 characters long. Such names are ordinarily assigned to Wi-Fi APs when a
WLAN is first installed.

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 113

3.5.1 802.11 Frames

There is one common overall frame format for 802.11 networks but multiple types
of frames. Not all the fields are present in every type of frame. Figure 3-18 shows
the format of the common frame and a (maximal-size) data frame.

Figure 3-18 The 802.11 basic data frame format (as of [802.11n-2009]). The MPDU format resembles that of
Ethernet but has additional fields depending on the type of DS being used among access points,
whether the frame is headed to the DS or from it, and if frames are being aggregated. The QoS
Control field is used for special performance features, and the HT Control field is used for control
of 802.11n’s “high-throughput” features.

The frame shown in Figure 3-18 includes a preamble for synchronization,
which depends on the particular variant of 802.11 being used. Next, the Physical
Layer Convergence Procedure (PLCP) header provides information about the spe-
cific physical layer in a somewhat PHY-independent way. The PLCP portion of the
frame is generally transmitted at a lower data rate than the rest of the frame. This
serves two purposes: to improve the probability of correct delivery (lower speeds
tend to have better error resistance) and to provide compatibility with and protec-
tion from interference from legacy equipment that may operate in the same area at
slower rates. The MAC PDU (MPDU) corresponds to a frame similar to Ethernet,
but with some additional fields.

At the head of the MPDU is the Frame Control Word, which includes a 2-bit
Type field identifying the frame type. There are three types of frames: management
frames, control frames, and data frames. Each of these can have various subtypes,
depending on the type. The full table of types and subtypes is given in [802.11n-
2009, Table 7-1]. The contents of the remaining fields, if present, are determined by
the frame type, which we discuss individually.

3.5.1.1 Management Frames
Management frames are used for creating, maintaining, and ending associations
between stations and access points. They are also used to determine whether
encryption is being used, what the name (SSID or ESSID) of the network is, what

ptg999

114 Link Layer

transmission rates are supported, and a common time base. These frames are used
to provide the information necessary when a Wi-Fi interface “scans” for nearby
access points.

Scanning is the procedure by which a station discovers available networks
and related configuration information. This involves switching to each available
frequency and passively listening for traffic to identify available access points. Sta-
tions may also actively probe for networks by transmitting a particular manage-
ment frame (“probe request”) while scanning. There are some limitations on such
probe requests to ensure that 802.11 traffic is not transmitted on a frequency that
is being used for non-802.11 purposes (e.g., medical services). Here is an example
of initiating a scan by hand on a Linux system:

Linux# iwlist wlan0 scan
wlan0 Scan completed :
 Cell 01 - Address: 00:02:6F:20:B5:84
 ESSID:"Grizzly-5354-Aries-802.11b/g"
 Mode:Master
 Channel:4
 Frequency:2.427 GHz (Channel 4)
 Quality=5/100 Signal level=47/100
 Encryption key:on
 IE: WPA Version 1
 Group Cipher : TKIP
 Pairwise Ciphers (2) : CCMP TKIP
 Authentication Suites (1) : PSK
 Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s;
 6 Mb/s; 12 Mb/s; 24 Mb/s; 36 Mb/s; 9 Mb/s;
 18 Mb/s; 48 Mb/s; 54 Mb/s
 Extra:tsf=0000009d832ff037

Here we see the result of a hand-initiated scan using wireless interface wlan0.
An AP with MAC address 00:02:6F:20:B5:84 is acting as a master (i.e., is act-
ing as an AP in infrastructure mode). It is broadcasting the ESSID "Grizzly-
5354-Aries-802.11b/g" on channel 4 (2.427GHz). (See Section 3.5.4 on channels
and frequencies for more details on channel selection.) The quality and signal
level give indications of how well the scanning station is receiving a signal from
the AP, although the meaning of these values varies among manufacturers. WPA
encryption is being used on this link (see Section 3.5.5), and bit rates from 1Mb/s
to 54Mb/s are available. The tsf (time sync function) value indicates the AP’s
notion of time, which is used for synchronizing various features such as power-
saving mode (see Section 3.5.2).

When an AP broadcasts its SSID, any station may attempt to establish an
association with the AP. When an association is established, most Wi-Fi networks
today also set up the necessary configuration information to provide Internet
access to the station (see Chapter 6). However, an AP’s operator may wish to con-
trol which stations make use of the network. Some operators intentionally make
this more difficult by having the AP not broadcast its SSID, as a security measure.

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 115

This approach provides little security, as the SSID may be guessed. More robust
security is provided by link encryption and passwords, which we discuss in Sec-
tion 3.5.5.

3.5.1.2 Control Frames: RTS/CTS and ACKs
Control frames are used to handle a form of flow control as well as acknowl-
edgments for frames. Flow control helps ensure that a receiver can slow down a
sender that is too fast. Acknowledgments help a sender know what frames have
been received correctly. These concepts also apply to TCP at the transport layer
(see Chapter 15). 802.11 networks support optional request-to-send (RTS)/clear-to-
send (CTS) moderation of transmission for flow control. When these are enabled,
prior to sending a data frame a station transmits an RTS frame, and when the
recipient is willing to receive additional traffic, it responds with a CTS. After the
RTS/CTS exchange, the station has a window of time (identified in the CTS frame)
to transmit data frames that are acknowledged when successfully received. Such
transmission coordination schemes are common in wireless networks and mimic
the flow control signaling that has been used on wired serial lines for years (some-
times called hardware flow control).

The RTS/CTS exchange helps to avoid the hidden terminal problem by instruct-
ing each station when it is permitted to transmit, so as to avoid simultaneous
transmissions from stations that cannot hear each other. Because RTS and CTS
frames are short, they do not use the channel for long. An AP generally initiates
an RTS/CTS exchange for a packet if the size of the packet is large enough. Typi-
cally, an AP has a configuration option called the packet size threshold (or similar).
Frames larger than the threshold cause an RTS to be sent prior to transmission of
the data. Most vendors use a default setting for this value of approximately 500
bytes if RTS/CTS exchanges are desired. In Linux, the RTS/CTS threshold can be
set in the following way:

Linux# iwconfig wlan0 rts 250
wlan0 IEEE 802.11g ESSID:"Grizzly-5354-Aries-802.11b/g"
 Mode:Managed
 Frequency:2.427 GH
 Access Point: 00:02:6F:20:B5:84
 Bit Rate=24 Mb/s Tx-Power=0 dBm
 Retry min limit:7 RTS thr=250 B Fragment thr=2346 B
 Encryption key:xxxx- ... -xxxx [3]
 Link Quality=100/100 Signal level=46/100
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

The iwconfig command can be used to set many variables, including the RTS
and fragmentation thresholds (see Section 3.5.1.3). It can also be used to determine
statistics such as the number of frame errors due to wrong network ID (ESSID) or
wrong encryption key. It also gives the number of excessive retries (i.e., the num-
ber of retransmission attempts), a rough indicator of the reliability of the link that

ptg999

116 Link Layer

is popular for guiding routing decisions in wireless networks [ETX]. In WLANs
with limited coverage, where hidden terminal problems are unlikely to occur, it
may be preferable to disable RTS/CTS by adjusting the stations’ RTS thresholds to
be a high value (1500 or larger). This avoids the overhead imposed by requiring
RTS/CTS exchanges for each packet.

In wired Ethernet networks, the absence of a collision indicates that a frame
has been received correctly with high probability. In wireless networks, there is
a wider range of reasons a frame may not be delivered correctly, such as insuffi-
cient signal or interference. To help address this potential problem, 802.11 extends
the 802.3 retransmission scheme with a retransmission/acknowledgment (ACK)
scheme. An acknowledgment is expected to be received within a certain amount
of time for each unicast frame sent (802.11a/b/g) or each group of frames sent
(802.11n or 802.11e with “block ACKs”). Multicast and broadcast frames do not
have associated ACKs to avoid “ACK implosion” (see Chapter 9). Failure to receive
an ACK within the specified time results in retransmission of the frame(s).

With retransmissions, it is possible to have duplicate frames formed within
the network. The Retry bit field in the Frame Control Word is set when any frame
represents a retransmission of a previously transmitted frame. A receiving station
can use this to help eliminate duplicate frames. Stations are expected to keep a
small cache of entries indicating addresses and sequence/fragment numbers seen
recently. When a received frame matches an entry, the frame is discarded.

The amount of time necessary to send a frame and receive an ACK for it
relates to the distance of the link and the slot time (a basic unit of time related to
the 802.11 MAC protocol; see Section 3.5.3). The time to wait for an ACK (as well as
the slot time) can be configured in most systems, although the method for doing
so varies. In most cases such as home or office use, the default values are adequate.
When using Wi-Fi over long distances, these values may require adjusting (see, for
example, [MWLD]).

3.5.1.3 Data Frames, Fragmentation, and Aggregation
Most frames seen on a busy network are data frames, which do what one would
expect—carry data. Typically, there is a one-to-one relationship between 802.11
frames and the link-layer (LLC) frames made available to higher-layer proto-
cols such as IP. However, 802.11 supports frame fragmentation, which can divide
frames into multiple fragments. With the 802.11n specification, it also supports
frame aggregation, which can be used to send multiple frames together with less
overhead.

When fragmentation is used, each fragment has its own MAC header and trail-
ing CRC and is handled independently of other fragments. For example, fragments
to different destinations can be interleaved. Fragmentation can help improve per-
formance when the channel has significant interference. Unless block ACKs are
used, each fragment is sent individually, producing one ACK per fragment by the
receiver. Because fragments are smaller than full-size frames, if a retransmission
needs to be invoked, a smaller amount of data will need to be repaired.

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 117

Fragmentation is applied only to frames with a unicast (non-broadcast or
multicast) destination address. To enable this capability, the Sequence Control field
contains a fragment number (4 bits) and a sequence number (12 bits). If a frame is frag-
mented, all fragments contain a common sequence number value, and each adja-
cent fragment has a fragment number differing by 1. A total of 15 fragments for the
same frame is possible, given the 4-bit-wide field. The More Frag field in the Frame
Control Word indicates that further fragments are yet to come. Terminal fragments
have this bit set to 0. A destination defragments the original frame from fragments
it receives by assembling the fragments in order based on fragment number order
within the frame sequence number. Provided that all fragments constituting a
sequence number have been received and the last fragment has a More Frag field of
0, the frame is reconstructed and passed to higher-layer protocols for processing.

Fragmentation is not often used because it does require some tuning. If used
without tuning, it can worsen performance slightly. When smaller frames are
used, the chance of having a bit error (see the next paragraph) can be reduced.
The fragment size can usually be set from 256 bytes to 2KB as a threshold (only
those frames that exceed the threshold in size are fragmented). Many APs default
to not using fragmentation by setting the threshold high (such as 2437 bytes on a
Linksys-brand AP).

The reason fragmentation can be useful is a fairly simple exercise in prob-
ability. If the bit error rate (BER) is P, the probability of a bit being successfully
delivered is (1 - P) and the probability that N bits are successfully delivered is
(1 - P)N. As N grows, this value shrinks. Thus, if we can shorten a frame, we can
in principle improve its error-free delivery probability. Of course, if we divide a
frame of size N bits into K fragments, we have to send at least ⎡N/K⎤ fragments. As
a concrete example, assume that we wish to send a 1500-byte (12,000-bit) frame.
If we assume P = 10-4 (a relatively high BER), the probability of successful deliv-
ery without fragmentation would be (1 - 10-4)12,000 = .301. So we have only about a
30% chance of such a frame being delivered without errors the first time, and on
average we would have to send the frame three or four times for it to be received
successfully.

If we use fragmentation for the same example and set the fragmentation thresh-
old to 500, we produce three fragments of about 4000 bits each. The probability of
one such fragment being delivered without error is about (1 - 10-4)4000 = .670. Thus,
each fragment has about a 67% chance of being delivered successfully. Of course,
we have to have three of them delivered successfully to reconstruct the whole
frame. The probabilities of 3, 2, 1, and 0 fragments being delivered successfully
are (.67)3 = 0.30, 3(.67)2(.33) = 0.44, 3(0.67)(.33)2 = .22, and (.33)3 = .04, respectively.
So, although the chances that all three are delivered successfully without retries
are about the same as for the nonfragmented frame being delivered successfully,
the chances that two or three fragments are delivered successfully are fairly good.
If this should happen, at most a single fragment would have to be retransmit-
ted, which would take significantly less time (about a third) than sending the
original 1500-byte unfragmented frame. Of course, each fragment consumes some

ptg999

118 Link Layer

overhead, so if the BER is effectively 0, fragmentation only decreases performance
by creating more frames to handle.

One of the enhancements provided by 802.11n is the support of frame
aggregation, in two forms. One form, called the aggregated MAC service data unit
(A-MSDU), allows for multiple complete 802.3 (Ethernet) frames to be aggregated
within an 802.11 frame. The other form, called the aggregated MAC protocol data unit
(A-MPDU), allows multiple MPDUs with the same source, destination, and QoS
settings to be aggregated by being sent in short succession. The two aggregation
types are depicted in Figure 3-19.

Figure 3-19 Frame aggregation in 802.11n includes A-MSDU and A-MPDU. A-MSDU aggregates frames using
a single FCS. A-MPDU aggregation uses a 4-byte delimiter between each aggregated 802.11 frame.
Each A-MPDU subframe has its own FCS and can be individually acknowledged using block
ACKs and retransmitted if necessary.

For a single aggregate, the A-MSDU approach is technically more efficient.
Each 802.3 header is ordinarily 14 bytes, which is relatively small compared to
an 802.11 MAC header that could be as long as 36 bytes. Thus, with only a single
802.11 MAC header for multiple 802.3 frames, a savings of up to 22 bytes per extra
aggregated frame could be achieved. An A-MSDU may be up to 7935 bytes, which
can hold over 100 small (e.g., 50-byte) packets, but only a few (5) larger (1500-
byte) data packets. The A-MSDU is covered by a single FCS. This larger size of an
A-MSDU frame increases the chances it will be delivered with errors, and because
there is only a single FCS for the entire aggregate, the entire frame would have to
be retransmitted on error.

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 119

A-MPDU aggregation is a different form of aggregation whereby multiple (up
to 64) 802.11 frames, each with its own 802.11 MAC header and FCS and up to 4095
bytes each, are sent together. A-MPDUs may carry up to 64KB of data—enough
for more than 1000 small packets and about 40 larger (1.5KB) packets. Because
each constituent frame (subframe) carries its own FCS, it is possible to selectively
retransmit only those subframes received with errors. This is made possible by the
block acknowledgment facility in 802.11n (originating in 802.11e), which is a form of
extended ACK that provides feedback to a transmitter indicating which particular
A-MPDU subframes were delivered successfully. This capability is similar in pur-
pose, but not in its details, to the selective acknowledgments we will see in TCP
(see Chapter 14). So, although the type of aggregation offered by A-MSDUs may
be more efficient for error-free networks carrying large numbers of small packets,
in practice it may not perform as well as A-MPDU aggregation [S08].

3.5.2 Power Save Mode and the Time Sync Function (TSF)

The 802.11 specification provides a way for stations to enter a limited power state,
called power save mode (PSM). PSM is designed to save power by allowing an STA’s
radio receive circuitry to be powered down some of the time. Without PSM, the
receiver circuitry would always be running, draining power. When in PSM, an
STA’s outgoing frames have a bit set in the Frame Control Word. A cooperative
AP noticing this bit being set buffers any frames for the station until the station
requests them. APs ordinarily send out beacon frames (a type of management
frame) indicating various things like SSID, channel, and authentication informa-
tion. When supporting stations that use PSM, APs can also indicate the presence
of buffered frames to a station by setting an indication in the Frame Control Word
of frames it sends. When stations enter PSM, they do so until the next AP beacon
time, when they wake up and determine if there are pending frames stored at the
AP for them.

PSM should be used with care and understanding. Although it may extend bat-
tery life, the NIC is not the only module drawing power in most wireless devices.
Other parts of the system such as the screen and hard drive can be significant con-
sumers of power, so overall battery life may not be extended much. Furthermore,
using PSM can affect throughput performance significantly as idle periods are
added between frame transmissions and time is spent switching modes [SHK07].

The ability to awaken an STA to check for pending frames at exactly the cor-
rect time (i.e., when an AP is about to send a beacon frame) depends on a common
sense of time at the AP and the PSM stations it serves. Wi-Fi synchronizes time
using the time synchronization function (TSF). Each station maintains a 64-bit coun-
ter reference time (in microseconds) that is synchronized with other stations in the
network. Synchronization is maintained to within 4µs plus the maximum propa-
gation delay of the PHY (for PHYs of rate 1Mb/s or more). This is accomplished
by having any station that receives a TSF update (basically, a copy of the 64-bit
counter sent from another station) check to see if the provided value is larger than

ptg999

120 Link Layer

its own. If so, the receiving station updates its own notion of time to be the larger
value. This approach ensures that clocks always move forward, but it also raises
some concern that, given stations with slightly differing clock rates, the slower
ones will tend to be synced to the fastest one.

With the incorporation of 802.11e (QoS) features into 802.11, the basic PSM of
802.11 has been extended to include the ability to schedule periodic batch process-
ing of buffered frames. The frequency is expressed in terms of the number of bea-
con frames. The capability, called automatic power save delivery (APSD), uses some
of the subfields of the QoS control word. APSD may be especially useful for small
power-constrained devices, as they need not necessarily awaken at each beacon
interval as they do in conventional 802.11 PSM. Instead, they may elect to power
down their radio transceiver circuitry for longer periods of their own choosing.
802.11n also extends the basic PSM by allowing an STA equipped with multiple
radio circuits operating together (see MIMO, Section 3.5.4.2) to power down all but
one of the circuits until a frame is ready. This is called spatial multiplexing power
save mode. The specification also includes an enhancement to APSD called Power
Save Multi-Poll (PSMP) that provides a way to schedule transmissions of frames in
both directions (e.g., to and from AP) at the same time.

3.5.3 802.11 Media Access Control

In wireless networks, it is much more challenging to detect a “collision” than in
wired networks such as 802.3 LANs. In essence, the medium is effectively sim-
plex, and multiple simultaneous transmitters must be avoided, by coordinating
transmissions in either a centralized or a distributed manner. The 802.11 stan-
dard has three approaches to control sharing of the wireless medium, called the
point coordination function (PCF), the distributed coordinating function (DCF), and
the hybrid coordination function (HCF). HCF was brought into the 802.11 specifica-
tion [802.11-2007] with the addition of QoS support in 802.11e and is also used by
802.11n. Implementation of the DCF is mandatory for any type of station or AP, but
implementation of the PCF is optional and not widespread (so we shall not discuss
it in detail). HCF is found in relatively new QoS-capable Wi-Fi equipment, such as
802.11n APs and earlier APs that support 802.11e. We turn our attention to DCF for
now and describe HCF in the context of QoS next.

DCF is a form of CSMA/CA for contention-based access to the medium. It is
used for both infrastructure and ad hoc operation. With CSMA/CA, stations listen
to see if the medium is free and, if so, may have an opportunity to transmit. If not,
they avoid sending for a random amount of time before checking again to see if
the medium is free. This behavior is similar to how a station sensing a collision
backs off when using CSMA/CD on wired LANs. Channel arbitration in 802.11 is
based on CSMA/CA with enhancements to provide priority access to certain sta-
tions or frame types.

802.11 carrier sense is performed in both a physical and a virtual way. Gener-
ally, stations wait for a period of time when ready to send (called the distributed

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 121

inter-frame space or DIFS) to allow higher-priority stations to access the channel.
If the channel becomes busy during the DIFS period, a station starts the waiting
period again. When the medium appears idle, a would-be transmitter initiates
the collision avoidance/backoff procedure described in Section 3.5.3.3. This pro-
cedure is also initiated after a successful (unsuccessful) transmission is indicated
by the receipt (lack of receipt) of an ACK. In the case of unsuccessful transmission,
the backoff procedure is initiated with different timing (using the extended inter-
frame space or EIFS). We now discuss the implementation of DCF in more detail,
including the virtual and physical carrier sense mechanisms.

3.5.3.1 Virtual Carrier Sense, RTS/CTS, and the Network Allocation Vector (NAV)
In the 802.11 MAC protocol, a virtual carrier sense mechanism operates by observ-
ing the Duration field present in each MAC frame. This is accomplished by a sta-
tion listening to traffic not destined for it. The Duration field is present in both
RTS and CTS frames optionally exchanged prior to transmission, as well as con-
ventional data frames, and provides an estimate of how long the medium will be
busy carrying the frame.

The transmitter sets the Duration field based on the frame length, transmit
rate, and PHY characteristics (e.g., rate, etc.). Each station keeps a local counter
called the Network Allocation Vector (NAV) that estimates how long the medium
will be busy carrying the current frame, and consequently how long it will need to
wait before attempting its next transmission. A station overhearing traffic with a
Duration field greater than its NAV updates its NAV to the new value. Because the
Duration field is present in both RTS and CTS frames, if used, any station in range
of either the sender or the receiver is able to ascertain the Duration field value. The
NAV is maintained in time units and decremented based on a local clock. The
medium is considered busy when the local NAV is nonzero. It is reset to 0 upon
receipt of an ACK.

3.5.3.2 Physical Carrier Sense (CCA)
Each 802.11 PHY specification (e.g., for different frequencies and radio technology)
is required to provide a function for assessing whether the channel is clear based
upon energy and waveform recognition (usually recognition of a well-formed
PLCP). This function is called clear channel assessment (CCA) and its implementa-
tion is PHY-dependent. The CCA capability represents the physical carrier sense
capability for the 802.11 MAC to understand whether the medium is currently
busy. It is used in conjunction with the NAV to determine when a station must
defer (wait) prior to transmission.

3.5.3.3 DCF Collision Avoidance/Backoff Procedure
Upon determining that the channel is likely to be free (i.e., because the NAV dura-
tion has been met and CCA does not indicate a busy channel), a station defers
access prior to transmission. Because many stations may have been waiting for
the channel to become free, each station computes and waits for a backoff time prior

ptg999

122 Link Layer

to sending. The backoff time is equal to the product of a random number and the
slot time (unless the station attempting to transmit already has a nonzero backoff
time, in which case it is not recomputed). The slot time is PHY-dependent but is
generally a few tens of microseconds. The random number is drawn from a uni-
form distribution over the interval [0, CW], where the contention window (CW) is
an integer containing a number of time slots to wait, with limits aCWmin ≤ CW
≤ aCWmax defined by the PHY. The set of CW values increases by powers of 2
(minus 1) beginning with the PHY-specific constant aCWmin value and continu-
ing up to and including the constant aCWmax value for each successive trans-
mission attempt. This is similar in effect to Ethernet’s backoff procedure initiated
during a collision detection event.

In a wireless environment, collision detection is not practical because it is dif-
ficult for a transmitter and receiver to operate simultaneously in the same piece of
equipment and hear any transmissions other than its own, so collision avoidance
is used instead. In addition, ACKs are generated in response to unicast frames to
determine whether a frame has been delivered successfully. A station receiving
a correct frame begins transmitting an ACK after waiting a small period of time
(called the Short Interframe Space or SIFS), without regard to the busy/idle state of
the medium. This should not cause a problem because the SIFS value is always
smaller than DIFS, so in effect stations generating ACKs get priority access to the
channel to complete their transactions. The source station waits a certain amount
of time without receiving an ACK frame before concluding that a transmission
has failed. Upon failure, the backoff procedure discussed previously is initiated
and the frame is retried. The same procedure is initiated if a CTS is not received in
response to an earlier RTS within a certain (different) amount of time (a constant
called CTStimeout).

3.5.3.4 HCF and 802.11e/n QoS
Clauses 5, 6, 7, and 9 of the 802.11 standard [802.11-2007] are based in part on the
work of the 802.11e group within IEEE, and the terms 802.11e, Wi-Fi QoS, and
WMM (for Wi-Fi Multimedia) are often used. They cover the QoS facility—changes
to the 802.11 MAC-layer and system interfaces in support of multimedia applica-
tions such as voice over IP (VoIP) and streaming video. Whether the QoS facility
is really necessary or not often depends on the congestion level of the network
and the types of applications to be supported. If utilization of the network tends
to be low, the QoS MAC support may be unnecessary, although some of the other
802.11e capabilities may still be useful (e.g., block ACKs and APSD). In situations
where utilization and congestion are high and there is a need to support a low-
jitter delivery capability for services such as VoIP, QoS support may be desirable.
These specifications are relatively new, so QoS-capable Wi-Fi equipment is likely
to be more expensive and complex than non-QoS equipment.

The QoS facility introduces new terminology such as QoS stations (QSTAs),
QoS access points (QAPs), and the QoS BSS (QBSS, a BSS supporting QoS). In gen-
eral, any of the devices supporting QoS capabilities also support conventional

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 123

non-QoS operation. 802.11n “high-throughput” stations (called HT STAs) are
also QSTAs. A new form of coordination function, the hybrid coordination function
(HCF), supports both contention-based and controlled channel access, although
the controlled channel variant is seldom used. Within the HCF, there are two spec-
ified channel access methods that can operate together: HFCA-controlled channel
access (HCCA) and the more popular enhanced DCF channel access (EDCA), cor-
responding to reservation-based and contention-based access, respectively. There
is also some support for admission control, which may deny connectivity entirely
under high load.

EDCA builds upon the basic DCF access. With EDCA, there are eight user
priorities (UPs) that are mapped to four access categories (ACs). The user priorities
use the same structure as 802.1d priority tags and are numbered 1 through 7, with
7 being the highest priority. (There is also a 0 priority between 2 and 3.) The four
ACs are nominally intended for background, best-effort, video, and audio traffic.
Priorities 1 and 2 are intended for the background AC, priorities 0 and 3 are for
the best-effort AC, 4 and 5 are for the video AC, and 6 and 7 are for the voice AC.
For each AC, a variant of DCF contends for channel access credits called transmit
opportunities (TXOPs), using alternative MAC parameters that tend to favor the
higher-priority traffic. In EDCA, many of the various MAC parameters from DCF
(e.g., DIFS, aCWmin, aCWmax) become adjustable as configuration parameters.
These values are communicated to QSTAs using management frames.

HCCA builds loosely upon PCF and uses polling-controlled channel access.
It is designed for synchronous-style access control and takes precedence ahead of
the contention-based access of EDCA. A hybrid coordinator (HC) is located within
an AP and has priority to allocate channel accesses. Prior to transmission, a station
can issue a traffic specification (TSPEC) for its traffic and use UP values between 8
and 15. The HC can allocate reserved TXOPs to such requests to be used during
short-duration controlled access phases of frame exchange that take place before
EDCA-based frame transmission. The HC can also deny TXOPs to TSPECs based
on admission control policies set by the network administrator. The HCF exploits
the virtual carrier sense mechanism discussed earlier with DCF to keep conten-
tion-based stations from interfering with contention-free access. Note that a single
network comprising QSTAs and conventional stations can have both HCF and
DCF running simultaneously by alternating between the two, but ad hoc networks
do not support the HC and thus do not handle TSPECs and do not perform admis-
sion control. Such networks might still run HCF, but TXOPs are gained through
EDCA-based contention.

3.5.4 Physical-Layer Details: Rates, Channels, and Frequencies

The [802.11-2007] standard now includes the following earlier amendments:
802.11a, 802.11b, 802.11d, 802.11g, 802.11h, 802.11i, 802.11j, and 802.11e. The 802.11n
standard was adopted as an amendment to 802.11 in 2009 [802.11n-2009]. Most
of these amendments provide additional modulation, coding, and operating

ptg999

124 Link Layer

frequencies for 802.11 networks, but 802.11n also adds multiple data streams and
a method for aggregating multiple frames (see Section 3.5.1.3). We will avoid
detailed discussion of the physical layer, but to appreciate the breadth of options,
Table 3-2 includes those parts of the 802.11 standard that describe this layer in
particular.

Table 3-2 Parts of the 802.11 standard that describe the physical layer

Standard
(Clause) Speeds (Mb/s) Frequency Range; Modulation Channel Set

802.11a
(Clause 17)

6, 9, 12, 18, 24, 36,
48, 54

5.16–5.35 and 5.725–5.825GHz;
OFDM

34–165 (varies by country)
20MHz/10MHz/5MHz
channel width options

802.11b
(Clause 18)

1, 2, 5.5, 11 2.401–2.495GHz; DSSS 1–14 (varies by country)

802.11g
(Clause 19)

1, 2, 5.5, 6, 9, 11, 12,
18, 24, 36, 48, 54
(plus 22, 33)

2.401–2.495GHz; OFDM 1–14 (varies by country)

802.11n 6.5–600 with many
options (up to 4
MIMO streams)

2.4 and 5GHz modes with
20MHz- or 40MHz-wide
channels; OFDM

1–13 (2.4GHz band);
36–196 (5GHz band)
(varies by country)

802.11y (Same as
802.11-2007)

3.650–3.700GHz (licensed);
OFDM

1–25, 36–64, 100–161
(varies by country)

The first column gives the original standard name and its present location in
[802.11-2007], plus details for the 802.11n and 802.11y amendments. It is important
to note from this table that 802.11b/g operate in the 2.4GHz Industrial, Scientific, and
Medical (ISM) band, 802.11a operates only in the higher 5GHz Unlicensed National
Information Infrastructure (U-NII) band, and 802.11n can operate in both. The
802.11y amendment provides for licensed use in the 3.65–3.70GHz band within
the United States. An important practical consequence of the data in this table is
that 802.11b/g equipment does not interoperate or interfere with 802.11a equip-
ment, but 802.11n equipment may interfere with either if not deployed carefully.

3.5.4.1 Channels and Frequencies
Regulatory bodies (e.g., the Federal Communications Commission in the United
States) divide the electromagnetic spectrum into frequency ranges allocated for
various uses across the world. For each range and use, a license may or may not
be required, depending on local policy. In 802.11, there are sets of channels that
may be used in various ways at various power levels depending on the regula-
tory domain or country. Wi-Fi channels are numbered in 5MHz units starting at
some base center frequency. For example, channel 36 with a base center frequency

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 125

of 5.00GHz gives the frequency 5000 + 36 * 5 = 5180MHz, the center frequency of
channel 36. Although channel center frequencies are 5MHz apart from each other,
channels may be wider than 5MHz (up to 40MHz for 802.11n). Consequently, some
channels within channel sets of the same band usually overlap. Practically speak-
ing, this means that transmissions on one channel might interfere with transmis-
sions on nearby channels.

Figure 3-20 presents the channel-to-frequency mapping for the 802.11b/g
channels in the 2.4GHz ISM band. Each channel is 22MHz wide. Not all channels
are available for legal use in every country. For example, channel 14 is authorized
at present for use only in Japan, and channels 12 and 13 are authorized for use in
Europe, while the United States permits channels 1 through 11 to be used. Other
countries may be more restrictive (see Annex J of the 802.11 standard and amend-
ments). Note that policies and licensing requirements may change over time.

Figure 3-20 The 802.11b and 802.11g standards use a frequency band between about 2.4GHz and 2.5GHz. This
band is divided into fourteen 22MHz-wide overlapping channels, of which some subset is gener-
ally available for legal use depending on the country of operation. It is advisable to assign non-
overlapping channels, such as 1, 6, and 11 in the United States, to multiple base stations operating
in the same area. Only a single 40MHz 802.11n channel may be used in this band without overlap.

As shown in Figure 3-20, the effect of overlapping channels is now clear. A
transmitter on channel 1, for example, overlaps with channels 2, 3, 4, and 5 but
not higher channels. This becomes important when selecting which channels
to assign for use in environments where multiple access points are to be used
and even more important when multiple access points serving multiple different
networks in the same area are to be used. One common approach in the United
States is to assign up to three APs in an area using nonoverlapping channels 1, 6,
and 11, as channel 11 is the highest-frequency channel authorized for unlicensed
use in the United States. In cases where other WLANs may be operating in the
same bands, it is worth considering jointly planning channel settings with all the
affected WLAN administrators.

ptg999

126 Link Layer

As shown in Figure 3-21, 802.11a/n/y share a somewhat more complicated
channel set but offer a larger number of nonoverlapping channels to use (i.e., 12
unlicensed 20MHz channels in the United States).

Figure 3-21 Many of the approved 802.11 channel numbers and center frequencies for 20MHz chan-
nels. The most common range for unlicensed use involves the U-NII bands, all above
5GHz. The lower band is approved for use in most countries. The “Europe” band is
approved for use in most European countries, and the high band is approved for use in
the United States and China. Channels are typically 20MHz wide for 802.11a/y but may
be 40MHz wide for 802.11n. Narrower channels and some channels available in Japan
are also available (not shown).

In Figure 3-21, the channels are numbered in 5MHz increments, but different
channel widths are available: 5MHz, 10MHz, 20MHz, and 40MHz. The 40MHz
channel width is an option with 802.11n (see Section 3.5.4.2), along with several
proprietary Wi-Fi systems that aggregate two 20MHz channels (called channel
bonding).

For typical Wi-Fi networks, an AP has its operating channel assigned during
installation, and client stations change channels in order to associate with the AP.
When operating in ad hoc mode, there is no controlling AP, so a station is typically
hand-configured with the operating channel. The sets of channels available and
operating power may be constrained by the regulatory environment, the hard-
ware capabilities, and possibly the supporting driver software.

3.5.4.2 802.11 Higher Throughput/802.11n
In late 2009, the IEEE standardized 802.11n [802.11n-2009] as an amendment to
[802.11-2007]. It makes a number of important changes to 802.11. To support higher
throughput, it incorporates support for multiple input, multiple output (MIMO) man-
agement of multiple simultaneously operating data streams carried on multiple
antennas, called spatial streams. Up to four such spatial streams are supported on a
given channel. 802.11n channels may be 40MHz wide (using two adjacent 20MHz
channels), twice as wide as conventional channels in 802.11a/b/g/y. Thus, there
is an immediate possibility of having up to eight times the maximum data rate of

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 127

802.11a/g (54Mb/s), for a total of 432Mb/s. However, 802.11n also improves the
single-stream performance by using a more efficient modulation scheme (802.11n
uses MIMO- orthogonal frequency division multiplexing (OFDM) with up to 52
data subcarriers per 20MHz channel and 108 per 40MHz channel, instead of 48 in
802.11a and 802.11g), plus a more efficient forward error-correcting code (rate 5/6
instead of 3/4), bringing the per-stream performance to 65Mb/s (20MHz channel)
or 135Mb/s (40MHz channel). By also reducing the guard interval (GI, a forced
idle time between symbols) duration to 400ns from the legacy 800ns, the maxi-
mum per-stream performance is raised to about 72.2Mb/s (20MHz channel) and
150Mb/s (40MHz channel). With four spatial streams operating in concert per-
fectly, this provides a maximum of about 600Mb/s.

Some 77 combinations of modulation and coding options are supported
by 802.11n, including 8 options for a single stream, 24 using the same or equal
modulation (EQM) on all streams, and 43 using unequal modulation (UEQM) on
multiple streams. Table 3-3 gives some of the combinations for modulation and
coding scheme according to the first 33 values of the modulation and coding scheme
(MCS) value. Higher values (33–76) include combinations for two channels (val-
ues 33–38), three channels (39–52), and four channels (53–76). MCS value 32 is a
special combination where the signals in the two halves of the 40MHz channel

Table 3-3 MCS values for 802.11n include combinations of equal and unequal modulation, different
FEC coding rates, up to four spatial streams using 20MHz- or 40MHz-wide channels, and
an 800ns or 400ns GI. The 77 combinations provide data rates from 6Mb/s to 600Mb/s.

MCS
Value Modulation Type

FEC
Code
Rate

Spatial
Streams

Rates (Mb/s)
(20MHz)
[800/400ns]

Rates (Mb/s)
(40MHz)
[800/400ns]

0 BPSK 1/2 1 6.5/7.2 13.5/15
1 QPSK 1/2 1 13/14.4 27/30
2 QPSK 3/4 1 19.5/21.7 40.5/45
3 16-QAM 1/2 1 26/28.9 54/60
4 16-QAM 3/4 1 39/43.3 81/90
5 64-QAM 2/3 1 52/57.8 108/120
6 64-QAM 3/4 1 58.5/65 121.5/135
7 64-QAM 5/6 1 65/72.2 135/150
8 BPSK 1/2 2 13/14.4 27/30
...
15 64-QAM 5/6 2 130/144.4 270/300
16 BPSK 1/2 3 19.5/21.7 40.5/45
...
31 64-QAM 5/6 4 260/288.9 540/600
32 BPSK 1/2 1 N/A 6/6.7
...
76 64x3/16x1-QAM 3/4 4 214.5/238.3 445.5/495

ptg999

128 Link Layer

contain the same information. Each data rate column gives two values, one using
the legacy 800ns GI and one giving the greater data rate available using the shorter
400ns GI. The underlined values, 6Mb/s and 600Mb/s, represent the smallest and
largest throughput rates, respectively.

Table 3-3 shows the various combinations of coding, including binary phase shift
keying (BPSK), quadrature phase shift keying (QPSK), and various levels of quadrature
amplitude modulation (16- and 64-QAM), available with 802.11n. These modulation
schemes provide an increasing data rate for a given channel bandwidth. However,
the more high-performance and complex a modulation scheme, the more vulner-
able it tends to be to noise and interference. Forward error correction (FEC) includes
a set of methods whereby redundant bits are introduced at the sender that can be
used to detect and repair bit errors introduced during delivery. For FEC, the code
rate is the ratio of the effective useful data rate to the rate imposed on the under-
lying communication channel. For example, a ½ code rate would deliver 1 useful
bit for every 2 bits sent.

802.11n may operate in one of three modes. In 802.11n-only environments,
the optional so-called greenfield mode, the PLCP contains special bit arrangements
(“training sequences”) known only to 802.11n equipment and does not interoperate
with legacy equipment. To maintain compatibility, 802.11n has two other interoper-
able modes. However, both of these impose a performance penalty to native 802.11n
equipment. One mode, called non-HT mode, essentially disables all 802.11n features
but remains compatible with legacy equipment. This is not a very interesting mode,
so we shall not discuss it further. However, a required mode called HT-mixed mode
supports both 802.11n and legacy operation, depending on which stations are com-
municating. The information required to convey an AP’s 802.11n capability to HT
STAs yet protect legacy STAs is provided in the PLCP, which is augmented to con-
tain both HT and legacy information and is transmitted at a slower rate than in
greenfield mode so that it can be processed by legacy equipment. HT protection also
requires an HT AP to use self-directed CTS frames (or RTS/CTS frame exchanges)
at the legacy rate to inform legacy stations when it will use shared channels. Even
though RTS/CTS frames are short, the requirement to send them at the legacy rate
(6Mb/s) can significantly reduce an 802.11n WLAN’s performance.

When deploying an 802.11n AP, care should be taken to set up appropri-
ate channel assignments. When using 40MHz channels, 802.11n APs should be
operated in the U-NII bands above 5GHz as there is simply not enough useful
spectrum to use these wider channels in the 2.4GHz ISM band. An optional BSS
feature called phased coexistence operation (PCO) allows an AP to periodically switch
between 20MHz and 40MHz channel widths, which can provide better coexis-
tence between 802.11n APs operating near legacy equipment at the cost of some
additional throughput. Finally, it is worth mentioning that 802.11n APs generally
require more power than conventional APs. This higher power level exceeds the
basic 15W provided by 802.3af power-over-Ethernet (PoE) system wiring, meaning
that PoE+ (802.3at, capable of 30W) should be used unless some other form of
power such as a direct external power supply is available.

ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 129

3.5.5 Wi-Fi Security

There has been considerable evolution in the security model for 802.11 networks.
In its early days, 802.11 used an encryption method known as wired equivalent
privacy (WEP). WEP was later shown to be so weak that some replacement was
required. Industry responded with Wi-Fi protected access (WPA), which replaced
the way keys are used with encrypted blocks (see Chapter 18 for the basics of
cryptography). In WPA, a scheme called the Temporal Key Integrity Protocol (TKIP)
ensures, among other things, that each frame is encrypted with a different encryp-
tion key. It also includes a message integrity check, called Michael, that fixed one
of the major weaknesses in WEP. WPA was created as a placeholder that could be
used on fielded WEP-capable equipment by way of a firmware upgrade while the
IEEE 802.11i standards group worked on a stronger standard that was ultimately
absorbed into Clause 8 of [802.11-2007] and dubbed “WPA2” by industry. Both
WEP and WPA use the RC4 encryption algorithm [S96]. WPA2 uses the Advanced
Encryption Standard (AES) algorithm [AES01].

The encryption techniques we just discussed are aimed at providing privacy
between the station and AP, assuming the station has legitimate authorization to
be accessing the network. In WEP, and small-scale environments that use WPA
or WPA2, authorization is typically implemented by pre-placing a shared key
or password in each station as well as in the AP during configuration. A user
knowing the key is assumed to have legitimate access to the network. These keys
are also frequently used to initialize the encryption keys used to ensure privacy.
Using such pre-shared keys (PSKs) has limitations. For example, an administrator
may have considerable trouble in providing keys only to authorized users. If a
user becomes de-authorized, the PSK has to be replaced and all legitimate users
informed. This approach does not scale to environments with many users. As a
result, WPA and later standards support a port-based network access control standard
called 802.1X [802.1X-2010]. It provides a way to carry the Extensible Authentication
Protocol (EAP) [RFC3748] in IEEE 802 LANs (called EAPOL), including 802.3 and
802.11 [RFC4017]. EAP, in turn, can be used to carry many other standard and non-
standard authentication protocols. It can also be used to establish keys, including
WEP keys. Details of these protocols are given in Chapter 18, but we shall also see
the use of EAP when we discuss PPP in Section 3.6.

With the completion of the IEEE 802.11i group’s work, the RC4/TKIP combina-
tion in WPA was extended with a new algorithm called CCMP as part of WPA2.
CCMP is based on using the counter mode (CCM [RFC3610]) of the AES for confi-
dentiality with cipher block chaining message authentication code (CBC-MAC; note the
“other” use of the term MAC here) for authentication and integrity. All AES pro-
cessing is performed using a 128-bit block size and 128-bit keys. CCMP and TKIP
form the basis for a Wi-Fi security architecture named the Robust Security Network
(RSN), which supports Robust Security Network Access (RSNA). Earlier methods,
such as WEP, are called pre-RSNA methods. RSNA compliance requires support
for CCMP (TKIP is optional), and 802.11n does away with TKIP entirely. Table 3-4
provides a summary of this somewhat complicated situation.

ptg999

130 Link Layer

In all cases, both pre-shared keys as well as 802.1X can be used for authentica-
tion and initial keying. The major attraction of using 802.1X/EAP is that a managed
authentication server can be used to provide access control decisions on a per-user
basis to an AP. For this reason, authentication using 802.1X is sometimes referred to
as “Enterprise” (e.g., WPA-Enterprise). EAP itself can encapsulate various specific
authentication protocols, which we discuss in more detail in Chapter 18.

3.5.6 Wi-Fi Mesh (802.11s)

The IEEE is working on the 802.11s standard, which covers Wi-Fi mesh operation.
With mesh operation, wireless stations can act as data-forwarding agents (like
APs). The standard is not yet complete as of writing (mid-2011). The draft version
of 802.11s defines the Hybrid Wireless Routing Protocol (HWRP), based in part on the
IETF standards for Ad-Hoc On-Demand Distance Vector (AODV) routing [RFC3561]
and the Optimized Link State Routing (OLSR) protocol [RFC3626]. Mesh stations
(mesh STAs) are a type of QoS STA and may participate in HWRP or other routing
protocols, but compliant nodes must include an implementation of HWRP and the
associated airtime link metric. Mesh nodes coordinate using EDCA or may use an
optional coordinating function called mesh deterministic access. Mesh points (MPs)
are those nodes that form mesh links with neighbors. Those that also include AP
functionality are called mesh APs (MAPs). Conventional 802.11 stations can use
either APs or MAPs to access the rest of the wireless LAN.

The 802.11s draft specifies a new optional form of security for RSNA called
Simultaneous Authentication of Equals (SAE) authentication [SAE]. This security
protocol is a bit different from others because it does not require lockstep opera-
tion between a specially designated initiator and responder. Instead, stations
are treated as equals, and any station that first recognizes another may initiate a
security exchange (or this may happen simultaneously as two stations initiate an
association).

3.6 Point-to-Point Protocol (PPP)

PPP stands for the Point-to-Point Protocol [RFC1661][RFC1662][RFC2153]. It is a pop-
ular method for carrying IP datagrams over serial links—from low-speed dial-up
modems to high-speed optical links [RFC2615]. It is widely deployed by some DSL

Table 3-4 Wi-Fi security has evolved from WEP, which was found to be insecure, to WPA, to the
now-standard WPA2 collection of algorithms.

Name/Standard Cipher Key Stream Management Authentication

WEP (pre-RSNA) RC4 (WEP) PSK, (802.1X/EAP)

WPA RC4 TKIP PSK, 802.1X/EAP

WPA2/802.11(i) CCMP CCMP, (TKIP) PSK, 802.1X/EAP

ptg999

Section 3.6 Point-to-Point Protocol (PPP) 131

service providers, which also use it for assigning Internet system parameters (e.g.,
initial IP address and domain name server; see Chapter 6).

PPP should be considered more of a collection of protocols than a single pro-
tocol. It supports a basic method to establish a link, called the Link Control Proto-
col (LCP), as well as a family of NCPs, used to establish network-layer links for
various kinds of protocols, including IPv4 and IPv6 and possibly non-IP protocols,
after LCP has established the basic link. A number of related standards cover con-
trol of compression and encryption for PPP, and a number of authentication meth-
ods can be employed when a link is brought up.

3.6.1 Link Control Protocol (LCP)

The LCP portion of PPP is used to establish and maintain a low-level two-party
communication path over a point-to-point link. PPP’s operation therefore need
be concerned only with two ends of a single link; it does not need to handle the
problem of mediating access to a shared resource like the MAC-layer protocols of
Ethernet and Wi-Fi.

PPP generally, and LCP more specifically, imposes minimal requirements on
the underlying point-to-point link. The link must support bidirectional operation
(LCP uses acknowledgments) and operate either asynchronously or synchro-
nously. Typically, LCP establishes a link using a simple bit-level framing format
based on the High-Level Data Link Control (HDLC) protocol. HDLC was already
a well-established framing format by the time PPP was designed [ISO3309]
[ISO4335]. IBM modified it to form Synchronous Data Link Control (SDLC), a pro-
tocol used as the link layer in its proprietary System Network Architecture (SNA)
protocol suite. HDLC was also used as the basis for the LLC standard in 802.2 and
ultimately for PPP as well. The format is shown in Figure 3-22.

Figure 3-22 The PPP basic frame format was borrowed from HDLC. It provides a protocol identifier, payload
area, and 2- or 4-byte FCS. Other fields may or may not be present, depending on compression
options.

The PPP frame format, in the common case when HDLC-like framing is used
as shown in Figure 3-22, is surrounded by two 1-byte Flag fields containing the
fixed value 0x7E. These fields are used by the two stations on the ends of the
point-to-point link for finding the beginning and end of the frame. A small prob-
lem arises if the value 0x7E itself occurs inside the frame. This is handled in one of

ptg999

132 Link Layer

two ways, depending on whether PPP is operating over an asynchronous or a syn-
chronous link. For asynchronous links, PPP uses character stuffing (also called byte
stuffing). If the flag character appears elsewhere in the frame, it is replaced with
the 2-byte sequence 0x7D5E (0x7D is known as the “PPP escape character”). If the
escape character itself appears in the frame, it is replaced with the 2-byte sequence
0x7D5D. Thus, the receiver replaces 0x7D5E with 0x7E and 0x7D5D with 0x7D
upon receipt. On synchronous links (e.g., T1 lines, T3 lines), PPP uses bit stuffing.
Noting that the flag character has the bit pattern 01111110 (a contiguous sequence
of six 1 bits), bit stuffing arranges for a 0 bit to be inserted after any contiguous
string of five 1 bits appearing in a place other than the flag character itself. Doing
so implies that bytes may be sent as more than 8 bits, but this is generally OK, as
low layers of the serial processing hardware are able to “unstuff” the bit stream,
restoring it to its prestuffed pattern.

After the first Flag field, PPP adopts the HDLC Address (Addr) and Control
fields. In HDLC, the Address field would specify which station is being addressed,
but because PPP is concerned only with a single destination, this field is always
defined to have the value 0xFF (all stations). The Control field in HDLC is used to
indicate frame sequencing and retransmission behavior. As these link-layer reli-
ability functions are not ordinarily implemented by PPP, the Control field is set
to the fixed value 0x03. Because both the Address and Control fields are fixed con-
stants in PPP, they are often omitted during transmission with an option called
Address and Control Field Compression (ACFC), which essentially eliminates the two
fields.

Note

There has been considerable debate over the years as to how much reliability
link-layer networks should provide, if any. With Ethernet, up to 16 retransmis-
sion attempts are made before giving up. Typically, PPP is configured to do no
retransmission, although there do exist specifications for adding retransmission
[RFC1663]. The trade-off can be subtle and is dependent on the types of traffic to
be carried. A detailed discussion of the considerations is contained in [RFC3366].

The Protocol field of the PPP frame indicates the type of data being carried.
Many different types of protocols can be carried in a PPP frame. The official list
and the assigned number used in the Protocol field are given by the “Point-to-Point
Protocol Field Assignments” document [PPPn]. In conforming to the HDLC speci-
fication, any protocol numbers are assigned such that the least significant bit of the
most significant byte equals 0 and the least significant bit of the least significant
byte equals 1. Values in the (hexadecimal) range 0x0000–0x3FFF identify network-
layer protocols, and values in the 0x8000–0xBFFF range identify data belonging to
an associated NCP. Protocol values in the range 0x4000–0x7FFF are used for “low-
volume” protocols with no associated NCP. Protocol values in the range 0xC000–
0XEFFF identify control protocols such as LCP. In some circumstances the Protocol

ptg999

Section 3.6 Point-to-Point Protocol (PPP) 133

field can be compressed to a single byte, if the Protocol Field Compression (PFC)
option is negotiated successfully during link establishment. This is applicable to
protocols with protocol numbers in the range 0x0000–0x00FF, which includes most
of the popular network-layer protocols. Note, however, that LCP packets always
use the 2-byte uncompressed format.

The final portion of the PPP frame contains a 16-bit FCS (a CRC16, with gener-
ator polynomial 10001000000100001) covering the entire frame except the FCS field
itself and Flag bytes. Note that the FCS value covers the frame before any byte or
bit stuffing has been performed. With an LCP option (see Section 3.6.1.2), the CRC
can be extended from 16 to 32 bits. This case uses the same CRC32 polynomial
mentioned previously for Ethernet.

3.6.1.1 LCP Operation
LCP has a simple encapsulation beyond the basic PPP packet. It is illustrated in
Figure 3-23.

Figure 3-23 The LCP packet is a fairly general format capable of identifying the type of encapsulated data and
its length. LCP frames are used primarily in establishing a PPP link, but this basic format also
forms the basis of many of the various network control protocols.

The PPP Protocol field value for LCP is always 0xC021, which is not eliminated
using PFC, so as to minimize ambiguity. The Ident field is a sequence number
provided by the sender of LCP request frames and is incremented for each sub-
sequent message. When forming a reply (ACK, NACK, or REJECT response), this
field is constructed by copying the value included in the request to the response
packet. In this fashion, the requesting side can identify replies to the appropriate
request by matching identifiers. The Code field gives the type of operation being
either requested or responded to: configure-request (0x01), configure-ACK (0x02),
configure-NACK (0x03), configure-REJECT (0x04), terminate-request (0x05), ter-
minate-ACK (0x06), code-REJECT (0x07), protocol-REJECT (0x08), echo-request
(0x09), echo-reply (0x0A), discard-request (0x0B), identification (0x0C), and time-
remaining (0x0D). Generally, ACK messages indicate acceptance of a set of options,
and NACK messages indicate a partial rejection with suggested alternatives. A
REJECT message rejects one or more options entirely. A rejected code indicates
that one of the field values contained in a previous packet is unknown. The Length

ptg999

134 Link Layer

field gives the length of the LCP packet in bytes and is not permitted to exceed the
link’s maximum received unit (MRU), a form of maximum advised frame limit we
shall discuss later. Note that the Length field is part of the LCP protocol; the PPP
protocol in general does not provide such a field.

The main job of LCP is to bring up a point-to-point link to a minimal level.
Configure messages cause each end of the link to start the basic configuration pro-
cedure and establish agreed-upon options. Termination messages are used to clear
a link when complete. LCP also provides some additional features mentioned pre-
viously. Echo Request/Reply messages may be exchanged anytime a link is active
by LCP in order to verify operation of the peer. The Discard Request message can
be used for performance measurement; it instructs the peer to discard the packet
without responding. The Identification and Time-Remaining messages are used for
administrative purposes: to know the type of the peer system and to indicate the
amount of time allowed for the link to remain established (e.g., for administrative
or security reasons).

Historically, one common problem with point-to-point links occurs if a remote
station is in loopback mode or is said to be “looped.” Telephone company wide area
data circuits are sometimes put into loopback mode for testing—data sent at one
side is simply returned from the other. Although this may be useful for line test-
ing, it is not at all helpful for data communication, so LCP includes ways to send
a magic number (an arbitrary number selected by the sender) to see if it is immedi-
ately returned in the same message type. If so, the line is detected as being looped,
and maintenance is likely required.

To get a better feeling for how PPP links are established and options are nego-
tiated, Figure 3-24 illustrates a simplified packet exchange timeline as well as a
simplified state machine (implemented at both ends of the link).

The link is considered to be established once the underlying protocol layer
has indicated that an association has become active (e.g., carrier detected for
modems). Link quality testing, which involves an exchange of link quality reports
and acknowledgments (see Section 3.6.1.2), may also be accomplished during this
period. If the link requires authentication, which is common, for example, when
dialing in to an ISP, a number of additional exchanges may be required to estab-
lish the authenticity of one or both parties attached to the link. The link is termi-
nated once the underlying protocol or hardware has indicated that the association
has stopped (e.g., carrier lost) or after having sent a link termination request and
received a termination ACK from the peer.

3.6.1.2 LCP Options
Several options can be negotiated by LCP as it establishes a link for use by one or
more NCPs. We shall discuss two of the more common ones. The Asynchronous
Control Character Map (ACCM) or simply “asyncmap” option defines which control
characters (i.e., ASCII characters in the range 0x00–0x1F) need to be “escaped” as
PPP operates. Escaping a character means that the true value of the character is

ptg999

Section 3.6 Point-to-Point Protocol (PPP) 135

not sent, but instead the PPP escape character (0x7D) is stuffed in front of a value
formed by XORing the original control character with the value 0x20. For exam-
ple, the XOFF character (0x13) would be sent as (0x7D33). ACCM is used in cases
where control characters may affect the operation of the underlying hardware.
For example, if software flow control using XON/XOFF characters is enabled and
the XOFF character is passed through the link unescaped, the data transfer ceases
until the hardware observes an XON character. The asyncmap option is generally
specified as a 32-bit hexadecimal number where a 1 bit in the nth least significant
bit position indicates that the control character with value n should be escaped.
Thus, the asyncmap 0xffffffff would escape all control characters, 0x00000000
would escape none of them, and 0x000A0000 would escape XON (value 0x11) and
XOFF (value 0x13). Although the value 0xffffffff is the specified default, many
links today can operate safely with the asyncmap set to 0x00000000.

Figure 3-24 LCP is used to establish a PPP link and agree upon options by each peer. The typical
exchange involves a pair of configure requests and ACKs that contain the option list,
an authentication exchange, data exchange (not pictured), and a termination exchange.
Because PPP is such a general-purpose protocol with many parts, many other types of
operations may occur between the establishment of a link and its termination.

ptg999

136 Link Layer

Because PPP lacks a Length field and serial lines do not typically provide fram-
ing, no immediate hard limit is set on the length of a PPP frame, in theory. In prac-
tice, some maximum frame size is typically given by specifying the MRU. When
a host specifies an MRU option (type 0x01), the peer is requested to never send
frames longer than the value provided in the MRU option. The MRU value is the
length of the data field in bytes; it does not count the various other PPP overhead
fields (i.e., Protocol, FCS, Flag fields). Typical values are 1500 or 1492 but may be as
large as 65,535. A minimum of 1280 is required for IPv6 operations. The standard
requires PPP implementations to accept frames as large as 1500 bytes, so the MRU
serves more as advice to the peer in choosing the packet size than as a hard limit
on the size. When small packets are interleaved with larger packets on the same
PPP link, the larger packets may use most of the bandwidth of a low-bandwidth
link, to the detriment of the small packets. This can lead to jitter (delay variance),
negatively affecting interactive applications such as remote login and VoIP. Con-
figuring a smaller MRU (or MTU) can help mitigate this issue at the cost of higher
overhead.

PPP supports a mechanism to exchange link quality reporting information.
During option negotiation, a configuration message including a request for a par-
ticular quality protocol may be included. Sixteen bits of the option are reserved to
specify the particular protocol, but the most common is a PPP standard involving
Link Quality Reports (LQRs) [RFC1989], using the value 0xC025 in the PPP Protocol
field. If this is enabled, the peer is asked to provide LQRs at some periodic rate.
The maximum time between LQRs requested is encoded as a 32-bit number pres-
ent in the configuration option and expressed in 1/100s units. Peers may generate
LQRs more frequently than requested. LQRs include the following information:
a magic number, the number of packets and bytes sent and received, the number
of incoming packets with errors and the number of discarded packets, and the
total number of LQRs exchanged. A typical implementation allows the user to
configure how often LQRs are requested from the peer. Some also provide a way
to terminate the link if the quality history fails to meet some configured threshold.
LQRs may be requested after the PPP link has reached the Establish state. Each
LQR is given a sequence number, so it is possible to determine trends over time,
even in the face of reordering of LQRs.

Many PPP implementations support a callback capability. In a typical callback
setup, a PPP dial-up callback client calls in to a PPP callback server, authentica-
tion information is provided, and the server disconnects and calls the client back.
This may be useful in situations where call toll charges are asymmetric or for
some level of security. The protocol used to negotiate callback is an LCP option
with value 0x0D [RFC1570]. If agreed upon, the Callback Control Protocol (CBCP)
completes the negotiation.

Some compression and encryption algorithms used with PPP require a cer-
tain minimum number of bytes, called the block size, when operating. When data is
not otherwise long enough, padding may be added to cause the length to become
an even multiple of the block size. If present, padding is included beyond the data

ptg999

Section 3.6 Point-to-Point Protocol (PPP) 137

area and prior to the PPP FCS field. A padding method known as self-describing
padding [RFC1570] alters the value of padding to be nonzero. Instead, each byte
gets the value of its offset in the pad area. Thus, the first byte of pad would have
the value 0x01, and the final byte contains the number of pad bytes that were
added. At most, 255 bytes of padding are supported. The self-describing padding
option (type 10) indicates to a peer the ability to understand this form of padding
and includes the maximum pad value (MPV), which is the largest pad value allowed
for this association. Recall that the basic PPP frame lacks an explicit Length field,
so a receiver can use self-describing padding to determine how many pad bytes
should be trimmed from the received data area.

To lessen the impact of the fixed costs of sending a header on every frame, a
method has been introduced to multiplex multiple distinct payloads of potentially
different protocols into the same PPP frame, an approach called PPPMux [RFC3153].
The primary PPP header Protocol field is set to multiplexed frame (0x0059), and then
each payload block is inserted into the frame. This is accomplished by introduc-
ing a 1- to 4-byte subframe header in front of each payload block. It includes 1 bit
(called PFF) indicating whether a Protocol field is included in the subframe header
and another 1-bit field (called LXT) indicating whether the following Length field
is 1 or 2 bytes. Beyond this, if present, is the 1- or 2-byte Protocol ID using the same
values and same compression approach as with the outer PPP header. A 0 value for
PFF (meaning no PID field is present) is possible when the subframe matches the
default PID established when the configuration state is set up using the PPPMux
Control Protocol (PPPMuxCP).

The PPP frame format in Figure 3-19 indicates that the ordinary PPP/HDLC
FCS can be either 16 or 32 bits. While the default is 16, 32-bit FCS values can be
enabled with the 32-bit FCS option. Other LCP options include the use of PFC and
ACFC, and selection of an authentication algorithm.

Internationalization [RFC2484] provides a way to convey the language and
character set to be used. The character set is one of the standard values from the
“charset registry” [IANA-CHARSET], and the language value is chosen from the
list in [RFC5646][RFC4647].

3.6.2 Multi link PPP (MP)

A special option to PPP called multilink PPP (MP) [RFC1990] can be used to
aggregate multiple point-to-point links to act as one. This idea is similar to link
aggregation, discussed earlier, and has been used for aggregating multiple cir-
cuit-switched channels together (e.g., ISDN B channels). MP includes a special
LCP option to indicate multilink support as well as a negotiation protocol to frag-
ment and recombine fragmented PPP frames across multiple links. An aggregated
link, called a bundle, operates as a complete virtual link and can contain its own
configuration information. The bundle comprises a number of member links. Each
member link may also have its own set of options.

ptg999

138 Link Layer

The obvious method to implement MP would be to simply alternate pack-
ets across the member links. This approach, called the bank teller’s algorithm, may
lead to reordering of packets, which can have undesirable performance impacts on
other protocols. (Although TCP/IP, for example, can function properly with reor-
dered packets, it may not function as well as it could without reordering.) Instead,
MP places a 2- or 4-byte sequencing header in each packet, and the remote MP
receiver is tasked with reconstructing the proper order. The data frame appears as
shown in Figure 3-25.

Figure 3-25 An MP fragment contains a sequencing header that allows the remote end of a multilink bundle
to reorder fragments. Two formats of this header are supported: a short header (2 bytes) and a
long header (4 bytes).

In Figure 3-25 we see an MP fragment with the begin (B) and end (E) fragment
bit fields and Sequence Number field. Note that there is both a long format, in which
4 bytes are used for the fragmentation information, and a short format, in which
only 2 bytes are used. The format being used is selected during option negotiation
using the LCP short sequence number option (type 18). If a frame is not fragmented
but is carried in this format, both the B and E bits are set, indicating that the frag-
ment is the first and last (i.e., it is the whole frame). Otherwise, the first fragment
has the BE bit combination set to 10 and the final fragment has the BE bits set to
01, and all fragments in between have them set to 00. The sequence number then
gives the packet number offset relative to the first fragment.

Use of MP is requested by including an LCP option called the multilink maxi-
mum received reconstructed unit (MRRU, type 18) that can act as a sort of larger MRU
applying to the bundle. Frames larger than any of the member link MRUs may
still be permitted across the MP link, up to the limit advertised in this value.

Because an MP bundle may span multiple member links, a method is needed
to identify member links as belonging to the same bundle. Member links in the
same bundle are identified by the LCP endpoint discriminator option (type 19). The

ptg999

Section 3.6 Point-to-Point Protocol (PPP) 139

endpoint discriminator could be a phone number, a number derived from an IP or
MAC address, or some administrative string. Other than being common to each
member link, there are few restrictions on the form of this option.

The basic method of establishing MP as defined in [RFC1990] expects that
member links are going to be used symmetrically—about the same number of
fragments will be allocated to each of a fixed number of links. In order to achieve
more sophisticated allocations than this, the Bandwidth Allocation Protocol (BAP)
and Bandwidth Allocation Control Protocol (BACP) are specified in [RFC2125]. BAP
can be used to dynamically add or remove links from a bundle, and BACP can be
used to exchange information regarding how links should be added or removed
using BAP. This capability can be used to help implement bandwidth on demand
(BOD). In networks where some fixed resource needs to be allocated in order to
meet an application’s need for bandwidth (e.g., by dialing some number of tele-
phone connections), BOD typically involves monitoring traffic and creating new
connections when usage is high and shutting down connections when usage is
low. This is useful, for example, in cases where some monetary charge is associ-
ated with the number of connections being used.

BAP/BACP makes use of a new link discriminator LCP option (LCP option type
23). This option contains a 16-bit numeric value that is required to be different for
each member link of a bundle. It is used by BAP to identify which links are to be
added or removed. BACP is negotiated once per bundle during the network phase
of a PPP link. Its main purpose is to identify a favored peer. That is, if more than one
bundle is being set up simultaneously among multiple peers, the favored peer is
preferentially allocated member links.

BAP includes three packet types: request, response, and indication. Requests
are to add a link to a bundle or to request the peer to delete a link from a bundle.
Indications convey the results of attempted additions back to the original requester
and are acknowledged. Responses are either ACKs or NACKs for these requests.
More details can be found in [RFC2125].

3.6.3 Compression Control Protocol (CCP)

Historically, PPP has been the protocol of choice when using relatively slow dial-
up modems. As a consequence, a number of methods have been developed to
compress data sent over PPP links. This type of compression is distinct both from
the types of compression supported in modem hardware (e.g., V.42bis, V.44) and
also from protocol header compression, which we discuss later. Today, several com-
pression options are available. To choose among them for each direction on a PPP
link, LCP can negotiate an option to enable the Compression Control Protocol (CCP)
[RFC1962]. CCP acts like an NCP (see Section 3.6.5) but handles the details of con-
figuring compression once the compression option is indicated in the LCP link
establishment exchange.

In behaving like an NCP, CCP can be negotiated only once the link has entered
the Network state. It uses the same packet exchange procedures and formats as

ptg999

140 Link Layer

LCP, except the Protocol field is set to 0x80FD, there are some special options, and
in addition to the common Code field values (1–7) two new operations are defined:
reset-request (0x0e) and reset-ACK (0x0f). If an error is detected in a compressed
frame, a reset request can be used to cause the peer to reset compression state
(e.g., dictionaries, state variables, state machines, etc.). After resetting, the peer
responds with a reset-ACK.

One or more compressed packets may be carried within the information por-
tion of a PPP frame (i.e., the portion including the LCP data and possibly pad
portions). Compressed frames carry the Protocol field value of 0x00FD, but the
mechanism used to indicate the presence of multiple compressed datagrams is
dependent on the particular compression algorithm used (see Section 3.6.6). When
used in conjunction with MP, CCP may be used either on the bundle or on some
combination of the member links. If used only on member links, the Protocol field
is set to 0x00FB (individual link compressed datagram).

CCP can enable one of about a dozen compression algorithms [PPPn]. Most
of the algorithms are not official standards-track IETF documents, although they
may be described in informational RFCs (e.g., [RFC1977] describes the BSD com-
pression scheme, and [RFC2118] describes the Microsoft Point-to-Point Compres-
sion Protocol (MPPC)). If compression is being used, PPP frames are reconstructed
before further processing, so higher-layer PPP operations are not generally con-
cerned with the details of the compressed frames.

3.6.4 PPP Authentication

Before a PPP link becomes operational in the Network state, it is often necessary to
establish the identity of the peer(s) of the link using some authentication (identity
verification) mechanism. The basic PPP specification has a default of no authen-
tication, so the authentication exchange of Figure 3-24 would not be used in such
cases. More often, however, some form of authentication is required, and a num-
ber of protocols have evolved over the years to deal with this situation. In this
chapter we discuss them only from a high-level point of view and leave the details
for the chapter on security (Chapter 18). Other than no authentication, the sim-
plest and least secure authentication scheme is called the Password Authentication
Protocol (PAP). This protocol is very simple—one peer requests the other to send a
password, and the password is so provided. As the password is sent unencrypted
over the PPP link, any eavesdropper on the line can simply capture the password
and use it later. Because of this significant vulnerability, PAP is not recommended
for authentication. PAP packets are encoded as LCP packets with the Protocol field
value set to 0xC023.

A somewhat more secure approach to authentication is provided by the Chal-
lenge-Handshake Authentication Protocol (CHAP) [RFC1994]. Using CHAP, a random
value is sent from one peer (called the authenticator) to the other. A response is
formed by using a special one-way (i.e., not easily invertible) function to combine
the random value with a shared secret key (usually derived from a password)

ptg999

Section 3.6 Point-to-Point Protocol (PPP) 141

to produce a number that is sent in response. Upon receiving this response, the
authenticator can determine with a very high degree of confidence that its peer
possesses the correct secret key. This protocol never sends the key or password
over the link in a clear (unencrypted) form, so any eavesdropper is unable to learn
the secret. Because a different random value is used each time, the result of the
function changes for each challenge/response, so the values an eavesdropper may
be able to capture cannot be reused (played back) to impersonate the peer. How-
ever, CHAP is vulnerable to a “man in the middle” form of attack (see Chapter 18).

EAP [RFC3748] is an authentication framework available for many different
network types. It also supports many (about 40) different authentication methods,
ranging from simple passwords such as PAP and CHAP to more elaborate types
of authentication (e.g., smart cards, biometrics). EAP defines a message format
for carrying a variety of specific types of authentication formats, but additional
specifications are needed to define how EAP messages are carried over particular
types of links.

When EAP is used with PPP, the basic authentication method discussed so
far is altered. Instead of negotiating a specific authentication method early in the
link establishment (at LCP link establishment), the authentication operation may
be postponed until the Auth state (just before the Network state). This allows for
a greater richness in the types of information that can be used to influence access
control decisions by remote access servers (RASs). When there is a standard protocol
for carrying a variety of authentication mechanisms, a network access server may
not need to process the contents of EAP messages at all but can instead depend on
some other infrastructure authentication server (e.g., a RADIUS server [RFC2865])
to determine access control decisions. This is currently the design of choice for
enterprise networks and ISPs.

3.6.5 Network Control Protocols (NCPs)

Although many different NCPs can be used on a PPP link (even simultaneously),
we shall focus on the NCPs supporting IPv4 and IPv6. For IPv4, the NCP is called
the IP Control Protocol (IPCP) [RFC1332]. For IPv6, the NCP is IPV6CP [RFC5072].
Once LCP has completed its link establishment and authentication, each end of the
link is in the Network state and may proceed to negotiate a network-layer associa-
tion using zero or more NCPs (one, such as IPCP, is typical).

IPCP, the standard NCP for IPv4, can be used to establish IPv4 connectivity over
a link and configure Van Jacobson header compression (VJ compression) [RFC1144].
IPCP packets may be exchanged after the PPP state machine has reached the Net-
work state. IPCP packets use the same packet exchange mechanism and packet
format as LCP, except the Protocol field is set to 0x8021, and the Code field is limited
to the range 0–7. These values of the Code field correspond to the message types:
vendor-specific (see [RFC2153]), configure-request, configure-ACK, configure-
REJECT, terminate-request, terminate-ACK, and code-REJECT. IPCP can negotiate
a number of options, including an IP compression protocol (2), the IPv4 address

ptg999

142 Link Layer

(3), and Mobile IPv4 [RFC2290] (4). Other options are available for learning the
location of primary and secondary domain name servers (see Chapter 11).

IPV6CP uses the same packet exchange and format as LCP, except it has two
different options: interface-identifier and IPv6-compression-protocol. The inter-
face identifier option is used to convey a 64-bit IID value (see Chapter 2) used as
the basis for forming a link-local IPv6 address. Because it is used only on the local
link, it does not require global uniqueness. This is accomplished using a standard
link-local prefix for the higher-order bits of the IPv6 address and allowing the
lower-order bits to be a function of the interface identifier. This mimics IPv6 auto-
configuration (see Chapter 6).

3.6.6 Header Compression

PPP dial-up lines have historically been comparatively slow (54,000 bits/s or less),
and many small packets are often used with TCP/IP (e.g., for TCP’s acknowledg-
ments; see Chapter 15). Most of these packets contain a TCP and IP header that
changes little from one packet to another on the same TCP connection. Other
higher-layer protocols behave similarly. Thus, it is useful to have a way of com-
pressing the headers of these higher-layer protocols (or eliminating them) so that
fewer bytes need to be carried over relatively slow point-to-point links. The meth-
ods employed to compress or eliminate headers have evolved over time. We discuss
them in chronological order, beginning with VJ compression, mentioned earlier.

In VJ compression, portions of the higher-layer (TCP and IP) headers are
replaced with a small, 1-byte connection identifier. [RFC1144] discusses the origin
of this approach, using an older point-to-point protocol called CSLIP (Compressed
Serial Line IP). A typical IPv4 header is 20 bytes, and a TCP header without options
is another 20. Together, a common combined TCP/IPv4 header is thus 40 bytes,
and many of the fields do not change from packet to packet. Furthermore, many
of the fields that do change from packet to packet change only slightly or in a
limited way. When the nonchanging values are sent over a link once (or a small
number of times) and kept in a table, a small index can be used as a replacement
for the constants in subsequent packets. The limited changing values are then
encoded differentially (i.e., only the amount of change is sent). As a result, the
entire 40-byte header can usually be compressed to an effective 3 or 4 bytes. This
can significantly improve TCP/IP performance over slow links.

The next step in the evolution of header compression is simply called IP header
compression [RFC2507][RFC3544]. It provides a way to compress the headers of
multiple packets using both TCP or UDP transport-layer protocols and either IPv4
or IPv6 network-layer protocols. The techniques are a logical extension and gen-
eralization of the VJ compression technique that applies to more protocols, and to
links other than PPP links. [RFC2507] points out the necessity of some strong error
detection mechanism in the underlying link layer because erroneous packets can
be constructed at the egress of a link if compressed header values are damaged in
transit. This is important to recognize when header compression is used on links
that may not have as strong an FCS computation as PPP.

ptg999

Section 3.6 Point-to-Point Protocol (PPP) 143

The most recent step in the evolution of header compression is known as
Robust Header Compression (ROHC) [RFC5225]. It further generalizes IP header
compression to cover more transport protocols and allows more than one form
of header compression to operate simultaneously. Like the IP header compression
mentioned previously, it can be used over various types of links, including PPP.

3.6.7 Example

We now look at the debugging output of a PPP server interacting with a client
over a dial-in modem. The dialing-in client is an IPv6-capable Microsoft Windows
Vista machine, and the server is Linux. The Vista machine is configured to negoti-
ate multilink capability even on single links (Properties | Options | PPP Settings),
for demonstration purposes, and the server is configured to require an encryption
protocol negotiated using CCP (see MPPE in the following listing):

data dev=ttyS0, pid=28280, caller='none', conn='38400',
 name='',cmd='/usr/sbin/pppd', user='/AutoPPP/'
pppd 2.4.4 started by a_ppp, uid 0
using channel 54
Using interface ppp0
ppp0 <--> /dev/ttyS0
sent [LCP ConfReq id=0x1 <asyncmap 0x0> <auth eap>
 <magic 0xa5ccc449><pcomp> <accomp>]
rcvd [LCP ConfNak id=0x1 <auth chap MS-v2>]
sent [LCP ConfReq id=0x2 <asyncmap 0x0> <auth chap MS-v2>
 <magic 0xa5ccc449><pcomp> <accomp>]
rcvd [LCP ConfAck id=0x2 <asyncmap 0x0> <auth chap MS-v2>
 <magic 0xa5ccc449><pcomp> <accomp>]
rcvd [LCP ConfReq id=0x2 <asyncmap 0x0> <magic 0xa531e06>
 <pcomp> <accomp><callback CBCP> <mrru 1614>
 <endpoint [local:12.92.67.ef.2f.fe.44.6e.84.f8.
 c9.3f.5f.8c.5c.41.00.00.00.00]>]
sent [LCP ConfRej id=0x2 <callback CBCP> <mrru 1614>]
rcvd [LCP ConfReq id=0x3 <asyncmap 0x0> <magic 0xa531e06>
 <pcomp> <accomp>
 <endpoint [local:12.92.67.ef.2f.fe.44.6e.84.f8.
 c9.3f.5f.8c.5c.41.00.00.00.00]>]
sent [LCP ConfAck id=0x3 <asyncmap 0x0> <magic 0xa531e06>
 <pcomp> <accomp>
 <endpoint [local:12.92.67.ef.2f.fe.44.6e.84.f8.
 c9.3f.5f.8c.5c.41.00.00.00.00]>]
sent [CHAP Challenge id=0x1a <4d53c52b8e7dcfe7a9ea438b2b4daf55>,
 name = "dialer"]
rcvd [LCP Ident id=0x4 magic=0xa531e06 "MSRASV5.20"]
rcvd [LCP Ident id=0x5 magic=0xa531e06 "MSRAS-0-VISTA"]
rcvd [CHAP Response id=0x1a
 <4b5dc95ed4e1788b959025de0233d4fc0000000
 00000000033a555d2a77bd1fa692f2a0af707cd 4f0c0072c379c82e0f00>,
 name = "dialer"]
sent [CHAP Success id=0x1a
 "S=7E0B6B513215C87520BEF6725EF8A9945C28E918M=Access granted"]

ptg999

144 Link Layer

sent [CCP ConfReq id=0x1 <mppe +H -M +S +L -D -C>]
rcvd [IPV6CP ConfReq id=0x6 <addr fe80::0000:0000:dead:beef>]
sent [IPV6CP TermAck id=0x6]
rcvd [CCP ConfReq id=0x7 <mppe -H -M -S -L -D +C>]
sent [CCP ConfNak id=0x7 <mppe +H -M +S +L -D -C>]
rcvd [IPCP ConfReq id=0x8 <compress VJ 0f 01> <addr 0.0.0.0>
 <ms-dns1 0.0.0.0> <ms-wins 0.0.0.0> <ms-dns3 0.0.0.0>
 <ms-wins 0.0.0.0>]
sent [IPCP TermAck id=0x8]
rcvd [CCP ConfNak id=0x1 <mppe -H -M +S -L -D -C>]
sent [CCP ConfReq id=0x2 <mppe -H -M +S -L -D -C>]
rcvd [CCP ConfReq id=0x9 <mppe -H -M +S -L -D -C>]
sent [CCP ConfAck id=0x9 <mppe -H -M +S -L -D -C>]
rcvd [CCP ConfAck id=0x2 <mppe -H -M +S -L -D -C>]
MPPE 128-bit stateful compression enabled
sent [IPCP ConfReq id=0x1 <compress VJ 0f 01> <addr 192.168.0.1>]
sent [IPV6CP ConfReq id=0x1 <addr fe80::0206:5bff:fedd:c5c3>]
rcvd [IPCP ConfAck id=0x1 <compress VJ 0f 01> <addr 192.168.0.1>]
rcvd [IPV6CP ConfAck id=0x1 <addr fe80::0206:5bff:fedd:c5c3>]
rcvd [IPCP ConfReq id=0xa <compress VJ 0f 01>
 <addr 0.0.0.0> <ms-dns1 0.0.0.0>
 <ms-wins 0.0.0.0> <ms-dns3 0.0.0.0> <ms-wins 0.0.0.0>]
sent [IPCP ConfRej id=0xa <ms-wins 0.0.0.0> <ms-wins 0.0.0.0>]
rcvd [IPV6CP ConfReq id=0xb <addr fe80::0000:0000:dead:beef>]
sent [IPV6CP ConfAck id=0xb <addr fe80::0000:0000:dead:beef>]
rcvd [IPCP ConfAck id=0x1 <compress VJ 0f 01> <addr 192.168.0.1>]
rcvd [IPV6CP ConfAck id=0x1 <addr fe80::0206:5bff:fedd:c5c3>]
local LL address fe80::0206:5bff:fedd:c5c3
remote LL address fe80::0000:0000:dead:beef
rcvd [IPCP ConfReq id=0xc <compress VJ 0f 01>
 <addr 0.0.0.0> <ms-dns1 0.0.0.0> <ms-dns3 0.0.0.0>]
sent [IPCP ConfNak id=0xc <addr 192.168.0.2> <ms-dns1 192.168.0.1>
 <ms-dns3 192.168.0.1>]
sent [IPCP ConfAck id=0xd <compress VJ 0f 01> <addr 192.168.0.2>
 <ms-dns1 192.168.0.1> <ms-dns3 192.168.0.1>]
local IP address 192.168.0.1
remote IP address 192.168.0.2
... data ...

Here we can see a somewhat involved PPP exchange, as viewed from the
server. The PPP server process creates a (virtual) network interface called ppp0,
which is awaiting an incoming connection on the dial-up modem attached to
serial port ttyS0. Once the incoming connection arrives, the server requests an
asyncmap of 0x0, EAP authentication, PFC, and ACFC. The client refuses EAP
authentication and instead suggests MS-CHAP-v2 (ConfNak) [RFC2759]. The
server then tries again, this time using MS-CHAP-v2, which is then accepted and
acknowledged (ConfAck). Next, the incoming request includes CBCP; an MRRU
of 1614 bytes, which is associated with MP support; and an endpoint ID. The server
rejects the request for CBCP and multilink operation (ConfRej). The endpoint
discriminator is once again sent by the client, this time without the MRRU, and is

ptg999

 Section 3.7 Loopback 145

accepted and acknowledged. Next, the server sends a CHAP challenge with the
name dialer. Before a response to the challenge arrives, two incoming identity
messages arrive, indicating that the peer is identified by the strings MSRASV5.20
and MSRAS-0-VISTA. Finally, the CHAP response arrives and is validated as cor-
rect, and an acknowledgment indicates that access is granted. PPP then moves on
to the Network state.

Once in the Network state, the CCP, IPCP, and IPV6CP NCPs are exchanged.
CCP attempts to negotiate Microsoft Point-to-Point Encryption (MPPE) [RFC3078].
MPPE is somewhat of an anomaly, as it is really an encryption protocol, and rather
than compressing the packet it actually expands it by 4 bytes. It does, however,
provide a relatively simple means of establishing encryption early in the negotia-
tion process. The options +H -M +S +L -D -C indicate whether MPPE stateless
operation is desired (H), what cryptographic key strength is available (secure, S;
medium, M; or low, L), an obsolete D bit, and whether a separate, proprietary com-
pression protocol called MPPC [RFC2118] is desired (C). Eventually the two peers
agree on stateful mode using strong 128-bit keying (-H, +S). Note that during the
middle of this negotiation, the client attempts to send an IPCP request, but the
server responds with an unsolicited TermAck (a message defined within LCP
that ICPC adopts). This is used to indicate to the peer that the server is “in need of
renegotiation” [RFC1661].

After the successful negotiation of MPPE, the server requests the use of VJ
header compression and provides its IPv4 and IPv6 addresses, 192.168.0.1 and
fe80::0206:5bff:fedd:c5c3. This IPv6 address is derived from the server’s
Ethernet MAC address 00:06:5B:DD:C5:C3. The client initially suggests its IPv4
address and name servers to be 0.0.0.0 using IPCP, but this is rejected. The client
then requests to use fe80::0000:0000:dead:beef as its IPv6 address, which
is accepted and acknowledged. Finally, the client ACKs both the IPv4 and IPv6
addresses of the server, and the IPv6 addresses have been established. Next, the
client again requests IPv4 and server addresses of 0.0.0.0, which is rejected in
favor of 192.168.0.1. These are accepted and acknowledged.

As we can see from this exchange, the PPP negotiation is both flexible and
tedious. There are many options that can be attempted, rejected, and renegotiated.
While this may not be a big problem on a link with low delay, imagine how long
this exchange could take if each message took a few seconds (or longer) to reach its
destination, as might occur over a satellite link, for example. Link establishment
would be a visibly long procedure for the user.

3.7 Loopback

Although it may seem surprising, in many cases clients may wish to communicate
with servers on the same computer using Internet protocols such as TCP/IP. To
enable this, most implementations support a network-layer loopback capability that
typically takes the form of a virtual loopback network interface. It acts like a real

ptg999

146 Link Layer

network interface but is really a special piece of software provided by the operat-
ing system to enable TCP/IP and other communications on the same host com-
puter. IPv4 addresses starting with 127 are reserved for this, as is the IPv6 address
::1 (see Chapter 2 for IPv4 and IPv6 addressing conventions). Traditionally, UNIX-
like systems including Linux assign the IPv4 address of 127.0.0.1 (::1 for IPv6) to the
loopback interface and assign it the name localhost. An IP datagram sent to the
loopback interface must not appear on any network. Although we could imagine
the transport layer detecting that the other end is a loopback address and short-
circuiting some of the transport-layer logic and all of the network-layer logic, most
implementations perform complete processing of the data in the transport layer
and network layer and loop the IP datagram back up in the network stack only
when the datagram leaves the bottom of the network layer. This can be useful for
performance measurement, for example, because the amount of time required to
execute the stack software can be measured without any hardware overheads. In
Linux, the loopback interface is called lo.

Linux% ifconfig lo
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:458511 errors:0 dropped:0 overruns:0 frame:0
 TX packets:458511 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:266049199 (253.7 MiB)
 TX bytes:266049199 (253.7 MiB)

Here we see that the local loopback interface has the IPv4 address 127.0.0.1
and a subnet mask of 255.0.0.0 (corresponding to class A network number 127
in classful addressing). The IPv6 address ::1 has a 128-bit-long prefix, so it repre-
sents only a single address. The interface has an MTU of 16KB (this can be config-
ured to a much larger size, up to 2GB). A significant amount of traffic, nearly half a
million packets, has passed through the interface without error since the machine
was initialized two months earlier. We would not expect to see errors on the local
loopback device, given that it never really sends packets on any network.

In Windows, the Microsoft Loopback Adapter is not installed by default, even
though IP loopback is still supported. This adapter can be used for testing various
network configurations even when a physical network interface is not available.
To install it under Windows XP, select Start | Control Panel | Add Hardware |
Select Network Adapters from list | Select Microsoft as manufacturer | Select
Microsoft Loopback Adapter. For Windows Vista or Windows 7, run the program
hdwwiz from the command prompt and add the Microsoft Loopback Adapter
manually. Once this is performed, the ipconfig command reveals the following
(this example is from Windows Vista):

ptg999

 Section 3.7 Loopback 147

C:\> ipconfig /all
...
Ethernet adapter Local Area Connection 2:
 Connection-specific DNS Suffix . :
 Description : Microsoft Loopback Adapter
 Physical Address. : 02-00-4C-4F-4F-50
 DHCP Enabled. : Yes
 Autoconfiguration Enabled : Yes
 Link-local IPv6 Address :
 fe80::9c0d:77a:52b8:39f0%18(Preferred)
 Autoconfiguration IPv4 Address. . : 169.254.57.240(Preferred)
 Subnet Mask : 255.255.0.0
 Default Gateway :
 DHCPv6 IAID : 302121036
 DNS Servers : fec0:0:0:ffff::1%1
 fec0:0:0:ffff::2%1
 fec0:0:0:ffff::3%1
 NetBIOS over Tcpip. : Enabled

Here we can see that the interface has been created, has been assigned both
IPv4 and IPv6 addresses, and appears as a sort of virtual Ethernet device. Now the
machine has several loopback addresses:

C:\> ping 127.1.2.3
Pinging 127.1.2.3 with 32 bytes of data:
Reply from 127.1.2.3: bytes=32 time<1ms TTL=128
Reply from 127.1.2.3: bytes=32 time<1ms TTL=128
Reply from 127.1.2.3: bytes=32 time<1ms TTL=128
Reply from 127.1.2.3: bytes=32 time<1ms TTL=128
Ping statistics for 127.1.2.3:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\> ping ::1
Pinging ::1 from ::1 with 32 bytes of data:
Reply from ::1: time<1ms
Reply from ::1: time<1ms
Reply from ::1: time<1ms
Reply from ::1: time<1ms
Ping statistics for ::1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\> ping 169.254.57.240
Pinging 169.254.57.240127.1.2.3 with 32 bytes of data:
Reply from 169.254.57.240: bytes=32 time<1ms TTL=128
Reply from 169.254.57.240: bytes=32 time<1ms TTL=128
Reply from 169.254.57.240: bytes=32 time<1ms TTL=128

ptg999

148 Link Layer

Reply from 169.254.57.240: bytes=32 time<1ms TTL=128
Ping statistics for 169.254.57.240:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Here we can see that in IPv4, any destination address starting with 127 is
looped back. For IPv6, however, only the single address ::1 is defined for loopback
operation. We can also see how the loopback adapter with address 169.254.57.240
returned data immediately. One subtlety to which we will return in Chapter 9 is
whether multicast or broadcast datagrams should be copied back to the sending
computer (over the loopback interface). This choice can be made by each indi-
vidual application.

3.8 MTU and Path MTU

As we can see from Figure 3-3, there is a limit on the size of the frame available for
carrying the PDUs of higher-layer protocols in many link-layer networks such as
Ethernet. This usually limits the number of payload bytes to about 1500 for Eth-
ernet and often the same amount for PPP in order to maintain compatibility with
Ethernet. This characteristic of the link layer is called the maximum transmission
unit (MTU). Most packet networks (like Ethernet) have a fixed upper limit. Most
stream-type networks (serial links) have a configurable limit that is then used by
framing protocols such as PPP. If IP has a datagram to send, and the datagram is
larger than the link layer’s MTU, IP performs fragmentation, breaking the data-
gram up into smaller pieces (fragments), so that each fragment is smaller than the
MTU. We discuss IP fragmentation in Chapters 5 and 10.

When two hosts on the same network are communicating with each other, it is
the MTU of the local link interconnecting them that has a direct effect on the size
of datagrams that are used during the conversation. When two hosts communi-
cate across multiple networks, each link can have a different MTU. The minimum
MTU across the network path comprising all of the links is called the path MTU.

The path MTU between any two hosts need not be constant over time. It
depends on the path being used at any time, which can change if the routers or
links in the network fail. Also, paths are often not symmetric (i.e., the path from
host A to B may not be the reverse of the path from B to A); hence the path MTU
need not be the same in the two directions.

[RFC1191] specifies the path MTU discovery (PMTUD) mechanism for IPv4,
and [RFC1981] describes it for IPv6. A complementary approach that avoids some
of the issues with these mechanisms is described in [RFC4821]. PMTU discovery is
used to determine the path MTU at a point in time and is required of IPv6 imple-
mentations. In later chapters we shall see how this mechanism operates after we
have described ICMP and IP fragmentation. We shall also see what effect it can
have on transport performance when we discuss TCP and UDP.

ptg999

Section 3.9 Tunneling Basics 149

3.9 Tunneling Basics

In some cases it is useful to establish a virtual link between one computer and
another across the Internet or other network. VPNs, for example, offer this type of
service. The method most commonly used to implement these types of services is
called tunneling. Tunneling, generally speaking, is the idea of carrying lower-layer
traffic in higher-layer (or equal-layer) packets. For example, IPv4 can be carried in
an IPv4 or IPv6 packet; Ethernet can be carried in a UDP or IPv4 or IPv6 packet,
and so on. Tunneling turns the idea of strict layering of protocols on its head and
allows for the formation of overlay networks (i.e., networks where the “links” are
really virtual links implemented in some other protocol instead of physical con-
nections). It is a very powerful and useful technique. Here we discuss the basics
of some of the tunneling options.

There is a great variety of methods for tunneling packets of one protocol
and/or layer over another. Three of the more common protocols used to establish
tunnels include Generic Routing Encapsulation (GRE) [RFC2784], the Microsoft pro-
prietary Point-to-Point Tunneling Protocol (PPTP) [RFC2637], and the Layer 2 Tun-
neling Protocol (L2TP) [RFC3931]. Others include the earlier nonstandard IP-in-IP
tunneling protocol [RFC1853]. GRE and LT2P were developed to standardize and
replace IP-in-IP and PPTP, respectively, but all of these approaches are still in use.
We shall focus on GRE and PPTP, with more emphasis on PPTP, as it is more visible
to individual users even though it is not an IETF standard. L2TP is often used with
security at the IP layer (IPsec; see Chapter 18) because L2TP by itself does not pro-
vide security. Because GRE and PPTP are closely related, we now look at the GRE
header in Figure 3-26, in both its original standard and revised standard forms.

Figure 3-26 The basic GRE header is only 4 bytes but includes the option of a 16-bit checksum (of a type com-
mon to many Internet protocols). The header was later extended to include an identifier (Key field)
common to multiple packets in a flow, and a Sequence Number, to help in resequencing packets that
get out of order.

ptg999

150 Link Layer

As can be seen from the headers in Figure 3-26, the baseline GRE specification
[RFC2784] is rather simple and provides only a minimal encapsulation for other
packets. The first bit field (C) indicates whether a checksum is present. If it is,
the Checksum field contains the same type of checksum found in many Internet-
related protocols (see Section 5.2.2). If the Checksum field is present, the Reserved1
field is also present and is set to 0. [RFC2890] extends the basic format to include
optional Key and Sequence Number fields, present if the K and S bit fields from
Figure 3-26 are set to 1, respectively. If present, the Key field is arranged to be a
common value in multiple packets, indicating that they belong to the same flow
of packets. The Sequence Number field is used in order to reorder packets if they
should become out of sequence (e.g., by going through different links).

Although GRE forms the basis for and is used by PPTP, the two protocols serve
somewhat different purposes. GRE tunnels are typically used within the network
infrastructure to carry traffic between ISPs or within an enterprise intranet to
serve branch offices and are not necessarily encrypted, although GRE tunnels can
be combined with IPsec. PPTP, conversely, is most often used between users and
their ISPs or corporate intranets and is encrypted (e.g., using MPPE). PPTP essen-
tially combines GRE with PPP, so GRE can provide the virtual point-to-point link
upon which PPP operates. GRE carries its traffic using IPv4 or IPv6 and as such
is a layer 3 tunneling technology. PPTP is more often used to carry layer 2 frames
(such as Ethernet) so as to emulate a direct LAN (link-layer) connection. This can
be used for remote access to corporate networks, for example. PPTP uses a non-
standard variation on the standard GRE header (see Figure 3-27).

Figure 3-27 The PPTP header is based on an older, nonstandard GRE header. It includes a sequence number,
a cumulative packet acknowledgment number, and some identification information. Most of the
fields in the first word are set to 0.

We can see a number of differences in Figure 3-27 from the standard GRE
header, including the extra R, s, and A bit fields, additional Flags field, and Recur
field. Most of these are simply set to 0 and not used (their assignment is based on
an older, nonstandard version of GRE). The K, S, and A bit fields indicate that the
Key, Sequence Number, and Acknowledgment Number fields are present. If present,
the value of the Sequence Number field holds the largest packet number seen by the
peer.

ptg999

Section 3.9 Tunneling Basics 151

We now turn to the establishment of a PPTP session. We shall conclude later
with a brief discussion of some of PPTP’s other capabilities. The following example
is similar to the PPP link establishment example given earlier, except now instead
of using a dial-up link, PPTP is providing the “raw” link to PPP. Once again, the
client is Windows Vista, and the server is Linux. This output comes from the
/var/log/messages file when the debug option is enabled:

pptpd: MGR: Manager process started
pptpd: MGR: Maximum of 100 connections available
pptpd: MGR: Launching /usr/sbin/pptpctrl to handle client
pptpd: CTRL: local address = 192.168.0.1
pptpd: CTRL: remote address = 192.168.1.1
pptpd: CTRL: pppd options file = /etc/ppp/options.pptpd
pptpd: CTRL: Client 71.141.227.30 control connection started
pptpd: CTRL: Received PPTP Control Message (type: 1)
pptpd: CTRL: Made a START CTRL CONN RPLY packet
pptpd: CTRL: I wrote 156 bytes to the client.
pptpd: CTRL: Sent packet to client
pptpd: CTRL: Received PPTP Control Message (type: 7)

pptpd: CTRL: Set parameters to 100000000 maxbps, 64 window size
pptpd: CTRL: Made a OUT CALL RPLY packet
pptpd: CTRL: Starting call (launching pppd, opening GRE)
pptpd: CTRL: pty_fd = 6
pptpd: CTRL: tty_fd = 7
pptpd: CTRL (PPPD Launcher): program binary = /usr/sbin/pppd
pptpd: CTRL (PPPD Launcher): local address = 192.168.0.1
pptpd: CTRL (PPPD Launcher): remote address = 192.168.1.1
pppd: pppd 2.4.4 started by root, uid 0
pppd: using channel 60
pptpd: CTRL: I wrote 32 bytes to the client.
pptpd: CTRL: Sent packet to client
pppd: Using interface ppp0
pppd: Connect: ppp0 <--> /dev/pts/1
pppd: sent [LCP ConfReq id=0x1 <asyncmap 0x0> <auth chap MS-v2>
 <magic 0x4e2ca200> <pcomp> <accomp>]
pptpd: CTRL: Received PPTP Control Message (type: 15)
pptpd: CTRL: Got a SET LINK INFO packet with standard ACCMs
pptpd: GRE: accepting packet #0
pppd: rcvd [LCP ConfReq id=0x0 <mru 1400> <magic 0x5e565505>
 <pcomp> <accomp>]
pppd: sent [LCP ConfAck id=0x0 <mru 1400> <magic 0x5e565505>
 <pcomp> <accomp>]
pppd: sent [LCP ConfReq id=0x1 <asyncmap 0x0> <auth chap MS-v2>
 <magic 0x4e2ca200> <pcomp> <accomp>]
pptpd: GRE: accepting packet #1
pppd: rcvd [LCP ConfAck id=0x1 <asyncmap 0x0> <auth chap MS-v2>
 <magic 0x4e2ca200> <pcomp> <accomp>]
pppd: sent [CHAP Challenge id=0x3
 <eb88bfff67d1c239ef73e98ca32646a5>, name = "dialer"]
pptpd: CTRL: Received PPTP Control Message (type: 15)
pptpd: CTRL: Ignored a SET LINK INFO packet with real ACCMs!

ptg999

152 Link Layer

pptpd: GRE: accepting packet #2
pppd: rcvd [CHAP Response id=0x3<276f3678f0f03fa57f64b3c367529565000000
 00000000000fa2b2ae0ad8db9d986f8e222a0217a620638a24
 3179160900>, name = "dialer"]
pppd: sent [CHAP Success id=0x3
 "S=C551119E0E1AAB68E86DED09A32D0346D7002E05
 M=Accessgranted"]
pppd: sent [CCP ConfReq id=0x1 <mppe +H -M +S +L -D -C>]
pptpd: GRE: accepting packet #3
pppd: rcvd [IPV6CP ConfReq id=0x1 <addr fe80::1cfc:fddd:8e2c:e118>]
pppd: sent [IPV6CP TermAck id=0x1]
pptpd: GRE: accepting packet #4
pppd: rcvd [CCP ConfReq id=0x2 <mppe +H -M -S -L -D -C>]
pppd: sent [CCP ConfNak id=0x2 <mppe +H -M +S +L -D -C>]
pptpd: GRE: accepting packet #5
pptpd: GRE: accepting packet #6
pppd: rcvd [IPCP ConfReq id=0x3 <addr 0.0.0.0> <ms-dns1 0.0.0.0>
 <ms-wins 0.0.0.0> <ms-dns3 0.0.0.0> <ms-wins 0.0.0.0>]
pptpd: GRE: accepting packet #7
pppd: sent [IPCP TermAck id=0x3]
pppd: rcvd [CCP ConfNak id=0x1 <mppe +H -M +S -L -D -C>]
pppd: sent [CCP ConfReq id=0x2 <mppe +H -M +S -L -D -C>]
pppd: rcvd [CCP ConfReq id=0x4 <mppe +H -M +S -L -D -C>]
pppd: sent [CCP ConfAck id=0x4 <mppe +H -M +S -L -D -C>]
pptpd: GRE: accepting packet #8
pppd: rcvd [CCP ConfAck id=0x2 <mppe +H -M +S -L -D -C>]
pppd: MPPE 128-bit stateless compression enabled
pppd: sent [IPCP ConfReq id=0x1 <addr 192.168.0.1>]
pppd: sent [IPV6CP ConfReq id=0x1 <addr fe80::0206:5bff:fedd:c5c3>]
pptpd: GRE: accepting packet #9
pppd: rcvd [IPCP ConfAck id=0x1 <addr 192.168.0.1>]
pptpd: GRE: accepting packet #10
pppd: rcvd [IPV6CP ConfAck id=0x1 <addr fe80::0206:5bff:fedd:c5c3>]
pptpd: GRE: accepting packet #11
pppd: rcvd [IPCP ConfReq id=0x5 <addr 0.0.0.0>
 <ms-dns1 0.0.0.0> <ms-wins 0.0.0.0>
 <ms-dns3 0.0.0.0> <ms-wins 0.0.0.0>]
pppd: sent [IPCP ConfRej id=0x5 <ms-wins 0.0.0.0> <ms-wins 0.0.0.0>]
pptpd: GRE: accepting packet #12
pppd: rcvd [IPV6CP ConfReq id=0x6 <addr fe80::1cfc:fddd:8e2c:e118>]
pppd: sent [IPV6CP ConfAck id=0x6 <addr fe80::1cfc:fddd:8e2c:e118>]
pppd: local LL address fe80::0206:5bff:fedd:c5c3
pppd: remote LL address fe80::1cfc:fddd:8e2c:e118
pptpd: GRE: accepting packet #13
pppd: rcvd [IPCP ConfReq id=0x7 <addr 0.0.0.0>
 <ms-dns1 0.0.0.0> <ms-dns3 0.0.0.0>]
pppd: sent [IPCP ConfNak id=0x7 <addr 192.168.1.1>
 <ms-dns1 192.168.0.1> <ms-dns3 192.168.0.1>]
pptpd: GRE: accepting packet #14
pppd: rcvd [IPCP ConfReq id=0x8 <addr 192.168.1.1>
 <ms-dns1 192.168.0.1> <ms-dns3 192.168.0.1>]
pppd: sent [IPCP ConfAck id=0x8 <addr 192.168.1.1>
 <ms-dns1 192.168.0.1> <ms-dns3 192.168.0.1>]

ptg999

Section 3.9 Tunneling Basics 153

pppd: local IP address 192.168.0.1
pppd: remote IP address 192.168.1.1
pptpd: GRE: accepting packet #15
pptpd: CTRL: Sending ECHO REQ id 1
pptpd: CTRL: Made a ECHO REQ packet
pptpd: CTRL: I wrote 16 bytes to the client.
pptpd: CTRL: Sent packet to client

This output looks similar to the PPP example we examined earlier, except this
one has output from both the pppd process as well as a pptpd process. These
processes work together to establish PPTP sessions at the server. The setup begins
with pptpd receiving a type 1 control message, indicating that the client wishes
to establish a control connection. PPTP uses a separate control and data stream,
so first the control stream is set up. After responding to this request, the server
receives a type 7 control message indicating an outgoing call request from the peer.
The maximum speed (in bits per second) is set to a large value of 100,000,000, which
effectively means it is unbounded. The window is set to 64, a concept we typically
encounter in transport protocols such as TCP (see Chapter 15). Here the window
is used for flow control. That is, PPTP uses its sequence numbers and acknowledg-
ment numbers to determine how many frames reach the destination successfully. If
too few frames are successfully delivered, the sender slows down. To determine the
amount of time to wait for an acknowledgment for frames it sends, PPTP uses an
adaptive timeout mechanism based on estimating the round-trip time of the link.
We shall see this type of calculation again when we study TCP.

Soon after the window is set, the pppd application begins to run and process
the PPP data as we saw before in the dial-up example. The only real difference
between the two is that pptpd relays packets to the pppd process as they arrive
and depart, and a few special PPTP messages (such as set link info and echo
request) are processed by pptpd itself. This example illustrates how the PPTP
protocol really acts as a GRE tunneling agent for PPP packets. This is convenient
because an existing PPP implementation (here, pppd) can be used as is to process
the encapsulated PPP packets. Note that while GRE is itself ordinarily encapsu-
lated in IPv4 packets, similar functionality is available using IPv6 to tunnel pack-
ets [RFC2473].

3.9.1 Unidirectional Links

An interesting issue arises when the link to be used operates in only one direc-
tion. Such links are called unidirectional links (UDLs), and many of the protocols
described so far do not operate properly in such circumstances because they
require exchanges of information (e.g., PPP’s configuration messages). To deal
with this situation, a standard has been created whereby tunneling over a sec-
ond Internet interface can be combined with operation of the UDL [RFC3077]. The
typical situation where this arises is an Internet connection that uses a satellite for
downstream traffic (headed to the user) and a dial-up modem link for upstream

ptg999

154 Link Layer

traffic. This setup can be useful in cases where the satellite-connected user’s usage
is dominated by downloading as opposed to uploading and was commonly used
in early satellite Internet installations. It operates by encapsulating link-layer
upstream traffic in IP packets using a GRE encapsulation.

To establish and maintain tunnels automatically at the receiver, [RFC3077]
specifies a Dynamic Tunnel Configuration Protocol (DTCP). DTCP involves send-
ing multicast Hello messages on the downlink so that any interested receiver can
learn about the existence of the UDL and its MAC and IP addresses. In addition,
Hello messages indicate a list of tunnel endpoints within the network that can be
reached by the user’s secondary interface. After the user selects which tunnel end-
point to use, DTCP arranges for return traffic to be encapsulated with the same
MAC type as the UDL in GRE tunnels. The service provider arranges to receive
these GRE-encapsulated layer 2 frames (frequently Ethernet), extract them from
the tunnel, and forward them appropriately. Thus, although the upstream side of
the UDLs (provider’s side) requires manual tunnel configuration, the downstream
side, which includes many more users, has automatically configured tunnels.
Note that this approach to handling UDLs essentially “hides” the link asymme-
try from the upper-layer protocols. As a consequence, the performance (latency,
bandwidth) of the “two” directions of the link may be highly asymmetric and may
adversely affect higher-layer protocols [RFC3449].

As the satellite example helps to illustrate, one significant issue with tunnels
is the amount of effort required to configure them, which has traditionally been
done by hand. Typically, tunnel configuration involves selecting the endpoints of
a tunnel and configuring the devices located at the tunnel endpoints with an IP
address of the peer, and perhaps also providing protocol selection and authentica-
tion information. A number of techniques have arisen to help in configuring or
using tunnels automatically. One such approach specified for transitioning from
IPv4 to IPv6 is called 6to4 [RFC3056]. In 6to4, IPv6 packets are tunneled over an
IPv4 network using the encapsulation specified in [RFC3056]. A problem with this
approach occurs when corresponding hosts are located behind network address
translators (see Chapter 7). This is common today, especially for home users. Deal-
ing with the IPv6 transition using automatically configured tunnels is specified in
an approach called Teredo [RFC4380]. Teredo tunnels IPv6 packets over UDP/IPv4
packets. Because this approach requires some background in IPv4 and IPv6, as
well as UDP, we postpone any detailed discussion of such tunnel autoconfigura-
tion options to Chapter 10.

3.10 Attacks on the Link Layer

Attacking layers below TCP/IP in order to affect the operations of TCP/IP net-
works has been a popular approach because much of the link-layer information is
not shared by the higher layers and can therefore be somewhat difficult to detect
and mitigate. Nevertheless, many such attacks are now well understood, and we

ptg999

Section 3.10 Attacks on the Link Layer 155

mention a few of them here to better understand how problems at the link layer
can affect higher-layer operations.

In conventional wired Ethernet, interfaces can be placed in promiscuous mode,
which allows them to receive traffic even if it is not destined for them. In the early
days of Ethernet, when the medium was literally a shared cable, this capability
allowed anyone with a computer attached to the Ethernet cable to “sniff” anybody
else’s frames and inspect their contents. As many higher-layer protocols at the time
included sensitive information such as passwords, it was nearly trivial to intercept
a person’s password by merely looking at the ASCII decode of a packet trace. Two
factors have affected this approach substantially: the deployment of switches and
the deployment of encryption in higher-layer protocols. With switches, the only
traffic that is provided on a switch port to which an end station is attached is traf-
fic destined for the station itself (or others for which it is bridging) and broadcast/
multicast traffic. As this type of traffic rarely contains information such as pass-
words, the attack is largely thwarted. Much more effective, however, is simply the
use of encryption at higher layers, which is now common. In this case, sniffing
packets leads to little benefit as the contents are essentially impossible to read.

Another type of attack targets the operation of switches. Recall that switches
hold tables of stations on a per-port basis. If these tables are able to be filled quickly
(e.g., by quickly masquerading as a large number of stations), it is conceivable that
the switch might be forced into discarding legitimate entries, leading to service
interruption for legitimate stations. A related but probably worse attack can be
mounted using the STP. In this case, an attacking station can masquerade as a
switch with a low-cost path to the root bridge and cause traffic to be directed
toward it.

With Wi-Fi networks, some of the eavesdropping and masquerading issues
present in wired Ethernet networks are exacerbated, as any station can enter a
monitoring mode and sniff packets from the air (although placing an 802.11 inter-
face into monitoring mode tends to be more challenging than placing an Ethernet
interface into promiscuous mode, as doing so depends on an appropriate device
driver). Some of the earliest “attacks” (which may not really have been attacks,
depending on the relevant legal framework) involved simply roaming about while
scanning, looking for access points providing Internet connectivity (i.e., war driv-
ing). Although many access points use encryption to limit access to authorized
users, others are either open or use so-called capturing portals that direct a would-
be user to a registration Web page and then filter access based on MAC address.
Capturing portal systems have been subverted by observing a station as it regis-
ters and “hijacking” the connection as it is formed by impersonating the legiti-
mate registering user.

A more sophisticated set of attacks on Wi-Fi involves attacking the crypto-
graphic protection, especially the WEP encryption used on many early access
points. Attacks on WEP [BHL06] were sufficiently devastating so as to prod the
IEEE into revising the standard. The more recent WPA2 encryption framework
(and WPA, to a lesser extent) is known to be significantly stronger, and WEP is no
longer recommended for use.

ptg999

156 Link Layer

PPP links can be attacked in a number of ways if the attacker can gain access
to the channel between the two peers. For very simple authentication mechanisms
(e.g., PAP), sniffing can be used to capture the password in order to facilitate ille-
gitimate subsequent use. Depending on the type of higher-layer traffic being car-
ried over the PPP link (e.g., routing traffic), additional unwanted behaviors can be
induced.

In terms of attacks, tunneling can play the role of both target and tool. In
terms of a target, tunnels pass through a network (often the Internet) and thus are
subject to being intercepted and analyzed. The configured tunnel endpoints can
also be attacked, either by attempting to establish more tunnels than the endpoint
can support (a DoS attack) or by attacking the configuration itself. If the configura-
tion is compromised, it may be possible to open an unauthorized tunnel to an end-
point. At this point the tunnel becomes a tool rather than a target, and protocols
such as L2TP can provide a convenient protocol-independent method of gaining
access to private internal networks at the link layer. In one GRE-related attack, for
example, traffic is simply inserted in a nonencrypted tunnel, where it appears at
the tunnel endpoint and is injected to the attached “private” network as though it
were sent locally.

3.11 Summary

In this chapter we examined the lowest layer in the Internet protocol suite with
which we are concerned—the link layer. We looked at the evolution of Ethernet,
in terms of both its increases in speed from 10Mb/s to 10Gb/s and beyond, as well
as its evolution of capabilities, including VLANs, priorities, link aggregation, and
frame formats. We saw how switches provide improved performance over bridges
by implementing a direct electrical path between multiple independent sets of sta-
tions, and how full-duplex operation has largely replaced the earlier half-duplex
operation. We also looked at the IEEE 802.11 wireless LAN “Wi-Fi” standard in
some detail, noting its similarities and differences with respect to Ethernet. It has
become one of the most popular IEEE standards and provides license-free net-
work access across the two primary bands of 2.4GHz and 5GHz. We also looked
at the evolution of the security methods for Wi-Fi, with the evolution from the
relatively weak WEP to the more formidable WPA and WPA2 frameworks. Mov-
ing beyond IEEE standards, we discussed point-to-point links and the PPP pro-
tocol. PPP can encapsulate essentially any kind of packets used for TCP/IP and
non-TCP/IP networks using an HDLC-like frame format, and it is used on links
ranging from low-speed dial-up modems to high-speed fiber-optic lines. It is a
whole suite of protocols itself, including methods for compression, encryption,
authentication, and link aggregation. Because it supports only two parties, it does
not have to deal with controlling access to a shared medium like the MAC proto-
cols of Ethernet or Wi-Fi.

ptg999

 Section 3.12 References 157

The loopback interface is provided by most implementations. Access to this
interface is either through the special loopback address, normally 127.0.0.1 (::1 for
IPv6), or by sending IP datagrams to one of a host’s own IP addresses. Loopback
data has been completely processed by the transport layer and by IP when it loops
around to go up the protocol stack. We described an important feature of many
link layers, the MTU, and the related concept of a path MTU.

We also discussed the use of tunneling, which involves carrying lower-layer
protocols in higher-layer (or equal-layer) packets. This technique allows for the
formation of overlay networks, using tunnels over the Internet as links in another
level of network infrastructure. This technique has become very popular, both for
experimentation with new capabilities (e.g., running an IPv6 network overlay on
an IPv4 internet) and for operational use (e.g., with VPNs).

We concluded the chapter with a brief discussion of the types of attacks
involving the link layer—as either target or tool. Many attacks simply involve
intercepting traffic for analysis (e.g., looking for passwords), but more sophisti-
cated attacks involve masquerading as endpoints or modifying traffic in transit.
Other attacks involve compromising control information such as tunnel endpoints
or the STP to direct traffic to otherwise unintended locations. Access to the link
layer also provides an attacker with a general way to perform DoS attacks. Perhaps
the best-known variant of this is jamming communication signals, an endeavor
undertaken by certain parties since nearly the advent of radio.

This chapter has covered only some of the common link technologies used
with TCP/IP today. One reason for the success of TCP/IP is its ability to work on
top of almost any link technology. In essence, IP requires only that there exists
some path between sender and receiver(s) across a cascade of intermediate links.
Although this is a relatively modest requirement, some research is aimed at
stretching this even farther—to cases where there may never be an end-to-end
path between sender and receiver(s) at any single point in time [RFC4838].

3.12 References

[802.11-2007] “IEEE Standard for Local and Metropolitan Area Networks, Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations,” June 2007.

[802.11n-2009] “IEEE Standard for Local and Metropolitan Area Networks, Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 5: Enhancements for Higher Throughput,” Oct. 2009.

[802.11y-2008] “IEEE Standard for Local and Metropolitan Area Networks, Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 3: 3650-3700 MHz Operation in USA,” Nov. 2009.

[802.16-2009] “IEEE Standard for Local and Metropolitan Area Networks, Part 16:
Air Interface for Fixed Broadband Wireless Access Systems,” May 2009.

ptg999

158 Link Layer

[802.16h-2010] “IEEE Standard for Local and Metropolitan Area Networks, Part
16: Air Interface for Fixed Broadband Wireless Access Systems Amendment 2:
Improved Coexistence Mechanisms for License-Exempt Operation,” July 2010.

[802.16j-2009] “IEEE Standard for Local and Metropolitan Area Networks, Part
16: Air Interface for Fixed Broadband Wireless Access Systems Amendment 1:
Multihop Relay Specification,” June 2009.

[802.16k-2007] “IEEE Standard for Local and Metropolitan Area Networks, Part
16: Air Interface for Fixed Broadband Wireless Access Systems Amendment 5:
Bridging of IEEE 802.16,” Aug. 2010.

[802.1AK-2007] “IEEE Standard for Local and Metropolitan Area Networks,
Virtual Bridged Local Area Networks Amendment 7: Multiple Registration
Protocol,” June 2007.

[802.1AE-2006] “IEEE Standard for Local and Metropolitan Area Networks
Media Access Control (MAC) Security,” Aug. 2006.

[802.1ak-2007] “IEEE Standard for Local and Metropolitan Area Networks—
Virtual Bridged Local Area Networks—Amendment 7: Multiple Registration
Protocol,” June 2007.

[802.1AX-2008] “IEEE Standard for Local and Metropolitan Area Networks—
Link Aggregation,” Nov. 2008.

[802.1D-2004] “IEEE Standard for Local and Metropolitan Area Networks Media
Access Control (MAC) Bridges,” June 2004.

[802.1Q-2005] IEEE Standard for Local and Metropolitan Area Networks Virtual
Bridged Local Area Networks,” May 2006.

[802.1X-2010] “IEEE Standard for Local and Metropolitan Area Networks Port-
Based Network Access Control,” Feb. 2010.

[802.2-1998] “IEEE Standard for Local and Metropolitan Area Networks Logical
Link Control” (also ISO/IEC 8802-2:1998), May 1998.

[802.21-2008] “IEEE Standard for Local and Metropolitan Area Networks, Part 21:
Media Independent Handover Services,” Jan. 2009.

[802.3-2008] “IEEE Standard for Local and Metropolitan Area Networks, Part
3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications,” Dec. 2008.

[802.3at-2009] “IEEE Standard for Local and Metropolitan Area Networks—Spe-
cific Requirements, Part 3: Carrier Sense Multiple Access with Collision Detec-
tion (CSMA/CD) Access Method and Physical Layer Specifications Amendment
3: Date Terminal Equipment (DTE) Power via the Media Dependent Interface
(MDI) Enhancements,” Oct. 2009.

ptg999

 Section 3.12 References 159

[802.3ba-2010] “IEEE Standard for Local and Metropolitan Area Networks, Part
3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications, Amendment 4: Media Access Con-
trol Parameters, Physical Layers, and Management Parameters for 40Gb/s and
100Gb/s Operation,” June 2010.

[802.11n-2009] “IEEE Standard for Local and Metropolitan Area Networks, Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, Amendment 5: Enhancements for Higher Throughput,” Oct. 2009.

[AES01] U.S. National Institute of Standards and Technology, FIPS PUB 197,
“Advanced Encryption Standard,” Nov. 2001.

[BHL06] A. Bittau, M. Handley, and J. Lackey, “The Final Nail in WEP’s Coffin,”
Proc. IEEE Symposium on Security and Privacy, May 2006.

[BOND] http://bonding.sourceforge.net

[ETHERTYPES] http://www.iana.org/assignments/ethernet-numbers

[ETX] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-Throughput Path
Metric for Multi-Hop Wireless Routing,” Proc. Mobicom, Sep. 2003.

[G704] ITU, “General Aspects of Digital Transmission Systems: Synchronous
Frame Structures Used at 1544, 6312, 2048k, 8488, and 44736 kbit/s Hierarchical
Levels,” ITU-T Recommendation G.704, July 1995.

[IANA-CHARSET] “Character Sets,” http://www.iana.org/assignments/
character-sets

[ISO3309] International Organization for Standardization, “Information Process-
ing Systems—Data Communication High-Level Data Link Control Procedure—
Frame Structure,” IS 3309, 1984.

[ISO4335] International Organization for Standardization, “Information Process-
ing Systems—Data Communication High-Level Data Link Control Procedure—
Elements of Procedure,” IS 4335, 1987.

[JF] M. Mathis, “Raising the Internet MTU,” http://www.psc.edu/~mathis/MTU

[MWLD] “Long Distance Links with MadWiFi,” http://madwifi-project.org/
wiki/UserDocs/LongDistance

[PPPn] http://www.iana.org/assignments/ppp-numbers

[RFC0894] C. Hornig, “A Standard for the Transmission of IP Datagrams over
Ethernet Networks,” Internet RFC 0894/STD 0041, Apr. 1984.

[RFC1042] J. Postel and J. Reynolds, “Standard for the Transmission of IP Data-
grams over IEEE 802 Networks,” Internet RFC 1042/STD 0043, Feb. 1988.

http://bonding.sourceforge.net
http://www.iana.org/assignments/ethernet-numbers
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
http://www.psc.edu/~mathis/MTU
http://madwifi-project.org/wiki/UserDocs/LongDistance
http://madwifi-project.org/wiki/UserDocs/LongDistance
http://www.iana.org/assignments/ppp-numbers

ptg999

160 Link Layer

[RFC1144] V. Jacobson, “Compressing TCP/IP Headers for Low-Speed Serial
Links,” Internet RFC 1144, Feb. 1990.

[RFC1191] J. Mogul and S. Deering, “Path MTU Discovery,” Internet RFC 1191,
Nov. 1990.

[RFC1332] G. McGregor, “The PPP Internet Protocol Control Protocol,” Internet
RFC 1332, May 1992.

[RFC1570] W. Simpson, ed., “PPP LCP Extensions,” Internet RFC 1570, Jan. 1994.

[RFC1661] W. Simpson, “The Point-to-Point Protocol (PPP),” Internet RFC 1661/
STD 0051, July 1994.

[RFC1662] W. Simpson, ed., “PPP in HDLC-like Framing,” Internet RFC 1662/
STD 0051, July 1994.

[RFC1663] D. Rand, “PPP Reliable Transmission,” Internet RFC 1663, July 1994.

[RFC1853] W. Simpson, “IP in IP Tunneling,” Internet RFC 1853 (informational),
Oct. 1995.

[RFC1962] D. Rand, “The PPP Compression Protocol (CCP),” Internet RFC 1962,
June 1996.

[RFC1977] V. Schryver, “PPP BSD Compression Protocol,” Internet RFC 1977
(informational), Aug. 1996.

[RFC1981] J. McCann and S. Deering, “Path MTU Discovery for IP Version 6,”
Internet RFC 1981, Aug. 1996.

[RFC1989] W. Simpson, “PPP Link Quality Monitoring,” Internet RFC 1989, Aug.
1996.

[RFC1990] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti, “The PPP
Multilink Protocol (MP),” Internet RFC 1990, Aug. 1996.

[RFC1994] W. Simpson, “PPP Challenge Handshake Authentication Protocol
(CHAP),” Internet RFC 1994, Aug. 1996.

[RFC2118] G. Pall, “Microsoft Point-to-Point (MPPC) Protocol,” Internet RFC 2118
(informational), Mar. 1997.

[RFC2125] C. Richards and K. Smith, “The PPP Bandwidth Allocation Protocol
(BAP)/The PPP Bandwidth Allocation Control Protocol (BACP),” Internet RFC
2125, Mar. 1997.

[RFC2153] W. Simpson, “PPP Vendor Extensions,” Internet RFC 2153 (informa-
tional), May 1997.

[RFC2290] J. Solomon and S. Glass, “Mobile-IPv4 Configuration Option for PPP
IPCP,” Internet RFC 2290, Feb. 1998.

ptg999

 Section 3.12 References 161

[RFC2464] M. Crawford, “Transmission of IPv6 Packets over Ethernet Networks,”
Internet RFC 2464, Dec. 1988.

[RFC2473] A. Conta and S. Deering, “Generic Packet Tuneling in IPv6 Specifica-
tion,” Internet RFC 2473, Dec. 1998.

[RFC2484] G. Zorn, “PPP LCP Internationalization Configuration Option,”
Internet RFC 2484, Jan. 1999.

[RFC2507] M. Degermark, B. Nordgren, and S. Pink, “IP Header Compression,”
Internet RFC 2507, Feb. 1999.

[RFC2615] A. Malis and W. Simpson, “PPP over SONET/SDH,” Internet RFC
2615, June 1999.

[RFC2637] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn,
“Point-to-Point Tunneling Protocol (PPTP),” Internet RFC 2637 (informational),
July 1999.

[RFC2759] G. Zorn, “Microsoft PPP CHAP Extensions, Version 2,” Internet RFC
2759 (informational), Jan. 2000.

[RFC2784] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic Routing
Encapsulation (GRE),” Internet RFC 2784, Mar. 2000.

[RFC2865] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote Authenti-
cation Dial In User Service (RADIUS),” Internet RFC 2865, June 2000.

[RFC2890] G. Dommety, “Key and Sequence Number Extensions to GRE,” Inter-
net RFC 2890, Sept. 2000.

[RFC3056] B. Carpenter and K. Moore, “Connection of IPv6 Domains via IPv4
Clouds,” Internet RFC 3056, Feb. 2001.

[RFC3077] E. Duros, W. Dabbous, H. Izumiyama, N. Fujii, and Y. Zhang, “A Link-
Layer Tunneling Mechanism for Unidirectional Links,” Internet RFC 3077, Mar.
2001.

[RFC3078] G. Pall and G. Zorn, “Microsoft Point-to-Point Encryption (MPPE)
Protocol,” Internet RFC 3078 (informational), Mar. 2001.

[RFC3153] R. Pazhyannur, I. Ali, and C. Fox, “PPP Multiplexing,” Internet RFC
3153, Aug. 2001.

[RFC3366] G. Fairhurst and L. Wood, “Advice to Link Designers on Link Auto-
matic Repeat reQuest (ARQ),” Internet RFC 3366/BCP 0062, Aug. 2002.

[RFC3449] H. Balakrishnan, V. Padmanabhan, G. Fairhurst, and M. Sooriyaban-
dara, “TCP Performance Implications of Network Path Asymmetry,” Internet
RFC 3449/BCP 0069, Dec. 2002.

ptg999

162 Link Layer

[RFC3544] T. Koren, S. Casner, and C. Bormann, “IP Header Compression over
PPP,” Internet RFC 3544, July 2003.

[RFC3561] C. Perkins, E. Belding-Royer, and S. Das, “Ad Hoc On-Demand Dis-
tance Vector (AODV) Routing,” Internet RFC 3561 (experimental), July 2003.

[RFC3610] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-MAC
(CCM),” Internet RFC 3610 (informational), Sept. 2003.

[RFC3626] T. Clausen and P. Jacquet, eds., “Optimized Link State Routing Proto-
col (OLSR),” Internet RFC 3626 (experimental), Oct. 2003.

[RFC3748] B. Aboba et al., “Extensible Authentication Protocol (EAP),” Internet
RFC 3748, June 2004.

[RFC3931] J. Lau, M. Townsley, and I. Goyret, eds., “Layer Two Tunneling Proto-
col—Version 3 (L2TPv3),” Internet RFC 3931, Mar. 2005.

[RFC4017] D. Stanley, J. Walker, and B. Aboba, “Extensible Authentication Proto-
col (EAP) Method Requirements for Wireless LANs,” Internet RFC 4017 (infor-
mational), Mar. 2005.

[RFC4380] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs),” Internet RFC 4380, Feb. 2006.

[RFC4647] A. Phillips and M. Davis, “Matching of Language Tags,” Internet RFC
4647/BCP 0047, Sept. 2006.

[RFC4821] M. Mathis and J. Heffner, “Packetization Layer Path MTU Discovery,”
Internet RFC 4821, Mar. 2007.

[RFC4838] V. Cerf et al., “Delay-Tolerant Networking Architecture,” Internet RFC
4838 (informational), Apr. 2007.

[RFC4840] B. Aboba, ed., E. Davies, and D. Thaler, “Multiple Encapsulation Meth-
ods Considered Harmful,” Internet RFC 4840 (informational), Apr. 2007.

[RFC5072] S. Varada, ed., D. Haskins, and E. Allen, “IP Version 6 over PPP,” Inter-
net RFC 5072, Sept. 2007.

[RFC5225] G. Pelletier and K. Sandlund, “RObust Header Compression Version 2
(ROHCv2): Profiles for RTP, UDP, IP, ESP, and UDP-Lite,” Internet RFC 5225, Apr.
2008.

[RFC5646] A. Phillips and M. Davis, eds., “Tags for Identifying Languages,”
Internet RFC 5646/BCP 0047, Sept. 2009.

[S08] D. Skordoulis et al., “IEEE 802.11n MAC Frame Aggregation Mechanisms
for Next-Generation High-Throughput WLANs,” IEEE Wireless Communications,
Feb. 2008.

[S96] B. Schneier, Applied Cryptography, Second Edition (John Wiley & Sons, 1996).

ptg999

 Section 3.12 References 163

[SAE] D. Harkins, “Simultaneous Authentication of Equals: A Secure, Password-
Based Key Exchange for Mesh Networks,” Proc. SENSORCOMM, Aug. 2008.

[SC05] S. Shalunov and R. Carlson, “Detecting Duplex Mismatch on Ethernet,”
Proc. Passive and Active Measurement Workshop, Mar. 2005.

[SHK07] C. Sengul, A. Harris, and R. Kravets, “Reconsidering Power Manage-
ment,” Invited Paper, Proc. IEEE Broadnets, 2007.

[WOL] http://wake-on-lan.sourceforge.net

http://wake-on-lan.sourceforge.net

ptg999

This page intentionally left blank

ptg999

165

4

ARP: Address Resolution
Protocol

4.1 Introduction

We have seen that the IP protocol is designed to provide interoperability of packet
switching across a large variety of physical network types. Doing so requires,
among other things, converting between the addresses used by the network-layer
software and those interpreted by the underlying network hardware. Generally,
network interface hardware has one primary hardware address (e.g., a 48-bit value
for an Ethernet or 802.11 wireless interface). Frames exchanged by the hardware
must be addressed to the correct interface using the correct hardware addresses;
otherwise, no data can be transferred. But a conventional IPv4 network works
with its own addresses: 32-bit IPv4 addresses. Knowing a host’s IP address is
insufficient for the system to send a frame to that host efficiently on networks
where hardware addresses are used. The operating system software (i.e., the Eth-
ernet driver) must know the destination’s hardware address to send data directly.
For TCP/IP networks, the Address Resolution Protocol (ARP) [RFC0826] provides a
dynamic mapping between IPv4 addresses and the hardware addresses used by
various network technologies. ARP is used with IPv4 only; IPv6 uses the Neigh-
bor Discovery Protocol, which is incorporated into ICMPv6 (see Chapter 8).

It is important to note here that the network-layer and link-layer addresses
are assigned by different authorities. For network hardware, the primary address
is defined by the manufacturer of the device and is stored in permanent mem-
ory within the device, so it does not change. Thus, any protocol suite designed to
operate with that particular hardware technology must make use of its particular
types of addresses. This allows network-layer protocols of different protocol suites
to operate at the same time. On the other hand, the IP address assigned to a network
interface is installed by the user or network administrator and selected by that
person to meet his or her needs. The IP addresses assigned to a portable device

ptg999

166 ARP: Address Resolution Protocol

may, for example, be changed when it is moved. IP addresses are typically derived
from a pool of addresses maintained near the network attachment point and are
installed when systems are turned on or configured (see Chapter 6). When an Eth-
ernet frame containing an IP datagram is sent from one host on a LAN to another,
it is the 48-bit Ethernet address that determines to which interface(s) the frame is
destined.

Address resolution is the process of discovering the mapping from one address
to another. For the TCP/IP protocol suite using IPv4, this is accomplished by run-
ning the ARP. ARP is a generic protocol, in the sense that it is designed to sup-
port mapping between a wide variety of address types. In practice, however, it
is almost always used to map between 32-bit IPv4 addresses and Ethernet-style
48-bit MAC addresses. This case, the one specified in [RFC0826], is also the one of
interest to us. For this chapter, we shall use the terms Ethernet address and MAC
address interchangeably.

ARP provides a dynamic mapping from a network-layer address to a corre-
sponding hardware address. We use the term dynamic because it happens auto-
matically and adapts to changes over time without requiring reconfiguration
by a system administrator. That is, if a host were to have its network interface
card changed, thereby changing its hardware address (but retaining its assigned
IP address), ARP would continue to operate properly after some delay. ARP
operation is normally not a concern of either the application user or the system
administrator.

Note

A related protocol that provides the reverse mapping from ARP, called RARP, was
used by systems lacking a disk drive (normally diskless workstations or X termi-
nals). It is rarely used today and requires manual configuration by the system
administrator. See [RFC0903] for details.

4.2 An Example

Whenever we use Internet services, such as opening a Web page with a browser,
our local computer must determine how to contact the server in which we are
interested. The most basic decision it makes is whether that service is local (part
of the same IP subnetwork) or remote. If it is remote, a router is required to reach
the destination. ARP operates only when reaching those systems on the same IP
subnet. For this example, then, let us assume that we use a Web browser to contact
the following URL:

http://10.0.0.1

Note that this URL contains an IPv4 address rather than the more common
domain or host name. The reason for using the address here is to underscore the

ptg999

Section 4.2 An Example 167

fact that our demonstration of ARP is most relevant to systems sharing the same
IPv4 prefix (see Chapter 2). Here, we use a URL containing an address identifying
a local Web server and explore how direct delivery operates. Such local servers are
becoming more common as embedded devices such as printers and VoIP adapters
include built-in Web servers for configuration.

4.2.1 Direct Delivery and ARP

In this section, we enumerate the steps taken in direct delivery, focusing on the
operation of ARP. Direct delivery takes place when an IP datagram is sent to an
IP address with the same IP prefix as the sender’s. It plays an important role in
the general method of forwarding of IP datagrams (see Chapter 5). The following
list captures the basic operation of direct delivery with IPv4, using the previous
example:

1. The application, in this case a Web browser, calls a special function to parse
the URL to see if it contains a host name. Here it does not, so the application
uses the 32-bit IPv4 address 10.0.0.1.

2. The application asks the TCP protocol to establish a connection with 10.0.0.1.

3. TCP attempts to send a connection request segment to the remote host by
sending an IPv4 datagram to 10.0.0.1. (We shall see the details of how this is
done in Chapter 15.)

4. Because we are assuming that the address 10.0.0.1 is using the same net-
work prefix as our sending host, the datagram can be sent directly to that
address without going through a router.

5. Assuming that Ethernet-compatible addressing is being used on the IPv4
subnet, the sending host must convert the 32-bit IPv4 destination address
into a 48-bit Ethernet-style address. Using the terminology from [RFC0826],
a translation is required from the logical Internet address to its correspond-
ing physical hardware address. This is the function of ARP. ARP works in
its normal form only for broadcast networks, where the link layer is able to
deliver a single message to all attached network devices. This is an impor-
tant requirement imposed by the operation of ARP. On non-broadcast net-
works (sometimes called NBMA for non-broadcast multiple access), other,
more complex mapping protocols may be required [RFC2332].

6. ARP sends an Ethernet frame called an ARP request to every host on the
shared link-layer segment. This is called a link-layer broadcast. We show the
broadcast domain in Figure 4-1 with a crosshatched box. The ARP request
contains the IPv4 address of the destination host (10.0.0.1) and seeks an
answer to the following question: “If you are configured with IPv4 address
10.0.0.1 as one of your own, please respond to me with your MAC address.”

ptg999

168 ARP: Address Resolution Protocol

7. With ARP, all systems in the same broadcast domain receive ARP requests.
This includes systems that may not be running the IPv4 or IPv6 protocols at
all but does not include systems on different VLANs, if they are supported
(see Chapter 3 for details on VLANs). Provided there exists an attached sys-
tem using the IPv4 address specified in the request, it alone responds with
an ARP reply. This reply contains the IPv4 address (for matching with the
request) and the corresponding MAC address. The reply does not ordinar-
ily use broadcast but is directed only to the sender. The host receiving the
ARP request also learns of the sender’s IPv4-to-MAC address mapping at
this time and records it in memory for later use (see Section 4.3).

8. The ARP reply is then received by the original sender of the request, and
the datagram that forced the ARP request/reply to be exchanged can now
be sent.

Figure 4-1 Ethernet hosts in the same broadcast domain. ARP queries are sent using link-layer
broadcast frames that are received by all hosts. The single host with the assigned
address responds directly to the requesting host. Non-IP hosts must actively discard
ARP queries.

ptg999

Section 4.3 ARP Cache 169

9. The sender now sends the datagram directly to the destination host by
encapsulating it in an Ethernet frame and using the Ethernet address
learned by the ARP exchange as the destination Ethernet address. Because
the Ethernet address refers only to the correct destination host, no other
hosts or routers receive the datagram. Thus, when only direct delivery is
used, no router is required.

ARP is used in multi-access link-layer networks running IPv4, where each
host has its own primary hardware address. Point-to-point links such as PPP (see
Chapter 3) do not use ARP. When these links are established (normally by action
of the user or a system boot), the system is told of the addresses in use at each
end of the link. Because hardware addresses are not involved, there is no need for
address resolution or ARP.

4.3 ARP Cache

Essential to the efficient operation of ARP is the maintenance of an ARP cache
(or table) on each host and router. This cache maintains the recent mappings
from network-layer addresses to hardware addresses for each interface that uses
address resolution. When IPv4 addresses are mapped to hardware addresses, the
normal expiration time of an entry in the cache is 20 minutes from the time the
entry was created, as described in [RFC1122].

We can examine the ARP cache with the arp command on Linux or in Win-
dows. The -a option displays all entries in the cache for either system. Running
arp on Linux yields the following type of output:

Linux% arp
Address HWtype HWaddress Flags Mask Iface
gw.home ether 00:0D:66:4F:60:00 C eth1
printer.home ether 00:0A:95:87:38:6A C eth1

Linux% arp -a
printer.home (10.0.0.4) at 00:0A:95:87:38:6A [ether] on eth1
gw.home (10.0.0.1) at 00:0D:66:4F:60:00 [ether] on eth1

Running arp on Windows provides output similar to the following:

c:\> arp -a

Interface: 10.0.0.56 --- 0x2
 Internet Address Physical Address Type
 10.0.0.1 00-0d-66-4f-60-00 dynamic
 10.0.0.4 00-0a-95-87-38-6a dynamic

Here we see the IPv4-to-hardware addressing cache. In the first (Linux) case,
each mapping is given by a five-element entry: the host name (corresponding to

ptg999

170 ARP: Address Resolution Protocol

an IP address), hardware address type, hardware address, flags, and local net-
work interface for which this mapping is active. The Flags column contains a
symbol: C, M, or P. C-type entries have been learned dynamically by the ARP pro-
tocol. M-type entries are entered by hand (by arp -s; see Section 4.9), and P-type
entries mean “publish.” That is, for any P entry, the host responds to incoming
ARP requests with an ARP response. This option is used for configuring proxy
ARP (see Section 4.7). The second Linux example displays similar information
using the “BSD style.” Here, both the host’s name and address are given, along
with the address type (here, [ether] indicates an Ethernet type of address) and
on which interface the mappings are active.

The Windows arp program displays the IPv4 address of the interface, and its
interface number in hexadecimal (0x2 here). The Windows version also indicates
whether the address was entered by hand or learned by ARP. In this example, both
entries are dynamic, meaning they were learned by ARP (they would say static
if entered by hand). Note that the 48-bit MAC addresses are displayed as six hexa-
decimal numbers separated by colons in Linux and dashes in Windows. Tradi-
tionally, UNIX systems have always used colons, whereas the IEEE standards and
other operating systems tend to use dashes. We discuss additional features and
other options of the arp command in Section 4.9.

4.4 ARP Frame Format

Figure 4-2 shows the common format of an ARP request and reply packet, when
used on an Ethernet network to resolve an IPv4 address. (As mentioned previ-
ously, ARP is general enough to be used with addresses other than IPv4 addresses,
although this is very rare.) The first 14 bytes constitute the standard Ethernet
header, assuming no 802.1p/q or other tags, and the remaining portion is defined
by the ARP protocol. The first 8 bytes of the ARP frame are generic, and the remain-
ing portion in this example applies specifically when mapping IPv4 addresses to
48-bit Ethernet-style addresses.

Figure 4-2 ARP frame format as used when mapping IPv4 addresses to 48-bit MAC (Ethernet) addresses

ptg999

Section 4.5 ARP Examples 171

In the Ethernet header of the ARP frame shown in Figure 4-2, the first two
fields contain the destination and source Ethernet addresses. For ARP requests, the
special Ethernet destination address of ff:ff:ff:ff:ff:ff (all 1 bits) means the broad-
cast address—all Ethernet interfaces in the same broadcast domain receive these
frames. The 2-byte Ethernet frame Length or Type field is required to be 0x0806 for
ARP (requests or replies).

The first four fields following the Length/Type field specify the types and sizes
of the final four fields. The values are maintained by the IANA [RFC5494]. The
adjectives hardware and protocol are used to describe the fields in the ARP packets.
For example, an ARP request asks for the hardware address (an Ethernet address
in this case) corresponding to a protocol address (an IPv4 address in this case).
These adjectives are rarely used outside the ARP context. Rather, the more com-
mon terminology for the hardware address is MAC, physical, or link-layer address
(or Ethernet address when the network in use is based on the IEEE 802.3/Ether-
net series of specifications). The Hard Type field specifies the type of hardware
address. Its value is 1 for Ethernet. The Prot Type field specifies the type of protocol
address being mapped. Its value is 0x0800 for IPv4 addresses. This is purposely
the same value as the Type field of an Ethernet frame containing an IPv4 datagram.
The next two 1-byte fields, Hard Size and Prot Size, specify the sizes, in bytes, of the
hardware addresses and the protocol addresses. For an ARP request or reply for
an IPv4 address on an Ethernet they are 6 and 4, respectively. The Op field speci-
fies whether the operation is an ARP request (a value of 1), ARP reply (2), RARP
request (3), or RARP reply (4). This field is required because the Length/Type field
is the same for an ARP request and an ARP reply.

The next four fields that follow are the Sender’s Hardware Address (an Ethernet
MAC address in this example), the Sender’s Protocol Address (an IPv4 address), the
Target Hardware (MAC/Ethernet) Address, and the Target Protocol (IPv4) Address.
Notice that there is some duplication of information: the sender’s hardware
address is available both in the Ethernet header and in the ARP message. For an
ARP request, all the fields are filled in except the Target Hardware Address (which is
set to 0). When a system receives an ARP request directed to it, it fills in its hard-
ware address, swaps the two sender addresses with the two target addresses, sets
the Op field to 2, and sends the reply.

4.5 ARP Examples

In this section we will use the tcpdump command to see what really happens
with ARP when we execute normal TCP/IP utilities such as Telnet. Telnet is a
simple application that can establish a TCP/IP connection between two systems.

4.5.1 Normal Example

To see the operation of ARP, we will execute the telnet command, connecting to
a Web server on host 10.0.0.3 using TCP port 80 (called www).

ptg999

172 ARP: Address Resolution Protocol

C:\> arp -a Verify that the ARP cache is empty
No ARP Entries Found
C:\> telnet 10.0.0.3 www Connect to the Web server [port 80]
Connecting to 10.0.0.3...
Escape character is ’^]’.

Type Control + right bracket to get the Telnet client prompt.

Welcome to Microsoft Telnet Client
Escape Character is 'CTRL+]'
Microsoft Telnet> quit

The quit directive exits the program.
While this is happening, we run the tcpdump command on another system

that can observe the traffic exchanged. We use the -e option, which displays the
MAC addresses (which in our examples are 48-bit Ethernet addresses).

The following listing contains the output from tcpdump. We have deleted
the final four lines of the output that correspond to the termination of the connec-
tion (we cover such details in Chapter 13); they are not relevant to the discussion
here. Note that different versions of tcpdump on different systems may provide
slightly different output details.

 Linux# tcpdump -e
 1 0.0 0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
 arp who-has 10.0.0.3 tell 10.0.0.56
 2 0.002174 (0.0022)0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 arp 60:
 arp reply 10.0.0.3 is-at 0:0:c0:c2:9b:26

 3 0.002831 (0.0007)0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
 10.0.0.56.1030 > 10.0.0.3.www: S 596459521:596459521(0)
 win 4096 <mss 1024> [tos 0x10]
 4 0.007834 (0.0050)0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 ip 60:
 10.0.0.3.www > 10.0.0.56.1030: S 3562228225:3562228225(0)
 ack 596459522 win 4096 <mss 1024>
 5 0.009615 (0.0018)0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
 10.0.0.56.1030 > 10.0.0.3.discard: . ack 1 win 4096 [tos 0x10]

In packet 1 the hardware address of the source is 0:0:c0:6f:2d:40. The des-
tination hardware address is ff:ff:ff:ff:ff:ff, which is the Ethernet broadcast
address. All Ethernet interfaces in the same broadcast domain (all those on the
same LAN or VLAN, whether or not they are running TCP/IP) receive the frame
and process it, as shown in Figure 4-1. The next output field in packet 1, arp,
means that the Frame Type field is 0x0806, specifying either an ARP request or an
ARP reply. The value 60 printed after the words arp and ip in each of the five
packets is the length of the Ethernet frame. The size of an ARP request or ARP
reply is always 42 bytes (28 bytes for the ARP message, 14 bytes for the Ethernet
header). Each frame has been padded to the Ethernet minimum: 60 bytes of data
plus a 4-byte CRC (see Chapter 3).

ptg999

Section 4.5 ARP Examples 173

The next part of packet 1, arp who-has, identifies the frame as an ARP request
with the IPv4 address of 10.0.0.3 as the target address and the IPv4 address of
10.0.0.56 as the sender’s address. tcpdump prints the host names corresponding
to the IP addresses by default, but here they are not displayed (because no reverse
DNS mappings for them are set up; Chapter 11 explains details of DNS). We will
use the -n option later to see the IP addresses in the ARP request, whether or not
DNS mappings are available.

From packet 2 we see that while the ARP request is broadcast, the destination
address of the ARP reply is the (unicast) MAC address 0:0:c0:6f:2d:40. The
ARP reply is thus sent directly to the requesting host; it is not ordinarily broad-
cast (see Section 4.8 for some cases where this rule is altered). tcpdump prints
the ARP reply for this frame, along with the IPv4 address and hardware address
of the responder. Line 3 is the first TCP segment requesting that a connection be
established. Its destination hardware address is the destination host (10.0.0.3).
We shall cover the details of this segment in Chapter 13.

For each packet, the number printed after the packet number is the relative
time (in seconds) when the packet was received by tcpdump. Each packet other
than the first also contains the time difference (in seconds) from the previous time,
in parentheses. We can see in the output that the time between sending the ARP
request and receiving the ARP reply is about 2.2ms. The first TCP segment is sent
0.7ms after this. The overhead involved in using ARP for dynamic address resolu-
tion in this example is less than 3ms. Note that if the ARP entry for host 10.0.0.3
was valid in the ARP cache at 10.0.0.56, the initial ARP exchange would not have
occurred, and the initial TCP segment could have been sent immediately using the
destination’s Ethernet address.

A subtle point about the tcpdump output is that we do not see an ARP request
from 10.0.0.3 before it sends its first TCP segment to 10.0.0.56 (line 4). While it
is possible that 10.0.0.3 already has an entry for 10.0.0.56 in its ARP cache, nor-
mally when a system receives an ARP request addressed to it, in addition to send-
ing the ARP reply, it also saves the requestor’s hardware address and IPv4 address
in its own ARP cache. This is an optimization based on the logical assumption that
if the requestor is about to send it a datagram, the receiver of the datagram will
probably send a reply.

4.5.2 ARP Request to a Nonexistent Host

What happens if the host specified in an ARP request is down or nonexistent? To
see this, we attempt to access a nonexistent local IPv4 address—the prefix corre-
sponds to that of the local subnet, but there is no host with the specified address.
We will use the IPv4 address 10.0.0.99 in this example.

Linux% date ; telnet 10.0.0.99 ; date
Fri Jan 29 14:46:33 PST 2010
Trying 10.0.0.99...
telnet: connect to address 10.0.0.99: No route to host

ptg999

174 ARP: Address Resolution Protocol

Fri Jan 29 14:46:36 PST 2010 3s after previous date

Linux% arp -a
? (10.0.0.99) at <incomplete> on eth0

Here is the output from tcpdump:

Linux# tcpdump –n arp
1 21:12:07.440845 arp who-has 10.0.0.99 tell 10.0.0.56
2 21:12:08.436842 arp who-has 10.0.0.99 tell 10.0.0.56
3 21:12:09.436836 arp who-has 10.0.0.99 tell 10.0.0.56

This time we did not specify the -e option because we already know that
the ARP requests are sent using broadcast addressing. The frequency of the ARP
request is very close to one per second, the maximum suggested by [RFC1122].
Testing on a Windows system (not illustrated) reveals a different behavior. Rather
than three requests spaced 1s apart, the spacing varies based on the application
and the other protocols being used. For ICMP and UDP (see Chapters 8 and 10,
respectively), a spacing of approximately 5s is used, whereas for TCP 10s is used.
For TCP, the 10s interval allows two ARP requests to be sent without responses
before TCP gives up trying to establish a connection.

4.6 ARP Cache Timeout

A timeout is normally associated with each entry in the ARP cache. (Later we
shall see that the arp command enables the administrator to place an entry into
the cache that will never time out.) Most implementations have a timeout of 20
minutes for a completed entry and 3 minutes for an incomplete entry. (We saw an
incomplete entry in our previous example where we forced an ARP to a nonexis-
tent host.) These implementations normally restart the 20-minute timeout for an
entry each time the entry is used. [RFC1122], the Host Requirements RFC, says
that this timeout should occur even if the entry is in use, but many implementa-
tions do not do this—they restart the timeout each time the entry is referenced.

Note that this is one of our first examples of soft state. Soft state is information
that is discarded if not refreshed before some timeout is reached. Many Internet
protocols use soft state because it helps to initiate automatic reconfiguration if net-
work conditions change. The cost of soft state is that some protocol must refresh the
state to avoid expiration. “Soft state refreshes” are often incorporated in a protocol
design to keep the soft state active.

4.7 Proxy ARP

Proxy ARP [RFC1027] lets a system (generally a specially configured router)
answer ARP requests for a different host. This fools the sender of the ARP request

ptg999

Section 4.8 Gratuitous ARP and Address Conflict Detection (ACD) 175

into thinking that the responding system is the destination host, when in fact the
destination host may be elsewhere (or may not exist). Proxy ARP is not commonly
used and is generally to be avoided if possible.

Proxy ARP has also been called promiscuous ARP or the ARP hack. These
names are from a historical use of proxy ARP: to hide two physical networks from
each other. In this case both physical networks can use the same IP prefix as long
as a router in the middle is configured as a proxy ARP agent to respond to ARP
requests on one network for a host on the other network. This technique can be
used to “hide” one group of hosts from another. In the past, there were two com-
mon reasons for doing this: some systems were unable to handle subnetting, and
some used an older broadcast address (a host ID of all 0 bits, instead of the current
standard of a host ID with all 1 bits).

Linux supports a feature called auto-proxy ARP. It can be enabled by writing
the character 1 into the file /proc/sys/net/ipv4/conf/*/proxy_arp, or by
using the sysctl command. This supports the ability of using proxy ARP with-
out having to manually enter ARP entries for every possible IPv4 address that is
being proxied. Doing so allows a range of addresses, instead of each individual
address, to be automatically proxied.

4.8 Gratuitous ARP and Address Conflict Detection (ACD)

Another feature of ARP is called gratuitous ARP. It occurs when a host sends an
ARP request looking for its own address. This is usually done when the interface
is configured “up” at bootstrap time. Here is an example trace taken on a Linux
machine showing our Windows host booting up:

Linux# tcpdump -e -n arp
1 0.0 0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
 arp who-has 10.0.0.56 tell 10.0.0.56

(We specified the -n flag for tcpdump to always print numeric dotted-deci-
mal addresses instead of host names.) In terms of the fields in the ARP request, the
Sender’s Protocol Address and the Target Protocol Address are identical: 10.0.0.56.
Also, the Source Address field in the Ethernet header, 0:0:c0:6f:2d:40 as shown
by tcpdump, equals the sender’s hardware address. Gratuitous ARP achieves two
goals:

1. It lets a host determine if another host is already configured with the same
IPv4 address. The host sending the gratuitous ARP is not expecting a reply
to its request. If a reply is received, however, the error message “Duplicate
IP address sent from Ethernet address . . .” is usually displayed. This is a
warning to the system administrator and user that one of the systems in the
same broadcast domain (e.g., LAN or VLAN) is misconfigured.

ptg999

176 ARP: Address Resolution Protocol

2. If the host sending the gratuitous ARP has just changed its hardware
address (perhaps the host was shut down, the interface card was replaced,
and then the host was rebooted), this frame causes any other host receiving
the broadcast that has an entry in its cache for the old hardware address
to update its ARP cache entry accordingly. As mentioned before, if a host
receives an ARP request from an IPv4 address that is already in the receiv-
er’s cache, that cache entry is updated with the sender’s hardware address
from the ARP request. This is done for any ARP request received by the
host; gratuitous ARP happens to take advantage of this behavior.

Although gratuitous ARP provides some indication that multiple stations may
be attempting to use the same IPv4 address, it really provides no mechanism to
react to the situation (other than by printing a message that is ideally acted upon by
a system administrator). To deal with this issue, [RFC5227] describes IPv4 Address
Conflict Detection (ACD). ACD defines ARP probe and ARP announcement pack-
ets. An ARP probe is an ARP request packet in which the Sender’s Protocol (IPv4)
Address field is set to 0. Probes are used to see if a candidate IPv4 address is being
used by any other systems in the broadcast domain. Setting the Sender’s Protocol
Address field to 0 avoids cache pollution should the candidate IPv4 address already
be in use by another host, a difference from the way gratuitous ARP works. An
ARP announcement is identical to an ARP probe, except both the Sender’s Protocol
Address and the Target Protocol Address fields are filled in with the candidate IPv4
address. It is used to announce the sender’s intention to use the candidate IPv4
address as its own.

To perform ACD, a host sends an ARP probe when an interface is brought up
or out of sleep, or when a new link is established (e.g., when an association with
a new wireless network is made). It first waits a random amount of time (in the
range 0–1s, distributed uniformly) before sending up to three probe packets. The
delay is used to avoid power-on congestion when multiple systems powered on
simultaneously would otherwise attempt to perform ACD at once, leading to a
network traffic spike. The probes are spaced randomly, with between 1 and 2s of
delay (distributed uniformly) placed between.

While sending its probes, a requesting station may receive ARP requests or
replies. A reply to its probe indicates that a different station is already using the
candidate IP address. A request containing the same candidate IPv4 address in the
Target Protocol Address field sent from a different system indicates that the other
system is simultaneously attempting to acquire the candidate IPv4 address. In
either case, the system should indicate an address conflict message and pursue
some alternative address. For example, this is the recommended behavior when
being assigned an address using DHCP (see Chapter 6). [RFC5227] places a limit of
ten conflicts when trying to acquire an address before the requesting host enters a
rate-limiting phase when it is permitted to perform ACD only once every 60s until
successful.

ptg999

 Section 4.9 The arp Command 177

If a requesting host does not discover a conflict according to the procedure
just described, it sends two ARP announcements spaced 2s apart to indicate to sys-
tems in the broadcast domain the IPv4 address it is now using. In the announce-
ments, both the Sender’s Protocol Address and the Target Protocol Address fields are
set to the address being claimed. The purpose of sending these announcements is
to ensure that any preexisting cached address mappings are updated to reflect the
sender’s current use of the address.

ACD is considered to be an ongoing process, and in this way it differs from
gratuitous ARP. Once a host has announced an address it is using, it continues
inspecting incoming ARP traffic (requests and replies) to see if its address appears
in the Sender’s Protocol Address field. If so, some other system believes it is rightfully
using the same address. In this case, [RFC5227] provides three possible resolution
mechanisms: cease using the address, keep the address but send a “defensive”
ARP announcement and cease using it if the conflict continues, or continue to
use the address despite the conflict. The last option is recommended only for sys-
tems that truly require a fixed, stable address (e.g., an embedded device such as a
printer or router).

[RFC5227] also suggests the potential benefit of having some ARP replies be
sent using link-layer broadcast. Although this has not traditionally been the way
ARP works, there can be some benefit in doing so, at the expense of requiring all
stations on the same segment to process all ARP traffic. Broadcast replies allow
ACD to occur more quickly because all stations will notice the reply and invali-
date their caches during a conflict.

4.9 The arp Command

We have used the arp command with the -a flag on Windows and Linux to dis-
play all the entries in the ARP cache (on Linux we get similar information without
using -a). The superuser or administrator can specify the -d option to delete an
entry from the ARP cache. (This was used before running a few of the examples,
to force an ARP exchange to be performed.)

Entries can also be added using the -s option. It requires an IPv4 address (or
host name that can be converted to an IPv4 address using DNS) and an Ethernet
address. The IPv4 address and the Ethernet address are added to the cache as an
entry. This entry is made semipermanent (i.e., it does not time out from the cache,
but it disappears when the system is rebooted).

The Linux version of arp provides a few more features than the Windows
version. When the temp keyword is supplied at the end of the command line
when adding an entry using -s, the entry is considered to be temporary and times
out in the same way that other ARP entries do. The keyword pub at the end of a
command line, also used with the -s option, causes the system to act as an ARP
responder for that entry. The system answers ARP requests for the IPv4 address,
replying with the specified Ethernet address. If the advertised address is one of

ptg999

178 ARP: Address Resolution Protocol

the system’s own, the system is acting as a proxy ARP agent (see Section 4.7) for
the specified IPv4 address. If arp -s is used to enable proxy ARP, Linux responds
for the address specified even if the file /proc/sys/net/ipv4/conf/*/proxy_
arp contains 0.

4.10 Using ARP to Set an Embedded Device’s IPv4 Address

As more embedded devices are made compatible with Ethernet and the TCP/IP
protocols, it is increasingly common to find network-attached devices that have
no direct way to enter their network configuration information (e.g., they have no
keyboard, so entering an IP address for them to use is not possible). These devices
are typically configured in one of two ways. First, DHCP can be used to automati-
cally assign an address and other information (see Chapter 6). Another way is to
use ARP to set an IPv4 address, although this method is less common.

Using ARP to configure an embedded device’s IPv4 address was not the origi-
nal intent of the protocol, so it is not entirely automatic. The basic idea is to manu-
ally establish an ARP mapping for the device (using the arp -s command), then
send an IP packet to the address. Because the ARP entry is already present, no
ARP request/reply is generated. Instead, the hardware address can be used imme-
diately. Of course, the Ethernet (MAC) address of the device must be known. It is
typically printed on the device itself and sometimes doubles as the manufacturer’s
device serial number. When the device receives a packet destined for its hardware
address, whatever destination address is contained in the datagram is used to
assign its initial IPv4 address. After that, the device can be fully configured using
other means (e.g., by an embedded Web server).

4.11 Attacks Involving ARP

There have been a series of attacks involving ARP. The most straightforward is
to use the proxy ARP facility to masquerade as some host, responding to ARP
requests for it. If the victim host is not present, this is straightforward and may not
be detected. It is considerably more difficult if the host is still running, as more
than one response may be generated per ARP request, which is easily detected.

A more subtle attack has been launched against ARP that involves cases where
a machine is attached to more than one network, and ARP entries from one inter-
face “leak” over into the ARP table of the other, because of a bug in the ARP soft-
ware. This can be exploited to improperly direct traffic onto the wrong network
segment. Linux provides a way to affect this behavior directly, by modifying the
file /proc/sys/net/ipv4/conf/*/arp_filter. If the value 1 is written into
this file, then when an incoming ARP request arrives over an interface, an IP for-
warding check is made. The IP address of the requestor is looked up to determine
which interface would be used to send IP datagrams back to it. If the interface

ptg999

 Section 4.13 References 179

used by the arriving ARP request is different from the interface that would be
used to return an IP datagram to the requestor, the ARP response is suppressed
(and the triggering ARP request is dropped).

A somewhat more damaging attack on ARP involves the handling of static
entries. As discussed previously, static entries may be used to avoid the ARP
request/reply when seeking the Ethernet (MAC) address corresponding to a par-
ticular IP address. Such static entries have been used in an attempt to enhance
security. The idea is that static entries placed in the ARP cache for important hosts
would soon detect any hosts masquerading with that IP address. Unfortunately,
most implementations of ARP have traditionally replaced even static cache entries
with entries provided by ARP replies. The consequence of this is that a machine
receiving an ARP reply (even if did not send an ARP request) would be coaxed
into replacing its static entries with those provided by an attacker.

4.12 Summary

ARP is a basic protocol in almost every TCP/IP implementation, but it normally
does its work without the application or user being aware of it. ARP is used to
determine the hardware addresses corresponding to the IPv4 addresses in use on
the locally reachable IPv4 subnet. It is invoked when forwarding datagrams des-
tined for the same subnet as the sending host’s and is also used to reach a router
when the destination of a datagram is not on the subnet (the details of this are
explained in Chapter 5). The ARP cache is fundamental to its operation, and we
have used the arp command to examine and manipulate the cache. Each entry
in the cache has a timer that is used to remove both incomplete and completed
entries. The arp command displays and modifies entries in the ARP cache.

We followed through the normal operation of ARP along with specialized
versions: proxy ARP (when a router answers ARP requests for hosts accessible on
another of the router’s interfaces) and gratuitous ARP (sending an ARP request for
your own IP address, normally when bootstrapping). We also discussed address
conflict detection for IPv4, which uses a continually operating gratuitous ARP-like
exchange to avoid address duplication within the same broadcast domain. Finally,
we discussed a number of attacks that involve ARP. Most of these involve imper-
sonating hosts by fabricating ARP responses for them. This can lead to problems
with higher-layer protocols if they do not implement strong security (see Chapter
18).

4.13 References

[RFC0826] D. Plummer, “Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission on Eth-
ernet Hardware,” Internet RFC 0826/STD 0037, Nov. 1982.

ptg999

180 ARP: Address Resolution Protocol

[RFC0903] R. Finlayson, T. Mann, J. C. Mogul, and M. Theimer, “A Reverse
Address Resolution Protocol,” Internet RFC 0903/STD 0038, June 1984.

[RFC1027] S. Carl-Mitchell and J. S. Quarterman, “Using ARP to Implement
Transparent Subnet Gateways,” Internet RFC 1027, Oct. 1987.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts,” Internet RFC 1122/
STD 0003, Oct. 1989.

[RFC2332] J. Luciani, D. Katz, D. Piscitello, B. Cole, and N. Doraswamy, “NBMA
Next Hop Resolution Protocol (NHRP),” Internet RFC 2332, Apr. 1998.

[RFC5227] S. Cheshire, “IPv4 Address Conflict Detection,” Internet RFC 5227,
July 2008.

[RFC5494] J. Arkko and C. Pignataro, “IANA Allocation Guidelines for the
Address Resolution Protocol (ARP),” Internet RFC 5494, Apr. 2009.

ptg999

181

5

The Internet Protocol (IP)

5.1 Introduction

IP is the workhorse protocol of the TCP/IP protocol suite. All TCP, UDP, ICMP, and
IGMP data gets transmitted as IP datagrams. IP provides a best-effort, connection-
less datagram delivery service. By “best-effort” we mean there are no guarantees
that an IP datagram gets to its destination successfully. Although IP does not sim-
ply drop all traffic unnecessarily, it provides no guarantees as to the fate of the
packets it attempts to deliver. When something goes wrong, such as a router tem-
porarily running out of buffers, IP has a simple error-handling algorithm: throw
away some data (usually the last datagram that arrived). Any required reliability
must be provided by the upper layers (e.g., TCP). IPv4 and IPv6 both use this basic
best-effort delivery model.

The term connectionless means that IP does not maintain any connection state
information about related datagrams within the network elements (i.e., within the
routers); each datagram is handled independently from all other others. This also
means that IP datagrams can be delivered out of order. If a source sends two con-
secutive datagrams (first A, then B) to the same destination, each is routed inde-
pendently and can take different paths, and B may arrive before A. Other things
can happen to IP datagrams as well: they may be duplicated in transit, and they
may have their data altered as the result of errors. Again, some protocol above IP
(usually TCP) has to handle all of these potential problems in order to provide an
error-free delivery abstraction for applications.

In this chapter we take a look at the fields in the IPv4 (see Figure 5-1) and
IPv6 (see Figure 5-2) headers and describe how IP forwarding works. The official
specification for IPv4 is given in [RFC0791]. A series of RFCs describe IPv6, start-
ing with [RFC2460].

ptg999

182 The Internet Protocol (IP)

Figure 5-1 The IPv4 datagram. The header is of variable size, limited to fifteen 32-bit words (60
bytes) by the 4-bit IHL field. A typical IPv4 header contains 20 bytes (no options). The
source and destination addresses are 32 bits long. Most of the second 32-bit word is used
for the IPv4 fragmentation function. A header checksum helps ensure that the fields in
the header are delivered correctly to the proper destination but does not protect the data.

Figure 5-2 The IPv6 header is of fixed size (40 bytes) and contains 128-bit source and destination
addresses. The Next Header field is used to indicate the presence and types of additional
extension headers that follow the IPv6 header, forming a daisy chain of headers that may
include special extensions or processing directives. Application data follows the header
chain, usually immediately following a transport-layer header.

ptg999

Section 5.2 IPv4 and IPv6 Headers 183

5.2 IPv4 and IPv6 Headers

Figure 5-1 shows the format of an IPv4 datagram. The normal size of the IPv4
header is 20 bytes, unless options are present (which is rare). The IPv6 header is
twice as large but never has any options. It may have extension headers, which pro-
vide similar capabilities, as we shall see later. In our pictures of headers and data-
grams, the most significant bit is numbered 0 at the left, and the least significant
bit of a 32-bit value is numbered 31 on the right.

The 4 bytes in a 32-bit value are transmitted in the following order: bits 0–7
first, then bits 8–15, then 16–23, and bits 24–31 last. This is called big endian byte
ordering, which is the byte ordering required for all binary integers in the TCP/IP
headers as they traverse a network. It is also called network byte order. Computer
CPUs that store binary integers in other formats, such as the little endian format
used by most PCs, must convert the header values into network byte order for
transmission and back again for reception.

5.2.1 IP Header Fields

The first field (only 4 bits or one nibble wide) is the Version field. It contains the
version number of the IP datagram: 4 for IPv4 and 6 for IPv6. The headers for both
IPv4 and IPv6 share the location of the Version field but no others. Thus, the two
protocols are not directly interoperable—a host or router must handle either IPv4
or IPv6 (or both, called dual stack) separately. Although other versions of IP have
been proposed and developed, only versions 4 and 6 have any significant amount
of use. The IANA keeps an official registry of these version numbers [IV].

The Internet Header Length (IHL) field is the number of 32-bit words in the IPv4
header, including any options. Because this is also a 4-bit field, the IPv4 header is
limited to a maximum of fifteen 32-bit words or 60 bytes. Later we shall see how
this limitation makes some of the options, such as the Record Route option, nearly
useless today. The normal value of this field (when no options are present) is 5.
There is no such field in IPv6 because the header length is fixed at 40 bytes.

Following the header length, the original specification of IPv4 [RFC0791]
specified a Type of Service (ToS) byte, and IPv6 [RFC2460] specified the equivalent
Traffic Class byte. Use of these never became widespread, so eventually this 8-bit
field was split into two smaller parts and redefined by a set of RFCs ([RFC3260]
[RFC3168][RFC2474] and others). The first 6 bits are now called the Differentiated
Services Field (DS Field), and the last 2 bits are the Explicit Congestion Notification
(ECN) field or indicator bits. These RFCs now apply to both IPv4 and IPv6. These
fields are used for special processing of the datagram when it is forwarded. We
discuss them in more detail in Section 5.2.3.

The Total Length field is the total length of the IPv4 datagram in bytes. Using
this field and the IHL field, we know where the data portion of the datagram
starts, and its length. Because this is a 16-bit field, the maximum size of an IPv4
datagram (including header) is 65,535 bytes. The Total Length field is required in

ptg999

184 The Internet Protocol (IP)

the header because some lower-layer protocols that carry IPv4 datagrams do not
(accurately) convey the size of encapsulated datagrams on their own. Ethernet,
for example, pads small frames to be a minimum length (64 bytes). Even though
the minimum Ethernet payload size is 46 bytes (see Chapter 3), an IPv4 datagram
can be smaller (as few as 20 bytes). If the Total Length field were not provided, the
IPv4 implementation would not know how much of a 46-byte Ethernet frame was
really an IP datagram, as opposed to padding, leading to possible confusion.

Although it is possible to send a 65,535-byte IP datagram, most link layers
(such as Ethernet) are not able to carry one this large without fragmenting it
(chopping it up) into smaller pieces. Furthermore, a host is not required to be able
to receive an IPv4 datagram larger than 576 bytes. (In IPv6 a host must be able to
process a datagram at least as large as the MTU of the link to which it is attached,
and the minimum link MTU is 1280 bytes.) Many applications that use the UDP
protocol (see Chapter 10) for data transport (e.g., DNS, DHCP, etc.) use a limited
data size of 512 bytes to avoid the 576-byte IPv4 limit. TCP chooses its own data-
gram size based on additional information (see Chapter 15).

When an IPv4 datagram is fragmented into multiple smaller fragments, each of
which itself is an independent IP datagram, the Total Length field reflects the length
of the particular fragment. Fragmentation is described in detail along with UDP in
Chapter 10. In IPv6, fragmentation is not supported by the header, and the length
is instead given by the Payload Length field. This field measures the length of the
IPv6 datagram not including the length of the header; extension headers, however,
are included in the Payload Length field. As with IPv4, the 16-bit size of the field
limits its maximum value to 65,535. With IPv6, however, it is the payload length that
is limited to 64KB, not the entire datagram. In addition, IPv6 supports a jumbogram
option (see Section 5.3.1.2) that provides for the possibility, at least theoretically, of
single packets with payloads as large as 4GB (4,294,967,295 bytes)!

The Identification field helps indentify each datagram sent by an IPv4 host. To
ensure that the fragments of one datagram are not confused with those of another,
the sending host normally increments an internal counter by 1 each time a datagram
is sent (from one of its IP addresses) and copies the value of the counter into the IPv4
Identification field. This field is most important for implementing fragmentation, so
we explore it further in Chapter 10, where we also discuss the Flags and Fragment
Offset fields. In IPv6, this field shows up in the Fragmentation extension header, as
we discuss in Section 5.3.3.

The Time-to-Live field, or TTL, sets an upper limit on the number of routers
through which a datagram can pass. It is initialized by the sender to some value
(64 is recommended [RFC1122], although 128 or 255 is not uncommon) and decre-
mented by 1 by every router that forwards the datagram. When this field reaches
0, the datagram is thrown away, and the sender is notified with an ICMP message
(see Chapter 8). This prevents packets from getting caught in the network forever
should an unwanted routing loop occur.

ptg999

Section 5.2 IPv4 and IPv6 Headers 185

Note

The TTL field was originally specified to be the maximum lifetime of an IP data-
gram in seconds, but routers were also always required to decrement the value by
at least 1. Because virtually no routers today hold on to a datagram longer than 1s
under normal operation, the earlier rule is now ignored or forgotten, and in IPv6
the field has been renamed to its de facto use: Hop Limit.

The Protocol field in the IPv4 header contains a number indicating the type of
data found in the payload portion of the datagram. The most common values are
17 (for UDP) and 6 (for TCP). This provides a demultiplexing feature so that the IP
protocol can be used to carry payloads of more than one protocol type. Although
this field originally specified the transport-layer protocol the datagram is encap-
sulating, it is now understood to identify the encapsulated protocol, which may or
not be a transport protocol. For example, other encapsulations are possible, such
as IPv4-in-IPv4 (value 4). The official list of the possible values of the Protocol field
is given in the assigned numbers page [AN]. The Next Header field in the IPv6
header generalizes the Protocol field from IPv4. It is used to indicate the type of
header following the IPv6 header. This field may contain any values defined for
the IPv4 Protocol field, or any of the values associated with the IPv6 extension
headers described in Section 5.3.

The Header Checksum field is calculated over the IPv4 header only. This is impor-
tant to understand because it means that the payload of the IPv4 datagram (e.g.,
TCP or UDP data) is not checked for correctness by the IP protocol. To help ensure
that the payload portion of an IP datagram has been correctly delivered, other
protocols must cover any important data that follows the header with their own
data-integrity-checking mechanisms. We shall see that almost all protocols encap-
sulated in IP (ICMP, IGMP, UDP, and TCP) have a checksum in their own headers
to cover their header and data and also to cover certain parts of the IP header they
deem important (a form of “layering violation”). Perhaps surprisingly, the IPv6
header does not have any checksum field.

Note

Omitting the checksum field from the IPv6 header was a somewhat controversial
decision. The reasoning behind this action is roughly as follows: Higher-layer pro-
tocols requiring correctness in the IP header are required to compute their own
checksums over the data they believe to be important. A consequence of errors
in the IP header is that the data is delivered to the wrong destination, is indicated
to have come from the wrong source, or is otherwise mangled during delivery.
Because bit errors are relatively rare (thanks to fiber-optic delivery of Internet
traffic) and stronger mechanisms are available to ensure correctness of the other
fields (higher-layer checksums or other checks), it was decided to eliminate the
field from the IPv6 header.

ptg999

186 The Internet Protocol (IP)

The algorithm used in computing a checksum is also used by most of the
other Internet-related protocols that use checksums and is sometimes known as
the Internet checksum. Note that when an IPv4 datagram passes through a router,
its header checksum must change as a result of decrementing the TTL field. We
discuss the methods for computing the checksum in more detail in Section 5.2.2.

Every IP datagram contains the Source IP Address of the sender of the datagram
and the Destination IP Address of where the datagram is destined. These are 32-bit
values for IPv4 and 128-bit values for IPv6, and they usually identify a single inter-
face on a computer, although multicast and broadcast addresses (see Chapter 2)
violate this rule. While a 32-bit address can accommodate a seemingly large num-
ber of Internet entities (4.5 billion), there is widespread agreement that this num-
ber is inadequate, a primary motivation for moving to IPv6. The 128-bit address
of IPv6 can accommodate a huge number of Internet entities. As was restated in
[H05], IPv6 has 3.4 × 1038 (340 undecillion) addresses. Quoting from [H05] and oth-
ers: “The optimistic estimate would allow for 3,911,873,538,269,506,102 addresses
per square meter of the surface of the planet Earth.” It certainly seems as if this
should last a very, very long time indeed.

5.2.2 The Internet Checksum

The Internet checksum is a 16-bit mathematical sum used to determine, with
reasonably high probability, whether a received message or portion of a message
matches the one sent. Note that the Internet checksum algorithm is not the same as
the common cyclic redundancy check (CRC) [PB61], which offers stronger protection.

To compute the IPv4 header checksum for an outgoing datagram, the value
of the datagram’s Checksum field is first set to 0. Then, the 16-bit one’s comple-
ment sum of the header is calculated (the entire header is considered a sequence
of 16-bit words). The 16-bit one’s complement of this sum is then stored in the
Checksum field to make the datagram ready for transmission. One’s complement
addition can be implemented by “end-round-carry addition”: when a carry bit
is produced using conventional (two’s complement) addition, the carry is added
back in as a 1 value. Figure 5-3 presents an example, where the message contents
are represented in hexadecimal.

When an IPv4 datagram is received, a checksum is computed across the whole
header, including the value of the Checksum field itself. Assuming there are no
errors, the computed checksum value is always 0 (a one’s complement of the value
FFFF). Note that for any nontrivial packet or header, the value of the Checksum
field in the packet can never be FFFF. If it were, the sum (prior to the final one’s
complement operation at the sender) would have to have been 0. No sum can ever
be 0 using one’s complement addition unless all the bytes are 0—something that
never happens with any legitimate IPv4 header. When the header is found to be
bad (the computed checksum is nonzero), the IPv4 implementation discards the
received datagram. No error message is generated. It is up to the higher layers to
somehow detect the missing datagram and retransmit if necessary.

ptg999

Section 5.2 IPv4 and IPv6 Headers 187

5.2.2.1 Mathematics of the Internet Checksum
For the mathematically inclined, the set of 16-bit hexadecimal values V = {0001,
. . . , FFFF} and the one’s complement sum operation + together form an Abelian
group. For the combination of a set and an operator to be a group, several proper-
ties need to be obeyed: closure, associativity, existence of an identity element, and
existence of inverses. To be an Abelian (commutative) group, commutativity must
also be obeyed. If we look closely, we see that all of these properties are indeed
obeyed:

• For any X,Y in V, (X + Y) is in V [closure]

• For any X,Y,Z in V, X + (Y + Z) = (X + Y) + Z [associativity]

• For any X in V, e + X = X + e = X where e = FFFF [identity]

• For any X in V, there is an X′ in V such that X + X′ = e [inverse]

• For any X,Y in V, (X + Y) = (Y + X) [commutativity]

What is interesting about the set V and the group <V,+> is that we have deleted
the number 0000 from consideration. If we put the number 0000 in the set V, then
<V,+> is not a group any longer. To see this, we first observe that 0000 and FFFF
appear to perform the role of zero (additive identity) using the + operation. For
example, AB12 + 0000 = AB12 = AB12 + FFFF. However, in a group there can be
only one identity element. If we have some element 12AB, and assume the identity

Sending
Message: E3 4F 23 96 44 27 99 F3 [00 00] Checksum Field = 0000
Two’s Complement Sum: 1E4FF
One’s Complement Sum: E4FF+1 = E500
One’s Complement: ~(E500) = ~(1110 0101 0000 0000) = 0001 1010 1111 1111 =

 1AFF (the checksum)

Receiving
Message + Checksum = E34F + 2396 + 4427 + 99F3 + 1AFF = E500 + 1AFF = FFFF

 ~(Message + Checksum) = 0000

Figure 5-3 The Internet checksum is the one’s complement of a one’s complement 16-bit sum of the
data being checksummed (zero padding is used if the number of bytes being summed is
odd). If the data being summed includes a Checksum field, the field is first set to 0 prior
to the checksum operation and then filled in with the computed checksum. To check
whether an incoming block of data that contains a Checksum field (header, payload, etc.)
is valid, the same type of checksum is computed over the whole block (including the
Checksum field). Because the Checksum field is essentially the inverse of the checksum of
the rest of the data, computing the checksum on correctly received data should produce
a value of 0.

ptg999

188 The Internet Protocol (IP)

element is 0000, then we need some inverse X′ so that (12AB + X′) = 0000, but we
see that no such value of X′ exists in V that satisfies the criteria. Therefore, we need
to exclude 0000 from consideration as the identity element in <V,+> by removing it
from the set V to make this structure a true group. For an introduction to abstract
algebra, the reader may wish to consult a detailed text on the subject, such as the
popular book by Pinter [P90].

5.2.3 DS Field and ECN (Formerly Called the ToS Byte or IPv6 Traffic Class)

The third and fourth fields of the IPv4 header (second and third fields of the IPv6
header) are the Differentiated Services (called DS Field) and ECN fields. Differenti-
ated Services (called DiffServ) is a framework and set of standards aimed at sup-
porting differentiated classes of service (i.e., beyond just best-effort) on the Internet
[RFC2474][RFC2475][RFC3260]. IP datagrams that are marked in certain ways (by
having some of these bits set according to predefined patterns) may be forwarded
differently (e.g., with higher priority) than other datagrams. Doing so can lead
to increased or decreased queuing delay in the network and other special effects
(possibly with associated special fees imposed by an ISP). A number is placed in
the DS Field termed the Differentiated Services Code Point (DSCP). A “code point”
refers to a particular predefined arrangement of bits with agreed-upon meaning.
Typically, datagrams have a DSCP assigned to them when they are given to the
network infrastructure that remains unmodified during delivery. However, poli-
cies (such as how many high-priority packets are allowed to be sent in a period of
time) may cause a DSCP in a datagram to be changed during delivery.

The pair of ECN bits in the header is used for marking a datagram with a
congestion indicator when passing through a router that has a significant amount of
internally queued traffic. Both bits are set by persistently congested ECN-aware
routers when forwarding packets. The use case envisioned for this function is
that when a marked packet is received at the destination, some protocol (such as
TCP) will notice that the packet is marked and indicate this fact back to the sender,
which would then slow down, thereby easing congestion before a router is forced
to drop traffic because of overload. This mechanism is one of several aimed at
avoiding or dealing with network congestion, which we explore in more detail in
Chapter 16. Although the DS Field and ECN field are not obviously closely related,
the space for them was carved out of the previously defined IPv4 Type of Service
and IPv6 Traffic Class fields. For this reason, they are often discussed together, and
the terms “ToS byte” and “Traffic Class byte” are still in widespread use.

Although the original uses for the ToS and Traffic Class bytes are not widely
supported, the structure of the DS Field has been arranged to provide some back-
ward compatibility with them. To get a clear understanding of how this has been
accomplished, we first review the original structure of the Type of Service field
[RFC0791] as shown in Figure 5-4.

ptg999

Section 5.2 IPv4 and IPv6 Headers 189

The D, T, and R subfields are for indicating that the datagram should receive
good treatment with respect to delay, throughput, and reliability. A value of 1 indi-
cates better treatment (low delay, high throughput, high reliability, respectively).
The precedence values range from 000 (routine) to 111 (network control) with
increasing priority (see Table 5-1). They are based on a call preemption scheme
called Multilevel Precedence and Preemption (MLPP) dating back to the U.S. Depart-
ment of Defense’s AUTOVON telephone system [A92], in which lower-precedence
calls could be preempted by higher-precedence calls. These terms are still in use
and are being incorporated into VoIP systems.

Figure 5-4 The original IPv4 Type of Service and IPv6 Traffic Class field structures. The Precedence
subfield was used to indicate which packets should receive higher priority (larger values
mean higher priority). The D, T, and R subfields refer to delay, throughput, and reliabil-
ity. A value of 1 in these fields corresponds to a desire for low delay, high throughput,
and high reliability, respectively.

Table 5-1 The original IPv4 Type of Service and IPv6 Traffic Class precedence subfield values

Value Precedence Name

000 Routine
001 Priority
010 Immediate
011 Flash
100 Flash Override
101 Critical
110 Internetwork Control
111 Network Control

In defining the DS Field, the precedence values have been taken into account
[RFC2474] so as to provide a limited form of backward compatibility. Referring to
Figure 5-5, the 6-bit DS Field holds the DSCP, providing support for 64 distinct
code points. The particular value of the DSCP tells a router the forwarding treat-
ment or special handling the datagram should receive. The various forwarding
treatments are expressed as per-hop behavior (PHB), so the DSCP value effectively
tells a router which PHB to apply to the datagram. The default value for the DSCP
is generally 0, which corresponds to routine, best-effort Internet traffic. The 64
possible DSCP values are broadly divided into a set of pools for various uses, as
given in [DSCPREG] and shown in Table 5-2.

ptg999

190 The Internet Protocol (IP)

The arrangement provides for some experimentation and local use by
researchers and operators. DSCPs ending in 0 are subject to standardized use,
and those ending in 1 are for experimental/local use (EXP/LU). Those ending in
01 are intended initially for experimentation or local use but with eventual intent
toward standardization.

Referring to Figure 5-5, the class portion of the DS Field contains the first 3 bits
and is based on the earlier definition of the Precedence subfield of the Type of Service
field. Generally, a router is to first segregate traffic into different classes. Traffic
within a common class may have different drop probabilities, allowing the router
to decide what traffic to drop first if it is forced to discard traffic. The 3-bit class
selector provides for eight defined code points (called the class selector code points)
that correspond to PHBs with a specified minimum set of features providing simi-
lar functionality to the earlier IP precedence capability. These are called class selec-
tor compliant PHBs. They are intended to support partial backward compatibility
with the original definition given for the IP Precedence subfield given in [RFC0791].
Code points of the form xxx000 always map to such PHBs, although other values
may also map to the same PHBs.

Table 5-3 indicates the class selector DSCP values with their corresponding
terms for the IP Precedence field from [RFC0791]. The Assured Forwarding (AF)
group provides forwarding of IP packets in a fixed number of independent AF

Figure 5-5 The DS Field contains the DSCP in 6 bits (5 bits are currently standardized to indicate
the forwarding treatment the datagram should receive when forwarded by a compliant
router). The following 2 bits are used for ECN and may be turned on in the datagram
when it passes through a persistently congested router. When such datagrams arrive
at their destinations, the congestion indication is sent back to the source in a later data-
gram to inform the source that its datagrams are passing through one or more congested
routers.

Table 5-2 The DSCP values are divided into three pools: standardized, experimental/local use
(EXP/LU), and experimental/local use that is eventually intended for standardization (*).

Pool Code Point Prefix Policy

1 xxxxx0 Standards
2 xxxx11 EXP/LU
3 xxxx01 EXP/LU(*)

ptg999

Section 5.2 IPv4 and IPv6 Headers 191

classes, effectively generalizing the precedence concept. Traffic from one class
is forwarded separately from other classes. Within a traffic class, a datagram is
assigned a drop precedence. Datagrams of higher drop precedence in a class are
handled preferentially (i.e., are forwarded with higher priority) over those with
lower drop precedence in the same class. Combining the traffic class and drop
precedence, the name AFij corresponds to assured forwarding class i with drop
precedence j. For example, a datagram marked with AF32 is in traffic class 3 with
drop precedence 2.

Table 5-3 The DS Field values are designed to be somewhat compatible with the IP Precedence
subfield specified for the Type of Service and IPv6 Traffic Class field. AF and EF provide
enhanced services beyond simple best-effort.

Name Value Reference Description

CS0 000000 [RFC2474] Class selector (best-effort/routine)
CS1 001000 [RFC2474] Class selector (priority)
CS2 010000 [RFC2474] Class selector (immediate)
CS3 011000 [RFC2474] Class selector (flash)
CS4 100000 [RFC2474] Class selector (flash override)
CS5 101000 [RFC2474] Class selector (CRITIC/ECP)
CS6 110000 [RFC2474] Class selector (internetwork control)
CS7 111000 [RFC2474] Class selector (control)
AF11 001010 [RFC2597] Assured Forwarding (class 1,dp 1)
AF12 001100 [RFC2597] Assured Forwarding (1,2)
AF13 001110 [RFC2597] Assured Forwarding (1,3)
AF21 010010 [RFC2597] Assured Forwarding (2,1)
AF22 010100 [RFC2597] Assured Forwarding (2,2)
AF23 010110 [RFC2597] Assured Forwarding (2,3)
AF31 011010 [RFC2597] Assured Forwarding (3,1)
AF32 011100 [RFC2597] Assured Forwarding (3,2)
AF33 011110 [RFC2597] Assured Forwarding (3,3)
AF41 100010 [RFC2597] Assured Forwarding (4,1)
AF42 100100 [RFC2597] Assured Forwarding (4,2)
AF43 100110 [RFC2597] Assured Forwarding (4,3)
EF PHB 101110 [RFC3246] Expedited Forwarding
VOICE-ADMIT 101100 [RFC5865] Capacity-Admitted Traffic

The Expedited Forwarding (EF) service provides the appearance of an uncon-
gested network—that is, EF traffic should receive relatively low delay, jitter, and
loss. Intuitively, this requires the rate of EF traffic going out of a router to be at
least as large as the rate coming in. Consequently, EF traffic will only ever have to
wait in a router queue behind other EF traffic.

ptg999

192 The Internet Protocol (IP)

Delivering differentiated services in the Internet has been an ongoing effort
for over a decade. Although much of the standardization effort in terms of mecha-
nisms took place in the late 1990s, only in the twenty-first century are some of its
capabilities being realized and implemented. Some guidance on how to configure
systems to take advantage of these capabilities is given in [RFC4594]. The com-
plexity of differentiated services is due, in part, to the linkage between differenti-
ated services and the presumed differentiated pricing structure and consequent
issues of fairness that would go along with it. Such economic relationships can be
complex and are outside the scope of the present discussion. For more information
on this and related topics, please see [MB97] and [W03].

5.2.4 IP Options

IP supports a number of options that may be selected on a per-datagram basis.
Most of these options were introduced in [RFC0791] at the time IPv4 was being
designed, when the Internet was considerably smaller and when threats from
malicious users were less of a concern. As a consequence, many of the options are
no longer practical or desirable because of the limited size of the IPv4 header or
concerns regarding security. With IPv6, most of the options have been removed
or altered and are not an integral part of the basic IPv6 header. Instead, they are
placed after the IPv6 header in one or more extension headers. An IP router that
receives a datagram containing options is usually supposed to perform special
processing on the datagram. In some cases IPv6 routers process extension headers,
but many headers are designed to be processed only by end hosts. In some routers,
datagrams with options or extensions are not forwarded as fast as ordinary data-
grams. We briefly discuss the IPv4 options as background and then look at how
IPv6 implements extension headers and options. Table 5-4 shows most of the IPv4
options that have been standardized over the years.

Table 5-4 gives the reserved IPv4 options for which descriptive RFCs can be
found. The complete list is periodically updated and is available online [IPPA-
RAM]. The options area always ends on a 32-bit boundary. Pad bytes with a value
of 0 are added if necessary. This ensures that the IPv4 header is always a multiple
of 32 bits (as required by the IHL field). The “Number” column in Table 5-4 is the
number of the option. The “Value” column indicates the number placed inside the
option Type field to indicate the presence of the option. These values from the two
columns are not necessarily the same because the Type field has additional struc-
ture. In particular, the first (high-order) bit indicates whether the option should
be copied into fragments if the associated datagram is fragmented. The next 2 bits
indicate the option’s class. Currently, all options in Table 5-4 use option class 0
(control) except Timestamp and Traceroute, which are both class 2 (debugging and
measurement). Classes 1 and 3 are reserved.

Most of the standardized options are rarely or never used in the Internet today.
Options such as Source and Record Route, for example, require IPv4 addresses to
be placed inside the IPv4 header. Because there is only limited space in the header

ptg999

Section 5.2 IPv4 and IPv6 Headers 193

Table 5-4 Options, if present, are carried in IPv4 packets immediately after the basic IPv4 header. Options
are identified by an 8-bit option Type field. This field is subdivided into three subfields: Copy (1 bit),
Class (2 bits), and Number (5 bits). Options 0 and 1 are a single byte long, and most others are variable
in length. Variable options consist of 1 byte of type identifier, 1 byte of length, and the option itself.

Name Number Value Length Description Reference Comments

End of List 0 0 1 Indicates no more
options.

[RFC0791] If required

No Op 1 1 1 Indicates no operation
to perform (used for
padding).

[RFC0791] If required

Source
Routing

3

9

131

137

Variable Sender lists router “way-
points” for packet to tra-
verse when forwarded.
Loose means other
routers can be included
between waypoints
(3,131). Strict means all
waypoints have to be tra-
versed exactly in order
(9,137).

[RFC0791] Rare, often
filtered

Security and
Handling
Labels

2

5

130

133

11 Specifies how to include
security labels and
handling restrictions
with IP datagrams in U.S.
military environments.

[RFC1108] Historic

Record
Route

7 7 Variable Records the route taken
by a packet in its header.

[RFC0791] Rare

Timestamp 4 68 Variable Records the time of day
at a packet’s source and
destination.

[RFC0791] Rare

Stream ID 8 136 4 Carries the 16-bit
SATNET stream
identifier.

[RFC0791] Historic

EIP 17 145 Variable Extended Internet
Protocol (an experiment
in the early 1990s)

[RFC1385] Historic

Traceroute 18 82 Variable Adds a route-tracing
option and ICMP
message (an experiment
in the early 1990s).

[RFC1393] Historic

Router Alert 20 148 4 Indicates that a router
needs to interpret the
contents of the datagram.

[RFC2113]
[RFC5350]

Occasional

Quick-Start 25 25 8 Indicates fast transport
protocol start
(experimental).

[RFC4782] Rare

ptg999

194 The Internet Protocol (IP)

(60 bytes total, of which 20 are devoted to the basic IPv4 header), these options are
not very useful in today’s IPv4 Internet where the number of router hops in an
average Internet path is about 15 [LFS07]. In addition, the options are primarily
for diagnostic purposes and make the construction of firewalls more cumbersome
and risky. Thus, IPv4 options are typically disallowed or stripped at the perimeter
of enterprise networks by firewalls (see Chapter 7).

Within enterprise networks, where the average path length is smaller and pro-
tection from malicious users may be less of a concern, options can still be useful.
In addition, the Router Alert option represents somewhat of an exception to the
problems with the other options for use on the Internet. Because it is designed
primarily as a performance optimization and does not change fundamental router
behavior, it is permitted more often than the other options. As suggested previ-
ously, some router implementations have a highly optimized internal pathway for
forwarding IP traffic containing no options. The Router Alert option informs rout-
ers that a packet requires processing beyond the conventional forwarding algo-
rithms. The experimental Quick-Start option at the end of the table is applicable to
both IPv4 and IPv6, and we describe it in the next section when discussing IPv6
extension headers and options.

5.3 IPv6 Extension Headers

In IPv6, special functions such as those provided by options in IPv4 can be enabled
by adding extension headers that follow the IPv6 header. The routing and time-
stamp functions from IPv4 are supported this way, as well as some other functions
such as fragmentation and extra-large packets that were deemed to be rarely used
for most IPv6 traffic (but still desired) and thereby did not justify allocating bits
in the IPv6 header to support them. With this arrangement, the IPv6 header is
fixed at 40 bytes, and extension headers are added only when needed. In choosing
the IPv6 header to be of a fixed size, and requiring that extension headers be pro-
cessed only by end hosts (with one exception), the designers of IPv6 have made the
design and construction of high-performance routers easier because the demands
on packet processing at routers can be simpler than with IPv4. In practice, packet-
processing performance is governed by many factors, including the complexity
of the protocol, the capabilities of the hardware and software in the router, and
traffic load.

Extension headers, along with headers of higher-layer protocols such as TCP
or UDP, are chained together with the IPv6 header to form a cascade of headers
(see Figure 5-6). The Next Header field in each header indicates the type of the
subsequent header, which could be an IPv6 extension header or some other type.
The value of 59 indicates the end of the header chain. The possible values for the
Next Header field are available at [IP6PARAM], and most are provided in Table 5-5.

As we can see from Table 5-5, the IPv6 extension header mechanism distin-
guishes some functions (e.g., routing and fragmentation) from options. The order

ptg999

Section 5.3 IPv6 Extension Headers 195

Figure 5-6 IPv6 headers form a chain using the Next Header field. Headers in the chain
may be IPv6 extension headers or transport headers. The IPv6 header appears
at the beginning of the datagram and is always 40 bytes long.

Table 5-5 The values for the IPv6 Next Header field may indicate extensions or headers for other protocols. The
same values are used with the IPv4 Protocol field, where appropriate.

Header Type Order Value References

IPv6 header 1 41 [RFC2460][RFC2473]
Hop-by-Hop
Options (HOPOPT)

2 0 [RFC2460]; must immediately follow
IPv6 header

Destination Options 3,8 60 [RFC2460]
Routing 4 43 [RFC2460][RFC5095]
Fragment 5 44 [RFC2460]
Encapsulating Security Payload (ESP) 7 50 (See Chapter 18)
Authentication (AH) 6 51 (See Chapter 18)
Mobility (MIPv6) 9 135 [RFC6275]
(None—no next header) Last 59 [RFC2460]
ICMPv6 Last 58 (See Chapter 8)
UDP Last 17 (See Chapter 10)
TCP Last 6 (See Chapters 13–17)
Various other upper-layer protocols Last — See [AN] for complete list

ptg999

196 The Internet Protocol (IP)

of the extension headers is given as a recommendation, except for the location of
the Hop-by-Hop Options, which is mandatory, so an IPv6 implementation must
be prepared to process extension headers in the order in which they are received.
Only the Destination Options header can be used twice—the first time for options
pertaining to the destination IPv6 address contained in the IPv6 header and the
second time (position 8) for options pertaining to the final destination of the data-
gram. In some cases (e.g., when the Routing header is used), the Destination IP
Address field in the IPv6 header changes as the datagram is forwarded to its ulti-
mate destination.

5.3.1 IPv6 Options

As we have seen, IPv6 provides a more flexible and extensible way of incorporat-
ing extensions and options as compared to IPv4. Those options from IPv4 that
ceased to be useful because of space limitations in the IPv4 header appear in IPv6
as variable-length extension headers or options encoded in special extension
headers that can accommodate today’s much larger Internet. Options, if present,
are grouped into either Hop-by-Hop Options (those relevant to every router along a
datagram’s path) or Destination Options (those relevant only to the recipient). Hop-
by-Hop Options (called HOPOPTs) are the only ones that need to be processed
by every router a packet encounters. The format for encoding options within the
Hop-by-Hop and Destination Options extension headers is common.

The Hop-by-Hop and Destination Options headers are capable of holding
more than one option. Each of these options is encoded as type-length-value (TLV)
sets, according to the format shown in Figure 5-7.

Figure 5-7 Hop-by-hop and Destination Options are encoded as TLV sets. The first byte gives
the option type, including subfields indicating how an IPv6 node should behave if the
option is not recognized, and whether the option data might change as the datagram is
forwarded. The Opt Data Len field gives the size of the option data in bytes.

The TLV structure shown in Figure 5-7 includes 2 bytes followed by a variable-
length number of data bytes. The first byte indicates the type of the option and
includes three subfields. The first subfield gives the action to be taken by an IPv6
node attempting to process the option that does not recognize the 5-bit option Type
subfield. Its possible values are presented in Table 5-6.

ptg999

Section 5.3 IPv6 Extension Headers 197

If an unknown option were included in a datagram destined for a multicast
destination, a large number of nodes could conceivably generate traffic back to the
source. This can be avoided by use of the 11-bit pattern for the Action subfield. The
flexibility of the Action subfield is useful in the development of new options. A
newly specified option can be carried in datagrams and simply ignored by those
routers that do not understand it, helping to promote incremental deployment of
new options. The Change bit field (Chg in Figure 5-7) is set to 1 when the option data
may be modified as the datagram is forwarded. The options shown in Table 5-7
have been defined for IPv6.

Table 5-6 The 2 high-order bits in an IPv6 TLV option type indicate whether an IPv6 node should
forward or drop the datagram if the option is not recognized, and whether a message
indicating the datagram’s fate should be sent back to the sender.

Value Action

00 Skip option, continue processing
01 Discard the datagram (silently)
10 Discard the datagram and send an ICMPv6 Parameter Problem message to

the source address
11 Same as 10, but send the ICMPv6 message only if the offending packet’s

destination was not multicast

Table 5-7 Options in IPv6 are carried in either Hop-by-Hop (H) or Destination (D) Options exten-
sion headers. The option Type field contains the value from the “Type” column with the
Action and Change subfields denoted in binary. The “Length” column contains the value
of the Opt Data Len byte from Figure 5-7. The Pad1 option is the only one lacking this byte.

Option Name Header Action Change Type Length References

Pad1 HD 00 0 0 N/A [RFC2460]
PadN HD 00 0 1 var [RFC2460]
Jumbo Payload H 11 0 194 4 [RFC2675]
Tunnel Encapsulation
Limit

D 00 0 4 4 [RFC2473]

Router Alert H 00 0 5 4 [RFC2711]
Quick-Start H 00 1 6 8 [RFC4782]
CALIPSO H 00 0 7 8+ [RFC5570]
Home Address D 11 0 201 16 [RFC6275]

5.3.1.1 Pad1 and PadN
IPv6 options are aligned to 8-byte offsets, so options that are naturally smaller are
padded with 0 bytes to round out their lengths to the nearest 8 bytes. Two padding
options are available to support this, called Pad1 and PadN. The Pad1 option (type 0)
is the only option that lacks Length and Value fields. It is simply 1 byte long and

ptg999

198 The Internet Protocol (IP)

contains the value 0. The PadN option (type 1) inserts 2 or more bytes of padding
into the options area of the header using the format of Figure 5-7. For n bytes of
padding, the Opt Data Len field contains the value (n - 2).

5.3.1.2 IPv6 Jumbo Payload
In some TCP/IP networks, such as those used to interconnect supercomputers,
the normal 64KB limit on the IP datagram size can lead to unwanted overhead
when moving large amounts of data. The IPv6 Jumbo Payload option specifies an
IPv6 datagram with payload size larger than 65,535 bytes, called a jumbogram. This
option need not be implemented by nodes attached to links with MTU sizes below
64KB. The Jumbo Payload option provides a 32-bit field for holding the payload
size for datagrams with payloads of sizes between 65,535 and 4,294,967,295 bytes.

When a jumbogram is formed for transmission, its normal Payload Length field
is set to 0. As we shall see later, the TCP protocol makes use of the Payload Length
field in order to compute its checksum using the Internet checksum algorithm
described previously. When the Jumbo Payload option is used, TCP must be care-
ful to use the length value from the option instead of the regular Length field in
the base header. Although this procedure is not difficult, larger payloads can lead
to an increased chance of undetected error [RFC2675].

5.3.1.3 Tunnel Encapsulation Limit
Tunneling refers to the encapsulation of one protocol in another that does not con-
form to traditional layering (see Chapters 1 and 3). For example, IP datagrams may
be encapsulated inside the payload portion of another IP datagram. Tunneling can
be used to form virtual overlay networks, in which one network (e.g., the Internet)
acts as a well-connected link layer for another layer of IP [TWEF03]. Tunnels can
be nested in the sense that datagrams that are in a tunnel may themselves be
placed in a tunnel, in a recursive fashion.

When sending an IP datagram, a sender does not ordinarily have much con-
trol over how many tunnel levels are ultimately used for encapsulation. Using this
option, however, a sender can specify this limit. A router intending to encapsulate
an IPv6 datagram into a tunnel first checks for the presence and value of the Tun-
nel Encapsulation Limit option. If the limit value is 0, the datagram is discarded
and an ICMPv6 Parameter Problem message (see Chapter 8) is sent to the source
of the datagram (i.e., the previous tunnel entry point). If the limit is nonzero, the
tunnel encapsulation is permitted, but the newly formed (encapsulating) IPv6
datagram must include a Tunnel Encapsulation Limit option whose value is 1 less
than the option value in the arriving datagram. In effect, the encapsulation limit
acts like the IPv4 TTL or IPv6 Hop Limit field, but for levels of tunnel encapsulation
instead of forwarding hops.

5.3.1.4 Router Alert
The Router Alert option indicates that the datagram contains information that
needs to be processed by a router. It is used for the same purpose as the IPv4
Router Alert option. [RTAOPTS] gives the current set of values for the option.

ptg999

Section 5.3 IPv6 Extension Headers 199

5.3.1.5 Quick-Start
The Quick-Start (QS) option is used in conjunction with the experimental Quick-
Start procedure for TCP/IP specified in [RFC4782]. It is applicable to both IPv4 and
IPv6 but at present is suggested only for private networks and not the global Inter-
net. The option includes a value encoding the sender’s desired transmission rate in
bits per second, a QS TTL value, and some additional information. Routers along
the path may agree that supporting the desired rate is acceptable, in which case
they decrement the QS TTL and leave the rate request unchanged when forward-
ing the containing datagram. When they disagree (i.e., wish to support a lower
rate), they can reduce the number to an acceptable rate. Routers that do not recog-
nize the QS option do not decrement the QS TTL. A receiver provides feedback to
the sender, including the difference between the received datagram’s IPv4 TTL or
IPv6 Hop Limit field and its QS TTL, along with the resulting rate that may have
been adjusted by the routers along the forward path. This information is used by
the sender to determine its sending rate (which, for example, may exceed the rate
TCP it would otherwise use). Comparison of the TTL values is used to ensure that
every router along the path participates in the QS negotiation; if any routers are
found to be decrementing the IPv4 TTL (or IPv6 Hop Limit) field and not modify-
ing the QS TTL value, QS is not enabled.

5.3.1.6 CALIPSO
This option is used for supporting the Common Architecture Label IPv6 Security
Option (CALIPSO) [RFC5570] in certain private networks. It provides a method to
label datagrams with a security-level indicator, along with some additional infor-
mation. In particular, it is intended for use in multilevel secure networking envi-
ronments (e.g., government, military, and banking) where the security level of all
data must be indicated by some form of label.

5.3.1.7 Home Address
This option holds the “home” address of the IPv6 node sending the datagram
when IPv6 mobility options are in use. Mobile IP (see Section 5.5) specifies a set of
procedures for handling IP nodes that may change their point of network attach-
ment without losing their higher-layer network connections. It has a concept of
a node’s “home,” which is derived from the address prefix of its typical location.
When roaming away from home, the node is generally assigned a different IP
address. This option allows the node to provide its normal home address in addi-
tion to its (presumably temporarily assigned) new address while traveling. The
home address can be used by other IPv6 nodes when communicating with the
mobile node. If the Home Address option is present, the Destination Options
header containing it must appear after a Routing header and before the Fragment,
Authentication, and ESP headers (see Chapter 18), if any of them is also present.
We discuss this option in more detail in the context of Mobile IP.

ptg999

200 The Internet Protocol (IP)

5.3.2 Routing Header

The IPv6 Routing header provides a mechanism for the sender of an IPv6 data-
gram to control, at least in part, the path the datagram takes through the network.
At present, two different versions of the routing extension header have been speci-
fied, called type 0 (RH0) and type 2 (RH2), respectively. RH0 has been deprecated
because of security concerns [RFC5095], and RH2 is defined in conjunction with
Mobile IP. To best understand the Routing header, we begin by discussing RH0
and then investigate why it has been deprecated and how it differs from RH2. RH0
specifies one or more IPv6 nodes to be “visited” as the datagram is forwarded. The
header is shown in Figure 5-8.

Figure 5-8 The now-deprecated Routing header type 0 (RH0) generalizes the IPv4 loose and strict
Source Route and Record Route options. It is constructed by the sender to include IPv6
node addresses that act as waypoints when the datagram is forwarded. Each address can
be specified as a loose or strict address. A strict address must be reached by a single IPv6
hop, whereas a loose address may contain one or more other hops in between. The IPv6
Destination IP Address field in the base header is modified to contain the next waypoint
address as the datagram is forwarded.

The IPv6 Routing header shown in Figure 5-8 generalizes the loose Source
and Record Route options from IPv4. It also supports the possibility of routing on
identifiers other than IPv6 addresses, although this feature is not standardized

ptg999

Section 5.3 IPv6 Extension Headers 201

and is not discussed further here. For standardized routing on IPv6 addresses,
RH0 allows the sender to specify a vector of IPv6 addresses for nodes to be visited.

The header contains an 8-bit Routing Type identifier and an 8-bit Segments
Left field. The type identifier for IPv6 addresses is 0 for RH0 and 2 for RH2. The
Segments Left field indicates how many route segments remain to be processed—
that is, the number of explicitly listed intermediate nodes still to be visited before
reaching the final destination. The block of addresses starts with a 32-bit reserved
field set by the sender to 0 and ignored by receivers. The addresses are nonmulti-
cast IPv6 addresses to be visited as the datagram is forwarded.

A Routing header is not processed until it reaches the node whose address is
contained in the Destination IP Address field of the IPv6 header. At this time, the
Segments Left field is used to determine the next hop address from the address vec-
tor, and this address is swapped with the Destination IP Address field in the IPv6
header. Thus, as the datagram is forwarded, the Segments Left field grows smaller,
and the list of addresses in the header reflects the node addresses that forwarded
the datagram. The forwarding procedure is better understood with an example
(see Figure 5-9).

Figure 5-9 Using an IPv6 Routing header (RH0), the sender (S) is able to direct the datagram
through the intermediate nodes R2 and R3. The other nodes traversed are determined by
the normal IPv6 routing. Note that the destination address in the IPv6 header is updated
at each hop specified in the Routing header.

In Figure 5-9 we can see how the Routing header is processed by intermedi-
ate nodes. The sender (S) constructs the datagram with destination address R1
and a Routing header (type 0) containing the addresses R2, R3, and D. The final
destination of the datagram is the last address in the list (D). The Segments Left
field (labeled “Left” in Figure 5-9) starts at 3. The datagram is forwarded toward
R1 automatically by S and R0. Because R0’s address is not present in the datagram,

ptg999

202 The Internet Protocol (IP)

no modifications of the Routing header or addresses are performed by R0. Upon
reaching R1, the destination address from the base header is swapped with the first
address listed in the Routing header and the Segments Left field is decremented.

As the datagram is forwarded, the process of swapping the destination
address with the next address from the address list in the Routing header repeats
until the last destination listed in the Routing header is reached.

We can arrange to include a Routing header with a simple command-line
option to the ping6 command in Windows XP (Windows Vista and later include
only the ping command, which incorporates IPv6 support):

C:\> ping6 -r -s 2001:db8::100 2001:db8::1

This command arranges to use the source address 2001:db8::100 when sending a
ping request to 2001:db8::1. The -r option arranges for a Routing header (RH0)
to be included. We can see the outgoing request using Wireshark (see Figure 5-10).

Figure 5-10 The ping request appears as an ICMPv6 Echo Request in Wireshark. The IPv6 header
includes a Next Header field indicating that the packet contains a type 0 Routing header,
followed by an ICMPv6 header. The number of segments in the RH0 left to be processed
is one (2001:db8::100).

The ping message appears as an ICMPv6 Echo Request packet (see Chapter
8). By following the Next Header field values, we can see that the base header is
followed by a Routing header. In the Routing header, we can see that the type is
0 (indicating an RH0), and there is one segment (hop) left to process. The hop is
specified by the first slot in the address list (number 0): 2001:db8::100.

ptg999

Section 5.3 IPv6 Extension Headers 203

As mentioned previously, RH0 has been deprecated by [RFC5095] because of
a security concern that allows RH0 to be used to increase the effectiveness of DoS
attacks. The problem is that RH0 allows the same address to be specified in mul-
tiple locations within the Routing header. This can lead to traffic being forwarded
many times between two or more hosts or routers along a particular path. The
potentially high traffic loads that can be created along particular paths in the net-
work can cause disruption to other traffic flows competing for bandwidth across
the same path. Consequently, RH0 has been deprecated and only RH2 remains as
the sole Routing header supported by IPv6. RH2 is equivalent to RH0 except it has
room for only a single address and uses a different value in the Routing Type field.

5.3.3 Fragment Header

The Fragment header is used by an IPv6 source when sending a datagram larger
than the path MTU of the datagram’s intended destination. Path MTU and how
it is determined are discussed in more detail in Chapter 13, but 1280 bytes is a
network-wide link-layer minimum MTU for IPv6 (see section 5 of [RFC2460]). In
IPv4, any host or router can fragment a datagram if it is too large for the MTU on
the next hop, and fields within the second 32-bit word of the IPv4 header indicate
the fragmentation information. In IPv6, only the sender of the datagram is permit-
ted to perform fragmentation, and in such cases a Fragment header is added.

The Fragment header includes the same information as is found in the IPv4
header, but the Identification field is 32 bits instead of the 16 that are used for IPv4.
The larger field provides the ability for more fragmented packets to be outstand-
ing in the network simultaneously. The Fragment header uses the format shown
in Figure 5-11.

Figure 5-11 The IPv6 Fragment header contains a 32-bit Identification field (twice as large as the Iden-
tification field in IPv4). The M bit field indicates whether the fragment is the last of an
original datagram. As with IPv4, the Fragment Offset field gives the offset of the payload
into the original datagram in 8-byte units.

Referring to Figure 5-11, the Reserved field and 2-bit Res field are both zero
and ignored by receivers. The Fragment Offset field indicates where the data that
follows the Fragment header is located, as a positive offset in 8-byte units, relative
to the “fragmentable part” (see the next paragraph) of the original IPv6 datagram.
The M bit field, if set to 1, indicates that more fragments are contained in the
datagram. A value of 0 indicates that the fragment contains the last bytes of the
original datagram.

ptg999

204 The Internet Protocol (IP)

The datagram serving as input to the fragmentation process is called the
“original packet” and consists of two parts: the “unfragmentable part” and the
“fragmentable part.” The unfragmentable part includes the IPv6 header and any
included extension headers required to be processed by intermediate nodes to the
destination (i.e., all headers up to and including the Routing header, otherwise
the Hop-by-Hop Options extension header if only it is present). The fragmentable
part constitutes the remainder of the datagram (i.e., Destination Options header,
upper-layer headers, and payload data).

When the original packet is fragmented, multiple fragment packets are pro-
duced, each of which contains a copy of the unfragmentable part of the origi-
nal packet, but for which each IPv6 header has the Payload Length field altered to
reflect the size of the fragment packet it describes. Following the unfragmentable
part, each new fragment packet contains a Fragment header with an appropriately
assigned Fragment Offset field (e.g., the first fragment contains offset 0) and a copy
of the original packet’s Identification field. The last fragment has its M (More Frag-
ments) bit field set to 0.

The following example illustrates the way an IPv6 source might fragment a
datagram. In the example shown in Figure 5-12, a payload of 3960 bytes is frag-
mented such that no fragment’s total packet size exceeds 1500 bytes (a typical MTU
for Ethernet), yet the fragment data sizes still are arranged to be multiples of 8 bytes.

Figure 5-12 An example of IPv6 fragmentation where a 3960-byte payload is split into three frag-
ment packets of size 1448 bytes or less. Each fragment contains a Fragment header with
the identical Identification field. All but the last fragment have the More Fragments field
(M) set to 1. The offset is given in 8-byte units—the last fragment, for example, con-
tains data beginning at offset (362 * 8) = 2896 bytes from the beginning of the original
packet’s data. The scheme is similar to fragmentation in IPv4.

ptg999

Section 5.3 IPv6 Extension Headers 205

In Figure 5-12 we see how the larger original packet has been fragmented
into three smaller packets, each containing a Fragment header. The IPv6 header’s
Payload Length field is modified to reflect the size of the data and newly formed
Fragment header. The Fragment header in each fragment contains a common Iden-
tification field , and the sender ensures that no distinct original packets are assigned
the same field value within the expected lifetime of a datagram on the network.

The Offset field in the Fragment header is given in 8-byte units, so fragmenta-
tion is performed at 8-byte boundaries, which is why the first and second fragments
contain 1448 data bytes instead of 1452. Thus, all but the last fragment (possibly) is a
multiple of 8 bytes. The receiver must ensure that all fragments of an original data-
gram have been received before performing reassembly. The reassembly procedure
aggregates the fragments, forming the original datagram. As with fragmentation in
IPv4 (see Chapter 10), fragments may arrive out of order at the receiver but are reas-
sembled in order to form a datagram that is given to other protocols for processing.

We can see the construction of an IPv6 fragment using this command on Win-
dows 7:

C:\> ping -l 3952 ff01::2

Figure 5-13 shows the Wireshark output of the activity on the network as it runs.

Figure 5-13 The ping program generates ICMPv6 packets (see Chapter 8) containing 3960 IPv6
payload bytes in this example. These packets are fragmented to produce three packet
fragments, each of which is small enough to fit in the Ethernet MTU size of 1500 bytes.

ptg999

206 The Internet Protocol (IP)

Figure 5-14 The second fragment of an ICMPv6 Echo Request contains 1448 IPv6 payload bytes
including the 8-byte Fragment header. The presence of the Fragment header indicates
that the overall datagram was fragmented at the source, and the Offset field of 181 indi-
cates that this fragment contains data starting at byte offset 1448. The More Fragments
bit field being set indicates that other fragments are needed to reassemble the datagram.
All fragments from the same original datagram contain the same Identification field (2
in this case).

In Figure 5-13 we see the fragments constituting four ICMPv6 Echo Request
messages sent to the IPv6 multicast address ff01::2. Each request requires frag-
mentation because the -l 3952 option indicates that 3952 data bytes are to be car-
ried in the data area of each ICMPv6 message (leading to an IPv6 payload length
of 3960 bytes due to the 8-byte ICMPv6 header). The IPv6 source address is link-
local. To determine the target’s link-layer multicast address, a mapping procedure
specific to IPv6 is performed, described in Chapter 9. The ICMPv6 Echo Request
(generated by the ping program) spans several fragments, which Wireshark reas-
sembles to display once it has processed all the constituent fragments. Figure 5-14
shows the second fragment in more detail.

In Figure 5-14 we see the IPv6 header, with payload length 1448 bytes, as
expected. The Next Header field contains the value 44 (0x2c) we saw in Table 5-5,
indicating that a Fragment header follows the IPv6 header. The Fragment header
indicates that the following header is for ICMPv6, meaning there are no more

ptg999

Section 5.3 IPv6 Extension Headers 207

extension headers. Also, the Offset field is 181, meaning this fragment contains
data at byte offset 1448 in the original datagram. We know it is not the last frag-
ment because the More Fragments field is set (displayed as Yes by Wireshark). Fig-
ure 5-15 shows the final fragment of the initial ICMPv6 Echo Request datagram.

Figure 5-15 The last fragment of the first ICMPv6 Echo Request datagram has an offset of 362 * 8
= 2896 and payload length of 1072 bytes (1064 bytes of the original datagram’s payload
plus 8 bytes of Fragment header). The More Fragments bit field being set to 0 indicates
that this is the last fragment, and the original datagram’s total payload length is 2896
+ 1064 = 3960 bytes (3956 bytes of ICMP data plus 8 bytes for the ICMPv6 header; see
Chapter 8).

In Figure 5-15 we see that the Offset field has the value 362, but this is in 8-byte
units, meaning that the byte offset relative to the original datagram is 362 * 8 =
2896. The Total Length field has the value 1072, which includes 8 bytes for the Frag-
ment header. Wireshark computes the fragmentation pattern for us, indicating
that the first and second fragments contained the first and second sets of 1448
bytes, and the final fragment contained 1064. All in all, the fragmentation process
added 40*2 + 8*3 = 104 bytes to be carried by the network layer (two additional

ptg999

208 The Internet Protocol (IP)

IPv6 headers plus an 8-byte Fragment header for each fragment). If we add link-
layer overhead, the total comes to 104 + (2*18) = 140 bytes. (Each new Ethernet
frame includes a 14-byte header and a 4-byte CRC.)

5.4 IP Forwarding

Conceptually, IP forwarding is simple, especially for a host. If the destination is
directly connected to the host (e.g., a point-to-point link) or on a shared network
(e.g., Ethernet), the IP datagram is sent directly to the destination—a router is not
required or used. Otherwise, the host sends the datagram to a single router (called
the default router) and lets the router deliver the datagram to its destination. This
simple scheme handles most host configurations.

In this section we investigate the details of this simple situation and also how
IP forwarding works when the situation is not as simple. We begin by noting that
most hosts today can be configured to be routers as well as hosts, and many home
networks use an Internet-connected PC to act as a router (and also a firewall, as
we discuss in Chapter 7). What differentiates a host from a router to IP is how IP
datagrams are handled: a host never forwards datagrams it does not originate,
whereas routers do.

In our general scheme, the IP protocol can receive a datagram either from
another protocol on the same machine (TCP, UDP, etc.) or from a network inter-
face. The IP layer has some information in memory, usually called a routing table or
forwarding table, which it searches each time it receives a datagram to send. When a
datagram is received from a network interface, IP first checks if the destination IP
address is one of its own IP addresses (i.e., one of the IP addresses associated with
one of its network interfaces) or some other address for which it should receive
traffic such as an IP broadcast or multicast address. If so, the datagram is delivered
to the protocol module specified by the Protocol field in the IPv4 header or Next
Header field in the IPv6 header. If the datagram is not destined for one of the IP
addresses being used locally by the IP module, then (1) if the IP layer was config-
ured to act as a router, the datagram is forwarded (that is, handled as an outgoing
datagram as described in Section 5.4.2); or (2) the datagram is silently discarded.
Under some circumstances (e.g., no route is known in case 1), an ICMP message
may be sent back to the source indicating an error condition.

5.4.1 Forwarding Table

The IP protocol standards do not dictate the precise data required to be in a for-
warding table, as this choice is left up to the implementer of the IP protocol. Nev-
ertheless, several key pieces of information are generally required to implement
the forwarding table for IP, and we shall discuss these now. Each entry in the
routing or forwarding table contains the following information fields, at least
conceptually:

ptg999

Section 5.4 IP Forwarding 209

• Destination: This contains a 32-bit field (or 128-bit field for IPv6) used for
matching the result of a masking operation (see the next bulleted item).
The destination can be as simple as zero, for a “default route” covering all
destinations, or as long as the full length of an IP address, in the case of a
“host route” that describes only a single destination.

• Mask: This contains a 32-bit field (128-bit field for IPv6) applied as a bitwise
AND mask to the destination IP address of a datagram being looked up in
the forwarding table. The masked result is compared with the set of desti-
nations in the forwarding table entries.

• Next-hop: This contains the 32-bit IPv4 address or 128-bit IPv6 address of
the next IP entity (router or host) to which the datagram should be sent. The
next-hop entity is typically on a network shared with the system perform-
ing the forwarding lookup, meaning the two share the same network prefix
(see Chapter 2).

• Interface: This contains an identifier used by the IP layer to reference the
network interface that should be used to send the datagram to its next hop.
For example, it could refer to a host’s 802.11 wireless interface, a wired Eth-
ernet interface, or a PPP interface associated with a serial port. If the for-
warding system is also the sender of the IP datagram, this field is used in
selecting which source IP address to use on the outgoing datagram (see
Section 5.6.2.1).

IP forwarding is performed on a hop-by-hop basis. As we can see from this
forwarding table information, the routers and hosts do not contain the complete
forwarding path to any destination (except, of course, those destinations that are
directly connected to the host or router). IP forwarding provides the IP address of
only the next-hop entity to which the datagram is sent. It is assumed that the next
hop is really “closer” to the destination than the forwarding system is, and that
the next-hop router is directly connected to (i.e., shares a common network pre-
fix with) the forwarding system. It is also generally assumed that no “loops” are
constructed between the next hops so that a datagram does not circulate around
the network until its TTL or hop limit expires. The job of ensuring correctness of
the routing table is given to one or more routing protocols. Many different routing
protocols are available to do this job, including RIP, OSPF, BGP, and IS-IS, to name a
few (see, for example, [DC05] for more detail on routing protocols).

5.4.2 IP Forwarding Actions

When the IP layer in a host or router needs to send an IP datagram to a next-hop
router or host, it first examines the destination IP address (D) in the datagram.
Using the value D, the following longest prefix match algorithm is executed on the
forwarding table:

ptg999

210 The Internet Protocol (IP)

1. Search the table for all entries for which the following property holds:
(D ^ mj) = dj, where mj is the value of the mask field associated with the for-
warding entry ej having index j, and dj is the value of the destination field
associated with ej. This means that the destination IP address D is bitwise
ANDed with the mask in each forwarding table entry (mj), and the result is
compared against the destination in the same forwarding table entry (dj).
If the property holds, the entry (ej here) is a “match” for the destination IP
address. When a match happens, the algorithm notes the entry index (j
here) and how many bits in the mask mj were set to 1. The more bits set to
1, the “better” the match.

2. The best matching entry ek (i.e., the one with the largest number of 1 bits in
its mask mk) is selected, and its next-hop field nk is used as the next-hop IP
address in forwarding the datagram.

If no matches in the forwarding table are found, the datagram is undeliverable.
If the undeliverable datagram was generated locally (on this host), a “host unreach-
able” error is normally returned to the application that generated the datagram. On
a router, an ICMP message is normally sent back to the host that sent the datagram.

In some circumstances, more than one entry may match an equal number of 1
bits. This can happen, for example, when more than one default route is available
(e.g., when attached to more than one ISP, called multihoming). The end-system
behavior in such cases is not set by standards and is instead specific to the operat-
ing system’s protocol implementation. A common behavior is for the system to sim-
ply choose the first match. More sophisticated systems may attempt to load-balance
or split traffic across the multiple routes. Studies suggest that multihoming can be
beneficial not only for large enterprises, but also for residential users [THL06].

5.4.3 Examples

To get a solid understanding of how IP forwarding works both in the simple local
environment (e.g., same LAN) and in the somewhat more complicated multihop
(global Internet) environment, we look at two cases. The first case, where all sys-
tems are using the same network prefix, is called direct delivery, and the other case
is called indirect delivery (see Figure 5-16).

5.4.3.1 Direct Delivery
First consider a simple example. Our Windows XP host (with IPv4 address S and
MAC address S), which we will just call S, has an IP datagram to send to our Linux
host (IPv4 address D, MAC address D), which we will call D. These systems are
interconnected using a switch. Both hosts are on the same Ethernet (see inside
front cover). Figure 5-16 (top) shows the delivery of the datagram. When the IP
layer in S receives a datagram to send from one of the upper layers such as TCP or
UDP, it searches its forwarding table. We would expect the forwarding table on S
to contain the information shown in Table 5-8.

ptg999

Section 5.4 IP Forwarding 211

In Table 5-8, the destination IPv4 address D (10.0.0.9) matches both the first
and second forwarding table entries. Because it matches the second entry bet-
ter (25 bits instead of none), the “gateway” or next-hop address is 10.0.0.100, the
address S. Thus, the gateway portion of the entry contains the address of the send-
ing host’s own network interface (no router is referenced), indicating that direct
delivery is to be used to send the datagram.

Figure 5-16 Direct delivery does not require the presence of a router—IP datagrams are encapsu-
lated in a link-layer frame that directly identifies the source and destination. Indirect
delivery involves a router—data is forwarded to the router using the router’s link-layer
address as the destination link-layer address. The router’s IP address does not appear
in the IP datagram (unless the router itself is the source or destination, or when source
routing is used).

Table 5-8 The (unicast) IPv4 forwarding table at host S contains only two entries. Host S is config-
ured with IPv4 address and subnet mask 10.0.0.100/25. Datagrams destined for addresses
in the range 10.0.0.1 through 10.0.0.126 use the second forwarding table entry and are sent
using direct delivery. All other datagrams use the first entry and are given to router R
with IPv4 address 10.0.0.1.

Destination Mask Gateway (Next Hop) Interface

0.0.0.0 0.0.0.0 10.0.0.1 10.0.0.100
10.0.0.0 255.255.255.128 10.0.0.100 10.0.0.100

ptg999

212 The Internet Protocol (IP)

The datagram is encapsulated in a lower-layer frame destined for the target
host D. If the lower-layer address of the target host is unknown, the ARP protocol
(for IPv4; see Chapter 4) or Neighbor Solicitation (for IPv6; see Chapter 8) opera-
tion may be invoked at this point to determine the correct lower-layer address, D.
Once known, the destination address in the datagram is D’s IPv4 address (10.0.0.9),
and D is placed in the Destination IP Address field in the lower-layer header. The
switch delivers the frame to D based solely on the link-layer address D; it pays no
attention to the IP addresses.

5.4.3.2 Indirect Delivery
Now consider another example. Our Windows host has an IP datagram to send
to the host ftp.uu.net, whose IPv4 address is 192.48.96.9. Figure 5-16 (bottom)
shows the conceptual path of the datagram through four routers. First, the Win-
dows machine searches its forwarding table but does not find a matching prefix
on the local network. It uses its default route entry (which matches every destina-
tion, but with no 1 bits at all). The default entry indicates that the appropriate next-
hop gateway is 10.0.0.1 (the “a side” of the router R1). This is a typical scenario for
a home network.

Recall that in the direct delivery case, the source and destination IP addresses
correspond to those associated with the source and destination hosts. The same
is true for the lower-layer (e.g., Ethernet) addresses. In indirect delivery, the
IP addresses correspond to the source and destination hosts as before, but the
lower-layer addresses do not. Instead, the lower-layer addresses determine which
machines receive the frame containing the datagram on a per-hop basis. In this
example, the lower-layer address needed is the Ethernet address of the next-hop
router R1’s a-side interface, the lower-layer address corresponding to IPv4 address
10.0.0.1. This is accomplished by ARP (or a Neighbor Solicitation request if this
example were using IPv6) on the network interconnecting S and R1. Once R1
responds with its a-side lower-layer address, S sends the datagram to R1. Delivery
from S to R1 takes place based on processing only the lower-layer headers (more
specifically, the lower-layer destination address). Upon receipt of the datagram, R1
checks its forwarding table. The information in Table 5-9 would be typical.

Table 5-9 The forwarding table at R1 indicates that address translation should be performed for
traffic. The router has a private address on one side (10.0.0.1) and a public address on the
other (70.231.132.85). Address translation is used to make datagrams originating on the
10.0.0.0/25 network appear to the Internet as though they had been sent from 70.231.132.85.

Destination Mask Gateway (Next Hop) Interface Note

0.0.0.0 0.0.0.0 70.231.159.254 70.231.132.85 NAT
10.0.0.0 255.255.255.128 10.0.0.100 10.0.0.1 NAT

ptg999

Section 5.4 IP Forwarding 213

When R1 receives the datagram, it realizes that the datagram’s destination IP
address is not one of its own, so it forwards the datagram. Its forwarding table is
searched and the default entry is used. The default entry in this case has a next
hop within the ISP servicing the network, 70.231.159.254 (this is R2’s a-side inter-
face). This address happens to be within SBC’s DSL network called by the some-
what cumbersome name adsl-70-231-159-254.dsl.snfc21.sbcglobal.net.
Because this router is in the global Internet and the Windows machine’s source
address is the private address 10.0.0.100, R1 performs Network Address Translation
(NAT) on the datagram to make it routable on the Internet. The NAT operation
results in the datagram having the new source address 70.231.132.85, which cor-
responds to R1’s b-side interface. Networks that do not use private addressing (e.g.,
ISPs and larger enterprises) avoid the last step and the original source address
remains unchanged. NAT is described in more detail in Chapter 7.

When router R2 (inside the ISP) receives the datagram, it goes through the
same steps that the local router R1 did (except for the NAT operation). If the data-
gram is not destined for one of its own IP addresses, the datagram is forwarded.
In this case, the router usually has not only a default route but several others,
depending on its connectivity to the rest of the Internet and its own local policies.

Note that IPv6 forwarding varies only slightly from conventional IPv4 for-
warding. Aside from the larger addresses, IPv6 uses a slightly different mecha-
nism (Neighbor Solicitation messages) to ascertain the lower-layer address of its
next hop. It is described in more detail in Chapter 8, as it is part of ICMPv6. In
addition, IPv6 has both link-local addresses and global addresses (see Chapter 2).
While global addresses behave like regular IP addresses, link-local addresses can
be used only on the same link. In addition, because all the link-local addresses
share the same IPv6 prefix (fe80::/10), a multihomed host may require user input
to determine which interface to use when sending a datagram destined for a link-
local destination.

To illustrate the use of link-local addresses, we start with our Windows XP
machine, assuming IPv6 is enabled and operational:

C:\> ping6 fe80::204:5aff:fe9f:9e80

Pinging fe80::204:5aff:fe9f:9e80 with 32 bytes of data:

No route to destination.
 Specify correct scope-id or use -s to specify source address.
 ...

C:\> ping6 fe80::204:5aff:fe9f:9e80%6

Pinging fe80::204:5aff:fe9f:9e80%6
from fe80::205:4eff:fe4a:24bb%6 with 32 bytes of data:

Reply from fe80::204:5aff:fe9f:9e80%6: bytes=32 time=1ms
Reply from fe80::204:5aff:fe9f:9e80%6: bytes=32 time=1ms

ptg999

214 The Internet Protocol (IP)

Reply from fe80::204:5aff:fe9f:9e80%6: bytes=32 time=1ms
Reply from fe80::204:5aff:fe9f:9e80%6: bytes=32 time=1ms

Ping statistics for fe80::204:5aff:fe9f:9e80%6:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 1ms, Maximum = 1ms, Average = 1ms

Here we see that failing to specify which interface to use for outbound link-
local traffic results in an error. In Windows XP, we can specify either a scope ID or
a source address. In this example we specify the scope ID as an interface number
using the %6 extension to the destination address. This informs the system to use
interface number 6 as the correct interface when sending the ping traffic.

To see the path taken to an IP destination, we can use the traceroute pro-
gram (called tracert on Windows, which has a slightly different set of options)
with the -n option to not convert IP addresses to names:

Linux% traceroute -n ftp.uu.net
traceroute to ftp.uu.net (192.48.96.9), 30 hops max, 38 byte packets
 1 70.231.159.254 9.285 ms 8.404 ms 8.887 ms
 2 206.171.134.131 8.412 ms 8.764 ms 8.661 ms
 3 216.102.176.226 8.502 ms 8.995 ms 8.644 ms
 4 151.164.190.185 8.705 ms 8.673 ms 9.014 ms
 5 151.164.92.181 9.149 ms 9.057 ms 9.537 ms
 6 151.164.240.134 9.680 ms 10.389 ms 11.003 ms
 7 151.164.41.10 11.605 ms 37.699 ms 11.374 ms
 8 12.122.79.97 13.449 ms 12.804 ms 13.126 ms
 9 12.122.85.134 15.114 ms 15.020 ms 13.654 ms
 MPLS Label=32307 CoS=5 TTL=1 S=0
10 12.123.12.18 16.011 ms 13.555 ms 13.167 ms
11 192.205.33.198 15.594 ms 15.497 ms 16.093 ms
12 152.63.57.102 15.103 ms 14.769 ms 15.128 ms
13 152.63.34.133 77.501 ms 77.593 ms 76.974 ms
14 152.63.38.1 77.906 ms 78.101 ms 78.398 ms
15 207.18.173.162 81.146 ms 81.281 ms 80.918 ms
16 198.5.240.36 77.988 ms 78.007 ms 77.947 ms
17 198.5.241.101 81.912 ms 82.231 ms 83.115 ms

This program lists each of the IP hops traversed while sending a series of data-
grams to the destination ftp.uu.net (192.48.96.9). The traceroute program
uses a combination of UDP datagrams (with increasing TTL over time) and ICMP
messages (used to detect each hop when the UDP datagrams expire) to accomplish
its task. Three UDP packets are sent at each TTL value, providing three round-
trip-time measurements to each hop. Traditionally, traceroute has carried only
IP information, but here we also see the following line:

MPLS Label=32307 CoS=5 TTL=1 S=0

ptg999

Section 5.5 Mobile IP 215

This indicates that Multiprotocol Label Switching (MPLS) [RFC3031] is being used
on the path, and the label ID is 32307, class of service is 5, TTL is 1, and the message
is not the bottom of the MPLS label stack (S = 0; see [RFC4950]). MPLS is a form
of link-layer network capable of carrying multiple network-layer protocols. Its
interaction with ICMP is described in [RFC4950], and its handling of IPv4 packets
containing options is described in [RFC6178]. Many network operators use it for
traffic engineering purposes (i.e., controlling where network traffic flows through
their networks).

5.4.4 Discussion

In the examples we have just seen there are a few key points that should be kept in
mind regarding the operation of IP unicast forwarding:

1. Most of the hosts and routers in this example used a default route consist-
ing of a single forwarding table entry of this form: mask 0, destination 0,
next hop <some IP address>. Indeed, most hosts and most routers at the
edge of the Internet can use a default route for everything other than desti-
nations on local networks because there is only one interface available that
provides connectivity to the rest of the Internet.

2. The source and destination IP addresses in the datagram never change
once in the regular Internet. This is always the case unless either source
routing is used, or when other functions (such as NAT, as in the example)
are encountered along the data path. Forwarding decisions at the IP layer
are based on the destination address.

3. A different lower-layer header is used on each link that uses addressing,
and the lower-layer destination address (if present) always contains the
lower-layer address of the next hop. Therefore, lower-layer headers rou-
tinely change as the datagram is moved along each hop toward its des-
tination. In our example, both Ethernet LANs encapsulated a link-layer
header containing the next hop’s Ethernet address, but the DSL link did
not. Lower-layer addresses are normally obtained using ARP (see Chapter
4) for IPv4 and ICMPv6 Neighbor Discovery for IPv6 (see Chapter 8).

5.5 Mobile IP

So far we have discussed the conventional ways that IP datagrams are forwarded
through the Internet, as well as private networks that use IP. One assumption of the
model is that a host’s IP address shares a prefix with its nearby hosts and routers. If
such a host should move its point of network attachment, yet remain connected to
the network at the link layer, all of its upper-layer (e.g., TCP) connections would fail

ptg999

216 The Internet Protocol (IP)

because either its IP address would have to be changed or routing would not deliver
packets to the (moved) host properly. A multiyear (actually, multi decade!) effort
known as Mobile IP addresses this issue. (Other protocols have also been suggested;
see [RFC6301].) Although there are versions of Mobile IP for both IPv4 [RFC5944]
(MIPv4) and IPv6 [RFC6275], we focus on Mobile IPv6 (called MIPv6) because it is
more flexible and somewhat easier to explain. Also, it currently appears more likely
to be deployed in the quickly growing smartphone market. Note that we do not
discuss MIPv6 comprehensively; it is sufficiently complex to merit a book on its own
(e.g., [RC05]). Nonetheless, we will cover its basic concepts and principles.

Mobile IP is based on the idea that a host has a “home” network but may visit
other networks from time to time. While at home, ordinary forwarding is per-
formed, according to the algorithms discussed in this chapter. When away from
home, the host keeps the IP address it would ordinarily use at home, but some
special routing and forwarding tricks are used to make the host appear to the
network, and to the other systems with which it communicates, as though it is
attached to its home network. The scheme depends on a special type of router
called a “home agent” that helps provide routing for mobile nodes.

Most of the complexity in MIPv6 involves signaling messages and how they
are secured. These messages use various forms of the Mobility extension header
(Next Header field value 135 in Table 5-5, often just called the mobility header), so
Mobile IP is, in effect, a special protocol of its own. The IANA maintains a registry
of the various header types (17 are reserved currently), along with many other
parameters associated with MIPv6 [MP]. We shall focus on the basic messages
specified in [RFC6275]. Other messages are used to implement “fast handovers”
[RFC5568], changing of the home agent [RFC5142], and experiments [RFC5096].
To understand MIPv6, we begin by introducing the basic model for IP mobility
and the associated terminology.

5.5.1 The Basic Model: Bidirectional Tunneling

Figure 5-17 shows the entities involved in making MIPv6 work. Much of the termi-
nology also applies to MIPv4 [RFC5944]. A host that might move is called a mobile
node (MN), and the hosts with which it is communicating are called correspon-
dent nodes (CNs). The MN is given an IP address chosen from the network prefix
used in its home network. This address is known as its home address (HoA). When
it travels to a visited network, it is given an additional address, called its care-of
address (CoA). In the basic model, whenever a CN communicates with an MN,
the traffic is routed through the MN’s home agent (HA). HAs are a special type of
router deployed in the network infrastructure like other important systems (e.g.,
routers and Web servers). The association between an MN’s HoA and its CoA is
called a binding for the MN.

The basic model (see Figure 5-17) works in cases where an MN’s CNs do not
engage in the MIPv6 protocol. This model is also used for network mobility (called
“NEMO” [RFC3963]), when an entire network is mobile. When the MN (or mobile

ptg999

Section 5.5 Mobile IP 217

network router) attaches to a new point in the network, it receives its CoA and
sends a binding update message to its HA. The HA responds with a binding acknowl-
edgment. Assuming that all goes well, traffic between the MN and CNs is thereaf-
ter routed through the MN’s HA using a two-way form of IPv6 packet tunneling
[RFC2473] called bidirectional tunneling. These messages are ordinarily protected
using IPsec with the Encapsulating Security Payload (ESP) (see Chapter 18). Doing so
ensures that an HA is not fooled into accepting a binding update from a fake MN.

5.5.2 Route Optimization (RO)

Bidirectional tunneling makes MIPv6 work in a relatively simple way, and with
CNs that are not Mobile-IP-aware, but the routing can be extremely inefficient,
especially if the MN and CNs are near each other but far away from the MN’s HA.
To improve upon the inefficient routing that may occur in basic MIPv6, a process
called route optimization (RO) can be used, provided it is supported by the various
nodes involved. As we shall see, the methods used to ensure that RO is secure and
useful are somewhat complicated. We shall sketch only its basic operations. For a
more detailed discussion, see [RFC6275] and [RFC4866]. For a discussion of the
design rationale behind RO security, see [RFC4225].

Figure 5-17 Mobile IP supports the ability of nodes to change their point of network attachment and keep
network connections operating. The mobile node’s home agent helps to forward traffic for mobiles
it serves and also plays a role in route optimization, which can substantially improve routing per-
formance by allowing mobile and correspondent nodes to communicate directly.

ptg999

218 The Internet Protocol (IP)

When used, RO involves a correspondent registration whereby an MN notifies
its CNs of its current CoA to allow routing to take place without help from the HA.
RO operates in two parts: one part involves establishing and maintaining the reg-
istration bindings; another involves the method used to exchange datagrams once
all bindings are in place. To establish a binding with its CNs, an MN must prove
to each CN that it is the proper MN. This is accomplished by a Return Routability
Procedure (RRP). The messages that support RRP are not protected using IPsec as
are the messages between an MN and its HA. Expecting IPsec to work between
an MN and any CN was believed to be too unreliable (IPv6 requires IPsec sup-
port but does not require its use). Although the RRP is not as strong as IPsec, it
is simpler and covers most of the security threats of concern to the designers of
Mobile IP.

The RRP uses the following mobility messages, all of which are subtypes of the
IPv6 Mobility extension header: Home Test Init (HoTI), Home Test (HoT), Care-of
Test Init (CoTI), Care-of Test (CoT). These messages verify to a CN that a particu-
lar MN is reachable both at its home address (HoTI and HoT messages) and at its
care-of addresses (CoTI and CoT messages). The protocol is shown in Figure 5-18.

Figure 5-18 The return routability check procedure used in sending binding updates from an MN
to a CN in order to enable route optimization. The check aims to demonstrate to a CN
that an MN is reachable at both its home address and its care-of address. In this figure,
messages routed indirectly are indicated with dashed arrows. The numbers indicate
the ordering of messages, although the HoTI and CoTI messages can be sent by an MN
in parallel.

ptg999

Section 5.5 Mobile IP 219

To understand the RRP, we take the simplest case of a single MN, its HA, and
a CN as shown in Figure 5-18. The MN begins by sending both a HoTI and CoTI
message to the CN. The HoTI message is forwarded through the HA on its way
to the CN. The CN receives both messages in some order and responds with a
HoT and CoT message to each, respectively. The HoT message is sent to the MN
via the HA. Inside these messages are random bit strings called tokens, which the
MN uses to form a cryptographic key (see Chapter 18 for a discussion of the basics
of cryptography and keys). The key is then used to form authenticated binding
updates that are sent to the CN. If successful, the route can be optimized and data
can flow directly between an MN and a CN, as shown in Figure 5-19.

Figure 5-19 Once a binding is established between an MN and a CN, data flows directly between
them. The direction from MN to CN uses an IPv6 Home Address Destination option.
The reverse direction uses a type 2 Routing header (RH2).

Once a binding has been established successfully, data may flow directly
between an MN and its CNs without the inefficiency of bidirectional tunneling.
This is accomplished using an IPv6 Destination option for traffic moving from
the MN to a CN and a type 2 Routing header (RH2) for traffic headed in the
reverse direction, as detailed in Figure 5-19. The packets from MN to CN include
a Source IP Address field of the MN’s CoA, which avoids problems associated with
ingress filtering [RFC2827] that might cause packets containing the MN’s HoA in
the Source IP Address field to be dropped. The MN’s HoA, contained in the Home
Address option, is not processed by routers, so it passes through to the CN with-
out modification. On the return path, packets are destined for the MN’s CoA. After
successfully receiving a returning packet, the MN processes the extension headers
and replaces the destination IP address with the HoA contained in the RH2. The
resulting packet is delivered to the rest of the MN’s protocol stack, so applications
“believe” they are using the MN’s HoA instead of its CoA for establishing connec-
tions and other actions.

ptg999

220 The Internet Protocol (IP)

5.5.3 Discussion

There are a number of issues with Mobile IP. It is designed to address a certain
type of mobility in which a node’s IP address may change while the underlying
link layer remains more or less connected. This type of usage is not common for
portable computers, which tend to shut down or be put to sleep when being moved
from place to place. The usage model requiring Mobile IP (and MIPv6 in particu-
lar) is more likely to be a large number of smartphones that use IP. Such devices
may be running real-time applications (e.g., VoIP) that have latency requirements.
Consequently, several approaches are being explored to reduce the amount of time
required to execute binding updates. These include fast handovers [RFC5568], a
modification to MIPv6 called Hierarchical MIPv6 (HMIPv6) [RFC5380], and a
modification in which the mobile signaling ordinarily required of an MN is per-
formed by a proxy (called proxy MIPv6 or PMIPv6 [RFC5213]).

5.6 Host Processing of IP Datagrams

Although routers do not ordinarily have to consider which IP addresses to place
in the Source IP Address and Destination IP Address fields of the packets they for-
ward, hosts must consider both. Applications such as Web browsers may attempt
to make connections to a named host or server that can have multiple addresses.
The client system making such connections may also have multiple addresses.
Thus, there is some question as to which address (and version of IP) should be
used when sending a datagram. A more subtle point we shall explore is whether
to accept traffic destined for a local IP address if it arrives on the wrong interface
(i.e., one that is not configured with the destination address present in a received
datagram).

5.6.1 Host Models

Although it may appear to be a straightforward decision to determine whether a
received unicast datagram matches one of a host’s IP addresses and should be pro-
cessed, this decision depends on the host model of the receiving system [RFC1122]
and is most relevant for multihomed hosts. There are two host models, the strong
host model and the weak host model. In the strong host model, a datagram is accepted
for delivery to the local protocol stack only if the IP address contained in the Desti-
nation IP Address field matches one of those configured on the interface upon which
the datagram arrived. In systems implementing the weak host model, the oppo-
site is true—a datagram carrying a destination address matching any of the local
addresses may arrive on any interface and is processed by the receiving protocol
stack, irrespective of the network interface upon which it arrived. Host models also
apply to sending behavior. That is, a host using the strong host model sends data-
grams from a particular interface only if one of the interface’s configured addresses
matches the Source IP Address field in the datagram being sent.

ptg999

Section 5.6 Host Processing of IP Datagrams 221

Figure 5-20 illustrates a case where the host model becomes important. In
this example, two hosts (A and B) are connected through the global Internet but
also through a local network. If host A is set up to conform to the strong host
model, packets it receives destined for 203.0.113.1 from the Internet or destined for
192.0.2.1 from the local network are dropped. This situation can arise, for example,
if host B is configured to obey the weak host model. It may choose to send pack-
ets to 192.0.2.1 using the local network (e.g., because doing so may be cheaper or
faster). This situation seems unfortunate, as A receives what appear to be perfectly
legitimate packets, yet drops them merely because it is operating according to the
strong host model. So a reasonable question would be: Why is it ever a good idea
to use the strong host model?

Figure 5-20 Hosts may be connected by more than one interface. In such cases, they must decide
which addresses to use for the Source IP Address and Destination IP Address fields of the
packets they exchange. The addresses used result from a combination of each host’s for-
warding table, application of an address selection algorithm [RFC 3484], and whether
hosts are operating using a weak or strong host model.

The attraction of using the strong host model relates to a security concern.
Referring to Figure 5-20, consider a malicious user on the Internet who injects a
packet destined for the address 203.0.113.2. This packet could also include a forged
(“spoofed”) source IP address (e.g., 203.0.113.1). If the Internet cooperates in rout-
ing such a packet to B, applications running on B may be tricked into believing
they have received local traffic originating from A. This can have significant nega-
tive consequences if such applications make access control decisions based on the
source IP address.

The host model, for both sending and receiving behavior, can be configured
in some operating systems. In Windows (Vista and later), strong host behavior is

ptg999

222 The Internet Protocol (IP)

the default for sending and receiving for IPv4 and IPv6. In Linux, the IP behavior
defaults to the weak host model. BSD (including Mac OS X) uses the strong host
model. In Windows, the following commands can be used to configure weak host
receive and send behavior, respectively:

C:\> netsh interface ipvX set interface <ifname> weakhostreceive=Yabled

C:\> netsh interface ipvX set interface <ifname> weakhostsend=Yabled

For these commands, <ifname> is replaced with the appropriate interface name;
X is replaced with either 4 or 6, depending on which version of IP is being con-
figured; and Y is replaced with either en or dis, depending on whether weak
behavior is to be enabled or disabled, respectively.

5.6.2 Address Selection

When a host sends an IP datagram, it must decide which of its IP addresses to
place in the Source IP Address field of the outgoing datagram, and which destina-
tion address to use for a particular destination host if multiple addresses for it are
known. In some cases the source address is already known because it is provided
by an application or because the packet is being sent in response to a previously
received packet on the same connection (see, for example, Chapter 13 for how
addresses are managed with TCP).

In modern IP implementations, the IP addresses used in the Source IP Address
and Destination IP Address fields of the datagram are selected using a set of pro-
cedures called source address selection and destination address selection. Historically,
most Internet hosts had only one IP address for external communication, so select-
ing the addresses was not terribly difficult. With the advent of multiple addresses
per interface and the use of IPv6 in which simultaneous use of addresses with
multiple scopes is normal, some procedure must be used. The situation is further
complicated when communication is to take place between two hosts that imple-
ment both IPv4 and IPv6 (“dual-stack” hosts; see [RFC4213]). Failure to select the
correct addresses can lead to asymmetric routing, unwanted filtering, or discard-
ing of packets. Fixing such problems can be a challenge.

[RFC3484] gives the rules for selecting IPv6 default addresses; IPv4-only hosts
do not ordinarily have such complex issues. In general, applications can invoke
special API operations to override the default behavior, as suggested previously.
Even then, tricky deployment situations may still arise [RFC5220]. The default
rules in [RFC3484] are to prefer source/destination address pairs where the
addresses are of the same scope, to prefer smaller over larger scopes, to avoid the
use of temporary addresses when other addresses are available, and to otherwise
prefer pairs with the longest common prefix. Global addresses are preferred over
temporary addresses when available. The specification also includes a method of

ptg999

Section 5.6 Host Processing of IP Datagrams 223

providing “administrative override” to the default rules, but this is deployment-
specific and we do not discuss it further.

The selection of default addresses is controlled by a policy table, present (at
least conceptually) in each host. It is a longest-matching-prefix lookup table, simi-
lar to a forwarding table used with IP routing. For an address A, a lookup in this
table produces a precedence value for A, P(A), and a label for A, L(A). A higher pre-
cedence value indicates greater preference. The labels are used for grouping of
similar address types. For example if L(S) = L(D), the algorithm prefers to use the
pair (S,D) as a source/destination pair. If no other policy is specified, [RFC3484]
suggests that the policy values from Table 5-10 be used.

Table 5-10 The default host policy table, according to [RFC3484]. Higher precedence values indicate
a greater preference.

Prefix Precedence P() Label L()

::1/128 50 0

::/0 40 1

2002::/16 30 2

::/96 20 3

::ffff:0:0/96 10 4

This table, or one configured at a site based upon administrative configura-
tion parameters, is used to drive the address selection algorithm. The function
CPL(A,B) or “common prefix length” is the length, in bits, of the longest com-
mon prefix between IPv6 addresses A and B, starting from the left-most signifi-
cant bit. The function S(A) is the scope of IPv6 address A mapped to a numeric
value with larger scopes mapping to larger values. If A is link-scoped and B is
global scope, then S(A) < S(B). The function M(A) maps an IPv4 address A to an
IPv4-mapped IPv6 address. Because the scope properties of IPv4 addresses are
based on the value of the address itself, the following relations need to be defined:
S(M(169.254.x.x)) = S(M(127.x.x.x)) < S(M(private address space)) < S(M(any other
address)). The notation Λ(A) is the lifecycle of the address (see Chapter 6). Λ (A) <
Λ (B) if A is a deprecated address (i.e., one whose use is discouraged) and B is a pre-
ferred address (i.e., an address preferred for active use). Finally, H(A) is true if A is
a home address and C(A) is true if A is a care-of address. These last two terms are
used only in the context of Mobile IP.

5.6.2.1 The Source Address Selection Algorithm
The source address selection algorithm defines a candidate set CS(D) of potential
source addresses based on a particular destination address D. There is a restriction

ptg999

224 The Internet Protocol (IP)

that anycast, multicast, and the unspecified address are never in CS(D) for any D.
We shall use the notation R(A) to indicate the rank of address A in the set CS(D).
A higher rank (i.e., greater value of R(A)) for A versus B in CS(D), denoted R(A) >
R(B), means that A is preferred to B for use as a source address for reaching the
machine with address D. The notation R(A) *> R(B) means to assign A a higher
rank than B in CS(D). The notation I(D) indicates the interface selected (i.e., by
the forwarding longest matching prefix algorithm described previously) to reach
destination D. The notation @(i) is the set of addresses assigned to interface i. The
notation T(A) is the Boolean true if A is a temporary address (see Chapter 6) and
false otherwise.

The following rules are applied to establish a partial ordering between
addresses A and B in CS(D) for destination D:

1. Prefer same address: if A = D, R(A) *> R(B); if B = D, R(B) *> R(A).

2. Prefer appropriate scope: if S(A) < S(B) and S(A) < S(D), R(B) *> R(A) else
R(A) *> R(B); if S(B) < S(A) and S(B) < S(D), R(A) *> R(B) else R(B) *> R(A).

3. Avoid deprecated addresses: if S(A) = S(B), { if Λ(A) < Λ(B), R(B) *> R(A) else
R(A) *> R(B) }.

4. Prefer home address: if H(A) and C(A) and ¬(C(B) and H(B)), R(A) *> R(B);
if H(B) and C(B) and ¬(C(A) and H(A)), R(B) *> R(A); if (H(A) and ¬C(A))
and (¬H(B) and C(B)), R(A) *> R(B); if (H(B) and ¬C(B)) and (¬H(A) and
C(A)), R(B) *> R(A).

5. Prefer outgoing interface: if A ∈ @(I(D)) and B ∈ @(I(D)), R(A) *> R(B); if B
∈@(I(D)) and A ∈ @(I(D)), R(B) *> R(A).

6. Prefer matching label: if L(A) = L(D) and L(B) ≠ L(D), R(A) *> R(B); if L(B) =
L(D) and L(A) ≠ L(D), R(B) *> R(A).

7. Prefer nontemporary addresses: if T(B) and ¬T(A), R(A) *> R(B); if T(A) and
¬T(B), R(B) *> R(A).

8. Use longest matching prefix: if CPL(A,D) > CPL(B,D), R(A) *> R(B); if
CPL(B,D) > CPL(A,D), R(B) *> R(A).

The partial ordering rules can be used to form a total ordering of all the can-
didate addresses in CS(D). The one with the largest rank is the selected source
address for destination D, denoted Q(D), and is used by the destination address
selection algorithm. If Q(D) = Ø (null), no source could be determined for destina-
tion D.

5.6.2.2 The Destination Address Selection Algorithm
We now turn to the problem of default destination address selection. It is specified
in a way similar to source address selection. Recall that Q(D) is the source address

ptg999

Section 5.6 Host Processing of IP Datagrams 225

selected in the preceding example to reach the destination D. Let U(B) be the Bool-
ean true if destination B is not reachable and E(A) indicate that destination A is
reached using some “encapsulating transport” (e.g., tunneled routing). Using the
same structure as before on pairwise elements A and B of the set SD(S), we have
the following rules:

1. Avoid unusable destinations: if U(B) or Q(B) = Ø, R(A) *> R(B); if U(A) or
Q(A) = Ø, R(B) *> R(A).

2. Prefer matching scope: if S(A) = S(Q(A)) and S(B) ≠ S(Q(B)), R(A) *> R(B); if
S(B) = S(Q(B)) and S(A) ≠ S(Q(A)), R(B)*>R(A).

3. Avoid deprecated addresses: if Λ (Q(A)) < Λ (Q(B)), R(B) *> R(A); if Λ (Q(B))
< Λ (Q(A)), R(A) *> R(B).

4. Prefer home address: if H(Q(A)) and C(Q(A)) and ¬(C(Q(B)) and H(Q(B))),
R(A) *> R(B); if (Q(B)) and C(Q(B)) and ¬(C(Q(A)) and H(Q(A))), R(B) *>
R(A); if (H(Q(A)) and ¬C(Q(A))) and (¬H(Q(B)) and C(Q(B))), R(A) *> R(B);
if (H(Q(B)) and ¬C(Q(B))) and (¬H(Q(A)) and C(Q(A))), R(B) *> R(A).

5. Prefer matching label: if L(Q(A)) = L(A) and L(Q(B)) ≠ L(B), R(A) *> R(B); if
L(Q(A)) ≠ L(A) and L(Q(B)) = L(B), R(B) *> R(A).

6. Prefer higher precedence: if P(A) > P(B), R(A) *> R(B); if P(A) < P(B), R(B) *>
R(A).

7. Prefer native transport: if E(A) and ¬E(B), R(B) *> R(A); if E(B) and ¬E(A),
R(A) *> R(B).

8. Prefer smaller scope: if S(A) < S(B), R(A) *> R(B) else R(B) *> R(A).

9. Use longest matching prefix: if CPL(A, Q(A)) > CPL(B, Q(B)), R(A) *> R(B);
if CPL(A, Q(A)) < CPL (B, Q(B)), R(B) *> R(A).

10. Otherwise, leave rank order unchanged.

As with source address selection, these rules form a partial ordering between
two elements of the set of possible destinations in the set of destinations SD(S) for
source S. The highest-rank address gives the output for the destination address
selection algorithm. As mentioned previously, some issues have been raised
regarding operation of this algorithm (e.g., step 9 of the destination address selec-
tion can lead to problems with DNS round-robin; see Chapter 11). As a result,
an update to [RFC3484] is being considered [RFC3484-revise]. Importantly, this
revision addresses how so-called Unique Local IPv6 Unicast Addresses (ULAs)
[RFC4193] are treated by the address selection algorithms. ULAs are globally
scoped IPv6 addresses that are constrained to be used only within a common
(private) network.

ptg999

226 The Internet Protocol (IP)

5.7 Attacks Involving IP

There have been a number of attacks on the IP protocol over the years, based pri-
marily on the operation of options, or by exploiting bugs in specialized code (such
as fragment reassembly). Simple attacks involve trying to get a router to crash or
perform poorly because one or more of the IP header fields is not valid (e.g., bad
header length or version number). Typically, routers in the Internet today ignore
or strip IP options, and the bugs in basic packet processing have been fixed. Thus,
these types of simple attacks are not a big concern. Attacks involving fragmenta-
tion can be addressed using other means [RFC1858][RFC3128].

Without authentication or encryption (or when it is disabled for IPv6), IP
spoofing attacks are possible. Some of the earliest attacks involved fabricating
the source IP address. Because early access control mechanisms depended on the
source IP address, many such systems were circumvented. Spoofing would some-
times be combined with various combinations of source routing options. Under
some circumstances, a remote attacker’s computer would appear to be a host on
the local network (or even the same computer) requesting some sort of service.
Although the spoofing of IP addresses is still a concern today, there are several
approaches to limit its damage, including ingress filtering [RFC2827][RFC3704],
whereby an ISP checks the source addresses of its customers’ traffic to ensure that
datagrams contain source addresses from an assigned IP prefix.

As IPv6 and Mobile IP are relatively new, at least compared to IPv4, all of
their vulnerabilities have undoubtedly not yet been discovered. With the newer
and more flexible types of options headers, an attacker could have considerable
influence on the processing of an IPv6 packet. For example, the Routing header
(type 0) was discovered to have such severe security problems that its use has
been deprecated entirely. Other possibilities include spoofing the source address
and/or Routing header entries to make packets appear as if they have come from
other places. These attacks are avoided by configuring packet-filtering firewalls to
take into account the contents of Routing headers. It is worth noting that simply
filtering out all packets containing extension headers and options in IPv6 would
severely restrict its use. In particular, disabling extension headers would prevent
Mobile IPv6 from functioning.

5.8 Summary

In this chapter we started with a description of the IPv4 and IPv6 headers, discuss-
ing some of the related functions such as the Internet checksum and fragmenta-
tion. We saw how IPv6 increases the size of addresses, improves upon IP’s method
of including options in packets by use of the extension headers, and removes sev-
eral of the noncritical fields from the IPv4 header. With the addition of this func-
tionality, the IP header increases in size by only a factor of 2 even though the
size of the addresses has increased fourfold. The IPv4 and IPv6 headers are not

ptg999

 Section 5.8 Summary 227

directly compatible and share only the 4-bit Version field in common. Because of
this, some level of translation is required to interconnect IPv4 and IPv6 nodes.
Dual-stack hosts implement both IPv4 and IPv6 but must choose which protocol
to use and when.

Since its inception, IP has included a header field to indicate a type of traffic
or service class associated with each datagram. This mechanism has been rede-
fined over the years in hopes of providing mechanisms to support differentiated
services on the Internet. If it is widely implemented, the Internet could potentially
offer improved performance for some traffic or users versus others in a standard
way. To what extent this happens will be based in part on working out the busi-
ness models surrounding the differentiated services capability.

IP forwarding describes the way IP datagrams are transported through single
and multihop networks. IP forwarding is performed on a hop-by-hop basis unless
special processing takes place. The destination IP address never changes as the
datagram proceeds through all the hops, but the link-layer encapsulation and des-
tination link-layer address change on each hop. Forwarding tables and the longest
prefix match algorithm are used by hosts and routers to determine the best match-
ing forwarding entry and determine the next hops along a forwarding path. In
many circumstances, very simple tables consisting of only a default route, which
matches all possible destinations equally, are adequate.

Using a special set of protocols for security and signaling, Mobile IP estab-
lishes secure bindings between a mobile node’s home address and care-of address.
These bindings may be used to communicate with a mobile node even when it is
not at home. The basic function involves tunneling traffic through a cooperating
home agent, but this may lead to very inefficient routing. A number of additional
features support a route optimization feature that allows a mobile node to talk
directly with other remote nodes and vice versa. This requires a mobile node’s
correspondent hosts to support MIPv6 as well as route optimization, which is an
optional feature. Ongoing work aims at reducing the latency involved in the route
optimization binding update procedure.

We also looked at how the host model, strong or weak, affects how IP data-
grams are processed. In the strong model, each interface is permitted to receive
or send only datagrams that use addresses associated with the interface, whereas
the weak model is less restrictive. The weak host model permits communication
in some cases where it would not otherwise be possible but may be more vulner-
able to certain kinds of attacks. The host model also relates to how a host chooses
which addresses to use when communicating. Early on, most hosts had only one
IP address so the decision was fairly straightforward. With IPv6, in which a host
may have several addresses, and for multihomed hosts using several network
interfaces, the decision is less straightforward yet nonetheless may have an impor-
tant impact on routing. A set of address selection algorithms, for both source and
destination addresses, was presented. These algorithms tend to prefer limited-
scope, permanent addresses.

ptg999

228 The Internet Protocol (IP)

We discussed some of the attacks targeted against the IP protocol. Such
attacks have often involved spoofing addresses, including options to alter rout-
ing behavior, and attempts to exploit bugs in the implementation of IP, especially
with respect to fragmentation. The protocol implementation bugs have been fixed
in modern operating systems, and in most cases options are disabled at the edge
routers of enterprises. Although spoofing remains somewhat of a concern, proce-
dures such as ingress filtering help to eliminate this problem as well.

5.9 References

[A92] P. Mersky, “Autovon: The DoD Phone Company,” http://www.chips.navy.
mil/archives/92_oct/file3.htm

[AN] http://www.iana.org/assignments/protocol-numbers

[DC05] J. Doyle and J. Carroll, Routing TCP/IP, Volume 1, Second Edition (Cisco
Press, 2005).

[DSCPREG] http://www.iana.org/assignments/dscp-registry/dscp-registry.xml

[H05] G. Huston, “Just How Big Is IPv6?—or Where Did All Those Addresses
Go?” The ISP Column, July 2005, http://cidr-report.org/papers/isoc/2005-07/
ipv6size.html

[IP6PARAM] http://www.iana.org/assignments/ipv6-parameters

[IPPARAM] http://www.iana.org/assignments/ip-parameters

[IV] http://www.iana.org/assignments/version-numbers

[LFS07] J. Leguay, T. Friedman, and K. Salamatian, “Describing and Simulating
Internet Routes,” Computer Networks, 51(8), June 2007.

[MB97] L. McKnight and J. Bailey, eds., Internet Economics (MIT Press, 1997).

[MP] http://www.iana.org/assignments/mobility-parameters

[P90] C. Pinter, A Book of Abstract Algebra, Second Edition (Dover, 2010; reprint of
1990 edition).

[PB61] W. Peterson and D. Brown, “Cyclic Codes for Error Detection,” Proc. IRE,
49(228), Jan. 1961.

[RC05] S. Raab and M. Chandra, Mobile IP Technology and Applications (Cisco
Press, 2005).

[RFC0791] J. Postel, “Internet Protocol,” Internet RFC 0791/STD 0005, Sept. 1981.

[RFC1108] S. Kent, “U.S. Department of Defense Security Options for the Internet
Protocol,” Internet RFC 1108 (historical), Nov. 1991.

http://www.chips.navy.mil/archives/92_oct/file3.htm
http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/dscp-registry/dscp-registry.xml
http://cidr-report.org/papers/isoc/2005-07/ipv6size.html
http://cidr-report.org/papers/isoc/2005-07/ipv6size.html
http://www.iana.org/assignments/ipv6-parameters
http://www.iana.org/assignments/ip-parameters
http://www.iana.org/assignments/version-numbers
http://www.iana.org/assignments/mobility-parameters
http://www.chips.navy.mil/archives/92_oct/file3.htm

ptg999

 Section 5.9 References 229

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

[RFC1385] Z. Wang, “EIP: The Extended Internet Protocol,” Internet RFC 1385
(informational), Nov. 1992.

[RFC1393] G. Malkin, “Traceroute Using an IP Option,” Internet RFC 1393
(experimental), Jan. 1993.

[RFC1858] G. Ziemba, D. Reed, and P. Traina, “Security Consideration for IP Frag-
ment Filtering,” Internet RFC 1858 (informational), Oct. 1995.

[RFC2113] D. Katz, “IP Router Alert Option,” Internet RFC 2113, Feb. 1997.

[RFC2460] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6),” Inter-
net RFC 2460, Dec. 1998.

[RFC2473] A. Conta and S. Deering, “Generic Packet Tunneling in IPv6 Specifica-
tion,” Internet RFC 2473, Dec. 1998.

[RFC2474] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Differen-
tiated Services Field (DS Field) in the IPv4 and IPv6 Headers,” Internet RFC 2474,
Dec. 1998.

[RFC2475] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” Internet RFC 2475 (informational), Dec.
1998.

[RFC2597] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forward-
ing PHB Group,” Internet RFC 2597, June 1999.

[RFC2675] D. Borman, S. Deering, and R. Hinden, “IPv6 Jumbograms,” Internet
RFC 2675, Aug. 1999.

[RFC2711] C. Partridge and A. Jackson, “IPv6 Router Alert Option,” Internet RFC
2711, Oct. 1999.

[RFC2827] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks Which Employ IP Source Address Spoofing,” Internet
RFC 2827/BCP 0038, May 2000.

[RFC3031] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label
Switching Architecture,” Internet RFC 3031, Jan. 2001.

[RFC3128] I. Miller, “Protection Against a Variant of the Tiny Fragment Attack,”
Internet RFC 3128 (informational), June 2001.

[RFC3168] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” Internet RFC 3168, Sept. 2001.

[RFC3246] B. Davie, A. Charny, J. C. R. Bennett, K. Benson, J. Y. Le Boudec, W.
Courtney, S. Davari, V. Firoiu, and D. Stiliadis, “An Expedited Forwarding PHB
(Per-Hop Behavior),” Internet RFC 3246, Mar. 2002.

ptg999

230 The Internet Protocol (IP)

[RFC3260] D. Grossman, “New Terminology and Clarifications for Diffserv,”
Internet RFC 3260 (informational), Apr. 2002.

[RFC3484] R. Draves, “Default Address Selection for Internet Protocol Version 6
(IPv6),” Internet RFC 3484, Feb. 2003.

[RFC3484-revise] A. Matsumoto, J. Kato, T. Fujisaki, and T. Chown, “Update to
RFC 3484 Default Address Selection for IPv6,” Internet draft-ietf-6man-rfc3484-
revise, work in progress, July 2011.

[RFC3704] F. Baker and P. Savola, “Ingress Filtering for Multihomed Hosts,”
Internet RFC 3704/BCP 0084, May 2004.

[RFC3963] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, “Network
Mobility (NEMO) Basic Support Protocol,” Internet RFC 3963, Jan. 2005.

[RFC4193] R. Hinden and B. Haberman, “Unique Local IPv6 Unicast Addresses,”
Internet RFC 4193, Oct. 2005.

[RFC4213] E. Nordmark and R. Gilligan, “Basic Transition Mechanisms for IPv6
Hosts and Routers,” Internet RFC 4213, Oct. 2005.

[RFC4225] P. Nikander, J. Arkko, T. Aura, G. Montenegro, and E. Nordmark,
“Mobile IP Version 6 Route Optimization Security Design Background,” Internet
RFC 4225 (informational), Dec. 2005.

[RFC4594] J. Babiarz, K. Chan, and F. Baker, “Configuration Guidelines for
Diffserv Service Classes,” Internet RFC 4594 (informational), Aug. 2006.

[RFC4782] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, “Quick-Start for TCP
and IP,” Internet RFC 4782 (experimental), Jan. 2007.

[RFC4866] J. Arkko, C. Vogt, and W. Haddad, “Enhanced Route Optimization for
Mobile IPv6,” Internet RFC 4866, May 2007.

[RFC4950] R. Bonica, D. Gan, D. Tappan, and C. Pignataro, “ICMP Extensions for
Multiprotocol Label Switching,” Internet RFC 4950, Aug. 2007.

[RFC5095] J. Abley, P. Savola, and G. Neville-Neil, “Deprecation of Type 0 Rout-
ing Headers in IPv6,” Internet RFC 5095, Dec. 2007.

[RFC5096] V. Devarapalli, “Mobile IPv6 Experimental Messages,” Internet RFC
5094, Dec. 2007.

[RFC5142] B. Haley, V. Devarapalli, H. Deng, and J. Kempf, “Mobility Header
Home Agent Switch Message,” Internet RFC 5142, Jan. 2008.

[RFC5213] S. Gundavelli, ed., K. Leung, V. Devarapalli, K. Chowdhury, and B.
Patil, “Proxy Mobile IPv6,” Internet RFC 5213, Aug. 2008.

[RFC5220] A. Matsumoto, T. Fujisaki, R. Hiromi, and K. Kanayama, “Prob-
lem Statement for Default Address Selection in Multi-Prefix Environments:

ptg999

 Section 5.9 References 231

Operational Issues of RFC 3484 Default Rules,” Internet RFC 5220 (informa-
tional), July 2008.

[RFC5350] J. Manner and A. McDonald, “IANA Considerations for the IPv4 and
IPv6 Router Alert Options,” Internet RFC 5350, Sept. 2008.

[RFC5380] H. Soliman, C. Castelluccia, K. ElMalki, and L. Bellier, “Hierarchical
Mobile IPv6 (HMIPv6) Mobility Management,” Internet RFC 5380, Oct. 2008.

[RFC5568] R. Koodli, ed., “Mobile IPv6 Fast Handovers,” Internet RFC 5568, July
2009.

[RFC5570] M. StJohns, R. Atkinson, and G. Thomas, “Common Architecture
Label IPv6 Security Option (CALIPSO),” Internet RFC 5570 (informational), July
2009.

[RFC5865] F. Baker, J. Polk, and M. Dolly, “A Differentiated Services Code Point
(DSCP) for Capacity-Admitted Traffic,” Internet RFC 5865, May 2010.

[RFC5944] C. Perkins, ed., “IP Mobility Support for IPv4, Revised,” Internet RFC
5944, Nov. 2010.

[RFC6178] D. Smith, J. Mullooly, W. Jaeger, and T. Scholl, “Label Edge Router For-
warding of IPv4 Option Packets,” Internet RFC 6178, Mar. 2011.

[RFC6275] C. Perkins, ed., D. Johnson, and J. Arkko, “Mobility Support in IPv6,”
Internet RFC 6275, June 2011.

[RFC6301] Z. Zhu, R. Rakikawa, and L. Zhang, “A Survey of Mobility Support in
the Internet,” Internet RFC 6301 (informational), July 2011.

[RTAOPTS] http://www.iana.org/assignments/ipv6-routeralert-values

[THL06] N. Thompson, G. He, and H. Luo, “Flow Scheduling for End-Host Multi-
homing,” Proc. IEEE INFOCOM, Apr. 2006.

[TWEF03] J. Touch, Y. Wang, L. Eggert, and G. Flinn, “A Virtual Internet Archi-
tecture,” Proc. ACM SIGCOMM Future Directions in Network Architecture Workshop,
Mar. 2003.

[W03] T. Wu, “Network Neutrality, Broadband Discrimination,” Journal of Tele-
communications and High Technology Law, 2, 2003 (revised 2005).

http://www.iana.org/assignments/ipv6-routeralert-values

ptg999

This page intentionally left blank

ptg999

233

6

System Configuration: DHCP
and Autoconfiguration

6.1 Introduction

To make use of the TCP/IP protocol suite, each host and router requires a certain
amount of configuration information. Configuration information is used to assign
local names to systems, and identifiers (such as IP addresses) to interfaces. It is
also used to either provide or make use of various network services, such as the
Domain Name System (DNS) and Mobile IP home agents. Over the years there have
been many ways of providing and obtaining this information, but fundamen-
tally there are three approaches: type in the information by hand, have a system
obtain it using a network service, or use some sort of algorithm to automatically
determine it. We shall explore each of these options and see how they are used
with both IPv4 and IPv6. Understanding how configuration works is important,
because it is one of the issues that every system administrator and nearly every
end user must deal with to some extent.

Recall from Chapter 2 that every interface to be used with TCP/IP networking
requires an IP address, subnet mask, and broadcast address (for IPv4). The broad-
cast address can ordinarily be determined using the address and mask. With this
minimal information, it is generally possible to carry out communication with
other systems on the same subnetwork. To engage in communication beyond the
local subnet, called indirect delivery in Chapter 5, a system requires a routing or
forwarding table that indicates what router(s) are to be used for reaching vari-
ous destinations. To be able to use services such as the Web and e-mail, the DNS
(see Chapter 11) is used to map user-friendly domain names to the IP addresses
required by the lower-protocol layers. Because the DNS is a distributed service,
any system making use of it must know how to reach at least one DNS server.
All in all, having an IP address, subnet mask, and the IP address of a DNS server

ptg999

234 System Configuration: DHCP and Autoconfiguration

and router are the “bare essentials” to get a system running on the Internet that
is capable of using or providing popular services such as Web and e-mail. To use
Mobile IP, a system also needs to know how to find a home agent.

In this chapter we will focus primarily on the protocols and procedures used
to establish the bare essentials in Internet client hosts: the Dynamic Host Configu-
ration Protocol (DHCP) and stateless address autoconfiguration in IPv4 and IPv6. We
will also discuss how some ISPs use PPP with Ethernet for configuration of client
systems. Servers and routers are more often configured by hand, usually by typ-
ing the relevant configuration information into a file or graphical user interface.
There are several reasons for this distinction. First, client hosts are moved around
more often than servers and routers, meaning they should have mechanisms for
flexibly reassigning their configuration information. Second, server hosts and
routers are expected to be “always available” and relatively autonomous. As such,
having their configuration information not depend on other network services can
lead to greater confidence in their reliability. Third, there are often far more clients
in an organization than servers or routers, so it is simpler and less error-prone to
use a centralized service to dynamically assign configuration information to cli-
ent hosts. Fourth, the operators of clients often have less system administration
experience than server and router administrators, so it is once again less error-
prone to have most clients configured by a centralized service administered by an
experienced staff.

Beyond the bare essentials, there are numerous other bits of configuration
information a host or router may require, depending on the types of services it
uses or provides. These may include the locations of home agents, multicast rout-
ers, VPN gateways, and Session Initiation Protocol (SIP)/VoIP gateways. Some of
these services have standardized mechanisms and supporting protocols to obtain
the relevant configuration information; others do not and instead require the user
to type in the necessary information.

6.2 Dynamic Host Configuration Protocol (DHCP)

DHCP [RFC2131] is a popular client/server protocol used to assign configuration
information to hosts (and, less frequently, to routers). DHCP is very widely used,
in both enterprises and home networks. Even the most basic home router devices
support embedded DHCP servers. DHCP clients are incorporated into all common
client operating systems and a large number of embedded devices such as net-
work printers and VoIP phones. Such devices usually use DHCP to acquire their IP
address, subnet mask, router IP address, and DNS server IP address. Information
pertaining to other services (e.g., SIP servers used with VoIP) may also be conveyed
using DHCP. DHCP was originally conceived for use with IPv4, so references to
it or its relationship with IP in this chapter will refer to IPv4 unless otherwise
specified. IPv6 can also use a version of DHCP called DHCPv6 [RFC3315], which
we discuss in Section 6.2.5, but IPv6 also supports its own automatic processes to

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 235

determine configuration information. In a hybrid configuration, IPv6 automatic
configuration can be combined with the use of DHCPv6.

The design of DHCP is based on an earlier protocol called the Internet Boot-
strap Protocol (BOOTP) [RFC0951][RFC1542], which is now effectively obsolete.
BOOTP provides limited configuration information to clients and does not have
a mechanism to support changing that information after it has been provided.
DHCP extends the BOOTP model with the concept of leases [GC89] and can pro-
vide all information required for a host to operate. Leases allow clients to use
the configuration information for an agreed-upon amount of time. A client may
request to renew the lease and continue operations, subject to agreement from
the DHCP server. BOOTP and DHCP are backward-compatible in the sense that
BOOTP-only clients can make use of DHCP servers and DHCP clients can make
use of BOOTP-only servers. BOOTP, and therefore DHCP as well, is carried using
UDP/IP (see Chapter 10). Clients use port 68 and servers use port 67.

DHCP comprises two major parts: address management and delivery of
configuration data. Address management handles the dynamic allocation of IP
addresses and provides address leases to clients. Configuration data delivery
includes the DHCP protocol’s message formats and state machines. A DHCP
server can be configured to provide three levels of address allocation: automatic
allocation, dynamic allocation, and manual allocation. The differences among the
three have to do with whether the addresses assigned are based on the identity of
the client and whether such addresses are subject to being revoked or changed.
The most commonly used method is dynamic allocation, whereby a client is given
a revocable IP address from a pool (usually a predefined range) of addresses con-
figured at the server. In automatic allocation, the same method is used but the
address is never revoked. In manual allocation, the DHCP protocol is used to con-
vey the address, but the address is fixed for the requesting client (i.e., it is not part
of an allocatable pool maintained by the server). In this last mode, DHCP acts like
BOOTP. We shall focus on dynamic allocation, as it is the most interesting and
common case.

6.2.1 Address Pools and Leases

In dynamic allocation, a DHCP client requests the allocation of an IP address.
The server responds with one address selected from a pool of available addresses.
Typically, the pool is a contiguous range of IP addresses allocated specifically for
DHCP’s use. The address given to the client is allocated for only a specific amount
of time, called the lease duration. The client is permitted to use the IP address until
the lease expires, although it may request extension of the lease as required. In
most situations, clients are able to renew leases they wish to extend.

The lease duration is an important configuration parameter of a DHCP server.
Lease durations can range from a few minutes to days or more (“infinite” is pos-
sible but not recommended for anything but simple networks). Determining the
best value to use for leases is a trade-off between the number of expected clients,

ptg999

236 System Configuration: DHCP and Autoconfiguration

the size of the address pool, and the desire for the stability of addresses. Longer
lease durations tend to deplete the available address pool faster but provide greater
stability in addresses and somewhat reduced network overhead (because there
are fewer requests to renew leases). Shorter leases tend to keep the pool available
for other clients, with a consequent potential decrease in stability and increase in
network traffic load. Common defaults include 12 to 24 hours, depending on the
particular DHCP server being used. Microsoft, for example, recommends 8 days
for small networks and 16 to 24 days for larger networks. Clients begin trying to
renew leases after half of the lease duration has passed.

When making a DHCP request, a client is able to provide information to the
server. This information can include the name of the client, its requested lease
duration, a copy of the address it is already using or last used, and other parame-
ters. When the server receives such a request, it can make use of whatever informa-
tion the client has provided (including the requesting MAC address) in addition
to other exogenous information (e.g., the time of day, the interface on which the
request was received) to determine what address and configuration information
to provide in response. In providing a lease to a client, a server stores the lease
information in persistent memory, typically in nonvolatile memory or on disk. If
the DHCP server restarts and all goes well, leases are maintained intact.

6.2.2 DHCP and BOOTP Message Format

DHCP extends BOOTP, DHCP’s predecessor. Compatibility is maintained between
the protocols by defining the DHCP message format as an extension to BOOTP’s
in such a way that BOOTP clients can be served by DHCP servers, and BOOTP
relay agents (see Section 6.2.6) can be used to support DHCP use, even on networks
where DHCP servers do not reside. The message format includes a fixed-length
initial portion and a variable-length tail portion (see Figure 6-1).

The message format of Figure 6-1 is defined by BOOTP and DHCP in several
RFCs ([RFC0951][RFC1542][RFC2131]). The Op (Operation) field identifies the mes-
sage as either a request (1) or a reply (2). The HW Type (htype) field is assigned
based on values used with ARP (see Chapter 4) and defined in the corresponding
IANA ARP parameters page [IARP], with the value 1 (Ethernet) being very com-
mon. The HW Len (hlen) field gives the number of bytes used to hold the hardware
(MAC) address and is commonly 6 for Ethernet-like networks. The Hops field is
used to store the number of relays through which the message has traveled. The
sender of the message sets this value to 0, and it is incremented at each relay.
The Transaction ID is a (random) number chosen by the client and copied into
responses by the server. It is used to match replies with requests.

The Secs field is set by the client with the number of seconds that have elapsed
since the first attempt to establish or renew an address. The Flags field currently
contains only a single defined bit called the broadcast flag. Clients may set this bit
in requests if they are unable or unwilling to process incoming unicast IP data-
grams but can process incoming broadcast datagrams (e.g., because they do not

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 237

yet have an IP address). Setting the bit informs the server and relays that broad-
cast addressing should be used for replies.

Note

There has been some difficulty in Windows environments regarding the use of
the broadcast flag. Windows XP and Windows 7 DHCP clients do not set the
flag, but Windows Vista clients do. Some DHCP servers in use do not process
the flag properly, leading to apparent difficulties in supporting Vista clients, even
though the Vista implementation is RFC-compliant. See [MKB928233] for more
information.

The next four fields are various IP addresses. The Client IP Address (ciaddr)
field includes a current IP address of the requestor, if known, and is 0 otherwise.
The “Your” IP Address (yiaddr) field is filled in by a server when providing an

Figure 6-1 The BOOTP message format, including field names from [RFC0951], [RFC1542], and [RFC2131].
The BOOTP message format is used to hold DHCP messages by appropriate assignment of options.
In this way, BOOTP relay agents can process DHCP messages, and BOOTP clients can use DHCP
servers. The Server Name and Boot File Name fields can be used to carry DHCP options if necessary.

ptg999

238 System Configuration: DHCP and Autoconfiguration

address to a requesting client. The Next Server IP Address (siaddr) field gives the IP
address of the next server to use for the client’s bootstrap process (e.g., if the client
needs to download an operating system image that may be accomplished from a
server other than the DHCP server). The Gateway (or Relay) IP Address (giaddr) field
is filled in by a DHCP or BOOTP relay with its address when forwarding DHCP
(BOOTP) messages. The Client Hardware Address (chaddr) field holds a unique
identifier of the client and can be used in various ways by the server, including
arranging for the same IP address to be given each time a particular client makes
an address request. This field has traditionally held the client’s MAC address,
which has been used as an identifier. Nowadays, the Client Identifier, an option
described in Sections 6.2.3 and 6.2.4, is preferred for this use.

The remaining fields include the Server Name (sname) and Boot File Name (file)
fields. These fields are not always filled in, but if they are, they contain 64 or 128
bytes, respectively, of ASCII characters indicating the name of the server or path to
the boot file. Such strings are null-terminated, as in the C programming language.
They can also be used instead to hold DHCP options if space is tight (see Section
6.2.3). The final field, originally known as the Vendor Extensions field in BOOTP
and fixed in length, is now known as the Options field and is variable in length. As
we shall see, options are used extensively with DHCP and are required to distin-
guish DHCP messages from legacy BOOTP messages.

6.2.3 DHCP and BOOTP Options

Given that DHCP extends BOOTP, any fields needed by DHCP that were not pres-
ent when BOOTP was designed are carried as options. Options take a standard
format beginning with an 8-bit tag indicating the option type. For some options,
a fixed number of bytes following the tag contain the option value. All others
consist of the tag followed by 1 byte containing the length of the option value (not
including the tag or length), followed by a variable number of bytes containing the
option value itself.

A large number of options are available with DHCP, some of which are also
supported by BOOTP. The current list is given by the BOOTP/DHCP parameters
page [IBDP]. The first 77 options, including the most common ones, are speci-
fied in [RFC2132]. Common options include Pad (0), Subnet Mask (1), Router
Address (3), Domain Name Server (6), Domain Name (15), Requested IP Address
(50), Address Lease Time (51), DHCP Message Type (53), Server Identifier (54),
Parameter Request List (55), DHCP Error Message (56), Lease Renewal Time (58),
Lease Rebinding Time (59), Client Identifier (61), Domain Search List (119), and
End (255).

The DHCP Message Type option (53) is a 1-byte-long option that is always used
with DHCP messages and has the following possible values: DHCPDISCOVER
(1), DHCPOFFER (2), DHCPREQUEST (3), DHCPDECLINE (4), DHCPACK (5),
DHCPNAK (6), DHCPRELEASE (7), DHCPINFORM (8), DHCPFORCERENEW
(9) [RFC3203], DHCPLEASEQUERY (10), DHCPLEASEUNASSIGNED (11),

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 239

DHCPLEASEUNKNOWN (12), and DHCPLEASEACTIVE (13). The last four val-
ues are defined by [RFC4388].

Options may be carried in the Options field of a DHCP message, as well as in
the Server Name and Boot File Name fields mentioned previously. When options are
carried in either of these latter two places, called option overloading, a special Over-
load option (52) is included to indicate which fields have been appropriated for
holding options. For options whose lengths exceed 255 bytes, a special long options
mechanism has been defined [RFC3396]. In essence, if the same option is repeated
multiple times in the same message, the contents are concatenated in the order in
which they appear in the message, and the result is processed as a single option. If
a long option also uses option overloading, the order of processing is last to first:
Options field, Boot File Name field, and then Server Name field.

Options tend to either provide relatively simple configuration information or
be used in supporting some other agreement protocol. For example, [RFC2132]
specifies options for most of the traditional configuration information a TCP/IP
node requires (addressing information, server addresses, Boolean assignments of
configuration information such as enabling IP forwarding, initial TTL values).
Subsequent specifications describe simple configuration information for NetWare
[RFC2241][RFC2242], user classes [RFC3004], FQDN [RFC4702], Internet Storage
Name Service server (iSNS, used in storage networks) [RFC4174], Broadcast and
Multicast Service controller (BCMCS, used with 3G cellular networks) [RFC4280],
time zone [RFC4833], autoconfiguration [RFC2563], subnet selection [RFC3011],
name service selection (see Chapter 11) [RFC2937], and servers for the Protocol
for Carrying Authentication for Network Access (PANA) (see Chapter 18) [RFC5192].
Those options defined for use in support of other protocols and functions are
described later, starting with Section 6.2.7.

6.2.4 DHCP Protocol Operation

DHCP messages are essentially BOOTP messages with a special set of options.
When a new client attaches to a network, it first discovers what DHCP servers are
available and what addresses they are offering. It then decides which server to
use and which address it desires and requests it from the offering server (while
informing all the servers of its choice). Unless the server has given away the
address in the meantime, it responds by acknowledging the address allocation
to the requesting client. The time sequence of events between a typical client and
server is depicted in Figure 6-2.

Requesting clients set the BOOTP Op field to BOOTREQUEST and the first
4 bytes of the Options field to the decimal values 99, 130, 83, and 99, respectively
(the magic cookie value from [RFC2132]). Messages from client to server are sent as
UDP/IP datagrams containing a BOOTP BOOTREQUEST operation and an appro-
priate DHCP message type (usually DHCPDISCOVER or DHCPREQUEST). Such
messages are sent from address 0.0.0.0 (port 68) to the limited broadcast address
255.255.255.255 (port 67). Messages traveling in the other direction (from server to

ptg999

240 System Configuration: DHCP and Autoconfiguration

client) are sent from the IP address of the server and port 67 to the IP local broad-
cast address and port 68 (see Chapter 10 for details on UDP).

In a typical exchange, a client first broadcasts a DHCPDISCOVER message. Each
server receiving the request, either directly or through a relay, may respond with a
DHCPOFFER message, including an offered IP address in the “Your” IP Address
field. Other configuration options (e.g., IP address of DNS server, subnet mask) are
often included. The offer message includes the lease time (T), which provides the
upper bound on the amount of time the address can be used if it is not renewed. The
message also contains the renewal time (T1), which is the amount of time before the
client should attempt to renew its lease with the server from which it acquired its
lease, and the rebinding time (T2), which bounds the time in which it should attempt
to renew its address with any DHCP server. By default, T1 = (T/2) and T2 = (7T/8).

After receiving one or more DHCPOFFER messages from one or more servers,
the client determines which offer it will accept and broadcasts a DHCPREQUEST
message including the Server Identifier option. The Requested IP Address option is
set to the address received in the selected DHCPOFFER message. Multiple servers
may receive the broadcast DHCPREQUEST message, but only the server identified
within the DHCPREQUEST message acts by committing the address binding to

Figure 6-2 A typical DHCP exchange. A client discovers a set of servers and addresses they are
offering using broadcast messages, requests the address it desires, and receives an
acknowledgment from the selected server. The transaction ID (xid) allows requests and
responses to be matched up, and the server ID (an option) indicates which server is pro-
viding and committing the provided address binding with the client. If the client already
knows the address it desires, the protocol can be simplified to include use of only the
REQUEST and ACK messages.

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 241

persistent storage; the others clear any state regarding the request. After handling
the binding, the selected server responds with a DHCPACK message, indicating to
the client that the address binding can now be used. In the case where the server
cannot allocate the address contained in the DHCPREQUEST message (e.g., it has
been allocated in some other way or is not available), the server responds with a
DHCPNAK message.

Once the client receives the DHCPACK message and other associated configu-
ration information, it may probe the network to ensure that the address provided
is not in use (e.g., by sending an ARP request for the address to perform ACD,
described in Chapter 4). Should the client determine that the address is already in
use, the client ceases using the address and sends a DHCPDECLINE message to
the server to indicate that the address cannot be used. After a recommended 10s
delay, the client is able to retry. If a client elects to relinquish its address before its
lease expires, it sends a DHCPRELEASE message.

In circumstances where a client already has an IP address and wishes only
to renew its lease, the initial DHCPDISCOVER/DHCPOFFER messages can be
skipped. Instead, the protocol begins with the client requesting the address it
is currently using with a DHCPREQUEST message. At this point, the protocol
works as already described: the server will likely grant the request (with a DHC-
PACK) or deny the request by issuing a DHCPNAK. Another circumstance arises
when a client already has an address, does not need to renew it, but requires other
(non-address) configuration information. In this case, it can use a DHCPINFORM
message in place of a DHCPREQUEST message to indicate its use of an existing
address and desire to obtain additional information. Such messages elicit a DHC-
PACK message from the server, which includes the requested additional configu-
ration information.

6.2.4.1 Example
To see DHCP in action, we now inspect the packets exchanged when a Microsoft
Vista laptop attaches to a wireless LAN supported by a Linux-based DHCP server
(Windows 7 systems are nearly identical). The client was recently associated with a
different wireless network, using a different IP prefix, and is now being connected
to the new network. Because it remembers the address it had from the previous net-
work, the client first tries to continue using that address using a DHCPREQUEST
message (see Figure 6-3).

Note

There is now an agreed-upon procedure for detecting network attachment (DNA),
specified in [RFC4436] for IPv4 and [RFC6059] for IPv6. These specifications do
not contain new protocols but instead suggest how unicast ARP (for IPv4) and
a combination of unicast and multicast Neighbor Solicitation/Router Discovery
messages (for IPv6; see Chapter 8) can be used to reduce the latency of acquir-
ing configuration information when a host switches network links. As these speci-
fications are relatively new (especially for IPv6), not all systems implement them.

ptg999

242 System Configuration: DHCP and Autoconfiguration

In Figure 6-3 we can see a DHCP request sent in a link-layer broadcast frame
(destination ff:ff:ff:ff:ff:ff) using the unspecified source IP address 0.0.0.0 and the
limited broadcast destination address 255.255.255.255. Because the client does not
yet know if the address it is requesting will be successfully allocated and does
not know the network prefix used on the network to which it is attaching, it has
little alternative to using these addresses. The message is a UDP/IP datagram sent
from the BOOTP client port 68 (bootpc) to the server port 67 (bootps). As DHCP
is really part of BOOTP, the protocol is the Bootstrap Protocol and the message
type is a BOOTREQUEST (1), with hardware type set to 1 (Ethernet) and address
length of 6 bytes. The transaction ID is 0xdb23147d, a random number chosen by
the client. The BOOTP broadcast flag is set in this message, meaning responses
should be sent using broadcast addressing. The requested address of 172.16.1.34
is contained in one of several options. We shall have a closer look at the types of
options that appear in DHCP messages beginning in Section 6.2.9.

Figure 6-3 A client has switched networks and attempts to request its old address, 172.16.1.34, from
a DHCP server on the new network using a DHCPREQUEST message.

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 243

The nearby DHCP server receives the client’s DHCPREQUEST message
including the requested IP address of 172.16.1.34. However, the server is unable to
allocate the address because 172.16.1.34 is not in use on the current network. Con-
sequently, the server refuses the client’s request by sending a DHCPNAK message
(see Figure 6-4).

Figure 6-4 A DHCPNAK message is sent by the DHCP server, indicating that the client should not
attempt to use IP address 172.16.1.34. The transaction ID allows the client to know that
the message corresponds to its address request.

The DHCPNAK message shown in Figure 6-4 is sent as a broadcast BOOTP
reply from the server. It includes the message type of DHCPNAK, a transaction ID
matching the client’s request, a Server Identifier option containing 10.0.0.1, a copy
of the client’s identifier (MAC address in this case), and a textual string indicating
the form of error, "wrong address". At this point the client ceases trying to use
its old address of 172.16.1.34 and instead starts over, looking for whatever servers
and addresses it can find, using a DHCPDISCOVER message (see Figure 6-5).

ptg999

244 System Configuration: DHCP and Autoconfiguration

The DHCPDISCOVER message sent by the client and shown in Figure 6-5
is similar to the DHCPREQUEST message, including the requested IP address it
used before (it does not have any other address to request), but it contains a richer
list of options and a new transaction ID (0x3a681b0b). Most of the rest of the pri-
mary BOOTP fields are left empty and set to 0, except the client MAC address,
which appears in the Client Hardware Address (chaddr) field. Note that this address
matches the Ethernet frame source MAC address, as expected, because the packet
was not forwarded through a BOOTP relay agent. The rest of the DISCOVER mes-
sage contains eight options, most of which are expanded in the screen shot in
Figure 6-6 so that the various option subtypes can be seen.

Figure 6-6 details the options included in the BOOTP request message. The first
option indicates that the message is a DHCPDISCOVER message. The second option
indicates a client’s desire to know whether to use address autoconfiguration [RFC2563]
(described in Section 6.3). If it is unable to obtain an address using DHCP, it is per-
mitted to determine one itself if allowed to do so by the DHCP server.

Figure 6-5 The DHCPDISCOVER message indicates that the client is retrying its attempt to obtain
an address after the previous failure of its DHCPREQUEST message.

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 245

The next option indicates that the Client Identifier (ID) option is set to
0100130220B918 (not shown). The DHCP server can use the client ID to determine
if there is any special configuration information to be given to the particular
requesting client. Most operating systems now allow the user to specify the client
ID for the DHCP client to use when obtaining an address. Generally, however, it is
better to allow the client ID to be chosen automatically, as the use of the same cli-
ent ID by multiple clients can lead to DHCP problems. The automatically selected
client ID is generally based on the MAC address of the client. In the case of Win-
dows, it is the MAC address with a 1-byte hardware type identifier prepended to
it (in this case, the value of the byte is 1, indicating Ethernet).

Note

There has been a move to use client identifiers that are not based on MAC
addresses. This is motivated by the desire to have a persistent identifier for a cli-
ent for use with IPv4 or IPv6 that remains consistent even if the system’s network
interface hardware changes (which usually causes its MAC address to change).
[RFC4361] specifies node-specific identifiers for IPv4, using a scheme originally

Figure 6-6 The DHCPDISCOVER message may contain a rich list of parameter requests, indicating
what configuration information the client seeks.

ptg999

246 System Configuration: DHCP and Autoconfiguration

defined for IPv6. It involves using a DHCP Unique Identifier (DUID) in combination
with an Identity Association Identifier (IAID) as specified for DHCPv6 [RFC3315]
(also see Sections 6.2.5.3 and 6.2.5.4), but with conventional DHCPv4. It also
deprecates the use of the Client Hardware Address (chaddr) field in DHCP mes-
sages. However, it is not yet widely deployed.

The next (Requested IP Address) option indicates that the client is requesting
IP address 172.16.1.34. This is the IP address it was using when associated with the
previous wireless network. As mentioned before, this address is not available on
the new network because a different network prefix is being used.

Other options indicate a configured host name of “vista,” a vendor class ID
of “MSFT 5.0” (for Microsoft Windows 2000 and later systems), and a parameter
request list. The Parameter Request List option provides an indication to the DHCP
server of what sort of configuration information the client is requesting. It con-
sists of a string of bytes in which each byte indicates a particular option number.
Here we can see that it includes conventional Internet information (subnet mask,
domain name, DNS server, default router) but also a number of other options com-
mon to Microsoft systems (i.e., NetBIOS options). It also includes an indication
that the client is interested in knowing whether to perform ICMP Router Discov-
ery (see Chapter 8) and whether any static forwarding table entries should be
placed in the client’s forwarding table when starting up (see Chapter 5).

Note

The reason there are three different types of static route parameters listed is
a consequence of the history of addressing. Before the full adoption of subnet
masks and network prefixes, the network portion of an address was known by
inspection of the address alone (“classful addressing”), and this is the form of
route used with the Static Route (33) parameter. With the adoption of classless
routes, DHCP was updated to hold a mask that could be applied, resulting in the
so-called Classless Static Route (CSR) parameter (121) defined in [RFC3442].
Microsoft’s variant (using code 249) is similar.

The last parameter request (43) is for vendor-specific information. It is ordi-
narily used in conjunction with the Vendor-Class Identifier option (60), to allow
clients to receive nonstandard information, although another proposal combines
the vendor’s identity with the vendor-specific information [RFC3925], providing
a method to determine the vendor given any vendor-specific information, even
for a single client. In the case of Microsoft systems, vendor-specific information
is used for selecting the use of NetBIOS, indicating whether a DHCP lease should
be released on shutdown, and how the metric (preference) of a default route in the
forwarding table should be processed. It is also used by Microsoft’s Network Access
Protection (NAP) system [MS-DHCPN]. Mac OS systems use vendor-specific infor-
mation in supporting Apple’s NetBoot service and Boot Server Discovery Protocol
(BSDP) [F07].

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 247

Upon receipt of the DHCPDISCOVER message, a DHCP server responds with
an offer of an IP address, lease, and additional configuration information con-
tained in a DHCPOFFER message. In the example shown in Figure 6-7, there is
only one DHCP server (which is also a router and DNS server).

Figure 6-7 The DHCPOFFER sent from the DHCP server at 10.0.0.1 is offering IP address 10.0.0.57
for up to 12 hours. Additional information includes the address of a DNS server, domain
name, default router IP address, subnet mask, and broadcast address. In this example,
the system with IP address 10.0.0.1 is the default router, DHCP server, and DNS server.

In the DHCPOFFER message shown in Figure 6-7 we again see that the message
format includes a BOOTP portion as well as a set of options that relate to its DHCP
address handling. The BOOTP message type is BOOTREPLY. The client IP address
provided by the server is 10.0.0.57, located in the “Your” [client] IP Address field. Note

ptg999

248 System Configuration: DHCP and Autoconfiguration

that this address does not match the requested value of 172.16.1.34 contained in the
DHCPDISCOVER message, as the 172.16/12 prefix is not in use on the local network.

Additional information contained in the set of options includes the server’s
IP address (10.0.0.1), the lease time of the offered IP address (12 hours), and the T1
(renewal) and T2 (rebinding) timeouts of 6 and 10.5 hours, respectively. In addition,
the server provides the subnet mask for the client to use (255.255.255.128), the proper
broadcast address (10.0.0.127), the default router and DNS server (all 10.0.0.1, the same
as the DHCP server in this case), and a default domain name of "home". The domain
name home is not standardized in any way and would not be used outside of a private
network. This example is a home network, so by the author’s convention the names
of machines used on it have the form <name>.home. Once the client has collected a
DHCPOFFER message and decided to attempt leasing the IP address 10.0.0.57 it has
been offered, it continues with a second DHCPREQUEST message (see Figure 6-8).

Figure 6-8 The second DHCPREQUEST indicates that the client wishes to be assigned the IP address
10.0.0.57. The message is sent to the broadcast address and includes the address 10.0.0.1
in the Server ID option. This allows any other servers that may receive the broadcast to
know which DHCP server and address the client has selected.

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 249

The second DHCPREQUEST message, shown in Figure 6-8, is similar to the
DHCPDISCOVER message, except the requested IP address is now set to 10.0.0.57,
the DHCP message type is set to DHCPREQUEST, the DHCP autoconfiguration
option is not present, and the Server Identifier option is now filled in with the
address of the server (10.0.0.1). Note that this message, like the DHCPDISCOVER
message, is sent using broadcast, so any server or client present on the local net-
work receives it. The Server Identifier option field is used to keep unselected
servers from committing the address binding. When the selected server receives
the DHCPREQUEST and commits the binding, it ordinarily responds with a
DHCPACK message, as we see in Figure 6-9.

Figure 6-9 The DHCPACK message verifies to the client (and other servers) the allocation of address
10.0.0.57 for up to 12 hours.

ptg999

250 System Configuration: DHCP and Autoconfiguration

The DHCPACK message shown in Figure 6-9 is very similar to the DHCPOFFER
message we have seen before. However, now the client’s FQDN option is included
as well. In this case (not shown), it is set to vista.home. At this point, the client
is free to use the address 10.0.0.57, as far as the DHCP server is concerned. It is still
advised to use techniques such as ACD, described in Chapter 4, to ensure that its
address is not used by some other host.

The DHCP messages exchanged in this example are typical of a system when
it boots or is attached to a new network. It is also possible to induce a system to
perform the release or acquisition of DHCP configuration information by hand.
For example, in Windows the following command will release the data acquired
using DHCP:

C:\> ipconfig /release

and the following command will acquire it:

C:\> ipconfig /renew

In Linux, the following commands can be used to achieve the same results:

Linux# dhclient -r

to release a DHCP lease, and

Linux# dhclient

to renew one.
The type of information acquired by DHCP and assigned to the local system

can be ascertained with a variant of the ipconfig command on Windows. Here
is an excerpt from its output:

C:\> ipconfig /all
...
Wireless LAN adapter Wireless Network Connection:

 Connection-specific DNS Suffix . : home
 Description : Intel(R) PRO/Wireless 3945ABG
 Network Connection
 Physical Address. : 00-13-02-20-B9-18
 DHCP Enabled. : Yes
 Autoconfiguration Enabled : Yes
 IPv4 Address. : 10.0.0.57(Preferred)
 Subnet Mask : 255.255.255.128
 Lease Obtained. : Sunday, December 21, 2008
 11:31:48 PM
 Lease Expires : Monday, December 22, 2008
 11:31:40 AM
 Default Gateway : 10.0.0.1

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 251

 DHCP Server : 10.0.0.1
 DNS Servers : 10.0.0.1
 NetBIOS over Tcpip. : Enabled
 Connection-specific DNS Suffix Search List :home

This command is very useful to see what configuration information has been
assigned to a host using DHCP or other means.

6.2.4.2 The DHCP State Machine
The DHCP protocol operates a state machine at the clients and servers. The states
dictate which types of messages the protocol is expecting to process next. The cli-
ent state machine is illustrated in Figure 6-10. Transitions between states (arrows)
occur because of messages that are received and sent or when timers expire.

Figure 6-10 The DHCP client state machine. The boldface states and transitions are typical for a
client first acquiring a leased address. The dashed line and INIT state are where the
protocol begins.

As shown in Figure 6-10, a client begins in the INIT state when it has no infor-
mation and broadcasts the DHCPDISCOVER message. In the Selecting state, it col-
lects DHCPOFFER messages until it decides which address and server it wishes
to use. Once its selection has been made, it responds with a DHCPREQUEST mes-
sage and enters the Requesting state. At this point it may receive ACKs for other

ptg999

252 System Configuration: DHCP and Autoconfiguration

addresses it does not want. If it finds no address it wants, it sends a DHCPDECLINE
and reverts to the INIT state. More likely, however, it receives a DHCPACK mes-
sage for an address it wants, accepts it, obtains the timeout values T1 and T2,
and enters the Bound state, where it is able to use the address until expiration.
Upon the first timer expiration (timer T1), the client enters the Renewing state and
attempts to reestablish its lease. This succeeds if a fresh DHCPACK is received
(returning the client to the Bound state). If not, T2 ultimately expires, causing the
client to attempt to reacquire an address from any server. If the lease time finally
expires, the client must give up the leased address and becomes disconnected if it
has no alternative address or network connection to use.

6.2.5 DHCPv6

Although the IPv4 and IPv6 DHCP protocols achieve conceptually similar
goals, their respective protocol designs and deployment options differ. DHCPv6
[RFC3315] can be used in either a “stateful” mode, in which it works much like
DHCPv4, or in a “stateless” mode in conjunction with stateless address autocon-
figuration (see Section 6.3). In the stateless mode, IPv6 clients are assumed to self-
configure their IPv6 addresses but require additional information (e.g., DNS server
address) obtained using DHCPv6. Another option exists for deriving the location
of a DNS server using ICMPv6 Router Advertisement messages (see Chapters 8
and 11 and [RFC6106]).

6.2.5.1 IPv6 Address Lifecycle
IPv6 hosts usually operate with multiple addresses per interface, and each address
has a set of timers indicating how long and for what purposes the corresponding
address can be used. In IPv6, addresses are assigned with a preferred lifetime and
valid lifetime. These lifetimes are used to form timeouts that move an address
from one state to another in an address’s state machine (see Figure 6-11).

Figure 6-11 The lifecycle of an IPv6 address. Tentative addresses are used only for DAD until veri-
fied as unique. After that, they become preferred and can be used without restriction
until an associated timeout changes their state to deprecated. Deprecated addresses are
not to be used for initiating new connections and may not be used at all after the associ-
ated valid timeout expires.

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 253

Figure 6-11 shows the lifecycle of an IPv6 address. An address is in the pre-
ferred state when it is available for general use and is available as either a source
or destination IPv6 address. A preferred address becomes deprecated when its
preferred timeout occurs. When it becomes deprecated, it may still be used for
existing transport (e.g., TCP) connections but is not to be used for initiating new
connections.

When an address is first selected for use, it enters a tentative or optimistic state.
When in the tentative state, it may be used only for the IPv6 Neighbor Discovery
protocol (see Chapter 8). It is not used as a source or destination address for any
other purposes. While in this state the address is being checked for duplication,
to see if any other nodes on the same network are already using the address. The
procedure for doing this is called duplicate address detection (DAD) and is described
in more detail in Section 6.3.2.1. An alternative to conventional DAD is called opti-
mistic DAD [RFC4429], whereby a selected address is used for a limited set of
purposes until DAD completes. Because an optimistic use of an address is really
just a special set of rules for DAD, it is not a truly complete state itself. Optimistic
addresses are treated as deprecated for most purposes. In particular, an address
may be both optimistic and deprecated simultaneously, depending on the pre-
ferred and valid lifetimes.

6.2.5.2 DHCPv6 Message Format
DHCPv6 messages are encapsulated as UDP/IPv6 datagrams, with client port 546
and server port 547 (see Chapter 10). Messages are sent using a host’s link-scoped
source address to either relay agents or servers. There are two message formats,
one used directly between a client and a server, and another when a relay is used
(see Figure 6-12).

Figure 6-12 The basic DHCPv6 message format (left) and relay agent message format (right). Most interesting
information in DHCPv6 is carried in options.

ptg999

254 System Configuration: DHCP and Autoconfiguration

The primary DHCPv6 message format is given in Figure 6-12 on the left and
an extended version, which includes the Link Address and Peer Address fields, is
given on the right. The format on the right is used between a DHCPv6 relay agent
and a DHCPv6 server. The Link Address field gives the global IPv6 address used
by the server to identify the link on which the client is located. The Peer Address
field contains the address of the relay agent or client from which the message to be
relayed was received. Note that relaying may be chained, so a relay may be relay-
ing a message received from another relay. Relaying, for DHCPv4 and DHCPv6, is
described in Section 6.2.6.

The message type for messages in the format on the left include typical DHCP-
style messages (REQUEST, REPLY, etc.), whereas the message types for messages
in the format on the right include RELAY-FORW and RELAY-REPL, to indicate a
message forwarded from a relay or destined to a relay, respectively. The Options
field for the format on the right always includes a Relay Message option, which
includes the complete message being forwarded by the relay. Other options may
also be included.

One of the differences between DHCPv4 and DHCPv6 is how DHCPv6 uses
IPv6 multicast addressing. Clients send requests to the All DHCP Relay Agents and
Servers multicast address (ff02::1:2). Source addresses are of link-local scope. In
IPv6, there is no legacy BOOTP message format. The message semantics, however,
are similar. Table 6-1 gives the types of DHCPv6 messages, their values, defining
RFCs, and the roughly equivalent message and defining RFC for DHCPv4.

 Table 6-1 DHCPv6 message types, values, and defining standards. The approximately equivalent message
types for DHCPv4 are given to the right.

DHCPv6 Message
DHCPv6
Value Reference DHCPv4 Message Reference

SOLICIT 1 [RFC3315] DISCOVER [RFC2132]

ADVERTISE 2 [RFC3315] OFFER [RFC2132]

REQUEST 3 [RFC3315] REQUEST [RFC2132]

CONFIRM 4 [RFC3315] REQUEST [RFC2132]

RENEW 5 [RFC3315] REQUEST [RFC2132]

REBIND 6 [RFC3315] DISCOVER [RFC2132]

REPLY 7 [RFC3315] ACK/NAK [RFC2132]

RELEASE 8 [RFC3315] RELEASE [RFC2132]

DECLINE 9 [RFC3315] DECLINE [RFC2132]

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 255

In DHCPv6, most interesting information, including addresses, lease times,
location of services, and client and server identifiers, is carried in options. Two of
the more important concepts used with these options are called the Identity Asso-
ciation (IA) and the DHCP Unique Identifier (DUID). We discuss them next.

6.2.5.3 Identity Association (IA)
An Identity Association (IA) is an identifier used between a DHCP client and server
to refer to a collection of addresses. Each IA comprises an IA identifier (IAID)
and associated configuration information. Each client interface that requests a
DHCPv6-assigned address requires at least one IA. Each IA can be associated with
only a single interface. The client chooses the IAID to uniquely identify each IA,
and this value is then shared with the server.

The configuration information associated with an IA includes one or more
addresses and associated lease information (T1, T2, and total lease duration val-
ues). Each address in an IA has both a preferred and a valid lifetime [RFC4862],
which define the address’s lifecycle. The types of addresses requested may be
regular addresses or temporary addresses [RFC4941]. Temporary addresses are
derived in part from random numbers to help improve privacy by frustrating the
tracking of IPv6 hosts based on IPv6 addresses. Temporary addresses are ordinar-
ily assigned at the same time nontemporary addresses are assigned but are regen-
erated using a different random number more frequently.

When responding to a request, a server assigns one or more addresses to a
client’s IA based on a set of address assignment policies determined by the server’s
administrator. Generally, such policies depend on the link on which the request

 Table 6-1 DHCPv6 message types, values, and defining standards. The approximately equivalent message
types for DHCPv4 are given to the right (continued).

DHCPv6 Message
DHCPv6
Value Reference DHCPv4 Message Reference

RECONFIGURE 10 [RFC3315] FORCERENEW [RFC3203]

INFORMATION-REQUEST 11 [RFC3315] INFORM [RFC2132]

RELAY-FORW 12 [RFC3315] N/A

RELAY-REPL 13 [RFC3315] N/A

LEASEQUERY 14 [RFC5007] LEASEQUERY [RFC4388]

LEASEQUERY-REPLY 15 [RFC5007] LEASE{UNASSIGNED,
UNKNOWN,ACTIVE}

[RFC4388]

LEASEQUERY-DONE 16 [RFC5460] LEASEQUERYDONE [ID4LQ]
LEASEQUERY-DATA 17 [RFC5460] N/A N/A
N/A N/A N/A BULKLEASEQUERY [ID4LQ]

ptg999

256 System Configuration: DHCP and Autoconfiguration

arrived, standard information about the client (see DUID in Section 6.2.5.4), and
other information supplied by the client in DHCP options. The formats of the IA
option for nontemporary and temporary addresses are as shown in Figure 6-13.

Figure 6-13 The format for a DHCPv6 IA for nontemporary addresses (left) and temporary addresses (right).
Each option may include additional options describing particular IPv6 addresses and corre-
sponding leases.

The main difference between a nontemporary and a temporary address IA
option, as shown in Figure 6-13, is the inclusion of the T1 and T2 values in the
nontemporary case. These values are expected, as they are also the values used in
DHCPv4. For temporary addresses, the lack of T1 and T2 is made possible because
the lifetimes are generally determined based upon the T1 and T2 values assigned
to a nontemporary address that has been acquired previously. Details of tempo-
rary addresses are given in [RFC4941].

6.2.5.4 DHCP Unique Identifier (DUID)
A DHCP Unique Identifier (DUID) identifies a single DHCPv6 client or server and
is designed to be persistent over time. It is used by servers to identify clients for
the selection of addresses (as part of IAs) and configuration information, and
by clients to identify the server in which they are interested. DUIDs are variable
in length and are treated as opaque values by both clients and servers for most
purposes.

DUIDs are supposed to be globally unique yet easy to generate. To satisfy
these concerns simultaneously, [RFC3315] defines three different types of possible
DUIDs but also mentions that these are not the only three types that might ever be
created. The three types of DUIDs are as follows:

l. DUID-LLT: a DUID based on link-layer address plus time

2. DUID-EN: a DUID based on enterprise number and vendor assignment

3. DUID-LL: a DUID based on link-layer address only

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 257

The standard format for encoding a DUID begins with a 2-byte identifier indi-
cating which type of DUID is being expressed. The current list is maintained by
the IANA [ID6PARAM]. This is followed by a 16-bit hardware type derived from
[RFC0826] in the cases of DUID-LLT and DUID-LL, and a 32-bit Private Enterprise
Number in the case of DUID-EN.

Note

A Private Enterprise Number (PEN) is a 32-bit value given out by the IANA to an
enterprise. It is usually used in conjunction with the SNMP protocol for network
management purposes. About 38,000 of them have been assigned as of mid-
2011. The current list is available from the IANA [IEPARAM].

The first form of DUID, DUID-LLT, is the recommended form. Following
the hardware type, it includes a 32-bit timestamp containing the number of sec-
onds since midnight (UTC), January 1, 2000 (mod 232). This rolls over (returns
to zero) in the year 2136. The last portion is a variable-length link-layer address.
The link-layer address can be selected from any of the host’s interfaces, and the
same DUID should be used, once selected, for traffic on any interface. This form of
DUID is required to be stable even if the network interface from which the DUID
was derived is removed. Thus, it requires the host system to maintain stable stor-
age. The DUID-LL form is very similar but is recommended for systems lacking
stable storage (but having a stable link-layer address). The RFC says that a DUID-
LL must not be used by clients or servers that cannot determine if the link-layer
address they are using is associated with a removable interface.

6.2.5.5 Protocol Operation
The DHCPv6 protocol operates much like its DHCPv4 counterpart. Whether or
not a client initiates the use of DHCP is dependent on configuration options car-
ried in an ICMPv6 Router Advertisement message the host receives (see Chapter
8). Router advertisements include two important bit fields. The M field is the Man-
aged Address Configuration flag and indicates that IPv6 addresses can be obtained
using DHCPv6. The O field is the Other Configuration flag and indicates that infor-
mation other than IPv6 addresses is available using DHCPv6. Both fields, along
with several others, are specified in [RFC5175]. Any combination of the M and O
bit fields is possible, although having M on and O off is probably the least useful
combination. If both are off, DHCPv6 is not used, and address assignment takes
place using stateless address autoconfiguration, described in Section 6.3. Having
M off and O on indicates that clients should use stateless DHCPv6 and obtain their
addresses using stateless address autoconfiguration. The DHCPv6 protocol oper-
ates using the messages defined in Table 6-1 and illustrated in Figure 6-14.

Typically, a client starting out first determines what link-local address to use
and performs an ICMPv6 Router Discovery operation (see Chapter 8) to determine
if there is a router on the attached network. A router advertisement includes the M
and O bit fields mentioned previously. If DHCPv6 is in use, at least the M bit field

ptg999

258 System Configuration: DHCP and Autoconfiguration

is set and the client multicasts (see Chapter 9) the DHCPSOLICIT message to find
DHCPv6 servers. A response comes in the form of one or more DHCPADVERTISE
messages, indicating the presence of at least one DHCPv6 server. These messages
constitute two of the so-called four-message exchange operations of DHCPv6.

In cases where the location of a DHCPv6 server is already known or an address
need not be allocated (e.g., stateless DHCPv6 or the Rapid Commit option is being
used—see Section 6.2.9), the four-message exchange can be shortened to become
a two-message exchange, in which case only the REQUEST and REPLY messages
are used. A DHCPv6 server commits a binding formed from the combination of
a DUID, IA type (temporary, nontemporary, or prefix—see Section 6.2.5.3), and
IAID. The IAID is a 32-bit number chosen by the client. Each binding can have
one or more leases, and one or more bindings can be manipulated using a single
DHCPv6 transaction.

6.2.5.6 Extended Example
Figure 6-15 shows an example of a Windows Vista (Service Pack 1) machine attach-
ing to a wireless network. Its IPv4 stack has been disabled. It begins by assigning
its link-local address and checking to see if that address is already being used.

Figure 6-14 Basic operation of DHCPv6. A client determines whether or not to use DHCPv6 from
information carried in ICMPv6 router advertisements. If used, DHCPv6 operations are
similar to those in DHCPv4 but differ significantly in the details.

ptg999

259

Figure 6-15 DAD for the client system’s link-local address is a Neighbor Solicitation for its own IPv6 address.

ptg999

260 System Configuration: DHCP and Autoconfiguration

In Figure 6-15 we see the ICMPv6 Neighbor Solicitation (DAD) for the client’s
optimistic address fe80::fd26:de93:5ab7:405a. (DAD is described in more detail
when we discuss stateless address autoconfiguration in Section 6.3.2.1.) The packet
is sent to the corresponding solicited-node address ff02::1:ffb7:405a. It optimisti-
cally assumes that this address is not otherwise in use on the link, so it continues
on immediately with a Router Solicitation (RS) (see Figure 6-16).

The RS shown in Figure 6-16 is sent to the All Routers multicast address ff02::2.
It induces each router on the network to respond with a Router Advertisement
(RA), which carries the important M and O bits the client requires to determine
what to do next.

Note

This example shows a router solicitation being sent from an optimistic address
including a source link-layer address option (SLLAO), in violation of [RFC4429].
The problem here is potential pollution of neighbor caches in any listening IPv6
routers. They will process the option and establish a mapping in their neighbor
caches between the tentative address and the link-layer address that may be a
duplicate. However, this is very unlikely and is probably not of significant concern.
Nonetheless, a pending “optimistic” option [IDDN], if standardized, will allow a
router solicitation to include an SLLAO that avoids this issue.

The RA in Figure 6-17 indicates the presence of a router, including its SLLAO
of 00:04:5a:9f:9e:80, which will be useful to the client for encapsulating subsequent
link-layer frames destined for the router. The Flags field indicates that the M and
O bit fields are both enabled (set to 1), so the client should proceed with DHCPv6,
both for obtaining its addresses as well as for obtaining other configuration infor-
mation. This is accomplished by soliciting a DHCPv6 server (see Figure 6-18).

The DHCPv6 SOLICIT message shown in Figure 6-18 includes a transaction
ID (as in DHCPv4), an elapsed time (0, not shown), and the DUID consisting of a
time and 6-byte MAC address. In this example, the MAC address 00:14:22:f4:19:5f
is the MAC address of the wired Ethernet interface on this client, which is not the
interface being used to send the SOLICIT message. Recall that for DUID-LL and
DUID-TLL types of DUIDs the link-layer information should be the same across
interfaces. The IA is for a nontemporary address, and the client has selected the
IAID 09001302. The time values are left at 0 in the request, meaning that the client
is not expressing a particular desire; they will be determined by the server.

The next option is the FQDN option specified by [RFC4704]. It is used to carry
the FQDN of the client but also to affect how DHCPv6 and DNS interact (see Sec-
tion 6.4 on DHCP and DNS interaction). This option is used to enable dynamic
updates to FQDN-to-IPv6 address mapping by client or server. (The reverse is
generally handled by the server.) The first portion of this option contains three

ptg999

261

Figure 6-16 The Router Solicitation induces a nearby router to provide a Router Advertisement. The solicitation message is sent to the All Routers address
(ff02::2).

ptg999

262 System Configuration: DHCP and Autoconfiguration

bit fields: N (server should not perform update), O (client request overridden by
server), and S (server should perform update). The second portion of the option
contains a domain name, which may be fully qualified or not.

Note

The Wireshark tool indicates that the FQDN name record in Figure 6-18 is mal-
formed and speculates that the packet may have been generated by a MS Vista
client, which indeed it was. The reason the field is malformed is because the origi-
nal specification for this option allowed a simple domain name encoding using
ASCII characters. This method has been deprecated by [RFC4704], and the two
encodings are not directly compatible. Microsoft provides a “hotfix” to address
this issue for Vista systems. Microsoft Windows 7 systems exhibit behavior com-
pliant with [RFC4704].

Other information in the solicitation message includes the identification of the
vendor class and requested option list. In this case, the vendor class data includes
the string "MSFT 5.0", which can be used by a DHCPv6 server to determine what
types of processing the client is capable of doing. In response to the client’s solici-
tation, the server responds with an ADVERTISE message (see Figure 6-19).

Figure 6-17 A Router Advertisement indicates that addresses are managed (available by assignment using
DHCPv6) and that other information (e.g., DNS server) is also available using DHCPv6. This net-
work uses stateful DHCPv6. IPv6 Router Advertisement messages use ICMPv6 (see Chapter 8).

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 263

The ADVERTISE message shown in Figure 6-19 provides a wealth of infor-
mation to the client. The Client Identifier option echoes the client’s configuration
information. The Server Identifier option gives the time plus a link-layer address
of 10:00:00:00:09:20 to identify the server. The IA has the value IAID 09001302
(provided by the client) and includes the global address 2001:db8:0:f101::10fd with
preferred lifetime and valid lifetime of 130 and 200s, respectively (fairly short
timeouts). The status code of 0 indicates success. Also provided with the DHCPv6

Figure 6-18 The DHCPv6 SOLICIT message requests the location of one or more DHCPv6 servers and includes
information identifying the client and the options in which it is interested.

ptg999

264 System Configuration: DHCP and Autoconfiguration

advertisement is the DNS Recursive Name Server option [RFC3646] indicating a
server address of 2001:db8:0:f101::1 and a Domain Search List option containing
the string home. Note that the server does not include an FQDN option, as it does
not implement that option.

The next two packets are a conventional Neighbor Solicitation and Neighbor
Advertisement messages between the client and the router, which we do not detail
further. That exchange is followed by the client’s request for a commitment of the
global nontemporary address 2001:db8:0:f101::10fd (see Figure 6-20).

The REQUEST message shown in Figure 6-20 is very similar to the SOLICIT
message but includes the information carried in the ADVERTISE message from
the server (address, T1, and T2 values). The transaction ID remains the same for
all of the DHCPv6 messages we have seen. The exchange is completed with the
REPLY message, which is identical to the ADVERTISE message except for the dif-
ferent message type and therefore is not detailed.

Figure 6-19 The DHCPv6 ADVERTISE message includes an address and lease, plus DNS server IPv6 address
and domain search list.

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 265

The DHCPv6 messages exchanged in this example are typical of a system
when it boots or is attached to a new network. As with DHCPv4, it is possible to
induce a system to perform the release or acquisition of this information by hand.
For example, in Windows the following command will release the data acquired
using DHCPv6:

C:\> ipconfig /release6

and the following command will acquire it:

C:\> ipconfig /renew6

The type of information acquired by DHCP and assigned to the local inter-
face can be ascertained with another variant of this command that we have seen
before. Here is an excerpt of its output:

C:\> ipconfig /all
...
Wireless LAN adapter Wireless Network Connection:

 Connection-specific DNS Suffix . : home
 Description : Intel(R) PRO/Wireless 3945ABG
 Network Connection
 Physical Address. : 00-13-02-20-B9-18
 DHCP Enabled. : Yes

Figure 6-20 The DHCPv6 REQUEST message is similar to a SOLICIT message but includes information
learned from the server’s ADVERTISE message.

ptg999

266 System Configuration: DHCP and Autoconfiguration

 Autoconfiguration Enabled : Yes
 IPv6 Address. : 2001:db8:0:f101::12cd(Preferred)
 Lease Obtained. : Sunday, December 21, 2008
 11:30:45 PM
 Lease Expires : Sunday, December 21, 2008
 11:37:04 PM
 Link-local IPv6 Address :
 fe80::fd26:de93:5ab7:405a%9(Preferred)
 Default Gateway : fe80::204:5aff:fe9f:9e80%9
 DHCPv6 IAID : 150999810
 DHCPv6 Client DUID. :
 00-01-00-01-0D-D1-4B-2E-00-14-22-F4-19-5F
 DNS Servers : 2001:db8:0:f101::1
 NetBIOS over Tcpip. : Disabled
 Connection-specific DNS Suffix Search List :
 home

Here we can see the link-layer address of the system (00:13:02:20:b9:18).
Note how this address was never used as a basis for forming the IPv6 addresses
in this example.

6.2.5.7 DHCPv6 Prefix Delegation (DHCPv6-PD and 6rd)
Although the discussion so far has revolved around configuring hosts, DHCPv6
can also be used to configure routers. This works by having one router delegate a
range of address space to another router. The range of addresses is described by
an IPv6 address prefix. The prefix is carried in a DHCP Prefix option, defined by
[RFC3633]. This is used in situations where the delegating router, which now acts
as a DHCPv6 server as well, does not require detailed topology information about
the network to which the prefix is being delegated. Such a situation can arise, for
example, when an ISP gives out a range of IP addresses to be used and potentially
reassigned by a customer. In such a circumstance, the ISP may choose to delegate
a prefix to the customer’s premises equipment using DHCPv6-PD.

With prefix delegation, a new form of IA called an IA_PD is defined. Each
IA_PD consists of an IAID and associated configuration information and is simi-
lar to an IA for addresses, as discussed previously. DHCPv6-PD is useful not only
for prefix delegation for fixed routers, but is also suggested to be used when rout-
ers (and their attached subnets) can be mobile [RFC6276].

A special form of PD (6rd, described in [RFC5569]) has been created for support-
ing IPv6 rapid deployment by service providers. The OPTION_6RD (212) option
[RFC5969] holds the IPv6 6rd prefix that is used in assigning IPv6 addresses at a
customer’s site based on the customer’s assigned IPv4 address. IPv6 addresses are
algorithmically assigned by taking the service provider’s provisioned 6rd prefix as
the first n bits, with n being recommended as less than 32. A customer’s assigned
unicast IPv4 address is then appended as the next 32 (or fewer) bits, resulting in an
IPv6 6rd delegated prefix that is handled identically to DHCPv6-PD and is recom-
mended to be 64 bits or shorter in length to allow automatic address configuration
(see Section 6.4) to operate without problems.

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 267

The OPTION_6RD option is variable in length and includes the follow-
ing values: the IPv4 mask length, 6rd prefix length, 6rd prefix, and a list of 6rd
relay addresses (IPv4 addresses of relays that provide 6rd). The IPv4 mask length
gives the number of bits from the IPv4 address to use in assigning IPv6 addresses
(counted from the left).

6.2.6 Using DHCP with Relays

In most simple networks, a single DHCP server is made available directly to cli-
ents on the same LAN. However, in more complicated enterprises it may be neces-
sary or convenient to relay DHCP traffic through one or more DHCP relay agents,
as illustrated in Figure 6-21.

Figure 6-21 A DHCP relay agent extends the operation of DHCP beyond a single network segment.
Information carried only between relays and DHCPv4 servers can be carried in the
Relay Agent Information option. Relaying in DHCPv6 works in a similar fashion but
with a different set of options.

A relay agent is used to extend the operation of DHCP across multiple network
segments. In Figure 6-21 the relay between network segments A and B forwards
DHCP messages and may annotate the messages with additional information
using options or by filling in empty fields. Note that in ordinary circumstances,
a relay does not participate in all DHCP traffic exchanged between a client and
a server. Rather, it relays only those messages that are broadcast (or multicast in
IPv6). Such messages are usually exchanged when a client is obtaining its address
for the first time. Once a client has acquired an IP address and the server’s IP
address using the Server Identification option, it can carry out a unicast conversa-
tion with the server that does not involve the relay. Note that relay agents have tra-
ditionally been layer 3 devices and tend to incorporate routing capabilities. After
discussing the basics of layer 3 relays, we will look briefly at alternatives that oper-
ate (mostly) at layer 2.

ptg999

268 System Configuration: DHCP and Autoconfiguration

6.2.6.1 Relay Agent Information Option
In the original concept of a BOOTP or DHCP relay [RFC2131], a relay agent served
the purpose only of relaying a message from one subnet to another that would
otherwise not be passed on by a router. This allowed systems that could not
yet perform indirect delivery to acquire an address from a centralized location.
This is sensible for a network operating in an enterprise under one administra-
tive authority, but in cases where DHCP is used at a subscriber’s premises and
the DHCP infrastructure is provided elsewhere (e.g., an ISP), more information
may be required. There are a number of possible reasons. For example, the ISP
may not trust the subscriber completely, or billing and logging may be associated
with other information not available in the basic DHCP protocol. It has therefore
become useful to include extra information in the messages that pass between the
relay and the server. The Relay Agent Information option (for DHCPv4, abbrevi-
ated RAIO) [RFC3046] provides ways to include such information for IPv4 net-
works. IPv6 works somewhat differently, and we cover it in the following section.

The RAIO for DHCPv4 specified in [RFC3046] is really a meta-option, in
the sense that it specifies a framework in which a number of suboptions can be
defined. Many such suboptions have been defined, including several that are used
by ISPs to identify from which user, circuit, or network a request is coming. In
many cases we shall see that a suboption of the DHCPv4 information option has a
corresponding IPv6 option.

Because some of the information conveyed between a relay and a server may
be important to secure, the DHCP Authentication suboption of the RAIO has been
defined in [RFC4030]. It provides a method to ensure data integrity of the mes-
sages exchanged between relay and server. The approach is very similar to the
DHCP deferred authentication method (see Section 6.2.7), except the SHA-1 algo-
rithm is used instead of the MD5 algorithm (see Chapter 18).

6.2.6.2 Relay Agent Remote-ID Suboption and IPv6 Remote-ID Option
One common requirement placed upon a relay is to identify the client making a
DHCP request with information beyond what the client itself provides. A sub-
option of the Relay Agent Information option, called the Remote-ID suboption,
provides a way to identify the requesting DHCP client using a number of nam-
ing approaches that are locally interpreted (e.g., caller ID, user name, modem ID,
remote IP address of a point-to-point link). The DHCPv6 Relay Agent Remote-ID
option [RFC4649] provides the same capability but also includes an extra field,
the enterprise number, which indicates the vendor associated with the identify-
ing information. This format of the Remote-ID information is then specified in a
vendor-specific way based on the enterprise number. A common method is to use
a DUID for the remote ID.

6.2.6.3 Server Identifier Override
In some cases a relay may wish to interpose itself for processing between a
DHCP client and server. This can be accomplished with a special Server Identifier

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 269

Override suboption [RFC5107]. The suboption is a variant of the RAIO mentioned
previously.

Ordinarily, a relay forwards SOLICIT messages and may append options to
these messages as they pass from client to server. Relays are necessary in this cir-
cumstance because the client is likely to not yet have an acceptable IP address and
only sends its messages to the local subnet using broadcast or multicast address-
ing. Once a client receives and selects its address, it can talk directly to the DHCP
server based upon the server’s identity carried in the Server Identifier option. In
effect, this cuts the relay out of subsequent transactions between client and server.

It is often useful to allow the relay to include a variety of options (e.g., RAIO
carrying a circuit ID) for other types of messages, such as REQUEST, in addition
to SOLICIT. This option includes a 4-byte value specifying the IPv4 address to use
in the Server Identifier option present in DHCPREPLY messages formed by serv-
ers. The Server Identifier Override option is supposed to be used in conjunction
with the Relay Agents Flag suboption [RFC5010]. This suboption of the RAIO is a
set of flags that carry information from relay to server. So far, only one such flag
is defined: whether the destination address on the initial message from the client
used broadcast or unicast addressing. The server may make different address allo-
cation decisions based upon the setting of this flag.

6.2.6.4 Lease Query and Bulk Lease Query
In some environments it is useful to allow a third-party system (such as a relay
or access concentrator) to learn the address bindings for a particular DHCP client.
This facility is provided by DHCP leasequery ([RFC4388][RFC6148] for DHCPv4
and [RFC5007] for DHCPv6). In the case of DHCPv6, it can also provide lease
information for delegated prefixes. In Figure 6-21, the relay agent may “glean”
information from DHCP packets that pass through it in order to influence what
information is provided to the DHCP server. Such information may be kept by the
relay but may be lost upon relay failure. The DHCPLEASEQUERY message allows
such an agent to reacquire this type of information on demand, usually when
relaying traffic for which it has lost a binding. The DHCPLEASEQUERY message
supports four types of queries for DHCPv4: IPv4 address, MAC address, Client
Identifier, and Remote ID. For DHCPv6, it supports two: IPv6 address and Client
Identifier (DUID).

DHCPv4 servers may respond to lease queries with one of the follow-
ing types of messages: DHCPLEASEUNASSIGNED, DHCPLEASEACTIVE, or
DHCPLEASEUNKNOWN. The first message indicates that the responding server
is authoritative for the queried value but no current associated lease is assigned.
The second form indicates that a lease is active, and the lease parameters (includ-
ing T1 and T2) are provided. There is no particular presumed use for this infor-
mation; it is made available to the requestor for whatever purposes it desires.
DHCPv6 servers respond with a LEASEQUERY-REPLY message that contains
a Client Data option. This option, in turn, includes a collection of the following
options: Client ID, IPv6 Address, IPv6 Prefix, and Client Last Transaction Time.

ptg999

270 System Configuration: DHCP and Autoconfiguration

The last value is the time (in seconds) since the server last communicated with
the client in question. A LEASEQUERY-REPLY message may also contain the fol-
lowing two options: Relay Data and Client Link. The first includes the data last
sent from a relay about the associated query, and the second indicates the link on
which the subject client has one or more address bindings. Once again, this infor-
mation is used for whatever purposes the requestor desires.

An extension to lease query called Bulk Leasequery (BL) [RFC5460][ID4LQ]
allows multiple bindings to be queried simultaneously, uses TCP/IP rather than
UDP/IP, and supports a wider range of query types. BL is designed as a special
service for obtaining binding information and is not really part of conventional
DHCP. Thus, clients wishing to obtain conventional configuration information do
not use BL. One particular use of BL is when DHCP is being used for prefix del-
egation. In this case, it is common for a router to be acting as a DHCP-PD client. It
obtains a prefix and then provides an address from the address range represented
by the prefix as an assignment to conventional DHCP clients. However, if such a
router fails or reboots, it may lose the prefix information and have a difficult time
recovering because the conventional lease query mechanism requires an identifier
for the binding in order to form the query. BL helps this situation, and others, by
generalizing the set of possible query types.

BL provides several extensions to basic lease query. First, it uses TCP/IP (port
547 for IPv6 and port 67 for IPv4) instead of UDP/IP. This change allows for large
amounts of query information to be returned for a single query, as may be neces-
sary when retrieving a large number of delegated prefixes. BL also provides a Relay
Identifier option to allow queries to identify the querier more easily. A BL query
can then be based on relay identifier, link address (network segment), or relay ID.

The Relay ID DHCPv6 option and Relay ID DHCPv4 suboption [ID4RI] may
include a DUID that identifies the relay agent. Relays can insert this option in mes-
sages they forward, and the server can use it to associate bindings it receives with
the particular relay providing them. BL supports queries by address and DUID
specified in [RFC5007] and [RFC4388] but also queries by relay ID, link address,
and remote ID. These newer queries are supported only on TCP/IP-based servers
that support BL. Conversely, BL servers support only LEASEQUERY messages, not
the full set of ordinary DHCP messages.

BL extends the basic lease query mechanism with the LEASEQUERY-DATA
and LEASEQUERY-DONE messages. When responding successfully to a query, a
server first includes a LEASEQUERY-REPLY message. If additional information is
available, it includes a set of LEASEQUERY-DATA messages, one per binding, and
completes the set with a LEASEQUERY-DONE message. All messages pertaining
to the same group of bindings share a common transaction ID, the same one pro-
vided in the initial LEASEQUERY-REQUEST message.

6.2.6.5 Layer 2 Relay Agents
In some network environments, there are layer 2 devices (e.g., switches, bridges)
that are located near end systems that relay and process DHCP requests. These

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 271

layer 2 devices do not have a full TCP/IP implementation stack and are not address-
able using IP. As a result, they cannot act as conventional relay agents. To deal with
this issue, [IDL2RA] and [RFC6221] specify how layer 2 “lightweight” DHCP relay
agents (LDRAs) should behave, for IPv4 and IPv6, respectively. When referring to
relay behaviors, interfaces are labeled as client-facing or network-facing, and as
either trusted or untrusted. Network-facing interfaces are topologically closer to
DHCP servers, and trusted interfaces are those where it is assumed that arriving
packets are not spoofed.

The primary issue for IPv4 LDRAs is how to handle the DHCP giaddr field and
insert a RAIO when the LDRA itself has no IP layer information. The approach
recommended by [IDL2RA] is to have LDRAs insert the RAIO into DHCP requests
received from clients but not fill in the giaddr field. The resulting DHCP message
is sent in a broadcast fashion to one or more DHCP servers, as well as any other
receiving LDRAs. Such messages are flooded (i.e., sent on all interfaces except
the one upon which the message was received) unless received on an untrusted
interface. LDRAs receiving such a message already including a RAIO do not add
another such option but perform flooding. Responses (e.g., DHCPOFFER mes-
sages) sent using broadcast may be intercepted by the LDRA, which in turn strips
the RAIO and uses its information to forward the response to the original request-
ing client. Many LDRAs also intercept unicast DHCP traffic. In these cases, the
RAIO is also created or stripped as necessary. Note that compatible DHCP serv-
ers must support the ability to process and return DHCP messages containing
RAIOs without a valid giaddr field, whether such messages are sent using unicast
or broadcast.

IPv6 LDRAs process DHCPv6 traffic by creating RELAY-FORW and RELAY-
REPL messages. ADVERTISE, REPLY, RECONFIGURE, and RELAY-REPL mes-
sages received on client-facing interfaces are discarded. In addition, RELAY-FORW
messages received on untrusted client-facing interfaces are also discarded as a
security precaution. RELAY-FORW messages are built containing options that
identify the client-facing interface (i.e., Link-Address field, Peer-Address field, and
Interface-ID option). The Link-Address field is set to 0, the Peer-Address field is set
to the client’s IP address, and the Interface-ID option is set to a value configured
in the LDRA. When receiving a RELAY-REPL message containing a Link-Address
field with value 0, the LDRA decapsulates the included message and sends it to
toward the client on the interface specified in the received Interface-ID option
(provided by the server). RELAY-FORW messages received on client-facing inter-
faces are modified by incrementing the hop count. Messages other than RELAY-
REPL messages received on network-facing interfaces are dropped.

6.2.7 DHCP Authentication

While we ordinarily discuss various security vulnerabilities at the end of each
chapter (as we do in this one), for DHCP it is worth mentioning them here. It
should be apparent that if the smooth operation of DHCP is interfered with, hosts

ptg999

272 System Configuration: DHCP and Autoconfiguration

are likely to be configured with erroneous information and significant disruption
could result. Unfortunately, as we have discussed so far, DHCP has no provision
for security, so it is possible for unauthorized DHCP clients or servers to be set
up, either intentionally or accidentally, that could cause havoc with an otherwise
functioning network.

In an attempt to mitigate these problems, a method to authenticate DHCP
messages is specified in [RFC3118]. It defines a DHCP option, the Authentication
option, with the format shown in Figure 6-22.

Figure 6-22 The DHCP Authentication option includes replay detection and can use various meth-
ods for authentication. Specified back in 2001, this option is not widely used today.

The purpose of the Authentication option is to help determine whether a
DHCP message has come from an authorized sender. The Code field is set to 90,
and the Length field gives the number of bytes in the option (not including the
Code or Length fields). If the Protocol and Algorithm fields have the value 0, the
Authentication Information field holds a simple shared configuration token. As long as
the configuration token matches at the client and server, the message is accepted.
This could be used, for example, to hold a password or similar text string, but such
traffic could be intercepted by an attacker, so this method is not very secure. It
might help to fend off accidental DHCP problems, however.

A somewhat more secure method involves so-called deferred authentication,
indicated if the Protocol and Algorithm fields are set to 1. In this case, the client’s
DHCPDISCOVER or DHCPINFORM message includes an Authentication option,
and the server responds with authentication information included in its DHCPOF-
FER or DHCPACK message. The authentication information includes a message
authentication code (MAC; see Chapter 18), which provides authentication of the
sender and an integrity check on the message contents. Assuming that the server
and client have a shared secret, the MAC can be used to ensure that the client is
trusted by the server and vice versa. It can also be used to ensure that the DHCP
messages exchanged between them have not been modified or replayed from an

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 273

earlier DHCP exchange. The replay detection method (RDM) is determined by
the value of the RDM field. For RDM set to 0, the Replay Detection field contains a
monotonically increasing value (e.g., timestamp). Received messages are checked
to ensure that this value always increases. If the value does not increase, it is
likely that an earlier DHCP message is simply being replayed (captured, stored,
and played back later). It is conceivable that the value in the Replay Detection field
could fail to advance in a situation where packets are reordered, but this is highly
unlikely in a LAN (where DHCP is most prevalent) because only a single routing
path is ordinarily used between the DHCP client and server.

There are (at least) two reasons why DHCP authentication has not seen wide-
spread use. First, the approach requires shared keys to be distributed between a
DHCP server and each client requiring authentication. Second, the Authentication
option was specified after DHCP was already in relatively widespread use. None-
theless, [RFC4030] builds upon this specification to help secure DHCP messages
passed through relay agents (see Section 6.2.6).

6.2.8 Reconfigure Extension

In ordinary operation, a DHCP client initiates the renewal of address bindings.
[RFC3203] defines the reconfigure extension and associated DHCPFORCERENEW
message. This extension allows a server to cause a single client to change to the
Renewing state and attempt to renew its lease by an otherwise ordinary opera-
tion (i.e., DHCPREQUEST). A server that does not wish to renew the lease for the
requested address may respond with a DHCPNAK, causing the client to restart
in the INIT state. The client would then begin again using a DHCPDISCOVER
message.

The purpose of this extension is to cause the client to reestablish an address or
to cause it to lose its address as the result of some significant change of state within
the network. This could happen, for example, if the network is being adminis-
tratively taken down or renumbered. Because this message is such an obvious
candidate for a DoS attack, it must be authenticated using DHCP authentication.
Because DHCP authentication is not in widespread use, neither is the reconfigure
extension.

6.2.9 Rapid Commit

The DHCP Rapid Commit option [RFC4039] allows a DHCP server to respond
to the DHCPDISCOVER message with a DHCPACK, effectively skipping the
DHCPREQUEST message and ultimately using a two-message exchange instead
of a four-message exchange. The motivation for this option is to quickly configure
hosts that may change their point of network attachment frequently (i.e., mobile
hosts). When only a single DHCP server is available and addresses are plentiful,
this option should be of no significant concern.

ptg999

274 System Configuration: DHCP and Autoconfiguration

To use rapid commit, a client includes the option in a DHCPDISCOVER mes-
sage; it is not permitted to include it in any other message. Similarly, a server uses
this option only in DHCPACK messages. When a server responds with this option,
the receiving client knows that the returned address may be used immediately. If
it should determine later that the address is already in use by another system (e.g.,
via ARP), the client sends a DHCPDECLINE message and abandons the address. It
may also voluntarily relinquish the address it has received using a DHCPRELEASE
message.

6.2.10 Location Information (LCI and LoST)

In some cases, it is useful for a host being configured to become aware of its loca-
tion in the world. Such information may be encoded using, for example, latitude,
longitude, and altitude. An IETF effort known as Geoconf (“Geographic configu-
ration”) resulted in [RFC6225], which specifies how to provide such geospatial
Location Configuration Information (LCI) to clients using the GeoConf (123) and
GeoLoc (144) DHCP options. Geospatial LCI includes not only the value of the lati-
tude, longitude, and altitude coordinates, but also resolution indicators for each.
LCI can be used for a number of purposes, including emergency services. If a
caller using an IP phone requests emergency assistance, LCI can be used to indi-
cate where the emergency is taking place.

Although the physical location information just mentioned is useful to locate
a particular individual or system, sometimes it is important to know the civic
location of an entity. The civic location expresses location in terms of geopoliti-
cal institutions such as country, city, district, street, and other such parameters.
Civic location information can be provided using DHCP in the same way a phys-
ical location can, using the same LCI structure as is used with geospatial LCI.
[RFC4776] defines the GEOCONF_CIVIC (99) option for carrying civic location
LCI. This form of LCI is trickier than the geospatial information because the geo-
political method for naming locations varies by country. An additional complexity
arises because such names may also require languages and character sets beyond
the English and ASCII language and characters ordinarily used with DHCP. There
is also a concern regarding the privacy of location in general, not just with respect
to DHCP. The IETF is undertaking this issue in a framework called “Geopriv.” See,
for example, [RFC3693] for more information.

An alternative high-layer protocol known as the HTTP-Enabled Location Deliv-
ery (HELD) protocol [RFC5985] may also be used to provide location information.
Instead of encoding the LCI directly in DHCP messages, DHCP options OPTION_
V4_ACCESS_DOMAIN (213) and OPTION_V6_ACCESS_DOMAIN (57) provide
the FQDN of a HELD server for IPv4 and IPv6, respectively [RFC5986].

Once a host knows its location, it may need to contact services associated with
the location (e.g., the location of the nearest hospital). The IETF Location-to- Service
Translation (LoST) framework [RFC5222] accomplishes this using an application-
layer protocol accessed using a location-dependent URI. The DHCP options

ptg999

Section 6.2 Dynamic Host Configuration Protocol (DHCP) 275

OPTION_V4_LOST (137) and OPTION_V6_LOST (51) provide for variable-length
encodings of an FQDN specifying the name of a LoST server for DHCPv4 and
DHCPv6, respectively [RFC5223]. The encoding is in the same format used by
DNS for encoding domain names (see Chapter 11).

6.2.11 Mobility and Handoff Information (MoS and ANDSF)

In response to the increased use of mobile computers and smartphones accessing
the Internet with cellular technology, frameworks and related DHCP options have
been specified to convey information about the cellular configuration and hand-
overs between different wireless networks. At present, there are two sets of DHCP
options relating to this information: IEEE 802.21 Mobility Services (MoS) Discovery
and Access Network Discovery and Selection Function (ANDSF). The latter framework
is being standardized by the 3rd Generation Partnership Project (3GPP), one of the
organizations responsible for creating cellular data communications standards.

The IEEE 802.21 standard [802.21-2008] specifies a framework for media-
independent handoff (MIH) services between various network types, including
those defined by IEEE (802.3, 802.11, 802.16), those defined by 3GPP, and those
defined by 3GPP2. A design of such a framework in the IETF context is provided
in [RFC5677]. MoS provides three types of services known as information ser-
vices, command services, and event services. Roughly speaking, these services
provide information about available networks, functions for controlling link
parameters, and notification of link status changes. The MoS Discovery DHCP
options [RFC5678] provide a means for a mobile node to acquire the addresses or
domain names of servers providing each of these services using either DHCPv4
or DHCPv6. For IPv4, the OPTION-IPv4_Address-MoS option (139) contains a
vector of suboptions containing IP addresses for servers providing each of the
services. A suboption of the OPTION-IPv4_FQDN-MoS option (140) provides a
vector of FQDNs for servers for each of the services. Similar options, OPTION-
IPv6_Address-MoS (54) and OPTION-IPv6_FQDN (55), provide equivalent capa-
bilities for IPv6.

Based upon 3GPP’s ANDSF specification, [RFC6153] defines DHCPv4 and
DHCPv6 options for carrying ANDSF information. In particular, it defines options
for mobile devices to discover the address of an ANDSF server. ANDSF servers
are configured by cellular infrastructure operators and may hold information
such as the availability and access policies of multiple transport networks (e.g.,
simultaneous use of 3G and Wi-Fi).

The ANDSF IPv4 Address Option (142) contains a vector of IPv4 addresses for
ANDSF servers. The addresses are provided in preference order (first is most pre-
ferred). The ANDSF IPv6 Address Option (143) contains a vector of IPv6 addresses
for ANDSF servers. To request ANDSF information using DHCPv4, the mobile node
includes an ANDSF IPv4 Address option in the Parameter Request List. To request
ANDSF information using DHCPv6, the client includes an ANDSF IPv6 Address
option in the Option Request Option (ORO) (see Section 22.7 of [RFC3315]).

ptg999

276 System Configuration: DHCP and Autoconfiguration

6.2.12 DHCP Snooping

DHCP “snooping” is a capability that some switch vendors offer in their prod-
ucts that inspects the contents of DHCP messages and ensures that only those
addresses listed on an access control list are able to exchange DHCP traffic. This
can help to protect against two potential problems. First, a “rogue” DHCP server is
limited in the damage it can do because other hosts are not able to hear its DHCP
address offers. Also, the technique can limit the allocation of addresses to a partic-
ular set of MAC addresses. While this provides some protection, MAC addresses
can be changed in a system fairly easily using operating system commands, so
this technique offers only limited protection.

6.3 Stateless Address Autoconfiguration (SLAAC)

While most routers have their addresses configured manually, hosts can be
assigned addresses manually, using an assignment protocol like DHCP, or auto-
matically using some sort of algorithm. There are two forms of automatic assign-
ment, depending on what type of address is being formed. For addresses that are
to be used only on a single link (link-local addresses), a host need only find some
appropriate address not already in use on the link. For addresses that are to be
used for global connectivity, however, some portion of the address must generally
be managed. There are mechanisms in both IPv4 and IPv6 for link-local address
autoconfiguration, whereby a host determines its address(es) largely without help.
This is called stateless address autoconfiguration (SLAAC).

6.3.1 Dynamic Configuration of IPv4 Link-Local Addresses

In cases where a host without a manually configured address attaches to a network
lacking a DHCP server, IP-based communication is unable to take place unless
the host somehow generates an IP address to use. [RFC3927] describes a mecha-
nism whereby a host can automatically generate its own IPv4 address from the
link-local range 169.254.1.1 through 169.254.254.254 using the 16-bit subnet mask
255.255.0.0 (see [RFC5735]). This method is known as dynamic link-local address
configuration or Automatic Private IP Addressing (APIPA). In essence, a host selects
a random address in the range to use and checks to see if that address is already
in use by some other system on the subnetwork. This check is implemented using
IPv4 ACD (see Chapter 4).

6.3.2 IPv6 SLAAC for Link-Local Addresses

The goal of IPv6 SLAAC is to allow nodes to automatically (and autonomously)
self-assign link-local IPv6 addresses. IPv6 SLAAC is described in [RFC4862]. It

ptg999

Section 6.3 Stateless Address Autoconfiguration (SLAAC) 277

involves three major steps: obtaining a link-local address, obtaining a global
address using stateless autoconfiguration, and detecting whether the link-local
address is already in use on the link. Stateless autoconfiguration can be used with-
out routers, in which case only link-local addresses are assigned. When routers are
present, a global address is formed using a combination of the prefix advertised
by a router and locally generated information. SLAAC can also be used in con-
junction with DHCPv6 (or manual address assignment) to allow a host to obtain
information in addition to its address (called “stateless” DHCPv6). Hosts that per-
form SLAAC can be used on the same network as those configured using stateful
or stateless DHCPv6. Generally, stateful DHCPv6 is used when finer control is
required in assigning address to hosts, but it is expected that stateless DHCPv6 in
combination with SLAAC will be the most common deployment option.

In IPv6, tentative (or optimistic) link-local addresses are selected using proce-
dures specified in [RFC4291] and [RFC4941]. They apply only to multicast-capable
networks and are assigned infinite preferred and valid lifetimes once established.
To form the numeric address, a unique number is appended to the well-known
link-local prefix fe80::0 (of appropriate length). This is accomplished by setting
the right-most N bits of the address to be equal to the (N-bit-long) number, the
left-most bits equal to the 10-bit link-local prefix 1111111010, and the rest to 0. The
resulting address is placed into the tentative (or optimistic) state and checked for
duplicates (see the next section).

6.3.2.1 IPv6 Duplicate Address Detection (DAD)
IPv6 DAD uses ICMPv6 Neighbor Solicitation and Neighbor Advertisement mes-
sages (see Chapter 8) to determine if a particular (tentative or optimistic) IPv6
address is already in use on the attached link. For purposes of this discussion,
we refer only to tentative addresses, but it is understood that DAD applies to opti-
mistic addresses as well. DAD is specified in [RFC4862] and is recommended to
be used every time an IPv6 address is assigned to an interface manually, using
autoconfiguration, or using DHCPv6. If a duplicate address is discovered, the pro-
cedure causes the tentative address to not be used. If DAD succeeds, the tentative
address transitions to the preferred state and can be used without restriction.

DAD is performed as follows: A node first joins the All Nodes multicast address
and the Solicited-Node multicast address of the tentative address (see Chapter 9).
To check for use of an address duplicate, a node sends one or more ICMPv6 Neigh-
bor Solicitation messages. The source and destination IPv6 addresses of these mes-
sages are the unspecified address and Solicited-Node address of the target address
being checked, respectively. The Target Address field is set to the address being
checked (the tentative address). If a Neighbor Advertisement message is received
in response, DAD has failed, and the address being checked is abandoned.

ptg999

278 System Configuration: DHCP and Autoconfiguration

Note

As a consequence of joining multicast groups, MLD messages are sent (see
Chapter 9), but their transmission is delayed by a random interval according to
[RFC4862] to avoid congesting the network when many nodes simultaneously
join the All Hosts group (e.g., after a restoration of power). For DAD, these MLD
messages are used to inform MLD-snooping switches to forward multicast traffic
as necessary.

When an address has not yet successfully completed DAD, any received
neighbor solicitations for it are treated in a special way, as this is indicative of
some other host’s intention to use the same address. If such messages are received,
they are dropped, the current tentative address is abandoned, and DAD fails.

If DAD fails, by receiving a similar neighbor solicitation from another node
or a neighbor advertisement for the target address, the address is not assigned to
an interface and does not become a preferred address. If the address is a link-local
address being configured based on an interface identifier derived from a local
MAC address, it is unlikely that the same procedure will ultimately produce a
nonconflicting address, so the use of this address is abandoned and administrator
input is required. If the address is based on a different form of interface identi-
fier, IPv6 operations may be retried using another address based on an alternative
tentative address.

6.3.2.2 IPv6 SLAAC for Global Addresses
Once a node has acquired a link-local address, it is likely to require one or more
global addresses as well. Global addresses are formed using a process similar to
that for link-local SLAAC but using a prefix provided by a router. Such prefixes
are carried in the Prefix option of a router advertisement (see Chapter 8), and a
flag indicates whether the prefix should be used in forming global addresses with
SLAAC. If so, the prefix is combined with an interface identifier (e.g., the same one
used in forming a link-local address if the privacy extension is not being used) to
form a global address. The preferred and valid lifetimes of such addresses are also
determined by information present in the Prefix option.

6.3.2.3 Example
The trace in Figure 6-23 shows the series of events an IPv6 (Windows Vista/SP1)
host uses when allocating its addresses with SLAAC. The system first selects a
link-local address based on the link-local prefix of fe80::/64 and a random number.
This method is designed to enhance the privacy of a user by making the address of
the host system change over time [RFC4941]. The other common method involves
using the bits of the MAC address in forming the link-local address. It performs
DAD on this address (fe80::fd26:de93:5ab7:405a) to look for conflicts.

ptg999

279

Figure 6-23 During SLAAC, a host begins by performing DAD on the tentative link-local address it wishes to use by sending an ICMPv6 Neighbor Solicita-
tion message for this address from the unspecified address.

ptg999

280 System Configuration: DHCP and Autoconfiguration

Figure 6-23 shows the operation of DAD, which involves the host sending an
NS to see if its selected link-local address is in use. It then quickly performs an RS
to determine how to proceed (see Figure 6-24).

Figure 6-24 The ICMPv6 RS message induces a nearby router to supply configuration information such as the
global network prefix in use on the attached network.

The Router Solicitation message shown in Figure 6-24 is sent to the All Rout-
ers multicast address (ff02::2) using the autoconfigured link-local IPv6 address as
a source address. The response is given in an RA sent to the All Systems multicast
address (ff02::1), so that all attached systems can see (see Figure 6-25).

The RA shown in Figure 6-25 is sent from fe80::204:5aff:fe9f:9e80, the link-
local address of the router, to the All Systems multicast address ff02::1. The Flags
field in the RA, which may contain several configuration options and extensions
[RFC5175], is set to 0, indicating that addresses are not “managed” on this link
by DHCPv6. The Prefix option indicates that the global prefix 2001:db8::/64 is
in use on the link. The prefix length of 64 is not carried but is instead defined
according to [RFC4291]. The Flags field value of 0xc0 associated with the Pre-
fix option indicates that the prefix is on-link (can be use in conjunction with a
router) and the auto flag is set, meaning that the prefix can be used by the host
to configure other addresses automatically. It also includes the Recursive DNS
Server (RDNSS) option [RFC6106], which indicates that a DNS server is available
at the address 2001::db8::1. The SLLAO indicates that the router’s MAC address is
00:04:5a:9f:9e:80. This information is made available for any node to populate its
neighbor cache (the IPv6 equivalent of the IPv4 ARP cache; Neighbor Discovery is
discussed in Chapter 8).

ptg999

Section 6.3 Stateless Address Autoconfiguration (SLAAC) 281

After an exchange of Neighbor Solicitation and Neighbor Advertisement mes-
sages between the client and the router, the client performs another DAD opera-
tion on the new (global) address it selects (see Figure 6-26).

The address 2001:db8::fd26:de93:5ab7:405a has been chosen by the client
based on the prefix 2001::db8 carried in the router advertisement it received ear-
lier. The low-order bits of this address are based on the same random number as
was used to configure its link-local address. As such, the Solicited-Node multicast
address ff02::1:ffb7:405a is the same for DAD for both addresses. After this address
has been tested for duplication, the client allocates another address and applies
DAD to it (see Figure 6-27).

Figure 6-25 An ICMPv6 RA message provides the location and availability of a default router plus the global
address prefix in use on the network. It also includes the location of a DNS server and indicates
whether the router sending the advertisement can also act as a Mobile IPv6 home agent (no in this
case). The client may use some or all of this information in configuring its operation.

ptg999

282 System Configuration: DHCP and Autoconfiguration

The DAD operation in Figure 6-27 is for the address 2001:db8::9cf4:f812:816d:
5c97. This address is a temporary IPv6 address, generated using a different ran-
dom number for its lower-order bits for privacy reasons. The difference between

Figure 6-26 DAD for the global address derived from the prefix 2001:db8::/64 is sent to the same
Solicited-Node multicast address as the first packet.

Figure 6-27 DAD for the address 2001:db8::9cf4:f812:816d:5c97.

ptg999

Section 6.3 Stateless Address Autoconfiguration (SLAAC) 283

the two global addresses here is that the temporary address has a shorter lifetime.
Lifetimes are computed as the lower (smaller) of the following two values: the life-
times included in the Prefix Information option received in the RA and a local pair
of defaults. In the case of Windows Vista, the default valid lifetime is one week and
the default preferred lifetime is one day. Once this message has completed, the cli-
ent has performed SLAAC for its link-local address, plus two global addresses.
This is enough addressing information to perform local or global communication.
The temporary address will change periodically to help enhance privacy. In cases
where privacy protection is not desired, the following command can be employed
to disable this feature in Windows:

C:\> netsh interface ipv6 set privacy state=disabled

In Linux, temporary addresses can be enabled using this set of commands:

Linux# sysctl –w net.ipv6.conf.all.use_tempaddr=2

Linux# sysctl –w net.ipv6.conf.default.use_tempaddr=2

and disabled using these commands:

Linux# sysctl –w net.ipv6.conf.all.use_tempaddr=0

Linux# sysctl –w net.ipv6.conf.default.use_tempaddr=0

6.3.2.4 Stateless DHCP
We have mentioned that DHCPv6 can be used in a “stateless” mode where the
DHCPv6 server does not assign addresses (or keep any per-client state) but
does provide other configuration information. Stateless DHCPv6 is specified in
[RFC3736] and combines SLAAC with DHCPv6. It is believed that this combi-
nation is an attractive deployment option because network administrators need
not be directly concerned with address pools as they have been when deploying
DHCPv4.

In a stateless DHCPv6 deployment, nodes are assumed to have obtained their
addresses using some method other than DHCPv6. Thus, the DHCPv6 server does
not need to handle any of the address management messages specified in Table
6-1. In addition, it does not need to handle any of the options required for estab-
lishing IA bindings. This simplifies the server software and server configuration
considerably. The operation of relay agents is unchanged.

Stateless DHCPv6 clients use the DHCPv6 INFORMATION-REQUEST mes-
sage to request information that is provided in REPLY messages from servers. The
INFORMATION-REQUEST message includes an Option Request option listing

ptg999

284 System Configuration: DHCP and Autoconfiguration

the options about which the client wishes to know more. The INFORMATION-
REQUEST may include a Client Identifier option, which allows answers to be cus-
tomized for particular clients.

To be a compliant stateless DHCPv6 server, a system must implement the fol-
lowing messages: INFORMATION-REQUEST, REPLY, RELAY-FORW, and RELAY-
REPL. It also must implement the following options: Option Request, Status Code,
Server Identifier, Client Message, Server Message, Interface-ID. The last three
are used when relay agents are involved. To be a useful stateless DHCPv6 server,
several other options will likely be necessary: DNS Server, DNS Search List, and
possibly SIP Servers. Other potentially useful, but not required, options include
Preference, Elapsed Time, User Class, Vendor Class, Vendor-Specific Information,
Client Identifier, and Authentication.

6.3.2.5 The Utility of Address Autoconfiguration
The utility of address autoconfiguration for IP is typically limited because routers
that may be on the same network as the client are configured with particular IP
address ranges in use that differ from the addresses a client is likely to autoconfig-
ure. This is especially true for the IPv4 (APIPA) case, as the private link-local prefix
169.254/16 is very unlikely to be used by a router. Therefore, the consequence of
self-assigning an IP address is that local subnet access may work, but Internet
routing and name services (DNS) are likely to fail. When DNS fails, much of the
common Internet “experience” fails with it. Thus, it is often more useful to have a
client fail to get an IP address (which is relatively easily detected) than to allow it
to obtain one that cannot really be used effectively.

Note

There are name services other than conventional DNS that may be of use for
link-local addressing, including Bonjour/ZeroConf (Apple), LLMNR, and NetBIOS
(Microsoft). Because these have evolved over time from different vendors, and
are not established IETF standards, the exact behavior involved when mapping
names to addresses in the local environment varies considerably. See Chapter 11
for more details on local alternatives to DNS.

The use of APIPA can be disabled, which prevents a system from self-assign-
ing an IP address. In Windows, this is accomplished by creating the following
registry key (the key is a single line but is wrapped here for illustration):

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
IPAutoconfigurationEnabled

This REG_DWORD value may be set to 0 to disable APIPA for all network inter-
faces. In Linux, the file /etc/sysconfig/network can be modified to include
the following directive:

NOZEROCONF=yes

ptg999

Section 6.4 DHCP and DNS Interaction 285

This disables the use of APIPA for all network interfaces. It is also possible to
disable APIPA for specific interfaces by modifying the per-interface configura-
tion files (e.g., /etc/sysconfig/network-scripts/ifcfg-eth0 for the first
Ethernet device).

In the case of IPv6 SLAAC, it is relatively easy to obtain a global IPv6 address,
but the relationship between a name and its address is not secured, leading to a
potential set of unpleasant consequences (see Chapters 11 and 18). Thus, it may
still be desirable to avoid SLAAC in deployments for the time being. To disable
SLAAC for IPv6 global addresses, there are two methods. First, the Router Adver-
tisement messages provided by the local router can be arranged to turn off the
“auto” flag in the Prefix option (or configure it to not provide a Prefix option, as
illustrated in the preceding example). In addition, a local configuration setting
causes a client to avoid autoconfiguration of global addresses.

To disable SLAAC in a Linux client, the following command may be given:

Linux# sysctl –w net.ipv6.conf.all.autoconf=0

To do so on a Mac OS or FreeBSD system, at least for link-local addresses, the fol-
lowing command should be used:

FreeBSD# sysctl –w net.inet6.ip6.auto_linklocal=0

And, finally, for Windows:

C:\> netsh
netsh> interface ipv6
netsh interface ipv6> set interface {ifname} managedaddress=disabled

where {ifname} should be replaced with the appropriate interface name (in this
example, “Wireless Network Connection”). Note that the behavior of these
configuration commands sometimes changes over time. Please check the operat-
ing system documentation for the current method if these changes do not perform
as expected.

6.4 DHCP and DNS Interaction

One of the important parts of the configuration information a DHCP client typi-
cally receives when obtaining an IP address is the IP address of a DNS server. This
allows the client system to convert DNS names to the IPv4 and/or IPv6 addresses
required by the protocol implementation to make transport-layer connections.
Without a DNS server or other way to map names to addresses, most users would
find the system nearly useless for accessing the Internet. If the local DNS is work-
ing properly, it should be able to provide address mappings for the Internet as a
whole, but also for local private networks (like .home mentioned earlier), if prop-
erly configured.

ptg999

286 System Configuration: DHCP and Autoconfiguration

Because DNS mappings for local private networks are cumbersome to manage
by hand, it is convenient to couple the act of providing a DHCP-assigned address
with a method for updating the DNS mappings corresponding to that address.
This can be done either using a combined DHCP/DNS server or with dynamic DNS
(see Chapter 11).

A combined DNS/DHCP server (such as the Linux dnsmasq package) is a
server program that can be configured to give out IP address leases and other
information but that also reads the Client Identifier or Domain Name present in a
DHCPREQUEST and updates an internal DNS database with the name-to-address
binding before responding with the DHCPACK. In doing so, any subsequent DNS
requests initiated either by the DHCP client or by other systems interacting with
the same DNS server are able to convert between the name of the client and its
freshly assigned IP address.

6.5 PPP over Ethernet (PPPoE)

For most LANs and some WAN connections, DHCP provides the most com-
mon method for configuring client systems. For WAN connections such as DSL,
another method based on PPP is often used instead. This method involves carry-
ing PPP on Ethernet and is called PPP over Ethernet (PPPoE). PPPoE is used in cases
where the WAN connection device (e.g., DSL modem) acts as a switch or bridge
instead of a router. PPP is preferred as a basis for establishing connectivity by
some ISPs because it may provide finer-grain configuration control and audit logs
than other configuration options such as DHCP. To provide Internet connectivity,
some device such as a user’s PC must implement the IP routing and addressing
functions. Figure 6-28 shows the typical use case.

Figure 6-28 A simplified view of DSL service using PPPoE as provided to a customer. The home PC
implements the PPPoE protocol and authenticates the subscriber with the ISP. It may
also act as a router, DHCP server, DNS server, and/or NAT device for the home LAN.

ptg999

Section 6.5 PPP over Ethernet (PPPoE) 287

The figure shows an ISP providing services to many customers using DSL.
DSL provides a point-to-point digital link that can operate simultaneously with a
conventional analog telephone line (called plain old telephone service or POTS). This
simultaneous use of the customer’s physical phone wires is accomplished using
frequency division multiplexing—the DSL information is carried on higher fre-
quencies than POTS. A filter is required when attaching conventional telephone
handsets to avoid interference from the higher DSL frequencies. The DSL modem
effectively provides a bridged service to a PPP port on the ISP’s access concentrator
(AC), which interconnects the customer’s modem line and the ISP’s networking
equipment. The modem and AC also support the PPPoE protocol, which the user
has elected in this example to configure on a home PC attached to the DSL modem
using a point-to-point Ethernet network (i.e., an Ethernet LAN using only a single
cable).

Once the DSL modem has successfully established a low-layer link with the
ISP, the PC can begin the PPPoE exchange, as defined in the informational docu-
ment [RFC2516] and shown in Figure 6-29.

Figure 6-29 The PPPoE message exchange starts in a Discovery stage and establishes a PPP Session
stage. Each message is a PAD message. PADI requests responses from PPPoE servers.
PADO offers connectivity. PADR expresses the client’s selection among multiple pos-
sible servers. PADS provides an acknowledgment to the client from the selected server.
After the PAD exchanges, a PPP session begins. The PPP session can be terminated by
either side sending a PADT message or when the underlying link fails or is shut down.

ptg999

288 System Configuration: DHCP and Autoconfiguration

The protocol includes a Discovery phase and a PPP Session phase. The Discov-
ery phase involves the exchange of several PPPoE Active Discovery (PAD) messages:
PADI (Initiation), PADO (Offer), PADR (Request), PADS (Session Confirmation).
Once the exchange is complete, an Ethernet-encapsulated PPP session proceeds
and ultimately concludes with either side sending a PADT (Termination) message.
The session also concludes if the underlying connection is broken. PPPoE mes-
sages use the format shown in Figure 6-30 and are encapsulated in the Ethernet
payload area.

Figure 6-30 PPPoE messages are carried in the payload area of Ethernet frames. The Ethernet Type
field is set to 0x8863 during the Discovery phase and 0x8864 when carrying PPP session
data. For PAD messages, a TLV scheme is used for carrying configuration information,
similar to DHCP options. The PPPoE Session ID is chosen by the server and conveyed
in the PADS message.

In Figure 6-30, the PPPoE Ver and Type fields are both 4 bits long and contain
the value 0x1 for the current version of PPPoE. The Code field contains an indica-
tion of the PPPoE message type, as shown in the lower right part of Figure 6-30.
The Session ID field contains the value 0x0000 for PADI, PADO, and PADR mes-
sages and contains a unique 16-bit number in subsequent messages. The same
value is maintained during the PPP Session phase. PAD messages contain one
or more tags, which are TLVs arranged as a 16-bit TAG_TYPE field followed by a
16-bit TAG_LENGTH field and a variable amount of tag value data. The values and
meanings of the TAG_TYPE field are given in Table 6-2.

ptg999

Section 6.5 PPP over Ethernet (PPPoE) 289

To see PPPoE in action, we can monitor the exchange between a home system
such as the home PC from Figure 6-28 and an access concentrator. The Discovery
phase and first PPP session packet are shown in Figure 6-31.

Figure 6-31 shows the expected exchange of PADI, PADO, PADR, and PADS
messages. Each contains the Host-Uniq tag with value 9c3a0000. Messages coming
from the concentrator also include the value 90084090400368-rback37.snfcca in the
AC-Name tag. The PADS message can be seen in more detail in Figure 6-32.

In Figure 6-32, the PADS message indicates the establishment of a PPP ses-
sion for the client and the use of the session ID 0xecbd. The AC-Name tag is also
maintained to indicate the originating AC. The Discovery phase is now complete,
and a regular PPP session (see Chapter 3) can commence. Figure 6-33 shows the
first PPP session packet.

The figure indicates the beginning of the PPP Session phase within the PPPoE
exchange. The PPP session begins with link configuration (PPP LCP) by the client
sending a Configuration Request (see Chapter 3). It indicates that the client wishes
to use the Password Authentication Protocol, a relatively insecure method, for
authenticating itself to the AC. Once the authentication exchange is complete and
various link parameters are exchanged (e.g., MRU), IPCP is used to obtain and
configure the assigned IP address. Note that additional configuration information
(e.g., IP addresses of the ISP’s DNS servers) may need to be obtained separately
and, depending on the ISP’s configuration, configured by hand.

Table 6-2 PPPoE TAG_TYPE values, name, and purpose. PAD messages may contain one or more
tags.

Value Name Purpose

0x0000 End-of-List Indicates that no further tags are present. TAG_
LENGTH must be 0.

0x0101 Service-Name Contains a UTF-8-encoded service name (for ISP use).
0x0102 AC-Name Contains a UTF-8-encoded string identifying the

access concentrator.
0x0103 Host-Uniq Binary data used by client to match messages; not

interpreted by AC.
0x0104 AC-Cookie Binary data used by AC for DoS protection; echoed

by client.
0x0105 Vendor-Specific Not recommended; see [RFC2516] for details.
0x0110 Relay-Session-ID May be added by a relay relaying PAD traffic.
0x0201 Service-Name-Error The requested Service-Name tag cannot be honored

by AC.
0x0202 AC-System-Error The AC experienced an error in performing a

requested action.
0x0203 Generic-Error Contains a UTF-8 string describing an

unrecoverable error.

ptg999

290

Figure 6-31 The PPPoE exchange begins with a PADI message sent to the Ethernet broadcast address. Subsequent messages use unicast addressing. In this
exchange, only the Host-Uniq and AC-Name tags are used. The PPP session begins with the fifth packet, which begins a PPP link configuration
exchange that ultimately assigns the system’s IPv4 address using the IPCP (see Chapter 3).

ptg999

Section 6.5 PPP over Ethernet (PPPoE) 291

Figure 6-32 The PPPoE PADS message confirms the association between the client and the access concentrator.
This message also defines the session ID as 0xecbd, which is used in subsequent PPP session packets.

Figure 6-33 The first PPP message of the PPPoE session is a Configuration Request. The Ethernet type has changed
to 0x8864 to indicate an active PPP session, and the Session ID is set to 0xecbd. In this case, the PPP
client wishes to authenticate using the (relatively insecure) Password Authentication Protocol.

ptg999

292 System Configuration: DHCP and Autoconfiguration

6.6 Attacks Involving System Configuration

A wide variety of attacks can be mounted relating to system and network configu-
ration. They range from deploying unauthorized clients or unauthorized servers
that interfere with DHCP to various forms of DoS attacks that involve resource
exhaustion, such as requesting all possible IP addresses a server may have to give
out. Many of these problems are widespread because the older IPv4-based proto-
cols used for address configuration were designed for networks where trust was
assumed, and the newer ones have seen little deployment to date. (Secured deploy-
ments are even rarer.) Therefore, none of these attacks are directly addressed by
typical DHCP deployments, although link-layer authentication (e.g., WPA2 as
used with Wi-Fi networks) helps to limit the number of unauthorized clients that
are able to attach to a particular network.

An effort is under way within the IETF to provide security for IPv6 Neighbor
Discovery, which, when or if it is deployed, would directly impact the security
of operating networks using SLAAC. The trust and threat assumptions are out-
lined in [RFC3756] from 2004, and the Secure Neighbor Discovery (SEND) protocol
is defined in [RFC3971]. SEND applies IPsec (see Chapter 18) to Neighbor Discov-
ery packets, in combination with cryptographically generated addresses (CGAs)
[RFC3972]. Such addresses are derived from a keyed hash function, so they can be
generated only by a system holding the appropriate key material.

6.7 Summary

A basic set of configuration information is required for a host or router to operate
on the Internet or on a private network using Internet protocols. At a minimum,
routers typically require the assignment of addressing information, whereas hosts
require addresses, a next-hop router, and the location of a DNS server. DHCP is
available for both IPv4 as well as IPv6, but the two are not directly interoperable.
DHCP allows appropriately configured servers to lease one or more addresses to
requesting clients for a defined period of time. Clients renew their leases if they
require ongoing use. DHCP can also be used by the client to acquire additional
information, such as the subnet mask, default routers, vendor-specific configura-
tion information, DNS server, home agents, and default domain name. DHCP can
be used through relay agents when a client and server are located on different net-
works. Several extensions to DHCP allow for additional information to be carried
between a relay agent and server when this is used. DHCPv6 can also be used to
delegate a range of IPv6 address space to a router.

With IPv6, a host typically uses multiple addresses. An IPv6 client is able to
generate its link-local address autonomously by combining a special link-local
IPv6 prefix with other local information such as bits derived from one of its
MAC addresses or from a random number to help promote privacy. To obtain
a global address, it can obtain a global address prefix from either ICMP Router

ptg999

 Section 6.8 References 293

Advertisement messages or from a DHCPv6 server. DHCPv6 servers may operate
in a “stateful” mode, in which they lease IPv6 addresses to requesting clients, or a
“stateless” mode, in which they provide configuration information other than the
addresses.

PPPoE carries PPP messages over Ethernet to establish Internet connectiv-
ity with ISPs, especially those ISPs that provide service using DSL. When using
PPPoE, a user usually has a DSL modem with an Ethernet port acting as a bridge
or switch. PPPoE first exchanges a set of Discovery messages to determine the
identity of an access controller and establish a PPP session. After the Discovery
phase is successfully completed, PPP traffic, which can be encapsulated in Eth-
ernet and carry various protocols such as IP, may continue until the PPPoE asso-
ciation is terminated, either intentionally or as a result of disconnection of the
underlying link. When PPPoE is used, the PPP protocol’s configuration capabili-
ties such as IPCP (discussed in Chapter 3) are ultimately responsible for assigning
the IP address to the client system.

DHCP and the ICMPv6 router advertisements used with IPv6 stateless auto-
configuration are ordinarily deployed without security mechanisms being applied
to them. Because of this, they are susceptible to a number of attacks, including net-
work access by unauthorized clients, operation of rogue DHCP servers that give
out bogus addresses and cause various forms of denial of service, and resource
exhaustion attacks in which a client may request more addresses than are avail-
able. Most of these attacks can be mitigated by security mechanisms that have
been added to DHCP such as DHCP authentication and the relatively recent SEND
protocol. However, these are not commonly found in operation today.

6.8 References

[802.21-2008] “IEEE Standard for Local and Metropolitan Area Networks—Part
21: Media Independent Handover Services,” Nov. 2008.

[F07] R. Faas, “Hands On: Configuring Apple’s NetBoot Service, Part 1,” Comput-
erworld, Sept. 2007.

[GC89] C. Gray and D. Cheriton, “Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency,” Proc. ACM Symposium on Operating Sys-
tem Principles (SOSP), 1989.

[IARP] http://www.iana.org/assignments/arp-parameters

[IBDP] http://www.iana.org/assignments/bootp-dhcp-parameters

[ID4LQ] K. Kinnear, B. Volz, M. Stapp, D. Rao, B. Joshi, N. Russell, and P. Kurapati,
“Bulk DHCPv4 Lease Query,” Internet draft-ietf-dhc-dhcpv4-bulk-leasequery,
work in progress, Apr. 2011.

http://www.iana.org/assignments/arp-parameters
http://www.iana.org/assignments/bootp-dhcp-parameters

ptg999

294 System Configuration: DHCP and Autoconfiguration

[ID4RI] B. Joshi, R. Rao, and M. Stapp, “The DHCPv4 Relay Agent Identifier Sub-
option,” Internet draft-ietf-dhc-relay-id-suboption, work in progress, June 2011.

[ID6PARAM] http://www.iana.org/assignments/dhcpv6-parameters

[IDDN] G. Daley, E. Nordmark, and N. Moore, “Tentative Options for Link-
Layer Addresses in IPv6 Neighbor Discovery,” Internet draft-ietf-dna-tentative
(expired), work in progress, Oct. 2009.

[IDL2RA] B. Joshi and P. Kurapati, “Layer 2 Relay Agent Information,” Internet
draft-ietf-dhc-l2ra, work in progress, Apr. 2011.

[IEPARAM] http://www.iana.org/assignments/enterprise-numbers

[MKB928233] Microsoft Knowledge Base Article 928233 at http://support
.microsoft.com

[MS-DHCPN] Microsoft Corporation, “[MS-DHCPN]: Dynamic Host Configura-
tion Protocol (DHCP) Extensions for Network Access Protection (NAP),” http://
msdn.microsoft.com/en-us/library/cc227316.aspx, Oct. 2008.

[RFC0826] D. Plummer, “Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission on
Ethernet Hardware,” Internet RFC 0826/STD 0037, Nov. 1982.

[RFC0951] W. J. Croft and J. Gilmore, “Bootstrap Protocol,” Internet RFC 0951,
Sept. 1985.

[RFC1542] W. Wimer, “Clarifications and Extensions for the Bootstrap Protocol,”
Internet RFC 1542, Oct. 1993.

[RFC2131] R. Droms, “Dynamic Host Configuration Protocol,” Internet RFC 2131,
Mar. 1997.

[RFC2132] S. Alexander and R. Droms, “DHCP Options and BOOTP Vendor
Extensions,” Internet RFC 2132, Mar. 1997.

[RFC2241] D. Provan, “DHCP Options for Novell Directory Services,” Internet
RFC 2241, Nov. 1997.

[RFC2242] R. Droms and K. Fong, “NetWare/IP Domain Name and Informa-
tion,” Internet RFC 2242, Nov. 1997.

[RFC2516] L. Mamakos, K. Lidl, J. Evarts, D. Carrel, D. Simone, and R. Wheeler,
“A Method for Transmitting PPP over Ethernet (PPPoE),” Internet RFC 2516
(informational), Feb. 1999.

[RFC2563] R. Troll, “DHCP Option to Disable Stateless Auto-Configuration in
IPv4 Clients,” Internet RFC 2563, May 1999.

[RFC2937] C. Smith, “The Name Service Search Option for DHCP,” Internet RFC
2937, Sept. 2000.

http://www.iana.org/assignments/dhcpv6-parameters
http://www.iana.org/assignments/enterprise-numbers
http://support.microsoft.com
http://support.microsoft.com
http://msdn.microsoft.com/en-us/library/cc227316.aspx
http://msdn.microsoft.com/en-us/library/cc227316.aspx

ptg999

 Section 6.8 References 295

[RFC3004] G. Stump, R. Droms, Y. Gu, R. Vyaghrapuri, A. Demirtjis, B. Beser, and
J. Privat, “The User Class Option for DHCP,” Internet RFC 3004, Nov. 2000.

[RFC3011] G. Waters, “The IPv4 Subnet Selection Option for DHCP,” Internet RFC
3011, Nov. 2000.

[RFC3046] M. Patrick, “DHCP Relay Agent Information Option,” Internet RFC
3046, Jan. 2001.

[RFC3118] R. Droms and W. Arbaugh, eds., “Authentication of DHCP Messages,”
Internet RFC 3118, June 2001.

[RFC3203] Y. T’Joens, C. Hublet, and P. De Schrijver, “DHCP Reconfigure Exten-
sion,” Internet RFC 3203, Dec. 2001.

[RFC3315] R. Droms, ed., J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney,
“Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” Internet RFC 3315,
July 2003.

[RFC3396] T. Lemon and S. Cheshire, “Encoding Long Options in the Dynamic
Host Configuration Protocol (DHCPv4),” Internet RFC 3396, Nov. 2002.

[RFC3442] T. Lemon, S. Cheshire, and B. Volz, “The Classless Static Route Option
for Dynamic Host Configuration Protocol (DHCP) Version 4,” Internet RFC 3442,
Dec. 2002.

[RFC3633] O. Troan and R. Droms, “IPv6 Prefix Options for Dynamic Host Con-
figuration Protocol (DHCP) Version 6,” Internet RFC 3633, Dec. 2003.

[RFC3646] R. Droms, ed., “DNS Configuration Options for Dynamic Host Con-
figuration Protocol for IPv6 (DHCPv6),” Internet RFC 3646, Dec. 2003.

[RFC3693] J. Cuellar, J. Morris, D. Mulligan, J. Peterson, and J. Polk, “Geopriv
Requirements,” Internet RFC 3693 (informational), Feb. 2004.

[RFC3736] R. Droms, “Stateless Dynamic Host Configuration Protocol (DHCP)
Service for IPv6,” Internet RFC 3736, Apr. 2004.

[RFC3756] P. Nikander, ed., J. Kempf, and E. Nordmark, “IPv6 Neighbor Discov-
ery (ND) Trust Models and Threats,” Internet RFC 3756 (informational), May
2004.

[RFC3925] J. Littlefield, “Vendor-Identifying Vendor Options for Dynamic Host
Configuration Protocol Version 4 (DHCPv4),” Internet RFC 3925, Oct. 2004.

[RFC3927] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic Configuration of
IPv6 Link-Local Addresses,” Internet RFC 3927, May 2005.

[RFC3971] J. Arkko, ed., J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor
Dicovery (SEND),” Internet RFC 3971, Mar. 2005.

ptg999

296 System Configuration: DHCP and Autoconfiguration

[RFC3972] T. Aura, “Cryptographically Generated Addresses (CGA),” Internet
RFC 3972, Mar. 2005.

[RFC4030] M. Stapp and T. Lemon, “The Authentication Suboption for the
Dynamic Host Configuration Protocol (DHCP) Relay Agent Option,” Internet
RFC 4030, Mar. 2005.

[RFC4039] S. Park, P. Kim, and B. Volz, “Rapid Commit Option for the Dynamic
Host Configuration Protocol Version 4 (DHCPv4),” Internet RFC 4039, Mar. 2005.

[RFC4174] C. Monia, J. Tseng, and K. Gibbons, “The IPv4 Dynamic Host Configu-
ration Protocol (DHCP) Option for the Internet Storage Name Service,” Internet
RFC 4174, Sept. 2005.

[RFC4280] K. Chowdhury, P. Yegani, and L. Madour, “Dynamic Host Configu-
ration Protocol (DHCP) Options for Broadcast and Multicast Control Servers,”
Internet RFC 4280, Nov. 2005.

[RFC4291] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,”
Internet RFC 4291, Feb. 2006.

[RFC4361] T. Lemon and B. Sommerfield, “Node-Specific Client Identifiers for
Dynamic Host Configuration Protocol Version Four (DHCPv4),” Internet RFC
4361, Feb. 2006.

[RFC4388] R. Woundy and K. Kinnear, “Dynamic Host Configuration Protocol
(DHCP) Leasequery,” Internet RFC 4388, Feb. 2006.

[RFC4429] N. Moore, “Optimistic Duplicate Address Detection (DAD) for IPv6,”
Internet RFC 4429, Apr. 2006.

[RFC4436] B. Aboba, J. Carlson, and S. Cheshire, “Detecting Network Attachment
in IPv4 (DNAv4),” Internet RFC 4436, Mar. 2006.

[RFC4649] B. Volz, “Dynamic Host Configuration Protocol (DHCPv6) Relay
Agent Remote-ID Option,” Internet RFC 4649, Aug. 2006.

[RFC4702] M. Stapp, B. Volz, and Y. Rekhter, “The Dynamic Host Configuration
Protocol (DHCP) Client Fully Qualified Domain Name (FQDN) Option,” Internet
RFC 4702, Oct. 2006.

[RFC4704] B. Volz, “The Dynamic Host Configuration Protocol for IPv6 (IPv6)
Client Fully Qualified Domain Name (FQDN) Option,” Internet RFC 4704, Oct.
2006.

[RFC4776] H. Schulzrinne, “Dynamic Host Configuration Protocol (DHCPv4 and
DHCPv6) Option for Civic Addresses Configuration Information,” Internet RFC
4776, Nov. 2006.

[RFC4833] E. Lear and P. Eggert, “Timezone Options for DHCP,” Internet RFC
4833, Apr. 2007.

ptg999

 Section 6.8 References 297

[RFC4862] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address Auto-
configuration,” Internet RFC 4862, Sept. 2007.

[RFC4941] T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for State-
less Address Autoconfiguration in IPv6,” Internet RFC 4941, Sept. 2007.

[RFC5007] J. Brzozowski, K. Kinnear, B. Volz, and S. Zeng, “DHCPv6 Lease-
query,” Internet RFC 5007, Sept. 2007.

[RFC5010] K. Kinnear, M. Normoyle, and M. Stapp, “The Dynamic Host Configu-
ration Protocol Version 4 (DHCPv4) Relay Agent Flags Suboption,” Internet RFC
5010, Sept. 2007.

[RFC5107] R. Johnson, J. Kumarasamy, K. Kinnear, and M. Stapp, “DHCP Server
Identifier Override Suboption,” Internet RFC 5107, Feb. 2008.

[RFC5175] B. Haberman, ed., and R. Hinden, “IPv6 Router Advertisement Flags
Option,” Internet RFC 5175, Mar. 2008.

[RFC5192] L. Morand, A. Yegin, S. Kumar, and S. Madanapalli, “DHCP Options
for Protocol for Carrying Authentication for Network Access (PANA) Authentica-
tion Agents,” Internet RFC 5192, May 2008.

[RFC5222] T. Hardie, A. Newton, H. Schulzrinne, and H. Tschofenig, “LoST: A
Location-to-Service Translation Protocol,” Internet RFC 5222, Aug. 2008.

[RFC5223] H. Schulzrinne, J. Polk, and H. Tschofenig, “Discovering Location-to-
Service Translation (LoST) Servers Using the Dynamic Host Configuration Proto-
col (DHCP),” Internet RFC 5223, Aug. 2008.

[RFC5460] M. Stapp, “DHCPv6 Bulk Leasequery,” Internet RFC 5460, Feb. 2009.

[RFC5569] R. Despres, “IPv6 Rapid Deployment on IPv4 Infrastructures (6rd),”
Internet RFC 5569 (informational), Jan. 2010.

[RFC5677] T. Melia, ed., G. Bajko, S. Das, N. Golmie, and JC. Zuniga, “IEEE 802.21
Mobility Services Framework Design (MSFD),” Internet RFC 5677, Dec. 2009.

[RFC5678] G. Bajko and S. Das, “Dynamic Host Configuration Protocol (DHCPv4
and DHCPv6) Options for IEEE 802.21 Mobility Services (MoS) Discovery,” Inter-
net RFC 5678, Dec. 2009.

[RFC5735] M. Cotton and L. Vegoda, “Special-Use IPv4 Addresses,” Internet RFC
5735/BCP 0153, Jan. 2010.

[RFC5969] W. Townsley and O. Troan, “IPv6 Rapid Deployment on IPv4 Infra-
structures (6rd)—Protocol Specification,” Internet RFC 5969, Aug. 2010.

[RFC5985] M. Barnes, ed., “HTTP-Enabled Location Delivery (HELD),” Internet
RFC 5985, Sept. 2010.

ptg999

298 System Configuration: DHCP and Autoconfiguration

[RFC5986] M. Thomson and J. Winterbottom, “Discovering the Local Location
Information Server (LIS),” Internet RFC 5986, Sept. 2010.

[RFC6059] S. Krishnan and G. Daley, “Simple Procedures for Detecting Network
Attachment in IPv6,” Internet RFC 6059, Nov. 2010.

[RFC6106] J. Jeong, S. Park, L. Beloeil, and S. Madanapalli, “IPv6 Router Adver-
tisement Options for DNS Configuration,” Internet RFC 6106, Nov. 2010.

[RFC6148] P. Kurapati, R. Desetti, and B. Joshi, “DHCPv4 Lease Query by Relay
Agent Remote ID,” Internet RFC 6148, Feb. 2011.

[RFC6153] S. Das and G. Bajko, “DHCPv4 and DHCPv6 Options for Access Net-
work Discovery and Selection Function (ANDSF) Discovery,” Internet RFC 6153,
Feb. 2011.

[RFC6221] D. Miles, ed., S. Ooghe, W. Dec, S. Krishnan, and A. Kavanagh, “Light-
weight DHCPv6 Relay Agent,” Internet RFC 6221, May 2011.

[RFC6225] J. Polk, M. Linsner, M. Thomson, and B. Aboba, ed., “Dynamic Host
Configuration Protocol Options for Coordinate-Based Location Configuration
Information,” Internet RFC 6225, Mar. 2011.

[RFC6276] R. Droms, P. Thubert, F. Dupont, W. Haddad, and C. Bernardos,
“DHCPv6 Prefix Delegation for Network Mobility (NEMO),” Internet RFC 6276,
July 2011.

ptg999

299

7

Firewalls and Network Address
Translation (NAT)

7.1 Introduction

During the early years of the Internet and its protocols, most network designers
and developers were from universities or other entities engaged in research. These
researchers were generally friendly and cooperative, and the Internet system was
not especially resilient to attack, but not many people were interested in attack-
ing it, either. By the late 1980s and especially the early to mid-1990s the Internet
had gained the interest of the mass population and ultimately people interested
in compromising its security. Successful attacks became commonplace, and many
problems were caused by bugs or unplanned protocol operations in the software
implementations of Internet hosts. Because some sites had a large number of end
systems with various versions of operating system software, it became very dif-
ficult for system administrators to ensure that all the various bugs in these end
systems had been fixed. Furthermore, for obsolete systems, this task was all but
impossible. Fixing the problem would have required a way to control the Internet
traffic to which the end hosts were exposed. Today, this is provided by a firewall—
a type of router that restricts the types of traffic it forwards.

As firewalls were being deployed to protect enterprises, another problem
was becoming important: the number of available IPv4 addresses was dimin-
ishing, with a threat of exhaustion. Something would have to be done with the
way addresses were allocated and used. One of the most important mechanisms
developed to deal with this, aside from IPv6, is called Network Address Translation
(NAT). With NAT, Internet addresses need not be globally unique, and as a conse-
quence they can be reused in different parts of the Internet, called address realms.
Allowing the same addresses to be reused in multiple realms greatly eased the
problem of address exhaustion. As we shall see, NAT can also be synergistically
combined with firewalls to produce combination devices that have become the

ptg999

300 Firewalls and Network Address Translation (NAT)

most popular types of routers used to connect end users, including home net-
works and small enterprises, to the Internet. We shall now explore both firewalls
and NATs in further detail.

7.2 Firewalls

Given the enormous management problems associated with trying to keep end
system software up-to-date and bug-free, the focus of resisting attacks expanded
from securing end systems to restricting the Internet traffic allowed to flow to end
systems by filtering out some traffic using firewalls. Today, firewalls are common,
and several different types have evolved.

The two major types of firewalls commonly used include proxy firewalls and
packet-filtering firewalls. The main difference between them is the layer in the pro-
tocol stack at which they operate, and consequently the way IP addresses and port
numbers are used. The packet-filtering firewall is an Internet router that drops
datagrams that (fail to) meet specific criteria. The proxy firewall operates as a
multihomed server host from the viewpoint of an Internet client. That is, it is the
endpoint of TCP and UDP transport associations; it does not typically route IP
datagrams at the IP protocol layer.

7.2.1 Packet-Filtering Firewalls

Packet-filtering firewalls act as Internet routers and filter (drop) some traffic. They
can generally be configured to discard or forward packets whose headers meet
(or fail to meet) certain criteria, called filters. Simple filters include range compari-
sons on various parts of the network-layer or transport-layer headers. The most
popular filters involve undesired IP addresses or options, types of ICMP mes-
sages, and various UDP or TCP services, based on the port numbers contained in
each packet. As we shall see, the simplest packet-filtering firewalls are stateless,
whereas the more sophisticated ones are stateful. Stateless packet-filtering fire-
walls treat each datagram individually, whereas stateful firewalls are able associ-
ate packets with either previously observed packets or packets that arrive in the
future to make inferences about datagrams or streams—either those belonging to
a single transport association or those IP fragments that constitute an IP datagram
(see Chapter 10). IP fragmentation can significantly complicate a firewall’s job, and
stateless packet-filtering firewalls are easily confused by fragments.

A typical packet-filtering firewall is shown in Figure 7-1. Here, the firewall is
an Internet router with three network interfaces: an “inside,” an “outside,” and a
third “DMZ” interface. The DMZ subnet provides access to an extranet or DMZ
where servers are deployed for Internet users to access. Network administrators
install filters or access control lists (ACLs, basically policy lists indicating what
types of packets to discard or forward) in the firewall. Typically, these filters con-
servatively block traffic from the outside that may be harmful and liberally allow
traffic to travel from inside to outside.

ptg999

 Section 7.2 Firewalls 301

7.2.2 Proxy Firewalls

Packet-filtering firewalls act as routers that selectively drop packets. Other types
of firewalls, called proxy firewalls, are not really Internet routers in the true sense.
Instead, they are essentially hosts running one or more application-layer gateways
(ALGs)—hosts with more than one network interface that relay traffic of certain
types between one connection/association and another at the application layer.
They do not typically perform IP forwarding as routers do, although more sophis-
ticated proxy firewalls are now available that combine various functions.

Figure 7-2 illustrates a proxy firewall. For this type of firewall, clients on the
inside of the firewall are usually configured in a special way to associate (or con-
nect) with the proxy instead of the actual end host providing the desired service.
(Applications capable of operating with proxy firewalls this way include con-
figuration options for it.) These firewalls act as multihomed hosts, and their IP
forwarding capability, if present, is typically disabled. As with packet-filtering
firewalls, a common configuration is to have an “outside” interface assigned a
globally routable IP address and for its “inner” interface to be configured with a
private IP address. Thus, proxy firewalls support the use of private address realms.

Figure 7-1 A typical packet-filtering firewall configuration. The firewall acts as an IP router between
an “inside” and an “outside” network, and sometimes a third “DMZ” or extranet net-
work, allowing only certain traffic to pass through it. A common configuration allows
all traffic to pass from inside to outside but only a small subset of traffic to pass in
the reverse direction. When a DMZ is used, only certain services are permitted to be
accessed from the Internet.

ptg999

302 Firewalls and Network Address Translation (NAT)

While this type of firewall can be quite secure (some people believe this type
is fundamentally more secure than packet-filtering firewalls), this security comes
at a cost of brittleness and lack of flexibility. In particular, because this style of
firewall must contain a proxy for each transport-layer service, any new services
to be used must have a corresponding proxy installed and operated for connec-
tivity to take place through the proxy. In addition, each client must typically be
configured to find the proxy (e.g., using the Web Proxy Auto-Discovery Protocol,
or WPAD [XIDAD], although there are some alternatives—so-called capturing
proxies that catch all traffic of a certain type regardless of destination address).
With respect to deployment, these firewalls work well in environments where all
types of network services being accessed are known with certainty in advance,
but they may require significant intervention from network operators to support
additional services.

The two most common forms of proxy firewalls are HTTP proxy firewalls
[RFC2616] and SOCKS firewalls [RFC1928]. The first type, also called Web proxies,
work only for the HTTP and HTTPS (Web) protocols, but because these protocols
are so popular, such proxies are commonly used. These proxies act as Web serv-
ers for internal clients and as Web clients when accessing external Web sites. Such
proxies often also operate as Web caches. These caches save copies of Web pages so
that subsequent accesses can be served directly from the cache instead of from the
originating Internet Web server. Doing so can reduce latency to display Web pages
and improve the experience of users accessing the Web. Some Web proxies are
also used as content filters, which attempt to block access to certain Web sites based
on a “blacklist” of prohibited sites. Conversely, a number of so-called tunneling
proxy servers are available on the Internet. These servers (e.g., psiphon, CGIProxy)
essentially perform the opposite function—to allow users to avoid being blocked
by content filters.

Figure 7-2 The proxy firewall acts as a multihomed Internet host, terminating TCP connections and
UDP associations at the application layer. It does not act as a conventional IP router but
rather as an ALG. Individual applications or proxies for each service supported must be
enabled for communication to take place through the proxy firewall.

ptg999

Section 7.3 Network Address Translation (NAT) 303

The SOCKS protocol is more generic than HTTP for proxy access and is appli-
cable to more services than just the Web. Two versions of SOCKS are currently
in use: version 4 and version 5. Version 4 provides the basic support for proxy
traversal, and version 5 adds strong authentication, UDP traversal, and IPv6
addressing. To use a SOCKS proxy, an application must be written to use SOCKS
(it must be “socksified”) and configured to know about the location of the proxy
and which version of SOCKS to use. Once this is accomplished, the client uses the
SOCKS protocol to request the proxy to perform network connections and, option-
ally, DNS lookups.

7.3 Network Address Translation (NAT)

NAT is essentially a mechanism for allowing the same sets of IP addresses to be
reused in different parts of the Internet. The primary motivation for the creation
of NAT was the limited and diminishing availability of IP address space. The most
common use case for a NAT is when a site with a single Internet connection is
assigned a small range of IP addresses (perhaps only a single address), but there
are multiple computers requiring Internet access. When all incoming and outgo-
ing traffic passes through a single NAT device that partitions the inside (private)
address realm from the global Internet address realm, all the internal systems
can be provided Internet connectivity as clients using locally assigned, private IP
addresses. Allowing privately addressed systems to offer services on the Internet,
however, is somewhat more complicated. We discuss this case in Section 7.3.4.

NAT was introduced to solve two problems: address depletion and con-
cerns regarding the scalability of routing. At the time of its introduction (early
1990s), NAT was suggested as a stopgap, temporary measure to be used until the
deployment of some protocol with a larger number of addresses (ultimately, IPv6)
became widespread. Routing scalability was being tackled with the development
of Classless Inter-Domain Routing (CIDR; see Chapter 2). NAT is popular because
it reduces the need for globally routable Internet addresses but also because it
offers some degree of natural firewall capability and requires little configuration.
Perhaps ironically, the development and eventual widespread use of NAT has con-
tributed to significantly slow the adoption of IPv6. Among its other benefits, IPv6
was intended to make NAT unnecessary [RFC4864].

Despite its popularity, NAT has several drawbacks. The most obvious is that
offering Internet-accessible services from the private side of a NAT requires spe-
cial configuration because privately addressed systems are not directly reach-
able from the Internet. In addition, for a NAT to work properly, every packet in
both directions of a connection or association must pass through the same NAT.
This is because the NAT must actively rewrite the addressing information in each
packet in order for communication between a privately addressed system and a
conventionally addressed Internet host to work. In many ways, NATs run counter
to a fundamental tenet of the Internet protocols: the “smart edge” and “dumb
middle.” To do their job, NATs require connection state on a per-association (or

ptg999

304 Firewalls and Network Address Translation (NAT)

per-connection) basis and must operate across multiple protocol layers, unlike con-
ventional routers. Modifying an address at the IP layer also requires modifying
checksums at the transport layer (see Chapters 10 and 13 regarding the pseudo-
header checksum to see why).

NAT poses problems for some application protocols, especially those that
send IP addressing information inside the application-layer payload. The File
Transfer Protocol (FTP) [RFC0959] and SIP [RFC5411] are among the best-known
protocols of this type. They require a special application-layer gateway function
that rewrites the application content in order to work unmodified with NAT or
other NAT traversal methods that allow the applications to determine how to
work with the specific NAT they are using. A more complete list of considerations
regarding NAT appears in [RFC3027]. Despite their numerous problems, NATs
are very widely used, and most network routers (including essentially all low-end
home routers) support it. Today, NATs are so prevalent that application designers
are encouraged to make their applications “NAT-friendly” [RFC3235]. It is worth
mentioning that despite its shortcomings, NAT supports the basic protocols (e.g.,
e-mail, Web browsing) that are needed by millions of client systems accessing the
Internet every day.

A NAT works by rewriting the identifying information in packets transit-
ing through a router. Most commonly this happens for two directions of a data
transfer. In its most basic form, NAT involves rewriting the source IP address of
packets as they are forwarded in one direction and the destination IP addresses of
packets traveling in the reverse direction (see Figure 7-3). This allows the source
IP address in outgoing packets to become one of the NAT router’s Internet-facing
interfaces instead of the originating host’s. Thus, to a host on the Internet, packets
coming from any of the hosts on the privately addressed side of the NAT appear
to be coming from a globally routable IP address of the NAT router.

Figure 7-3 A NAT isolates private addresses and the systems using them from the Internet. Packets
with private addresses are not routed by the Internet directly but instead must be trans-
lated as they enter and leave the private network through the NAT router. Internet hosts
see traffic as coming from a public IP address of the NAT.

ptg999

Section 7.3 Network Address Translation (NAT) 305

Most NATs perform both translation and packet filtering, and the packet-filtering
criteria depend on the dynamics of the NAT state. The choice of packet-filtering
policy may have a different granularity—for example, the treatment of unsolic-
ited packets (those not associated with packets originating from behind the NAT)
received by the NAT may depend on source and destination IP address and/or
source and destination port number. The behavior may vary between NATs or in
some cases vary over time through the same NAT. This presents challenges for
applications that must operate behind a wide variety of NATs.

7.3.1 Traditional NAT: Basic NAT and NAPT

The precise behavior of a NAT remained unspecified for many years. Nonetheless,
a taxonomy of NAT types has emerged, based largely on observing how different
implementations of the NAT idea behave. The so-called traditional NAT includes
both basic NAT and Network Address Port Translation (NAPT) [RFC3022]. Basic NAT
performs rewriting of IP addresses only. In essence, a private address is rewritten
to be a public address, often from a pool or range of public addresses supplied
by an ISP. This type of NAT is not the most popular because it does not help to
dramatically reduce the need for IP addresses—the number of globally routable
addresses must equal or exceed the number of internal hosts that wish to access
the Internet simultaneously. A much more popular approach, NAPT involves
using the transport-layer identifiers (i.e., ports for TCP and UDP, query identifiers
for ICMP) to differentiate which host on the private side of the NAT is associated
with a particular packet (see Figure 7-4). This allows a large number of internal
hosts (i.e., multiple thousands) to access the Internet simultaneously using a lim-
ited number of public addresses, often only a single one. We shall ordinarily use
the term NAT to include both traditional NAT and NAPT unless the distinction is
important in a particular context.

Figure 7-4 A basic IPv4 NAT (left) rewrites IP addresses from a pool of addresses and leaves port numbers
unchanged. NAPT (right), also known as IP masquerading, usually rewrites address to a single
address. NAPT must sometimes rewrite port numbers in order to avoid collisions. In this case, the
second instance of port number 23479 was rewritten to use port number 3000 so that returning
traffic for 192.168.1.2 could be distinguished from the traffic returning to 192.168.1.35.

ptg999

306 Firewalls and Network Address Translation (NAT)

The addresses used in a private addressing realm “behind” or “inside” a NAT
are not enforced by anyone other than the local network administrator. Thus, it is
possible for a private realm to make use of global address space. In principle, this
is acceptable. However, when such global addresses are owned and being used
by another entity on the Internet, local systems in the private realm would most
likely be unable to reach the public systems using the same addresses because the
close proximity of the local systems would effectively “mask” the visibility of the
farther-away systems using the same addresses. To avoid this undesirable situa-
tion, there are three IPv4 address ranges reserved for use with private address-
ing realms [RFC1918]: 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16. These address
ranges are often used as default values for address pools in embedded DHCP
servers (see Chapter 6).

As suggested earlier, a NAT provides some degree of security similar to that
of a firewall. By default, all systems on the private side of the NAT cannot be
reached from the Internet. In most NAT deployments, the internal systems use
private addresses. Consequently, communications between hosts in the private
addressing realm and those in the public realm can be facilitated only with partic-
ipation from the NAT, according to its usage policies and behavior. While a large
variety of policies may be used in practice, a common policy allows almost all
outgoing and returning traffic (associated with outgoing traffic) to pass through
the NAT but blocks almost all incoming new connection requests. This behav-
ior inhibits “probing” attacks that attempt to ascertain which IP addresses have
active hosts available to exploit. In addition, a NAT (especially a NAPT) “hides”
the number and configuration of internal addresses from the outside. Some users
feel this topology information is proprietary and should remain confidential. NAT
helps by providing so-called topology hiding.

As we shall now explore, NATs are tailored to the protocols and applications
that they need to support, so it is difficult to discuss NAT behavior without also
mentioning the particular protocol(s) it is being asked to handle. Thus, we now
turn to how NAT behaves with each major transport protocol and how it may be
used in mixed IPv4/IPv6 environments. Many of the behavioral specifics for NATs
have been the subject of the IETF Behavior Engineering for Hindrance Avoidance
(BEHAVE) working group. BEHAVE has produced a number of documents, start-
ing in 2007, that clarify consistent behaviors for NATs. These documents are useful
for application writers and NAT developers so that a consistent expectation can be
established as to how NATs should operate.

7.3.1.1 NAT and TCP
Recall from Chapter 1 that the primary transport-layer protocol for the Internet,
TCP, uses an IP address and port number to identify each end of a connection. A
connection is identified by the combination of two ends; each unique TCP con-
nection is identified by two IP addresses and two port numbers. When a TCP
connection starts, an “active opener” or client usually sends a synchronization
(SYN) packet to a “passive opener” or server. The server responds with its own

ptg999

Section 7.3 Network Address Translation (NAT) 307

SYN packet, which also includes an acknowledgment (ACK) of the client’s SYN.
The client then responds with an ACK to the server. This “three-way handshake”
establishes the connection. A similar exchange with finish (FIN) packets is used
to gracefully close a connection. The connection can also be forcefully closed right
away using a reset (RST) packet. (See Chapter 13 for more detail on TCP connec-
tions.) The behavioral requirements for traditional NAT with TCP are defined in
[RFC5382] and relate primarily to the TCP three-way handshake.

Referring to the example home network in Figure 7-3, consider a TCP con-
nection initiated by the wireless client at 10.0.0.126 destined for the Web server
on the host www.isoc.org (IPv4 address 212.110.167.157). Using the following
notation to indicate IPv4 addresses and port numbers—(source IP:source port;
destination IP:destination port)—the packet initiating the connection on the pri-
vate segment might be addressed as (10.0.0.126:9200; 212.110.167.157:80). The NAT/
firewall device, acting as the default router for the client, receives the first packet.
The NAT notices that the incoming packet is a new connection (because the SYN
bit in the TCP header is turned on; see Chapter 13). If policy permits (which it
typically does because this is an outgoing connection), the source IP address
is modified in the packet to reflect the routable IP address of the NAT router’s
external interface. Thus, when the NAT forwards this packet, the addressing is
(63.204.134.177:9200; 212.110.167.157:80). In addition to forwarding the packet, the
NAT creates internal state to remember the fact that a new connection is being
handled by the NAT (called a NAT session). At a minimum, this state includes an
entry (called a NAT mapping) containing the source port number and IP address
of the client. This becomes useful when the Internet server replies. The server
replies to the endpoint (63.204.134.177:9200), the external NAT address, using the
port number chosen initially by the client. This behavior is called port preservation.
By matching the destination port number on the received datagram against the
appropriate NAT mapping, the NAT is able to ascertain the internal IP address of
the client that made the initial request. In our example, this address is 10.0.0.126, so
the NAT rewrites the response packet from (212.110.167.157:80; 63.204.134.177:9200)
to (212.110.167.157:80; 10.0.0.126:9200) and forwards it. The client then receives a
response to its request and for most purposes is now connected to the server.

This example conveys how a basic NAT session is established in the nor-
mal case, but not how the session is cleared. Session state is removed if FINs
are exchanged, but not all TCP connections are cleared gracefully. Sometimes a
computer is simply turned off, which can leave stale NAT mappings in the NAT’s
memory. Thus, a NAT must also remove mappings thought to have “gone dead”
because of a lack of traffic (or if an RST segment indicates some other form of
problem).

Most NATs include a simplified version of the TCP connection establishment
procedures and can distinguish between connection success and failure. In par-
ticular, when an outgoing SYN segment is observed, a connection timer is acti-
vated, and if no ACK is seen before the timer expires, the session state is cleared.
If an ACK does arrive, the timer is canceled and a session timer is created, with a

www.isoc.org

ptg999

308 Firewalls and Network Address Translation (NAT)

considerably longer timeout (e.g., hours instead of minutes). When this happens,
the NAT may send an additional packet to the internal endpoint, just to double-
check if the session is indeed dead (called probing). If it receives an ACK, the NAT
realizes that the connection is still active, resets the session timer, and does not
delete the session. If it receives either no response (after a close timer has expired)
or an RST segment, the connection has gone dead, and the state is cleared.

[RFC5382], a product of the BEHAVE working group, notes that a TCP con-
nection can be configured to send “keepalive” packets (see Chapter 17), and the
default rate is one packet every 2 hours, if enabled. Otherwise, a TCP connection
can remain established indefinitely. While a connection is being set up or cleared,
however, the maximum idle time is 4 minutes. Consequently, [RFC5382] requires
(REQ-5) that a NAT wait at least 2 hours and 4 minutes before concluding that
an established connection is dead and at least 4 minutes before concluding that a
partially opened or closed connection is dead.

One of the tricky problems for a TCP NAT is handling peer-to-peer applica-
tions operating on hosts residing on the private sides of multiple NATs [RFC5128].
Some of these applications use a simultaneous open whereby each end of the con-
nection acts as a client and sends SYN packets more or less simultaneously. TCP is
able to handle this case by responding with SYN + ACK packets that complete the
connection faster than with the three-way handshake, but many existing NATs do
not handle it properly. [RFC5382] addresses this by requiring (REQ-2) that a NAT
handle all valid TCP packet exchanges, and simultaneous opens in particular.
Some peer-to-peer applications (e.g., network games) use this behavior. In addi-
tion, [RFC5382] specifies that an inbound SYN for a connection about which the
NAT knows nothing should be silently discarded. This can occur when a simulta-
neous open is attempted but the external host’s SYN arrives at the NAT before the
internal host’s SYN. Although this may seem unlikely, it can happen as a result
of clock skew, for example. If the incoming external SYN is dropped, the internal
SYN has time to establish a NAT mapping for the same connection represented by
the external SYN. If no internal SYN is forthcoming in 6s, the NAT may signal an
error to the external host.

7.3.1.2 NAT and UDP
The NAT behavioral requirements for unicast UDP are defined in [RFC4787].
Most of the same issues arise when performing NAT on a collection of UDP data-
grams as arise when performing NAT on TCP. UDP is somewhat different, how-
ever, because there are no connection establishment and clearing procedures as
there are in TCP. More specifically, there are no indicators such as the SYN, FIN,
and RST bits to indicate that a session is being created or destroyed. Furthermore,
the participants in an association may not be completely clear. UDP does not use
a 4-tuple to identify a connection like TCP; instead, it can rely on only the two
endpoint address/port number combinations. To handle these issues, UDP NATs
use a mapping timer to clear NAT state if a binding has not been used “recently.”
There is considerable variation in the values used for this timer to determine what

ptg999

Section 7.3 Network Address Translation (NAT) 309

“recently” means, but [RFC4787] requires the timer to be at least 2 minutes and rec-
ommends that it be 5 minutes. A related consideration is when the timer should be
considered refreshed. Timers can be refreshed when packets travel from the inside
to the outside of the NAT (NAT outbound refresh behavior) or vice versa (NAT
inbound refresh behavior). [RFC4787] requires NAT outbound refresh behavior to
be true. Inbound behavior may or may not be true.

As we discussed in Chapter 5 (and will see again in Chapter 10), UDP and IP
packets can be fragmented. Fragmentation allows for a single IP packet to span
multiple chunks (fragments), each of which is treated as an independent data-
gram. However, because of the layering of UDP above IP, an IP fragment other
than the first one does not contain the port number information needed by NAPT
to operate properly. This also applies to TCP and ICMP. Thus, in general, frag-
ments cannot be handled properly by simple NATs or NAPTs.

7.3.1.3 NAT and Other Transport Protocols (DCCP, SCTP)
Although TCP and UDP are by far the most widely used Internet transport pro-
tocols, there are two other protocols for which NAT behaviors have been defined
or are being defined. The Datagram Congestion Control Protocol (DCCP) [RFC4340]
provides a congestion-controlled datagram service. [RFC5597] gives NAT behav-
ioral requirements with respect to DCCP, and [RFC5596] gives a modification to
DCCP to support a TCP-like simultaneous open procedure for use with DCCP. The
Stream Control Transmission Protocol (SCTP) [RFC4960] provides a reliable messag-
ing service that can accommodate hosts with multiple addresses. Considerations
for NAT with SCTP are given in [HBA09] and [IDSNAT].

7.3.1.4 NAT and ICMP
ICMP, the Internet Control Message Protocol, is detailed in Chapter 8. It provides
status information about IP packets and can also be used for making certain mea-
surements and gathering information about the state of the network. The NAT
behavioral requirements for ICMP are defined in [RFC5508]. There are two issues
involved when NAT is used for ICMP. ICMP has two categories of messages: infor-
mational and error. Error messages generally contain a (partial or full) copy of the
IP packet that induced the error condition. They are sent from the point where
an error was detected, often in the middle of the network, to the original sender.
Ordinarily, this presents no difficulty, but when an ICMP error message passes
through a NAT, the IP addresses in the included “offending datagram” need to
be rewritten by the NAT in order for them to make sense to the end client (called
ICMP fix-up). For informational messages, the same issues arise, but in this case
most message types are of a query/response or client/server nature and include
a Query ID field that is handled much like port numbers for TCP or UDP. Thus,
a NAT handling these types of messages can recognize outgoing informational
requests and set a timer in anticipation of a returning response.

ptg999

310 Firewalls and Network Address Translation (NAT)

7.3.1.5 NAT and Tunneled Packets
In some cases, tunneled packets (see Chapter 3) are to be sent through a NAT.
When this happens, not only must a NAT rewrite the IP header, but it may also
have to rewrite the headers or payloads of other packets that are encapsulated in
them. One example of this is the Generic Routing Encapsulation (GRE) header
used with the Point-to-Point Tunneling Protocol (PPTP; see Chapter 3). When
the GRE header is passed through a NAT, its Call-ID field could conflict with the
NAT’s (or with other hosts’ tunneled connections). If the NAT fails to handle this
mapping appropriately, communication is not possible. As we might imagine,
additional levels of encapsulation serve only to complicate a NAT’s job further.

7.3.1.6 NAT and Multicast
So far we have discussed only unicast IP traffic with NATs. NATs can be config-
ured to support multicast traffic (see Chapter 9), although this is rare. [RFC5135]
gives the requirements for handling multicast traffic through NATs. In effect, to
support multicast traffic a NAT is augmented with an IGMP proxy (see [RFC4605]
and Chapter 9). In addition, the destination IP addresses and port numbers of
packets traveling from a host on the outside to the inside of NAT are not modified.
For traffic flowing from inside to outside, the source addresses and port numbers
may be modified according to the same behaviors as with unicast UDP.

7.3.1.7 NAT and IPv6
Given the tremendous popularity of NAT for IPv4, it is natural to wonder whether
NAT will be used with IPv6. At present, this is a contentious issue [RFC5902].
To many protocol designers, NAT arose as a necessary but undesirable “wart”
that has added a tremendous amount of complexity to the design of every other
protocol. Consequently, there is staunch resistance to supporting the use of NAT
with IPv6 based on the idea that saving address space is unnecessary with IPv6
and that other desirable NAT features (e.g., firewall-like functionality, topology
hiding, and privacy) can be better achieved using Local Network Protection (LNP)
[RFC4864]. LNP represents a collection of techniques with IPv6 that match or
exceed the properties of NATs.

Aside from its packet-filtering properties, NAT supports the coexistence of
multiple address realms and thereby helps to avoid the problem of a site having
to change its IP addresses when it switches ISPs. For example, [RFC4193] defines
Unique Local IPv6 Unicast Addresses (ULAs) that could conceivably be used with an
experimental version of IPv6-to-IPv6 prefix translation called NPTv6 [RFC6296]. It
uses an algorithm instead of a table to translate IPv6 addresses to (different) IPv6
addresses (e.g., in different realms) based on their prefix and as a result does not
require keeping per-connection state as with conventional NAT. In addition, the
algorithm modifies addresses in such a way that the resulting checksum compu-
tation for common transport protocols (TCP, UDP) remains the same. This sig-
nificantly reduces the complexity of NAT because it does not have to modify the

ptg999

Section 7.3 Network Address Translation (NAT) 311

data in a packet beyond the network layer and does not require access to trans-
port layer port numbers in order to operate properly. However, applications that
require access to a NAT’s external address must still use a NAT traversal method
or depend on an ALG. In addition, NPTv6 does not by itself offer the packet-fil-
tering capabilities of a firewall, so additional deployment considerations must be
made.

7.3.2 Address and Port Translation Behavior

There has been considerable variation in the way NATs operate. Most of the details
relate to the specifics of the address and port mappings. One of the primary goals
of the BEHAVE working group in IETF was to clarify the common behaviors and
set guidelines as to which are the most appropriate. To better understand the
issues involved, we begin with a generic NAT mapping example (see Figure 7-5).

Figure 7-5 A NAT’s address and port behavior is characterized by what its mappings depend on.
The inside host uses IP address:port X:x to contact Y1:y1 and then Y2:y2. The address and
port used by the NAT for these associations are X1′:x1′ and X2′:x2′, respectively. If X1′:x1′
equals X2′:x2′ for any Y1:y1 or Y2:y2, the NAT has endpoint-independent mappings. If
X1′:x1′ equals X2′:x2′ if and only if Y1 equals Y2, the NAT has address-dependent map-
pings. If X1′:x1′ equals X2′:x2′ if and only if Y1:y1 equals Y2:y2, the NAT has address-
and port-dependent mappings. A NAT with multiple external addresses (i.e., where X1′
may not equal X2′) has an address pooling behavior of arbitrary if the outside address is
chosen without regard to inside or outside address. Alternatively, it may have a pooling
behavior of paired, in which case the same X1 is used for any association with Y1.

In Figure 7-5, we use the notation X:x to indicate that a host in the private
addressing realm (inside host) uses IP address X with port number x (for ICMP,
the query ID is used instead of the port number). The IP address X is ordinarily

ptg999

312 Firewalls and Network Address Translation (NAT)

chosen from the private IPv4 address space defined in [RFC1918]. To reach the
remote address/port combination Y:y, the NAT establishes a mapping using an
external (usually a public, globally routable) address X1′ and port number x1′.
Assuming that the internal host contacts Y1:y1 followed by Y2:y2, the NAT estab-
lishes mappings X1′:x1′ and X2′:x2′, respectively. In most cases, X1′ equals X2′
because most sites use only a single globally routable IP address. The mapping is
said to be reused if x1′ equals x2′. If x1′ and x2′ equal x, the NAT implements port
preservation, mentioned earlier. In some cases, port preservation is not possible,
so the NAT must deal with port collisions as suggested by Figure 7-4.

Table 7-1 and Figure 7-5 summarize the various NAT port and address behav-
iors based on definitions from [RFC4787]. Table 7-1 also gives filtering behaviors
that use similar terminology and that we discuss in Section 7.3.3. For all common
transports, including TCP and UDP, the required NAT address- and port-handling
behavior is endpoint-independent (a similar behavior is recommended for ICMP).
The purpose of this requirement is to help applications that attempt to determine
the external addresses used for their traffic to work more reliably. We discuss this
in more detail in Section 7.4 when we discuss NAT traversal.

Table 7-1 A NAT’s overall behavior is defined by both its translation and filtering behaviors. Each of these
may be independent of host address, dependent on address, or dependent on both address and port
number.

Behavior Name Translation Behavior Filtering Behavior

Endpoint-
independent

X1′:x1′ = X2′:x2′ for all
Y2:y2 (required)

Allows any packets for X1:x1 as long as any X1′:x1′
exists (recommended for greatest transparency)

Address-
dependent

X1′:x1′ = X2′:x2′ iff
Y1 = Y2

Allows packets for X1:x1 from Y1:y1 as long as X1
has previously contacted Y1 (recommended for
more stringent filtering)

Address- and
port-dependent

X1′:x1′ = X2′:x2′ iff
Y1:y1 = Y2:y2

Allows packets for X1:x1 from Y1:y1 as long as X1
has previously contacted Y1:y1

As stated previously, a NAT may have several external addresses available to
use. The set of addresses is typically called the NAT pool or NAT address pool. Most
moderate to large-scale NATs use address pools. Note that NAT address pools are
distinct from the DHCP address pools discussed in Chapter 6, although a single
device may need to handle both NAT and DHCP address pools. One question
in such environments is that when a single host behind the NAT opens multiple
simultaneous connections, is each assigned the same external IP address (called
address pairing) or not? A NAT’s IP address pooling behavior is said to be arbitrary
if there is no restriction on which external address is used for any association. It
is said to be paired if it implements address pairing. Pairing is the recommended
NAT behavior for all transports. If pairing is not used, the communication peer

ptg999

Section 7.3 Network Address Translation (NAT) 313

of an internal host may erroneously conclude that it is communicating with dif-
ferent hosts. For NATs with only a single external address, this is obviously not a
problem.

A very brittle type of NAT overloads not only addresses but also ports (called
port overloading). In this case, the traffic of multiple internal hosts may be rewrit-
ten to the same external IP address and port number. This is a dangerous prospect
because if multiple hosts associate with a service on the same external host, it is
no longer possible to determine the appropriate destination for traffic returning
from the external host. For TCP, this is a consequence of all four elements of the
connection identifier (source and destination address and port numbers) being
identical in the external network among the various connections. Such behavior
is now disallowed.

Some NATs implement a special feature called port parity. Such NATs attempt
to preserve the “parity” (evenness or oddness) of port numbers. Thus, if x1 is even,
x1′ is even and vice versa. Although not as strong as port preservation, such behav-
ior is sometimes useful for specific application protocols that use special port
numberings (e.g., the Real-Time Protocol, abbreviated RTP, has traditionally used
multiple ports, but there are proposed methods for avoiding this issue [RFC5761]).
Port parity preservation is a recommended NAT feature but not a requirement. It
is also expected to become less important over time as more sophisticated NAT
traversal methods become widespread.

7.3.3 Filtering Behavior

When a NAT creates a binding for a TCP connection, UDP association, or vari-
ous forms of ICMP traffic, not only does it establish the address and port map-
pings, but it must also determine its filtering behavior for the returning traffic if
it acts as a firewall, which is the common case. The type of filtering a NAT per-
forms, although logically distinct from its address- and port-handling behavior, is
often related. In particular, the same terminology is used: endpoint-independent,
address-dependent, and address- and port-dependent.

A NAT’s filtering behavior is usually related to whether it has established an
address mapping. Clearly, a NAT lacking any form of address mapping is unable
to forward any traffic it receives from the outside to the inside because it would
not know which internal destination to use. For the most common case of outgo-
ing traffic, when a binding is established, filtering is disabled for relevant return
traffic. For NATs with endpoint-independent behavior, as soon as any mapping
is established for an internal host, any incoming traffic is permitted, regardless
of source. For address-dependent filtering behavior, traffic destined for X1:x1
is permitted from Y1:y1 only if Y1 had been previously contacted by X1:x1. For
those NATs with address- and port-dependent filtering behavior, traffic destined
for X1:x1 is permitted from Y1:y1 only if Y1:y1 had been previously contacted
by X1:x1. The difference between the last two is that the last form takes the port
number y1 into account.

ptg999

314 Firewalls and Network Address Translation (NAT)

7.3.4 Servers behind NATs

One of the most obvious problems with NATs is that a system wishing to provide
a service from behind a NAT is not directly reachable from the outside. Consider
the example in Figure 7-3 once again. If the host with address 10.0.0.3 is to pro-
vide a service to the Internet, it cannot be reached without participation from the
NAT, for at least two reasons. First, the NAT is acting as the Internet router, so it
must agree to forward the incoming traffic destined for 10.0.0.3. Second, and more
important, the IP address 10.0.0.3 is not routable through the Internet and cannot
be used to identify the server by hosts in the Internet. Instead, the external address
of the NAT must be used to find the server, and the NAT must arrange to properly
rewrite and forward the appropriate traffic to the server so that it can operate. This
process is most often called port forwarding or port mapping.

With port forwarding, incoming traffic to a NAT is forwarded to a specific
configured destination behind the NAT. By employing NAT with port forward-
ing, it is possible to allow servers to provide services to the Internet even though
they may be assigned private, nonroutable addresses. Port forwarding typically
requires static configuration of the NAT with the address of the server and the
associated port number whose traffic should be forwarded. The port forwarding
directive acts like an always-present static NAT mapping. If the server’s IP address
is changed, the NAT must be updated with the new addressing information. Port
forwarding also has the limitation that it has only one set of port numbers for each
of its (IP address, transport protocol) combinations. Thus, if the NAT has only a
single external IP address, it can forward only a single port of the same transport
protocol to at most one internal machine (e.g., it could not support two indepen-
dent Web servers on the inside being remotely accessible using TCP port 80 from
the outside).

7.3.5 Hairpinning and NAT Loopback

An interesting issue arises when a client wishes to reach a server and both reside on
the same, private side of the same NAT. NATs that support this scenario implement
so-called hairpinning or NAT loopback. Referring to Figure 7-6, assume that host X1
attempts to establish a connection to host X2. If X1 knows the private address-
ing information, X2:x2, there is no problem because the connection can be made
directly. However, in some cases X1 knows only the public address information,
X2′:x2′. In these cases, X1 attempts to contact X2 using the NAT with destination
X2′:x2′. The hairpinning process takes place when the NAT notices the existence of
the mapping between X2′:x2′ and X2:x2 and forwards the packet to X2:x2 residing
on the private side of the NAT. At this point a question arises as to which source
address is contained in the packet heading to X2:x2—X1:x1 or X1′:x1′?

If the NAT presents the hairpinned packet to X2 with source addressing
information X1′:x1′, the NAT is said to have “external source IP address and port”
hairpinning behavior. This behavior is required for TCP NAT [RFC5382]. The

ptg999

Section 7.3 Network Address Translation (NAT) 315

justification for requiring this behavior is for applications that identify their peers
using globally routable addresses. In our example, X2 may be expecting an incom-
ing connection from X1′ (e.g., because of coordination from a third-party system).

7.3.6 NAT Editors

Together, packets using the UDP and TCP transport protocols account for most
of the IP traffic carried on the Internet. These transport protocols, by themselves,
can be supported by NAT without additional complexity because their formats are
well understood. When application-layer protocols used in conjunction with them
carry transport-layer or lower-layer information such as IP addresses, the NAT
problem becomes considerably more complicated. The most common example is
FTP [RFC0959]. In normal operation, it communicates transport- and network-layer
endpoint information (an IP address and port number) so that additional connec-
tions can be made when bulk data is to be transferred. This requires a NAT to
rewrite not only the IP addresses and port numbers in the IP and TCP portions of a
datagram, but also some of the application payload itself. NATs with this capability
are sometimes called NAT editors. If a NAT changes the size of a packet’s appli-
cation payload, considerable work may be required. For example, TCP numbers
every byte in the data transfer using sequence numbers (see Chapter 15), so if the
size of a packet is changed, the sequence numbers also require modification. PPTP
[RFC2637] also requires a NAT editor for transparent operation (see Chapter 3).

7.3.7 Service Provider NAT (SPNAT) and Service Provider IPv6 Transition

A relatively recent development involves the idea of moving NATs from the
customer premises into the ISP. This is sometimes called service provider NAT
(SPNAT), carrier-grade NAT (CGN), or large-scale NAT (LSN) and is intended to
further mitigate the IPv4 address depletion problem. With SPNAT, it is conceivable

Figure 7-6 A NAT that implements hairpinning or NAT loopback allows a client to reach a server on
the same side of the NAT using the server’s external IP address and port numbers. That
is, X1 can reach X2:x2 using the addressing information X2′:x2′.

ptg999

316 Firewalls and Network Address Translation (NAT)

that many ISP customers could share a single global IPv4 address. In effect, this
moves the point of aggregation from the edge of the customer to the edge of the
ISP. In its basic form, there is no functional difference between conventional NAT
and SPNAT; the difference is really in the proposed domain of use. However, mov-
ing the NAT function from customer to ISP raises security concerns and brings
into question whether individual end users are able to deploy Internet servers
and control firewall policy [MBCB08]. A study from 2009 found that a significant
number of users accept incoming connections, largely because of peer-to-peer
programs [ANM09].

SPNAT can help with the IPv4 address depletion problem, but IPv6 is viewed
as the ultimate solution. For a number of reasons already discussed, however, IPv6
deployment has lagged expectations. Originally, a scheme known as dual-stack
(see [RFC4213]), whereby each system uses both IPv6 and IPv4 addresses, was
intended to support transition to IPv6, but this approach was anticipated to be
temporary and rendered unnecessary long before the depletion of IPv4 addresses.
An arguably more pragmatic approach is now being undertaken that combines
tunneling, address translation, and dual-stack systems in various configurations.
We’ll discuss some of these in Section 7.6 after exploring the methods that have
been developed for dealing with existing NATs.

7.4 NAT Traversal

As an alternative to the complexity of placing ALGs and NAT editors in NAT
devices, an application may attempt to perform its own NAT traversal. Usually
this involves the application trying to ascertain the external IP address and port
numbers that will be used when its traffic passes through a NAT and modifying
its protocol operations accordingly. If an application is distributed across the net-
work (e.g., has multiple clients and servers, some of which are not behind NATs),
the servers can be used to shuttle (copy) data between the clients that connect
from behind NATs or enable such clients to discover each other’s NAT bindings
and possibly facilitate direct communication. Using a server to copy data between
clients is usually a last-resort option because of the overheads involved and poten-
tial for abuse. Consequently, most approaches attempt to provide for some method
that allows direct communication.

Direct methods have been popular for peer-to-peer file sharing, games, and
communication applications. However, such techniques are often confined to a
particular application, meaning that each new distributed application requiring
NAT traversal tends to implement its own method(s). This can lead to redundancy
and interoperability problems, ultimately increasing users’ frustration and cost.
To combat this situation, a standard approach for handling NAT traversal has
been established, and it depends on a collection of several distinct, subordinate
protocols that we discuss in the following sections. For now, we begin with one of
the more robust yet nonstandard approaches used by distributed applications. We
then move on to standardized frameworks for NAT traversal.

ptg999

Section 7.4 NAT Traversal 317

7.4.1 Pinholes and Hole Punching

As discussed previously, a NAT typically includes both traffic rewriting and fil-
tering capabilities. When a NAT mapping is established, traffic for a particular
application is usually permitted to traverse the NAT in both directions. Such map-
pings are narrow; they usually apply only to a single application for its duration of
execution. These types of mappings are called pinholes, because they are designed
to permit only a certain temporary traffic flow (e.g., a pair of IP address and port
number combinations). Pinholes are usually established and removed dynami-
cally as a consequence of communication between programs.

A method that attempts to allow two or more systems, each behind a NAT,
to communicate directly using pinholes is called hole punching. It is described for
UDP in Section 3.3 of [RFC5128] and for TCP in Section 3.4. To punch a hole, a
client contacts a known server using an outgoing connection that establishes a
mapping in its local NAT. When another client contacts the same server, the server
has connections to each of the clients and knows their external addressing infor-
mation. It then exchanges the client external addressing information between the
clients. Once this information is known, a client can attempt a direct connection to
the other client(s). The popular Skype peer-to-peer application uses this approach
(and some others).

Referring to Figure 7-7, assume client A contacts server S1 followed by client B.
S1 will have learned A’s and B’s external addressing information: IPv4 addresses
192.0.2.201 and 203.0.113.100, respectively. By sending B’s information to A and vice
versa, A can attempt to contact B directly at its external address (and vice versa).
Whether this will work depends on the type of NATs that have been deployed.
NAT state for the (A,S1) connection lives in N1 and NAT state for (B,S1) lives in
both N2 and N3. If all NATs are endpoint-independent, this is sufficient for direct
connections to be possible. Any other type of NAT will not accept traffic from
other than S1 and will thus prohibit direct communication. Said another way, this
approach fails if both hosts are behind NATs with address-dependent or address-
and port-dependent mapping behavior.

7.4.2 UNilateral Self-Address Fixing (UNSAF)

Applications employ a number of methods to determine the addresses their
traffic will use when passed through a NAT. This is called fixing (learning and
maintaining) the addressing information. There are indirect and direct methods
for address fixing. The indirect methods involve inferring a NATs behavior by
exchanging traffic through the NAT. The direct methods involve a direct conver-
sation between the application and the NAT itself using one or more special pro-
tocols (that are not currently IETF standards). Considerable effort within IETF has
gone into development of the indirect methods, and they are widely supported in
certain applications, with VoIP applications being the most popular. Some of the
direct methods are now supported by some NATs. These methods also provide for

ptg999

318 Firewalls and Network Address Translation (NAT)

basic configuration of NATs, so we discuss them later in the context of NAT setup
and configuration.

An application attempting to fix its address without help from the NAT per-
forms the address fixing in a so-called unilateral fashion. Applications that do
so are said to perform UNilateral Self-Address Fixing (UNSAF) [RFC3424]. As the
name suggests, such methods are considered to be undesirable in the long run
but a necessary evil for the time being. UNSAF involves a set of heuristics and
is not guaranteed to work in all cases, especially because NAT behaviors vary
significantly based on vendor and particular circumstance. The BEHAVE docu-
ments mentioned earlier are aimed at specifying more consistent NAT behavior. If
widely adopted, UNSAF methods will work more reliably.

In most cases of interest, UNSAF methods operate in a client/server fashion
similar to hole punching, but with added generality. Figure 7-7 illustrates some
of the hazards that can arise in this situation. One issue is the lack of a single
“outside” address realm for every NAT. In this example, there are two levels of
NAT between client B and server S1. This situation can cause complications. For
example, if an application on B wishes to obtain its “outside” address by using
UNSAF with a server, it receives different answers depending on whether it con-
tacts server S1 or S2. Finally, because UNSAF uses servers that are distinct from

Figure 7-7 Applications running on clients behind a NAT may require help from a server to engage
in direct communication. In hole punching, a server, often specialized for a specific
application, provides rendezvous information among clients that first establish NAT
state and then perform direct communication, if possible. Some applications attempt to
“fix” (determine and maintain) the addresses (and port numbers) their traffic will be
assigned when passing through a NAT using standard generic protocols. These methods
may encounter troubles in certain situations such as environments with multiple levels
of NAT. In this example, client A’s external address visible at S1 is 192.0.2.201 and client
B’s is 203.0.113.100. At S2, however, B’s external address is 10.0.1.1.

ptg999

Section 7.4 NAT Traversal 319

the NATs, there is always the possibility that the NAT behavior reported will
change over time or become inconsistent with what the UNSAF approach reports.

Given the various problems with NATs and UNSAF, the IAB, an elected group
of architectural advisers within the IETF, has indicated that UNSAF protocol pro-
posals must include responses to the concerns in their specifications:

1. Define a limited-scope problem that the “short-term” UNSAF proposal
addresses.

2. Define an exit strategy/transition plan.

3. Discuss what design decisions make the approach “brittle.”

4. Identify requirements for longer-term, sound technical solutions.

5. Discuss any noted practical issues or experiences known.

This is an unusual list of requirements imposed on a protocol specification,
but it results from long-standing interoperability problems between different
NATs and NAT traversal techniques. Despite all the aforementioned problems,
UNSAF methods are commonly used, partly because a wide range of NATs are
found in operation today with little consistent behavior. We now look at how these
methods are used as building blocks to form robust, general-purpose NAT tra-
versal techniques to maximize the chances that communication among systems
behind NATs, even between systems across multiple NATs such as the one illus-
trated in Figure 7-7, will be possible.

7.4.3 Session Traversal Utilities for NAT (STUN)

One of the primary workhorses for UNSAF and NAT traversal is called Session
Traversal Utilities for NAT (STUN) [RFC5389]. STUN has evolved from a previ-
ous version called Simple Tunneling of UDP through NATs, now known as “classic
STUN.” Classic STUN has been used with VoIP/SIP applications for some time
but has been revised to be a tool that can be used by other protocols for perform-
ing NAT traversal. Applications requiring a complete solution for NAT traversal
are recommended to begin with other mechanisms we discuss in Section 7.4.5
(e.g., ICE and SIP-Outbound). These frameworks may make use of STUN in one
or more particular ways called STUN usages. Usages may extend the set of basic
STUN operations, message types, or error codes defined in [RFC5389].

STUN is a relatively simple client/server protocol that is able to ascertain
the external IP address and port numbers being used on a NAT in most circum-
stances. It can also keep NAT bindings current by using keepalive messages. It
requires a cooperating server on the “other” side of a NAT to be effective, and sev-
eral public STUN servers are configured with globally reachable IP addresses and
are available for use on the Internet. The main job of a STUN server is to echo back
STUN requests sent to it in a way that allows the client addressing information to

ptg999

320 Firewalls and Network Address Translation (NAT)

be fixed. As with UNSAF methods in general, the approach is not foolproof. How-
ever, the attraction of STUN is that it does not require modification of network
routers, application protocols, or servers. It requires only that clients implement
the STUN request protocol, and that at least one STUN server be available in an
appropriate location. STUN was envisioned as a “temporary” measure (as were
many standard protocols now in widespread use a decade or more after their cre-
ation) until a more sophisticated direct protocol was developed and implemented,
or NATs became obsolete because of the adoption of IPv6.

STUN operates using UDP, TCP, or TCP with Transport Layer Security (TLS; see
Chapter 18). STUN usage specifications define which transport protocols are sup-
ported for the particular usage. It uses port 3478 for UDP and TCP, and 3479 for
TCP/TLS. The STUN base protocol has two types of transactions: request/response
transactions and indication transactions. Indications do not require a response and
can be generated by either the client or the server. All messages include a type,
length, magic cookie with value 0x2112A442, and a random 96-bit transaction ID
used for matching requests with responses or for debugging. Each message begins
with two 0 bits and may contain zero or more attributes. STUN message types are
defined in the context of methods that support a particular STUN usage. The vari-
ous STUN parameters, including method and attribute numbers, are maintained
by the IANA [ISP]. Attributes have their own types and can vary in length. The
basic STUN header, most often located immediately following a UDP transport
header in an IP packet, is shown in Figure 7-8.

The basic STUN header is 20 bytes in length (see Figure 7-8), and the Mes-
sage Length field provides for an entire STUN message length of 216 - 1 bytes (the
20-byte header length is not included in the Message Length field), although mes-
sages are always padded to a multiple of 4 bytes so this field always has its 2
low-order bits set to 0. STUN messages sent over UDP/IP are supposed to form IP
datagrams less than the path MTU, if known, to avoid fragmentation (see Chapter
10). If not known, the entire datagram length (including IP and UDP headers and
any options) should be less than 576 bytes (IPv4) or 1280 bytes (IPv6). STUN has
no provision for cases where a response might exceed the path MTU in the reverse
direction, so servers should arrange to use messages of appropriate size.

STUN messages carried over UDP/IP are not reliable, so STUN applications
are required to implement their own reliability. This is accomplished by resend-
ing messages thought to be lost. The retransmission interval is based on the esti-
mated time to send and receive a message from the peer called the round-trip time
(RTT). RTT computation and setting retransmission timers will be a major con-
sideration when we discuss TCP (see Chapter 14). STUN uses a similar approach,
but with minor modifications to the standard TCP values. See [RFC5389] for more
details. Reliability issues for STUN over TCP/IP or TCP-with-TLS/IP are handled
by TCP. Multiple pending STUN transactions can be supported over TCP-based
connections.

STUN attributes are encoded in a TLV arrangement, a technique used by sev-
eral other Internet protocols. The type and length portions of a TLV are each 16

ptg999

Section 7.4 NAT Traversal 321

bits, and the value portion is variable-length (up to 64KB, if supported), but pad-
ded to the next multiple of 4 bytes (padding bits may be any value). The same
attribute type may appear more than once in the same STUN message, although
only the first is necessarily processed by a receiver. Attributes with type numbers
below 0x8000 are called comprehension-required attributes, and the others are called
comprehension-optional attributes. If a STUN agent receives a message containing
comprehension-required attributes it does not know how to process, it generates
an error. Most of the attributes defined to date are comprehension-required [ISP].

[RFC5389] defines a single STUN method called binding, which can be used in
either request/response or indication transactions for address fixing and keeping
NAT bindings current. It also defines 11 attributes, given in Table 7-2.

STUN
Methods

(see [RFC5766])

Figure 7-8 STUN messages always begin with two 0 bits and are usually encapsulated in UDP, although
TCP is also allowed. The Message Type field gives both the method (e.g., binding) as well as class
(request, response, error, or success). The Transaction ID is a random 96-bit number used to match
requests with responses, or for debugging in the case of indications. Each STUN message can hold
zero or more attributes, depending on the particular usage of STUN.

ptg999

322 Firewalls and Network Address Translation (NAT)

Referring to Figure 7-5, a STUN client with addressing information X:x is
often interested in determining X1′:x1′, called the reflexive transport address or
mapped address. A STUN server at Y1:y1 includes the reflexive transport address
in a MAPPED-ADDRESS attribute in a STUN message returned to the client. The
MAPPED-ADDRESS attribute holds an 8-bit Address Family field, a 16-bit Port
Number field, and either a 32-bit or 128-bit Address field, depending on whether
IPv4 or IPv6 is indicated by the Address Family field (0x01 for IPv4; 0x02 for IPv6).
This attribute is included to remain backward-compatible with classic STUN. The
more important attribute is the XOR-MAPPED-ADDRESS attribute, which holds
exactly the same value as the MAPPED-ADDRESS attribute, but XORed with the
magic cookie value (for IPv4) or a concatenation with the magic cookie and trans-
action ID values (for IPv6). The reason for using XORed values in this way is to
detect and bypass generic ALGs that look through packets and rewrite whatever
IP addresses they find. Such ALGs are very brittle because they may rewrite infor-
mation that protocols such as STUN require. Experience has shown that XORing
IP addresses in the packet payload is usually sufficient to bypass such ALGs.

Table 7-2 STUN, defined in [RFC5389] and sometimes called STUN2, replaces classic STUN. These 11 attri-
butes may be used by a STUN2-compliant client or server.

Name Value Purpose/Use

MAPPED-ADDRESS 0x0001 Contains an address family indicator and the
reflexive transport address (IPv4 or IPv6)

USERNAME 0x0006 User name and password; used for message
integrity checks (up to 513 bytes)

MESSAGE-INTEGRITY 0x0008 Message authentication code value on the STUN
message (see Chapter 18 and [RFC5389])

ERROR-CODE 0x0009 Contains 3-bit error class, 8-bit error code value,
and variable-length textual description of error

UNKNOWN-ATTRIBUTES 0x000A Used with error messages to indicate the unknown
attributes (one 16-bit value per attribute)

REALM 0x0014 Indicates the authentication “realm” name for long-
term credentials

NONCE 0x0015 Nonrepeated value optionally carried in requests
and responses (see Chapter 18) to prevent replay
attacks

XOR-MAPPED-ADDRESS 0x0020 XORed version of MAPPED-ADDRESS
SOFTWARE 0x8022 Textual description of the software that sent the

message (e.g., manufacturer and version number)
ALTERNATE-SERVER 0x8023 Provides an alternate IP address for a client to use;

encoded as with MAPPED-ADDRESS
FINGERPRINT 0x8028 CRC-32 of message XORed with 0x5354554E; must

be last attribute if used (optional)

ptg999

Section 7.4 NAT Traversal 323

A STUN client, including most VoIP devices and “softphone” applications such
as pjsua [PJSUA], is initially configured with the IP address(es) or names of one or
more STUN servers. It is desirable to use STUN servers that are likely to “see” the
same IP addresses as the peer to which the application ultimately wishes to talk,
although that may be difficult to determine. Using STUN servers located on the
public Internet (e.g., stun.ekiga.net, stun.xten.com, numb.viagenie.ca)
is usually adequate. Some servers may be discovered using DNS Service (SRV)
records (see Chapter 11). An example STUN binding request is given in Figure 7-9.

Figure 7-9 A STUN binding request. The request contains a 96-bit transaction ID and the SOFT-
WARE attribute that identifies the client making the request. The attribute contains 10
characters, but this value is rounded up to the next multiple of 4, giving an attribute
value of 12. The message length of 16 also includes the 4 bytes used to include the attri-
bute’s type and length (the STUN header is not included).

The sample STUN binding request in Figure 7-9 is initiated from a client.
The transaction ID has been selected randomly, and the request is sent to numb
.viagenie.ca (with IPv4 addresses 216.146.46.55 and 216.146.46.59), which is
both a STUN and a TURN server (see Section 7.4.4). The request contains the
SOFTWARE attribute that identifies the client application. In this case, the request
was initiated by pjnath-1.6. This is the “PJSIP NAT helper” application included
with pjsua. The message length includes 4 bytes for the attribute type and length,
plus 12 bytes used to hold the attribute. The length of pjnath-1.6 is only 10 bytes,
but attribute lengths are always rounded up to the nearest 4-byte multiple. After
passing through a NAT, the response is given as shown in Figure 7-10.

ptg999

324 Firewalls and Network Address Translation (NAT)

Figure 7-10 A STUN binding response containing four attributes. The MAPPED-ADDRESS and XOR-
MAPPED-ADDRESS attributes contain the server-reflexive addressing information. The other
attributes are used with an experimental NAT behavior discovery mechanism [RFC5780].

ptg999

Section 7.4 NAT Traversal 325

The binding response shown in Figure 7-10 gives useful information to the client,
encoded as a collection of attributes. The MAPPED-ADDRESS and XOR-MAPPED
address attributes indicate that the STUN server determined the server-reflexive
address of 71.134.182.214:33294. The RESPONSE-ORIGIN and OTHER-ADDRESS
attributes are used by an experimental facility for discovering NAT behavior
[RFC5780]. The first gives the communication endpoint used to send the STUN
message (216.146.46.55:3478, which matches the sending IPv4 address and UDP
port number). The second attribute indicates which source IPv4 address and port
number (216.146.45.59:3479) would have been used if the client requested “change
address” or “change port” behavior. This latter attribute is equivalent to the now-
deprecated CHANGED-ADDRESS attribute in classic STUN. If a change address or
port is specified in a request, a cooperating STUN server attempts to use a different
address when responding to the client, if possible.

STUN can be used to perform address fixing as well as a number of other
functions called mechanisms, including DNS discovery, a method to redirect to an
alternate server, and message integrity exchanges. Mechanisms are selected in
the context of a particular STUN usage, so in general they are considered optional
STUN features. One of the more important mechanisms provides authentication
and message integrity. It has two forms: the short-term credential mechanism and the
long-term credential mechanism.

Short-term credentials are intended to last for a single session; the particular
duration is defined by the STUN usage. Long-term credentials last across sessions;
they correspond to a login ID or account. Short-term credentials are often used
in particular message exchanges, and long-term credentials are used when some
particular resource is to be allocated (e.g., with TURN; see Section 7.4.4). Pass-
words are never sent in the clear where they could be intercepted.

The short-term credential mechanism uses the USERNAME and MESSAGE-
INTEGRITY attributes. Both are required on any request. The USERNAME gives
an indication of which credentials are required and allows the message sender to
use the appropriate shared password in forming an integrity check on the mes-
sage (a MAC computed on the message contents; see Chapter 18). When using
short-term credentials, it is assumed that some form of credential information
(e.g., user name and password) has been exchanged earlier. The credential is used
for forming an integrity check on STUN messages that is encoded in the MES-
SAGE-INTEGRITY attribute. The ability to form a valid MESSAGE-INTEGRITY
attribute value is an indication that the sender holds a current (“fresh”) copy of the
appropriate credential.

The long-term credential mechanism ensures freshness in a different way,
using a digest challenge. When using this mechanism, a client initially makes a
request without any authentication material. The server rejects the request but pro-
vides a REALM attribute in response. This can be used by the client to determine
which credential is needed to provide adequate authentication, as the client may
have credentials for various services (e.g., multiple VoIP accounts). Along with the
REALM, the server provides a never-reused NONCE value, which the client uses in

ptg999

326 Firewalls and Network Address Translation (NAT)

forming a subsequent request. This mechanism also uses a MESSAGE-INTEGRITY
attribute, but its integrity function is computed by including the NONCE value.
Thus, it is difficult for an eavesdropper that overheard a previous long-term creden-
tial exchange to simply replay a validated request (i.e., because the NONCE value
is different). The use of NONCE values in authentication and related concerns are
discussed in more detail in Chapter 18. The long-term credential mechanism can-
not be used to protect STUN indications, as these transactions do not operate as
request/response pairs.

7.4.4 Traversal Using Relays around NAT (TURN)

Traversal Using Relays around NAT (TURN) [RFC5766] provides a way for two or
more systems to communicate even if they are located behind relatively uncoop-
erative NATs. As a last-resort method to support communication in such circum-
stances, it involves a relay server that shuttles data between systems that could
otherwise not communicate. Using extensions to STUN and some TURN-specific
messages, it supports communication even when most other approaches have
failed, provided a common server that is not behind a NAT can be reached by each
client. If all NATs were compliant with the BEHAVE specifications, TURN would
not be necessary. Direct communication methods (i.e., that do not use TURN) are
almost always preferable to using TURN servers.

Referring to Figure 7-11, a TURN client behind a NAT contacts a TURN server,
usually on the public Internet, and indicates the other systems (called peers) with
which it wishes to communicate. Finding the server’s address and the appropriate
protocol to use for communication is accomplished using a special DNS NAPTR
record (see Chapter 11 and [RFC5928]) or by manual configuration. The client
obtains address and port information, called the relayed transport address, from the
server, which are the address and port number used by the TURN server to com-
municate with the peers. The client also obtains its own server-reflexive transport
address. Peers also have server-reflexive transport addresses that represent their
external addresses. These addresses are needed by the client and server to perform
the “plumbing” necessary to interconnect the client and its peers. The method
used to exchange this addressing information is not defined within the scope of
TURN. Instead, this information must be exchanged using some other mechanism
(e.g., ICE; see Section 7.4.5) in order for TURN servers to be used effectively.

The client uses TURN commands to create and maintain allocations on the
server. An allocation resembles a multiway NAT binding and includes the (unique)
relayed transport address that each peer can use to reach the client. Server/peer
data is sent using straightforward TURN messages traditionally carried in UDP/
IPv4. Enhancements support TCP [RFC6062] and IPv6 (and also relaying between
IPv4 and IPv6) [RFC6156]. Server/client data is encapsulated with an indication
of corresponding peer(s) that sent or should receive the associated data. The cli-
ent/server connection has been specified for UDP/IPv4, TCP/IPv4, and TCP/IPv4

ptg999

Section 7.4 NAT Traversal 327

with TLS. Establishing an allocation requires the client to be authenticated, usu-
ally using the STUN long-term credential mechanism.

TURN supports two methods for copying data between a client and its peers.
The first encodes data using STUN methods called Send and Data, defined in
[RFC5766], which are STUN indicators and therefore not authenticated. The other
uses a TURN-specific concept called channels. Channels are communication paths
between a client and a peer that have less overhead than the Send and Data meth-
ods. Messages carried over channels use a smaller, 4-byte header that is incompat-
ible with the larger STUN-formatted messages ordinarily used by TURN. Up to
16K channels can be associated with an allocation. Channels were developed to
help some applications such as VoIP that prefer to use relatively small packets to
reduce latency and overhead.

In operation, the client makes a request to obtain an allocation using a TURN-
defined STUN Allocate method. If successful, the server responds with a success
indicator and the allocated relayed transport address. A request might be denied
if the client fails to provide adequate authentication to the server. The client must
now send refresh messages to keep the allocation alive. Allocations expire in 10
minutes if not refreshed, unless the client included an alternate lifetime value,
encoded as a STUN LIFETIME attribute, in the allocation request. Allocations
may be deleted by requesting an allocation with zero lifetime. When an allocation
expires, so do all of its associated channels.

Figure 7-11 Based on [RFC5766], a TURN server helps clients behind “bad” NATs to communicate by relay-
ing traffic. Traffic flowing between client and server may use TCP, UDP, or TCP with TLS. Traffic
between the server and one or more peers uses UDP. Relaying is a last-resort measure for com-
munication; direct methods are preferred if available.

ptg999

328 Firewalls and Network Address Translation (NAT)

Allocations are represented using a “5-tuple.” At the client, the 5-tuple includes
the client’s host transport address and port number, server transport address and
port number, and the transport protocol used to communicate with the server. At
the server, the same 5-tuple is used, except the client’s host transport address and
port are replaced with its server-reflexive address and port. An allocation may
have zero or more associated permissions, to limit the patterns of connectivity that
are permitted through the TURN server. Each permission includes an IP address
restriction such that only packets with the matching source address received at
the TURN server have their data payloads forwarded to the corresponding client.
Permissions are deleted if not refreshed within 5 minutes.

TURN enhances STUN with six methods, nine attributes, and six error response
codes. These can be partitioned roughly into support for establishing and maintain-
ing allocations, authentication, and manipulating channels. The six methods and
their method numbers are as follows: Allocate (3), Refresh (4), Send (6), Data (7),
CreatePermission (8), and ChannelBind (9). The first two establish and keep allo-
cations alive. Send and Data use STUN messages to encapsulate data from client
to server and vice versa, respectively. CreatePermission establishes or refreshes a
permission, and ChannelBind associates a particular peer with a 16-bit channel
number. The error messages indicate problems with TURN features such as authen-
tication failure or running out of resources (e.g., channel numbers). The nine STUN
attribute names, values, and purposes defined by TURN are given in Table 7-3.

Table 7-3 STUN attributes defined by TURN

Name Value Purpose/Use

CHANNEL-NUMBER 0x000C Indicates what channel associated data belongs to
LIFETIME 0x000D Requested allocation timeout (seconds)
XOR-PEER-ADDRESS 0x0012 A peer’s address and port, using XORed encoding
DATA 0x0013 Holds data for a Send or Data indication
XOR-RELAYED-ADDRESS 0x0016 Server’s address and port allocated for a client
EVEN-PORT 0x0018 Requests that the relayed transport addressing

information use an even port; optionally requests
allocation of the next port in sequence

REQUESTED-TRANSPORT 0x0019 Used in a client to request that a specific transport
be used in forming the transport address; values are
drawn from the IPv4 Protocol or IPv6 Next Hop header
field values

DONT-FRAGMENT 0x001A Requests that the server set the “don’t fragment” bit in
the IPv4 header in packets sent to peers

RESERVATION-TOKEN 0x0022 Unique identifier for a relayed transport address held
by the server; the value is provided to the client as a
reference

ptg999

Section 7.4 NAT Traversal 329

A TURN request takes the form of a STUN message whose message type is
an allocation request. Figure 7-12 shows an example. According to the STUN long-
term credential mechanism, the initial allocation request shown in Figure 7-12 did
not include authentication information, so it is rejected by the server. The rejection
is indicated by an allocation error response, shown in Figure 7-13.

The error message in Figure 7-13 provides the REALM attribute (viagenie.
ca) and the NONCE value the client requires to form its next request. The mes-
sage also includes the MESSAGE-INTEGRITY attribute so the client can check that
the message has not been modified and the requested REALM and NONCE are
correct. A subsequent request includes the USERNAME, NONCE, and MESSAGE-
INTEGRITY attributes. See Figure 7-14.

After receiving the request including long-term credentials, as shown in Fig-
ure 7-14, the server computes its own version of the message integrity value and
compares the result against the MESSAGE-INTEGRITY attribute value. If they
match, this is sufficient information for the TURN server to conclude that the cli-
ent must hold the appropriate password. It then permits the allocation and indi-
cates the result to the client (see Figure 7-15).

Figure 7-12 A TURN allocation request is a STUN message using message type 0x0003. This request
also includes the REQUESTED-TRANSPORT and SOFTWARE attributes. It does not
include authentication information. According to STUN long-term credentials, this
request will fail.

ptg999

330 Firewalls and Network Address Translation (NAT)

The allocation request is successful, as shown in Figure 7-15, and the relayed
transport address is 216.146.46.55:49261 (note that Wireshark performs the XOR
operation to display the decoded address). At this point, the client can proceed
to use the TURN server for relaying to peers. Once this is finished, the allocation
can be removed. About 4s later, packets 5 and 6 in Figure 7-15 indicate the client’s
request to remove the allocation. The request is expressed as a refresh with life-
time set to 0. The server responds with a success indicator and removes the alloca-
tion. Note that the BANDWIDTH attribute has been included in the allocation and
refresh success indicators. This attribute, defined by a draft version of [RFC5766]
but ultimately deprecated, was intended to hold the peak bandwidth, in kilobytes
per second, permitted on the allocation. This attribute may be redefined in the
future.

Figure 7-13 A TURN allocation error response includes the ERROR-CODE attribute with value
401 (Unauthorized). The message is integrity-protected and includes the REALM and
NONCE attributes required by the client in forming another, authenticated allocation
request.

ptg999

Section 7.4 NAT Traversal 331

As suggested previously, TURN has the disadvantage that traffic must be
relayed through the TURN server, and this can lead to inefficient routing (i.e.,
the TURN server may be far away from a client and peer that are proximal). In
addition, certain other traffic contents are not passed through from peer to client
using TURN. This includes ICMP values (see Chapter 8), TTL (Hop Limit) field
values, and IP DS Field values. Also, a requesting TURN client must implement the
STUN long-term credential mechanism and have some form of login credential or
account assigned by the TURN server operator. This helps to avoid uncontrolled
use of open TURN servers but creates somewhat greater configuration complexity.

Figure 7-14 A second TURN allocation request includes the USERNAME, REALM, NONCE, and
MESSAGE-INTEGRITY attributes. These are used by the server to verify integrity of the
message and the identity of the client. If successful, the server authenticates the request
and performs the allocation.

ptg999

332 Firewalls and Network Address Translation (NAT)

7.4.5 Interactive Connectivity Establishment (ICE)

Given the large variety of NATs deployed and the various mechanisms that may
be necessary to traverse them, a generic facility called Interactive Connectivity
Establishment (ICE) [RFC5245] has been developed to help UDP-based applications
hosted behind a NAT establish connectivity. ICE is a set of heuristics by which an
application can perform UNSAF in a relatively predictable fashion. In its oper-
ation, ICE makes use of other protocols such as TURN and STUN. A proposal
extends the use of ICE to TCP-based applications [IDTI].

ICE works with and extends “offer/answer” protocols, such as the Session
Description Protocol (SDP) used with unicast SIP connection establishment
[RFC3264]. These protocols involve an offer of service with an accompanying set
of service parameters followed by an answer that also includes a set of selected
options. It is increasingly common to find ICE clients incorporated into VoIP
applications that use SDP/SIP for establishing communications. However, in
such circumstances, ICE is used for establishing NAT traversal for media streams
(such as the audio or video portion of a call carried using RTP [RFC3550] or SRTP

Figure 7-15 A TURN allocation success response. The message is integrity-protected and includes
the XOR-RELAYED-ADDRESS attribute, identifying the port and address allocated by
the TURN server. The allocation is deleted if not refreshed.

ptg999

Section 7.4 NAT Traversal 333

[RFC3711]), while another mechanism, called SIP Outbound [RFC5626], handles
the SIP signaling information such as who is being called. Although in practice
ICE has been used primarily with SIP/SDP-based applications, it can also be used
as a generic NAT traversal mechanism for other applications. One such example
is the use of ICE (over UDP) with Jingle [XEP-0176], defined as an extension to the
core Extensible Messaging and Presence Protocol (XMPP) [RFC6120].

Ordinarily, ICE works to establish communication between two SDP entities
(called agents) by first determining a set of candidate transport addresses that each
agent might use for communicating with the other. Referring to Figure 7-11, these
addresses could be host transport, server-reflexive, or relayed addresses. ICE
may make use of both STUN and TURN to determine the candidate transport
addresses. ICE then orders these addresses according to a priority assignment
algorithm. The algorithm arranges for addresses that provide direct connectivity
to receive greater priority than those that require data relaying. ICE then provides
the set of prioritized addresses to its peer agent, which engages in a similar behav-
ior. Ultimately, two agents agree on the best set of usable address pairs and indicate
the selected results to the other peer. Determination of which candidate transport
addresses are available is accomplished using a sequence of checks encoded as
STUN messages. ICE has several optimizations to decrease the latency of agreeing
on the selected candidate, which are beyond the scope of this discussion.

ICE begins by attempting to discover all available candidate addresses.
Addresses may be locally assigned transport addresses (multiple if the agent is
multihomed), server-reflexive addresses, or relayed addresses determined by
TURN. After assigning each address a priority, an agent sends the prioritized list
to its peer using SDP. The peer performs the same operation, resulting in each
agent having two prioritized lists. Each agent then forms an identical set of priori-
tized candidate pairs by pairing up the two lists. A set of checks are performed on
the candidate pairs in a particular order to determine which addresses will ulti-
mately be selected. Generally, the priority ordering prefers candidate pairs with
fewer NATs or relays. The candidate pair ultimately selected is determined by a
controlling agent assigned by ICE. The controlling agent nominates which valid can-
didate pairs are to be used, according to its order of preference. The controlling
agent may try all pairs and subsequently make its choice (called regular nomina-
tion) or may use the first viable pair (called aggressive nomination). A nomination
is expressed as a flag in a STUN message referring to a particular pair; aggressive
nomination is performed by setting the nominate flag in every request.

Checks are sent as STUN binding request messages exchanged between the
two agents using the addressing information being checked. Checks are initiated
by timer, or scheduled as a result of an incoming check from a peer (called a trig-
gered check). Responses arrive in the form of STUN binding responses that contain
addressing information. In some circumstances this may reveal a new server-
reflexive address to the agent (e.g., because a different NAT is used between agents
from the one that was used when the candidate addresses were first determined
using STUN or TURN servers). Should this happen, the agent gains a new address

ptg999

334 Firewalls and Network Address Translation (NAT)

called a peer-reflexive candidate, which ICE adds to the set of candidate addresses.
ICE checks are integrity-checked using STUN’s short-term credential mechanism
and use the STUN FINGERPRINT attribute. When TURN is used, the ICE cli-
ent uses TURN permissions to limit the TURN binding to the remote candidate
address of interest.

ICE incorporates the concept of different implementations. Lite implementa-
tions are designed for deployment in systems that do not employ NAT. They do
not ever act as a controlling agent unless interacting with another Lite implemen-
tation. They also do not perform the checks mentioned earlier as do full implemen-
tations. The type of an ICE implementation is indicated in the STUN messages
it sends. All ICE implementations must comply with STUN [RFC5389], but Lite
implementations will only ever act as STUN servers. ICE extends STUN with the
attributes described in Table 7-4.

Table 7-4 STUN attributes defined by ICE

Name Value Purpose/Use

PRIORITY 0x0024 Computed priority of associated candidate address
USE-CANDIDATE 0x0025 Indicates selection of candidate by controlling agent
ICE-CONTROLLED 0x8029 Indicates sender of message is controlled agent
ICE-CONTROLLING 0x802A Indicates sender of message is controlling agent

A check is a STUN binding request containing the PRIORITY attribute. The
value is equal to the value assigned by the algorithm described in Section 4.1.2
of [RFC5245]. The ICE-CONTROLLING and ICE-CONTROLLED attributes are
included in STUN requests when the sender is the controlling or controlled agent,
respectively. A controlling agent may also include a USE-CANDIDATE attribute.
If present, this attribute indicates which candidate the controlling agent wishes to
select for subsequent use.

7.5 Configuring Packet-Filtering Firewalls and NATs

Although NATs frequently require little configuration (unless port forwarding is
being used), firewalls usually do, and sometimes they require extensive configu-
ration. In most home networks the same device is providing NAT, IP routing, and
firewall capabilities and may require some configuration. Although the configu-
ration is logically separate for each of these, they are sometimes merged, either in
configuration files, command-line interfaces, Web page controls, or other network
management tools.

ptg999

Section 7.5 Configuring Packet-Filtering Firewalls and NATs 335

7.5.1 Firewall Rules

A packet-filtering firewall must be given a set of instructions indicating criteria
for selecting traffic to be dropped or forwarded. Nowadays when configuring a
router, the network administrator usually configures a set of one or more ACLs.
Each ACL consists of a list of rules, and each rule typically contains pattern-match-
ing criteria and an action. The matching criteria generally allow the rule to express
the values of packet fields at either the network or transport layer (e.g., source
and destination IP addresses, port numbers, ICMP type field, etc.) and a direction
specification. The direction pattern matches traffic in a direction-dependent man-
ner and allows for a different set of rules to apply for incoming versus outgoing
traffic. Many firewalls also allow the rules to be applied at a certain point in the
order of processing within the firewall. Examples of this include the ability to
specify an ACL to be checked prior to or after the IP routing decision process. In
some circumstances (especially when more than one interface is used), this flex-
ibility becomes important.

When a packet arrives, the matching criteria in the appropriate ACL are con-
sulted in order. For most firewalls, the first matching rule is acted upon. Typical
actions include a specification to block or forward the traffic and may also adjust
a counter or write a log entry. Some firewalls may include additional features as
well, such as having some packets directed to applications or other hosts. Each
firewall vendor usually has its own method for specifying rules, although Cisco
Systems’ ACL format has emerged as a popular format supported by many ven-
dors of enterprise-class routers. ACLs for home users are typically configured
using a simple Web interface.

One of the popular systems for building firewalls is included with modern
versions of Linux and is called iptables, built using a network filtering capa-
bility called NetFilter [NFWEB]. It is the evolution of an earlier facility called
ipchains and provides stateless and stateful packet-filtering support as well as
NAT and NAPT. We shall examine how it works to get a better understanding of
the types of capabilities a firewall and modern NAT provide.

iptables includes the concepts of filter tables and filter chains. A table con-
tains several predefined chains and may contain zero or more user-defined
chains. Three predefined tables are named as follows: filter, nat, and mangle.
The default filter table is for basic packet filtering and contains the predefined
chains INPUT, FORWARD, and OUTPUT. These actions correspond to packets
destined for programs running on the firewall router itself, those passing through
it while being routed, and those originating at the firewall machine. The nat table
contains the chains PREROUTING, OUTPUT, and POSTROUTING. The mangle
table has all five chains. It is used for arbitrary rewriting of packets.

Each filter chain is a list of rules, and each rule has matching criteria and an
action. The action (called a target) may be to execute a special user-defined chain
or to perform one of the following predefined actions: ACCEPT, DROP, QUEUE,
and RETURN. A packet matching a rule with one of these targets is immediately

ptg999

336 Firewalls and Network Address Translation (NAT)

acted on. ACCEPT (DROP) means the packet is forwarded (dropped). QUEUE
means the packet is delivered to a user program for arbitrary processing, and
RETURN means that processing continues in a previously invoked chain, which
forms a sort of packet filter chain subroutine call.

The design of a complete firewall configuration can be fairly complex and is
specific to the needs of particular users and the types of services they require, so
we will not attempt to give one here. Instead, the following examples illustrate
only a small number of the possible uses for iptables. The following gives an
example Linux firewall configuration file. It is invoked by a shell such as bash:

EXTIF="ext0"
INTIF="eth0"
LOOPBACK_INTERFACE="lo"
ALL="0.0.0.0/0" # matches all

set default filter table policies to drop
iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

all local traffic OK
iptables -A INPUT -i $LOOPBACK_INTERFACE -j ACCEPT
iptables -A OUTPUT -i $LOOPBACK_INTERFACE -j ACCEPT

accept incoming DHCP requests on internal interface
iptables -A INPUT -i $INTIF -p udp -s 0.0.0.0 \
 --sport 67 -d 255.255.255.255 --dport 68 -j ACCEPT

drop unusual/suspect TCP traffic with no flags set
iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP

This example illustrates some of the flexibility one can employ in setting up a
filter criteria list. Initially, the chains are given a default policy (-P option), which
affects packets that fail to match any rules. Next, traffic to or from the local com-
puter (which is delivered using the pseudo interface lo) is given to the ACCEPT
target (i.e., it is allowed) for the INPUT and OUTPUT chains in the default filter
table. The –j option indicates “jump” to a particular processing target. Next,
incoming UDP broadcast traffic originating from IPv4 address 0.0.0.0 and des-
tined for local/subnet broadcast using the DHCP port numbers (67, 68) is allowed
in via the internal interface. Next, the Flags fields of incoming TCP segments (see
Chapter 13) is ANDed with all 1s (ALL) and compared against zero (NONE). A
match occurs only if all the Flags fields are 0, which is not a very useful TCP seg-
ment (ordinarily all TCP segments after the first one contain a valid ACK bit, and
the first one contains a SYN).

While syntax illustrated by this example is specific to the iptables facility,
its capabilities are not. Most filtering firewalls are capable of performing similar
types of checks and actions.

ptg999

Section 7.5 Configuring Packet-Filtering Firewalls and NATs 337

7.5.2 NAT Rules

In most simple routers, NAT can be configured in conjunction with firewall rules.
In basic Windows systems, NAT is called Internet Connection Sharing (ICS), and in
Linux it is called IP masquerading. On Windows XP, for example, ICS has a number
of special characteristics. It assigns the “internal” IPv4 address as 192.168.0.1 to the
machine running ICS and starts a DHCP server and DNS server. Other computers
are assigned addresses in the 192.168.0/24 subnet, with the ICS machine as DNS
server. Therefore, ICS should not be enabled on networks where these services are
already being provided by another computer or router, or where the addresses
might conflict. A registry setting can be used to change the default address range.

Enabling ICS for an Internet connection on Windows XP can be accomplished
by using the Network Setup Wizard, or by changing the Advanced properties on
an already-operating Internet connection (under Settings | Network Connections).
At this point, the user may also decide to allow other users to control or disable the
shared Internet connection. This facility, known as Internet Gateway Device Discov-
ery and Control (IGDDC), uses the Universal Plug and Play framework, described
in Section 7.5.3, for controlling a local Internet gateway from a client. The functions
supported include connect and disconnect, along with reading various status mes-
sages. The Windows firewall facility, which works in conjunction with ICS, sup-
ports the creation of service definitions. Service definitions are equivalent to port
forwarding, as defined previously. To enable it, the Advanced property tab on the
Internet connection is selected and a new service may be added (or an existing
one edited). The user is then given the opportunity to fill in the appropriate TCP
and UDP port numbers, both at the external interface and at the internal server
machine. It thus works as a way to configure NAPT for incoming connections.

As with Windows, Linux combines the masquerade capability with its fire-
wall implementation. The following script configures masquerading in a simple
manner. Note that this script is only for illustration and is not recommended for
production use.

EXTIF=”ext0”
echo "Default FORWARD policy: DROP"
iptables -P FORWARD DROP

echo "Enabling NAT on $EXTIF for hosts 192.168.0.0/24"
iptables -t nat -A POSTROUTING -o $EXTIF -s 192.168.0.0/24 \
 -j MASQUERADE

echo "FORWARD policy: DROP unknown traffic"
iptables -A INPUT -i $EXTIF -m state --state NEW,INVALID -j DROP
iptables -A FORWARD -i $EXTIF -m state --state NEW,INVALID -j DROP

Here, the default policy for the FORWARDING chain in the filter table is
set to DROP. The next item arranges for hosts with IPv4 addresses assigned from
the 192.168.0.0/24 subnet to have their addresses rewritten for any IPv4 traffic (via

ptg999

338 Firewalls and Network Address Translation (NAT)

NAT, implemented by the nat table and -t nat options) after routing has deter-
mined the external interface to be the appropriate one. Because of the stateful way
that NAT works, it is now possible to adjust the filter table’s rules to allow only
traffic associated with a connection known to NAT. The last two lines adjust the
INPUT and FORWARD chains so that any incoming traffic that is either invalid or
unknown (NEW) is dropped. The special operators NEW and INVALID are defined
within the iptables command.

7.5.3 Direct Interaction with NATs and Firewalls: UPnP, NAT-PMP, and PCP

In many cases, a client system wishes to or needs to interact directly with its fire-
wall. For example, a firewall may need to be configured or reconfigured for dif-
ferent services by allowing traffic destined for a particular port to not be dropped
(establishing a “pinhole”). In cases where a proxy firewall is in use, each client
must be informed of the proxy’s identity. Otherwise, communication beyond the
firewall is not possible. A number of protocols have been developed for support-
ing communication between clients and firewalls. The two most prevalent ones
are called Universal Plug and Play (UPnP) and the NAT Port Mapping Protocol (NAT-
PMP). The standards for UPnP are developed by an industry group called the
UPnP Forum [UPNP]. NAT-PMP is currently an expired draft document within
the IETF [XIDPMP]. NAT-PMP is supported by most Mac OS X systems. UPnP
has native support on Windows systems and can be added to Mac OS and Linux
systems. UPnP is also used in support of consumer electronics device discovery
protocols for home networks being developed by the Digital Living Network Alli-
ance (DLNA) [DLNA].

With UPnP, controlled devices are configured with IP addresses based first
upon DHCP and using dynamic link-local address configuration (see Chapter 6)
if DHCP is not available. Next, the Simple Service Discovery Protocol (SSDP) [XIDS]
announces the presence of the device to control points (e.g., client computers) and
allows the control points to query the devices for additional information. SSDP
uses two variants of HTTP with UDP instead of the more standard TCP. They are
called HTTPU and HTTPMU [XIDMU], and the latter uses multicast addressing
(IPv4 address 239.255.255.250, port 1900). For SSDP carried on IPv6, the following
addresses are used: ff01::c (node-local), ff02::c (link-local), ff05::c (site-local), ff08::c
(organization-local), and ff0e::c (global).

Subsequent control and event notification (“eventing”) is controlled by the
General Event Notification Architecture (GENA), which uses the Simple Object Access
Protocol (SOAP). SOAP supports a client/server remote procedure call (RPC) mecha-
nism and uses messages encoded in the Extensible Markup Language (XML), which is
commonly used for Web pages. UPnP is used for a wide variety of consumer elec-
tronic devices, including audio and video playback and storage devices. NAT/fire-
wall devices are controlled using the Internet Gateway Device (IGD) protocol [IGD].
IGD supports a variety of capabilities, including the ability to learn NAT mappings
and configure port forwarding. The interested reader may obtain a simple IGD

ptg999

Section 7.6 NAT for IPv4/IPv6 Coexistence and Transition 339

client useful for experimentation from the MiniUPnP Project HomePage [UPNPC].
A second version of UPnP IGD [IGD2] adds general IPv6 support to UPnP.

While UPnP is a broad framework that includes NAT control and several other
unrelated specifications, NAT-PMP provides an alternative specifically targeted at
programmatic communications with NAT devices. NAT-PMP is part of Apple’s set
of Bonjour specifications for zero configuration networking. NAT-PMP does not
use a discovery process, as the device being managed is usually a system’s default
gateway as learned by DHCP. NAT-PMP uses UDP port 5351. NAT-PMP supports
a simple request/response protocol for learning a NAT’s outside address and con-
figuring port mappings. It also supports a basic eventing mechanism that notifies
listeners when a NAT outside address changes. This is accomplished using a UDP
multicast message sent to address 224.0.0.1 (the All Hosts address) when the out-
side address changes. NAT-PMP uses UDP port 5350 for client/server interactions
and 5351 for multicast event notification. The idea of NAT-PMP can be extended
for use with SPNAT, as proposed by the Port Control Protocol (PCP) [IDPCP].

7.6 NAT for IPv4/IPv6 Coexistence and Transition

With the depletion of the last top-level unicast IPv4 address prefixes in early in
2011, the embracing of IPv6 is beginning to accelerate. It was thought that hosts
could be equipped with dual-stack functionality (i.e., each implements a complete
IPv4 and IPv6 stack) [RFC4213] and network services would transition over to
IPv6-only operation. It is now understood that IPv4 and IPv6 are likely to coex-
ist for an extended period of time, perhaps indefinitely, and that for various eco-
nomic reasons network infrastructure may operate using either IPv4 or IPv6 or
both. Assuming that this is true, there will be an ongoing need to support com-
munications between IPv4 and IPv6 systems, whether they are dual-stack or not.
The two major approaches that have been used to support combinations of IPv4
and IPv6 are tunneling and translation. The tunneling approaches include Teredo
(see Chapter 10), Dual-Stack Lite (DS-Lite), and IPv6 Rapid Deployment (6rd).
Although DS-Lite involves SPNAT as part of its architecture, a purer translation
approach is given by the framework described in [RFC6144], which uses the IPv4-
embedded IPv6 addresses we saw in Chapter 2. We will discuss both DS-Lite and
the translation framework in more detail in this section.

7.6.1 Dual-Stack Lite (DS-Lite)

DS-Lite [RFC6333] is an approach to make transition to IPv6 (and support for
legacy IPv4 users) easier for service providers that wish to run IPv6 internally. In
essence, it allows providers to focus on deploying an operational IPv6 core net-
work yet provide IPv4 and IPv6 connectivity to their customers using a small num-
ber of IPv4 addresses. The approach combines IPv4-in-IPv6 “softwire” tunneling
[RFC5571] with SPNAT. Figure 7-16 shows the type of deployment envisioned.

ptg999

340 Firewalls and Network Address Translation (NAT)

In Figure 7-16, each customer network operates with any combination of IPv4
and IPv6. The service provider’s network is assumed to be managed using only
IPv6. Customer access to the IPv6 Internet is provided using conventional IPv6
routing. For IPv4 access, each customer uses a special “before” gateway (labeled
“B4” in Figure 7-16). A B4 element provides basic IPv4 services (e.g., DHCP service,
a DNS proxy, etc.) but also encapsulates the customer’s IPv4 traffic in multi-point-
to-point tunnels terminated at the “after” element (labeled “AFTR” in Figure 7-16).
The AFTR element performs decapsulation of traffic headed to the IPv4 Internet
and encapsulation in the reverse direction. AFTR also performs NAT and acts as a
form of SPNAT. More specifically, the AFTR may use the identity of the customer’s
tunnel endpoint for disambiguating traffic returning to the AFTR from the IPv4
Internet. This allows multiple customers to use the same IPv4 address space. A B4
element can learn the name of its corresponding AFTR element using a DHCPv6
option called AFTR-Name [RFC6334].

It is instructive to recall the discussion of IPv6 rapid deployment (6rd) from
Chapter 6. Whereas DS-Lite provides IPv4 access to customers over a service pro-
vider’s IPv6 network, 6rd aims to provide IPv6 access to customers over a service
provider’s IPv4 network. In essence, they take opposite approaches with similar
architectural components. However, with 6rd, mapping from an IPv6 address to
the address of the corresponding IPv4 tunnel endpoint (and vice versa) is com-
puted in a stateless fashion using an address-mapping algorithm. Stateless address
translation is also used in the framework for full protocol translation between
IPv4 and IPv6, which we discuss next.

7.6.2 IPv4/IPv6 Translation Using NATs and ALGs

The biggest disadvantage of using tunneling techniques for supporting IPv4/IPv6
coexistence is that network services running on hosts using one address family

Figure 7-16 DS-Lite allows service providers to support IPv4 and IPv6 customer networks using
an IPv6-only infrastructure. IPv4 address usage is minimized by using SPNAT at the
provider’s edge.

ptg999

Section 7.6 NAT for IPv4/IPv6 Coexistence and Transition 341

cannot be reached directly by the hosts using the other. Thus, an IPv6-only host
can communicate only with other IPv6-capable systems. This is an undesirable sit-
uation because many valuable services offered on the legacy IPv4 Internet would
remain unavailable to new systems that may support only IPv6. To address this
concern, a significant effort was undertaken between 2008 and 2010 to develop a
framework to provide direct translation between IPv4 and IPv6. This effort was
informed by poor experiences with NAT-PT [RFC2766], which was ultimately
determined to be too brittle and unscalable for ongoing use and was deprecated
[RFC4966].

The IPv4/IPv6 translation framework is given in [RFC6144]. The basic transla-
tion architecture involves both stateful and stateless methods to convert between
IPv4 and IPv6 addresses, translations for DNS (see Chapter 11), and the definition
of any additional behaviors or ALGs in cases where they are necessary (including
for ICMP and FTP). In this section, we will discuss the basics of the stateless and
stateful address translation for IP based on [RFC6145], [RFC6146], and the address-
ing from [RFC6052] we discussed in Chapter 2. Other protocol-specific translation
issues will be covered in subsequent chapters.

7.6.2.1 IPv4-Converted and IPv4-Translatable Addresses
In Chapter 2, we discussed the structure of IPv4-embedded IPv6 addresses. Such
addresses are IPv6 addresses that can be used as input to a function that produces
a corresponding IPv4 address. The function is also easily inverted. There are two
important types of IPv4-embedded IPv6 addresses, called IPv4-converted addresses
and IPv4-translatable addresses. Each type of address mentioned is a subset of
the other types. That is, if we treat each address category as a set, then (IPv4-
translatable) ⊂ (IPv4-converted) ⊂ (IPv4-embedded) ⊂ (IPv6). IPv4-translatable
addresses are IPv6 addresses for which an IPv4 address can be determined in a
stateless fashion (see Section 7.6.2.2).

Algorithmic translation between IPv4 and IPv6 addresses involves the use of
a prefix, as described in Chapter 2. The prefix may be either the Well-Known Pre-
fix (WKP) 64:ff9b::/96 or another Network-Specific Prefix that is ordinarily owned
by a service provider and used specifically with its translators. The WKP is used
only in representing ordinary globally routable IPv4 addresses; private addresses
[RFC1918] are not to be used with the WKP. In addition, the WKP is not to be
used for creating IPv4-translatable addresses. Such addresses are intended to be
defined within the scope of a provider’s network, so it is not appropriate to use
them at a global scope.

The WKP is interesting because it is checksum-neutral with respect to the Inter-
net checksum. Recall the Internet checksum calculation from Chapter 5. If we treat
the prefix 64:ff9b::/96 as being composed of the hexadecimal values 0064, ff9b,
0000, 0000, 0000, 0000, 0000, 0000, the sum of these values is ffff, which is equal
to 0 in one’s complement. Consequently, when an IPv4 address has the WKP pre-
pended, the associated Internet checksums in packets created as a result of trans-
lation (e.g., in the IPv4 header, TCP, or UDP checksum) are unaffected. Naturally,
an appropriately chosen Network-Specific Prefix can also be checksum-neutral.

ptg999

342 Firewalls and Network Address Translation (NAT)

In the following two subsections, we will use the notation To4(A6, P) to rep-
resent the IPv4 address derived from IPv6 address A6 in conjunction with prefix
P. P is either the WKP or some Network-Specific Prefix. We will use the notation
To6(A4, P) to represent the IPv6 address derived from IPv4 address A4 in conjunc-
tion with prefix P. Note that, with a few special exceptions, A6 = To6(To4(A6,P),P)
and A4 = To4(To6(A4,P),P).

7.6.2.2 Stateless Translation
Stateless IP/ICMP Translation (SIIT) refers to a method of translating between IPv4
and IPv6 packets without using state tables [RFC6145]. The translation is per-
formed without table lookups and uses IPv4-translatable addresses along with
a defined scheme to translate IP headers. For the most part, IPv4 options are not
translated (they are ignored), nor are IPv6 extension headers (except the Frag-
ment header). The exception is an unexpired IPv4 Source Route option. If such an
option is present, the packet is dropped and a corresponding ICMP error message
(Destination Unreachable, Source Route Failed; see Chapter 8) is generated. Table
7-5 describes how the IPv6 header fields are assigned when translating an IPv4
datagram to IPv6.

Table 7-5 Methods for creating an IPv6 header when translating IPv4 to IPv6

IPv6 Field Assignment Method

Version Set to 6.
DS Field/ECN Copied from same values in IPv4 header
Flow Label Set to 0.
Payload Length Set to IPv4 Total Length minus length of the IPv4 header (including

options).
Next Header Set to IPv4 Protocol field (or 58 if the Protocol field had value 1).

Set to value 44 to indicate a Fragment header if the IPv6 datagram
being created is a fragment or DF bit not set.

Hop Limit Set to the IPv4 TTL field minus 1 (if this value is 0, the packet is
discarded and an ICMP Time Exceeded message is generated; see
Chapter 8).

Source IP Address Set to To6(IPv4 Source IP Address, P).
Destination IP
Address

Set to To6(IPv4 Destination IP Address, P).

During the translation process, the IPv4 header is stripped and replaced with
an IPv6 header. If the arriving IPv4 datagram is too large to fit in the MTU for the
next link and the DF bit field in its header is not set, multiple IPv6 fragment packets
may be produced, each containing a Fragment header. This also occurs when the
arriving IPv4 datagram is a fragment. [RFC6145] recommends a Fragment header

ptg999

Section 7.6 NAT for IPv4/IPv6 Coexistence and Transition 343

be included in the resulting IPv6 datagram whenever the arriving IPv4 datagram’s
DF bit field has value zero, whether or not the translator needs to perform frag-
mentation or the arriving datagram is a fragment. This allows the IPv6 receiver to
know that the IPv4 sender was likely not using PMTUD. When a Fragment header
is included, its fields are set according to the methods listed in Table 7-6.

Table 7-6 Methods for assigning fields of the Fragment header, if used, during IPv4-to-IPv6
translation

Fragment Header Field Assignment Method

Next Header Set to the IPv4 Protocol field.
Fragment Offset Copied from the IPv4 Fragment Offset field.
More Fragments Bit Copied from the IPv4 More Fragments (M) bit field.
Identification The low-order 16 bits are set from the IPv4 Identification field.

The high-order 16 bits are set to 0.

The reverse direction (IPv6-to-IPv4 translation) involves creating an IPv4
datagram with header field values based on fields in the arriving IPv6 header.
Obviously the much larger IPv6 address space does not allow an IPv4-only host to
access every host on the IPv6 Internet. Table 7-7 gives the methods used to assign
the fields in the outgoing IPv4 datagram’s header when an unfragmented IPv6
datagram arrives.

Table 7-7 Methods for creating an IPv4 header when translating unfragmented IPv6 to IPv4

IPv4 Header Field Assignment Method

Version Set to 4.
IHL Set to 5 (no IPv4 options).
DS Field/ECN Copied from same values in IPv6 header.
Total Length The value of the IPv6 Payload Length field plus 20.
Identification Set to 0 (with option to set to some other predetermined value).
Flags More Fragments (M) is set to 0. Don’t Fragment (DF) is set to 1.
Fragment Offset Set to 0.
TTL The value of the IPv6 Hop Limit field minus 1 (must be at least 1).
Protocol Copied from the first IPv6 Next Header field that does not refer

to a Fragment header, HOPOPT, IPv6-Route, or IPv6-Opts.
Value 58 is changed to 1 to support ICMP (see Chapter 8).

Header Checksum Computed for the newly created IPv4 header.
Source IP Address To4(IPv6 Source IP Address, P).
Destination IP Address To4(IPv6 Destination IP Address, P).

ptg999

344 Firewalls and Network Address Translation (NAT)

If the arriving IPv6 datagram includes a Fragment header, the outgoing IPv4
datagram uses field values based on assignment methods modified from those in
Table 7-7. Table 7-8 gives this case.

Table 7-8 Methods for creating an IPv4 header when translating fragmented IPv6 to IPv4

IPv4 Header Field Assignment Method

Total Length The value of the IPv6 Payload Length field minus 8 plus 20.
Identification Copied from the low-order 16 bits in the Identification field of the

IPv6 Fragment header.
Flags More Fragments (M) copied from the M bit field in the IPv6

Fragment header. Don’t Fragment (DF) is set to 0 to allow
fragmentation in the IPv4 network.

Fragment Offset Copied from the Fragment Offset field of the IPv6 Fragment header.

In the case of fragmented IPv6 datagrams, the translator produces fragmented
IPv4 datagrams. Note that in IPv6 the Identification field is larger, so there is a pos-
sibility that certain fragments could fail to be reassembled properly if multiple
distinct IPv6 datagrams from the same host are fragmented in such a way that the
Identification field values they use share a common lower-order 16 bits. However,
this situation is no more risky than having the conventional IPv4 Identification
field wrap. Furthermore, integrity checks at higher layers make this issue nothing
much to worry about.

7.6.2.3 Stateful Translation
In stateful translation, NAT64 [RFC6146] is used to support IPv6-only clients com-
municating with IPv4 servers. This is expected to be important during the period
when many important services continue to be offered using only IPv4. The trans-
lation method for headers is nearly identical to the methods described for stateless
translation in Section 7.6.2.2. As a NAT, NAT64 complies with BEHAVE specifica-
tions and supports only endpoint-independent mappings, along with both end-
point-independent and address-dependent filtering. Thus, it is compatible with
the NAT traversal techniques (e.g., ICE, STUN, TURN) we discussed previously.
Lacking these additional protocols, NAT64 supports dynamic translation only for
IPv6 hosts initiating communications with IPv4 hosts.

NAT64 works much like conventional NAT (NAPT) across address families,
except translations in the IPv4-to-IPv6 direction are simpler than in the reverse
direction. A NAT64 device is assigned an IPv6 prefix, which can be used to form a
valid IPv6 address directly from an IPv4 address using the mechanism described
in Chapter 2 and [RFC6052]. Because of the comparative scarcity of the IPv4
address space, translations in the IPv6-to-IPv4 direction make use of a pool of
IPv4 addresses that are ordinarily managed dynamically. This requires NAT64 to
support NAPT functionality, whereby multiple distinct IPv6 addresses may map

ptg999

Section 7.7 Attacks Involving Firewalls and NATs 345

to the same IPv4 address. NAT64 currently defines methods for translation of TCP,
UDP, and ICMP messages initiated by IPv6 nodes. (In the case of ICMP queries
and responses, the ICMP Identifier field is used instead of the transport-layer port
number; see Chapter 8.)

NAT64 handles fragments differently from its stateful counterpart. For arriv-
ing TCP or UDP fragments where the transport checksum is nonzero (see Chapter
10), the NAT64 may either queue the fragments and translate them together or
translate them individually. A NAT64 must handle fragments, even those arriving
out of order. A NAT64 may be configured with a time limit (at least 2s) bounding
the time during which fragments will be cached. Otherwise, the NAT could be
subject to a DoS attack resulting from the exhaustion of packet buffers holding
fragments.

7.7 Attacks Involving Firewalls and NATs

Given that the primary purpose of deploying firewalls is to reduce the exposure
to attacks, it is not surprising that firewalls have fewer obvious shortcomings than
end hosts or routers. That said, they are not without their faults. The most com-
mon types of firewall problems result from incomplete or incorrect configuration.
Configuring firewalls is not a trivial task, especially for large enterprises where
many services may be employed on a daily basis. Other forms of attacks exploit
the weaknesses of some firewalls, including the inability of many of them (espe-
cially older ones) to deal with IP fragments.

One type of problem arises when a NAT/firewall can be hijacked from outside
to provide a masquerading capability for an attacker. If the firewall is configured
with NAT enabled, traffic arriving at its external interface may be rewritten so as
to appear to have come from the NAT device, thereby hiding an attacker’s actual
address. What is worse, this is “normal” behavior from the NAT’s point of view;
it just happens to be getting its input packets from outside rather than inside.
This has been a particular problem with ipchains-based NAT/firewall rules on
Linux. The simplest configuration for setting up masquerading:

Linux# ipchains -P FORWARD MASQUERADE

allows this attack to take place and is therefore not recommended. As we can see,
it sets the default forwarding policy to masquerade, which potentially applies to
any IP forwarding.

Another type of problem that can arise with firewall and NAT rules is that
they may be stale. In particular, they may contain port forwarding entries or other
so-called holes that allow traffic through for services that are no longer used. A
related problem is that some routers keep more than one copy of the firewall rules
in memory, and the router must be specifically instructed when to enable which
rules. Finally, another common configuration problem is that many routers merge

ptg999

346 Firewalls and Network Address Translation (NAT)

new firewall rules with the existing set when new ones are added. This can poten-
tially lead to undesired results if the operator is unaware of this behavior.

The problem with fragments is related to how IP fragments are constructed.
When an IP datagram is fragmented (see Chapter 10), the transport header, which
contains the port numbers, appears only in the first fragment and in none of the
others. This is a direct result of the layering and encapsulation of the TCP/IP pro-
tocol architecture. Unfortunately for a firewall, receiving a fragment other than
the first provides little information about the transport layer or service to which
the packet relates. The only obvious way to make this association is to find the
first fragment (if there ever was one), and this obviously requires a stateful fire-
wall capability, which might be subject to resources exhaustion attacks. Even
stateful firewalls could fall short: if the first fragment arrives after subsequent
fragments, the firewall may not be smart enough to perform reassembly prior to
its filtering operation. In some cases, the firewall simply drops fragments it cannot
fully identify, which could pose problems for legitimate traffic that happens to use
large datagrams.

7.8 Summary

Firewalls provide a mechanism for network administrators to restrict the flow
of information that may be harmful to end systems. The two major types of fire-
walls are packet-filtering firewalls and proxy firewalls. Packet-filtering firewalls
may be further separated into the stateful and stateless varieties, and they usually
act as IP routers. The stateful variety is more sophisticated and supports success-
ful operation of a wider variety of application-layer protocols (and might do more
sophisticated logging or filtering across multiple packets in a packet stream). Proxy
firewalls usually act as a form of application-layer gateway. For these firewalls,
each application-layer service must have its own proxy handler on the firewall,
but this does allow handlers to make modifications even to the data portion of the
transiting traffic. Protocols such as SOCKS support proxy firewalls in a standard-
ized way.

Network Address Translation (NAT) is a mechanism whereby a relatively
large number of end hosts can share one or more globally routable IP address(es).
NAT is used extensively for this purpose but can also be used in conjunction with
firewall rules to form a NAT/firewall combination. In this popular configuration,
computers “behind” the NAT are allowed to send traffic out to the global Internet,
but only traffic returning in response to the outgoing traffic is ordinarily admit-
ted back. This presents a small problem for implementing services behind a NAT
that is handled by port forwarding, which allows the NAT to pass on incoming
traffic for a service to end hosts inside the NAT. NAT is also being proposed for
helping the transition from IPv4 to IPv6 by translating addresses between the two
realms. In addition, NAT is being considered for use within ISPs to further allay
IPv4 address depletion concerns. If this happens on a large scale, it may become

ptg999

 Section 7.9 References 347

(even more) difficult for ordinary users to offer Internet services from their home
networks.

Some applications use a set of heuristics in order to determine what addresses
are used on the outside of the NATs they are behind. Many of these operate uni-
laterally, without direct help from the NAT. Such applications are said to use
UNSAF (pronounced “unsafe”) methods and may not be completely reliable. A
set of documents (developed by the IETF BEHAVE working group) specifies the
proper behavior of NATs for different protocols, but not all NATs implement these
specifications. Consequently, NAT traversal techniques may need to be employed
to ensure that connectivity can take place.

NAT traversal involves determining a set of addresses and port numbers that
can be used to support communications even when one or more NATs must be
used. STUN is the primary workhorse protocol for determining addresses. TURN
is a particular STUN usage that relays traffic through a specially configured
TURN server, usually located in the Internet. Deciding which addresses or relays
to use can be accomplished using a complete NAT traversal protocol such as ICE.
ICE determines all possible addresses that can be used between a pair of com-
municating endpoints using local information, plus addresses determined using
STUN and TURN. It then selects the “best” addresses for subsequent communi-
cation. Mechanisms such as ICE have received the most attention for supporting
VoIP services that use the SIP protocol for signaling.

Firewalls and NATs may require configuration. The basic settings are ade-
quate for many home users, but firewalls may require modifications to allow
certain services to work. In addition, if a user behind a NAT wishes to offer an
Internet service, port forwarding will likely have to be configured on the NAT
device. Some applications support configuration by performing direct communi-
cation with a NAT using protocols such as UPnP and NAT-PMP. When supported
and enabled, these allow a NAT to have its port forwarding and binding data
accessed and modified by the application automatically, without user interven-
tion. For a home user to run a Web server behind a dynamically provisioned NAT
(i.e., one with an Internet-facing IP address that changes), additional services such
as dynamic DNS (see Chapter 11) may also be important.

7.9 References

[ANM09] S. Alcock, R. Nelson, and D. Miles, “Investigating the Impact of Service
Provider NAT on Residential Broadband Users,” University of Waikato, unpub-
lished technical report, 2009.

[DLNA] http://www.dlna.org

[HBA09] D. Hayes, J. But, and G. Armitage, “Issues with Network Address Trans-
lation for SCTP,” Computer Communications Review, Jan. 2009.

http://www.dlna.org

ptg999

348 Firewalls and Network Address Translation (NAT)

[IDPCP] D. Wing, ed., S. Cheshire, M. Boucadair, R. Penno, and P. Selkirk, “Port
Control Protocol (PCP),” Internet draft-ietf-pcp-base, work in progress, July 2011.

[IDSNAT] R. Stewart, M. Tuexen, and I. Ruengeler, “Stream Control Transmission
Protocol (SCTP) Network Address Translation,” Internet draft-ietf-behave-
sctpnat, work in progress, June 2011.

[IDTI] J. Rosenberg, A. Keranen, B. Lowekamp, and A. Roach, “TCP Candidates
with Interactive Connectivity Establishment (ICE),” Internet draft-ietf-mmusic-
ice-tcp, work in progress, Sep. 2011.

[IGD] UPnP Forum, “Internet Gateway Devices (IGD) Standardized Device
Control Protocol V 1.0,” Nov. 2001.

[IGD2] UPnP Forum, “IDG:2 Improvements over IGD:1,” Mar. 2009.

[ISP] http://www.iana.org/assignments/stun-parameters

[MBCB08] O. Maennel, R. Bush, L. Cittadini, and S. Bellovin, “A Better Approach
to Carrier-Grade-NAT,” Columbia University Technical Report CUCS-041-08,
Sept. 2008.

[NFWEB] http://netfilter.org

[PJSUA] http://www.pjsip.org/pjsua.htm

[RFC0959] J. Postel and J. Reynolds, “File Transfer Protocol,” Internet RFC 0959/
STD 0009, Oct. 1985.

[RFC1918] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear,
“Address Allocation for Private Internets,” Internet RFC 1918BCP 0005, Feb. 1996.

[RFC1928] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, “SOCKS
Protocol Version 5,” Internet RFC 1928, Mar. 1996.

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol—HTTP/1.1,” Internet RFC 2616,
June 1999.

[RFC2637] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn,
“Point-to-Point Tunneling Protocol (PPTP),” Internet RFC 2637 (informational),
July 1999.

[RFC2766] G. Tsirtsis and P. Srisuresh, “Network Address Translation—Protocol
Translation (NAT-PT),” Internet RFC 2766 (obsoleted by [RFC4966]), Feb. 2000.

[RFC3022] P. Srisuresh and K. Egevang, “Traditional IP Network Address Trans-
lator (Traditional NAT),” Internet RFC 3022 (informational), Jan. 2001.

http://www.iana.org/assignments/stun-parameters
http://netfilter.org
http://www.pjsip.org/pjsua.htm

ptg999

 Section 7.9 References 349

[RFC3027] M. Holdrege and P. Srisuresh, “Protocol Complications with the IP
Network Address Translator,” Internet RFC 3027 (informational), Jan. 2001.

[RFC3235] D. Senie, “Network Address Translator (NAT)-Friendly Application
Design Guidelines,” Internet RFC 3235 (informational), Jan. 2002.

[RFC3264] J. Rosenberg and H. Schulzrinne, “An Offer/Answer Model with
Session Description Protocol (SDP),” Internet RFC 3264, June 2002.

[RFC3424] L. Daigle, ed., and IAB, “IAB Considerations for UNilateral Self-
Address Fixing (UNSAF) across Network Address Translation,” Internet RFC
3424 (informational), Nov. 2002.

[RFC3550] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” Internet RFC 3550/STD 0064,
July 2003.

[RFC3711] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“The Secure Real-Time Transport Protocol (SRTP),” Internet RFC 3711, Mar. 2004.

[RFC4193] R. Hinden and B. Haberman, “Unique Local IPv6 Unicast Addresses,”
Internet RFC 4193, Oct. 2005.

[RFC4213] E. Nordmark and R. Gilligan, “Basic Transition Mechanisms for IPv6
Hosts and Routers,” Internet RFC 4213, Oct. 2005.

[RFC4340] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” Internet RFC 4340, Mar. 2006.

[RFC4605] B. Fenner, H. He, B. Haberman, and H. Sandick, “Internet Group Man-
agement Protocol (IGMP)/Multicast Listener Discovery (MLD)-Based Multicast
Forwarding (IGMP/MLD Proxying),” Internet RFC 4605, Aug. 2006.

[RFC4787] F. Audet, ed., and C. Jennings, “Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” Internet RFC 4787/BCP 0127, Jan.
2007.

[RFC4864] G. Van de Velde, T. Hain, R. Droms, B. Carpenter, and E. Klein, “Local
Network Protection for IPv6,” Internet RFC 4864 (informational), May 2007.

[RFC4960] R. Stewart, ed., “Stream Control Transmission Protocol,” Internet RFC
4960, Sept. 2007.

[RFC4966] C. Aoun and E. Davies, “Reasons to Move the Network Address
Translator-Protocol Translator (NAT-PT) to Historic Status,” Internet RFC 4966
(informational), July 2007.

[RFC5128] P. Srisuresh, B. Ford, and D. Kegel, “State of Peer-to-Peer (P2P) Com-
munication across Network Address Translators (NATs),” Internet RFC 5128
(informational), Mar. 2008.

ptg999

350 Firewalls and Network Address Translation (NAT)

[RFC5135] D. Wing and T. Eckert, “IP Multicast Requirements for a Network
Address Translator (NAT) and a Network Address Port Translator (NAPT),”
Internet RFC 5135/BCP 0135, Feb. 2008.

[RFC5245] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” Internet RFC 5245, Apr. 2010.

[RFC5382] S. Guha, ed., K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh, “NAT
Behavioral Requirements for TCP,” Internet RFC 5382/BCP 0142, Oct. 2008.

[RFC5389] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal
Utilities for NAT (STUN),” Internet RFC 5389, Oct. 2008.

[RFC5411] J. Rosenberg, “A Hitchhiker’s Guide to the Session Initiation Protocol
(SIP),” Internet RFC 5411 (informational), Feb. 2009.

[RFC5508] P. Srisuresh, B. Ford, S. Sivakumar, and S. Guha, “NAT Behavioral
Requirements for ICMP,” Internet RFC 5508/BCP 0148, Apr. 2009.

[RFC5571] B. Storer, C. Pignataro, ed., M. Dos Santos, B. Stevant, ed., L. Toutain,
and J. Tremblay, “Softwire Hub and Spoke Deployment Framework with Layer
Two Tunneling Protocol Version 2 (L2TPv2),” Internet RFC 5571, June 2009.

[RFC5596] G. Fairhurst, “Datagram Congestion Control Protocol (DCCP) Simul-
taneous-Open Technique to Facilitate NAT/Middlebox Traversal,” Internet RFC
5596, Sept. 2009.

[RFC5597] R. Denis-Courmont, “Network Address Translation (NAT) Behavioral
Requirements for the Datagram Congestion Control Protocol,” Internet RFC
5597/BCP 0150, Sept. 2009.

[RFC5626] C. Jennings, R. Mahy, and F. Audet, eds., “Managing Client-Initiated
Connections in the Session Initiation Protocol (SIP),” Internet RFC 5626, Oct.
2009.

[RFC5761] C. Perkins and M. Westerlund, “Multiplexing RTP Data and Control
Packets on a Single Port,” Internet RFC 5761, Apr. 2010.

[RFC5766] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN),” Internet RFC 5766, Apr. 2010.

[RFC5780] D. MacDonald and B. Lowekamp, “NAT Behavior Discovery Using
Session Traversal Utilities for NAT (STUN),” Internet RFC 5780 (experimental),
May 2010.

[RFC5902] D. Thaler, L. Zhang, and G. Lebovitz, “IAB Thoughts on IPv6 Network
Address Translation,” Internet RFC 5902 (informational), July 2010.

ptg999

 Section 7.9 References 351

[RFC5928] M. Petit-Huguenin, “Traversal Using Relays around NAT (TURN)
Resolution Mechanism,” Internet RFC 5928, Aug. 2010.

[RFC6052] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li, “IPv6
Addressing of IPv4/IPv6 Translators,” Internet RFC 6052, Oct. 2010.

[RFC6062] S. Perreault, ed., and J. Rosenberg, “Traversal Using Relays around
NAT (TURN) Extensions for TCP Allocations,” Internet RFC 6062, Nov. 2010.

[RFC6120] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” Internet RFC 6120, Mar. 2011.

[RFC6144] F. Baker, X. Li, C. Bao, and K. Yin, “Framework for IPv4/IPv6 Transla-
tion,” Internet RFC 6144 (informational), Apr. 2011.

[RFC6145] X. Li, C. Bao, and F. Baker, “IP/ICMP Translation Algorithm,” Internet
RFC 6145, Apr. 2011.

[RFC6146] M. Bagnulo, P. Matthews, and I. van Beijnum, “Stateful NAT64:
Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers,”
Internet RFC 6146, Apr. 2011.

[RFC6156] G. Camarillo, O. Novo, and S. Perreault, ed., “Traversal Using Relays
around NAT (TURN) Extension for IPv6,” Internet RFC 6156, Apr. 2011.

[RFC6296] M. Wasserman and F. Baker, “IPv6-to-IPv6 Network Prefix Transla-
tion,” Internet RFC 6296 (experimental), June 2011.

[RFC6333] A. Durand, R. Droms, J. Woodyatt, and Y. Lee, “Dual-Stack Lite Broad-
band Deployments Following IPv4 Exhaustion,” Internet RFC 6333, Aug. 2011.

[RFC6334] D. Hankins and T. Mrugalski, “Dynamic Host Configuration Protocol
for IPv6 (DHCPv6) Option for Dual-Stack Lite,” Internet RFC 6334, Aug. 2011.

[UPNP] http://www.upnp.org

[UPNPC] http://miniupnp.free.fr

[XEP-0176] J. Beda, S. Ludwig, P. Saint-Andre, J. Hildebrand, S. Egan, and R.
McQueen, “XEP-0176: Jingle ICE-UDP Transport Method,” XMPP Standards
Foundation, June 2009, http://xmpp.org/extensions/xep-0176.html

[XIDAD] P. Gauthier, J. Cohen, M. Dunsmuir, and C. Perkins, “Web Proxy
Auto-Discovery Protocol,” Internet draft-ietf-wrec-wpad-01, work in progress
(expired), June 1999.

[XIDMU] Y. Goland, “Multicast and Unicast UDP HTTP Messages,” Internet
draft-goland-http-udp-01.txt, work in progress (expired), Nov. 1999.

[XIDPMP] S. Cheshire, M. Krochmal, and K. Sekar, “NAT Port Mapping Protocol
(NAT-PMP),” Internet draft-cheshire-nat-pmp-03.txt, work in progress (expired),
Apr. 2008.

http://www.upnp.org
http://miniupnp.free.fr
http://xmpp.org/extensions/xep-0176.html

ptg999

352 Firewalls and Network Address Translation (NAT)

[XIDS] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright, “Simple Service Discov-
ery Protocol/1.0 Operating without an Arbiter,” Internet draft-cai-ssdp-v1-03.txt,
work in progress (expired), Oct. 1999.

ptg999

353

8

ICMPv4 and ICMPv6: Internet
Control Message Protocol

8.1 Introduction

The IP protocol alone provides no direct way for an end system to learn the fate
of IP packets that fail to make it to their destinations. In addition, IP provides no
direct way of obtaining diagnostic information (e.g., which routers are used along
a path or a method to estimate the round-trip time). To address these deficiencies,
a special protocol called the Internet Control Message Protocol (ICMP) [RFC0792]
[RFC4443] is used in conjunction with IP to provide diagnostics and control infor-
mation related to the configuration of the IP protocol layer and the disposition of
IP packets. ICMP is often considered part of the IP layer itself, and it is required
to be present with any IP implementation. It uses the IP protocol for transport.
So, precisely, it is neither a network nor a transport protocol but lies somewhere
between the two.

ICMP provides for the delivery of error and control messages that may require
attention. ICMP messages are usually acted on by the IP layer itself, by higher-
layer transport protocols (e.g., TCP or UDP), and in some cases by user applica-
tions. Note that ICMP does not provide reliability for IP. Rather, it indicates certain
classes of failures and configuration information. The most common cause of
packet drops (buffer overrun at a router) does not elicit any ICMP information.
Other protocols, such as TCP, handle such situations.

Because of the ability of ICMP to affect the operation of important system
functions and obtain configuration information, hackers have used ICMP mes-
sages in a large number of attacks. As a result of concerns about such attacks,
network administrators often arrange to block ICMP messages with firewalls,
especially at border routers. If ICMP is blocked, however, a number of common
diagnostic utilities (e.g., ping, traceroute) do not work properly [RFC4890].

ptg999

354 ICMPv4 and ICMPv6: Internet Control Message Protocol

When discussing ICMP, we shall use the term ICMP to refer to ICMP in gen-
eral, and the terms ICMPv4 and ICMPv6 to refer specifically to the versions of
ICMP used with IPv4 and IPv6, respectively. As we shall see, ICMPv6 plays a far
more important role in the operation of IPv6 than ICMPv4 does for IPv4.

[RFC0792] contains the official base specification of ICMPv4, which is refined
and clarified in [RFC1122] and [RFC1812]. [RFC4443] provides the base specifica-
tion for ICMPv6. [RFC4884] provides a method to add extension objects to cer-
tain ICMP messages. This facility is used for holding Multiprotocol Label Switching
(MPLS) information [RFC4950] and for indicating which interface and next hop
a router would use in forwarding a particular datagram [RFC5837]. [RFC5508]
gives standard behavioral characteristics of ICMP through NATs (also discussed
in Chapter 7). In IPv6, ICMPv6 is used for several purposes beyond simple error
reporting and signaling. It is used for Neighbor Discovery (ND) [RFC4861], which
plays the same role as ARP does for IPv4 (see Chapter 4). It also includes the
Router Discovery function used for configuring hosts (see Chapter 6) and multicast
address management (see Chapter 9). Finally, it is also used to help manage hand-
offs in Mobile IPv6.

8.1.1 Encapsulation in IPv4 and IPv6

ICMP messages are encapsulated for transmission within IP datagrams, as shown
in Figure 8-1.

Figure 8-1 Encapsulation of ICMP messages in IPv4 and IPv6. The ICMP header contains a check-
sum covering the ICMP data area. In ICMPv6, the checksum also covers the Source and
Destination IPv6 Address, Length, and Next Header fields in the IPv6 header.

ptg999

Section 8.2 ICMP Messages 355

In IPv4, a Protocol field value of 1 indicates that the datagram caries ICMPv4.
In IPv6, the ICMPv6 message may begin after zero or more extension headers. The
last extension header before the ICMPv6 header includes a Next Header field with
value 58. ICMP messages may be fragmented like other IP datagrams (see Chapter
10), although this is not common.

Figure 8-2 shows the format of both ICMPv4 and ICMPv6 messages. The first
4 bytes have the same format for all messages, but the remainder differ from one
message to the next.

Figure 8-2 All ICMP messages begin with 8-bit Type and Code fields, followed by a 16-bit Checksum
that covers the entire message. The type and code values are different for ICMPv4 and
ICMPv6.

In ICMPv4, 42 different values are reserved for the Type field [ICMPTYPES],
which identify the particular message. Only about 8 of these are in regular
use, however. We will show the exact format of each commonly used message
throughout the chapter. Many types of ICMP messages also use different values
of the Code field to further specify the meaning of the message. The Checksum
field covers the entire ICMPv4 message; in ICMPv6 it also covers a pseudo-header
derived from portions of the IPv6 header (see Section 8.1 of [RFC2460]). The algo-
rithm used for computing the checksum is the same as that used for the IP header
checksum defined in Chapter 5. Note that this is our first example of an end-to-end
checksum. It is carried all the way from the sender of the ICMP message to the
final recipient. In contrast, the IPv4 header checksum discussed in Chapter 5 is
changed at every router hop. If an ICMP implementation receives an ICMP mes-
sage with a bad checksum, the message is discarded; there is no ICMP message
to indicate a bad checksum in a received ICMP message. Recall that the IP layer
has no protection on the payload portion of the datagram. If ICMP did not include
a checksum, the contents of the ICMP message might not be correct, leading to
incorrect system behavior.

8.2 ICMP Messages

We now look at ICMP messages in general and the most commonly used ones
in more detail. ICMP messages are grouped into two major categories: those

ptg999

356 ICMPv4 and ICMPv6: Internet Control Message Protocol

messages relating to problems with delivering IP datagrams (called error mes-
sages), and those related to information gathering and configuration (called query
or informational messages).

8.2.1 ICMPv4 Messages

For ICMPv4, the informational messages include Echo Request and Echo Reply
(types 8 and 0, respectively), and Router Advertisement and Router Solicitation
(types 9 and 10, respectively, together called Router Discovery). The most common
error message types are Destination Unreachable (type 3), Redirect (type 5), Time
Exceeded (type 11), and Parameter Problem (type 12). Table 8-1 lists the message
types defined for standard ICMPv4 messages.

Table 8-1 The standard ICMPv4 message types, as determined by the Type field*

Type Official Name Reference E/I Use/Comment

0 (*) Echo Reply [RFC0792] I Echo (ping) reply; returns data
3 (*)(+) Destination Unreachable [RFC0792] E Unreachable host/protocol
4 Source Quench [RFC0792] E Indicates congestion (deprecated)
5 (*) Redirect [RFC0792] E Indicates alternate router should be used
8 (*) Echo [RFC0792] I Echo (ping) request (data optional)
9 Router Advertisement [RFC1256] I Indicates router addresses/preferences
10 Router Solicitation [RFC1256] I Requests Router Advertisement
11 (*)(+) Time Exceeded [RFC0792] E Resource exhausted (e.g., IPv4 TTL)
12 (*)(+) Parameter Problem [RFC0792] E Malformed packet or header

Types marked with asterisks () are the most common. Those marked with a plus (+) may contain [RFC4884]
extension objects. In the fourth column, E is for error messages and I indicates query/informational messages.

For the commonly used messages (those with the asterisks next to the type
number in Table 8-1), the code numbers shown in Table 8-2 are used. Some mes-
sages are capable of carrying extended information [RFC4884] (those marked in
Table 8-1 with the plus sign).

The official list of message types is maintained by IANA [ICMPTYPES].
Many of these message types were defined by the original ICMPv4 specifica-
tion [RFC0792] in 1981, prior to any significant experience using them. Additional
experience and the development of other protocols (e.g., DHCP) have resulted in
many of the messages defined then to cease being used. When IPv6 (and ICMPv6)
was designed, this fact was understood, so a somewhat more rational arrange-
ment of types and codes has been defined for ICMPv6.

ptg999

 Section 8.2 ICMP Messages 357

Table 8-2 Common ICMPv4 message types that use code numbers in addition to 0. Although all of these mes-
sage types are relatively common, only a few of the codes are commonly used.

Type Code Official Name Use/Comment

3 0 Net Unreachable No route (at all) to destination
3 (*) 1 Host Unreachable Known but unreachable host
3 2 Protocol Unreachable Unknown (transport) protocol
3 (*) 3 Port Unreachable Unknown/unused (transport) port
3 (*) 4 Fragmentation Needed and Don’t

Fragment Was Set (PTB message)
Needed fragmentation prohibited by DF
bit; used by PMTUD [RFC1191]

3 5 Source Route Failed Intermediary hop not reachable
3 6 Destination Network Unknown Deprecated [RFC1812]
3 7 Destination Host Unknown Destination does not exist
3 8 Source Host Isolated Deprecated [RFC1812]
3 9 Communication with Destination

Network Administratively
Prohibited

Deprecated [RFC1812]

3 10 Communication with Destination
Host Administratively Prohibited

Deprecated [RFC1812]

3 11 Destination Network Unreachable
for Type of Service

Type of service not available (net)

3 12 Destination Host Unreachable for
Type of Service

Type of service not available (host)

3 13 Communication Administratively
Prohibited

Communication prohibited by filtering
policy

3 14 Host Precedence Violation Precedence disallowed for src/dest/port
3 15 Precedence Cutoff in Effect Below minimum ToS [RFC1812]
5 0 Redirect Datagram for the Network

(or Subnet)
Indicates alternate router

5 (*) 1 Redirect Datagram for the Host Indicates alternate router (host)
5 2 Redirect Datagram for the Type of

Service and Network
Indicates alternate router (ToS/net)

5 3 Redirect Datagram for the Type of
Service and Host

Indicates alternate router (ToS/host)

9 0 Normal Router Advertisement Router’s address and configuration
information

9 16 Does Not Route Common Traffic With Mobile IP [RFC5944], router does not
route ordinary packets

11 (*) 0 Time to Live Exceeded in Transit Hop limit/TTL exceeded
11 1 Fragment Reassembly Time

Exceeded
Not all fragments of datagram arrived
before reassembly timer expired

12 (*) 0 Pointer Indicates the Error Byte offset (pointer) indicates first problem
field

12 1 Missing a Required Option Deprecated/historic
12 2 Bad Length Packet had invalid Total Length field

ptg999

358 ICMPv4 and ICMPv6: Internet Control Message Protocol

8.2.2 ICMPv6 Messages

Table 8-3 shows the message types defined for ICMPv6. Note that ICMPv6 is
responsible not only for error and informational messages but also for a great deal
of IPv6 router and host configuration.

Table 8-3 In ICMPv6, error messages have message types from 0 to 127. Informational messages have message
types from 128 to 255. The plus (+) notation indicates that the message may contain an extension
structure. Reserved, unassigned, experimental, and deprecated values are not shown.

Type Official Name Reference Description

1 (+) Destination Unreachable [RFC4443] Unreachable host, port, protocol
2 Packet Too Big (PTB) [RFC4443] Fragmentation required
3 (+) Time Exceeded [RFC4443] Hop limit exhausted or

reassembly timed out
4 Parameter Problem [RFC4443] Malformed packet or header
100,101 Reserved for private experimentation [RFC4443] Reserved for experiments
127 Reserved for expansion of ICMPv6

error messages
[RFC4443] Hold for more error messages

128 Echo Request [RFC4443] ping request; may contain data
129 Echo Reply [RFC4443] ping response; returns data
130 Multicast Listener Query [RFC2710] Queries multicast subscribers

(v1)
131 Multicast Listener Report [RFC2710] Multicast subscriber report (v1)
132 Multicast Listener Done [RFC2710] Multicast unsubscribe

message (v1)
133 Router Solicitation (RS) [RFC4861] IPv6 RS with Mobile IPv6

options
134 Router Advertisement (RA) [RFC4861] IPv6 RA with Mobile IPv6

options
135 Neighbor Solicitation (NS) [RFC4861] IPv6 Neighbor Discovery

(Solicit)
136 Neighbor Advertisement (NA) [RFC4861] IPv6 Neighbor Discovery

(Advertisement)
137 Redirect Message [RFC4861] Use alternative next-hop router
141 Inverse Neighbor Discovery

Solicitation Message
[RFC3122] Inverse Neighbor Discovery

request: requests IPv6 addresses
given link-layer address

142 Inverse Neighbor Discovery
Advertisement Message

[RFC3122] Inverse Neighbor Discovery
response: reports IPv6 addresses
given link-layer address

143 Version 2 Multicast Listener Report [RFC3810] Multicast subscriber report (v2)

ptg999

Section 8.2 ICMP Messages 359

Immediately apparent in this list is the separation between the first set of mes-
sage types and the second set (i.e., those messages with types below 128 and those
at or above). In ICMPv6, as in ICMPv4, messages are grouped into the informa-
tional and error classes. In ICMPv6, however, all the error messages have a 0 in the
high-order bit of the Type field. Thus, ICMPv6 types 0 through 127 are all errors,
and types 128 through 255 are all informational. Many of the informational mes-
sages are request/reply pairs.

In comparing the common ICMPv4 messages with the ICMPv6 standard mes-
sages, we conclude that some of the effort in designing ICMPv6 was to eliminate
the unused messages from the original specification while retaining the useful
ones. Following this approach, ICMPv6 also makes use of the Code field, primarily
to refine the meanings of certain error messages. In Table 8-4 we list those stan-
dard ICMPv6 message types (i.e., Destination Unreachable, Time Exceeded, and
Parameter Problem) for which more than the code value 0 has been defined.

Table 8-3 In ICMPv6, error messages have message types from 0 to 127. Informational messages have message
types from 128 to 255. The plus (+) notation indicates that the message may contain an extension
structure. Reserved, unassigned, experimental, and deprecated values are not shown. (continued)

Type Official Name Reference Description

144 Home Agent Address Discovery
Request Message

[RFC6275] Requests Mobile IPv6 HA
address; send by mobile node

145 Home Agent Address Discovery Reply
Message

[RFC6275] Contains MIPv6 HA address;
sent by eligible HA on home
network

146 Mobile Prefix Solicitation [RFC6275] Request home prefix while away
147 Mobile Prefix Advertisement [RFC6275] Provides prefix from HA to

mobile
148 Certification Path Solicitation Message [RFC3971] Secure Neighbor Discovery

(SEND) request for a
certification path

149 Certification Path Advertisement
Message

[RFC3971] SEND response to certification
path request

151 Multicast Router Advertisement [RFC4286] Provides address of multicast
router

152 Multicast Router Solicitation [RFC4286] Requests address of multicast
router

153 Multicast Router Termination [RFC4286] Done using multicast router
154 FMIPv6 Messages [RFC5568] MIPv6 fast handover messages
200,201 Reserved for private experimentation [RFC4443] Reserved for experiments
255 Reserved for expansion of ICMPv6

informational messages
[RFC4443] Hold for more informational

messages

ptg999

360 ICMPv4 and ICMPv6: Internet Control Message Protocol

In addition to the Type and Code fields that define basic functions in ICMPv6, a
large number of standard options are also supported, some of which are required.
This distinguishes ICMPv6 from ICMPv4 (ICMPv4 does not have options). Cur-
rently, standard ICMPv6 options are defined for use only with the ICMPv6 ND
messages (types 135 and 136) using the Option Format field discussed in [RFC4861].
We discuss these options when exploring ND in more detail in Section 8.5.

8.2.3 Processing of ICMP Messages

In ICMP, the processing of incoming messages varies from system to system. Gen-
erally speaking, the incoming informational requests are handled automatically
by the operating system, and the error messages are delivered to user processes
or to a transport protocol such as TCP [RFC5461]. The processes may choose to
act on them or ignore them. Exceptions to this general rule include the Redirect
message and the Destination Unreachable—Fragmentation Required messages.
The former results in an automatic update to the host’s routing table, whereas the
latter is used in the path MTU discovery (PMTUD) mechanism, which is generally
implemented by the transport-layer protocols such as TCP. In ICMPv6 the han-
dling of messages has been tightened somewhat. The following rules are applied
when processing incoming ICMPv6 messages [RFC4443]:

1. Unknown ICMPv6 error messages must be passed to the upper-layer pro-
cess that produced the datagram causing the error (if possible).

2. Unknown ICMPv6 informational messages are dropped.

Table 8-4 ICMPv6 standard message types with codes in addition to 0 assigned

Type Code Name Use/Comment

1 0 No Route to Destination Route not present
1 1 Administratively Prohibited Policy (e.g., firewall) prohibited
1 2 Beyond Scope of Source Address Destination scope exceeds source’s
1 3 Address Unreachable Used if codes 0–2 are not appropriate
1 4 Port Unreachable No transport entity listening on port
1 5 Source Address Failed Policy Ingress/egress policy violation

1 6 Reject Route to Destination Specific reject route to destination
3 0 Hop Limit Exceeded in Transit Hop Limit field decremented to 0
3 1 Reassembly Time Exceeded Unable to reassemble in limited time
4 0 Erroneous Header Field Found General header processing error
4 1 Unrecognized Next Header Unknown Next Header field value
4 2 Unrecognized IPv6 Option Unknown Hop-by-Hop or Destination option

ptg999

Section 8.3 ICMP Error Messages 361

3. ICMPv6 error messages include as much of the original (“offending”) IPv6
datagram that caused the error as will fit without making the error mes-
sage datagram exceed the minimum IPv6 MTU (1280 bytes).

4. When processing ICMPv6 error messages, the upper-layer protocol type is
extracted from the original or “offending” packet (contained in the body of
the ICMPv6 error message) and used to select the appropriate upper-layer
process. If this is not possible, the error message is silently dropped after
any IPv6-layer processing.

5. There are special rules for handling errors (see Section 8.3).

6. An IPv6 node must limit the rate of ICMPv6 error messages it sends. There
are a variety of ways of implementing the rate-limiting function, including
the token bucket approach mentioned in Section 8.3.

8.3 ICMP Error Messages

The distinction between the error and informational classes of ICMP messages men-
tioned in the previous section is important because certain restrictions are placed
on the generation of ICMPv4 error messages by [RFC1812] and on the generation
of ICMPv6 error messages by [RFC4443] that do not apply to queries. In particular,
an ICMP error message is not to be sent in response to any of the following mes-
sages: another ICMP error message, datagrams with bad headers (e.g., bad check-
sum), IP-layer broadcast/multicast datagrams, datagrams encapsulated in link-layer
broadcast or multicast frames, datagrams with an invalid or network zero source
address, or any fragment other than the first. The reason for imposing these restric-
tions on the generation of ICMP errors is to limit the creation of so-called broadcast
storms, a scenario in which the generation of a small number of messages creates an
unwanted traffic cascade (e.g., by generating error responses in response to error
responses, indefinitely). These rules can be summarized as follows:

An ICMPv4 error message is never generated in response to

• An ICMPv4 error message. (An ICMPv4 error message may, however, be
generated in response to an ICMPv4 query message.)

• A datagram destined for an IPv4 broadcast address or an IPv4 multicast
address (formerly known as a class D address).

• A datagram sent as a link-layer broadcast.

• A fragment other than the first.

• A datagram whose source address does not define a single host. This means
that the source address cannot be a zero address, a loopback address, a
broadcast address, or a multicast address.

ptg999

362 ICMPv4 and ICMPv6: Internet Control Message Protocol

ICMPv6 is similar. An ICMPv6 error message is never generated in response to

• An ICMPv6 error message

• An ICMPv6 Redirect message

• A packet destined for an IPv6 multicast address, with two exceptions:

– The Packet Too Big (PTB) message

– The Parameter Problem message (code 2)

• A packet sent as a link-layer multicast (with the exceptions noted previously)

• A packet sent as a link-layer broadcast (with the exceptions noted previously)

• A packet whose source address does not uniquely identify a single node.
This means that the source address cannot be an unspecified address, an
IPv6 multicast address, or any address known by the sender to be an any-
cast address.

In addition to the rules governing the conditions under which ICMP messages
are generated, there is also a rule that limits the overall ICMP traffic level from a
single sender. In [RFC4443], a recommendation for rate-limiting ICMP messages
is to use a token bucket. With a token bucket, a “bucket” holds a maximum number
(B) of “tokens,” each of which allows a certain number of messages to be sent.
The bucket is periodically filled with new tokens (at rate N) and drained by 1 for
each message sent. Thus, a token bucket (or token bucket filter, as it is often called)
is characterized by the parameters (B, N). For small or midsize devices, [RFC4443]
provides an example token bucket using the parameters (10, 10). Token buckets
are a common mechanism used in protocol implementations to limit bandwidth
utilization, and in many cases B and N are in byte units rather than message units.

When an ICMP error message is sent, it contains a copy of the full IP header
from the “offending” or “original” datagram (i.e., the IP header of the datagram
that caused the error to be generated, including any IP options), plus any other
data from the original datagram’s IP payload area such that the generated IP/
ICMP datagram’s size does not exceed a specific value. For IPv4 this value is 576
bytes, and for IPv6 it is the IPv6 minimum MTU, which is at least 1280 bytes.
Including a portion of the payload from the original IP datagram lets the receiv-
ing ICMP module associate the message with one particular protocol (e.g., TCP
or UDP) from the Protocol or Next Header field in the IP header and one particular
user process (from the TCP or UDP port numbers that are in the TCP or UDP
header contained in the first 8 bytes of the IP datagram payload area).

Before the publication of [RFC1812], the ICMP specification required only the
first 8 bytes of the offending IP datagram to be included (because this is enough
to determine the port number for UDP and TCP; see Chapters 10 and 12), but as

ptg999

Section 8.3 ICMP Error Messages 363

more complex protocol layerings have become popular (such as IP being encap-
sulated in IP), additional information is now needed for the effective diagnosis of
problems. In addition, several error messages may include extensions. We begin
by briefly discussing the extension method, and then we discuss each of the more
important ICMP error messages.

8.3.1 Extended ICMP and Multipart Messages

[RFC4884] specifies a method for extending the utility of ICMP messages by allow-
ing an extension data structure to be appended to them. The extension structure
includes an extension header and extension objects that may contain a variable
amount of data, as illustrated in Figure 8-3.

Figure 8-3 Extended ICMPv4 and ICMPv6 messages include a 32-bit extension header and zero or more
associated objects. Each object includes a fixed-size header and a variable-length data area. For
compatibility, the primary ICMP payload area is at least 128 bytes.

ptg999

364 ICMPv4 and ICMPv6: Internet Control Message Protocol

The Length field is repurposed from the sixth byte of the ICMPv4 header and
the fifth byte of the ICMPv6 header. (These bytes had previously been reserved
with value 0.) In ICMPv4, it indicates the offending datagram size in 32-bit word
units. For ICMPv6, it is in 64-bit units. These datagram portions are padded with
zeros as necessary to be 32-bit- and 64-bit-aligned, respectively. When extensions
are used, the ICMP payload area containing the original datagram must be at least
128 bytes long.

The extension structure may be used with ICMPv4 Destination Unreachable,
Time Exceeded, and Parameter Problem messages as well as ICMPv6 Destination
Unreachable and Time Exceeded messages. We will look at each of these in some
detail in the following sections.

8.3.2 Destination Unreachable (ICMPv4 Type 3, ICMPv6 Type 1) and Packet Too Big
(ICMPv6 Type 2)

We now look more closely at one of the more common ICMP message types, Des-
tination Unreachable. Messages of this type are used to indicate that a datagram
could not be delivered all the way to its destination because of either a problem in
transit or the lack of a receiver interested in receiving it. Although 16 different codes
are defined for this message in ICMPv4, only 4 are commonly used. These include
Host Unreachable (code 1), Port Unreachable (code 3), Fragmentation Required/
Don’t-Fragment Specified (code 4), and Communication Administratively Pro-
hibited (code 13). In ICMPv6, the Destination Unreachable message is type 1 with
seven possible code values. In ICMPv6, as compared with IPv4, the Fragmentation
Required message has been replaced by an entirely different type (type 2), but the
usage is very similar to the corresponding ICMP Destination Unreachable message,
so we discuss it here. In ICMPv6 this is called the Packet Too Big (PTB) message. We
will use the simpler ICMPv6 PTB terminology from here onward to refer to either
the ICMPv4 (type 3, code 4) message or the ICMPv6 (type 2, code 0) message.

The formats for all of the Destination Unreachable messages specified for
ICMPv4 and ICMPv6 are shown in Figure 8-4. For Destination Unreachable mes-
sages, the Type field is 3 for ICMPv4 and 1 for ICMPv6. The Code field indicates the
particular item or reason for the reachability failure. We now look at each of these
messages in detail.

8.3.2.1 ICMPv4 Host Unreachable (Code 1) and ICMPv6 Address Unreachable
(Code 3)

This form of the Destination Unreachable message is generated by a router or
host when it is required to send an IP datagram to a host using direct delivery
(see Chapter 5) but for some reason cannot reach the destination. This situation
may arise, for example, because the last-hop router is attempting to send an ARP
request to a host that is either missing or down. This situation is explored in Chap-
ter 4, which describes ARP. For ICMPv6, which uses a somewhat different mecha-
nism for detecting unresponsive hosts, this message can be the result of a failure
in the ND process (see Section 8.5).

ptg999

Section 8.3 ICMP Error Messages 365

8.3.2.2 ICMPv6 No Route to Destination (Code 0)
This message refines the Host Unreachable message from ICMPv4 to differenti-
ate those hosts not reachable because of failure of direct delivery and those that
cannot be reached because no route is present. This message is generated only in
cases where an arriving datagram must be forwarded without using direct deliv-
ery, but where no route entry exists to indicate what router to use as a next hop. As
we have seen, IP routers must contain a valid next-hop forwarding entry for the
destination in any packets they receive if they are going to successfully perform
forwarding.

8.3.2.3 ICMPv4 Communication Administratively Prohibited (Code 13) and
ICMPv6 Communication with Destination Administratively Prohibited
(Code 1)

In ICMPv4 and ICMPv6, these Destination Unreachable messages provide the abil-
ity to indicate that an administrative prohibition is preventing successful communi-
cation with the destination. This is typically the result of a firewall (see Chapter 7)
that intentionally drops traffic that fails to comply with some operational policy
enforced by the router that sent the ICMP error. In many cases, the fact that there is
a special policy to drop traffic should not be advertised, so it is generally possible
to disable the generation of these messages by either silently discarding incoming
packets or generating some other ICMP error message instead.

8.3.2.4 ICMPv4 Port Unreachable (Code 3) and ICMPv6 Port Unreachable (Code 4)
The Port Unreachable message is generated when an incoming datagram is des-
tined for an application that is not ready to receive it. This occurs most commonly
in conjunction with UDP (see Chapter 10), when a message is sent to a port number

Figure 8-4 The ICMP Destination Unreachable messages in ICMPv4 (left) and ICMPv6 (right). The Length
field, present in extended ICMP implementations that conform to [RFC4884], gives the number of
words used to hold the original datagram measured in 4-byte units (IPv4) or 8-byte units (IPv6).
An optional extension structure may be included. The ICMP field labeled various is used to hold
the next-hop MTU when the code value is 4, which is used by PMTUD. ICMPv6 uses a different
ICMPv6 PTB message (ICMPv6 type 2) for this purpose.

ptg999

366 ICMPv4 and ICMPv6: Internet Control Message Protocol

that is not in use by any server process. If UDP receives a datagram and the des-
tination port does not correspond to a port that some process has in use, UDP
responds with an ICMP Port Unreachable message.

We can illustrate the operation of ICMPv4 Port Unreachable messages using
the Trivial File Transfer Protocol (TFTP) [RFC1350] client on Windows or Linux while
watching the packet exchange using tcpdump. The well-known UDP port for the
TFTP service is 69. However, while the TFTP client is available on many systems,
most systems do not run TFTP servers. Therefore, it is easy to see what happens
when we try to access a nonexistent server. In the example shown in Listing 8-1,
we execute the TFTP client, called tftp, on a Windows machine and attempt to
fetch a file from a Linux machine. The –s option for tcpdump causes 1500 bytes
to be captured per packet; the –i eth1 option tells tcpdump to monitor traffic on
the Ethernet interface named eth1; the –vv option causes additional descriptive
output to be included; and the expression icmp or port tftp causes traffic
matching either the TFTP port (69) or the ICMPv4 protocol to be included in the
output.

Listing 8-1 TFTP client demonstrating an application timeout and ICMP rate limiting

C:\> tftp 10.0.0.1 get /foo try to fetch file "/foo" from 10.0.0.1
Timeout occurred timeout occurred after about 9 seconds

Linux# tcpdump -s 1500 -i eth1 -vv icmp or port tftp

1 09:45:48.974812 IP (tos 0x0, ttl 128, id 9914, offset 0,
 flags [none], length: 44)

 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

2 09:45:48.974812 IP (tos 0xc0, ttl 255, id 43734, offset 0, flags
 [none], length: 72)
 10.0.0.1 > 10.0.0.54: icmp 52:
 10.0.0.1 udp port tftp unreachable
 for IP (tos 0x0, ttl 128, id 9914, offset 0,
 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

3 09:45:49.014812 IP (tos 0x0, ttl 128, id 9915, offset 0,
 flags [none], length: 44)

 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

4 09:45:49.014812 IP (tos 0xc0, ttl 255, id 43735, offset 0, flags
 [none], length: 72)
 10.0.0.1 > 10.0.0.54: icmp 52:
 10.0.0.1 udp port tftp unreachable
 for IP (tos 0x0, ttl 128, id 9915, offset 0,

ptg999

Section 8.3 ICMP Error Messages 367

 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

5 09:45:49.014812 IP (tos 0x0, ttl 128, id 9916, offset 0,
 flags [none], length: 44)

 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

6 09:45:49.014812 IP (tos 0xc0, ttl 255, id 43736, offset 0, flags
 [none], length: 72)
 10.0.0.1 > 10.0.0.54: icmp 52:
 10.0.0.1 udp port tftp unreachable
 for IP (tos 0x0, ttl 128, id 9916, offset 0,
 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

7 09:45:49.024812 IP (tos 0x0, ttl 128, id 9917, offset 0,
 flags [none], length: 44)

 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

8 09:45:49.024812 IP (tos 0xc0, ttl 255, id 43737, offset 0,
 flags [none], length: 72)
 10.0.0.1 > 10.0.0.54: icmp 52:
 10.0.0.1 udp port tftp unreachable
 for IP (tos 0x0, ttl 128, id 9917, offset 0,
 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

9 09:45:49.024812 IP (tos 0x0, ttl 128, id 9918, offset 0,
 flags [none], length: 44)

 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

10 09:45:49.024812 IP (tos 0xc0, ttl 255, id 43738, offset 0,
 flags [none], length: 72)
 10.0.0.1 > 10.0.0.54: icmp 52:
 10.0.0.1 udp port tftp unreachable
 for IP (tos 0x0, ttl 128, id 9918, offset 0,
 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

11 09:45:49.034812 IP (tos 0x0, ttl 128, id 9919, offset 0,
 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

ptg999

368 ICMPv4 and ICMPv6: Internet Control Message Protocol

12 09:45:49.034812 IP (tos 0xc0, ttl 255, id 43739, offset 0,
 flags [none], length: 72)
 10.0.0.1 > 10.0.0.54: icmp 52:
 10.0.0.1 udp port tftp unreachable
 for IP (tos 0x0, ttl 128, id 9919, offset 0,
 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

13 09:45:49.034812 IP (tos 0x0, ttl 128, id 9920, offset 0,
 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

14 09:45:57.054812 IP (tos 0x0, ttl 128, id 22856, offset 0,
 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

15 09:45:57.054812 IP (tos 0xc0, ttl 255, id 43740, offset 0,
 flags [none], length: 72)
 10.0.0.1 > 10.0.0.54: icmp 52:
 10.0.0.1 udp port tftp unreachable
 for IP (tos 0x0, ttl 128, id 22856, offset 0,
 flags [none], length: 44)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok] 16
 RRQ "/foo" netascii

16 09:45:57.064812 IP (tos 0x0, ttl 128, id 22906, offset 0,
 flags [none], length: 51)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]
 23 ERROR EUNDEF timeout on receive"

17 09:45:57.064812 IP (tos 0xc0, ttl 255, id 43741, offset 0,
 flags [none], length: 79)
 10.0.0.1 > 10.0.0.54: icmp 59:
 10.0.0.1 udp port tftp unreachable
 for IP (tos 0x0, ttl 128, id 22906, offset 0,
 flags [none], length: 51)
 10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]
 23 ERROR EUNDEF timeout on receive"

Here we see a set of seven requests grouped very close to each other in time.
The initial request (identified as RRQ for file /foo) comes from UDP port 3871,
destined for the TFTP service (port 69). An ICMPv4 Port Unreachable message is
immediately returned (packet 2), but the TFTP client appears to ignore the mes-
sage, sending another UDP datagram right away. This continues immediately
six more times. After waiting about another 8s, the client tries one last time and
finally gives up.

ptg999

Section 8.3 ICMP Error Messages 369

Note that the ICMPv4 messages are sent without any port number designa-
tion, and each 16-byte TFTP packet is from a specific port (3871) and to a specific
port (TFTP, equal to 69). The number 16 at the end of each TFTP read request
(RRQ) line is the length of the data in the UDP datagram. In this example, 16 is
the sum of the TFTP’s 2-byte opcode, the 5-byte null-terminated name /foo, and
the 9-byte null-terminated string netascii. The full ICMPv4 Unreachable mes-
sage is depicted in Figure 8-5. It is 52 bytes long (not including the IPv4 header):
4 bytes for the basic ICMPv4 header, followed by 4 unused bytes (see Figure 8-5;
this implementation does not use [RFC4884] extensions), the 20-byte offending
IPv4 header, 8 bytes for the UDP header, and finally the remaining 16 bytes from
the original tftp application request (4 + 4 + 20 + 8 + 16 = 52).

Figure 8-5 An ICMPv4 Destination Unreachable – Port Unreachable error message contains as
much of the offending IPv4 datagram as possible such that the overall IPv4 datagram
does not exceed 576 bytes. In this example, there is enough room to include the entire
TFTP request message.

As mentioned previously, one reason ICMP includes the offending IP header
in error messages is that doing so helps ICMP know how to interpret the bytes that
follow encapsulated IP header (the UDP header in this example). Because a copy of
the offending UDP header is included in the returned ICMP message, the source
and destination port numbers can be learned. It is this destination port number
(tftp, 69) that caused the ICMP Port Unreachable message to be generated. The
source port number (3871) can be used by the system receiving the ICMP error to
associate the error with a particular user process (the TFTP client in this example,
although we saw that this client does not make much use of the indication).

Note that after the seventh request (packet 13), no error is returned for some
time. The reason for this is that the Linux-based server performs rate limiting. That
is, it limits the number of ICMP messages of the same type that can be generated
in a period of time, as suggested by [RFC1812]. If we look at the elapsed time
between the initial error message (packet 2, with timestamp 48.974812) and the
final message before the 8s gap (packet 12, with timestamp 49.034812), we compute

ptg999

370 ICMPv4 and ICMPv6: Internet Control Message Protocol

that 60ms have elapsed. If we count the number of ICMP messages over this time,
we conclude that (6 messages/.06s) = 100 messages/s is the rate limit. This can be
verified by inspecting the values of the ICMPv4 rate mask and rate limit in Linux:

Linux% sysctl -a | grep icmp_rate
net.ipv4.icmp_ratemask = 6168
net.ipv4.icmp_ratelimit = 100

Here we see that several ICMPv4 messages are to be rate-limited, and that the
rate limit for all of them is 100 (measured in messages per second). The ratemask
variable indicates which messages have the limit applied to them, by turning on
the kth bit in the mask if the message with code number k is to be limited, starting
from 0. In this case, codes 3, 4, 11, and 12 are being limited (because 6168 = 0x1818
= 0001100000011000, where bits 3, 4, 11, and 12 from the right are turned on). If we
were to set the rate limit to 0 (meaning no limit), we would find that Linux returns
nine ICMPv4 messages, one corresponding to each tftp request packet, and the
tftp client times out almost immediately. This behavior also occurs when trying
to access a Windows XP machine, which does not perform ICMP rate limiting.

Why does the TFTP client keep retransmitting its request when the error mes-
sages are being returned? A detail of network programming is revealed here.
Most systems do not notify user processes using UDP that ICMP that messages for
them have arrived unless the process calls a special function (i.e., connect on the
UDP socket). Common TFTP clients do not call this function, so they never receive
the ICMP error notification. Without hearing any response regarding the fate of
its TFTP protocol requests, the TFTP client tries again and again to retrieve its file.
This is an example of a poor request and retry mechanism. Although TFTP does
have extensions for adjusting this behavior (see [RFC2349]), we shall see later (in
Chapter 16) that a more sophisticated transport protocol such as TCP has a much
better algorithm.

8.3.2.5 ICMPv4 PTB (Code 4)
If an IPv4 router receives a datagram that it intends to forward, and if the data-
gram does not fit into the MTU in use on the selected outgoing network interface,
the datagram must be fragmented (see Chapter 10). If the arriving datagram has
the Don’t Fragment bit field set in its IP header, however, it is not forwarded but
instead is dropped, and this ICMPv4 Destination Unreachable (PTB) message is
generated. Because the router sending this message knows the MTU of the next
hop, it is able to include the MTU value in the error message it generates.

This message was originally intended to be used for network diagnostics but
has since been used for path MTU discovery. PMTUD is used to determine an
appropriate packet size to use when communicating with a particular host, on the
assumption that avoiding packet fragmentation is desirable. It is used most com-
monly with TCP, and we cover it in more detail in Chapter 14.

ptg999

Section 8.3 ICMP Error Messages 371

8.3.2.6 ICMPv6 PTB (Type 2, Code 0)
In ICMPv6, a special message and type code combination is used to indicate that
a packet is too large for the MTU of the next hop (see Figure 8-6).

Figure 8-6 The ICMPv6 Packet Too Big message (type 2) works like the corresponding ICMPv4
Destination Unreachable message. The ICMPv6 variant includes 32 bits to hold the next-
hop MTU.

This message is not a Destination Unreachable message. Recall that in IPv6,
packet fragmentation is performed only by the sender of a datagram and that
MTU discovery is always supposed to be used. Thus, this message is used pri-
marily by the IPv6 PMTUD mechanism, but also in the (rare) circumstances that
a packet arrives that is too large to be carried over the next hop. Because routes
may change after the operation of PMTUD and after a packet is injected into the
network, it is always possible that a packet arriving at a router is too large for the
outgoing MTU. As is the case with modern implementations of ICMPv4 Destina-
tion Unreachable code 4 (PTB) messages, the suggested MTU size of the packet,
based on the MTU of the egress link of the router generating the ICMP message,
is carried in the indication.

8.3.2.7 ICMPv6 Beyond Scope of Source Address (Code 2)
As we saw in Chapter 2, IPv6 uses addresses of different scopes. Thus, it is pos-
sible to construct a packet with source and destination addresses of different
scopes. Furthermore, it is possible that the destination address may not be reach-
able within the same scope. For example, a packet with a source address using
link-local scope may be destined for a globally scoped destination that requires
traversal of more than one router. Because the source address is of insufficient
scope, the packet is dropped by a router, and this form of ICMPv6 error is pro-
duced to indicate the problem.

ptg999

372 ICMPv4 and ICMPv6: Internet Control Message Protocol

8.3.2.8 ICMPv6 Source Address Failed Ingress/Egress Policy (Code 5)
Code 5 is a more refined version of code 1, to be used when a particular ingress
or egress filtering policy is the reason for prohibiting the successful delivery of a
datagram. This might be used, for example, when a host attempts to send traffic
using a source IPv6 address from an unexpected network prefix [RFC3704].

8.3.2.9 ICMPv6 Reject Route to Destination (Code 6)
A reject or blocking route is a special routing or forwarding table entry (see Chapter
5), which indicates that matching packets should be dropped and an ICMPv6 Des-
tination Unreachable Reject Route message should be generated. (A similar type of
entry called a blackhole route also causes matching packets to be dropped, but usu-
ally without generating the Destination Unreachable message.) Such routes may
be installed in a router’s forwarding table to prevent leakage of packets sent to
unwanted destinations. Unwanted destinations may include martian routes (pre-
fixes not used on the public Internet) and bogons (valid prefixes not yet allocated).

8.3.3 Redirect (ICMPv4 Type 5, ICMPv6 Type 137)

If a router receives a datagram from a host and can determine that it is not the cor-
rect next hop for the host to have used to deliver the datagram to its destination,
the router sends a Redirect message to the host and sends the datagram on to the
correct router (or host). That is, if it can determine that there is a better next hop
than itself for the given datagram, it redirects the host to update its forwarding
table so that future traffic for the same destination will be directed toward the
new node. This facility provides a crude form of routing protocol by indicating to
the IP forwarding function where to send its packets. The process of IP forward-
ing is discussed in detail in Chapter 5.

In Figure 8-7, a network segment has a host and two routers, R1 and R2. When
the host sends a datagram incorrectly through router R2, R2 responds by sending
the Redirect message to the host, while forwarding the datagram to R1. Although
hosts may be configured to update their forwarding tables based on ICMP redi-
rects, routers are discouraged from doing so under the assumption that rout-
ers should already know the best next-hop nodes for all reachable destinations
because they are using dynamic routing protocols.

The ICMP Redirect message includes the IP address of the router (or destina-
tion host, if it is reachable using direct delivery) a host should use as a next hop for
the destination specified in the ICMP error message (see Figure 8-8). Originally
the redirect facility supported a distinction between a redirect for a host and a
redirect for a network, but once classless addressing was used (CIDR; see Chapter
2), the network redirect form effectively vanished. Thus, when a host receives a
host redirect, it is effective only for that single IP destination address. A host that
consistently chooses the wrong router can wind up with a forwarding table entry
for every destination it contacts outside its local subnet, each of which has been
added as the result of receiving a Redirect message from its configured default
router. The format of the ICMPv4 Redirect message is shown in Figure 8-8.

ptg999

Section 8.3 ICMP Error Messages 373

Figure 8-7 The host incorrectly sends a datagram via R2 toward its destination. R2 realizes the
host’s mistake and sends the datagram to the proper router, R1. It also informs the host
of the error by sending an ICMP Redirect message. The host is expected to adjust its for-
warding tables so that future datagrams to the same destination go through R1 without
bothering R2.

Figure 8-8 The ICMPv4 Redirect message includes the IPv4 address of the correct router to use as a
next hop for the datagram included in the payload portion of the message. A host typi-
cally checks the IPv4 source address of the incoming Redirect message to verify that it is
coming from the default router it is currently using.

We can examine the behavior of a Redirect message by changing our host to
use an incorrect router (another host on the same network) as its default next hop.
As an example, we first change our default route and then attempt to contact a
remote server. Our system will mistakenly attempt to forward its outgoing pack-
ets to the specified host:

C:\> netstat -rn
Network Dest Netmask Gateway Interface Metric
0.0.0.0 0.0.0.0 10.212.2.1 10.212.2.88 1

ptg999

374 ICMPv4 and ICMPv6: Internet Control Message Protocol

C:\> route delete 0.0.0.0 delete default
C:\> route add 0.0.0.0 mask 0.0.0.0 10.212.2.112 add new
C:\> ping ds1.eecs.berkeley.edu sends thru 10.212.2.112
Pinging ds1.eecs.berkeley.edu [169.229.60.105] with 32 bytes of data:

Reply from 169.229.60.105: bytes=32 time=1ms TTL=250
Reply from 169.229.60.105: bytes=32 time=5ms TTL=250
Reply from 169.229.60.105: bytes=32 time=1ms TTL=250
Reply from 169.229.60.105: bytes=32 time=1ms TTL=250

Ping statistics for 169.229.60.105:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 1ms, Maximum = 5ms, Average = 2ms

While this is taking place, we can run tcpdump to observe the activities (some
lines have been wrapped for clarity):

Linux# tcpdump host 10.212.2.88

1 20:27:00.759340 IP 10.212.2.88 > ds1.eecs.berkeley.edu: icmp 40:
 echo request seq 15616
2 20:27:00.759445 IP 10.212.2.112 > 10.212.2.88: icmp 68:
 redirect ds1.eecs.berkeley.edu to host 10.212.2.1
3 20:27:00.759468 IP 10.212.2.88 > ds1.eecs.berkeley.edu: icmp 40:
 echo request seq 15616
...

Here our host (10.212.2.88) sends an ICMPv4 Echo Request (ping) message
to the host ds1.eecs.berkeley.edu. After the name is resolved by DNS (see
Chapter 11) to the IPv4 address 169.229.60.105, the Request message is sent to the
first hop, 10.212.2.112, rather than the correct default router, 10.212.2.1. Because
the system with IPv4 address 10.212.2.112 is properly configured, it under-
stands that the original sending host should have used the router 10.212.2.1. As
expected, it responds with an ICMPv4 Redirect message toward the host, indicat-
ing that in the future, any traffic destined for ds1.eecs.berkeley.edu should
go through the router 10.212.2.1.

In ICMPv6, the Redirect message (type 137) contains the target address and
the destination address (see Figure 8-9), and it is defined in conjunction with the
ND process (see Section 8.5). The Target Address field contains the correct node’s
link-local IPv6 address that should be used for the next hop. The Destination
Address is the destination IPv6 address in the datagram that evoked the redirect.
In the particular situation where the destination is an on-link neighbor to the host
receiving the redirect, the Target Address and Destination Address fields are identi-
cal. This provides a method for informing a host that another host is on the same
link, even if the two hosts do not share a common address prefix [RFC5942].

ptg999

Section 8.3 ICMP Error Messages 375

As with other ND messages in ICMPv6, this message can include options. The
types of options include the Target Link-Layer Address option and the Redirected
Header option. The Target Link-Layer Address option is required in cases where
the Redirect message is used on a non-broadcast multiple access (NBMA) network,
because in such cases there may be no other efficient way for the host receiving
the Redirect message to determine the link-layer address for the new next hop.
The Redirected Header option holds a portion of the IPv6 packet that caused the
Redirect message to be generated. We discuss the format of these options and oth-
ers in Section 8.5 when exploring IPv6 Neighbor Discovery.

8.3.4 ICMP Time Exceeded (ICMPv4 Type 11, ICMPv6 Type 3)

Every IPv4 datagram has a Time-to-Live (TTL) field in its IPv4 header, and every
IPv6 datagram has a Hop Limit field in its header (see Chapter 5). As originally
conceived, the 8-bit TTL field was to hold the number of seconds a datagram was
allowed to remain active in the network before being forcibly discarded (a good
thing if forwarding loops are present). Because of an additional rule that said that
any router must decrement the TTL field by at least 1, combined with the fact that
datagram forwarding times grew to be small fractions of a second, the TTL field
has been used in practice as a limitation on the number of hops an IPv4 datagram
is allowed to take before it is discarded by a router. This usage was formalized and
ultimately adopted in IPv6. ICMP Time Exceeded (code 0) messages are generated
when a router discards a datagram because the TTL or Hop Limit field is too low
(i.e., arrives with value 0 or 1 and must be forwarded). This message is important
for the proper operation of the traceroute tool (called tracert on Windows).
Its format, for both ICMPv4 and ICMPv6, is given in Figure 8-10.

Figure 8-9 The ICMPv6 Redirect message. The target address indicates the IPv6 address of a better
next-hop router for the node identified by the destination address. This message can also
be used to indicate that the destination address is an on-link neighbor to the node send-
ing the message that induced the error message. In this case, the destination and target
addresses are the same.

ptg999

376 ICMPv4 and ICMPv6: Internet Control Message Protocol

Another less common variant of this message is when a fragmented IP data-
gram only partially arrives at its destination (i.e., all its fragments do not arrive
after a period of time). In such cases, a variant of the ICMP Time Exceeded mes-
sage (code 1) is used to inform the sender that its overall datagram has been dis-
carded. Recall that if any fragment of a datagram is dropped, the entire datagram
is lost.

8.3.4.1 Example: The traceroute Tool
The traceroute tool is used to determine the routers used along a path from
a sender to a destination. We shall discuss the operation of the IPv4 version. The
approach involves sending datagrams first with an IPv4 TTL field set to 1 and
allowing the expiring datagrams to induce routers along the path to send ICMPv4
Time Exceeded (code 0) messages. Each round, the sending TTL value is increased
by 1, causing the routers that are one hop farther to expire the datagrams and
generate ICMP messages. These messages are sent from the router’s primary IPv4
address “facing” the sender. Figure 8-11 shows how this approach works.

Figure 8-10 The ICMP Time Exceeded message format for ICMPv4 and ICMPv6. The message is
standardized for both the TTL or hop count being exceeded (code 0) or the time for reas-
sembling fragments exceeding some preconfigured threshold (code 1).

Figure 8-11 The traceroute tool can be used to determine the routing path, assuming it does not
fluctuate too quickly. When using traceroute, routers are typically identified by the
IP addresses assigned to the interfaces “facing” or nearest to the host performing the
trace.

ptg999

Section 8.3 ICMP Error Messages 377

In this example, traceroute is used to send UDP datagrams (see Chapter
10) from the laptop to the host www.eecs.berkeley.edu (an Internet host with
IPv4 address 128.32.244.172, not shown in Figure 8-11). This is accomplished
using the following command:

Linux% traceroute –m 2 www.cs.berkeley.edu
traceroute to web2.eecs.berkeley.edu (128.32.244.172), 2 hops max,
52 byte packets
 1 gw (192.168.0.1) 3.213 ms 0.839 ms 0.920 ms
 2 10.0.0.1 (10.0.0.1) 1.524 ms 1.221 ms 9.176 ms

The –m option instructs traceroute to perform only two rounds: one using
TTL = 1 and one using TTL = 2. Each line gives the information found at the corre-
sponding TTL. For example, line 1 indicates that one hop away a router with IPv4
address 192.168.0.1 was found and that three independent round-trip-time mea-
surements (3.213, 0.839, and 0.920ms) were taken. The difference between the
first and subsequent times relates to additional work that is involved in the first
measurement (i.e., an ARP transaction). Figures 8-12 and 8-13 show Wireshark
packet captures indicating how the outgoing datagrams and returning ICMPv4
messages are structured.

Figure 8-12 traceroute using IPv4 begins by sending a UDP/IPv4 datagram with TTL = 1 to destination port
number 33435. Each TTL value is tried three times before being incremented by 1 and retried. Each
expiring datagram causes the router at the appropriate hop distance to send an ICMPv4 Time Exceeded
message back to the source. The message’s source address is that of the router “facing” the sender.

www.eecs.berkeley.edu

ptg999

378 ICMPv4 and ICMPv6: Internet Control Message Protocol

Looking at Figure 8-12, we can see that traceroute sends six datagrams, and
that each datagram is sent to a destination port number in sequence, starting with
33435. If we look more closely, we can see that the first three datagrams are sent
with TTL = 1 and the second set of three are sent with TTL = 2. Figure 8-12 shows
the first one. Each datagram causes an ICMPv4 Time Exceeded (code 0) message
to be sent. The first three are sent from router N3 (IPv4 address 192.168.0.1), and
the next three are sent from router N2 (IPv4 address 10.0.0.1). Figure 8-13 shows the
last ICMP message in more detail.

Figure 8-13 The final ICMPv4 Time Exceeded message of the trace is sent by N2 (IPv4 address
10.0.0.1). It includes a copy of the original datagram that caused the Time Exceeded
message to be generated. The TTL of the inner IPv4 header is 0 because N2 decremented
it from 1.

This is the final Time Exceeded message of the trace. It contains the original
IPv4 datagram (packet 11), as seen by N2 upon receipt. This datagram arrives with
TTL = 1, but after being decremented is too small for N2 to perform additional
forwarding to 128.32.244.172. Consequently, N2 sends a Time Exceeded message
back to the source of the original datagram.

ptg999

Section 8.3 ICMP Error Messages 379

8.3.5 Parameter Problem (ICMPv4 Type 12, ICMPv6 Type 4)

ICMP Parameter Problem messages are generated by a host or router receiving
an IP datagram containing some problem in its IP header that cannot be repaired.
When a datagram cannot be handled and no other ICMP message adequately
describes the problem, this message acts as a sort of “catchall” error condition
indicator. In both ICMPv4 and ICMPv6, if there is an error in the header such that
some field is out of acceptable range, a special ICMP error message Pointer field
indicates the byte offset of the field where the error was found, relative to the
beginning of the offending IP header. With ICMPv4, for example, a value of 1 in
the Pointer field indicates a bad IPv4 DS Field or ECN field (together, these fields
used to be called the IPv4 Type of Service or ToS Byte which has since been rede-
fined and renamed; see Chapter 5). The format of the ICMPv4 Parameter Problem
message is shown in Figure 8-14.

Figure 8-14 The ICMPv4 Parameter Problem message is used when no other message applies. The
Pointer field indicates the byte index of the problematic value in the offending IPv4
header. Code 0 is most common. Code 1 was formerly used to indicate that a required
option was missing but is now historic. Code 2 indicates that the offending IPv4 data-
gram has a bad IHL or Total Length field.

Code 0 is the most common variant of the ICMPv4 Parameter Problem mes-
sages and is used when there is almost any problem with the IPv4 header, although
problems with the header or datagram Total Length fields may instead generate
code 2 messages. Code 1 was once used to indicate missing options such as secu-
rity labels on packets but is now historic. Code 2, a more recently defined code,
indicates a bad length in the IHL or Total Length fields (see Chapter 5). The ICMPv6
version of this error message is shown in Figure 8-15.

In ICMPv6, the treatment of this error has been refined somewhat, relative to
the ICMPv4 version, into three cases: erroneous header field encountered (code
0), unrecognized Next Header type encountered (code 1), and unrecognized IPv6
option encountered (code 2). As with the corresponding error message in ICMPv4,
the ICMPv6 parameter problem Pointer field gives the byte offset into the offend-
ing IPv6 header that caused the problem. For example, a Pointer field of 40 would
indicate a problem with the first IPv6 extension header.

ptg999

380 ICMPv4 and ICMPv6: Internet Control Message Protocol

The erroneous header (code 0) error occurs when a field in one of the IPv6
headers contains an illegal value. A code 1 error occurs when an IPv6 Next Header
(header chaining) field contains a value corresponding to a header type that the
IPv6 implementation does not support. Finally, code 2 is used when an IPv6 header
option is received but not recognized by the implementation.

8.4 ICMP Query/Informational Messages

Although ICMP defines a number of query messages such as Address Mask
Request/Reply (types 17/18), Timestamp Request/Reply (types 13/14), and Infor-
mation Request/Reply (types 15/16), these functions have been replaced by other,
more purpose-specific protocols (including DHCP; see Chapter 6). The only
remaining popular ICMP query/informational messages are the Echo Request/
Response messages, more commonly called ping, and the Router Discovery mes-
sages. Even the Router Discovery mechanism is not in wide use with IPv4, but its
analog (part of Neighbor Discovery) in IPv6 is fundamental. In addition, ICMPv6
has been extended to support Mobile IPv6 and the discovery of multicast-capable
routers. In this section, we investigate the Echo Request/Reply functions and the
messages used for basic router and Multicast Listener Discovery (also see Chap-
ters 6 and 9). In the subsequent section, we explore the operation of Neighbor
Discovery in IPv6.

8.4.1 Echo Request/Reply (ping) (ICMPv4 Types 0/8, ICMPv6 Types 129/128)

One of the most commonly used ICMP message pairs is Echo Request and Echo
Response (or Reply). In ICMPv4 these are types 8 and 0, respectively, and in
ICMPv6 they are types 128 and 129, respectively. ICMP Echo Request messages
may be of nearly arbitrary size (limited by the ultimate size of the encapsulating

Figure 8-15 The ICMPv6 Parameter Problem message. The Pointer field gives the byte offset into
the original datagram where an error was encountered. Code 0 indicates a bad header
field. Code 1 indicates an unrecognized Next Header type, and Code 2 indicates that an
unknown IPv6 option was encountered.

ptg999

Section 8.4 ICMP Query/Informational Messages 381

IP datagram). With ICMP Echo Reply messages, the ICMP implementation is
required to return any data received back to the sender, even if multiple IP frag-
ments are involved. The ICMP Echo Request/Response message format is shown
in Figure 8-16.

As with other ICMP query/informational messages, the server must echo the
Identifier and Sequence Number fields back in the reply.

Figure 8-16 Format of the ICMPv4 and ICMPv6 Echo Request and Echo Reply messages. Any
optional data included in a request must be returned in a reply. NATs use the Identifier
field to match requests with replies, as discussed in Chapter 7.

These messages are sent by the ping program, which is commonly used to
quickly determine if a computer is reachable on the Internet. At one time, if you
could “ping” a host, you could almost certainly reach it by other means (remote
login, other services, etc.). With firewalls in common use, however, this is now far
from certain.

Note

The name ping is taken from the sonar operation to locate objects. The ping pro-
gram was written by Mike Muuss, who maintained an amusing Web page describ-
ing its history [PING].

Implementations of ping set the Identifier field in the ICMP message to some
number that the sending host can use to demultiplex returned responses. In
UNIX-based systems, for example, the process ID of the sending process is typi-
cally placed in the Identifier field. This allows the ping application to identify the
returned responses if there are multiple instances of ping running at the same
time on the same host, because the ICMP protocol does not have the benefit of
transport-layer port numbers. This field is often known as the Query Identifier field
when referring to firewall behavior (see Chapter 7).

When a new instance of the ping program is run, the Sequence Number field
starts with the value 0 and is increased by 1 every time a new Echo Request

ptg999

382 ICMPv4 and ICMPv6: Internet Control Message Protocol

message is sent. ping prints the sequence number of each returned packet, allow-
ing the user to see if packets are missing, reordered, or duplicated. Recall that IP
(and consequently ICMP) is a best-effort datagram delivery service, so any of these
three conditions can occur. ICMP does, however, include a data checksum not
provided by IP.

The ping program also typically includes a copy of the local time in the
optional data area of outgoing echo requests. This time, along with the rest of the
contents of the data area, is returned in an Echo Response message. The ping pro-
gram notes the current time when a response is received and subtracts the time
in the reply from the current time, giving an estimate of the RTT to reach the host
that was “pinged.” Because only the original sender’s notion of the current time is
used, this feature does not require any synchronization between the clocks at the
sender and receiver. A similar approach is used by the traceroute tool for its
RTT measurements.

Early versions of the ping program operated by sending an Echo Request
message once per second, printing each returning echo reply. Newer implementa-
tions, however, have increased the variability in output formats and behaviors.
On Windows, the default is to send four echo requests, one per second, print some
statistics, and exit; the -t option is required to allow the Windows ping applica-
tion to continue until stopped by the user. On Linux, the behavior is the traditional
one—the default is to run until interrupted by the user, sending an echo request
each second and printing any responses. Many other variants of ping have been
developed over the years, and there are several other standard options. With some
versions of the application, a large packet can be constructed to contain special
data patterns. This has been used to look for data-dependent errors in network
communications equipment.

In the following example, we send an ICMPv4 Echo Request to the subnet
broadcast address. This particular version of the ping application (Linux) requires
us to specify the -b flag to indicate that it is indeed our intention (and it gives us
a warning regarding this, because it can generate a substantial volume of network
traffic) to use the broadcast address:

Linux% ping -b 10.0.0.127
WARNING: pinging broadcast address
PING 10.0.0.127 (10.0.0.127) from 10.0.0.1 : 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=0 ttl=255 time=1.290 msec
64 bytes from 10.0.0.6: icmp_seq=0 ttl=64 time=1.853 msec (DUP!)
64 bytes from 10.0.0.47: icmp_seq=0 ttl=64 time=2.311 msec (DUP!)
64 bytes from 10.0.0.1: icmp_seq=1 ttl=255 time=382 usec
64 bytes from 10.0.0.6: icmp_seq=1 ttl=64 time=1.587 msec (DUP!)
64 bytes from 10.0.0.47: icmp_seq=1 ttl=64 time=2.406 msec (DUP!)
64 bytes from 10.0.0.1: icmp_seq=2 ttl=255 time=380 usec
64 bytes from 10.0.0.6: icmp_seq=2 ttl=64 time=1.573 msec (DUP!)
64 bytes from 10.0.0.47: icmp_seq=2 ttl=64 time=2.394 msec (DUP!)
64 bytes from 10.0.0.1: icmp_seq=3 ttl=255 time=389 usec
64 bytes from 10.0.0.6: icmp_seq=3 ttl=64 time=1.583 msec (DUP!)
64 bytes from 10.0.0.47: icmp_seq=3 ttl=64 time=2.403 msec (DUP!)

ptg999

Section 8.4 ICMP Query/Informational Messages 383

--- 10.0.0.127 ping statistics ---
4 packets transmitted, 4 packets received,
+8 duplicates, 0% packet loss
round-trip min/avg/max/mdev = 0.380/1.545/2.406/0.765 ms

Here, 4 outgoing Echo Request messages are sent and we see 12 responses.
This behavior is typical of using the broadcast address: all receiving nodes are
compelled to respond. We therefore see the sequence numbers 0, 1, 2, and 3, but
for each one we see 3 responses. The (DUP!) notation indicates that an Echo Reply
has been received containing a Sequence Number field identical to a previously
received one. Observe that the TTL values are different (255 and 64), suggesting
that different kinds of computers are responding.

Note that this procedure (sending echo requests to the IPv4 broadcast address)
can be used to quickly populate the local system’s ARP table (see Chapter 4).
Those systems responding to the Echo Request message form an Echo Reply mes-
sage directed at the sender of the request. When the reply is destined for a system
on the same subnet, an ARP request is issued looking for the link-layer address
of the originator of the request. In so doing, ARP is exchanged between every
responder and the request sender. This causes the sender of the Echo Request
message to learn the link-layer addresses of all the responders. In this example,
even if the local system had no link-layer address mappings for the addresses
10.0.0.1, 10.0.0.6, and 10.0.0.47, they would all be present in the ARP table
after the broadcast. Note that returning Echo Reply messages to requests sent to
the broadcast address is optional. By default, Linux systems return such replies
and Windows XP systems do not.

8.4.2 Router Discovery: Router Solicitation and Advertisement (ICMPv4 Types 9, 10)

In Chapter 6, we looked at how DHCP can be used for a host to acquire an IP
address and learn about the existence of nearby routers. An alternative option we
mentioned for learning about routers is called Router Discovery (RD). Although
specified for configuring both IPv4 and IPv6 hosts, it is not widely used with IPv4
because of widespread preference for DHCP. However, it is now specified for use
in conjunction with Mobile IP, so we provide a brief description. The IPv6 version
forms part of the IPv6 SLAAC function (see Chapter 6) and is logically part of
IPv6 ND. Therefore, we shall return to discussing it in the broader context of ND
in Section 8.5.

Router Discovery for IPv4 is accomplished using a pair of ICMPv4 informa-
tional messages [RFC1256]: Router Solicitation (RS, type 10) and Router Advertise-
ment (RA, type 9). The advertisements are sent by routers in two ways. First, they
are periodically multicast on the local network (using TTL = 1) to the All Hosts
multicast address (224.0.0.1), and they are also provided to hosts on demand that
ask for them using RS messages. RS messages are sent using multicast to the All
Routers multicast address (224.0.0.2). The primary purpose of Router Discovery
is for a host to learn about all the routers on its local subnetwork, so that it can

ptg999

384 ICMPv4 and ICMPv6: Internet Control Message Protocol

choose a default route among them. It is also used to discover the presence of rout-
ers that are willing to act as Mobile IP home agents. See Chapter 9 for details on
local network multicast. Figure 8-17 shows the ICMPv4 RA message format, which
includes a list of the IPv4 addresses that can be used by a host as a default router.

Figure 8-17 The ICMPv4 Router Advertisement message includes a list of IPv4 addresses of routers that can
be used as default next hops. The preference level lets network operators arrange for some order-
ing of preferences to be applied with respect to the list (higher is more preferred). Mobile IPv4
[RFC5944] augments RA messages with extensions in order to advertise MIPv4 mobility agents
and the prefix lengths of the advertised router addresses.

In Figure 8-17, the Number of Addresses field gives the number of router address
blocks in the message. Each block contains an IPv4 address and accompanying
preference level. The Address Entry Size field gives the number of 32-bit words per
block (two in this case). The Lifetime field gives the number of seconds for which

ptg999

Section 8.4 ICMP Query/Informational Messages 385

the list of addresses should be considered valid. The preference level is a 32-bit
signed two’s-complement integer for which higher values indicate greater prefer-
ence. The default preference level is 0; the special value 0x80000000 indicates an
address that should not be used as a valid default router.

RA messages are also used by Mobile IP [RFC5944] for a node to locate a
mobility (i.e., home and/or foreign) agent. Figure 8-17 depicts a Router Advertise-
ment message including a Mobility Agent Advertisement extension. This exten-
sion follows the conventional RA information and includes a Type field with value
16 and a Length field giving the number of bytes in the extension area (not includ-
ing the Type and Length fields). Its value is equal to (6 + 4K), assuming that K care-
of addresses are included. The Sequence Number field gives the number of such
extensions produced by the agent since initialization. The registration gives the
maximum number of seconds during which the sending agent is willing to accept
MIPv4 registrations (0xFFFF indicates infinity). There are a number of Flags bit
fields with the following meanings: R (registration required for MIP services), B
(agent is too busy to accept new registrations), H (agent is willing to act as home
agent), F (agent is willing to act as foreign agent), M (the minimum encapsulation
format [RFC2004] is supported), G (the agent supports GRE tunnels for encapsu-
lated datagrams), r (reserved zero), T (reverse tunneling [RFC3024] is supported),
U (UDP tunneling [RFC3519] is supported), X (registration revocation [RFC3543]
is supported), and I (foreign agent supports regional registration [RFC4857]).

In addition to the Mobility Agent Advertisement extension, one other exten-
sion has been designed to help mobile nodes. The Prefix-Lengths extension may
follow a Mobility Agent Advertisement extension and indicates the prefix length
of each corresponding router address provided in the base router advertisement.
The format is shown in Figure 8-18.

Figure 8-18 The ICMPv4 optional RA Prefix-Lengths extension gives the number of significant prefix bits for
each of the N router addresses present in the basic Router Advertisement portion of the message.
This extension follows the Mobility Agent Advertisement extension, if present.

In Figure 8-18, the Length field is set equal to N, the Number of Addresses field
from the basic RA message. Each 8-bit Prefix Length field gives the number of bits
in the corresponding Router Address field (see Figure 8-17) in use on the local sub-
network. This extension can be used by a mobile node to help determine whether
it has moved from one network to another. Using algorithm 2 of [RFC5944], a
mobile node may cache the set of prefixes available on a particular link. A move
can be detected if the set of network prefixes has changed.

ptg999

386 ICMPv4 and ICMPv6: Internet Control Message Protocol

8.4.3 Home Agent Address Discovery Request/Reply (ICMPv6 Types 144/145)

[RFC6275] defines four ICMPv6 messages used in support of MIPv6. Two of the
ICMPv6 messages are used for dynamic home agent address discovery, and the
other two are used for renumbering and mobile configuration. The Home Agent
Address Discovery Request message is used by an MIPv6 node when visiting a
new network to dynamically discover a home agent (see Figure 8-19).

Figure 8-19 The MIPv6 Home Agent Address Discovery Request message contains an identifier that
is returned in the response. It is sent to the Home Agents anycast address for the mobile
node’s home prefix.

The message is sent to the MIPv6 Home Agents anycast address for its home
prefix. The IPv6 source address is typically the care-of address—the address a
mobile node has acquired on the network it is currently visiting (see Chapter 5). A
Home Agent Address Discovery Response message (see Figure 8-20) is sent by a
node willing to act as a home agent for the given node and its home prefix.

Figure 8-20 The MIPv6 Home Agent Address Discovery Reply message contains the identifier from
the corresponding request and one or more addresses of a home agent willing to for-
ward packets for the mobile node.

The home agent address is provided directly to the mobile node’s unicast
address, which is most likely a care-of address. These messages are intended to
handle cases where a mobile node’s HA has changed while transitioning between
networks. After reestablishing an appropriate HA, the mobile may initiate MIPv6
binding updates (see Chapter 5).

ptg999

Section 8.4 ICMP Query/Informational Messages 387

8.4.4 Mobile Prefix Solicitation/Advertisement (ICMPv6 Types 146/147)

The Mobile Prefix Solicitation message (see Figure 8-21) is used to solicit a routing
prefix update from an HA when a node’s home address is about to become invalid.
The mobile includes a Home Address option (IPv6 Destination Options; see Chap-
ter 5) and protects the solicitation using IPsec (see Chapter 18).

Figure 8-21 The MIPv6 Mobile Prefix Solicitation message is sent by a mobile node when away to
request a home agent to provide a mobile prefix advertisement.

The solicitation message includes a random value in the Identifier field, used
to match requests with replies. It is similar to a Router Solicitation message but is
sent to a mobile node’s HA instead of to the local subnetwork. In the advertise-
ment form of this message (see Figure 8-22), the encapsulating IPv6 datagram
must include a type 2 routing header (see Chapter 5). The Identifier field contains
a copy of the identifier provided in the solicitation message. The M (Managed
Address) field indicates that hosts should use stateful address configuration and
avoid autoconfiguration. The O (Other) field indicates that information other than
the address is provided by a stateful configuration method. The advertisement
then contains one or more Prefix Information options.

Figure 8-22 The MIPv6 Mobile Prefix Advertisement message. The Identifier field matches the cor-
responding field in the solicitation. The M (Managed) flag indicates that the address is
provided by a stateful configuration mechanism. The O (Other) flag indicates that other
information beyond the address is supplied by stateful mechanisms.

The Mobile Prefix Advertisement message is designed to inform a traveling
mobile node that its home prefix has changed. This message is normally secured
using IPsec (see Chapter 18) in order to help a mobile node protect itself from
spoofed prefix advertisements. The Prefix Information option, which uses the

ptg999

388 ICMPv4 and ICMPv6: Internet Control Message Protocol

format described in [RFC4861], contains the prefix(es) the mobile node should use
for configuring its home address(es).

8.4.5 Mobile IPv6 Fast Handover Messages (ICMPv6 Type 154)

A variant of MIPv6 defines fast handovers [RFC5568] for MIPv6 (called FMIPv6). It
specifies methods for improving the IP-layer handoff latency when a mobile node
moves from one network access point (AP) to another. This is accomplished by
predicting the routers and addressing information that will be used prior to the
handoff taking place. The protocol involves the discovery of so-called proxy rout-
ers, which behave like routers a mobile is likely to encounter after it is handed off
to a new network. There are corresponding ICMPv6 Proxy Router Solicitation and
Advertisement messages (called RtSolPr and PrRtAdv, respectively). The basic for-
mat of the RtSolPr and PrRtAdv messages is given in Figure 8-23.

Figure 8-23 The common ICMPv6 message type used for FMIPv6 messages. The Code and Subtype
fields give further information. Solicitation messages use code 0 and subtype 2 and may
include the sender’s link-layer address and the link-layer address of its preferred next
access point (if known) as options. Advertisements use codes 0–5 and subtype 3. The dif-
ferent code values indicate the presence of various options, whether the advertisement
was solicited, if the prefix or router information has changed, and the handling of DHCP.

A mobile node may have some information available regarding the addresses
or identifiers of APs it will use in the future (e.g., by “scanning” for 802.11 net-
works). A RtSolPr message uses code 0 and subtype 2 and must contain at least
one option, the New Access Point Link-Layer Address option. This is used to indi-
cate which AP the mobile is requesting information about. The RtSolPr message
may also contain a Link-Layer Address option identifying the source, if known.
These options use the IPv6 ND option format, so we shall defer discussion of them
until we look at ND in detail.

8.4.6 Multicast Listener Query/Report/Done (ICMPv6 Types 130/131/132)

Multicast Listener Discovery (MLD) [RFC2710][RFC3590] provides management of
multicast addresses on links using IPv6. It is similar to the IGMP protocol used by
IPv4, described in Chapter 9. That chapter deals with the operation of IGMP and the
use of this ICMPv6 message in detail; here we describe the message formats that

ptg999

Section 8.4 ICMP Query/Informational Messages 389

constitute MLD (version 1), including the Multicast Listener Query, Report, and Done
messages. The basic format is given in Figure 8-24. These messages are sent with an
IPv6 Hop Limit field value of 1 and the Router Alert Hop-by-Hop IPv6 option.

Figure 8-24 ICMPv6 MLD version 1 messages are all of this form. Queries (type 130) are either
general or multicast-address-specific. General queries ask hosts to report which mul-
ticast addresses they have in use, and address-specific queries are used to determine
if a specific address is (still) in use. The maximum response time gives the maximum
number of milliseconds a host may delay sending a report in response to a query. The
destination multicast address is 0 for general queries and the multicast address in ques-
tion for specific reports. For Report (type 131) and Done messages (type 132), it includes
the address related to the report or what address is no longer of interest, respectively.

The main purpose of MLD is for multicast routers to learn the multicast
addresses used by the hosts on each link to which they are mutually attached.
MLDv2 (described in the next section) extends this capability by allowing hosts
to specify particular hosts from which they wish to (or not to) receive traffic. Two
forms of MLD queries are sent by multicast routers: general queries and multi-
cast-address-specific queries. Generally, routers send the query messages and hosts
respond with reports, either in response to the queries, or unsolicited if a host’s
multicast address membership changes.

The Maximum Response Time field, nonzero only in queries, gives the maxi-
mum number of milliseconds a host may delay sending a report in response
to a query. Because the multicast router need only know that at least one host is
interested in traffic destined for a particular multicast address (because link-layer
multicast support allows the router to not have to replicate the message for each
destination), nodes may intentionally and randomly delay their reports, suppress-
ing them entirely if they notice that another neighbor has responded already.
This field provides an upper bound on how long this delay may be. The Multi-
cast Address field is 0 for general queries and the address for which the router is

ptg999

390 ICMPv4 and ICMPv6: Internet Control Message Protocol

interested in reports otherwise. For MLD Report messages (type 131) and MLD
Done messages (type 132) it includes the address related to the report or what
address is no longer of interest, respectively.

8.4.7 Version 2 Multicast Listener Discovery (MLDv2) (ICMPv6 Type 143)

[RFC3810] defines extensions to the MLD facility described in [RFC2710]. In particu-
lar, it defines a way for a multicast listener to specify a desire to hear from only one
specific set of senders (or, alternatively, to exclude one specific set). It is therefore
useful in supporting source-specific multicast (SSM; see Chapter 9 and [RFC4604]
[RFC4607]). It is basically a translation of the IGMPv3 protocol used with IPv4 for use
with IPv6, which uses ICMPv6 for most multicast address management. Therefore,
we will describe the message format here, but the detailed operation of multicast
address dynamics is covered in Chapter 9. MLDv2 extends the MLD Query message
with additional information pertaining to specific sources (see Figure 8-25). The
first 24 bytes of the message are identical to the common MLD format.

The Maximum Response Code field specifies the maximum time allowed before
sending an MLD Response message. The value of this field is special and therefore
is interpreted slightly differently than in MLDv1: if it is less than 32,768, the maxi-
mum response delay is set equal to the value (in milliseconds) as in MLDv1. If the
value is equal to or greater than 32,769, the field encodes a floating-point number
using the format shown in Figure 8-26.

In this case, the maximum response delay is set equal to ((mant | 0x1000) <<
(exp + 3)) ms. The reason for this seemingly complex encoding strategy is to allow
small and large values of the response delay to be encoded in this field and retain
some compatibility with MLDv1. In particular, it allows for carefully adjusting the
leave latency and affecting the report burstiness (see Chapter 9).

The Multicast Address field is set to 0 for a general query. For a multicast-
address-specific query or multicast-address- and source-specific query it is set
to the multicast address being queried. The S field indicates whether router-side
processing should be suppressed. When set, it indicates to any receiving multicast
router that it must suppress the normal timer updates computed when hearing a
query. It does not indicate that querier election or normal “host-side” processing
should be suppressed if the router is itself a multicast listener.

The QRV (Querier Robustness Variable) field, if set, contains a value of no more
than 7. If the sender’s internal QRV value exceeds 7, this field is set to 0. Robustness
variables, described in Chapter 9, are used to fine-tune the rate of MLD updates
based on an expectation of packet loss on a subnetwork. The QQIC (Querier’s
Query Interval Code) field encodes the query interval and is shown in Figure 8-27.

The query interval, measured in seconds, is computed from the QQIC field as fol-
lows: if QQIC < 128, then QQI = QQIC; otherwise, QQI = ((mant | 0x10) << (exp + 3)).

The Number of Sources (N) field indicates the number of source addresses
present in the query. This field contains 0 for a general query or for a multicast-
address-specific query. It is nonzero for multicast-address- and source-specific
query messages.

ptg999

Section 8.4 ICMP Query/Informational Messages 391

Figure 8-25 The MLDv2 Query message format, which is compatible with the MLD version 1 mes-
sage common format. The major difference is the capability to limit or exclude specific
multicast sources from the host’s list of interests.

01 3456789ABCDEF

Figure 8-26 Floating-point format used with MLDv2 Query messages when the Maximum Response Code
value is at least 32,768. In these cases, the delay is set to ((mant | 0x1000) << (exp + 3))ms.

ptg999

392 ICMPv4 and ICMPv6: Internet Control Message Protocol

01 34567

Figure 8-27 The MLDv2 Querier’s Query Interval Code encodes the interval between MLDv2 queries.
The (unencoded) version of this value is called the Querier’s Query Interval and is mea-
sured in seconds. The QQI is computed as follows: QQI = QQIC (if QQIC < 128) and QQI
= ((mant | 0x10) << (exp + 3)) otherwise.

The multicast address records used in the MLDv2 reports (see Figures 8-28
and 8-29) contain indicators of modifications to the source address filter being
used by an IPv6 node (see Chapter 9 on multicast for more information on the
operation of such filters, which describe sets of sending hosts that are or are not of
interest to a particular receiving host).

Figure 8-28 The MLDv2 Report message includes a vector of multicast address records.

ptg999

Section 8.4 ICMP Query/Informational Messages 393

Figure 8-29 A multicast address (group) record. Multiple such records may be present in an MLDv2
Report message. The Record Type field is one of the following: MODE_IS_INCLUDE,
MODE_IS_EXCLUDE, CHANGE_TO_INCLUDE_MODE, CHANGE_TO_EXCLUDE_
MODE, ALLOW_NEW_SOURCES, or BLOCK_OLD_SOURCES. LW-MLDv2 simplifies
MLDv2 by removing the EXCLUDE modes. The Aux Data Len field contains the amount
of auxiliary data present in the record, in 32-bit-word units. For MLDv2, as specified in
[RFC3810], this field must contain the value 0, indicating no auxiliary data.

ptg999

394 ICMPv4 and ICMPv6: Internet Control Message Protocol

The record types fall into three primary categories: current state records, fil-
ter mode change records, and source list change records. The first category includes
the MODE_IS_INCLUDE (IS_IN) and MODE_IS_EXCLUDE (IS_EX) types, which
indicate that the filter mode for the address is “include” or “exclude,” respectively,
for the specified sources (at least one of which must be present). The filter mode
change types CHANGE_TO_INCLUDE (TO_IN) or CHANGE_TO_EXCLUDE
(TO_EX) types are similar to the current state records but are sent when there is a
change and need not include a nonempty source list. The source list change types,
ALLOW_NEW_SOURCES (ALLOW) and BLOCK_OLD_SOURCES (BLOCK),
are used when the filter state (include/exclude) is not changed but only the list
of sources is modified. A modification to MLDv2 (and IGMPv3) removes the
EXCLUDE modes in order to simplify the operation of MLDv2 [RFC5790]. This
“lightweight” approach, called LW-MLDv2 (and LW-IGMPv3), uses the same
previously defined message formats but removes support for the seldom-used
EXCLUDE directives that require multicast routers to keep additional state.

8.4.8 Multicast Router Discovery (MRD) (IGMP Types 48/49/50, ICMPv6 Types
151/152/153)

[RFC4286] describes Multicast Router Discovery (MRD), a method defining special
messages that can be used with ICMPv6 and IGMP to discover the presence of
routers capable of forwarding multicast packets and some of their configuration
parameters. It is envisioned primarily for use in conjunction with “IGMP/MLD
snooping.” IGMP/MLD snooping is a mechanism by which systems other than
hosts and routers (e.g., layer 2 switches) can also learn about the location of net-
work layer multicast routers and interested hosts. We discuss it in more detail in
the context of IGMP in Chapter 9. MRD messages are always sent with the IPv4
TTL or IPv6 Hop Limit field set to 1 with a Router Alert option and may be one of
the following types: Advertisement (151), Solicitation (152), or Termination (153).
Advertisements are sent periodically at a configured interval to indicate a router’s
willingness to forward multicast traffic. The Termination message indicates the
cessation of such willingness. Solicitation messages may be used to induce routers
to produce Advertisement messages. The Advertisement message format is shown
in Figure 8-30.

The Advertisement message is sent from the router’s IP address (a link-local
address for IPv6) to the All Snoopers IP address: 224.0.0.106 for IPv4 and the link-
local multicast address ff02::6a for IPv6. A receiver is able to learn the router’s
advertising interval and MLD parameters (QQI and QRV, described in more detail
in Chapter 9). Note that the QQI value is the query interval (in seconds), and not
the QQIC (encoded version of the QQI value) as previously described for MLDv2
queries.

The formats of Solicitation and Termination messages are nearly the same (see
Figure 8-31), differing only in the value of the Type field.

ptg999

Section 8.5 Neighbor Discovery in IPv6 395

Figure 8-31 shows the (nearly) common format used for Solicitation and Ter-
mination messages. The Solicitation message induces a multicast router to send
an Advertisement message on demand. Such messages are sent to the All Rout-
ers address: 224.0.0.2 for IPv4 and the link-local multicast address ff02::2 for IPv6.
Termination messages are sent to the All Snoopers IP address to indicate that the
sending router is no longer willing to forward multicast traffic.

8.5 Neighbor Discovery in IPv6

The Neighbor Discovery Protocol in IPv6 (sometimes abbreviated as NDP or
ND) [RFC4861] brings together the Router Discovery and Redirect mechanisms
of ICMPv4 with the address-mapping capabilities provided by ARP. It is also
specified for use in supporting Mobile IPv6. In contrast to ARP and IPv4, which
generally use broadcast addressing (except for Router Discovery), ICMPv6 makes
extensive use of multicast addressing, at both the network and link layers. (Recall
from Chapters 2 and 5 that IPv6 does not even have broadcast addresses.)

ND is designed to allow nodes (routers and hosts) on the same link or seg-
ment to find each other, determine if they have bidirectional connectivity, and
determine if a neighbor has become inoperative or unavailable. It also supports

Figure 8-30 The MRD Advertisement message (ICMPv6 type 151; IGMP type 48) contains the
advertisement interval (in seconds) indicating how often unsolicited advertisements
are sent, the sender’s query interval (QQI), and the robustness variable as defined by
MLD. The IP address of the sender is used to indicate to a receiver the router that is able
to forward multicast traffic. The message is sent to the All Snoopers multicast address
(IPv4, 224.0.0.106; IPv6, ff02::6a).

Figure 8-31 The ICMPv6 MRD Solicitation (ICMPv6 type 152; IGMP type 49) and Termination
(ICMPv6 type 153; IGMP type 50) messages use a common format. MRD messages set
the IPv6 Hop Limit field or IPv4 TTL field to 1 and include the Router Alert option.
Solicitations are sent to the All Routers multicast address (IPv4, 224.0.0.2; IPv6, ff02::2).

ptg999

396 ICMPv4 and ICMPv6: Internet Control Message Protocol

stateless address autoconfiguration (see Chapter 6). All of the ND functionality is
provided by ICMPv6 at or above the network layer, making it largely independent
of the particular link-layer technology employed underneath. However, ND does
prefer to make use of link-layer multicast capabilities (see Chapter 9), and for this
reason operation on non-broadcast- and non-multicast-capable link layers (called
non-broadcast multiple access or NBMA links) may differ somewhat.

The two main parts of ND are Neighbor Solicitation/Advertisement (NS/NA),
which provides the ARP-like function of mapping between network- and link-
layer addresses, and Router Solicitation/Advertisement (RS/RA), which provides
the functions of router discovery, Mobile IP agent discovery, and redirects, as
well as some support for autoconfiguration. A secure variant of ND called SEND
[RFC3971] adds authentication and special forms of addressing, primarily by
introducing additional ND options.

ND messages are ICMPv6 messages sent using an IPv6 Hop Limit field value
of 255. Receivers verify that incoming ND messages have this value to protect
against off-link senders that may attempt to spoof local ICMPv6 messages (such
messages would arrive with values less than 255). ND has a rich set of options that
messages may carry. First we discuss the primary message types and then detail
the available options.

8.5.1 ICMPv6 Router Solicitation and Advertisement (ICMPv6 Types 133, 134)

Router Advertisement (RA) messages indicate the presence and capabilities of a
nearby router. They are sent periodically by routers, or in response to a Router
Solicitation (RS) message. The RS message (see Figure 8-32) is used to induce
on-link routers to send RA messages. RS messages are sent to the All Routers
multicast address, ff02::2. A Source Link-Layer Address option is supposed to be
included if the sender of the message is using an IPv6 address other than the
unspecified address (used during autoconfiguration). It is the only valid option
for such messages as of [RFC4861].

Figure 8-32 The ICMPv6 Router Solicitation message is very simple but ordinarily contains a Source
Link-Layer Address option (unlike its ICMPv4 counterpart). It may also contain an
MTU option if an unusual MTU value is in use on the link.

ptg999

Section 8.5 Neighbor Discovery in IPv6 397

The Router Advertisement (RA) message (see Figure 8-33) is sent by routers to
the All Nodes multicast address (ff02::1) or the unicast address of the requesting
host, if the advertisement is sent in response to a solicitation. RA messages inform
local hosts and other routers of configuration details relevant to the local link.

Figure 8-33 An ICMPv6 Router Advertisement message is sent to the All Nodes multicast address
(ff02::1). Receiving nodes check to make sure that the Hop Limit field is 255, ensuring
that the packet has not been forwarded through a router. The message includes three
flags: M (Managed address configuration), O (Other stateful configuration), and H
(Home Agent).

The Current Hop Limit field specifies the default hop limit hosts are supposed
to use for sending IPv6 datagrams. A value of 0 indicates that the sending router
does not care. The next byte contains a number of bit fields, as summarized and
extended in [RFC5175]. The M (Managed) field indicates that the local assignment
of IPv6 addresses is handled by stateful configuration, and that hosts should avoid
using stateless autoconfiguration. The O (Other) field indicates that other state-
ful information (that is, other than IPv6 addresses) uses a stateful configuration
mechanism (see Chapter 6). The H (Home Agent) field indicates that the sending
router is willing to act as a home agent for Mobile IPv6 nodes. The Pref (Prefer-
ence) field gives the level of preference for the sender of the message to be used
as a default router as follows: 01, high; 00, medium (default); 11, low; 10, reserved
(not used). More details about this field are given in [RFC4191]. The P (Proxy) flag
is used in conjunction with the experimental ND proxy facility [RFC4389]. It pro-
vides a proxy-ARP-like capability (see Chapter 4) for IPv6.

The Router Lifetime field indicates the amount of time during which the send-
ing router can be used as a default next hop, in seconds. If it is set to 0, the sending
router should never be used as a default router. This field applies only to the use of
the sending router as a default router; it does not affect other options carried in the
same message. The Reachable Time field gives the number of milliseconds in which

ptg999

398 ICMPv4 and ICMPv6: Internet Control Message Protocol

a node is to assume that another is reachable, assuming mutual communications
have taken place. This is used by the Neighbor Unreachability Detection mechanism
(see Section 8.5.4). The Retransmission Timer field dictates the time, in milliseconds,
during which hosts delay sending successive ND messages.

This message usually includes the Source Link-Layer option (if applicable)
and should include an MTU option if variable-length MTUs are used on the link.
The router should also include Prefix Information options that indicate which
IPv6 prefixes are in use on the local link. Chapter 6 includes an example of how
RS and RA messages are used (e.g., see Figures 6-24 and 6-25).

8.5.2 ICMPv6 Neighbor Solicitation and Advertisement (IMCPv6 Types 135, 136)

The Neighbor Solicitation (NS) message in ICMPv6 (see Figure 8-34) effectively
replaces the ARP Request messages used with IPv4. Its primary purpose is to con-
vert IPv6 addresses to link-layer addresses. However, it is also used for detecting
whether nearby nodes can be reached, and if they can be reached bidirectionally
(that is, whether the nodes can talk to each other). When used to determine address
mappings, it is sent to the Solicited-Node multicast address corresponding to the
IPv6 address contained in the Target Address field (prefix f02::1:f/104, combined
with the low-order 24 bits of the solicited IPv6 address). For more details on how
Solicited-Node multicast addressing is used, see Chapter 9. When this message
is used to determine connectivity to a neighbor, it is sent to that neighbor’s IPv6
unicast address instead of the Solicited-Node address.

Figure 8-34 The ICMPv6 Neighbor Solicitation message is similar to the RS message but contains
a target IPv6 address. These messages are sent to Solicited-Node multicast addresses
to provide ARP-like functionality and to unicast addresses to test reachability to other
nodes. NS messages contain a Source Link-Layer Address option on links that use
lower-layer addressing.

ptg999

Section 8.5 Neighbor Discovery in IPv6 399

The NS message contains the IPv6 address for which the sender is trying
to learn the link-layer address. The message may contain the Source Link-Layer
Address option. This option must be included in networks that use link-layer
addressing when the solicitation is sent to a multicast address and should be
included for unicast solicitations. If the sender of the message is using the unspec-
ified address as its source address (e.g., during duplicate address detection), this
option is not to be included.

The ICMPv6 Neighbor Advertisement (NA) message (see Figure 8-35) serves
the purpose of the ARP Response message in IPv4 in addition to helping with
neighbor unreachability detection (see Section 8.5.4). It is either sent as a response
to an NS message or sent asynchronously when a node’s IPv6 address changes. It is
sent either to the unicast address of the soliciting node, or to the All Nodes multicast
address if the soliciting node used the unspecified address as its source address.

Figure 8-35 The ICMPv6 Neighbor Advertisement message contains the following flags: R indicates
that the sender is a router, S indicates that the advertisement is a response to a solicita-
tion, and O indicates that the message contents should override other cached address
mappings. The Target Address field contains the IPv6 address of the sender of the mes-
sage (generally, the unicast address of the solicited node from the ND solicitation). A
Target Link-Layer Address option is included to enable ARP-like functionality for IPv6.

The R (Router) field indicates that the sender of the message is a router. This
could change, for example, if a router ceases being a router and becomes only a
host instead. The S (Solicited) field indicates that the advertisement is in response to
a solicitation received earlier. This field is used to verify that bidirectional connec-
tivity between neighbors has been achieved. The O (Override) field indicates that
information in the advertisement should override any previously cached infor-
mation the receiver of the message has. It is not supposed to be set for solicited

ptg999

400 ICMPv4 and ICMPv6: Internet Control Message Protocol

advertisements, for anycast addresses, or in solicited proxy advertisements. It is
supposed to be set in other (solicited or unsolicited) advertisements.

For solicited advertisements, the Target Address field is the IPv6 address being
looked up. For unsolicited advertisements, it is the IPv6 address that corresponds to a
link-layer address that has changed. This message must contain the Target Link-Layer
Address option on networks that support link-layer addressing when the advertise-
ment was solicited via a multicast address. We will now look at a simple example.

8.5.2.1 Example
Here we see the results of using ICMPv6 Echo Request/Reply, in conjunction with
NDP. The sender is a Windows XP system with IPv6 enabled, and a packet trace
is captured on a nearby Linux system. Some lines have been wrapped for clarity.

C:\> ping6 -s fe80::210:18ff:fe00:100b fe80::211:11ff:fe6f:c603

Pinging fe80::211:11ff:fe6f:c603
from fe80::210:18ff:fe00:100b with 32 bytes of data:

Reply from fe80::211:11ff:fe6f:c603: bytes=32 time<1ms
Reply from fe80::211:11ff:fe6f:c603: bytes=32 time<1ms
Reply from fe80::211:11ff:fe6f:c603: bytes=32 time<1ms
Reply from fe80::211:11ff:fe6f:c603: bytes=32 time<1ms

Ping statistics for fe80::211:11ff:fe6f:c603:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Linux# tcpdump –i eth0 -s1500 -vv -p ip6
tcpdump: listening on eth0,
 link-type EN10MB (Ethernet), capture size 1500 bytes

1 21:22:01.389656 fe80::211:11ff:fe6f:c603 > ff02::1:ff00:100b:
 [icmp6 sum ok] icmp6: neighbor sol: who has
 fe80::210:18ff:fe00:100b
 (src lladdr: 00:11:11:6f:c6:03)
 (len 32, hlim 255)
2 21:22:01.389845 fe80::210:18ff:fe00:100b > fe80::211:11ff:fe6f:c603:
 [icmp6 sum ok] icmp6: neighbor adv: tgt is
 fe80::210:18ff:fe00:100b(SO)
 (tgt lladdr: 00:10:18:00:10:0b)
 (len 32, hlim 255)

3 21:22:02.390713 fe80::210:18ff:fe00:100b > fe80::211:11ff:fe6f:c603:
 [icmp6 sum ok] icmp6: echo request seq 18
 (len 40, hlim 128)
4 21:22:02.390780 fe80::211:11ff:fe6f:c603 > fe80::210:18ff:fe00:100b:
 [icmp6 sum ok] icmp6: echo reply seq 18
 (len 40, hlim 64)
 ... continues ...

ptg999

Section 8.5 Neighbor Discovery in IPv6 401

The ping6 program is available on Windows XP and Linux. (Later versions
of Windows incorporate the IPv6 functionality into the regular ping program.)
The –s option tells it which source address to use. Recall that with IPv6 a host
may have multiple addresses from which to choose, and here we have chosen one
of its link-local addresses, fe80::211:11ff:fe6f:c603. The trace shows the NS/
NA exchange and an ICMP Echo Request/Reply pair. Observe that all of the ND
messages use IPv6 Hop-Limit field values of 255, and the ICMPv6 Echo Request
and Echo Reply messages use a value of 128 or 64.

The NS message is sent to the multicast address ff02::1:ff00:100b, which
is the Solicited-Node multicast address corresponding to the IPv6 address being
solicited (fe80::210:18ff:fe00:100b). We see that the soliciting node also
includes its own link-layer address, 00:11:11:6f:c6:03, in a Source Link-Layer
Address option.

The NA response message is sent using link-layer (and IP-layer) unicast
addressing back to the soliciting node. The Target Address field contains the value
requested in the solicitation: fe80::210:18ff:fe00:100b. In addition, we see that
the S and O flag fields are set, indicating that the advertisement is in response to
the earlier solicitation provided, and that the information being provided should
override any other information the soliciting node may have cached. The R flag
field is unset, indicating that the responding host is not acting as a router. Finally,
the solicited node includes the most important information in a Target Link-Layer
Address option: the solicited node’s link-layer address of 00:10:18:00:10:0b.

8.5.3 ICMPv6 Inverse Neighbor Discovery Solicitation/Advertisement (ICMPv6
Types 141/142)

The Inverse Neighbor Discovery (IND) facility in IPv6 [RFC3122] originated from a
need to determine IPv6 addresses given link-layer addresses on Frame Relay net-
works. It resembles reverse ARP, a protocol once used with IPv4 networks primarily
for supporting diskless computers. Its main function is to ascertain the network-
layer address(es) corresponding to a known link-layer address. Figure 8-36 shows
the basic format of IND Solicitation and Advertisement messages.

Figure 8-36 The ICMPv6 IND Solicitation (type 141) and Advertisement (type 142) messages have
the same basic format. They are used to map known link-layer addresses to IPv6
addresses in environments where this is useful.

ptg999

402 ICMPv4 and ICMPv6: Internet Control Message Protocol

The IND Solicitation message is sent to the All Nodes multicast address at
the IPv6 layer but is encapsulated in a unicast link-layer address (the one being
looked up). It must contain both a Source Link-Layer Address option and a Des-
tination Link-Layer Address option. It may also contain a Source/Target Address
List option and/or an MTU option.

8.5.4 Neighbor Unreachability Detection (NUD)

One of the important features of ND is to detect when reachability between two
systems on the same link has become lost or asymmetric (i.e., is not available in
both directions). This is accomplished using the Neighbor Unreachability Detection
(NUD) algorithm. It is used to manage the neighbor cache present on each node.
The neighbor cache is analogous to the ARP cache described in Chapter 4; it is
a (conceptual) data structure that holds the IPv6-to-link-layer-address mapping
information required to perform direct delivery of IPv6 datagrams to on-link
neighbors as well as information regarding the state of the mapping. Figure 8-37
shows how it maintains entries in the neighbor cache.

Figure 8-37 Neighbor Unreachability Detection helps maintain the neighbor cache consisting of
several neighbor entries. Each entry is in one of five states at any given time. Confirma-
tions of reachability are accomplished by receiving Neighbor Advertisement messages
or using other higher-layer protocol information, if available. Unsolicited evidence
includes unsolicited Neighbor and Router Advertisement messages.

ptg999

Section 8.5 Neighbor Discovery in IPv6 403

Each mapping may be in one of five states: INCOMPLETE, REACHABLE,
STALE, DELAY, or PROBE. The transition diagram in Figure 8-37 shows the ini-
tial states to be either INCOMPLETE or STALE. When an IPv6 node has a unicast
datagram to send to a destination, it checks its destination cache to see if an entry
corresponding to the destination is present. If so, and the destination is on-link,
the neighbor cache is consulted to see if the neighbor’s state is REACHABLE.
If so, the datagram is sent using direct delivery (see Chapter 5). If no neighbor
cache entry is present but the destination appears to be on-link, NUD enters the
INCOMPLETE state and sends an NS message. Successful receipt of a solicited NA
message provides confirmation that the node is reachable, and the entry enters
the REACHABLE state. The STALE state corresponds to apparently valid entries
that have not yet been confirmed. This state is entered when either an entry has
not been updated for some time when it was previously REACHABLE, or when
unsolicited information is received (e.g., a node has changed its address and sent
an unsolicited NA message). These cases suggest that reachability is possible, but
confirmation in the form of a valid NA is still required.

The other states, DELAY and PROBE, are temporary states. DELAY is used when
a packet is sent but ND has no current evidence to suggest that reachability is pos-
sible. The state gives upper-layer protocols an opportunity to provide additional evi-
dence. If after DELAY_FIRST_PROBE_TIME seconds (the constant 5) no evidence is
received, the state changes to PROBE. In the PROBE state, ND sends periodic NS
messages (every RetransTimer milliseconds, with constant default value RETRANS_
TIMER equal to 1000). If no evidence has been received after sending MAX_UNI-
CAST_SOLICIT NS messages (default 3), the entry is supposed to be deleted.

8.5.5 Secure Neighbor Discovery (SEND)

SEND [RFC3971] is a special set of enhancements aimed at providing additional
security for ND messages. This is to help resist various spoofing attacks in which
one host or router might masquerade as another (see Section 8.6, Chapter 18, and
[RFC3756] for additional details). It specifically aims to protect against nodes mas-
querading as others when responding to NS messages. SEND does not use IPsec
(see Chapter 18) but instead its own special mechanism. This mechanism is also
used for securing FMIPv6 handoffs [RFC5269].

SEND operates in a framework with a set of assumptions. First, each SEND-
capable router has a certificate, or cryptographic credential, that it can use to prove
its identity to a host. Next, each host is also equipped with a trust anchor—con-
figuration information enabling the credential to be verified. Finally, each node
generates a public/private key pair when configuring the IPv6 addresses it will
use. Details of credentials, trust anchors, key pairs, and other associated security
techniques are given in Chapter 18.

8.5.5.1 Cryptographically Generated Addresses (CGAs)
Perhaps its most interesting feature, SEND uses an entirely different type of IPv6
address called a cryptographically generated address (CGA) [RFC3972][RFC4581]

ptg999

404 ICMPv4 and ICMPv6: Internet Control Message Protocol

[RFC4982]. This type of address is based on a node’s public key information, thereby
linking the address to the node’s credential. Consequently, a node or address owner
in possession of the corresponding private key is able to prove it is the authorized
user of a particular CGA. CGAs also encode the subnet prefix with which they
are associated so they cannot be moved trivially from one subnet to another. This
approach is quite different from how addresses are typically assigned.

An IPv6 CGA is generated by ORing a 64-bit subnet prefix with a specially
constructed interface identifier. The CGA interface identifier is computed using
a secure hash function (a hash function believed difficult to invert; see Chapter 18)
called Hash1 with inputs derived from the node’s public key and a special CGA
parameters data structure. These parameters are also used as input to another
secure hash function, Hash2, which provides a hash extension technique that effec-
tively extends the number of bits of output for the hash function, increasing its
security (i.e., strength against an adversary producing a different input resulting
in the same hash value) [A03][RFC6273]. The CGA technique allows for the address
owner’s public key to be self-generated, so this approach can be used without an
accompanying public key infrastructure (PKI) or other trusted third party.

The CGA parameters data structure is shown in Figure 8-38. The Modifier field
is initialized with a random value, and the Collision Count field is initialized to 0.
The structure includes an Extension Fields area that can be adapted for future uses
[RFC4581].

Figure 8-38 The SEND method for computing CGAs. The CGA parameters data structure is used as input to
two cryptographic hash functions, Hash1 and Hash2. The Hash2 value must have (16*Sec) initial
0 bits, where Sec is a 3-bit parameter. The Modifier is changed until Hash2 computes appropriately.
The resulting values are used to compute Hash1, which is combined with Sec and the subnet
prefix to produce the CGA.

ptg999

Section 8.5 Neighbor Discovery in IPv6 405

A 3-bit unsigned parameter called Sec influences how resistant the approach
is to mathematical compromise, which secure hash function is used [RFC4982],
and how computationally expensive the computations are (they are exponential
in the Sec value). The IANA maintains a registry for Sec values [SI]. The Hash1
and Hash2 functions operate on the same CGA parameter block in conjunction
with the Sec value. The address owner begins by picking a random value for the
Modifier field, treating the subnet prefix field as 0, and computing the Hash2 value.
The result is required to have (16*Sec) initial 0 bits, so the input is modified by
incrementing the modifier value by 1 and recomputing Hash2 until the condition
is satisfied. This computation has time complexity O(216*Sec) and therefore becomes
much more expensive as Sec increases. However, this computation is required
only when the address is initially established.

Once the proper modifier has been found, 59 bits of the Hash1 value are used
in forming the low-order 59 bits of the interface identifier. The top 3 bits constitute
the 3-bit Sec value, and bits 6–7 (from the left) contain two 0 bits (corresponding
to the u and g address bits described in Chapter 2). If the address is found to be
in conflict (e.g., using duplicate address detection, described in Chapter 6), the
Collision Count field is incremented and Hash1 is recomputed. The collision count
value is not permitted to grow beyond 2. Given that address collisions are unlikely
to begin with, multiple such collisions should be considered evidence of a configu-
ration error or attack. Once all the necessary calculations are complete, the com-
plete CGA can be formed by concatenating the subnet prefix, Sec value, and Hash1
value. Note that if the subnet prefix changes, only Hash1 needs to be recomputed
as the modifier value can remain the same. (The reader interested in alternatives
to CGAs should consult [RFC5535], which describes hash-based addresses, or HBAs.
HBAs are used for multihomed hosts using multiple prefixes in a somewhat dif-
ferent context and with a different form of cryptography that is less computation-
ally expensive, although HBA-CGA-compatible options have also been defined.)

At this point we have seen how a CGA is generated but not how it is used for
security. Note that anyone can generate a CGA given a subnet prefix, Sec value,
and their own (or someone else’s) public key. To ensure that a CGA is well formed
and is using an appropriate subnet prefix, it must be verified, a process called CGA
verification. A verifier requires knowledge of the CGA and CGA parameters. The
verification process involves ensuring all of the following: the collision count is
not greater than 2, the CGA’s subnet prefix matches that in the CGA parameters,
Hash1 computed on the CGA parameters matches the interface identifier portion
of the CGA (where the first 3 bits and bits 6 and 7 are “don’t cares”), and the value
of Hash2 computed on the CGA parameters with the Subnet Prefix and Collision
Count fields set to 0 has (16*Sec) initial 0 bits. If all of these checks are successful,
the CGA is a legitimate one for the corresponding subnet prefix. This computation
involves at most two hash functions; it is far simpler than the address generation
process.

To verify that a CGA is being used by its authorized address owner, called sig-
nature verification, the owner forms a typed message and attaches a CGA signature

ptg999

406 ICMPv4 and ICMPv6: Internet Control Message Protocol

that can be computed only with knowledge of the private key corresponding to
the public key used with the CGA. A verifier forms a data block by concatenating
a special 128-bit type tag with the message. The CGA ownership is verified using
an RSA signature (RSASSA-PKCS1-v1_5 [RFC3447]) with the public key (extracted
from the CGA parameters), data block, and signature as parameters. Generally, a
CGA and its user are considered valid only if both the CGA verification and sig-
nature verification processes have completed successfully.

The handling of CGAs and verification is accomplished using two ICMPv6
messages and six options defined in [RFC3971]. The RFC also defines two IANA-
managed registries for holding Name Type fields in the Trust Anchor option and
the Cert Type field in the Certificate option (see Section 8.5.6.13). [RFC3972] defines
the CGA Message Type registry, with the 128-bit value 0x086FCA5E10B200C99C8
CE00164277C08 given in [RFC3971] (other values are defined for uses other than
SEND). A registry for Sec values is defined by [RFC4982] but at present provides
only for values 0, 1, and 2, which correspond to use of the SHA-1 secure hash
function using 0, 16, or 32 initial 0 bits for the Hash2 function, respectively. An
extension format defined in [RFC4581] supports TLV encodings that can be used
for future standard extensions, but only one has been defined to date [RFC5535].
We will now describe the two ICMPv6 messages used with SEND and defer dis-
cussion of the options until we cover all of the ICMPv6 options in the next section.

8.5.5.2 Certification Path Solicitation/Advertisement (ICMPv6 Types 148/149)
SEND defines Solicitation and Advertisement messages to help hosts determine
certificates constituting a certification path. This is used for a host to verify the
authenticity of router advertisements. Figure 8-39 shows the Solicitation message.

Figure 8-39 The Certification Path Solicitation message. The sender requests a particular certifi-
cate by position index, provided as the value of the Component field. The value 65535
indicates that all certificates in the path rooted at the identity given within an attached
Trust Anchor option are desired.

The Certification Path Solicitation message contains a random Identifier field
used for matching solicitations with advertisements. The value of the Component
field provides an index to the point in the certification path in which the requestor

ptg999

Section 8.5 Neighbor Discovery in IPv6 407

is interested. This value is set to all 1s (value 65535) if certificates for the entire
path are desired. The messages may contain a Trust Anchor option (see Section
8.5.6.12). Certificates and certification paths are described in more detail in Chap-
ter 18.

The Certification Path Advertisement message, shown in Figure 8-40, pro-
vides a method to express one component (certificate) in a multicomponent adver-
tisement. These messages are sent in response to a solicitation, or periodically by a
SEND-capable router. When sent in response to a solicitation, the destination IPv6
address is the Solicited-Node multicast address of the receiver.

Figure 8-40 The Certification Path Advertisement message. The sender requests a particular cer-
tificate by position index, provided as the value of the Component field. The value 65535
indicates all certificates in the path rooted at an identity given within an attached Trust
Anchor option.

The Identifier field holds the value received in a corresponding Solicitation
message. It is set to 0 for unsolicited Advertisement messages that are sent to the
All Nodes multicast address. The All Components field indicates the total number
of components in the entire certification path, including the trust anchor. Note
that a single advertisement message is recommended to avoid fragmentation, so
such messages contain only a single component. The Component field gives the
index in the certification path of the associated certificate (provided in an attached
Certificate option). The recommended order for sending advertisements for an
N-component certification path is (N - 1, N - 2, . . ., 0). Component N need not be
sent as it is already present from the trust anchor.

8.5.6 ICMPv6 Neighbor Discovery (ND) Options

As with many of the protocols of the IPv6 family, a set of standard protocol head-
ers are defined, and one or more options may also be included. ND messages
may contain zero or more options, and some options can occur more than once.
However, with certain messages some of the options are mandatory. The general
format for ND options is given in Figure 8-41.

ptg999

408 ICMPv4 and ICMPv6: Internet Control Message Protocol

All ND options start with an 8-bit Type and an 8-bit Length field, supporting
options of variable length, up to 255 bytes. Options are padded to 8-byte bound-
aries, and the Length field gives the total length of the option in 8-byte units. The
Type and Length fields are included in the value of the Length field, which has a
minimum value of 1. Table 8-5 gives a list of 25 standard options that have been
defined as of mid-2011 (plus the experimental values). The official list may be
found in [ICMP6TYPES].

Figure 8-41 ND options are variable-length and begin with a common TLV arrangement. The
Length field gives the total length of the option in 8-byte units (including the Type and
Length fields).

Table 8-5 IPv6 ND option types, defining reference, use, and description

Type Name Reference Use/Comment

1 Source Link-Layer
Address

[RFC4861] Sender’s link-layer address; used with NS, RS,
and RA messages

2 Target Link-Layer
Address

[RFC4861] Target’s link-layer address; used with NA and
Redirect messages

3 Prefix Information [RFC4861]
[RFC6275]

An IPv6 prefix or address; used with RA
messages

4 Redirected Header [RFC4861] Portion of original IPv6 datagram; used with
Redirect messages

5 MTU [RFC4861] Recommended MTU; used with RA messages,
IND Advertisement messages

6 NMBA Shortcut Limit [RFC2491] Hop limit for “shortcut attempt”; used with NS
messages

7 Advertisement Interval [RFC6275] Sending interval of unsolicited RA messages;
used with RA messages

8 Home Agent Information [RFC6275] Preference and lifetime to be an MIPv6 HA;
used with RA messages (H bit on)

9 Source Address List [RFC3122] Host’s addresses; used with IND messages
10 Target Address List [RFC3122] Target addresses; used with IND messages
11 CGA [RFC3971] Crypto-based address; used with secure

Neighbor Discovery (SEND) messages
12 RSA Signature [RFC3971] Credential for host signature (SEND)

ptg999

Section 8.5 Neighbor Discovery in IPv6 409

8.5.6.1 Source/Target Link-Layer Address Option (Types 1, 2)
The Source Link-Layer Address option (type 1; see Figure 8-42) is supposed to be
included in ICMPv6 RS messages, NS messages, and RA messages whenever used
on a network supporting link-layer addressing. It specifies a link-layer address
associated with the message. More than one of these options may be included for
nodes with more than one address.

Type Name Reference Use/Comment

13 Timestamp [RFC3971] Anti-replay timestamp (SEND)
14 Nonce [RFC3971] Anti-replay random number (SEND)
15 Trust Anchor [RFC3971] Indicates credential type (SEND)
16 Certificate [RFC3971] Encodes a certificate (SEND)
17 IP Address/Prefix [RFC5568] Care-of or NAR addresses; used with FMIPv6

PrRtAdv messages
19 Link-Layer Address [RFC5568] Desired next access point or mobile node’s

address; used with FMIPv6 RtSolPr or
PrRtAdv messages

20 Neighbor Advertisement
ACK

[RFC5568] Tells mobile about next valid CoA; used with
RA messages

24 Route Information [RFC4191] Route prefix/preferred router list
25 Recursive DNS Server [RFC6106] IP address of DNS server; added to RA

messages
26 RA Flags Extension [RFC5175] Expands space for RA flags
27 Handover Key Request [RFC5269] FMIPv6—request key using SEND
28 Handover Key Reply [RFC5269] FMIPv6—key reply using SEND
31 DNS Search List [RFC6106] DNS domain search names; added to RA

messages
253,
254

Experimental [RFC4727] [RFC3692]-style experiments 1/2

Table 8-5 IPv6 ND option types, defining reference, use, and description (continued)

Figure 8-42 The Source (type 1) and Target (type 2) Link-Layer Address options. The Length field
gives the length of the entire option, including the address, in units of 8 bytes (e.g., an
IEEE Ethernet-type address would have the value of 1 in the Length field).

ptg999

410 ICMPv4 and ICMPv6: Internet Control Message Protocol

The Target Link-Layer Address option (type 2), which uses a similar format,
must be provided in an NA message when responding to multicast solicitations.
This option is also typically included in Redirect messages (discussed previously)
and must be included in such messages when operating on an NBMA network.

8.5.6.2 Prefix Information Option (Type 3)
The Prefix Information option (PIO), provided on RA messages and Mobile Prefix
Advertisement messages, indicates the IPv6 address prefixes and (in some cases)
complete IPv6 addresses of individual nodes present on the link (see Figure 8-43).
In cases where multiple prefixes or addresses are reported, multiple copies of this
option may be included in a single message. A router is supposed to include a PIO
for each prefix it uses. An R bit field set to 1 indicates that the Prefix field contains
the entire global IPv6 address of the sending router, rather than just its prefix with
the remaining bits of the prefix field being 0 or its link-local address (present in the
Source IP Address field of the containing IPv6 datagram). This is useful for Mobile
IPv6 home agent discovery, and home agents sending router advertisements must
include this option with the R bit field set for at least one prefix.

Figure 8-43 The Prefix Information option contains an IPv6 address prefix in use on the local net-
work. It is used to provide hosts with prefixes for address autoconfiguration if the A
bit field is set. The L bit field indicates that the prefix is acceptable for use in on-link
determination. The R bit field is used to indicate that the included prefix is the entire
global IPv6 address of the sending router.

The Prefix Length field gives the number of bits (up to 128) in the Prefix field
that should be considered valid for use in configuration. The L bit field is the
“on-link” flag and indicates that the provided prefix is eligible to be used for

ptg999

Section 8.5 Neighbor Discovery in IPv6 411

on-link determination (see the next paragraph). If it is not set, it makes no state-
ment one way or another about its use in on-link determination. The A bit field is
the “autonomous autoconfiguration” flag and indicates that the provided prefix
may be used for autoconfiguration (see Chapter 6). The Valid Lifetime and Preferred
Lifetime fields indicate the number of seconds in which the prefix can be used for
on-link determination and automatic address autoconfiguration, respectively. A
value of 0xFFFFFFFF for either field indicates infinity.

In IPv6, nodes that are “on-link” correspond to those that can be reached using
direct delivery (Chapter 5). In IPv4, nodes are assumed to be on-link if they share
a common prefix, determined using a combination of their own IPv4 address and
assigned subnet mask. Although this arrangement can be achieved using IPv6, it
is not necessary, and on-link status is not assumed without confirmation. Instead,
the L bit field indicates to a host or router which prefixes or list of individual hosts
is present on-link [RFC5942]. Other mechanisms can also serve this purpose (e.g.,
DHCPv6, manual configuration, or ICMPv6 Redirect messages). A node is consid-
ered off-link unless there is confirming information to indicate that it is on-link.

8.5.6.3 Redirected Header Option (Type 4)
The Redirected Header option is used to include a copy of (or part of) the original
(“offending”) IPv6 datagram that caused a Redirect message to be generated. The
option format is given in Figure 8-44. The option is ignored if it appears in any
other type of message.

Figure 8-44 The Redirected Header option marks the beginning of a partial (or complete) copy of
the offending IPv6 datagram. In any case, the message is limited to at most the mini-
mum IPv6 MTU (currently 1280 bytes).

8.5.6.4 MTU Option (Type 5)
The MTU option is provided on RA messages and ignored otherwise (see Figure
8-45). It provides the MTU to be used by hosts, assuming that a configurable MTU
size is supported.

ptg999

412 ICMPv4 and ICMPv6: Internet Control Message Protocol

The MTU option is important, for example, when bridging two or more het-
erogeneous link-layer technologies that have different MTUs. Without this option
(and assuming bridges do not generate ICMPv6 PTB messages), hosts may not be
able to communicate reliably with other hosts on the bridged link-layer network.
Note that this message reserves 32 bits to hold the MTU, supporting very large
MTUs.

8.5.6.5 Advertisement Interval Option (Type 7)
This option may be included in RA messages and is ignored otherwise. It specifies
the maximum interval between unsolicited multicast router advertisements (see
Figure 8-46).

Figure 8-45 The MTU option includes the MTU to be used on the local link. This option is used
with RA messages and is most useful if a nonstandard or unknown MTU is to be used.

Figure 8-46 The Advertisement Interval gives the number of milliseconds between unsolicited
multicast Router Advertisement messages.

The Advertisement Interval option gives the time between periodic router
advertisement messages. The Advertisement Interval field defines the maximum
number of milliseconds between transmissions of RA messages sent by the
sender of this message on the arriving network. The sending router may send
advertisements more frequently than the option indicates, but not less frequently.
This option is used by Mobile IPv6 nodes in its movement detection algorithms
[RFC6275].

8.5.6.6 Home Agent Information Option (Type 8)
This option may be included in RA messages being sent from routers willing to
act as Mobile IPv6 home agents [RFC6275] (i.e., those that set the H bit field in their

ptg999

Section 8.5 Neighbor Discovery in IPv6 413

RA messages) and is ignored otherwise. The option is not allowed to be included
if the H bit field is not set. In cases where solicited RA messages are used such that
multiple addresses are carried in separate messages and the R bit field is set, this
option must be included with each of them and each must contain the same value.
Figure 8-47 shows the Home Agent Information option format.

Figure 8-47 The Home Agent Information option indicates the preference and amount of time in
which the sender of the option is willing to be considered a home agent for Mobile IPv6.
Larger values of the Home Agent Preference field indicate a more desirable home agent.
The Home Agent Lifetime field gives the number of seconds during which the sender is
willing to be an HA.

The Home Agent Preference field is a 16-bit unsigned integer used to help a
mobile node order the addresses provided to it via Home Agent Address Dis-
covery Reply messages. Larger values indicate a greater degree of preference for
using the sending router as a home agent. If this option is not included in a Router
Advertisement message where the H bit field (home agent) is set, the preference
value of the originating router must be considered to be 0 (lowest preference).

The Home Agent Lifetime field, also a 16-bit unsigned integer, specifies the
number of seconds in which the sender of the message should be considered eli-
gible to act as a home agent (with the corresponding preference described previ-
ously). The default value of this field is equal to the Lifetime field of the containing
RA message. The maximum value of this field (65,535) corresponds to 18.2 hours,
and the minimum value is 1 (0 is not allowed). If both the Home Agent Lifetime and
the Home Agent Preference fields contain only default values, the entire option is not
supposed to be included in the RA message.

8.5.6.7 Source/Target Address List Options (Types 9, 10)
These options may be included with an IND message [RFC3122]. The format is
given in Figure 8-48. The Source Address List option (type 9) contains a list of the
IPv6 addresses identified by the Source Link-Layer Address option. The Target
Address List option (type 10) contains a list of the IPv6 addresses identified by the
Destination Link-Layer Address option. The number of addresses included in the
option is equal to (Length – 1)/2, where the Length field value contains the size of
the option in 8-byte units.

ptg999

414 ICMPv4 and ICMPv6: Internet Control Message Protocol

8.5.6.8 CGA Option (Type 11)
The CGA option is used with SEND [RFC3971] to carry the CGA parameters nec-
essary for a verifier to perform CGA validation and signature validation. Its for-
mat is given in Figure 8-49.

The CGA Parameters area is composed of the same fields depicted in Figure
8-38. See [RFC3971] for more details.

Figure 8-48 The Source (type 9) and Target (type 10) Address List options. These are used in sup-
porting IND and provide a list of a node’s IPv6 addresses. Only the addresses used on
the interface used to send the message should be included.

ptg999

Section 8.5 Neighbor Discovery in IPv6 415

8.5.6.9 RSA Signature Option (Type 12)
The RSA Signature option is used with SEND [RFC3971] to carry an RSA signa-
ture (see Chapter 18) that a verifier can use, in conjunction with CGA parameters,
to determine if a sending system has possession of the private key associated with
a CGA’s public key. Its format is given in Figure 8-50.

Figure 8-49 The CGA option used with SEND. The option encodes the CGA parameters shown in
Figure 8-38.

Figure 8-50 The RSA Signature option used with SEND. The signature is encoded in the PKCS#1 v
1.5 (see Chapter 18) format and is used to verify that the sender possesses the matching
private key and is consequently the correct owner of the CGA.

ptg999

416 ICMPv4 and ICMPv6: Internet Control Message Protocol

The Key Hash field contains the high-order 128 bits of a SHA-1 hash of the
public key used in constructing the signature. The Digital Signature field contains
a standardized signature over the following values: the CGA Message Type tag
for SEND, the source IP and destination IP addresses, the first 32-bit word of the
ICMPv6 header (Type, Code, and Checksum fields), and the ND protocol message
header and options (not including the RSA signature option).

8.5.6.10 Timestamp Option (Type 13)
The Timestamp option gives the current time of day known to the sending system.
This helps counter potential replay attacks against SEND [RFC3971]. Its format is
given in Figure 8-51.

Figure 8-51 The Timestamp option used with SEND. The value encodes the number of seconds that
have elapsed since January 1, 1970. It is used to guard against replay attacks.

The Timestamp field contains the number of seconds since January 1, 1970,
00:00 UTC. The format is fixed-point. The high-order 48 bits encode the number
of complete seconds. The remaining bits indicate the number of (1/64K) fractions
of a second.

8.5.6.11 Nonce Option (Type 14)
The Nonce option holds a recently generated random number. This helps counter
potential replay attacks against SEND [RFC3971]. Its format is given in Figure 8-52.

Figure 8-52 The Nonce option used with SEND. The value encodes a random number used in pairs
of SEND messages. It is used to guard against replay attacks.

ptg999

Section 8.5 Neighbor Discovery in IPv6 417

The nonce value is a random number selected by the sender. The length of the
number must be at least 6 bytes. Details on using nonces to combat replay attacks
are given in Chapter 18.

8.5.6.12 Trust Anchor Option (Type 15)
The Trust Anchor option includes the name (root) of a certification path (see Chap-
ter 18). This is used with SEND for a host to verify the authenticity of RA mes-
sages. Its format is given in Figure 8-53.

Figure 8-53 The Trust Anchor option used with SEND. The trust anchor is the name of the root of
a certificate chain. Subordinate certificates may be validated against the trust anchor.
Certificate chains are used in SEND for a host to validate router advertisements.

The Name Type field indicates the type of name used. Currently, two values
have been defined: 1, DER X.502 names; 2, fully qualified domain name (FQDN).
More than one Trust Anchor option may be included. The Name field gives the
name of the trust anchor in the format specified by the Name Type field. The trust
anchor is the root of trust for a certificate chain that the sender of the message is
willing to accept (see Chapter 18).

8.5.6.13 Certificate Option (Type 16)
The Certificate option holds a single certificate used with SEND [RFC3971] in pro-
viding a certification path. Its format is given in Figure 8-54.

The Cert Type field indicates the type of certificate used. Currently, one value
has been defined: 1, X.509v3 certificate. Certificates and how they are managed
are discussed in more detail in Chapter 18.

8.5.6.14 IP Address/Prefix Option (Type 17)
The IP Address/Prefix option is used with FMIPv6 messages (ICMPv6 type 154)
[RFC5568]. Its format is given in Figure 8-55.

The Option-Code field value indicates which type of address is encoded: 1,
old care-of address; 2, new care-of address; 3, new access router’s (NAR’s) IPv6

ptg999

418 ICMPv4 and ICMPv6: Internet Control Message Protocol

address; 4, NAR’s prefix (in PrRtAdv). The Prefix Length field gives the number of
valid leading bits in the IPv6 Address field. The IPv6 Address field encodes the IPv6
address identified in the Option-Code field.

8.5.6.15 Link-Layer Address (LLA) Option (Type 19)
The Link-Layer Address (LLA) option is used with FMIPv6 messages (ICMPv6
type 154) [RFC5568]. Its format is given in Figure 8-56.

The Option-Code field value indicates how the associated Link-Layer Address
field value is to be interpreted: 0, wildcard—resolution requested for all nearby
APs; 1, address of the new AP; 2, address of the mobile node; 3, address of the
new access router; 4, address of the source of the RtSolPr/PrRtAdv message; 5,
address is current for the router; 6, no prefix information available for the AP

Figure 8-54 The Certificate option used with SEND. The option holds a cryptographic certifi-
cate comprising one component of a certification path. This is used to validate router
advertisements.

Figure 8-55 The IP Address/Prefix option used with FMIPv6. The option holds a prefix or IPv6
address of the next access router or care-of address used by a mobile node.

ptg999

Section 8.5 Neighbor Discovery in IPv6 419

corresponding to the address; 7, no fast handovers available for the AP addressed.
The Link-Layer Address field contains the address identified by the Option-Code
field.

8.5.6.16 Neighbor Advertisement ACK (NAACK) Option (Type 20)
This option is used with FMIPv6 messages (ICMPv6 type 154) [RFC5568]. Its for-
mat is given in Figure 8-57.

Figure 8-56 The Link-Layer Address option used with FMIPv6. The option-code value indicates
what entity is associated with the address (i.e., any AP, particular AP, NAR, sender
of RtSolPr or PrRtAdv message, router), if prefix information is available, and if fast
handovers are supported by the AP indicated in the LLA.

Figure 8-57 The Neighbor Advertisement Acknowledgment option used with FMIPv6. When a
mobile node moves from a previous access router to a new access router and proposes
to use a particular new care-of address, the new router indicates the acceptability of the
proposed address.

The Option-Code value is 0. The Status field indicates the disposition of the
unsolicited neighbor advertisement. The following values are defined: 1, new
care-of address (NCoA) is invalid (perform address configuration); 2, NCoA is
invalid (use NCoA supplied in IP Address option); 3, NCoA is invalid (use NAR’s
address as NCoA); 4, previous care-of address (PCoA) supplied (do not send bind-
ing update); 128, link-layer address unrecognized.

ptg999

420 ICMPv4 and ICMPv6: Internet Control Message Protocol

8.5.6.17 Route Information Option (Type 24)
This option is used with RA messages to indicate which off-link prefixes are
reachable through a particular router [RFC4191]. Its format is given in Figure 8-58.

Figure 8-58 The Route Information option indicates the preference for using a particular router to
reach a particular off-link prefix. It is most useful in cases where multiple default rout-
ers are available and perform differently in reaching the same destinations.

The Prefix Length field gives the number of valid leading bits in the Prefix field.
The Pref field indicates whether the router associated with the included prefix
should be preferred over others. If this field contains the value 2, the option must
be ignored. The Route Lifetime field gives the number of seconds for which the
prefix is to be considered valid. The value of all 1s indicates infinity. The variable-
length Prefix field gives the IPv6 prefix being described.

8.5.6.18 Recursive DNS Server Option (RDNSS) (Type 25)
The Recursive DNS Server (RDNSS) option, defined in [RFC6106], can be used
with RA messages to enhance stateless autoconfiguration by providing the IPv6
address of one or more DNS servers (see Chapters 6 and 11). Multiple RDNSS
options may be included with an RA message. The format is given in Figure 8-59.

The Lifetime field gives the amount of time in seconds during which the list
of DNS server addresses should be considered valid. The all-1s value indicates
an infinite lifetime. If different lifetimes are required, multiple distinct RDNSS
options may be included in the same RA message.

8.5.6.19 Router Advertisement Flags Extension Option (EFO) (Type 26)
This option extends the Flags field used in RA messages [RFC5175]. It is also some-
times called the Expanded Flags option (EFO). Its format is given in Figure 8-60.

The Length field is currently defined to be 1 until the subsequent bits are
allocated.

ptg999

Section 8.5 Neighbor Discovery in IPv6 421

Figure 8-59 The Recursive DNS Server option indicates the IPv6 address(es) of one or more DNS
servers capable of performing recursive lookups (see Chapter 11).

Figure 8-60 The Router Advertisement Expanded Flags option provides an arbitrary amount of
additional space for defining future RA flags.

ptg999

422 ICMPv4 and ICMPv6: Internet Control Message Protocol

8.5.6.20 Handover Key Request Option (Type 27)
The Handover Key Request option is used with FMIPv6 messages that use SEND
to secure signaling information [RFC5269]. Its format is given in Figure 8-61.

Figure 8-61 The Handover Key Request option is used with FMIPv6 signaling secured by SEND
and provides CGA parameters including a public key. A router uses this information in
forming a handoff key that is provided encrypted for a mobile node.

The Pad Length field gives the number of 0 padding bytes included at the end
of the option (included in the Length field). The Algorithm Type (AT) field identifies
the algorithm used to compute the authenticator (see [RFC5568]). The Handover
Key Encryption Public Key field encodes the FMIPv6 CGA public key in the same
format used with the CGA option. The Padding area contains bytes with value 0 to
ensure that the option is a multiple of 8 bytes.

8.5.6.21 Handover Key Reply Option (Type 28)
This option is used with FMIPv6 messages that use SEND to secure signaling
information [RFC5269]. Its format is given in Figure 8-62.

The Pad Length and AT fields are as given with the Handover Key Request
option. The Key Lifetime field gives the number of seconds for which the hand-
over key is valid (the default is HK-LIFETIME or 43,200s). The Encrypted Hand-
over Key field holds a symmetric key (see Chapter 18) encrypted using the mobile
node’s handover key encryption key. The encoding format is RSAES-PKCS1-v1_5
[RFC3447]. The Padding field contains bytes with value 0 to ensure that the option
is a multiple of 8 bytes.

8.5.6.22 DNS Search List Option (DNSSL) (Type 31)
The DNS Search List (DNSSL) option [RFC6106] is used to indicate a list of domain
name extensions to be added to DNS queries a host might issue. Search lists are
part of the DNS configuration information that may be provided to a host when it is
initialized (see Chapter 6). The format of the DNSSL option is shown in Figure 8-63.

ptg999

Section 8.5 Neighbor Discovery in IPv6 423

Figure 8-63 The DNS Search List option provides a list of default domain name extensions used
when configuring a host’s DNS parameters. The encoding format is the same one used
for encoding DNS names (see Chapter 11).

The Lifetime field indicates how many seconds from the time the message is
sent that the domain search list should be considered valid. The domain name
search list includes a list of (uncompressed) domain name extensions used as a
form of default for forming FQDNs from partial strings (see Chapter 11).

8.5.6.23 Experimental Values (Types 253, 254)
These values are used only for experimentation, as described in [RFC3692].

Figure 8-62 The Handover Key Reply option is used with FMIPv6 signaling secured by SEND and
provides a symmetric handoff key encrypted using the mobile node’s public key. Only
the correct mobile node possessing the corresponding private key can decrypt the
option to recover the key.

ptg999

424 ICMPv4 and ICMPv6: Internet Control Message Protocol

8.6 Translating ICMPv4 and ICMPv6

In Chapter 7 we discussed a framework for IPv4/IPv6 translation based on
[RFC6144] and [RFC6145] and discussed how IP headers are translated. The meth-
ods used to translate ICMPv4 to ICMPv6 and vice versa are also described in
[RFC6145]. When translating ICMP, both the IP and ICMP headers are translated
(i.e., modified and replaced). In addition, ICMP error messages, which contain
an internal offending packet header and data, have the internal (offending) data-
gram’s headers translated. Aside from mapping the appropriate type and code
numbers, there are additional concerns regarding fragmentation, MTU sizes, and
checksum computations. Recall that ICMPv6 uses a pseudo-header checksum
covering information at the network layer, whereas the ICMPv4 checksum is com-
puted only over ICMPv4 information.

8.6.1 Translating ICMPv4 to ICMPv6

When translating ICMPv4 informational messages to ICMPv6, only the Echo
Request and Echo Reply types are translated. To perform the translation, the type
values (8 and 0) are translated to values 128 and 129, respectively. After this trans-
lation, the ICMPv6 pseudo-header checksum is computed and applied. When
translating ICMPv4 error messages, only the following error messages are trans-
lated: Destination Unreachable (type 3), Time Exceeded (type 11), and Parameter
Problem (type 12). Table 8-6 gives the type and code value mappings used to per-
form translation. Types and codes not shown are not translated, and the arriving
packet that would have been translated is instead dropped.

Table 8-6 Type and code mappings used to translate ICMPv4 error messages to ICMPv6

ICMPv4
Type/Code ICMPv4 Descriptive Name

ICMPv6
Type/Code ICMPv6 Descriptive Name (Note)

3/0 Destination
Unreachable—Network

1/0 Destination Unreachable—No Route

3/1 Destination Unreachable—Host 1/0 Destination Unreachable—No Route
3/2 Destination

Unreachable—Protocol
4/1 Parameter Problem—Unrecognized

Next Header (set Pointer to indicate
Next Header)

3/3 Destination Unreachable—Port 1/4 Destination Unreachable—Port
3/4 Destination Unreachable—

Fragmentation Required (PTB)
2/0 PTB (adjust MTU field to reflect size

of larger IPv6 header)
3/5 Destination Unreachable—

Source Route Failed
1/0 Destination Unreachable—No Route

(unlikely to occur)
3/{6,7} Destination Unreachable—

Destination Network/Host
Unknown

1/0 Destination Unreachable—No Route

ptg999

Section 8.6 Translating ICMPv4 and ICMPv6 425

As shown in Table 8-6, for Parameter Problem messages where the Pointer
field gives the byte offset of the problem, an additional mapping is used to form
the appropriate value for the IPv6 Pointer field. Table 8-7 gives this mapping.

In addition to performing the header translations, the offending datagram
carried in an ICMPv4 error message is also translated according to the rules for
IPv4/IPv6 translation. Note that this implies the resulting ICMPv6 datagram may
be of a significantly different size from what it would be if the internal translation
were not performed. The Total Length field in the base IPv6 header is updated to
reflect any such effects. Note that only a single level of such inner translation is
supported. If one or more additional internal headers are discovered, the packet
being translated is discarded. Generally, packets other than ICMP messages fail-
ing translation result in an ICMPv4 Destination Unreachable—Communication
Administratively Prohibited (code 13) message being sent to the sender of the
failed packet.

ICMPv4
Type/Code ICMPv4 Descriptive Name

ICMPv6
Type/Code ICMPv6 Descriptive Name (Note)

3/8 Destination Unreachable—
Source Host Isolated

1/0 Destination Unreachable—No Route

3/{9,10} Destination Unreachable—
Destination Network/Host
Administratively Prohibited

1/1 Destination Unreachable—
Communication with Destination
Administratively Prohibited

3/{11,12} Destination Unreachable—ToS
Unavailable

1/0 Destination Unreachable—No Route

3/13 Destination Unreachable—
Administratively Prohibited

1/1 Destination Unreachable—
Communication with Destination
Administratively Prohibited

3/14 Destination Unreachable—
Host Precedence Violation

N/A (Drop)

3/15 Destination Unreachable—
Precedence Cutoff in Effect

1/1 Destination Unreachable—
Communication with Destination
Administratively Prohibited

11/{0,1} Time Exceeded—TTL,
Fragment Reassembly

3/{0,1} Time Exceeded (code remains
unchanged)

12/0 Parameter Problem—Pointer
Contains Byte Offset of Error

4/0 Parameter Problem—Erroneous
Header Field Encountered (update
Pointer as in Table 8-7)

12/1 Parameter Problem—Missing
Option

N/A (Drop)

12/2 Parameter Problem—Bad
Length

4/0 Parameter Problem—Erroneous
Header Field Encountered (update
Pointer as in Table 8-7)

Table 8-6 Type and code mappings used to translate ICMPv4 error messages to ICMPv6 (continued)

ptg999

426 ICMPv4 and ICMPv6: Internet Control Message Protocol

Note that as with other IPv4 traffic being translated to IPv6 (see Chapter 7),
packets arriving with the DF bit field not set result in one or more IPv6 packets
with Fragment headers included and resulting fragments not exceeding the IPv6
minimum MTU. This is to deal with the issue that IPv4 routers are permitted to
fragment IPv4 traffic (including ICMPv4 traffic) but IPv6 routers are not. ICMPv4
PTB messages may need to be translated to ICMPv6 PTB messages that contain an
MTU less than the IPv6 minimum link MTU of 1280 bytes. A properly operating
IPv6 stack processes all such messages and sends subsequent datagrams to the
same destination equipped with Fragment headers.

8.6.2 Translating ICMPv6 to ICMPv4

Among ICMPv6 informational messages, Echo Request (type 128) and Echo
Reply (type 129) messages are translated to ICMPv4 Echo Request (type 8) and
Echo Reply (type 0) messages, respectively. The checksum is updated to take into
account the type value changes and the lack of the pseudo-header computation.
Other informational messages are discarded. Table 8-8 shows how error messages
are translated, giving the incoming (ICMPv6) and outgoing (ICMPv4) type and
code numbers.

Once again, the Pointer field used with the Parameter Problem message
requires special handling. Table 8-9 provides this mapping for the ICMPv6-to-
ICMPv4 case.

Note that the ICMPv4 checksum does not use a pseudo-header, so when per-
forming a header translation, the resulting checksum must be updated appropri-
ately if a non-checksum-neutral address translation is performed. In addition,
the internal IPv6 datagram may contain addresses that are not IPv4-translatable
addresses, resulting in a need for stateful translation (see Chapter 7).

Table 8-7 Pointer field mappings used when translating ICMPv4 Parameter Problem messages to ICMPv6

IPv4
Pointer
Value

IPv4
Header
Field

IPv6
Pointer
Value

IPv6
Header
Field

0 Version/IHL 0 Version/DS Field/ECN (Traffic Class)
1 DS Field/ECN (ToS) 1 DS Field/ECN (Traffic Class)/Flow Label
2, 3 Total Length 4 Payload Length
4, 5 Identification N/A
6 Flags/Fragment Offset N/A
7 Fragment Offset N/A
8 Time to Live 7 Hop Limit
9 Protocol 6 Next Header
10,11 Header Checksum N/A
12–15 Source IP Address 8 Source IP Address
16–19 Destination IP Address 24 Destination IP Address

ptg999

Section 8.6 Translating ICMPv4 and ICMPv6 427

Table 8-8 Type and code mappings used to translate ICMPv6 error messages to ICMPv4

ICMPv6
Type/Code ICMPv6 Descriptive Name

ICMPv4
Type/Code ICMPv4 Descriptive Name (Note)

1/0 Destination Unreachable—No
Route

3/1 Destination Unreachable—Host

1/1 Destination Unreachable—
Communication with
Destination Administratively
Prohibited

3/10 Destination Unreachable—
Destination Host Administratively
Prohibited

1/2 Destination Unreachable—
Beyond Scope of Source
Address

3/1 Destination Unreachable—Host

1/3 Destination
Unreachable—Address

3/1 Destination Unreachable—Host

1/4 Destination Unreachable—Port 3/3 Destination Unreachable—Port
2/0 PTB (adjust MTU field to reflect

size of larger IPv6 header)
3/4 Destination Unreachable—

Fragmentation Required (PTB)
3/{0, 1} Time Exceeded—Hop Limit,

Fragment Reassembly
11/{0,1} Time Exceeded—TTL, Fragment

Reassembly (code value is
unchanged)

4/0 Parameter Problem—Erroneous
Header Field Encountered

12/0 Parameter Problem—Pointer
Contains Byte Offset of Error
(update Pointer as in Table 8-7)

4/1 Parameter Problem—
Unrecognized Next Header

3/2 Destination Unreachable—Protocol
(set Pointer to indicate Protocol field)

4/2 Parameter Problem—
Unrecognized IPv6 Option
Encountered

N/A (Drop)

Table 8-9 Pointer field mappings used when translating ICMPv6 Parameter Problem messages to ICMPv4

IPv6
Pointer
Value

IPv6
Header
Field

IPv4
Pointer
Value

IPv4
Header
Field

0 Version/DS Field/ECN (Traffic Class) 0 Version/IHL/DS Field/ECN (ToS)
1 DS Field/ECN (Traffic Class)/Flow Label 1 DS Field/ECN (ToS)
2, 3 Flow Label N/A
4, 5 Payload Length N/A Total Length
6 Next Header 9 Protocol
7 Hop Limit 8 Time to Live
8–23 Source IP Address 12 Source IP Address
24–39 Destination IP Address 16 Destination IP Address

ptg999

428 ICMPv4 and ICMPv6: Internet Control Message Protocol

When handling differences in packet sizes, recall that there is no Don’t Frag-
ment indication in IPv6 datagrams (“don’t fragment” is implicitly always true),
and routers cannot perform fragmentation. As a result, IPv6 packets arriving at
the translator that do not fit in the MTU of the IPv4 interface used to reach the
next hop are discarded and an appropriate ICMPv6 PTB message is sent back to
the IPv6 source of the offending datagram.

8.7 Attacks Involving ICMP

The types of attacks involving ICMP fall primarily into three categories: floods,
bombs, and information disclosure. In essence, floods cause a large amount of traffic
to be generated, leading to an effective DoS attack on one or more computers. The
bomb class (sometimes called nuke class) refers to sending specially constructed
messages that cause IP or ICMP processing to crash or hang. Information disclo-
sure attacks do not typically cause harm by themselves but can be used to inform
the approaches used by other attack methods to avoid wasting time or avoid being
detected. ICMP attacks against TCP have been documented separately [RFC5927].

One of the early attacks involving ICMP is called the smurf attack. This amounts
to using ICMPv4 with a broadcast destination address to induce a large number of
computers to respond. If this is done rapidly, it can result in a DoS attack because
the victim computer is too busy processing the ICMP traffic to do anything else.
Generally this attack is mounted by setting the source IP address to the intended
victim’s address. Thus, when the broadcast ICMP message is received by several
computers, all of them respond simultaneously to the source address in the ICMP
message (i.e., the victim’s). This attack is easily handled by disallowing incoming
directed broadcast traffic at the firewall perimeter.

With ICMPv4 Echo Request/Reply (ping) messages, it is possible to construct
packet fragments in such a way that when they are reassembled, they form an
IPv4 datagram that is too large (larger than the maximum of 64KB). This has been
used to cause some systems to crash and therefore represents another form of DoS
attack. It is sometimes called the ping of death attack. A somewhat related attack
involves changing the Fragment Offset fields in IPv4 headers so as to induce errors
in the IPv4 fragment reassembly routes. This is known as the teardrop attack.

Another unanticipated situation that has been taken advantage of is the
assumption that an ICMP message would have distinct source and destination
addresses. In the land attack, an ICMP message containing a source and destina-
tion IP address equal to the victim’s is sent to the victim. Some implementations
react in unfortunate ways when receiving such a message.

The ICMP redirect capability can be used to cause an end system to use an
incorrect system as a next-hop router. Although a number of checks are made on
incoming ICMP Redirect messages in hopes of ensuring that they really origi-
nated with the current default router, these together fail to ensure that the mes-
sage is authentic. With this attack, a man-in-the-middle (see Chapter 18) can be

ptg999

Section 8.7 Attacks Involving ICMP 429

inserted along the flow of traffic, which is then recorded and analyzed. In addi-
tion, it could be modified to cause unwanted actions. It can achieve similar results
to the ARP poisoning attack (see Chapter 4). In addition, it has been used to cause
a victim to believe that itself is the preferred gateway to a destination. This causes
an infinite loop and a consequential lockup of the victim computer.

The ICMP Router Advertisement and Router Solicitation messages can be
used to create an attack that somewhat resembles the redirect attack. In particu-
lar, these messages can be used to induce victim systems to change their default
routes to point to a compromised machine. In addition, passively receiving these
messages can enable an attacker to learn about the topology of the local network
environment. Note that the problem of such “rogue RAs,” whether malicious or
accidental, has been considered in more detail separately [RFC6104].

ICMP can be used as a communication channel among invading programs
that wish to coordinate. In the TFN (Tribe Flood Network) attack, ICMP is used to
coordinate among a group of collaborating viruses after they have compromised
computers.

The set of ICMP Destination Unreachable messages can be used to cause
denial of service to currently existing connections (e.g., TCP connections). In some
implementations, receiving a Host Unreachable, Port Unreachable, or Protocol
Unreachable message from an IP address causes all transport-layer connections
currently associated with that address to be closed. These attacks are sometimes
called smack or bloop attacks.

The ICMP Timestamp Request/Reply message (which is not used anymore in
normal operations) can be used, if enabled, to learn the time of day according to
some host. Because many approaches to security are based on using cryptogra-
phy with random keys, if the source and state of randomness were to be known,
an external actor could predict the sequence of pseudo-random numbers (that is
why they are only pseudo-random) used for creating cryptographic keys, possibly
allowing a third party to guess otherwise secret values and hijack connections
(see Chapter 13 on TCP and Chapter 18’s discussion of random numbers). Because
many random numbers are based on the current time of day, revealing a host’s
precise notion of the time could be a problem.

Yet another attack involves modification of the PTB message. Recall that this
message contains a field indicating the recommended MTU. This is used by trans-
port protocols such as TCP to pick their packet size. If an attacker modifies this
value, it can force an endpoint TCP to run with very small packets (resulting in
poor performance).

Most of these attacks have been made ineffective by modifying the ICMP
implementations present in popular operating systems. However, without cryp-
tography, spoofing or masquerading attacks are still possible, in general. Protocols
that use cryptographic methods (e.g., SEND) offer an enhanced level of security
but may be considerably more complicated to deploy and analyze when problems
arise.

ptg999

430 ICMPv4 and ICMPv6: Internet Control Message Protocol

8.8 Summary

In this chapter we have looked at the Internet Control Message Protocol (ICMPv4
and ICMPv6), a required part of every IP implementation. ICMP messages are car-
ried in IP datagrams and are the first messages we have discussed that carry an
end-to-end checksum (a pseudo-header checksum in the case of ICMPv6). ICMP
messages may be broadly divided into error and informational message types.
Generally speaking, ICMP error messages are not generated in response to prob-
lematic ICMP error messages to avoid message flooding. For IP, ICMP provides a
limited information and error-reporting capability. However, the important Echo
Request/Reply and Time Exceeded messages are necessary to support the popu-
lar ping and traceroute tools. Other (less visible) uses include the Destination
Unreachable, PTB, and Redirect messages that are necessary for proper operation
of path MTU discovery and efficient router selection.

We looked at the ICMP Destination Unreachable, Redirect, and Echo Request/
Reply messages in some detail. We also saw the fairly common ICMP Port
Unreachable error message. This let us examine the information returned in an
ICMP error: the IP header and as much of the IP datagram that caused the error as
possible without causing the error message to become fragmented. This informa-
tion is required by the receiver of the ICMP error, to know more about the cause
of the error and to help direct the error message to the appropriate process or
protocol implementation. There is an extension facility that can be applied to cer-
tain ICMP messages to carry additional information (e.g., MPLS tags or next-hop
router information).

ICMPv6 is a far more complex and important protocol to IPv6 as compared
to ICMPv4 for IPv4. It is critical for the basic configuration and operation of IPv6
systems. ICMPv6 includes most of the useful ICMPv4 messages (e.g., Destination
Unreachable, Time Exceeded, Fragmentation Required, Echo Request/Reply) but
also handles ND (like ARP in IPv4), allows IPv6 nodes to discover their on-link
hosts and default routers, and provides discovery services and dynamic configu-
ration for MIPv6 nodes. ICMPv6 is also used for managing multicast group mem-
berships, whereas this is accomplished using the IGMP protocol for IPv4. We shall
examine both in Chapter 9. ICMPv6 defines a rich set of options used with ND,
some of which are required. Because ICMPv6 is used for so many host configu-
ration messages that could be subject to attack, there is a secure variant (SEND)
that allows addresses to be verified using cryptographically generated addresses
(CGAs). CGAs are interesting in their own right and are used in protocols other
than SEND.

8.9 References

[A03] T. Aura, “Cryptographically Generated Addresses (CGA),” Proc. 6th Infor-
mation Security Conference (ISC), Oct. 2003.

ptg999

 Section 8.9 References 431

[ICMP6TYPES] http://www.iana.org/assignments/icmpv6-parameters

[ICMPTYPES] http://www.iana.org/assignments/icmp-parameters

[PING] http://ftp.arl.army.mil/~mike/ping.html

[RFC0792] J. Postel, “Internet Control Message Protocol,” Internet RFC 0792/STD
0005, Sept. 1981.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

[RFC1191] J. C. Mogul and S. E. Deering, “Path MTU Discovery,” Internet RFC
1191, Nov. 1990.

[RFC1256] S. Deering, ed., “ICMP Router Discovery Messages,” Internet RFC
1256, Sept. 1991.

[RFC1350] K. Sollins, “The TFTP Protocol (Revision 2),” Internet RFC 1350/STD
0033, July 1992.

[RFC1812] F. Baker, ed., “Requirements for IP Version 4 Routers,” Internet RFC
1812, June 1995.

[RFC2004] C. Perkins, “Minimal Encapsulation within IP,” Internet RFC 2004,
Oct. 1996.

[RFC2349] G. Malkin and A. Harkin, “TFTP Timeout Interval and Transfer Size
Options,” Internet RFC 2349, May 1998.

[RFC2460] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specifi-
cation,” Internet RFC 2460, Dec. 1998.

[RFC2491] G. Armitage, P. Schulter, M. Jork, and G. Harter, “IPv6 over Non-
Broadcast Multiple Access (NBMA) Networks,” Internet RFC 2491, Jan. 1999.

[RFC2710] S. Deering, W. Fenner, and B. Haberman, “Multicast Listener Discov-
ery (MLD) for IPv6,” Internet RFC 2710, Oct. 1999.

[RFC3024], G. Montenegro, ed., “Reverse Tunneling for Mobile IP, Revised,”
Internet RFC 3024, Jan. 2001.

[RFC3122] A. Conta, “Extensions to IPv6 Neighbor Discovery for Inverse Discov-
ery Specification,” Internet RFC 3122, June 2001.

[RFC3447] J. Jonsson and B. Kaliski, “Public-Key Cryptography Standards
(PKCS) #1: RSA Cryptography Specifications Version 2.1,” Internet RFC 3447
(informational), Feb. 2003.

[RFC3519] H. Levkowetz and S. Vaarala, “Mobile IP Traversal of Network
Address Translation (NAT) Devices,” Internet RFC 3519, Apr. 2003.

http://www.iana.org/assignments/icmpv6-parameters
http://www.iana.org/assignments/icmp-parameters
http://ftp.arl.army.mil/~mike/ping.html

ptg999

432 ICMPv4 and ICMPv6: Internet Control Message Protocol

[RFC3543] S. Glass and M. Chandra, “Registration Revocation in Mobile IPv4,”
Internet RFC 3543, Aug. 2003.

[RFC3590] B. Haberman, “Source Address Selection for the Multicast Listener
Discovery (MLD) Protocol,” Internet RFC 3590, Sept. 2003.

[RFC3692] T. Narten, “Assigning Experimental and Testing Numbers Considered
Useful,” Internet RFC 3692/BCP 0082, Jan. 2004.

[RFC3704] F. Baker and P. Savola, “Ingress Filtering for Multihomed Networks,”
Internet RFC 3704/BCP 0084, Mar. 2004.

[RFC3756] P. Nikander, ed., J. Kempf, and E. Nordmark, “IPv6 Neighbor Discov-
ery (ND) Trust Models and Threats,” Internet RFC 3756 (informational), May
2004.

[RFC3810] R. Vida and L. Costa, eds., “Multicast Listener Discovery Version 2
(MLDv2) for IPv6,” Internet RFC 3810, June 2004.

[RFC3971] J. Arkko, ed., J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor
Discovery (SEND),” Internet RFC 3971, Mar. 2005.

[RFC3972] T. Aura, “Cryptographically Generated Addresses (CGA),” Internet
RFC 4972, Mar. 2005.

[RFC4191] R. Draves and D. Thaler, “Default Router Preferences and More-Spe-
cific Routes,” Internet RFC 4191, Nov. 2005.

[RFC4286] B. Haberman and J. Martin, “Multicast Router Discovery,” Internet
RFC 4286, Dec. 2005.

[RFC4389] D. Thaler, M. Talwar, and C. Patel, “Neighbor Discovery Proxies (ND
Proxy),” Internet RFC 4389 (experimental), Apr. 2006.

[RFC4443] A. Conta, S. Deering, and M. Gupta, ed., “Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,” Inter-
net RFC 4443, Mar. 2006.

[RFC4581] M. Bagnulo and J. Arkko, “Cryptographically Generated Addresses
(CGA) Extension Field Format,” Internet RFC 4581, Oct. 2006.

[RFC4604] H. Holbrook, B. Cain, and B. Haberman, “Using Internet Group Man-
agement Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Protocol
Version 2 (MLDv2) for Source-Specific Multicast,” Internet RFC 4604, Aug. 2006.

[RFC4607] H. Holbrook and B. Cain, “Source-Specific Multicast for IP,” Internet
RFC 4607, Aug. 2006.

[RFC4727] B. Fenner, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP,
and TCP Headers,” Internet RFC 4727, Nov. 2006.

ptg999

 Section 8.9 References 433

[RFC4857] E. Fogelstroem, A. Jonsson, and C. Perkins, “Mobile IPv4 Regional
Registration,” Internet RFC 4857 (experimental), June 2007.

[RFC4861] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor Dis-
covery for IP Version 6 (IPv6),” Internet RFC 4861, Sept. 2007.

[RFC4884] R. Bonica, D. Gan, D. Tappan, and C. Pignataro, “Extended ICMP to
Support Multi-Part Messages,” Internet RFC 4884, Apr. 2007.

[RFC4890] E. Davies and J. Mohacsi, “Recommendations for Filtering ICMPv6
Messages in Firewalls,” Internet RFC 4890 (informational), May 2007.

[RFC4950] R. Bonica, D. Gan, D. Tappan, and C. Pignataro, “ICMP Extensions for
Multiprotocol Label Switching,” Internet RFC 4950, Aug. 2007.

[RFC4982] M. Bagnulo and J. Arkko, “Support for Multiple Hash Algorithms in
Cryptographically Generated Addresses (CGAs),” Internet RFC 4982, July 2007.

[RFC5175] B. Haberman, ed., and R. Hinden, “IPv6 Router Advertisement Flags
Option,” Internet RFC 5175, Mar. 2008.

[RFC5269] J. Kempf and R. Koodli, “Distributing a Symmetric Fast Mobile IPv6
(FMIPv6) Handover Key Using SEcure Neighbor Discovery (SEND),” Internet
RFC 5269, June 2008.

[RFC5461] F. Gont, “TCP’s Reaction to Soft Errors,” Internet RFC 5461 (informa-
tional), Feb. 2009.

[RFC5508] P. Srisuresh, B. Ford, S. Sivakumar, and S. Guha, “NAT Behavioral
Requirements for ICMP,” Internet RFC 5508/BCP 0148, Apr. 2009.

[RFC5535] M. Bagnulo, “Hash-Based Addresses (HBA),” Internet RFC 5535, June
2009.

[RFC5568] R. Koodli, ed., “Mobile IPv6 Fast Handovers,” Internet RFC 5568, July
2009.

[RFC5790] H. Liu, W. Cao, and H. Asaeda, “Lightweight Internet Group Manage-
ment Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Version 2
(MLDv2) Protocols,” Internet RFC 5790, Feb. 2010.

[RFC5837] A. Atlas, ed., R. Bonica, ed., C. Pignataro, ed., N. Shen, and JR. Rivers,
“Extending ICMP for Interface and Next-Hop Identification,” Internet RFC 5837,
Apr. 2010.

[RFC5927] F. Gont, “ICMP Attacks against TCP,” Internet RFC 5927 (informa-
tional), July 2010.

[RFC5942] H. Singh, W. Beebee, and E. Nordmark, “IPv6 Subnet Model: The Rela-
tionship between Links and Subnet Prefixes,” Internet RFC 5942, July 2010.

ptg999

434 ICMPv4 and ICMPv6: Internet Control Message Protocol

[RFC5944] C. Perkins, ed., “IP Mobility Support for IPv4, Revised,” Internet RFC
5944, Nov. 2010.

[RFC6104] T. Chown and S. Venaas, “Rogue IPv6 Advertisement Problem State-
ment,” Internet RFC 6104 (informational), Feb. 2011.

[RFC6106] J. Jeong, S. Park, L. Beloeil, and S. Madanapalli, “IPv6 Router Adver-
tisement Options for DNS Configuration,” Internet RFC 6106, Nov. 2010.

[RFC6144] F. Baker, X. Li, C. Bao, and K. Yin, “Framework for IPv4/IPv6 Transla-
tion,” Internet RFC 6144 (informational), Apr. 2011.

[RFC6145] X. Li, C. Bao, and F. Baker, “IP/ICMP Translation Algorithm,” Internet
RFC 6145, Apr. 2011.

[RFC6273] A. Kubec, S. Krishnan, and S. Jiang, “The Secure Neighbor Discovery
(SEND) Hash Threat Analysis,” Internet RFC 6273 (informational), June 2011.

[RFC6275] C. Perkins, D. Johnson, and J. Arkko, “Mobility Support in IPv6,”
Internet RFC 6275, June 2011.

[SI] http://www.iana.org/assignments/cga-message-types

http://www.iana.org/assignments/cga-message-types

ptg999

435

9

Broadcasting and Local
Multicasting (IGMP and MLD)

9.1 Introduction

We mentioned in Chapter 2 that there are four kinds of IP addresses: unicast, any-
cast, multicast, and broadcast. IPv4 may use all of them, and IPv6 uses any except the
last form. In this chapter we discuss broadcasting and multicasting in more detail,
including how link-layer addressing can be used to send multicast or broadcast
traffic efficiently from one computer to several others. We also examine the Internet
Group Management Protocol (IGMP) [RFC3376] and the IPv6 Multicast Listener Dis-
covery (MLD) [RFC3810] protocols, which are used to inform IPv4 and IPv6 mul-
ticast routers which multicast addresses are in use on a subnetwork. One topic we
do not cover in this chapter (or this book) is how multicast routing is implemented
in wide area networks such as the global Internet. At the present time, multicast is
used more in enterprise and local networks than in the wide area. While the pro-
tocols we discuss in this chapter are prerequisites for a complete understanding of
wide area multicasting, the wide area routing protocols are comparatively complex
and would unnecessarily complicate the explanation of the important local area
case. The reader interested in exploring these issues is referred to [EGW02].

Broadcasting and multicasting provide two services for an application: deliv-
ery of packets to multiple destinations, and solicitation/discovery of servers by
clients.

• Delivery to multiple destinations

There are many applications that deliver information to multiple recipients:
interactive conferencing and dissemination of mail or news to multiple
recipients, for example. Without broadcasting or multicasting, these types
of services tend to use TCP today (delivering a separate copy to each desti-
nation, which can be very inefficient).

ptg999

436 Broadcasting and Local Multicasting (IGMP and MLD)

• Solicitation of servers by clients

Using broadcasting or multicasting, an application can send a request for a
server without knowing any particular server’s IP address. This capability
is very useful during configuration when little is known about the local
networking environment. A laptop, for example, might need to get its ini-
tial IP address and find its nearest router using DHCP (see Chapter 6).

Although both broadcasting and multicasting can provide these important
capabilities, multicasting is generally preferable to broadcasting because multicast-
ing involves only those systems that support or use a particular service or protocol,
and broadcasting does not. Thus, a broadcast request affects all hosts that are reach-
able within the scope of the broadcast, whereas multicast affects only those hosts
that are likely to be interested in the request. These concepts will become clearer as
we explore the details of broadcasting and multicasting. For now, keep in mind that
there is a trade-off between the higher overhead and simplicity of broadcast and
the improved efficiency but greater complexity associated with multicast.

Broadcasting has been supported by the IPv4 protocol since its inception,
and multicast was added with the publication of [RFC1112]. IPv6 supports multi-
casting but does not support broadcasting. Generally, only user applications that
use the UDP transport protocol (Chapter 10) take advantage of broadcasting and
multicasting, where it makes sense for an application to send a single message to
multiple recipients. TCP is a connection-oriented protocol that implies a connec-
tion between two hosts (specified by IP addresses) and one process on each host
(specified by port numbers). TCP can use unicast and anycast addresses (recall
that anycast addresses behave like unicast addresses), but not broadcast or multi-
cast addresses.

Note

Broadcasting and multicasting are also used by important system processes
such as routing protocols, ARP, ND in IPv6, and others. Although IP multicasting
support was once an “add-on,” requiring users to patch their systems to make
use of it, modern operating systems include the capability by default. Multicast-
ing is an important but arguably optional feature in IPv4, but it is mandatory in
IPv6 because of its use in ND (see Chapter 8), a service critical even to unicast
communication.

9.2 Broadcasting

Broadcasting refers to sending a message to all possible receivers in a network. In
principle, this is simple: a router simply forwards a copy of any message it receives
out of every interface other than the one on which the message arrived. Things are
slightly more complicated when multiple hosts are attached to the same local area

ptg999

 Section 9.2 Broadcasting 437

network. In this case, features of the link layer may be used to make broadcasting
somewhat more efficient.

Consider a set of hosts on a network such as an Ethernet that supports broad-
casting at the link layer. Each Ethernet frame contains the source and destination
MAC addresses (48-bit values). Normally, each IP packet is destined for a single
host, so unicast addressing is used and the destination’s unique MAC address is
determined using ARP or IPv6 ND. When a frame is sent to a unicast destination
in this way, communication between any two hosts does not bother any of the
remaining hosts on the network. For switched Ethernet networks, these are the
types of addresses found in the station caches in switches and bridges (see Chap-
ter 3). There are times, however, when a host wants to send a frame to every other
host on the network (or VLAN)—this is called a broadcast. We saw this with ARP
in Chapter 4.

9.2.1 Using Broadcast Addresses

On an Ethernet or similar network, a multicast MAC address has the low-order bit
of the high-order byte turned on. In hexadecimal this looks like 01:00:00:00:00:00.
We may consider the Ethernet broadcast address ff:ff:ff:ff:ff:ff as a special case of
the Ethernet multicast address. From Chapter 2 recall that in IPv4, each subnet has
a local subnet-directed broadcast address formed by placing all 1 bits in the host
portion of the address, and the special address 255.255.255.255 corresponds to a
local network (also called “limited”) broadcast.

9.2.1.1 Example
In Linux, the IPv4 subnet-directed broadcast address associated with each inter-
face can be found or set with the ifconfig command. We can see it displayed as
follows:

Linux% ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:08:74:93:C8:3C
 inet addr:10.0.0.13 Bcast:10.0.0.127 Mask:255.255.255.128
 inet6 addr: 2001:5c0:9ae2:0:208:74ff:fe93:c83c/64
 Scope:Global
 inet6 addr: fe80::208:74ff:fe93:c83c/64
 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:426469 errors:0 dropped:0 overruns:1 frame:0
 TX packets:779338 errors:0 dropped:0 overruns:0 carrier:0
 collisions:298048 txqueuelen:1000
 RX bytes:44414543 (42.3 MiB) TX bytes:1094425223 (1.0 GiB)
 Interrupt:19 Base address:0xec00

Here, the address 10.0.0.127 is the (subnet-directed) broadcast address used
on the network to which device eth0 is attached. This address is formed by tak-
ing the network prefix (10.0.0.0/25) and combining it with 32 – 25 = 7 bits of 1s in

ptg999

438 Broadcasting and Local Multicasting (IGMP and MLD)

the host portion of the address: 10.0.0.0 OR 0.0.0.127 = 10.0.0.127. A simple utility
called ipcalc is available on some systems to perform this calculation.

To see how simple broadcasting works, we can send an ICMPv4 Echo Request
message using the ping program to the broadcast address of 10.0.0.127 indi-
cated by the output of the ifconfig command:

Linux# ping –b 10.0.0.127
WARNING: pinging broadcast address
PING 10.0.0.127 (10.0.0.127) 56(84) bytes of data.
64 bytes from 10.0.0.6: icmp_seq=1 ttl=64 time=1.05 ms
64 bytes from 10.0.0.113: icmp_seq=1 ttl=64 time=1.55 ms (DUP!)
64 bytes from 10.0.0.120: icmp_seq=1 ttl=64 time=3.09 ms (DUP!)

--- 10.0.0.127 ping statistics ---
1 packets transmitted, 1 received, +2 duplicates,
0% packet loss, time 0ms

We mentioned in Chapter 8 that in this type of broadcast, all the hosts on the
local LAN (or VLAN) are affected. Here we receive replies from three other hosts
on the network, and the ping program notes that more responses were received
than the number of requests sent (the DUP! indication). To see the addresses being
used, we can investigate the action using Wireshark (see Figure 9-1).

Figure 9-1 An ICMPv4 Echo Request message sent to the directed broadcast address on the local
subnetwork is encapsulated in a link-layer broadcast frame with a destination address
of all 1s.

ptg999

 Section 9.2 Broadcasting 439

The Echo Request message is sent to the address 10.0.0.127. The IPv4 imple-
mentation determines this to be the subnet-directed broadcast address by consult-
ing information in the local routing table and interface configuration information,
and it sends the datagram using the link-layer broadcast address ff:ff:ff:ff:ff:ff, so
no ARP request is needed to determine the MAC addresses for each destination.
In fact, the sender is unaware of what hosts will respond until they do. It knows
only that 10.0.0.127 is a broadcast address and that it should therefore use a
broadcast link-layer destination address when sending. The source addresses at
both the IP and link layers are entirely conventional unicast; multicast addresses
are used only as destination addresses.

In this particular example, notice that each of the responses generated is
directed at 10.0.0.13, the unicast address of the original sender, and that each
response includes the IPv4 address of the responder: 10.0.0.6, 10.0.0.113, and
10.0.0.120. This is a simple example of a more general principle: broad-
cast addressing (and multicast addressing, as we shall see shortly) can be used
to discover systems or services that are otherwise unknown. In this example,
the outgoing broadcast ping request discovered three hosts that are willing to
respond to broadcast Echo Request messages.

9.2.2 Sending Broadcast Datagrams

Generally speaking, applications using broadcast use the UDP protocol (or ICMPv4
protocol) and invoke an ordinary set of API calls to send traffic. The only excep-
tion is that when invoking the API calls, a special flag (SO_BROADCAST) is used
in some operating systems to indicate that the application really does intend to
send broadcast datagrams. For example, in Linux, failing to use the –b flag when
attempting to do a broadcast ping causes the following output:

Linux% ping 10.0.0.127
Do you want to ping broadcast? Then –b

This error is caused because the SO_BROADCAST flag is provided through the
API only when the –b option is provided in the command line. This helps to
avoid accidentally generating broadcast traffic that could temporarily congest a
network.

To determine which interfaces are used for broadcasting, the IPv4 forwarding
table (called “routing table” here) is consulted. The following is an example of a
Windows Vista routing table (later versions of Windows use an identical format)
showing the interface list and broadcast-related routing information (other
information has been removed for clarity):

C:\> netstat -rn
===
Interface List
 10 ...02 00 4c 4f 4f 50 Microsoft Loopback Adapter
 9 ...00 13 02 20 b9 18 Intel(R) PRO/Wireless 3945ABG Network
 Connection

ptg999

440 Broadcasting and Local Multicasting (IGMP and MLD)

 8 ...00 14 22 f4 19 5f Broadcom 440x 10/100 Integrated
 Controller
 1 Software Loopback Interface 1
 12 ...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter
 13 ...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter #2
 11 ...00 00 00 00 00 00 00 e0 isatap.
 {2523E0D6-A8E2-42F1-8188-6AA108FEA1EA}
===

IPv4 Route Table
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
0.0.0.0 0.0.0.0 10.0.0.1 10.0.0.57 25
10.0.0.127 255.255.255.255 On-link 10.0.0.57 281
127.255.255.255 255.255.255.255 On-link 127.0.0.1 306
169.254.255.255 255.255.255.255 On-link 169.254.57.240 286
255.255.255.255 255.255.255.255 On-link 127.0.0.1 306
255.255.255.255 255.255.255.255 On-link 169.254.57.240 286
255.255.255.255 255.255.255.255 On-link 10.0.0.57 281

The first portion of this output shows seven different network interfaces that
may be used for carrying network traffic. The first is the virtual loopback inter-
face, the next is a Wi-Fi wireless interface, the third is a wired Ethernet interface
(that is disconnected), the fourth is another loopback interface, and the next three
are used as part of the nonstandard Intra-Site Automatic Tunnel Addressing Pro-
tocol (ISATAP) [RFC5214][RFC5579]. ISATAP is used in supporting IPv6 hosts
separated by an IPv4 network.

Moving on to the routing table, we see that there are seven entries that could
be used to determine where broadcast traffic should be sent. The first entry is the
default route (mask 0.0.0.0), so it matches any destination. This could be used
by broadcasts directed beyond the local network, if such a facility were enabled.
This type of directed broadcast, which travels beyond the local network, is usu-
ally disabled by routers to avoid a number of security problems, as suggested by
[RFC2644].

The next three entries are the directed subnet broadcast addresses associated
with the three interfaces having IPv4 addresses 10.0.0.57, 127.0.0.1, and
169.254.57.240, respectively. The last two are software loopback interfaces.
These entries show how Windows expresses a directed subnet broadcast route as
the network prefix combined with all 1s bits in the host part as the destination,
and a /32 or 255.255.255.255 subnet mask. The Gateway column indicates On-
link, so traffic is delivered using direct delivery (see Chapter 5) on the interface
identified in the Interface column. In these cases, there is not more than one
match for each subnet-directed broadcast address, so the Metric column is not
consulted.

The last three entries are routing entries for the limited broadcast address,
255.255.255.255. In some ways, this address acts like a multicast address because
it is not directly associated with the addresses in use on any directly attached

ptg999

 Section 9.3 Multicasting 441

network. Thus, it is not immediately obvious which interface(s) should be used for
sending traffic destined for the limited broadcast address. Unfortunately, Section
3.3.6 of the Host Requirements RFC [RFC1122] provides little guidance:

There has been discussion on whether a datagram addressed to the Limited
Broadcast address ought to be sent from all the interfaces of a multihomed host.
This specification takes no stand on the issue.

As a consequence, the way outgoing traffic to the limited broadcast address is
handled is operating-system-specific. Most systems pick a single broadcast-capa-
ble interface to use for sending such traffic. Linux and FreeBSD behave this way.
FreeBSD actually converts the limited broadcast address into a subnet-directed
broadcast address of the “primary” (first configured) interface, although an appli-
cation can disable this behavior using the IP_ONESBCAST API option. Windows,
for example, has behaved differently in different versions. Up to Windows 2000,
limited broadcasts were forwarded over multiple interfaces. With Windows XP
and later, the default behavior is to send over a single interface. In this example,
there are multiple possible matching routes for such traffic, so the entry with the
lowest metric (interface 10.0.0.57) is used.

9.3 Multicasting

To reduce the amount of overhead involved in broadcasting, it is possible to send
traffic only to those receivers that are interested in it. This is called multicasting.
Fundamentally, this is accomplished by either having the sender indicate the
receivers, or instead having the receivers independently indicate their interest.
The network then becomes responsible for sending traffic only to intended/inter-
ested recipients. Implementing multicast is considerably more challenging than
broadcast because multicast state (information) must be maintained by hosts and
routers as to what traffic is of interest to what receivers. In the TCP/IP model of
multicasting, receivers indicate their interest in what traffic they wish to receive
by specifying a multicast address and optional list of sources. This information is
maintained as soft state (see Chapter 4) within hosts and routers, meaning that it
must be updated regularly or it will time out and be deleted. When this happens,
delivery of multicast traffic either ceases or reverts to broadcast.

The inefficiencies of broadcast apply not only to wide area networks, where
they can be extremely severe, but also to local area and enterprise networks. Every
host that can be reached on the same LAN or VLAN must process broadcast pack-
ets. IP multicasting provides a more efficient way to carry out the same types of
tasks. If IP multicasting is used properly, only those hosts involved or interested in
the communication need to process the associated packets, traffic is carried only
on those links where it will be used, and only one copy of any multicast datagram
is carried on any such link. To make multicasting work, applications that wish

ptg999

442 Broadcasting and Local Multicasting (IGMP and MLD)

to be involved in a communication require a mechanism to notify their protocol
implementations of their desires. The host software can then arrange to receive
packets matching the applications’ criteria.

IP multicasting originated using a design based on the way group address-
ing works in link-layer networks such as Ethernet. In this approach, each station
selects the group address for which it is willing to accept traffic, irrespective of
the sender. This approach is also sometimes called any-source multicast (ASM)
because of the insensitivity to the identity of the sender. As IP multicasting has
evolved, an alternative form that is sensitive to the identity of the sender called
source-specific multicast (SSM) [RFC4607] has been developed that allows end
stations to explicitly include or exclude traffic sent to a multicast group from a
particular set of senders. The SSM service model is easier to implement than ASM,
primarily because in wide area multicasting it is easier to determine the location
of a single source than the locations of many sources. In the local area, however,
much of the machinery involved in supporting either ASM or SSM is identical, so
we treat them together and explain the few differences when they are important.
We begin by investigating how IP multicast traffic makes use of MAC-layer multi-
cast addresses on multicast-capable IEEE LAN technology.

9.3.1 Converting IP Multicast Addresses to 802 MAC/Ethernet Addresses

When using unicast addresses on Ethernet-like networks, ARP (see Chapter 4)
is usually used to determine a local destination’s MAC address given its IPv4
address. In IPv6, ND serves a similar role (see Chapter 8). When we looked at
broadcasting earlier, we noticed that there is a single well-known broadcast MAC
address that can always be used to reach all stations on a LAN or VLAN. What
destination MAC address should be placed in a link-layer frame when we wish
to send multicast traffic? Ideally, we would not have to use a protocol message
to determine the appropriate MAC address but could instead simply map an IP
multicast address directly to some corresponding MAC address. To see how this
is done, we shall focus on IEEE 802 networks, especially Ethernet and Wi-Fi. These
networks represent the most common types of networks where IP multicasting is
used. We will first discuss how the mapping works with IPv4, and then move on
to the slightly different method used with IPv6.

To carry IP multicast efficiently on a link-layer network, there should be a one-
to-one mapping between packets and addresses at the IP layer and frames at the
link layer. The IANA owns the IEEE Organizationally Unique Identifier (abbrevi-
ated OUI, or more informally Ethernet address prefix) 00:00:5e. With it, IANA
is given the right to use group (multicast) MAC addresses starting with 01:00:5e
as well as unicast addresses starting with 00:00:5e. This prefix is used as the
high-order 24 bits of the Ethernet address, meaning that this block includes uni-
cast addresses in the range 00:00:5e:00:00:00 through 00:00:5e:ff:ff:ff and group
addresses in the range 01:00:5e:00:00:00 through 01:00:5e:ff:ff:ff. Other organiza-
tions besides IANA own address blocks as well, but only IANA devotes some of
its space to support of IP multicasting.

ptg999

 Section 9.3 Multicasting 443

The IANA allocates half of its group block to identifying IPv4 multicast traffic
on IEEE 802 LANs. This means that the Ethernet addresses corresponding to IPv4
multicasting are in the range 01:00:5e:00:00:00 through 01:00:5e:7f:ff:ff.

Note

Our notation here uses the Internet standard bit order as the bits appear in mem-
ory. This is what most programmers and system administrators deal with. The
IEEE documentation uses the transmission order of the bits.

The mapping of IPv4 addresses to their corresponding IEEE 802-style link-
layer addresses can be seen in Figure 9-2.

Figure 9-2 The IPv4-to-IEEE-802 MAC multicast address mapping uses the lower-order 23 bits of
the IPv4 group address as the suffix of a MAC address starting with 01:00:5e. Because
only 23 of the 28 group address bits are used, 32 groups are mapped to the same MAC-
layer address.

Recall from Chapter 2 that all IPv4 multicast addresses are contained within
the address space from 224.0.0.0 to 239.255.255.255 (formerly known as class D
address space). All such addresses share a common 4-bit sequence of 1110 in the
high-order bits. Thus, there are 32 – 4 = 28 bits available to encode the entire space
of 228 = 268,435,456 multicast IPv4 addresses (also called group IDs). For IPv4, the
IANA policy of allocating half of its group addresses for use in supporting IPv4
multicast means that all 268,435,456 IPv4 multicast group IDs need to be mapped
into a link-layer address space containing only 223 = 8,388,608 unique entries. The
mapping therefore is nonunique. That is, more than one IPv4 group ID is mapped
to the same MAC-layer group address. Specifically, 228/223 = 25 = 32 distinct IPv4
multicast group IDs are mapped to each group address. For example, both the
multicast addresses 224.128.64.32 (hexadecimal e0.80.40.20) and 224.0.64.32 (hexa-
decimal e0.00.40.20) are mapped into the Ethernet address 01:00:5e:00:40:20.

For IPv6, the 16-bit OUI hexadecimal prefix is 33:33. This means that the last 32
bits of the IPv6 address can be used to form the link-layer address. Thus, any address
ending with the same 32 bits maps to the same MAC address (see Figure 9-3). Given

ptg999

444 Broadcasting and Local Multicasting (IGMP and MLD)

that all IPv6 multicast addresses begin with ff, and the subsequent 8 bits are used
for flags and scope information, this leaves 128 – 16 = 112 bits for representing 2112
groups. Thus, with the 32 bits of MAC-layer address available to encode these groups,
there can be as many as 2112/232 = 280 groups that map to the same MAC address!

Figure 9-3 The IPv6-to-IEEE-802 MAC multicast address mapping uses the low-order 32 bits of the
IPv6 multicast address as the suffix of a MAC address starting with 33:33. Because only
32 of the 112 multicast address bits are used, 280 groups are mapped to the same MAC-
layer address.

9.3.2 Examples

In a previous example, we used a subnet broadcast address to determine all the
hosts on the local subnet that would respond to a broadcast ICMPv4 Echo Request
message. Here, because we can use multicast addressing to determine hosts that
offer a particular service, we can send an ICMPv4 echo request to those hosts that
respond to the Multicast DNS (mDNS [CK11]) address 224.0.0.251:

Linux% ping 224.0.0.251
PING 224.0.0.251 (224.0.0.251) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=60 time=1.10 ms
64 bytes from 10.0.0.11: icmp_seq=1 ttl=60 time=1.60 ms (DUP!)
64 bytes from 10.0.0.120: icmp_seq=1 ttl=64 time=2.59 ms (DUP!)
--- 224.0.0.251 ping statistics ---
1 packets transmitted, 1 received, +2 duplicates,
0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.109/1.767/2.590/0.615 ms

Here, hosts 10.0.0.2, 10.0.0.11, and 10.0.0.120 all respond, indicating that
they are subscribed to the mDNS group. Notice that these hosts are not the same
ones that responded when we used the broadcast address of 10.0.0.127. This is not
so surprising, as not all hosts support the mDNS protocol.

ptg999

 Section 9.3 Multicasting 445

Note

Multicast DNS (mDNS) is a service designed to support zero configuration (effort-
less system and device configuration). mDNS has been supported on Apple sys-
tems where it is part of Bonjour. Microsoft has promoted an alternative protocol that
includes similar features known as Link Local Multicast Name Resolution (LLMNR)
[RFC4795]. Neither protocol is currently an Internet standard within the IETF, but at
present mDNS enjoys a longer history than LLMNR. See Chapter 11 for more details.

For IPv6, we can perform a similar operation using an ICMPv6 Echo Request
message:

Linux% ping6 -I eth0 ff02::fb
PING ff02::fb(ff02::fb) from fe80::208:74ff:fe93:c83c eth0:
 56 data bytes
64 bytes from fe80::217:f2ff:fee7:6d91: icmp_seq=1 ttl=64 time=2.76 ms

--- ff02::fb ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.768/2.768/2.768/0.000 ms

Note that in this case, we provide the outgoing interface as input to the ping6
program. This allows the program to select the appropriate outgoing IPv6 address
in Windows XP. As we can see in Figure 9-4, the address selected is a link-local
address associated with the eth0 device.

Figure 9-4 An ICMPv6 Echo Request message is sent from a link-local unicast address associated with the
eth0 network interface to the multicast address ff02::fb. The reply includes the sender’s IPv6 link-
local IPv6 address.

ptg999

446 Broadcasting and Local Multicasting (IGMP and MLD)

The packets are identified as ICMPv6 Echo Request/Reply messages with the
Identifier field set to 0x1d47 and Sequence Number field set to 1. The source IPv6
addresses are link-local in all cases. The destination address of the request is the
multicast address ff02::fb, which is mapped to the MAC address 33:33:00:00:00:fb.
The Echo Reply message is sent directly to the link-local IPv6 unicast address
of the sender, fe80::208:74ff:fe93:c83c, from the responder’s link-local unicast
address, fe80::217:f2ff:fee7:6d91. Note that the sender of the Echo Reply message
arranges to use a source IPv6 address of the same scope (see the discussion on
source address selection in Chapter 5, and compare Figure 9-4 with Figure 5-16).

9.3.3 Sending Multicast Datagrams

When sending any IP packet, a decision must be made as to which source address
and interface to use. This is especially true for IPv6, where having multiple
addresses per interface is considered normal. To help determine this, we can look
at the forwarding table present in the host. In either Windows or Linux, the net-
stat command can be used. Here are the IPv4 and IPv6 routing tables as output
on Windows Vista (later versions use an identical format):

C:\> netstat -rn
... interface list ...

IPv4 Route Table
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
0.0.0.0 0.0.0.0 10.0.0.1 10.0.0.57 25
224.0.0.0 240.0.0.0 On-link 127.0.0.1 306
224.0.0.0 240.0.0.0 On-link 169.254.57.240 286
224.0.0.0 240.0.0.0 On-link 10.0.0.57 281
255.255.255.255 255.255.255.255 On-link 127.0.0.1 306
255.255.255.255 255.255.255.255 On-link 169.254.57.240 286
255.255.255.255 255.255.255.255 On-link 10.0.0.57 281
===
Persistent Routes:
 None

IPv6 Route Table
===
Active Routes:
 If Metric Network Destination Gateway
 9 281 ::/0 fe80::204:5aff:fe9f:9e80
 1 306 ff00::/8 On-link
 10 286 ff00::/8 On-link
 9 281 ff00::/8 On-link
===
Persistent Routes:
 None

ptg999

 Section 9.3 Multicasting 447

From this table we can see that a default route for IPv4 traffic goes to 10.0.0.1
using interface 10.0.0.57. Although this does match multicast traffic, there are
other entries that are more specific. The entries listed as 224.0.0.0/4 (subnet
mask 240.0.0.0) indicate that three different interfaces can carry outgoing multi-
cast traffic. The interface with the lowest metric (10.0.0.57, with metric 281) is the
most preferred, so it is used unless an application specifies otherwise. For IPv6,
all multicast addresses begin with ff, and there are no broadcast addresses, so
interfaces 1, 9, and 10 can all be used. Interface 9 (which happens to be the same
interface used for IPv4 and the default for IPv6 unicast traffic) has the lowest met-
ric. Additional information indicating which interfaces have which IP addresses
can be determined using the Windows command ipconfig /all.

The output on Linux is separate for different protocol families (such as IPv4
and IPv6). It is generated by different arguments to the netstat command, to
indicate which version of IP (or other) protocol is of interest. For IPv4, there is
nothing to show, as there is no special entry for multicast; a conventional default
route handles the multicast traffic. For IPv6, however, we can see the following:

Linux% netstat -rn -A inet6
Kernel IPv6 routing table
Destination Next Hop Flags Metric Ref Use Iface
ff00::/8 :: U 256 0 0 eth0

In this case, there is no direct “next hop,” so the unspecified address (::) is
listed in the table, but we can see that the outgoing interface is eth0. The Flags
column contains only U, indicating that the route is usable, but the lack of a G flag
indicates that it is an on-link route, not requiring forwarding to a router.

9.3.4 Receiving Multicast Datagrams

Fundamental to multicasting is the concept of a process joining or leaving one or
more multicast groups on a given interface on a host. (We use the term process to
mean a program being executed by the operating system, often on behalf of a user.)
Membership in a multicast group on a given interface is dynamic—it changes over
time as processes join and leave groups. In addition to joining or leaving groups,
additional methods are needed if a process wishes to specify sources it cares to
hear from or exclude. These are required parts of any API on a host that supports
multicasting. We use the qualifier “interface” because membership in a group is
associated with an interface. A process can join the same group on multiple inter-
faces, multiple groups on the same interface, or any combination thereof.

9.3.4.1 Example
It is possible to determine what multicast groups are in use on each interface using
an operating-system-specific command. In Windows, the commands are part of
the netsh package. For IPv6, this works as follows (for IPv4, replace ipv6 with ip):

ptg999

448 Broadcasting and Local Multicasting (IGMP and MLD)

C:\> netsh interface ipv6 show joins
Interface 1: Loopback Pseudo-Interface 1
Scope References Last Address
------- ---------- ----- ---
0 1 Yes ff02::c

Interface 8: Local Area Connection
Scope References Las Address
------- ---------- ----- ---
0 0 Yes ff01::1
0 0 Yes ff02::1
0 1 Yes ff02::c
0 1 Yes ff02::1:3
0 1 Yes ff02::1:ffdc:fc85

Here we can see how IPv6 uses several multicast addresses per interface. The
first interface is a loopback, local interface. The only multicast group used on it is
the link-local scoped Simple Service Discovery Protocol (SSDP) multicast address,
which we saw in Chapter 7.

Note

SSDP is described in an (expired) Internet draft [GCLG99] authored by Microsoft
and Hewlett-Packard. SSDP also operates on IPv4, using address 239.255.255.250
and UDP port 1900.

On the other network interface, the addresses ff01::1 (node-local All Nodes
address) and ff02::1 (link-local All Nodes address) show joins for all nodes, and
ff02::c shows the use of SSDP. The next address, ff02::1:3, is for support of
LLMNR, a local multicast name resolution system mentioned previously and dis-
cussed in more detail in Chapter 11. Finally, the address ff02::1:ffdc:fc85 is
the Solicited-Node multicast address for this node, used by IPv6 ND. Recall that
in IPv6, determining a neighbor’s MAC address is accomplished using multicast
ICMPv6 ND messages, as opposed to the ARP mechanism used in IPv4.

On Linux, the netstat command displays the IP group memberships:

Linux% netstat –gn
IPv6/IPv4 Group Memberships
Interface RefCnt Group
--------------- ------ ---------------------
lo 1 224.0.0.1
eth1 1 224.0.0.1
lo 1 ff02::1
eth1 1 ff02::1:ff2a:1988
eth1 1 ff02::1

The output from this command includes the join information for multiple
interfaces and for both IPv4 and IPv6. In this case, we see 224.0.0.1 (All Hosts)
on both the Ethernet interface (eth1) as well as the local loopback interface (lo).

ptg999

 Section 9.3 Multicasting 449

We can also see the link-local scope All Nodes bindings for each interface. Finally,
the Solicited-Node address is ff02::1:ff2a:1988.

Note

With IP multicasting, a process may send to a multicast group without joining
it. More commonly, processes do join the multicast groups with which they are
interacting, and on one or more specific interfaces. There is a special option in the
socket API (IP_MULTICAST_LOOP) to alter the way multicast traffic is handled
among processes on the same host that are members of the same group on
the same interface. In UNIX, this option applies to the send path, meaning that
if the option is enabled, other processes on the same host receive the multi-
cast datagrams, even if they have the option disabled. Conversely, on Windows,
the option applies on the receive path, meaning that any processes enabling the
option receive multicast traffic from other applications on the same host even if
they have the option disabled.

9.3.5 Host Address Filtering

To understand how the operating system processes received multicast datagrams
for multicast groups that programs have joined, recall from Chapter 3 that filtering
takes place on each host’s network interface card (NIC), each time a frame is pre-
sented to it (e.g., by a bridge or switch) for possible reception. Figure 9-5 indicates
how this occurs.

In a typical switched Ethernet environment, broadcast and multicast frames
are replicated on all segments within a VLAN, along a spanning tree formed
among the switches. Such frames are delivered to the NIC on each host which
checks the correctness of the frame (using the CRC) and makes a decision about
whether to receive the frame and deliver it to the device driver and network stack.
Normally the NIC receives only those frames whose destination address is either
the hardware address of the interface or the broadcast address. However, when
multicast frames are involved, the situation is somewhat more complicated.

NICs tend to come in two varieties. One type performs filtering based on
the hash values of the multicast hardware addresses in which the host software
has expressed interest, which means that some unwanted frames can always get
through because of hash collisions. The other type listens for a finite table of mul-
ticast addresses, meaning that if the host needs to receive frames destined for
more multicast addresses than can fit in the table, the NIC is put into a “multi-
cast-promiscuous” mode, in which case all multicast traffic is given to the host
software. Hence, both types of interfaces require that the device driver or higher-
layer software perform checking that the received frame is really wanted. Even
if the interface performs perfect multicast filtering (based on the 48-bit hardware
address), because the mapping from a multicast IPv4 or IPv6 address to a 48-bit
hardware address is not unique, filtering is still required. Despite this imperfect
address mapping and hardware filtering, multicasting is still more efficient than
broadcasting.

ptg999

450 Broadcasting and Local Multicasting (IGMP and MLD)

For NICs that support a multi-entry address table, the destination address on
each received frame is compared against this table, and if the address is found in
the table, the frame is received and processed by the device driver. The entries of
this table are managed by the device driver software in combination with other
layers of the protocol stack (such as the IPv4 and IPv6 implementations). Another
method of implementing this type of filtering is to apply a hash function to the
destination address, forming an index into a (smaller) binary vector. When the
indexed entry in the vector contains a 1 bit, the corresponding address is deemed
to be acceptable and the frame is processed further. This approach can save mem-
ory on the NIC, but because of collisions in the hash function, some frames may be
considered admissible when they should not be. This is not a fatal problem, how-
ever, because higher layers of the stack also perform filtering, and no frames are
ever discarded when they should not have been (i.e., there are no false negatives,
but there may be false positives).

Note

The specific capabilities of an NIC vary based on manufacturer. As an example,
the Intel 82583V Ethernet controller includes a 16-entry exact match table (uni-
cast or multicast), a 4096-bit hash filter for multicast destinations, and support for

Figure 9-5 Each layer implements filtering on some portion of the received message. MAC address
filtering can take place in either software or hardware. Cheaper NICs tend to impose a
larger processing burden on software because they perform fewer functions in hardware.

ptg999

Section 9.4 Internet Group Management Protocol and Multicast Listener Discovery Protocol 451

both promiscuous reception and promiscuous multicast reception in addition to
filtering based on up to 4096 VLAN tags.

Once the NIC hardware has verified a frame as acceptable (i.e., the CRC is cor-
rect, any VLAN tags match, and the destination MAC address matches an address
entry in one or more of the NIC’s tables), the frame is passed to the device driver,
where additional filtering is performed. First, the frame type must specify a pro-
tocol that is supported (e.g., IPv4, IPv6, ARP, etc.). Second, additional multicast
filtering may be performed to check whether the host belongs to the addressed
multicast group (indicated by the destination IP address). This is necessary for
NICs that may generate false positives.

The device driver then passes the frame to the next layer, such as IP, if the
frame type specifies an IP datagram. IP performs more filtering, based on the
source and destination IP addresses, and passes the datagram up to the next layer
(such as TCP or UDP) if all is well. Each time UDP receives a datagram from IP,
it performs filtering based on the destination port number, and sometimes the
source port number, too. If no process is currently using the destination port
number, the datagram is discarded and an ICMPv4 or ICMPv6 Port Unreachable
message is normally generated. (TCP performs similar filtering based on its port
numbers.) If the UDP datagram has a checksum error, UDP silently discards it.

One of the primary motivations behind the development of the multicast
addressing features was to avoid the overhead of broadcasting. Consider an appli-
cation that is designed to use UDP broadcasts. If there are 50 hosts on the network
(or VLAN), but only 20 are participating in the application, every time one of the
20 sends a UDP broadcast, the other 30 nonparticipating hosts have to process the
broadcast, all the way up through the UDP layer, before the UDP datagram is dis-
carded. The UDP datagram is discarded by these 30 hosts because the destination
port number is not in use. The intent of multicasting is to reduce this load on hosts
with no interest in the application. With multicasting, a host specifically joins one
or more multicast groups. If possible, the NIC is told which multicast groups the
host belongs to, and only those multicast frames associated with the IP-layer mul-
ticast groups are allowed through the filter in the NIC. All of this machinery offers
less overhead imposed on the host, in exchange for additional complexity in man-
aging multicast addresses and group memberships.

9.4 The Internet Group Management Protocol (IGMP) and
Multicast Listener Discovery Protocol (MLD)

So far we have discussed how multicast datagrams are transmitted, filtered,
and received from a host’s perspective. When multicast datagrams are to be for-
warded over a wide area network or within an enterprise across multiple sub-
nets, we require that multicast routing be enabled by one or more multicast routers.
This complicates the situation considerably, because multicast routers require

ptg999

452 Broadcasting and Local Multicasting (IGMP and MLD)

knowledge about which hosts are interested in what multicast groups, in order
to arrange for multicast traffic to be delivered appropriately. They also execute a
special procedure called the Reverse Path Forwarding (RPF) check. This procedure
performs a routing lookup on the source address of an arriving multicast data-
gram. Only if the outgoing interface for routing matches the interface on which
the datagram arrived is the datagram forwarded. The RPF check is important for
avoiding multicast loops. Multicast routing is largely separate from conventional
unicast routing provided by IP routers. However, some capabilities of multicast
routing are required for the IPv6 ND protocol (see Chapter 8) to operate properly.

Two major protocols are used to allow multicast routers to learn the groups in
which nearby hosts are interested: the Internet Group Management Protocol (IGMP)
used by IPv4 and the Multicast Listener Discovery (MLD) protocol used by IPv6. Both
are used by hosts and routers that support multicasting, and the protocols are very
similar. These protocols let the multicast routers on a LAN (VLAN) know which
hosts currently belong to which multicast groups. This information is required by
the routers so that they know which multicast datagrams to forward on to which
interfaces. In most cases, a multicast router only requires knowledge that at least one
listening host is reachable by a particular interface, as link-layer multicast address-
ing (assuming it is supported) permits the multicast router to send link-layer multi-
cast frames that will be received by all interested listeners. This allows a multicast
router to do its job without keeping track of every individual host on each interface
that might be interested in multicast traffic for a particular group.

IGMP has evolved over time, and [RFC3376] defines version 3 (the most cur-
rent one at the time of writing). MLD has evolved in parallel, and its current
version (2) is defined in [RFC3810]. IGMPv3 and/or MLDv2 are required for sup-
porting SSM. See [RFC4604] for more details on how these protocols are restricted
when using only a single source per multicast group.

Version 1 of IGMP was the first commonly used version of IGMP. Version
2 added the ability to leave groups more quickly (also supported by MLDv1).
IGMPv3 and MLDv2 add the ability to select the sources of multicast traffic and
are required for deployment of SSM. While IGMP is a separate protocol used with
IPv4, MLD is really part of ICMPv6 (see Chapter 8).

Figure 9-6 indicates how IGMP (MLD) is used by an IPv4 (IPv6) multicast-
enabled router. Such routers are interested in ascertaining which multicast groups
are of interest on each of its attached interfaces. These routers require this infor-
mation in order to avoid simply broadcasting all traffic out of every interface.

In Figure 9-6, we can see how IGMP (MLD) queries are sent by multicast rout-
ers. These are sent to the All Hosts multicast address, 224.0.0.1 (IGMP), or the All
Nodes link-scope multicast address, ff02::1 (MLD), and processed by every host
implementing IP multicast (see the exception in Section 9.4.2 for “specific” que-
ries). Membership report messages are sent by group members (hosts) in response
to the queries but may also be sent in an unsolicited way from hosts that wish
to inform multicast routers that their group membership(s) and/or interest in
particular sources has changed. IGMPv3 reports are sent to the IGMPv3-capable

ptg999

Section 9.4 Internet Group Management Protocol and Multicast Listener Discovery Protocol 453

multicast router address 224.0.0.22. MLDv2 reports are sent to the correspond-
ing MLDv2 Listeners IPv6 multicast address ff02::16. Note that multicast routers
themselves may also act as members when they join multicast groups.

Note

In IGMPv1 and IGMPv2, after receiving a query, hosts do not respond immedi-
ately but instead may wait a small random amount of time to see if any other host
responds for the same group. If so, a host’s response is suppressed (not sent).
This is accomplished by having reports sent to the multicast address of the group
in question. Appendix A of [RFC3376] indicates why this operation was removed
in IGMPv3. In short, multicast routers may wish to track individual hosts’ subscrip-
tions, suppression does not work well in bridged LANs using IGMP snooping (see
Section 9.4.7), handling suppression complicates the protocol implementation,
and IGMPv3 reports contain information on multiple groups, making successful
suppression less likely. Note that both IGMPv3 and MLDv2 require backward
compatibility with earlier versions of themselves and revert to using older-version
protocol messages of older hosts or routers detected on the same subnet.

The encapsulations for IGMP and MLD are shown in Figure 9-7. Like ICMP,
IGMP is considered part of the IP layer. Also like ICMP, IGMP messages are trans-
mitted in IPv4 datagrams. Unlike other protocols that we have seen, IGMP uses
a fixed TTL of 1, so packets are limited to the local subnetwork. IGMP packets
also use the IPv4 Router Alert option and use the 6-bit value 0x30 in the DS Field

Figure 9-6 Multicast routers send IGMP (MLD) requests to each attached subnet periodically to
determine which groups and sources are of interest to the attached hosts. Hosts respond
with reports indicating which groups and sources are of interest. Hosts may also send
unsolicited reports if membership changes occur.

ptg999

454 Broadcasting and Local Multicasting (IGMP and MLD)

Figure 9-7 IGMP is encapsulated as a separate protocol in IPv4. MLD is a type of ICMPv6 message.

to represent Internetwork Control (CS6, see Chapter 5). In IPv6, MLD is part of
ICMPv6, but the functionality of MLD is nearly identical to that of IGMP, so we
describe it here (we described its message formats briefly when describing ICMPv6
in Chapter 8). Its encapsulation makes use of an IPv6 Hop-by-Hop extension header
to hold the Router Alert option. In many cases, the list of sources is empty.

IGMP and MLD define two sets of protocol processing rules: those performed
by hosts that are group members and those performed by multicast routers. Gen-
erally speaking, the job of the member hosts (which we will call “group members”)
is to spontaneously report changes in interest in multicast groups and sources
and to respond to periodic queries. Multicast routers send queries to ascertain
whether any interest is present on an attached link for any groups, or for a specific
multicast group and source. Routers also interact with wide area multicast proto-
cols (such as PIM-SM and BIDIR-PIM) to bring the desired traffic to the interested
hosts or prohibit traffic from flowing to uninterested hosts. For more details on
these protocols, please see [RFC4601] and [RFC5015].

9.4.1 IGMP and MLD Processing by Group Members (“Group Member Part”)

The group members’ portion of IGMP and MLD is designed to allow hosts to
specify what groups they are interested in and whether traffic sent from particu-
lar sources should be accepted or filtered out. This is accomplished by sending
reports to one or more multicast routers (and participating hosts) attached to the

ptg999

 Section 9.4 Internet Group Management Protocol and Multicast Listener Discovery Protocol 455

same subnet. Reports may be sent as a result of receiving a query, or spontane-
ously (unsolicited) because of a local change in reception state (e.g., an application
joins or leaves a group). IGMP reports take the form shown in Figure 9-8.

Figure 9-8 The IGMPv3 membership report contains group records for N groups. Each group
record indicates a multicast address and optional list of sources.

Report messages are fairly simple. They contain a vector of group records, each
of which provides information about a particular multicast group, including the
address of the subject group, and an optional list of sources used for establishing
filters (see Figure 9-9).

Each group record contains a type, the address of the subject group, and a list
of source addresses to either include or exclude. There is also support for includ-
ing auxiliary data, but this feature is not used by IGMPv3. Table 9-1 reveals the sig-
nificant flexibility that can be achieved using IGMPv3 report record types. MLD
uses the same values. A list of sources is said to refer to include mode or exclude
mode. In include mode, the sources in the list are the only sources from which
traffic should be accepted. In exclude mode, the sources in the list are the ones to
be filtered out (all others are allowed). Leaving a group can be expressed as using
an include mode filter with no sources, and a simple join of a group (i.e., for any
source) can be expressed as using the exclude mode filter with no sources. Note
that when using SSM, types 0x02 and 0x04 are not used, as only a single source is
assumed for any group.

ptg999

456 Broadcasting and Local Multicasting (IGMP and MLD)

Figure 9-9 An IGMPv3 group record includes a multicast address (group) and an optional list of
sources. Groups of sources are either allowed as senders (include mode) or filtered out
(exclude mode). Previous versions of IGMP reports did not include a list of sources.

T able 9-1 Type values for IGMP and MLD source lists indicate the filtering mode (include or exclude) and
whether the source list has changed

Type Name and Meaning When Sent

0x01 MODE_IS_INCLUDE (IS_IN): traffic sent from any of
the associated source addresses is not to be filtered.

In response to a query from a
multicast router

0x02 MODE_IS_EXCLUDE (IS_EX): traffic sent from any of
the associated source addresses should be filtered.

In response to a query from a
multicast router

0x03 CHANGE_TO_INCLUDE_MODE (TO_IN): a change
from exclude mode; traffic sent from any of the
associated source addresses should now not be filtered.

In response to a local action
changing the filter mode from
exclude to include

0x04 CHANGE_TO_EXCLUDE_MODE (TO_EX): a change
from include mode; traffic sent from any of the
associated source addresses should now be filtered.

In response to a local action
changing the filter mode from
include to exclude

0x05 ALLOW_NEW_SOURCES (ALLOW): a change in
source list; traffic sent from any of the associated source
addresses should now not be filtered.

In response to a local action
changing the source list to
allow new sources

0x06 BLOCK_OLD_SOURCES (BLOCK): a change in source
list; traffic sent from any of the associated source
addresses should now be filtered.

In response to a local action
changing the source list to
disallow previously allowed
sources

ptg999

 Section 9.4 Internet Group Management Protocol and Multicast Listener Discovery Protocol 457

The first two message types (0x01, 0x02) are known as current-state records and
are used to report the current filter state in response to a query. The next two
(0x03, 0x04) are known as filter-mode-change records, which indicate a change from
include to exclude mode or vice versa. The last two (0x05, 0x06) are known as
source-list-change records and indicate a change to the sources being handled in
either exclude or include mode. The last four types are also described more gener-
ally as state-change records or state-change reports. These are sent as a result of some
local state change such as a new application being started or stopped, or a running
application changing its group/source interests. Note that IGMP and MLD que-
ries/reports themselves are never filtered. MLD reports use a structure similar to
IGMP reports but accommodate larger addresses and use an ICMPv6 type code of
143 (see Chapter 8).

When receiving a query, group members do not respond immediately. Instead,
they set a random (bounded) timer to determine when to respond. During this
delay interval, processes may alter their group/source interests. Any such modi-
fications can be processed together before a timer expires to trigger the report. In
this way, once the timer does expire, the status of multiple groups can more likely
be merged into a single report, saving overhead.

The source address used for IGMP is the primary or preferred IPv4 address
of the sending interface. For MLD, the source address is a link-local IPv6 address.
One complication arises when a host is booting and attempting to determine its
own IPv6 address. During this time, it selects a potential IPv6 address to use and
executes the duplicate address detection (DAD) procedure (see Chapter 6) to deter-
mine if any other systems are already using this address. Because DAD involves
multicast, some source address must be assigned to outgoing MLD messages. This
is addressed by [RFC3590], which allows the unspecified address (::) to be used as
the source IPv6 address for MLD traffic during configuration.

9.4.2 IGMP and MLD Processing by Multicast Routers (“Multicast Router Part”)

In IGMP and MLD, the job of the multicast router is to determine, for each multi-
cast group, interface, and source list, whether at least one group member is pres-
ent to receive corresponding traffic. This is accomplished by sending queries and
building state describing the existence of such members based on the reports they
send. This state is soft state, meaning that it is cleared after a certain amount of
time if not refreshed. To build this state, multicast routers send IGMPv3 queries of
the form depicted in Figure 9-10.

The IGMP query message is very similar to the ICMPv6 MLD query we dis-
cussed in Chapter 8. In this case, the group (multicast) address is 32 bits in length
and the Max Resp Code field is 8 bits instead of 16. The Max Resp Code field encodes
the maximum amount of time the receiver of the query should delay before send-
ing a report, encoded in 100ms units for values below 128. For values above 127, the
field is encoded as shown in Figure 9-11.

ptg999

458 Broadcasting and Local Multicasting (IGMP and MLD)

This encoding provides for a possible range of (16)(8) = 128 to (31)(1024) =
31,744 (i.e., about 13s to 53 minutes). Using smaller values for the Max Resp Code
field allows for tuning the leave latency (the elapsed time from when the last group
member leaves to the time corresponding traffic ceases to be forwarded). Larger
values of this field reduce the traffic load of the IGMP messages generated by
members by increasing the likelihood of longer periods for reporting.

The remaining fields in a query include an Internet-style checksum across the
whole message, the address of the subject group, a list of sources, and the S, QRV,

Figure 9-10 The IGMPv3 query includes the multicast group address and optional list of sources.
General queries use a group address of 0 and are sent to the All Hosts multicast address,
224.0.0.1. The QRV value encodes the maximum number of retransmissions the sender
will use, and the QQIC field encodes the periodic query interval. Specific queries are
used before terminating traffic flow for a group or source/group combination. In this
case (and all cases with IGMPv2 or IGMPv1), the query is sent to the address of the
subject group.

Figure 9-11 The Max Resp Code field encodes the maximum time to delay responses in 100ms units.
For values above 127, an exponential value can be used to accommodate larger values.

ptg999

 Section 9.4 Internet Group Management Protocol and Multicast Listener Discovery Protocol 459

and QQIC fields we defined in Chapter 8 with MLD. In cases where the multicast
router wishes to know about interest in all multicast groups, the Group Address
field is set to 0 (such queries are called “general queries”). The S and QRV fields
are used for fault tolerance and retransmission of reports and are discussed in
Section 9.4.5. The QQIC field is the Querier’s Query Interval Code. This value is the
query sending period, in units of seconds and encoded using the same method as
the Max Resp Code field (i.e., a range from 0 to 31,744).

There are three variants of the query message that can be sent by a multicast
router: general query, group-specific query, and group-and-source-specific query. The
first form is used by the multicast router to update information regarding any
multicast group, and for such queries the group list is empty. Group-specific que-
ries are similar to general queries but are specific to the identified group. The last
type is essentially a group-specific query with a set of sources included. The spe-
cific queries are sent to the destination IP address of the subject group, as opposed
to general queries that are sent to the All Systems multicast address (for IPv4) or
the link-scope All Nodes multicast address for IPv6 (ff02::1).

The specific queries are sent in response to state-change reports in order to
verify that it is appropriate for the router to take some action (e.g., to ensure that no
interest remains in a particular group before constructing a filter). When receiv-
ing either filter-mode-change records or source-list-change records, the multicast
router arranges to add new traffic sources and may be able to filter out traffic from
certain sources. In cases where the multicast router is prepared to begin filter-
ing out traffic that was flowing previously, it uses the group-specific query and
group-and-source-specific query first. If these queries elicit no reports, the router
is free to begin filtering out the corresponding traffic. Because such changes can
significantly affect the flow of multicast traffic, state-change reports and specific
queries are retransmitted (see Section 9.4.5).

9.4.3 Examples

Figure 9-12 shows a packet trace containing a combination of IGMPv2, IGMPv3,
MLDv1, and MLDv2 protocols, all working on the same subnet. The trace is 16
packets in length (the first 10 are shown in Figure 9-12) and begins with an MLD
query from fe80::204:5aff:fe9f:9e80, the link-local IPv6 address of the querier.
Recall that MLD and MLDv2 use the same query format. This same system also
acts as an IGMP querier using the IPv4 source address 10.0.0.1.

In Figure 9-12, the MLD query (packet 1) is sent by the querier using its link-
local IPv6 address fe80::204:5aff:fe9f:9e80 to the multicast address ff02::1 (All
Nodes). The MAC-layer addresses are 00:04:5a:9f:9e:80 and 33:33:00:00:00:01,
respectively. Here we can see how an IPv6 link-local unicast address relates to the
corresponding MAC address, and also how the All Nodes address is mapped to
the MAC address using prefix 33:33, as we discussed earlier. The IPv6 Hop Limit
field is set to 1, as MLD messages are applicable only to the local link. The IPv6
Payload Length field indicates 36 bytes, which includes 8 bytes holding the MLD

ptg999

460 Broadcasting and Local Multicasting (IGMP and MLD)

form of Router Alert (a Hop-by-Hop option), 4 bytes of ICMPv6 header informa-
tion, and 24 bytes to hold the MLD data itself. The Type, Code, Checksum, and Max
Response fields of the MLD message together require 8 bytes of the 24; 16 more
are used to hold the Multicast Address field (set to 0/unknown or the unspecified
address to refer to all groups). The S bit field, QRV, and QQIC fields together use
2 more bytes, and the last 2 hold the number of sources identified, which in this
case is 0. In this example, we see default values for all MLD information: 10s for
the maximum response delay, QRV = 2, and 125s for the query interval. The next
message (packet 2, Figure 9-13) is the response for the query.

Figure 9-13 is an MLDv2 report indicating interest in the multicast address
ff02::c (the link-local multicast address for SSDP). Interest is indicated in such
reports using an exclude mode report containing an empty source list. The next
few packets of the trace show the use of MLDv1 (still used by some systems).

Figure 9-12 IGMPv2, IGMPv3, MLDv1, and MLDv2, all working on the same subnet. The highlighted packet
is an MLD query.

ptg999

 Section 9.4 Internet Group Management Protocol and Multicast Listener Discovery Protocol 461

Packets 3 through 5 in Figure 9-14 are all MLDv1 reports. Only packet 3 is
shown here, as the others are similar (they differ only in their respective destina-
tion IPv6 addresses). As with MLDv2, each report uses the same structure for the
IPv6 base and extension headers, but the destination address of the report is the
multicast address of interest, ff02::2:7408:ff56. Note that at the MAC layer, this des-
tination address is mapped to 33:33:74:08:ff:56. The next portion of the trace, start-
ing with packet 6 in Figure 9-15, shows how MLDv2 can report multiple interests.

Figure 9-13 An MLDv2 listener report message expresses interest in the group ff02::c (the link-local scope
multicast address for SSDP) by using an exclude-type message with no sources.

Figure 9-14 The MLDv1 report message expresses an interest in the multicast address ff02::2:7408:ff56, which
is also the destination IPv6 address.

ptg999

462 Broadcasting and Local Multicasting (IGMP and MLD)

Packet 6 in Figure 9-15 is the first MLDv2 report indicating interest in more
than one multicast address. In this case, it is from fe80::204:5aff:fe9f:9e80 (the
MLD querier) and contains information for five groups: ff02::16 (all MLDv2-
capable routers), ff02::1:ff00:0 (first solicited-node address), ff02::2 (All Routers),
ff02::202 (ONC RPC, a form of remote procedure call), and ff02::1:ff9f:9e80 (its own
solicited-node group). Packet 7 (not detailed) is an MLDv2 report indicating that
host fe80::fd26:de93:5ab7:405a has interest in address ff02::1:ffb7:405a, its solicited-
node address. We now move on to the non-IPv6 traffic in the trace as shown in
Figure 9-16.

Packet 8 in Figure 9-16 is the first IPv4 packet of the trace, and it is an IGMPv3
general query from the querier 10.0.0.1. The packet is sent to the All Nodes
address, 224.0.0.1, and this multicast address is mapped to the link-layer address

Figure 9-15 This MLDv2 report expresses interest in five multicast groups. Each multicast address
record reports interest in a single group by indicating that no sources are to be excluded
(i.e., mode is exclude with no associated sources).

ptg999

 Section 9.4 Internet Group Management Protocol and Multicast Listener Discovery Protocol 463

01:00:5e:00:00:01. The TTL is set to 1, as IGMP messages are not forwarded
through routers. The IPv4 header is 24 bytes, which is 4 bytes larger than a basic
IPv4 header in order to hold the 4-byte Router Alert option. This particular packet
is an IGMPv3 membership query, with the default maximum response time of 10s
and query interval of 125s. The multicast address (group) identified is 0.0.0.0, so
this is a general query requesting knowledge about all multicast groups in use.
Packet 9 (not detailed but similar to packets 7 and 2) is an interspersed MLDv2
response, indicating interest in the multicast address ff02::1:3 (LLMNR). The last
seven packets are shown in Figure 9-17.

Packet 10 in Figure 9-17 is an IGMPv2 membership report sent from 10.0.0.14
(a network-attached printer) to 224.0.1.60, which is a discovery service used for
equipment manufactured by Hewlett-Packard. As with MLDv1, IGMPv2 mes-
sages are sent to the IP address of the group being referenced. Such messages have
TTL = 1, include the Router Alert option, and are 32 bytes in length (24 bytes of
IPv4 header plus 8 bytes of IGMP report information).

Figure 9-16 An IGMPv3 general membership query is sent to the All Nodes multicast address,
224.0.0.1. Its IPv4 header contains a DSCP value of 0x30 (class selector 6) and the IPv4
Router Alert option.

ptg999

464 Broadcasting and Local Multicasting (IGMP and MLD)

The remaining packets are not detailed as they are similar to other packets we
have already seen in detail. Packet 11 reports that the same system, 10.0.0.14, wishes
to join the group 239.255.255.250 (part of UPnP). Packet 12 is an MLDv2 report indi-
cating that the host fe80::208:74ff:fe93:c83c is interested in the multicast addresses
ff02::202 (ONC RPC) and ff02::1:ff93:f83c (its solicited-node address). Packets 13
and 14 are IGMPv3 reports indicating that the host with IPv4 address 10.0.0.57 has
interest in groups 239.255.255.250 and 224.0.0.252 (LLMNR), respectively. The last
two packets indicate that hosts 10.0.0.13 and 10.0.0.14 wish to join group 224.0.0.251
(mDNS; see Chapter 11). They are IGMPv3 and IGMPv2 reports, respectively.

9.4.4 Lightweight IGMPv3 and MLDv2

As we have seen, hosts maintain filter state about what multicast groups their
applications and system software are interested in. With IGMPv3 or MLDv2 they
also maintain a list of sources that are excluded or included. Multicast routers
maintain similar state in order to know what traffic needs to be forwarded on to
a link for receipt by interested hosts. The reverse is also true: a multicast router
can forgo forwarding multicast traffic sent from a host that is in every receiver’s
exclude list. Practical experience has shown, however, that applications rarely need
to block specific sources, and support for this function is somewhat complicated.

Figure 9-17 Packet 10 is detailed along with the last seven packets, which are a mix of IGMPv2 and IGMPv3
membership reports (except packet 12). IGMPv2 reports do not contain source-specific
information.

ptg999

 Section 9.4 Internet Group Management Protocol and Multicast Listener Discovery Protocol 465

However, hosts often wish to include a specific source associated with a group,
especially when SSM is in use. As a consequence, simplified versions of IGMPv3
and MLDv2, called Lightweight IGMPv3 (LW-IGMPv3) and Lightweight MLDv2
(LW-MLDv2), respectively, have been defined in [RFC5790].

LW-IGMPv3 and LW-MLDv2 are subsets of their progenitors. They support
both ASM and SSM and use a message format compatible with IGMPv3 and
MLDv2, but they lack the specific source-blocking function. Instead, the only
exclude mode supported is the case with no sources listed, which corresponds to a
conventional group join in all versions of IGMP or MLD (e.g., as with Figure 9-13).
For a multicast router, this means that the only state required is to keep track of
which groups are of interest, and possibly which sources are of interest. It does not
need to keep track of any individual sources that are not desired.

Table 9-2 shows the modifications in message types used in the lightweight
variants of IGMPv3 and MLDv2. In this table, the empty set notation ({}) indicates
a null source address list. For example, TO_EX({}) indicates a message of type 0x04
indicating a change to EXCLUDE mode with no associated sources. The notation
(*, G) indicates group G associated with any sources, and the notation (S, G) indi-
cates group G associated with specific source S.

Table 9-2 Comparison of operations of full versions of IGMPv3 and MLDv2 and their “lightweight”
counterparts, LW-IGMPv3 and LW-MLDv2

Full Lightweight When Sent

IS_EX({}) TO_EX({}) Query response for (*, G) join
IS_EX(S) N/A Query response for EXCLUDE (S, G) join
IS_IN(S) ALLOW(S) Query response for INCLUDE (S, G) join
ALLOW(S) ALLOW(S) INCLUDE (S, G) join
BLOCK(S) BLOCK(S) INCLUDE (S, G) leave
TO_IN(S) TO_IN(S) Change to INCLUDE (S, G) join
TO_IN({}) TO_IN({}) (*, G) leave
TO_EX(S) N/A Change to EXCLUDE (S, G) join
TO_EX({}) TO_EX({}) (*, G) join

Compare the values in Table 9-2 with those in Table 9-1. Notably, the non-null
EXCLUDE modes are not used and the state indicator types have been removed. In
addition, the current-state records (IS_EX and IS_EN) have been removed for com-
pliant hosts. Lightweight multicast routers are still supposed to be able to receive
such messages but may treat them as though they always contain a null source list.

9.4.5 IGMP and MLD Robustness

There are two main concerns with the robustness and reliability of the IGMP and
MLD protocols. Failures of IGMP or MLD, or multicast more generally, can lead

ptg999

466 Broadcasting and Local Multicasting (IGMP and MLD)

to either the distribution of unwanted multicast traffic or the inability to deliver
desired multicast traffic. The types of failures handled by IGMP and MLD include
the failure of a multicast router and the loss of protocol messages.

The potential failure of a multicast router is handled by allowing more than
one multicast router to operate on the same link. As mentioned previously, in this
configuration the router with the lowest IP address is elected the “querier.” The
querier is responsible for sending general and specific queries to determine the
current state of hosts on the subnet. Other (non-querier) routers monitor the pro-
tocol messages, because they are also group members or multicast-promiscuous
listeners, and a different router is able to step in as the querier should the current
querier fail. To make this work properly, all the multicast routers attached to the
same link need to coordinate their queries, responses, and some of their configu-
ration information (primarily timers).

The first type of coordination that multiple multicast routers accomplish is
querier election. Each multicast router can hear the others’ queries. When a multi-
cast router starts, it believes itself to be the querier and sends a general query to
determine what groups are active on a subnet. When a router receives a multi-
cast query from another router, it compares the source IP address with its own. If
the source IP address in the received query is smaller than its own, the receiving
router enters a standby mode. As a result, the router with the lowest IP address is
deemed the winner and becomes the single querier responsible for sending que-
ries to its attached subnet. Routers that are standing by set timers, and if they do
not see more queries within a specified period of time (called the other-querier-
present timer), they become queriers again.

The querying multicast router sends periodic general queries to determine
which groups and hosts are of interest to the hosts on the same subnet. The rate
at which these queries are sent is determined by the querier’s query interval, a con-
figurable timer parameter. When more than one multicast router operates on the
same subnet, the interval of the current querier is adopted by all other routers.
In this way, if the current querier fails, a switch to an alternative multicast router
does not perturb the periodic query rate.

A multicast router that has reason to believe a group (or source) is no longer
of interest sends specific queries prior to discontinuing the forwarding of the cor-
responding multicast traffic (or informing the multicast routing protocol). These
queries are sent with a different interval (called the Last Member Query Time or
LMQT) from that of general queries. The LMQT is typically lower (shorter) than
the query interval and governs the leave latency. A complication can arise when
multiple multicast routers operate on the same subnet, hosts wish to leave groups
(or drop sources), and protocol messages are lost.

To help guard against lost protocol messages, some messages are retransmit-
ted up to a small number of times (determined by the querier robustness variable
or QRV). The QRV value is encoded in the QRV field included in queries, and non-
querying routers adopt the querier’s QRV as their own. Once again, this helps to
keep consistency if a change of querier occurs. The types of messages protected

ptg999

 Section 9.4 Internet Group Management Protocol and Multicast Listener Discovery Protocol 467

with retransmission include state-change reports and specific queries. Other mes-
sages (current-state reports) do not typically result in a change of forwarding
state but instead only involve refreshing soft state by adjusting timers, so they are
not protected using retransmission. When retransmissions do occur, the retrans-
mission interval of reports is chosen at random uniformly between 0 and a con-
figurable parameter called the Unsolicited Report Interval, and the retransmission
interval for queries is periodic (with the interval based on the LMQT). Links that
are expected to be more prone to loss (e.g., wireless links) may require increasing
the robustness variable to increase robustness to packet loss at the expense of gen-
erating additional traffic.

To help keep multicast routers synchronized when handling specific queries,
the S bit field in the query message indicates that router-side (timer) processing
should be suppressed. When a specific query is sent by the querier, a number
(QRV) of retransmissions are scheduled. In the first query sent, the S bit field is
clear. Upon transmission or receipt of such queries, a multicast router lowers its
timer for subsequent retransmissions to the LMQT. At this point, it is possible for
an interested host to provide a report indicating its continued interest in a group
or source. If no messages are lost, the report causes each multicast router to reset
its timer to its ordinary value and continue without change. However, the sched-
uled retransmissions are not abandoned. Instead, retransmissions of the specific
query are sent with the S bit field set, which causes receiving routers to not lower
their timers to the LMQT.

The reason for keeping query retransmissions even after the receipt of a report
expressing interest is so that the timeouts for groups across all multicast routers
can be made consistent. The purpose of the S bit field, then, is to allow specific que-
ries to be (re)sent, but to avoid lowering the timer to LMQT because a legitimate
report expressing interest may have been received, even if it or the initial query
was missed by the non-querier router(s). Without this capability, retransmitted
specific queries would cause non-querier routers to lower their timers incorrectly
(because a legitimate report indicating interest had already been received).

9.4.6 IGMP and MLD Counters and Variables

IGMP and MLD are soft-state protocols that also deal with failures of routers, loss
of protocol messages, and interoperability with earlier protocol versions. Much
of the machinery to enable these capabilities is based on timers that trigger state
changes and protocol actions. Table 9-3 provides a summary of all of the configu-
ration parameters and state variables used by IGMP and MLD.

In Table 9-3, it is clear that MLD and IGMP share most of their timers and
configuration parameters, although in some cases the terminology is different.
Some values, those indicated as “cannot be changed,” are set as a function of other
values and are not independently changeable.

ptg999

468 Broadcasting and Local Multicasting (IGMP and MLD)

9.4.7 IGMP and MLD Snooping

IGMP and MLD manage the flow of IP multicast traffic among routers. To opti-
mize traffic flow even further, it is possible for layer 2 switches (that would not
ordinarily process layer 3 IGMP or MLD messages) to become aware of whether

Table 9-3 Parameters and timer values for IGMP and MLD. Most values can be altered as configuration
parameters in an implementation.

Name and Meaning
Default Value
(Restrictions)

Robustness Variable (RV)—arranges for up to RV - 1 retransmissions for some
state-change reports/queries.

2 (must not be 0;
should not be 1)

Query Interval (QI)—time between general queries sent by the current
querier.

125s

Query Response Interval (QRI)—the maximum response time to wait for
generation of reports. This value is encoded to form the Max Response field.

10s

Group Membership Interval (GMI) in IGMP and Multicast Address Listening
Interval (MALI) in MLD—the amount of time that must pass without seeing a
report for a multicast router to declare that there is no remaining interest in a
group or source/group combination.

RV * QI + QRI
(cannot be
changed)

Other Querier Present Interval in IGMP and Other Querier Present Timeout
in MLD—the amount of time that must pass without seeing a general request
for a non-querier multicast router to declare that there is no longer an active
querier.

RV * QI + (0.5) *
QRI (cannot be
changed)

Startup Query Interval—the interval between general queries used by a
querier just starting up.

(0.25) * QI

Startup Query Count—the number of general queries sent by a querier just
starting up.

RV

Last Member Query Interval (LMQI) in IGMP and Last Listener Query
Interval (LLQI) in MLD—the maximum response time to wait for generation
of reports responding to specific queries. This value is encoded to form the
Max Response field in specific queries.

1s

Last Member Query Count in IGMP and Last Listener Query Count in MLD—
the number of specific queries to send without receiving a response to declare
that there is no longer an interested host.

RV

Unsolicited Report Interval—the time between retransmissions of a host’s
initial state-change report.

1s

Older Version Querier Present Timeout—the amount of time a host waits
without receiving an IGMPv1 or IGMPv2 request message to revert back to
IGMPv3.

RV * QI + QRI
(cannot be
changed)

Older Host Present Interval in IGMP and Older Version Host Present Timeout
in MLD—the amount of time a querier waits without receiving an IGMPv1 or
IGMPv2 report message to revert back to IGMPv3.

RV * QI + QRI
(cannot be
changed)

ptg999

Section 9.5 Attacks Involving IGMP and MLD 469

certain multicast traffic flows are of interest or not by looking at layer 3 informa-
tion. This capability is indicated by a switch feature known as IGMP (MLD) snoop-
ing [RFC4541] and is supported by many switch vendors. Without IGMP snooping,
switches typically send link-layer multicast traffic by broadcasting it along all the
branches of the spanning tree formed among switches. This can be wasteful for
the reasons we described earlier. IGMP (MLD)-aware (sometimes called IGS for
IGMP snooping) switches monitor IGMP (MLD) traffic between hosts and mul-
ticast routers and are able to keep track of which ports require which particu-
lar multicast flows in much the same way as a multicast router does. Doing so
can substantially affect the amount of unwanted multicast traffic being carried
through a switched network.

There are a few details that complicate the straightforward implementation of
IGMP/MLD snooping. In IGMPv3 and MLDv2, reports are generated in response
to queries. However, in earlier versions of these protocols, a report generated by
one host and heard by others that are group members on the same link cause the
additional members to suppress their reports. This can lead to a problem if IGS
switches were to forward reports to all attached interfaces, as hosts on some LAN
(VLAN) segments with group members may not be noticed. Thus, IGS switches
supporting earlier versions of IGMP and MLD avoid broadcasting reports out of
all interfaces. Instead, they forward reports only to the nearest multicast router.
Determining the location of multicast routers is made easier if Multicast Router
Discovery (MRD) is used (see Chapter 8).

Another issue of concern when implementing snooping relates to the differ-
ence in message formats between IGMP and MLD. Because MLD is encapsulated
as part of ICMPv6 instead of its own separate protocol, MLD-snooping switches
must process ICMPv6 information and be careful to separate the MLD messages
from the others. In particular, other ICMPv6 traffic must be allowed to flow freely
for the various other functions for which ICMPv6 is used (see Chapter 8).

Other nonstandard proprietary protocols have been implemented to further
optimize IP multicast traffic carried through layer 2 devices. For example, Cisco
has proposed the Router-port Group Management Protocol (RGMP) [RFC3488]. In
RGMP, a mechanism is employed so that not only do hosts report their groups
and sources of interest (as in IGMP/MLD), but multicast routers also do the same.
This information is used to optimize layer 2 forwarding of multicast traffic among
multicast routers (not just hosts).

9.5 Attacks Involving IGMP and MLD

Because IGMP and MLD are signaling protocols that control the flow of multicast
traffic, attacks using these protocols primarily are either DoS attacks or resource
utilization attacks. There have also been attacks that exploit buggy implementa-
tion of the protocols, to either disable hosts or cause them to execute code provided
by an attacker.

ptg999

470 Broadcasting and Local Multicasting (IGMP and MLD)

A simple DoS attack can be mounted by sending IGMP or MLD to subscribe
to a large number of high-bandwidth multicast groups. Doing so can cause band-
width exhaustion, leading to a denial of service. A more complex attack can be
mounted by generating requests using a relatively low IP address. In this case, the
attacker is elected to be the querier for the link and can advertise its own robust-
ness variable, query interval, and maximum response time that will be adopted
by the other multicast routers. If the maximum response time is very small, hosts
are induced to send reports rapidly, using CPU resources.

Several attacks have been carried out by exploiting implementation bugs.
Fragmented IGMP packets have been used to induce crashes in certain operat-
ing systems. More recently, specially crafted IGMP or MLD packets using SSM
information have been used to induce remote code execution bugs. Overall, the
impact of IGMP or MLD vulnerabilities tends to be somewhat less than with other
protocols, as multicast tends to be supported only in the local area. As a result,
remote attackers lacking on-link access to the target LAN are likely to be limited.

9.6 Summary

Broadcasting, generically, means sending traffic to all nodes on a network. In the
context of TCP/IP, broadcasting means sending a packet to all hosts in a network
or subnetwork, typically the locally attached network. Multicasting refers to send-
ing traffic to only a subset of nodes in a network. In TCP/IP, multicasting means
sending a packet to a subset of the interested hosts in the network. The method
for selecting the subset is dependent on the scope of the multicast traffic and the
interest of receivers. In many applications multicasting is better than broadcast-
ing, since multicasting imposes less overhead on hosts that are not participating
in the communication. Broadcasting is supported in IPv4 but not in IPv6. Broad-
casting and multicasting can be used to avoid having to send the same content to
multiple destinations by repeatedly using unicast connections. It can also be used
to discover servers that are otherwise unknown. Multicasting is a more complex
capability than broadcasting, as state must be maintained to determine which
hosts are interested in which groups.

In IPv4 there are two types of broadcast addresses: limited (255.255.255.255)
and directed. The directed broadcast address is based on the network prefix and
its length and is formed by creating a 32-bit address whose initial bits are equal
to the network prefix and whose low-order bits are set to 1. It is usually preferable
to use directed broadcasts instead of the limited broadcast address. Selection of
which interfaces are used to send outgoing broadcast traffic is operating-system-
dependent. A typical case is to use one primary interface for limited broadcast
traffic and use the information present in the host’s forwarding table to select the
interface for outgoing directed broadcasts and multicasts.

Multicasting in IP supports a model whereby processes interested in receiving
multicast packets subscribe to a particular group (using an IP address) on a set of

ptg999

 Section 9.7 References 471

interfaces. Transmitting multicast IPv4 traffic on multicast-capable IEEE link-layer
networks (such as Ethernet) involves combining the low-order 23 bits of the group
address with the prefix 01:00:5e to form a MAC-layer destination address used
for link-layer multicasting. Transmitting IPv6 multicast traffic involves combining
the lower-order 32 bits of the group address with the 16-bit prefix 33:33 to form
a MAC-layer destination address. These mappings are nonunique, meaning that
more than one IPv4 or IPv6 group address uses the same MAC-layer address. As a
consequence, host software performs filtering of incoming traffic to remove traffic
for unwanted groups.

The IGMP and MLD protocols are used with IPv4 and IPv6, respectively, in
supporting multicast packet delivery. Multicast routers send query messages to
nearby hosts in order to determine which hosts are interested in which groups,
and (for IGMPv3 and MLDv2) which senders are of interest to these groups. Hosts
respond by sending reports indicating the groups of interest. MLD is part of the
ICMPv6 protocol, whereas IGMP is an independent protocol layered above IPv4
(like ICMP). Some switches are equipped to “snoop” IGMP and MLD traffic in
order to avoid sending multicast IP traffic along spanning tree branches where
there are no interested receiving hosts. IGMP and MLD have a “robustness vari-
able” that can be set to enable retransmissions of important messages on networks
prone to loss.

Because IGMP and MLD are both signaling protocols that control the flow of
other traffic, attacks against them tend to cause extra resource consumption, pos-
sibly leading to denial of service. Other forms of attacks that exploit implementa-
tion bugs have also been seen and have been used to cause execution of unwanted
code provided by an attacker. As MLD (and MLDv2) are relatively new in terms of
deployment, it is likely that additional exploits will ultimately be found, but these
protocols are limited in operation to a single link.

9.7 References

[CK11] S. Cheshire and M. Krochmal, “Multicast DNS,” Internet draft-cheshire-
dnsext-multicastdns, work in progress, Feb. 2011.

[EGW02] B. Edwards, L. Giuliano, and B. Wright, Interdomain Multicast Routing:
Practical Juniper Networks and Cisco Systems Solutions (Addison-Wesley, 2002).

[GCLG99] Y. Goland, T. Cai, P. Leach, and Y. Gu, “Simple Service Discovery
Protocol/1.0 Operating without an Arbiter,” Internet draft-cai-ssdp-v1-03.txt
(expired), Oct. 1999.

[RFC1112] S. Deering, “Host Extensions for IP Multicasting,” Internet RFC 1112/
STD 0005, Aug. 1989.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts,” Internet RFC 1122/
STD 0003, Oct. 1989.

ptg999

472 Broadcasting and Local Multicasting (IGMP and MLD)

[RFC2644] D. Senie, “Changing the Default for Directed Broadcasts in Routers,”
Internet RFC 2644/BCP 0034, Aug. 1999.

[RFC3376] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan, “Inter-
net Group Management Protocol, Version 3,” Internet RFC 3376, Oct. 2002.

[RFC3488] I. Wu and T. Eckert, “Cisco Systems Router-port Group Management
Protocol (RGMP),” Internet RFC 3488 (informational), Feb. 2003.

[RFC3590] B. Haberman, “Source Address Selection for the Multicast Listener
Discovery (MLD) Protocol,” Internet RFC 3590, Sept. 2003.

[RFC3810] R. Vida and L. Costa, eds., “Multicast Listener Discovery Version 2
(MLDv2) for IPv6,” Internet RFC 3810, June 2004.

[RFC4541] M. Christensen and K. Kimball, “Considerations for Internet Group
Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping
Switches,” Internet RFC 4541 (informational), May 2006.

[RFC4601] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Proto-
col Independent Multicast—Sparse Mode (PIM-SM): Protocol Specification
(Revised),” Internet RFC 4601, Aug. 2006.

[RFC4604] H. Holbrook, B. Cain, and B. Haberman, “Using Internet Group Man-
agement Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Protocol
Version 2 (MLDv2) for Source-Specific Multicast,” Internet RFC 4604, Aug. 2006.

[RFC4607] H. Holbrook and B. Cain, “Source-Specific Multicast for IP,” Internet
RFC 4607, Aug. 2006.

[RFC4795] B. Aboba, D. Thaler, and L. Esibov, “Link-Local Multicast Name Reso-
lution (LLMNR),” Internet RFC 4795 (informational), Jan. 2007.

[RFC5015] M. Handley, I. Kouvelas, T. Speakman, and L. Vicisano, “Bidirectional
Protocol Independent Multicast (BIDIR-PIM),” Internet RFC 5015, Oct. 2007.

[RFC5214] F. Templin, T. Gleeson, and D. Thaler, “Intra-Site Automatic Tunnel
Addressing Protocol (ISATAP),” Internet RFC 5214 (informational), Mar. 2008.

[RFC5579] F. Templin, ed., “Transmission of IPv4 Packets over Intra-Site Auto-
matic Tunnel Addressing Protocol (ISATAP) Interfaces,” Internet RFC 5579 (infor-
mational), Feb. 2010.

[RFC5790] H. Liu, W. Cao, and H. Asaeda, “Lightweight Internet Group Manage-
ment Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Version 2
(MLDv2) Protocols,” Internet RFC 5790, Feb. 2010.

ptg999

473

10

User Datagram Protocol (UDP)
and IP Fragmentation

10.1 Introduction

UDP is a simple, datagram-oriented, transport-layer protocol that preserves mes-
sage boundaries. It does not provide error correction, sequencing, duplicate elimi-
nation, flow control, or congestion control. It can provide error detection, and it
includes the first true end-to-end checksum at the transport layer that we have
encountered. This protocol provides minimal functionality itself, so applications
using it have a great deal of control over how packets are sent and processed.
Applications wishing to ensure that their data is reliably delivered or sequenced
must implement these protections themselves. Generally, each UDP output opera-
tion requested by an application produces exactly one UDP datagram, which
causes one IP datagram to be sent. This is in contrast to a stream-oriented protocol
such as TCP (see Chapter 15), where the amount of data written by an application
may have little relationship to what actually gets sent in a single IP datagram or
what is consumed at the receiver.

[RFC0768] is the official specification of UDP, and it has remained as a stan-
dard without significant revisions for more than 30 years. As mentioned, UDP
provides no error correction: it sends the datagrams that the application writes
to the IP layer, but there is no guarantee that they ever reach their destination. In
addition, there is no protocol mechanism to prevent high-rate UDP traffic from
negatively impacting other network users. Given this lack of reliability and pro-
tection, we might be tempted to conclude that there are no benefits to using UDP
at all. This is not true, however. Because of its connectionless character, it has less
overhead than other transport protocols. In addition, broadcast and multicast
operations (see Chapter 9) are much more straightforward using a connectionless
transport such as UDP. Finally, the ability of an application to choose its own unit
of retransmission can be an important consideration (see [CT90], for example).

ptg999

474 User Datagram Protocol (UDP) and IP Fragmentation

Figure 10-1 shows the encapsulation of a UDP datagram as a single IPv4 data-
gram. The IPv6 encapsulation is similar, but other details differ slightly and we
discuss them in Section 10.5. The IPv4 Protocol field has the value 17 to indicate
UDP. IPv6 uses the same value in the Next Header field. Later in this chapter we
will examine what happens when the size of the UDP datagram exceeds the MTU
size and the datagram must be fragmented into more than one IP-layer packet.

Figure 10-1 Encapsulation of a UDP datagram in a single IPv4 datagram (the typical case with no IPv4
options). The IPv6 encapsulation is similar; the UDP header follows the header chain.

10.2 UDP Header

Figure 10-2 shows a UDP datagram, including the payload and UDP header (which
is always 8 bytes in size).

Port numbers act as mailboxes and help a protocol implementation identify the
sending and receiving processes (see Chapter 1). They are purely abstract—they do
not correspond to any physical entity on a host. In UDP, port numbers are positive
16-bit numbers, and the source port number is optional; it may be set to 0 if the
sender of the datagram never requires a reply. Transport protocols such as TCP,
UDP, and SCTP [RFC4960] use the destination port number to help demultiplex
incoming data from IP. Because IP demultiplexes the incoming IP datagram to a
particular transport protocol based on the value of the Protocol field in the IPv4
header or Next Header field in the IPv6 header, this means that the port numbers
can be made independent among the transport protocols. That is, TCP port num-
bers are used only by TCP, and the UDP port numbers only by UDP, and so on.
A straightforward consequence of this separation is that two completely distinct
servers can use the same port number and IP address, as long as they use different
transport protocols.

Note

Despite this independence, if a well-known service is provided (or can conceiv-
ably be provided) by both TCP and UDP, the port number is normally allocated
to be the same for both transport protocols. This is purely for convenience and is
not required by the protocols. See [IPORT] for details on how port numbers are
formally assigned.

ptg999

Section 10.3 UDP Checksum 475

Referring to Figure 10-2, the UDP Length field is the length of the UDP header
and the UDP data in bytes. The minimum value for this field is 8 except when
UDP is used with IPv6 jumbograms (see Section 10.5). Sending a UDP datagram
with 0 bytes of data is acceptable, although rare. Note that the UDP Length field
is redundant; the IPv4 header contains the datagram’s total length (see Chapter
5), and the IPv6 header contains the payload length. The length of a UDP/IPv4
datagram is then the total length of the IPv4 datagram minus the length of the
IPv4 header. A UDP/IPv6 datagram’s length is the value of the Payload Length field
contained in the IPv6 header minus the lengths of any extension headers (unless
jumbograms are being used). In either case, the UDP Length field should match the
length computed from the IP-layer information.

10.3 UDP Checksum

The UDP checksum is the first end-to-end transport-layer checksum we have
encountered (ICMP has an end-to-end checksum but is not a true transport proto-
col). It covers the UDP header, the UDP data, and a pseudo-header (defined later in
this section). It is computed at the initial sender and checked at the final destination.

Figure 10-2 The UDP header and payload (data) area. The Checksum field is end-to-end and is
computed over the UDP pseudo-header, which includes the Source and Destination IP
Address fields from the IP header. Thus, any modification made to those fields (e.g., by
NAT) requires a modification to the UDP checksum.

ptg999

476 User Datagram Protocol (UDP) and IP Fragmentation

It is not modified in transit (except when it passes through a NAT, as described in
Chapter 7). Recall that the checksum in the IPv4 header covers only the header
(i.e., it does not cover any data in the IP packet) and is recomputed at each IP hop
(required because the IPv4 TTL field is decremented by routers when the data-
gram is forwarded). Transport protocols (e.g., TCP, UDP) use checksums to cover
their headers and data. With UDP, the checksum is optional (although strongly
suggested), while with the others it is mandatory. When UDP is used with IPv6,
computation and use of the checksum are mandatory because there is no header
checksum at the IP layer. To provide error-free data to applications, a transport-
layer protocol such as UDP must always compute a checksum or use some other
error detection mechanism before delivering the data to a receiving application.

Although the basics for calculating the UDP checksum are similar to what we
described in Chapter 5 for the general Internet checksum (the one’s complement
of the one’s complement sum of 16-bit words), there are two small special details.
First, the length of the UDP datagram can be an odd number of bytes, whereas
the checksum algorithm adds 16-bit words (always an even number of bytes). The
procedure for UDP is to append a (virtual) pad byte of 0 to the end of odd-length
datagrams, just for the checksum computation and verification. This pad byte is
not actually transmitted and is thus called “virtual” here.

The second detail is that UDP (as well as TCP) computes its checksum over a
12-byte pseudo-header derived (solely) from fields in the IPv4 header or a 40-byte
pseudo-header derived from fields in the IPv6 header. This pseudo-header is also
virtual and is used only for purposes of the checksum computation (at both the
sender and the receiver). It is never actually transmitted. This pseudo-header
includes the source and destination addresses and Protocol or Next Header field
(which should contain the value 17) from the IP header. Its purpose is to let the
UDP layer verify that the data has arrived at the correct destination (i.e., that IP
has not accepted a misaddressed datagram, and that IP has not given UDP a data-
gram that is for another transport protocol). Figure 10-3 shows what is covered
when computing the UDP checksum, including the pseudo-header along with the
UDP header and payload.

Note

The careful reader will note that this causes a so-called layering violation. That
is, the UDP protocol (transport layer) is directly processing bits “owned” by IP
(network layer). While true, it is of only minor consequence to protocol implemen-
tations, which in general have IP-layer information readily available when data
is passed to (or from) UDP. It is of far greater concern for NATs (see Chapter 7),
especially if UDP datagrams are fragmented.

Figure 10-3 shows a datagram with an odd data length, requiring a pad byte
for the checksum computation. Note that the length of the UDP datagram appears
twice in the checksum computation. If the value of the calculated checksum

ptg999

Section 10.3 UDP Checksum 477

happens to be 0x0000, it is stored in the header as all 1 bits (0xFFFF), which is
equivalent in one’s complement arithmetic (see Chapter 5). Upon receipt, a Check-
sum field value of 0x0000 indicates that the sender did not compute a checksum.
If the sender did compute a checksum and the receiver detects a checksum error,
the UDP datagram is silently discarded. No error message is generated, although
some statistical counts may be updated. (This is what happens if an IPv4 header
checksum error is detected.)

Despite UDP checksums being optional in the original UDP specification,
they are currently required to be enabled on hosts by default [RFC1122]. During
the 1980s some computer vendors turned off UDP checksums by default to speed

Figure 10-3 Fields used in computing the checksum for UDP/IPv4 datagrams, including the
pseudo-header, the UDP header, and data. If the data is not an even number of bytes, it
is padded with one 0 byte for purposes of computing the checksum. The pseudo-header
and any pad bytes are not transmitted with the datagram.

ptg999

478 User Datagram Protocol (UDP) and IP Fragmentation

up their implementation of Sun’s Network File System (NFS), which uses UDP.
While this might not cause problems in many cases because of the presence of
layer 2 CRC protection (which is stronger than the Internet checksum; see Chapter
3), it is considered bad form (and a violation of the RFCs) to disable checksums
by default. Early experience in the Internet revealed that when datagrams pass
through routers, all bets are off with respect to their correctness. Believe it or not,
there have been routers with software and hardware bugs that have modified bits
in the datagrams being forwarded. These errors are undetectable in a UDP data-
gram if the end-to-end UDP checksum is disabled. Also realize that some older
data-link protocols (e.g., serial line IP, or SLIP) do not have any form of data-link
checksum, thereby leaving open the possibility that IP packets could be undetect-
ably modified unless another checksum is employed.

Note

[RFC1122] requires that UDP checksums be enabled by default. It also states that
an implementation must verify a received checksum if the sender calculated one
(i.e., if the received checksum is not 0).

Given the structure of the pseudo-header, it is clear that when a UDP/IPv4 data-
gram passes through a NAT, not only is the IP-layer header checksum modified,
but the UDP pseudo-header checksum must be appropriately modified because
the IP-layer addressing and/or UDP-layer port numbers may have changed. NATs
therefore routinely perform “layering violations” by modifying multiple layers of
protocol within packets at the same time. Of course, given that the pseudo-header
is itself a layering violation, a NAT has little choice. The particular rules that apply
when UDP traffic is processed by a NAT are given in [RFC4787]. We also dis-
cussed them briefly in Chapter 7.

Recently there has been interest in relaxation of the UDP checksum for appli-
cations that are partially insensitive to errors (multimedia applications being the
typical case). The discussion relates to whether having a partial checksum is a valu-
able concept. A partial checksum covers only a portion of the payload specified by
the application. We discuss this in Section 10.6 in the context of UDP-Lite.

10.4 Examples

We will use the sock program [SOCK] to generate some UDP datagrams that we
can watch with tcpdump. In the first example, we are running a server on the
discard port (9) on the destination machine. In the second example, we have dis-
abled the server, and the client is informed of this fact as illustrated here. Very few
UDP-based services are made available in typical machine configurations because
of security concerns, so the second part of the example is not unusual.

ptg999

 Section 10.4 Examples 479

Linux% sock -v -u -i 10.0.0.3 discard
connected on 10.0.0.5.46274 to 10.0.0.3
wrote 1024 bytes
... (1023 more times)

Linux% sock -v -u -i 10.0.0.3 discard
connected on 10.0.0.5.46294 to 10.0.0.3
wrote 1 bytes
write returned -1, expected 1024: Connection refused

When we execute the sock program, we specify the verbose mode, -v, to see
the ephemeral port numbers, specify UDP -u instead of the default TCP, and use
the -i option to send data instead of trying to read and write standard input and
output. The default number of datagrams (1024) is sent to the destination host with
IP address 10.0.0.3. In this case we have arranged a server to process incoming
datagrams to the discard port. To capture the traffic sent, we use the following
command on a host with access to the traffic stream:

Linux# tcpdump -n -p -s 1500 -vvv host 10.0.0.3 and \(udp or icmp \)

This command captures any UDP or ICMP traffic between the two machines (and
possibly additional traffic not illustrated). The -s 1500 option directs tcpdump
to collect packets up to 1500 bytes in length (longer than the 1024 bytes we are
sending, in this case), and the –vvv option indicates verbose printing. The –n
option tells tcpdump to not convert IP addresses to machine names, and the –p
option avoids placing the default network interface into promiscuous mode. The
resulting tcpdump output is illustrated in Listing 10-1 (some lines have been
wrapped for clarity).

Listing 10-1 tcpdump output showing packets from the first sock command (server running)

1 22:52:53.102838 10.0.0.5.46274 > 10.0.0.3.9:
 [udp sum ok] udp 1024 (DF) (ttl 64, id 24462, len 1052)
2 22:52:53.102964 10.0.0.5.46274 > 10.0.0.3.9:
 [udp sum ok] udp 1024 (DF) (ttl 64, id 24463, len 1052)
3 22:52:53.103091 10.0.0.5.46274 > 10.0.0.3.9:
 [udp sum ok] udp 1024 (DF) (ttl 64, id 24464, len 1052)
4 22:52:53.103215 10.0.0.5.46274 > 10.0.0.3.9:
 [udp sum ok] udp 1024 (DF) (ttl 64, id 24465, len 1052)
. . . repeated 1020 times . . .

This output shows four 1052-byte UDP/IPv4 datagrams (1024 bytes of UDP
payload plus 8 bytes of UDP header and the 20-byte IPv4 header) sent from IPv4
address 10.0.0.5 and port 46274 to port 9 (the discard port), with an inter-
packet time of about 100µs. In addition, we may observe that UDP checksums
are enabled and are valid (checked by tcpdump), that the Don’t Fragment (DF)
bit field is turned on, the IPv4 TTL field is 64, and the IPv4 Identification field is
different (and increasing by 1) for each datagram. No ICMP traffic is generated,

ptg999

480 User Datagram Protocol (UDP) and IP Fragmentation

and it would appear that all data was successfully delivered to the destination
machine; although because there are no acknowledgments, we do not know with
certainty. We shall see in Chapter 13 that the other major transport protocol, TCP,
normally uses a handshake with the other end before the first byte of data can be
sent and uses subsequent acknowledgments to know what data has been success-
fully transferred to the receiver.

The second time we run the sock program with the same arguments, but
this time we send our datagrams to the discard service after the server has been
disabled. Listing 10-2 shows the trace for this example (some lines have been
wrapped for clarity).

Listing 10-2 tcpdum p output showing ICMP Destination Unreachable (Port Unreachable) message
from host (server disabled)

1 22:55:07.223094 10.0.0.5.46294 > 10.0.0.3.9:
 [udp sum ok] udp 1024 (DF) (ttl 64, id 37874, len 1052)

2 22:55:07.223134 10.0.0.3 > 10.0.0.5: icmp:
 10.0.0.3 udp port 9 unreachable for
 10.0.0.5.46294 > 10.0.0.3.9:
 udp 1024 (DF) (ttl 64, id 37874, len 1052)
 [tos 0xc0] (ttl 255, id 63302, len 576)

In this example we see somewhat different behavior. Here, only a single UDP
datagram is sent, and an ICMP message is returned in response. Although all
other parameters are the same, no server is running to receive the incoming data-
grams. In this case, the underlying UDP implementation causes an ICMPv4 Des-
tination Unreachable (Port Unreachable) message (see Chapter 8) to be generated
and returned to the sender. This message includes a copy of the first 556 bytes
of the original (“offending”) datagram. If the ICMP message is not discarded by
the intervening network (accidentally or on purpose by firewalls), the sending
application (if it is still running when the ICMP message arrives) can learn of
the absence of the receiver and print an error, as indicated in the listing at the
beginning of this section (i.e., the write returned -1 message). Note that the
returning ICMP error message contains enough information for the sending host
to ascertain which port was not reachable. Finally, note that the source UDP port
number changes each time the program is run. First it was 46274 and then it
was 46294. We mentioned in Chapter 1 that the ephemeral port numbers used by
clients are suggested to be in the range 49152 through 65535, so here we observe
noncompliant behavior.

Note

For Linux, the local port parameter range can be easily modified by changing the
contents of the file /proc/sys/net/ipv4/ip_local_port_range. In Win-
dows Vista and later, the netsh command can be used to set the dynamic port
range [KB929851]. See [IPORT] for current port numbers.

ptg999

Section 10.5 UDP and IPv6 481

10.5 UDP and IPv6

Given its simplicity, UDP requires only small changes when operating over IPv6
instead of IPv4. The most obvious differences are the 128-bit addresses used by
IPv6 and the corresponding effect on the construction of the pseudo-header. A
related but more subtle distinction is that in IPv6, no IP-layer header checksum is
present. Thus, if UDP were to operate with checksums disabled, there would be no
end-to-end check whatsoever on the correctness of the IP-layer addressing informa-
tion. For this reason, when UDP is used with IPv6, a pseudo-header checksum,
common to both UDP and TCP, is required (by Section 8 of [RFC2460]). The con-
struction of the pseudo-header is given in Figure 10-4. Note that the Length field
has expanded from its IPv4 counterpart to 32 bits. Recall from earlier that this field
is redundant for UDP, but we shall see in Chapter 13 that it is not redundant when
used with TCP (either TCP/IPv4 or TCP/IPv6) and has thus been retained for use
with both UDP/IPv6 and TCP/IPv6.

Expanding the discussion regarding the IPv6 packet length, two aspects of
IPv6’s packet size can affect UDP. First, in IPv6, the minimum MTU size is 1280
bytes (as opposed to the 576 bytes required by IPv4 as the minimum size required
to be supported by all hosts). Second, IPv6 supports jumbograms (packets larger
than 65,535 bytes). If we inspect the IPv6 header and option set (see Chapter 5),
we can observe that with jumbograms, 32 bits are available to hold the payload
length. This implies that a single UDP/IPv6 datagram could be very large indeed.
As described in [RFC2675], this poses a problem for the UDP Length field in the
UDP header, which is only 16 bits long. As such, when encapsulated in IPv6, a
UDP/IPv6 datagram exceeding 65,535 bytes has its UDP Length field value set to
0. Note that the size of the Length field in the pseudo-header is still large enough

Figure 10-4 The UDP (and TCP) pseudo-header used with IPv6 ([RFC2460]). The pseudo-header
includes the source and destination IPv6 addresses and a larger 32-bit Length field
value. The pseudo-header checksum is required when UDP is used with IPv6 because
the IPv6 header lacks a checksum. The Next Header field is copied from the last IPv6
header of the chain.

ptg999

482 User Datagram Protocol (UDP) and IP Fragmentation

(32 bits). Computing the value of this field for IPv6 jumbograms involves taking
the total length of the UDP header plus data. Checking this field when receiv-
ing a packet involves computing the size of the UDP datagram (header plus data)
by subtracting the size of all IPv6 extension headers from the value found in the
Jumbo Payload option, which gives the length of the IPv6 payload (i.e., the total
datagram length minus the 40-byte IPv6 header). In the “unexpected” case where
the Length field in the UDP header is 0 but no Jumbo Payload option is present, the
UDP length can be inferred based on the nonzero IPv6 Payload Length field (see
Section 4 of [RFC2675]).

10.5.1 Teredo: Tunneling IPv6 through IPv4 Networks

Although it was once thought that a worldwide transition to IPv6 might hap-
pen quickly, this has not materialized exactly as forecast. Consequently, a num-
ber of (theoretically temporary) transition mechanisms [RFC4213][RFC5969] have
been proposed to ease the transition burden. One such mechanism is called 6to4
[RFC3056], whereby IPv6 packets used by hosts are encapsulated in IPv4 packets
that may be delivered over an IPv4-only infrastructure. One problem with 6to4 is
that it suffers from the same types of NAT traversal problems as other applications
on the Internet. It is also known to have scaling problems that make its contin-
ued use unattractive [RFC6343]. Although methods we have seen such as ICE (see
Chapter 7) could conceivably be used for handling this issue, a special protocol
called Teredo (originally called “shipworm” but renamed based on the Latin name
for a common genus of shipworm to avoid confusion with computer worms) has
been devised especially to address this problem [RFC4380][RFC5991][RFC6081]. It
is popular because of its widespread availability in modern versions of Microsoft
Windows.

Teredo (also called Teredo tunneling) transports IPv6 datagrams in the payload
area of UDP/IPv4 datagrams for systems that have no other IPv6 connectivity
options. An example scenario is given in Figure 10-5. Teredo clients are IPv4/IPv6
hosts that implement a Teredo tunneling interface. Such interfaces are assigned
special Teredo addresses using the 2001::/32 IPv6 prefix after having successfully
engaged in a “qualification” procedure, described in the next paragraph. Teredo
servers, which serve a general purpose similar to STUN servers (Chapter 7), are
used to help establish direct tunnels of Teredo-encapsulated IPv6 packets through
NATs. Teredo relays serve a purpose similar to TURN servers and consequently
may take significant processing resources if used by many clients. Note that serv-
ers must include all of the capabilities of relays, but not vice versa. Using Teredo
relays is a “last-resort” option for IPv6 connectivity. Nodes cease to perform Teredo
tunneling if they discover that they have any other IPv6 connectivity option (e.g.,
direct or using 6to4).

Referring to Figure 10-5, a Teredo client is initially configured with the name
or IPv4 address and UDP port number (usually 3544) of a Teredo server. Teredo
was initially developed by Microsoft, and a Teredo server is available using the

ptg999

Section 10.5 UDP and IPv6 483

name teredo.ipv6.microsoft.com. When ready to obtain an address, it starts
the qualification procedure. The client begins by sending an ICMPv6 RS packet (see
Chapter 8) from one of its link-local IPv6 addresses using its Teredo service port,
the agent responsible for encapsulating and decapsulating IPv6 traffic within
UDP/IPv4. The encapsulation format is the Origin Indication format, one of two
shown in Figure 10-6.

Successful responses are ICMPv6 RA messages that use the Origin Indica-
tion Encapsulation format from Figure 10-6. The RA contains a Prefix Information
option with a valid Teredo prefix (see Chapter 2). The Origin Indication provides
the client with knowledge of its own mapped address and port information. The
source address of the RA is a valid link-local IPv6 address of the server. The desti-
nation is the client’s link-local IPv6 address used as the source of the RS message.
Assuming that all goes well, the client is now “qualified” and can build its Teredo
IPv6 address based on the prefix and origin information provided by the server.
The Teredo address is an IPv6 address constructed from various parameters using
the format of Figure 10-7.

A Teredo address (see Figure 10-7) contains the Teredo prefix (2001::/32), the
IPv4 address of the Teredo server, a 16-bit Flags field detailed in the next para-
graph, followed by the mapped port number and mapped IPv4 address. The last
two values are the addressing information of the client as seen from the Teredo
server and are usually determined by the client’s outermost NAT. The actual

Figure 10-5 Teredo, an IPv6 transition mechanism, encapsulates IPv6 datagrams and optional trail-
ers within the payload area of UDP/IPv4 datagrams to carry IPv6 traffic across IPv4-
only infrastructures. The server helps clients obtain an IPv6 address and determine
their mapped addresses and port numbers. Relays, if required, can forward traffic
between Teredo, 6to4, and native IPv6 clients.

ptg999

484 User Datagram Protocol (UDP) and IP Fragmentation

Figure 10-6 The Simple Encapsulation and Origin Indication Encapsulation formats used by Teredo.
The Origin Indication Encapsulation carries UDP address and port number informa-
tion between the UDP header and encapsulated IPv6 datagram. This information is
used to inform Teredo clients about their mapped addresses and port numbers when
creating a Teredo address. Addresses and port numbers are “obfuscated” by inverting
each bit present to fend off NATs that attempt to rewrite this information. Zero or more
trailers may be present, encoded as TLV triples. They are used to implement a number
of Teredo extensions (e.g., support for symmetric NATs).

Figure 10-7 Teredo clients use IPv6 addresses from the 2001::/32 Teredo prefix. The subsequent
bits contain the Teredo server’s IPv4 address, 16 flag bits that identify the type of NAT
encountered and random bits to help thwart address-guessing attacks, and 16 bits con-
taining the client’s mapped port number and the client’s mapped 32-bit IPv4 address.
The last two values are “obfuscated.”

ptg999

Section 10.5 UDP and IPv6 485

address and port number information is bitwise-inverted to cause indiscriminate
NATs to not rewrite them.

The 16-bit Flags field has been used to indicate the type of NAT discovered
during the qualification process. Some NATs (formerly called symmetric NATs—
the types of NATs that have either address-dependent mapping or address- and
port-dependent mapping along with either address-dependent or address- and
port-dependent filtering behavior) work with Teredo only when extensions are
supported (see later in this section), but the most common types for household
networks (including “cone NATs”—NATs with endpoint-independent mapping
and endpoint-independent filtering behavior) work without such extensions.
Originally, the C (cone NAT) bit field was used to indicate if a cone NAT was
encountered and to arrange appropriate support, but this usage is now deprecated
and the field should be set to 0 (clients ignore the field; servers inspect it to look
for legacy clients). The next bit field is set to 0. The U (Universal) and G (Group) bit
fields are available for future use but are also currently set to 0. The Random1 and
Random2 field values are chosen as random numbers according to [RFC5991] to
make Teredo addresses harder to guess (a security measure intended to reduce
random probes by potential attackers).

Once a qualified client builds its Teredo address, it can send IPv6 traffic. For
details on what happens when qualification fails or a secure qualification is to be
used, see [RFC4380]. In general, a Teredo client may wish to communicate with
another client on the same link, another client within the IPv4 Internet, or with
a host on the IPv6 Internet. In each case, Teredo provides some UDP/IPv4-based
alternative to IPv6 ND. For clients on the same link, Teredo uses an IPv4 multicast
discovery protocol that operates using the multicast address 224.0.0.253. Special
Teredo “bubble” packets (those with no data payload) are used to determine if
a destination is on the same link. Such bubbles appear as minimum-size Teredo
packets using the Simple Encapsulation format of Figure 10-6. They contain an
IPv6 header with the Destination IP Address field set to the target of the commu-
nication. The IPv6 packet contains an IPv6 header with no payload or additional
extensions (the Next Header field is set to 0x3b, indicating none). For clients within
the IPv4 Internet, recall that the Teredo IPv6 address contains the IPv4-mapped
address and port number. Thus, it is straightforward for one client to send a Teredo-
encapsulated packet to another’s NAT. For NATs that are restrictive, Teredo uses
bubble packets to perform hole punching and establish UDP NAT mappings (see
Chapter 7 and [RFC6081]).

When a qualified client has a packet to send to an IPv6 host (i.e., one that does
not use a Teredo address), it first determines whether it already knows a Teredo
relay for the destination. If so, the packet is sent using Simple Encapsulation. If not,
the client formats an ICMPv6 Echo Request containing a large (e.g., 64-bit) random
number and sends it to the IPv6 destination by way of the Teredo server. The
server forwards this packet to the destination IPv6 host. The receiving host sees an
incoming IPv6 datagram with the source address equal to the Teredo address of
the client. It forms an Echo Reply, which is routed to the nearest Teredo relay. The

ptg999

486 User Datagram Protocol (UDP) and IP Fragmentation

relay then forwards the reply back to the client. The receiving client observes the
IPv4 address of the relay and updates a cache to indicate that subsequent packets
destined for the IPv6 host should use the relay address it just determined.

As of [RFC6081], Teredo can support a number of optional extensions, several
of which help to support Teredo operation with symmetric NATs. The extensions
are protocol behavior modifications and include the following: Symmetric NAT
Support (SNS), UPnP-Enabled Symmetric NAT (UP), Port-Preserving Symmetric
NAT (PP), Sequential Port-Symmetric NAT (SP), Hairpinning (HP), and Server
Load Reduction (SLR). The extensions can be used independently, except that both
the UP and PP extensions depend on the SNS extension. The various NAT types
that can be supported with various extension combinations are given in a table
(see Section 3 of [RFC6081]).

To implement the extensions, one or more trailers may be present in a Teredo
message. Trailers are encoded as an ordered list of TLV combinations, using the
same basic format as for ICMPv6 ND options (Figure 8-41), which contain an 8-bit
Type field and an 8-bit Length field. The two highest-order bits of the Type field
encode what processing should be performed if the host does not recognize the
trailer type. The bit pattern 01 indicates that the host should discard the packet;
all others indicate that the unknown trailer should be skipped and others should
be processed in order. The official list of trailer type values is maintained by the
IANA [TTYPES]. The trailers currently defined are listed here in Table 10-1.

Table 10-1 Teredo trailers are carried after the IPv6 payload encapsulated in a UDP/IPv4 datagram. Each
trailer has a type value, name, and associated explanation. In some cases, the length value is a
constant.

Type Length Name Use Notes

0x00 Reserved (Unassigned) (Unassigned) (Unassigned)
0x01 0x04 Nonce SNS, UP, PP, SP,

HP
32-bit nonce for protection against
replays (see Chapter 18)

0x02 Reserved (Unassigned) (Unassigned) (Unassigned)
0x03 [8, 26] Alternate Address HP Additional addresses/ports usable

by Teredo clients behind the same
NAT

0x04 0x04 ND Option SLR Allows NAT refresh using direct
bubbles (that carry NS messages)

0x05 0x02 Random Port PP Sender’s predicted mapped port

The Nonce trailer contains a 32-bit random value that is unique for each
message. It is a security measure to guard against replay attacks (see Chapter 18)
and is used with either HP or SNS (IPv4 address, port) pairs. Each pair is 6 bytes
long, and the trailer can hold from one to four such pairs. These pairs identify

ptg999

 Section 10.6 UDP-Lite 487

UDP/IPv4 endpoints that other Teredo clients on the same side of a NAT can use
to contact the sender, and they are used with the HP extension.

The ND Option trailer includes 1 byte that indicates either TeredoDiscovery-
Solicitation (0x00) or TeredoDiscoveryAdvertisement (0x01). In the first case, the
receiver is requested to respond with a direct bubble (i.e., sent directly between
Teredo clients) containing the second form of message. The TeredoDiscoveryAd-
vertisement type is the response. This trailer is used in supporting the SLR exten-
sion, which effectively allows NS/NA messages carried in direct bubbles to be
used for refreshing NAT state instead of indirect bubbles, which require process-
ing by servers. Finally, the Random Port trailer contains a 16-bit UDP port number,
which is the sender’s best guess as to its mapped port number. This is used by the
PP extension (see Section 6.3 of [RFC6081]).

10.6 UDP-Lite

Some applications are tolerant of bit errors that may be introduced in the data they
send and receive. Often, these types of applications wish to use UDP in order to
avoid connection setup overhead or to use broadcast or multicast addressing, but
UDP uses a checksum that covers either the entire payload or none of it (i.e., when
no checksum is computed by the sender). A protocol called UDP-Lite or UDPLite
[RFC3828] addresses this issue by modifying the conventional UDP protocol to
provide partial checksums. Such checksums cover only a portion of the payload
in each UDP datagram. UDP-Lite has its own IPv4 Protocol and IPv6 Next Header
field value (136), so it effectively counts as a separate transport protocol. UDP-Lite
modifies the UDP header by replacing the (redundant) Length field with a Check-
sum Coverage field (see Figure 10-8).

Figure 10-8 UDP-Lite includes a Checksum Coverage field that gives the number of bytes (starting
with the first byte of the UDP-Lite header) covered by the checksum. The minimum
value is 0, indicating that the whole datagram is covered. Values 1 through 7 are invalid,
as the header is always covered. UDP-Lite uses a different IPv4 protocol number (136)
from UDP (17). IPv6 uses the same values in the Next Header field.

ptg999

488 User Datagram Protocol (UDP) and IP Fragmentation

The Checksum Coverage field in Figure 10-8 is the number of bytes (starting
from the first byte of the UDP-Lite header) covered by the checksum. Except for
the special value 0, the minimum value is 8, because the UDP-Lite header itself
is always required to be covered by the checksum. The value 0 indicates that the
entire payload is covered by the checksum, as with conventional UDP. There is a
slight issue with IPv6 jumbograms because of the limited space used to hold the
Checksum Coverage field. For such datagrams, the number of bytes covered can
be at most 64KB or the entire datagram (i.e., when the Checksum Coverage field
has value 0). Special socket API options are used for applications to specify the
use of UDP-Lite (IPPROTO_UDPLITE) and the amount of checksum coverage
requested (using the SOL_UDPLITE, UDPLITE_SEND_CSCOV, and UDPLITE_
RECV_CSCOV options to setsockopt).

10.7 IP Fragmentation

As we described in Chapter 3, link-layer framing normally imposes an upper limit
on the maximum size of a frame that can be transmitted. To keep the IP datagram
abstraction consistent and isolated from link-layer details, IP employs fragmen-
tation and reassembly. Whenever the IP layer receives an IP datagram to send, it
determines which local interface the datagram is to be sent over next (via a for-
warding table lookup; see Chapter 5) and what MTU is required. IP compares
the outgoing interface’s MTU with the datagram size and performs fragmentation
if the datagram is too large. Fragmentation in IPv4 can take place at the origi-
nal sending host and at any intermediate routers along the end-to-end path. Note
that datagram fragments can themselves be fragmented. Fragmentation in IPv6 is
somewhat different because only the source is permitted to perform fragmenta-
tion. We saw an example of IPv6 fragmentation in Chapter 5.

When an IP datagram is fragmented, it is not reassembled until it reaches its
final destination. Two reasons have been given for this, the second more compel-
ling than the first. First, not performing reassembly within the network alleviates
the forwarding software (or hardware) in routers from implementing this feature.
Second, it is possible for different fragments of the same datagram to follow differ-
ent paths to their common destination. If this happens, no single router along the
path would in general be capable of reassembling the original datagram because
it would see only a subset of the fragments. The first argument is not terribly con-
vincing at face value given the current performance levels of routers, but it is even
less convincing when one considers that most routers must ultimately be capable
of functioning as end hosts anyhow (e.g., when being managed or configured).
The second argument remains compelling.

10.7.1 Example: UDP/IPv4 Fragmentation

An application using UDP may need to worry about the size of the resulting IP
datagram it creates if it wishes to avoid IP-layer fragmentation. In particular, if

ptg999

Section 10.7 IP Fragmentation 489

the size of the resulting datagram exceeds the link’s MTU, the IP datagram is split
across multiple IP packets, which can lead to performance issues because if any
fragment is lost, the entire datagram is lost. Figure 10-9 illustrates the situation when
a 3020-byte UDP/IPv4 datagram is split into multiple IPv4 packets.

Figure 10-9 A single UDP datagram with 2992 UDP payload bytes is fragmented into three UDP/
IPv4 packets (no options). The UDP header that contains the source and destination
port numbers appears only in the first fragment (a complicating factor for firewalls and
NATs). Fragmentation is controlled by the Identification, Fragment Offset, and More Frag-
ments (MF) fields in the IPv4 header.

In Figure 10-9, we conclude that the original UDP datagram included 2992
bytes of application (UDP payload) data and 8 bytes of UDP header, resulting in
an IPv4 Total Length field value of 3020 bytes (recall that this size includes a 20-byte
IPv4 header as well). When this datagram was fragmented into three packets, 40
extra bytes were created (20 bytes for each of the newly created IPv4 fragment
headers). Thus, the total number of bytes sent is 3060, an increase in IP-layer over-
head of about 1.3%. The Identification field value (set by the original sender) is
copied to each fragment and is used to group them together when they arrive. The
Fragment Offset field gives the offset of the first byte of the fragment payload byte
in the original IPv4 datagram (in 8-byte units). Clearly, the first fragment always
has offset 0. Here, we observe the second fragment with offset 185 (185 * 8 = 1480).
The size of 1480 is the size of the first fragment less the size of the IPv4 header. A
similar analysis applies to the third fragment. Finally, the MF bit field indicates
whether more fragments in the datagram should be expected and is 0 only in the
final fragment. When the fragment with MF = 0 is received, the reassembly pro-
cess can ascertain the length of the original datagram, as a sum of the Fragment
Offset field value (times 8) and the IPv4 Total Length field value (minus the IPv4
header length). Because each Offset field is relative to the original datagram, the

ptg999

490 User Datagram Protocol (UDP) and IP Fragmentation

reassembly process can handle fragments that arrive out of order. When a data-
gram is fragmented, the Total Length field in the IPv4 header of each fragment is
changed to be the total size of that fragment.

Although IP fragmentation looks transparent, there is one feature mentioned
earlier that makes it less than desirable: if one fragment is lost, the entire data-
gram is lost. To understand why this happens, realize that IP itself has no error
correction mechanism of its own. Mechanisms such as timeout and retransmis-
sion are left as the responsibility of the higher layers. (TCP performs timeout and
retransmission; UDP does not. Some UDP-based applications perform timeout and
retransmission themselves, but this happens at a layer above UDP.) When a frag-
ment of a TCP segment is lost, TCP retransmits the entire TCP segment, which cor-
responds to an entire IP datagram. There is no way to resend only one fragment of
a datagram. Indeed, if the fragmentation was done by an intermediate router, and
not the originating system, there is no way for the originating system to know how
the datagram was fragmented. For this reason, fragmentation is often avoided.
[KM87] provides arguments for avoiding fragmentation.

Using UDP, it is easy to generate IP fragmentation. (We shall see later that
TCP tries to avoid fragmentation and that it is nearly impossible for an application
to force TCP to send segments large enough to require fragmentation.) We can
use our sock program and increase the size of the datagram until fragmentation
occurs. On an Ethernet, the maximum amount of data in a frame is ordinarily 1500
bytes (see Chapter 3), which leaves at most 1472 bytes for application data to avoid
fragmentation, assuming 20 bytes for the IPv4 header and 8 bytes for the UDP
header.1 We will run our sock program with data sizes of 1471, 1472, 1473, and
1474 bytes. We expect the last two to cause fragmentation:

Linux% sock -u -i -n1 -w1471 10.0.0.3 discard
Linux% sock -u -i -n1 -w1472 10.0.0.3 discard
Linux% sock -u -i -n1 -w1473 10.0.0.3 discard
Linux% sock -u -i -n1 -w1474 10.0.0.3 discard

Listing 10-3 illustrates the tcpdump output (some lines are wrapped for
clarity).

Listing 10-3 UDP fragmentation on a 1500-byte MTU Ethernet link

1 23:42:43.562452 10.0.0.5.46530 > 10.0.0.3.9:
 udp 1471 (DF) (ttl 64, id 61350, len 1499)
2 23:42:50.267424 10.0.0.5.46531 > 10.0.0.3.9:
 udp 1472 (DF) (ttl 64, id 62020, len 1500)
3 23:42:57.814555 10.0.0.5 > 10.0.0.3:
 udp (frag 37671:1@1480) (ttl 64, len 21)
4 23:42:57.814715 10.0.0.5.46532 > 10.0.0.3.9:
 udp 1473 (frag 37671:1480@0+) (ttl 64, len 1500)

1. Recall the assumption that no options are used. For IPv4 datagrams with options, the header
exceeds 20 bytes, up to a maximum of 60 bytes.

ptg999

Section 10.7 IP Fragmentation 491

5 23:43:04.368677 10.0.0.5 > 10.0.0.3:
 udp (frag 37672:2@1480) (ttl 64, len 22)
6 23:43:04.368838 10.0.0.5.46535 > 10.0.0.3.9:
 udp 1474 (frag 37672:1480@0+) (ttl 64, len 1500)

The first two UDP datagrams (packets 1 and 2) fit into 1500-byte Ethernet
frames (using the typical “DIX” or “Ethernet” encapsulation) and are not frag-
mented. In the third case, the length of the IPv4 datagram corresponding to the
application write of 1473 bytes is 1501, which must be fragmented (packets 3 and
4). Similarly, the datagram generated by the write of 1474 bytes is 1502 bytes long
and is also fragmented (packets 5 and 6).

When it captures a fragmented datagram, tcpdump prints additional infor-
mation. First, the outputs frag 37671 (packets 3 and 4) and frag 37672 (packets
5 and 6) specify the value of the Identification field in the IPv4 header. The next
number in the fragmentation information (between the colon and the @ sign in
packets 4 and 6) is the IPv4 packet size, excluding the IPv4 header. The first frag-
ment of both datagrams contains 1480 bytes of data: 8 bytes for the UDP header
and 1472 bytes of user data. (The 20-byte option-free IPv4 header makes the packet
exactly 1500 bytes.) The second fragment of the first fragmented datagram (packet
3) contains 1 byte of data (the remaining byte of user data). The second fragment
of the second fragmented datagram (packet 5) contains the remaining 2 bytes of
user data. Fragmentation requires that the data portion of the generated fragments
(that is, everything excluding the IPv4 header) be a multiple of 8 bytes for all frag-
ments other than the final one. In this example, 1480 is a multiple of 8. (Constrast
this case with the IPv6 fragmentation example in Chapter 5, where the 1500-byte
Ethernet MTU was not able to be fully utilized.)

The number following the @ is the offset of the data in the fragment from the
start of the datagram. The first fragment of each new fragmented datagram starts
with offset 0 (packets 4 and 6), and the second fragment of both datagrams starts
at byte offset 1480 (packets 3 and 5). The + sign following an offset value means
that there are more fragments composing this datagram, corresponding to the MF
bit field being set to 1 in the 3-bit Flags field in the IPv4 header.

One observation that may be surprising is that the fragments with larger off-
sets are delivered prior to the first fragments. In effect, the sender has intentionally
reordered the fragments. Upon reflection, we realize that this behavior can be
beneficial. If the last fragment is delivered first, the receiving host is able to ascer-
tain the maximum amount of buffer space it will require in order to reassemble
the entire datagram. Given that the reassembly process is robust to reordering
anyhow, this presents no major problem. On the other hand, there are techniques
that would like to take advantage of higher-layer information available in the first
fragment (including UDP port numbers) that is not present in the later fragments
[KEWG96].

Finally, note that packets 3 and 5 (fragments other than the first) omit the
source and destination UDP port numbers. In order for tcpdump to print the port

ptg999

492 User Datagram Protocol (UDP) and IP Fragmentation

numbers associated with fragments other than the first, it would have to reas-
semble fragmented datagrams to recover the port numbers that appear only in the
UDP header located in the first fragments (which it does not do).

10.7.2 Reassembly Timeout

The IP layer must start a timer when any fragment of a datagram first arrives. If
this were not done, fragments that never arrive (as we see in Listing 10-4) could
eventually cause the receiver to run out of buffers and can constitute a form of
attack opportunity. The example in the listing was created with a special program
that constructs and sends only the first two fragments of an ICMPv4 Echo Request
message separated by a delay but then never sends any additional fragments. List-
ing 10-4 illustrates the response (some lines have been wrapped for clarity).

Listing 10-4 Timeout during IPv4 fragment reassembly

1 17:35:59.609387 10.0.0.5 > 10.0.0.3:
 icmp: echo request (frag 28519:380@0+) (ttl 255, len 400)
2 17:36:19.617272 10.0.0.5 > 10.0.0.3:
 icmp (frag 28519:380@376+) (ttl 255, len 400)
3 17:36:29.602373 10.0.0.3 > 10.0.0.5:
 icmp: ip reassembly time exceeded for 10.0.0.5 > 10.0.0.3:
 icmp: echo request (frag 28519:380@0+) (ttl 255, len 400)
 [tos 0xc0](ttl 64, id 38816, len 424)

Here we see that the first fragment (in both time and sequence space) is sent,
with total length 400. A second fragment is sent 20s later, but no final fragment
is ever sent. Thirty seconds after receiving the first fragment, the target machine
responds with an ICMPv4 Time Exceeded (code 1) message, telling the sender
that the datagram has been discarded by including a copy of the first fragment. A
normal timeout value is 30 or 60s. As we can see, the timer starts when any of the
fragments is received and is not reset when new fragments arrive. Thus, the timer
places a sort of bound on the maximum span of time by which fragments of the
same datagram can be separated.

Note

Historically, most Berkeley-UNIX-derived IP implementations simply never gener-
ated this error. While these implementations did set a timer, and did discard all
fragments when the timer expired, the ICMP error was never generated. Another
detail one sometimes encounters is that an implementation is not required to
generate the ICMP error unless the first fragment has been received (i.e., the one
with the 0 Fragment Offset field). The reason is that the receiver of the ICMP error
cannot tell which user process sent the datagram that was discarded, because
the transport-layer header is not available. It is assumed that higher-layer proto-
cols will eventually time out and retransmit if necessary.

ptg999

Section 10.8 Path MTU Discovery with UDP 493

10.8 Path MTU Discovery with UDP

Let us examine the interaction between an application using UDP and the path
MTU discovery mechanism (PMTUD) [RFC1191]. For a protocol such as UDP, in
which the calling application is generally in control of the outgoing datagram size,
it is useful if there is some way to determine an appropriate datagram size if frag-
mentation is to be avoided. Conventional PMTUD uses ICMP PTB messages (see
Chapter 8) in determining the largest packet size along a routing path that can
be used without inducing fragmentation. These messages are typically processed
below the UDP layer and are not directly visible to an application, so either an API
call is used for the application to learn the best current estimate of the path MTU
size for each destination with which it has communicated, or the IP layer can per-
form PMTUD independently without the application knowing. The IP layer often
caches PMTUD information on a per-destination basis and times it out if it is not
refreshed.

10.8.1 Example

In the following example, we use the sock program to create a UDP datagram
that produces a 1501-byte IPv4 datagram. Both our host system and the attached
LAN support an MTU larger than 1500 bytes, but the outgoing link to the Internet
at the router does not. The command attempts to send three UDP messages to the
echo service (UDP port 7) in quick succession.

Linux% sock -u -i -n 3 -w1473 www.cs.berkeley.edu echo

Listing 10-6 illustrates the corresponding packet trace we can see using tcp-
dump at the sender (some lines are wrapped for clarity).

Listing 10-6 tcpdump output illustrating ICMP PTB message. The suggested MTU is included.

1 14:42:18.359366 IP (tos 0x0, ttl 64, id 18331, offset 0, flags [DF],
 proto UDP (17), length 1501)
 12.46.129.28.33954 > 128.32.244.172.7: UDP, length 1473

2 14:42:18.359384 IP (tos 0x0, ttl 64, id 18332, offset 0, flags [DF],
 proto UDP (17), length 1501)
 12.46.129.28.33954 > 128.32.244.172.7: UDP, length 1473

3 14:42:18.359402 IP (tos 0x0, ttl 64, id 18333, offset 0, flags [DF],
 proto UDP (17), length 1501)
 12.46.129.28.33954 > 128.32.244.172.7: UDP, length 1473

4 14:42:18.360156 IP (tos 0x0, ttl 255, id 23457, offset 0,
 flags [none], proto ICMP (1), length 56)
 12.46.129.1 > 12.46.129.28: ICMP
 128.32.244.172 unreachable - need to frag (mtu 1500), length 36

ptg999

494 User Datagram Protocol (UDP) and IP Fragmentation

 IP (tos 0x0, ttl 63, id 18331, offset 0, flags [DF],
 proto UDP (17), length 1501)
 12.46.129.28.33954 > 128.32.244.172.7: UDP, length 1473

In Listing 10-6 we see three UDP datagrams of 1473 UDP (application) pay-
load bytes each. Each produces a 1501-byte (unfragmented) IPv4 datagram. Each
of these datagrams has the IPv4 DF bit field turned on (the default on this system),
so when one of them reaches a router (IPv4 address 12.46.129.1), an ICMPv4 PTB
message is produced, which includes the suggested next-hop MTU of 1500 bytes.
We may also observe that the ICMPv4 messages produced contain the UDP/IPv4
headers (and first 8 data bytes) from our discarded (“offending”) datagrams. In
this example, our sock program sent its datagrams so quickly (in under a mil-
lisecond) that it completed its execution before any of the ICMP messages were
returned and processed.

Note

The 1500-byte MTU is now a common minimum MTU among ISPs. Some ISPs
that incorporate PPPoE for address assignment and management use smaller,
1492-byte MTUs. The PPPoE header (see Chapter 3) comprises 6 bytes, and the
following PPP header is 2, leaving 1500 – 6 – 2 = 1492 bytes for the encapsulated
datagram.

If we use another destination host (one about which we have no path MTU
history), and we add additional delay between writes, we can observe different
behavior. Using the sock command with the -p 2 option, which adds 2s of delay
between each send, we use the following two (identical) commands:

Linux% sock -u -i -n 3 -w1473 -p 2 www.wisc.edu echo
write returned -1, expected 1473: Message too long
Linux% sock -u -i -n 3 -w1473 -p 2 www.wisc.edu echo

The tcpdump output, using an alternative version of tcpdump, for these com-
mands is given in Listing 10-7 (some lines are wrapped for clarity).

Listing 10-7 Illustration of successful Path MTU discovery on 3000-byte MTU link adapting to
1500-byte path MTU

1 17:22:16.331023 IP (tos 0x0, ttl 64, id 58648, offset 0, flags [DF],
 proto: UDP (17), length: 1501)
 12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

2 17:22:16.331581 IP (tos 0x0, ttl 255, id 38518, offset 0,
 flags [none], proto: ICMP (1), length: 56)
 12.46.129.1 > 12.46.129.28: ICMP
 144.92.9.185 unreachable - need to frag (mtu 1500), length 36

ptg999

Section 10.8 Path MTU Discovery with UDP 495

 IP (tos 0x0, ttl 63, id 58648, offset 0, flags [DF],
 proto: UDP (17), length: 1501)
 12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

3 17:22:24.284866 IP (tos 0x0, ttl 64, id 53776, offset 0, flags [+],
 proto: UDP (17), length: 1500)
 12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

4 17:22:24.284873 IP (tos 0x0, ttl 64, id 53776, offset 1480,
 flags [none], proto: UDP (17), length: 21)
 12.46.129.28 > 144.92.9.185: udp

5 17:22:26.293554 IP (tos 0x0, ttl 64, id 53777, offset 0, flags [+],
 proto: UDP (17), length: 1500)
 12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

6 17:22:26.293559 IP (tos 0x0, ttl 64, id 53777, offset 1480,
 flags [none], proto: UDP (17), length: 21)
 12.46.129.28 > 144.92.9.185: udp

7 17:22:28.301469 IP (tos 0x0, ttl 64, id 53778, offset 0, flags [+],
 proto: UDP (17), length: 1500)
 12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

8 17:22:28.301474 IP (tos 0x0, ttl 64, id 53778, offset 1480,
 flags [none], proto: UDP (17), length: 21)
 12.46.129.28 > 144.92.9.185: udp

In Listing 10-7 we can see that the first time we ran our program it resulted
in an error due to the ICMPv4 PTB message. The extra time provided within and
between runs provides an opportunity for the PTB message to reach the sending
host and for the error condition to be delivered back to the sender for processing.
Interestingly, when we run the program a second time, the path MTU has been
discovered to be 1500 bytes and the system is able to send the program’s three
datagrams using fragmentation (packets 3, 5, and 7 indicate the first fragments of
the three datagrams). After 15 minutes (not illustrated), the path MTU informa-
tion is considered stale, the datagram is sent unfragmented, another ICMPv4 PTB
message is returned, and the process repeats.

Note

[RFC1191] recommends a PMTU value determined using PMTUD to be consid-
ered stale after 10 minutes. Path MTU discovery can sometimes cause problems
because firewalls and filtering gateways may drop ICMP traffic indiscriminately,
which can harm the PMTU discovery algorithm. Because of this, it is possible to
disable PMTU discovery on a system-wide or finer-granularity basis. On Linux, the
file /proc/sys/net/ipv4/ip_no_pmtu_disc can have a 1 written to it to dis-
able the feature. On Windows, it involves editing the registry entry HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters\

ptg999

496 User Datagram Protocol (UDP) and IP Fragmentation

EnablePMTUDiscovery to include the value 0. An alternative to conventional
PMTUD that does not use ICMP has also been developed [RFC4821]; we will
discuss it in the context of TCP in Chapter 15.

10.9 Interaction between IP Fragmentation and ARP/ND

Using UDP, we can see the relationship between induced IP fragmentation and
typical implementations of ARP. Recall that ARP is used to map IP-layer addresses
to corresponding MAC-layer addresses on the same IPv4 subnet (see Chapter 4).
The questions with which we are concerned include, When multiple fragments are
to be sent, how many ARP messages should be generated, and how many of the
fragments are held until a pending ARP request/response is completed? (Similar
questions apply with IPv6 ND.) Returning to our host and LAN using a 1500-byte
MTU, we use the following two commands to see the answer:

Linux% sock -u -i -n1 -w8192 10.0.0.20 echo
Linux% sock -u -i -n1 -w8192 10.0.0.3 echo

These arguments cause our sock program to generate a single UDP datagram
with 8192 bytes of user data. We expect this to generate six fragments on an Ether-
net using a 1500-byte MTU size. We also make sure that the ARP cache is empty
before running the program, so that an ARP request and reply must be exchanged
before any fragments are sent (see Listing 10-8; some lines are wrapped for clarity).

Listing 10-8 ARP and fragmentation on Ethernet with 1500-byte MTU

1 15:45:49.063561 arp who-has 10.0.0.20 tell 10.0.0.5
2 15:45:50.059523 arp who-has 10.0.0.20 tell 10.0.0.5
3 15:45:51.059505 arp who-has 10.0.0.20 tell 10.0.0.5

4 15:46:08.555725 arp who-has 10.0.0.3 tell 10.0.0.5
5 15:46:08.555973 arp reply 10.0.0.3 is-at 0:0:c0:c2:9b:26
6 15:46:08.555992 10.0.0.5 > 10.0.0.3:
 udp (frag 27358:1480@2960+) (ttl 64, len 1500)
7 15:46:08.555998 10.0.0.5 > 10.0.0.3:
 udp (frag 27358:1480@1480+) (ttl 64, len 1500)
8 15:46:08.556004 10.0.0.5.32808 > 10.0.0.3.7:
 udp 8192 (frag 27358:1480@0+) (ttl 64, len 1500)

For this experiment, we happen to know that there is no running host assigned
address 10.0.0.20, so we should expect no reply. In the first part of Listing 10-8
(packets 1–3), we observe three ARP requests spaced approximately 1s apart. No
host responds after three requests are sent, so the ARP requestor gives up. In the
next case, an ARP response is received in about 250µs, and a fragment is sent
about 20µs thereafter. After this, the remaining fragments are sent very closely

ptg999

Section 10.10 Maximum UDP Datagram Size 497

together, within about 6µs of each other. Recall that in this system (Linux), the last
fragment is sent first.

Note

Historically, the interaction between fragmentation and ARP has been problem-
atic. For example, in some cases an ARP request was sent for each fragment, and
in many cases only one of the fragments was queued pending the ARP response
(thus losing the datagram, as all but one of its fragments were discarded). The
first problem was addressed in [RFC1122], which requires an implementation to
prevent this type of ARP flooding. The recommended maximum rate is one per
second. The second problem is also discussed in [RFC1122], but this states only
that the link layer “SHOULD save (rather than discard) at least one (the latest)
packet of each set of packets destined to the same unresolved IP address, and
transmit the saved packet when the address has been resolved.” This approach
can lead to unnecessary packet loss and has been addressed in individual imple-
mentations by providing a larger queue for packets while their ARP requests are
pending.

10.10 Maximum UDP Datagram Size

Theoretically, the maximum size of an IPv4 datagram is 65,535 bytes, imposed by
the 16-bit Total Length field in the IPv4 header (see Chapter 5). With an optionless
IPv4 header of 20 bytes and a UDP header of 8 bytes, this leaves a maximum of
65,507 bytes of user data in a UDP datagram. For IPv6, the 16-bit Payload Length
field permits an effective UDP payload of 65,527 bytes (8 of the 65,535 IPv6 payload
bytes are used for the UDP header), assuming jumbograms are not being used.
There are two main reasons why a full-size datagram of these sizes may not be
delivered end-to-end, however. First, the system’s local protocol implementation
may have some limitation. Second, the receiving application may not be prepared
to handle such large datagrams.

10.10.1 Implementation Limitations

Protocol implementations provide an API to applications that pick some default
buffer size for sending and receiving. Some implementations provide defaults that
are less than the maximum IP datagram size, and some actually do not support
sending datagrams larger than a few tens of kilobytes (although this problem is
not common).

The sockets API [UNP3] provides a set of functions that an application can
call to set or query the size of the receive and send buffers. For a UDP socket, this
size is directly related to the maximum size of UDP datagram the application can
read or write. Typical default values are 8192 bytes or 65,535 bytes, but these can
generally be made larger by invoking the setsockopt() API call.

ptg999

498 User Datagram Protocol (UDP) and IP Fragmentation

We mentioned in Chapter 5 that a host is required to provide enough buffering
to receive at least a 576-byte IPv4 datagram on reassembly. Many UDP applications
are designed to restrict their application data size to 512 bytes or less (resulting in
IPv4 datagrams under 576 bytes), to stay below this limit. Examples employing
such limitations to their UDP datagram size include the DNS (see Chapter 11) and
DHCP (see Chapter 6).

10.10.2 Datagram Truncation

Just because UDP/IP is capable of sending and receiving a datagram of a given
(large) size does not mean the receiving application is prepared to read that size.
UDP programming interfaces allow the application to specify the maximum num-
ber of bytes to return each time a network read operation completes. What hap-
pens if the received datagram exceeds the size specified?

In most cases, the answer to this question is that the API truncates the data-
gram, discarding any excess data in the datagram beyond the number of bytes
specified by the receiving application. However, the exact behavior varies from
implementation to implementation. Some systems provide the unconsumed por-
tion of the datagram in subsequent read operations, and others inform the caller of
how much data was truncated (or, in yet other cases, that some data was truncated,
but not exactly how much).

Note

In Linux, the MSG_TRUNC option may be given to the sockets API to discover
how much data was truncated. On HP-UX, MSG_TRUNC is instead a flag set
when a read call returns that some data was truncated. The sockets API under
SVR4 (including Solaris 2.x) does not truncate the datagram. Any excess data is
returned in subsequent reads. The application is not notified that multiple reads
are being fulfilled from a single UDP datagram.

When we discuss TCP we shall see that it provides a continuous stream of
bytes to the application, without any message boundaries. Thus, an application
consumes however much data it requests, provided sufficient data is available (if
not, it usually waits).

10.11 UDP Server Design

There are some characteristics of UDP that affect the design and implementation
of networking application software wishing to use it [RFC5405]. Servers typically
interact with the operating system, and most need a way to handle multiple cli-
ents at the same time. Client design and implementation are usually simpler, and
therefore we will not discuss them here.

ptg999

Section 10.11 UDP Server Design 499

In the typical client/server scenario, a client starts, immediately communi-
cates with a single server, and is done. Servers, on the other hand, start and then
go to sleep, waiting for a client’s request to arrive. They awaken when a client’s
datagram arrives, which usually requires the server to evaluate the request and
possibly perform further processing. Our interest here is not in the programming
aspects of clients and servers ([UNP3] covers all those details) but in the protocol
features of UDP that affect the design and implementation of a server using UDP.
(We examine the details of TCP server design in Chapter 13.) Although some of
the features we describe depend slightly on the implementation of UDP being
used, the features are common to most implementations.

10.11.1 IP Addresses and UDP Port Numbers

What arrives at a UDP server from a client is a UDP datagram. The IP header con-
tains the source and destination IP addresses, and the UDP header contains the
source and destination UDP port numbers. When an application receives a UDP
message, the IP and UDP headers have been stripped off; the application must be
told by the operating system in some other way who sent the message (the source
IP address and port number), if it intends to furnish a reply. This feature allows a
UDP server to handle multiple clients.

Some servers need to know to whom the datagram was sent, that is, the desti-
nation IP address. While it may seem obvious that such information would imme-
diately be known by a server without looking into the received datagram, this
is not always the case. For example, because of multihoming, IP address alias-
ing, and ordinary IPv6 usage with multiple scopes, a host may have multiple IP
addresses, and a single server may receive incoming datagrams using any of them
(this is in fact the common case). Any server wishing to perform its tasks differ-
ently depending on the destination IP address selected by the client would require
access to the destination IP address information. In addition, some services may
respond differently if the destination address is broadcast or multicast (e.g.,
the Host Requirements RFC [RFC1122] states that a TFTP server should ignore
received datagrams that are sent to a broadcast address).

Note

A DNS server is one type of server that is sensitive to the destination IP address. It
can use this information to arrange a particular sorting order on the address map-
pings it returns. This behavior of DNS is described in more detail in Chapter 11.

The lesson here is that even though an API may deliver all the data contained
in a transport-layer datagram, additional information from the various layers
(typically addressing information) may be required for a server to operate most
effectively. This issue is not unique to UDP, of course, but because it is the first
transport-layer protocol we study, it is worthwhile to point out now.

ptg999

500 User Datagram Protocol (UDP) and IP Fragmentation

UDP servers designed for use with both IPv4 and IPv6 must consider the fact
that these two types of addresses have significantly different lengths and require
different data structures. In addition, the interoperability mechanism of encoding
IPv4 addresses in IPv6 addresses may allow the use of IPv6 sockets to handle both
IPv4 and IPv6 addressing. See [UNP3] for more details.

10.11.2 Restricting Local IP Addresses

Most UDP servers wildcard their local IP address when they bind a UDP end-
point. This means that an incoming UDP datagram destined for the server’s port
is accepted on any local IP address (any IP address in use on the local machine,
including the local loopback address). For example, we can start an IPv4 UDP
server on port 7777:

Linux% sock -u -s 7777

We can then use the netstat command to see the state of the endpoint (see List-
ing 10-9).

Listing 10-9 netstat listing of IPv4 UDP servers using wildcarded address bindings

Linux% netstat -l --udp -n
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address
udp 0 0 *:7777 0.0.0.0:*

We have deleted several lines of output other than the one in which we are
interested. The -l flag reports on all listening sockets (servers). The --udp flag
provides data relating only to the UDP protocol. The -n flag prints IP addresses
rather than fully expanded host names.

Note

While not all systems provide exactly these (Linux) flags for netstat, most pro-
vide the netstat command with some combination of flags to obtain similar
results. On BSD, the -l and -p udp flags are supported. On Windows, the -n,
-a, and -p udp flags can be used.

The local address is printed as *:7777, where the asterisk means that the local
IP address has been wildcarded. When the server creates its endpoint, it can spec-
ify one of the host’s local IP addresses, including a broadcast address, as the local
IP address for the endpoint. In such cases, incoming UDP datagrams are then
passed to this endpoint only if the destination IP address matches the specified
local address. With our sock program, if we specify an IP address before the
port number, that IP address becomes the local IP address for the endpoint. For
example, the command

ptg999

Section 10.11 UDP Server Design 501

Linux% sock -u -s 127.0.0.1 7777

restricts the server to accepting only datagrams arriving on the local loopback
interface (127.0.0.1), which can be generated only on the same host. The netstat
output in Listing 10-10 shows this case.

Listing 10-10 netstat listing of UDP IPv4 server bound to only the local loopback interface

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address
udp 0 0 127.0.0.1:7777 0.0.0.0:*

If we try to send this server a datagram from a host on the same Ethernet,
an ICMPv4 Port Unreachable message is returned, and the sending application
receives an error. The server never sees the datagram.

Linux% sock -u -v 10.0.0.3 6666
connected on 10.0.0.5.50997 to 10.0.0.3.6666
123
error: Connection refused

10.11.3 Using Multiple Addresses

It is possible to start different servers on the same port number, each with a differ-
ent local IP address. Normally, however, the system must be told by the applica-
tion that it is OK to reuse the same port number in this way.

Note

With the sockets API, the SO_REUSEADDR socket option must be specified.
This is done in our sock program by specifying the -A option.

Even if we have only one true network interface, we can establish additional
IP addresses for it to use. Here, our host has a native IPv4 address of 10.0.0.30, but
we will give it two additional addresses:

Linux# ip addr add 10.0.2.13 scope host dev eth0
Linux# ip addr add 10.0.2.14 scope host dev eth0

Now our host has four unicast IPv4 addresses: its native address, the two
we have just added, plus its local loopback address. We can start three different
instances of the UDP on the same port using our sock program on the same UDP
port (8888):

Linux% sock -u -s -A 10.0.2.13 8888
Linux% sock -u -s -A 10.0.2.14 8888
Linux% sock -u -s -A 8888

ptg999

502 User Datagram Protocol (UDP) and IP Fragmentation

The servers must be started with the -A flag, telling the system that it is OK
to reuse the same addressing information. The netstat output in Listing 10-11
shows the addresses and port numbers on which the servers are listening.

Listing 10-11 Restricted and wildcarded UDP servers on the same UDP port

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address
udp 0 0 10.0.2.13:8888 0.0.0.0:*
udp 0 0 0.0.0.0:8888 0.0.0.0:*
udp 0 0 10.0.2.14:8888 0.0.0.0:*

In this scenario, the only IPv4 datagrams that will go to the server with the
wildcarded local address are those destined for 10.0.0.30, the directed broadcast
address (e.g., 10.255.255.255), the limited broadcast address (255.255.255.255), or
the local loopback address (127.0.0.1), because the restricted servers cover all other
possibilities.

There is a priority implied when an endpoint with a wildcard address exists.
An endpoint with a specific IP address that matches the destination IP address is
always chosen over a wildcard. The wildcard endpoint is used only when a spe-
cific match is not found.

10.11.4 Restricting Foreign IP Address

In all the netstat output that we showed earlier, the foreign IP address (i.e.,
the one not local to the host where the server is running) and foreign port num-
ber are shown as 0.0.0.0:*, meaning that the endpoint will accept an incoming
UDP datagram from any IPv4 address and any port number. However, there is an
option to restrict the foreign address. This means that the endpoint receives UDP
datagrams only from that specific IPv4 address and port number. Note that this
restriction can be added once a server has heard from a client, in order to filter
out additional traffic from other clients. Our sock program uses the -f option to
specify the foreign IPv4 address and port number:

Linux% sock -u -s -f 10.0.0.14.4444 5555

This sets the foreign IPv4 address to 10.0.0.14 and the foreign port number
to 4444. The server’s port is 5555. If we run netstat, we see that the local address
has also been set, even though we did not specify it explicitly (see Listing 10-12).

Listing 10-12 Restricting the foreign address causes assignment of a local address.

Linux% netstat --udp -n
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
udp 0 0 10.0.0.30:5555 10.0.0.14:4444 ESTABLISHED

ptg999

Section 10.11 UDP Server Design 503

This is a typical side effect of specifying the foreign IP address and foreign
port: if the local address has not been chosen when the foreign address is speci-
fied, the local address is chosen automatically. Its value becomes the IP address of
the interface chosen by IP routing to reach the specified foreign IP address. Indeed,
in this example the primary IPv4 address for the Ethernet that is connected to the
foreign address is 10.0.0.30. Note that as a consequence of the endpoints being
determined and the foreign address restricted, the State column now indicates
that the association is ESTABLISHED.

Table 10-2 summarizes the three types of address bindings that a UDP server
can establish.

Table 10-2 Types of address bindings for a UDP server

Local Address Foreign Address Description

local_IP.local_port foreign_IP.foreign_port Restricted to one client

local_IP.local_port *.* (wildcard) Restricted to one local IP
address and port (but for
any client)

*.local_port *.* (wildcard) Restricted to local port
only

In all cases, local_port is the server’s port and local_IP must be one of
the locally assigned IP addresses. The ordering of the three rows in the table is the
order that the UDP module applies when trying to determine which local end-
point receives an incoming datagram. The most specific binding (the first row) is
tried first, and the least specific (the last row with both IP addresses wildcarded)
is tried last.

10.11.5 Using Multiple Servers per Port

Although it is not specified in the RFCs, by default most implementations allow
only one application endpoint at a time to be associated with any one (local IP
address, UDP port number) pair for a given address family (i.e., IPv4 or IPv6). When
a UDP datagram arrives at a host destined for its IP address and an active port
number, one copy is delivered to that single endpoint (e.g., a listening application).
The IP address of the endpoint can be the wildcard, as shown earlier, but only a
single application can receive datagrams for the address(es) specified. If we then
try to start another server with the same wildcarded local address and the same
port using the same address family, it does not work:

Linux% sock -u -s 12.46.129.3 8888 &
Linux% sock -u -s 12.46.129.3 8888
can’t bind local address: Address already in use

ptg999

504 User Datagram Protocol (UDP) and IP Fragmentation

In support of multicasting (see Chapter 9), multiple endpoints can be allowed
to use the same (local IP address, UDP port number) pair, although the applica-
tion normally must tell the API that this is OK (i.e., our -A flag to specify the
SO_REUSEADDR socket option illustrated previously).

Note

4.4BSD requires the application to set a different socket option (SO_ REUSEPORT)
to allow multiple endpoints to share the same port. Furthermore, each endpoint
must specify this option, including the first one to use the port.

When a UDP datagram arrives whose destination IP address is a broadcast or
multicast address, and there are multiple endpoints at the destination IP address
and port number, one copy of the incoming datagram is passed to each endpoint.
(The endpoint’s local IP address can be the wildcard, which matches any destina-
tion IP address.) But if a UDP datagram arrives whose destination IP address is
a unicast address (i.e., an ordinary address), only a single copy of the datagram
is delivered to one of the endpoints. Which endpoint gets the unicast datagram
is implementation-dependent, but this policy helps to allow multithreaded and
multiprocess servers to operate without being invoked multiple times on the same
incoming request.

10.11.6 Spanning Address Families: IPv4 and IPv6

It is possible to write servers that span not only protocols (such as servers that
respond to both TCP and UDP) but also across address families. That is, we may
write a UDP server that responds to incoming requests for IPv4 as well as for IPv6.
While this may seem entirely straightforward (IPv6 addresses are just additional
IP addresses on the same host that happen to be 128 bits long), there is a subtlety
related to the sharing of the port space. On some systems, the port space between
IPv6 and IPv4 for UDP (and TCP) is shared. This means that if a service binds to a
UDP port using IPv4, it is also allocated the same port in the IPv6 port space (and
vice versa), preventing other services from using it (unless the SO_REUSEADDR
socket option is used, as mentioned before). Furthermore, because IPv6 addresses
can encode IPv4 addresses in an interoperable way (see Chapter 2), wildcard bind-
ings in IPv6 may receive incoming IPv4 traffic.

Note

The situation is implementation-specific. In Linux, all port space is shared, and
any wildcard IPv6 binding implies a corresponding IPv4 binding. In FreeBSD, the
IPV6_V6ONLY socket option may be used to ensure that bindings are present
only in the IPv6 space. Programmers should consult the socket interface for IPv6
for whichever operating environment they are supporting. C language bindings
are described in [RFC3493].

ptg999

Section 10.12 Translating UDP/IPv4 and UDP/IPv6 Datagrams 505

10.11.7 Lack of Flow and Congestion Control

Most UDP servers are iterative servers. This means that a single server thread (or
process) handles all the client requests on a single UDP port (e.g., the server’s
well-known port). Normally there is a limited-size input queue associated with
each UDP port that an application is using. This means that requests arriving at
about the same time from different clients are automatically queued by UDP. The
received UDP datagrams are passed to the application (when it asks for the next
one) in the order in which they were received (i.e., FCFS—first come, first served).

It is possible, however, for this queue to overflow, causing the UDP implemen-
tation to discard incoming datagrams. This can happen even if only one client is
being served because UDP provides no flow control (that is, no way for the server
to tell the client to slow down). Because UDP is a connectionless protocol with no
reliability mechanism of its own, applications are not told when the UDP input
queue overflows. The excess datagrams are just discarded by UDP.

Another concern arises from the fact that queues are also present in the IP
routers between the sender and the receiver—in the middle of the network. When
these queues become full, traffic may be discarded in a fashion similar to that
of the UDP input queue. When this happens, the network is said to be congested.
Congestion is undesirable because it affects all network users with traffic that tra-
verses the point where congestion is occurring, as opposed to the UDP input case
mentioned previously, where only a single application server was affected. UDP
poses a special concern for congestion because it has no way of being informed
that it should slow down its sending rate if the network is being driven into con-
gestion. (It also has no mechanism for slowing down, even if it were told to do so.)
Thus, it is said to lack congestion control. Congestion control is a complex subject
and still an active area of research. We will return to considerations of congestion
control when we discuss TCP (see Chapter 16).

10.12 Translating UDP/IPv4 and UDP/IPv6 Datagrams

In Chapter 7 we discussed a framework for translating IP datagrams from IPv4
to IPv6 and vice versa. Chapter 8 described how this framework applies to ICMP.
When UDP passes through a translator, the translation takes place as described
in Chapter 7, except there are issues specific to the UDP checksum. For UDP/
IPv4 datagrams, the UDP header’s Checksum field is allowed to be 0 (uncomputed),
whereas in UDP/IPv6 this is not allowed. Consequently, complete datagrams
arriving with a zero checksum being translated from IPv4 to IPv6 result in either
a UDP/IPv6 datagram with a fully computed pseudo-header checksum being
generated, or with the arriving packet being dropped. The translator is supposed
to provide a configuration option to select which is desired, as the overhead of
generating such checksums may be objectionable. Packets containing a nonzero
checksum being translated in either direction require the checksum to be updated
if a non-checksum-neutral address mapping is used (see Chapter 7).

ptg999

506 User Datagram Protocol (UDP) and IP Fragmentation

Fragmented datagrams present another challenge. For stateless translators, a
fragmented UDP/IPv4 datagram with a zero checksum cannot be translated, as
the appropriate UDP/IPv6 checksum cannot be computed. Such datagrams are
dropped. Stateful translators (i.e., NAT64) can reassemble a number of fragments
and compute the required checksum. Fragmented UDP/IP datagrams with com-
puted checksums are handled as ordinary fragments in either direction, as speci-
fied in Chapter 7. Large UDP/IPv4 datagrams that require fragmentation to fit
within the IPv6 minimum MTU after translation are also handled as conventional
IPv4 datagrams (i.e., they are fragmented as needed).

10.13 UDP in the Internet

If we attempt to characterize the amount of UDP traffic in the Internet, we find
that useful, publicly available data is somewhat hard to come by, and that the
breakdown of traffic load by protocol varies from site to site. That said, studies
such as [FKMC03] find that UDP accounts for between 10% and 40% of Internet
traffic observed, and that as peer-to-peer applications gain in popularity, the use
of UDP is also on the rise [Z09], although TCP traffic still dominates in terms of
packets and bytes.

In [SMC02], fragmentation of Internet traffic is found to be most common with
UDP (68.3% of the fragmented traffic is UDP), although very little traffic overall
is fragmented (about 0.3% of packets, 0.8% of bytes). The authors report that the
most common type of traffic that is fragmented is UDP-based multimedia traffic
(53%; Microsoft’s Media Player is responsible for about half of this) and encap-
sulated/tunneled traffic such as that present in VPN tunnels (about 22%). Fur-
thermore, about 10% of the fragmentation is reverse-order (we said this earlier in
the examples where the last IP fragment was sent prior to the first), and the most
commonly seen fragment size is 1500 bytes (79%), followed by 1484 bytes (18%)
and 1492 bytes (1%).

Note

The 1500-byte MTU is related to the native usable payload size for Ethernet. The
1484 size was produced by Digital Equipment Corporation’s GigaSwitch (now
defunct), which represented significant portions of the topology measured at the
time.

The causes of fragmentation appear to derive from two factors: careless encap-
sulation and lack of path MTU discovery and adaptation for applications that like
to use large messages. The former case relates to multiple levels of encapsulation
across many protocol layers that add additional headers, forcing IP packets that
initially fit into 1500-byte MTUs (the most common size) to no longer fit (e.g., appli-
cation traffic carried over VPN tunnels). The second factor arises for applications

ptg999

Section 10.14 Attacks Involving UDP and IP Fragmentation 507

that use larger packets (e.g., video applications) that end up being fragmented. A
curious (and unfortunate) finding in the [SMC02] study is that numerous UDP
packets with the IPv4 DF bit field turned on (presumably trying to perform PMTU
discovery) are encapsulated in UDP packets that do not (thereby defeating the
attempt and leaving the responsible application ignorant of the fact).

10.14 Attacks Involving UDP and IP Fragmentation

Most attacks involving UDP relate to exhaustion of some shared resource (buffers,
link capacity, etc.) or exploitation of bugs in protocol implementations causing sys-
tem crashes or other undesired behavior. Both fall into the broad category of DoS
attacks: the successful attacker is able to cause services to be made unavailable to
legitimate users. The most straightforward DoS attack with UDP is simply gener-
ating massive amounts of traffic as fast as possible. Because UDP does not regulate
its sending traffic rate, this can negatively impact the performance of other appli-
cations sharing the same network path. This can happen even without malicious
intent.

A more sophisticated form of DoS attack frequently associated with UDP is a
magnification attack. This type of attack generally involves an attacker sending a
small amount of traffic that induces other systems to generate much more. In the
so-called fraggle attack, a malicious UDP sender forges the IP source address to be
that of a victim and sets the destination address to a form of broadcast (e.g., the
directed broadcast address). UDP packets are sent to a service that generates traf-
fic in response to an incoming datagram. When the servers implementing these
services respond, they direct their messages to the IP address contained in the
Source IP Address field of the arriving UDP packet. In this case, the source address
is that of the victim, and so the victim host is subject to being overloaded by the
multiple UDP traffic responders. Variants of this magnification attack are numer-
ous, including inducing a character-generating service to be coupled to the echo
service, thereby causing traffic to be “ping-ponged” forever. This attack is closely
related to the ICMP smurf attack (see Chapter 8).

Several attacks involving IP fragmentation have appeared. IP fragmenta-
tion processing is somewhat more complex than UDP processing, so it is not so
surprising that bugs in its implementation have been found and exploited. One
form of attack involves sending fragments that contain no data whatsoever. This
attack exploited a bug in IPv4 reassembly code and caused some systems to crash.
Another attack on the IPv4 reassembly layer is the teardrop attack, which involves
carefully constructing a series of fragments with overlapping Fragment Offset
fields that crash or otherwise badly affect some systems. A variant of this involves
overlapping fragment offsets that overwrite the UDP header from an earlier frag-
ment. Overlapping fragments are now prohibited with IPv6 [RFC5722]. Finally,
the also-related ping of death attack (typically constructed with ICMPv4 Echo
Request but also applicable to UDP) operates by creating an IPv4 datagram that on

ptg999

508 User Datagram Protocol (UDP) and IP Fragmentation

reassembly exceeds the maximum limit. This is fairly straightforward because the
Fragment Offset field can be set to a value as high as 8191, which represents a byte
offset of 65,528 bytes. Any such fragment with length exceeding 7 bytes would—if
not prevented from doing so—result in a reconstructed datagram exceeding the
maximum size of 65,535 bytes. Mitigation techniques for some forms of fragment
attacks are given in [RFC3128].

10.15 Summary

UDP is a simple protocol. Its official specification, [RFC0768], requires only three
pages (including references!). The services it provides to a user process, above
and beyond IP, are port numbers and a checksum. It provides no flow control,
no congestion control, and no error correction. It does provide error detection
(optional for UDP/IPv4 but mandatory for UDP/IPv6) and preservation of mes-
sage boundaries. We used UDP to examine the Internet checksum and to see how
IP fragmentation is performed. We also looked at other aspects of UDP: how it is
used with path MTU discovery, how it impacts server design, and its presence in
the Internet.

UDP is most commonly used when the overhead of connection establishment
is to be avoided, when multipoint delivery (multicasting, broadcasting) is used,
or when the comparatively “heavyweight” reliability semantics of TCP (such as
sequencing, flow control, and retransmission) are not desired. It has enjoyed a
growing level of use because of multimedia and peer-to-peer applications and is
the primary protocol for supporting VoIP [RFC3550][RFC3261]. It is also a conve-
nient method for encapsulating traffic that must transition a NAT without intro-
ducing much extra overhead (only 8 bytes for the UDP header). We have seen this
use for supporting an IPv6 transition mechanism (Teredo) and for aiding NAT
traversal with STUN (see Chapter 7), and we will see it again in Chapter 18 where
it is used for IPsec NAT traversal. One of UDP’s other major uses is for supporting
the DNS. We explore this important application next, in Chapter 11.

10.16 References

[CT90] D. Clark and D. Tennenhouse, “Architectural Considerations for a New
Generation of Protocols,” Proc. ACM SIGCOMM, 1990.

[FKMC03] M. Fomenkov, K. Keys, D. Moore, and k claffy, “Longitudinal Study of
Internet Traffic in 1998–2003,” CAIDA Report, available from http://www.caida.
org, 2003.

[IPORT] http://www.iana.org/assignments/port-numbers

http://www.caida.org
http://www.caida.org
http://www.iana.org/assignments/port-numbers

ptg999

 Section 10.16 References 509

[KB929851] Microsoft Support Article ID 929851, “The Default Dynamic Port
Range for TCP/IP Has Changed in Windows Vista and in Windows Server 2008,”
Nov. 19, 2009 (rev. 6.2).

[KEWG96] F. Kaashoek, D. Engler, D. Wallach, and G. Ganger, “Server Operating
Systems,” Proc. SIGOPS European Workshop, 1996.

[KM87] C. Kent and J. Mogul, “Fragmentation Considered Harmful,” DEC WRL
Technical Report 87/3, 1987.

[RFC0768] J. Postel, “User Datagram Protocol,” Internet RFC 0768/STD 0006, Aug.
1980.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

[RFC1191] J. C. Mogul and S. E. Deering, “Path MTU Discovery,” Internet RFC
1191, Nov. 1990.

[RFC2460] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specifi-
cation,” Internet RFC 2460, Dec. 1998.

[RFC2675] D. Borman, S. Deering, and R. Hinden, “IPv6 Jumbograms,” Internet
RFC 2675, Aug. 1999.

[RFC3056] B. Carpenter and K. Moore, “ Connection of IPv6 Domains via IPv4
Clouds,” Internet RFC 3056, Feb. 2001.

[RFC3128] I. Miller, “Protection against a Variant of the Tiny Fragment Attack
(RFC 1858),” Internet RFC 3128 (informational), June 2001.

[RFC3261] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,” Internet
RFC 3261, June 2002.

[RFC3493] R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens, “Basic
Socket Interface Extensions for IPv6,” Internet RFC 3493 (informational), Feb.
2003.

[RFC3550] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” Internet RFC 3550/STD 0064,
July 2003.

[RFC3828] L-A. Larzon, M. Degermark, S. Pink, L-E. Jonsson, ed., and G.
Fairhurst, ed., “The Lightweight User Datagram Protocol (UDP-Lite),” Internet
RFC 3828, July 2004.

[RFC4213] E. Nordmark and R. Gilligan, “Basic Transition Mechanisms for IPv6
Hosts and Routers,” Internet RFC 4213, Oct. 2005.

ptg999

510 User Datagram Protocol (UDP) and IP Fragmentation

[RFC4380] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs),” Internet RFC 4380, Feb. 2006.

[RFC4787] F. Audet, ed., and C. Jennings, “Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” Internet RFC 4787/BCP 0127, Jan.
2007.

[RFC4821] M. Mathis and J. Heffner, “Packetization Layer Path MTU Discovery,”
Internet RFC 4821, Mar. 2007.

[RFC4960] R. Stewart, ed., “Stream Control Transmission Protocol,” Internet RFC
4960, Sept. 2007.

[RFC5405] L. Eggert and G. Fairhurst, “Unicast UDP Usage Guidelines for
Application Designers,” Internet RFC 5405/BCP 0145, Nov. 2008.

[RFC5722] S. Krishnan, “Handling of Overlapping IPv6 Fragments,” Internet
RFC 5722, Dec. 2009.

[RFC5969] W. Townsley and O. Troan, “IPv6 Rapid Deployment on IPv4 Infra-
structures (6rd)—Protocol Specification,” Internet RFC 5969, Aug. 2010.

[RFC5991] D. Thaler, S. Krishnan, and J. Hoagland, “Teredo Security Updates,”
Internet RFC 5991, Sept. 2010.

[RFC6081] D. Thaler, “Teredo Extensions,” Internet RFC 6081, Jan. 2011.

[RFC6343] B. Carpenter, “Advisory Guidelines for 6to4 Deployment,” Internet
RFC 6343 (informational), Aug. 2011.

[SMC02] C. Shannon, D. Moore, and k claffy, “Beyond Folklore: Observations on
Fragmented Traffic,” IEEE/ACM Transactions on Networking, 10(6), Dec. 2002.

[SOCK] http://www.icir.org/christian/sock.html

[TTYPES] http://www.iana.org/assignments/trailer-types

[UNP3] W. Stevens, B. Fenner, and A. Rudoff, UNIX Network Programming, Volume
1, Third Edition (Addison-Wesley, 2004).

[Z09] M. Zhang et al., “Analysis of UDP Traffic Usage on Internet Backbone
Links,” Proc. 9th Annual International Symposium on Applications and the Internet,
2009.

http://www.icir.org/christian/sock.html
http://www.iana.org/assignments/trailer-types

ptg999

511

11

Name Resolution and the
Domain Name System (DNS)

11.1 Introduction

The protocols we have studied so far operate using IP addresses to identify the
hosts that participate in a distributed application. These addresses (especially IPv6
addresses) are cumbersome for humans to use and remember, so the Internet sup-
ports the use of host names to identify hosts, both clients and servers. In order to be
used by protocols such as TCP and IP, host names are converted into IP addresses
using a process known as name resolution. There are different forms of name reso-
lution in the Internet, but the most prevalent and important one uses a distributed
database system known as the Domain Name System (DNS) [MD88]. DNS runs as
an application on the Internet, using IPv4 or IPv6 (or both). For scalability, DNS
names are hierarchical, as are the servers that support name resolution.

DNS is a distributed client/server networked database that is used by TCP/IP
applications to map between host names and IP addresses (and vice versa), to pro-
vide electronic mail routing information, service naming, and other capabilities.
We use the term distributed because no single site on the Internet knows all of the
information. Each site (university department, campus, company, or department
within a company, for example) maintains its own database of information and
runs a server program that other systems across the Internet (clients) can query.
The DNS provides the protocol that allows clients and servers to communicate
with each other and also a protocol for allowing servers to exchange information.

From an application’s point of view, access to the DNS is through an applica-
tion library called a resolver. In general, an application must convert a host name
to an IPv4 and/or IPv6 address before it can ask TCP to open a connection or send
a unicast datagram using UDP. The TCP and IP protocol implementations know
nothing about the DNS; they operate only with the addresses.

ptg999

512 Name Resolution and the Domain Name System (DNS)

In this chapter we will take a look at how the names in DNS are set up, how
resolvers and servers communicate using the Internet protocols (mainly UDP), and
some of the other resolution mechanisms that are used in Internet environments.
We do not cover all of the administrative details of running a name server or all of
the options available with resolvers and servers. Such information is available from
various other sources, including Albitz and Liu’s DNS and BIND text [AL06] and in
[RFC6168]. We discuss the details of DNS security (DNSSEC) in Chapter 18.

11.2 The DNS Name Space

The set of all names used with DNS constitutes the DNS name space. This space is
partitioned hierarchically and is case insensitive, similar to computer file system
folders (directories) and files. The current DNS name space is a tree of domains
with an unnamed root at the top. The top echelons of the tree are the so-called
top-level domains (TLDs), which include generic TLDs (gTLDs), country-code TLDs
(ccTLDs), and internationalized country-code TLDs (IDN ccTLDs), plus a special
infrastructure TLD called, for historical reasons, ARPA [RFC3172]. These form the
top levels of a naming tree with the form shown in Figure 11-1.

There are five commonly used groups of TLDs, and one group of specialized
domains being used for internationalized domain names (IDNs).1 The history of IDNs,
one piece of the “internationalization” or “i18n” of the Internet, is long and some-
what complicated. Across the world, there are multiple languages, and each uses
one or more written scripts. While the Unicode standard [U11] aims to capture
the entire set of characters, many characters look the same but have different Uni-
code values. Furthermore, characters written as text may flow from right to left, left
to right, or (when combining certain texts with others) in both directions. Couple
these (and other) somewhat technical concerns with concerns regarding equity
and international law and politics, and a considerable hurdle results. The interested
reader may wish to consult the IAB’s review of IDNs [RFC4690], published in 2006,
for more information. Current information is available from [IIDN].

The gTLDs are grouped into categories: generic, generic-restricted, and sponsored.
The generic gTLDs (generic appears twice) are open for unrestricted use. The others
(generic-restricted and sponsored) are limited to various sorts of uses or are con-
strained as to what entity may assign names from the domain. For example, EDU is
used for educational institutions, MIL and GOV are used for military and govern-
ment institutions of the United States, and INT is used for international organiza-
tions (such as NATO). Table 11-1 provides a summary of the 22 gTLDs from [GTLD]
as of mid-2011. There is a “new gTLD” program in the works that may significantly
expand the current set, possibly to several hundred or even thousand. This pro-
gram and policies relating to TLD management in general are maintained by the
Internet Corporation for Assigned Names and Numbers (ICANN) [ICANN].

1. Figure 11-1 also shows 11 test IDN domains, which are still available.

ptg999

513

पर ा

ப ைச

.இல ைக

Figure 11-1 The DNS name space forms a hierarchy with an unnamed root at the top. The top-level domains (TLDs) include generic TLDs (gTLDs), country-
code TLDs (ccTLDs), internationalized TLDs (IDN ccTLDs), and a special infrastructure TLD called ARPA.

ptg999

514 Name Resolution and the Domain Name System (DNS)

The ccTLDs include the two-letter country codes specified by the ISO 3166
standard [ISO3166], plus five that are not: uk, su, ac, eu, and tp (the last one is
being phased out). Because some of these two-letter codes are suggestive of other
uses and meanings, various countries have been able to find commercial wind-
falls from selling names within their ccTLDs. For example, the domain name cnn.
tv is really a registration in the Pacific island of Tuvalu, which has been selling
domain names associated with the television entertainment industry. Creating a
name in such an unconventional way is sometimes called a domain hack.

11.2.1 DNS Naming Syntax

The names below a TLD in the DNS name tree are further partitioned into groups
known as subdomains. This is very common practice, especially for the ccTLDs. For

Table 11-1 The generic top-level domains (gTLDs), circa 2011

TLD First Use (est.) Use Example

AERO December 21, 2001 Air-transport industry www.sita.aero
ARPA January 1, 1985 Infrastructure 18.in-addr.arpa
ASIA May 2, 2007 Pan-Asia and Asia Pacific www.seo.asia
BIZ June 26, 2001 Business uses neustar.biz
CAT December 19, 2005 Catalan linguistic/cultural

community
www.domini.cat

COM January 1, 1985 Generic icanhascheezburger.com
COOP December 15, 2001 Cooperative associations www.ems.coop
EDU January 1, 1985 Post-secondary educational

institutions recognized by U.S.A.
hpu.edu

GOV January 1, 1985 U.S. government whitehouse.gov
INFO June 25, 2001 Generic germany.info
INT November 3, 1988 International treaty organizations nato.int
JOBS September 8, 2005 Human resource managers intel.jobs
MIL January 1, 1985 U.S. military dtic.mil
MOBI October 30, 2005 Customers/providers of mobile

products/services
flowers.mobi

MUSEUM October 30, 2001 Museums icom.museum
NAME August 16, 2001 Individuals www.name
NET January 1, 1985 Generic ja.net
ORG December 9, 2002 Generic slashdot.org
PRO May 6, 2002 Credentialed professionals/entities nic.pro
TEL March 1, 2007 Contact data for businesses/

individuals
telnic.tel

TRAVEL July 27, 2005 Travel industry cancun.travel
XXX April 15, 2011 Adult entertainment industry whois.nic.xxx

www.sita.aero
www.seo.asia
www.domini.cat
www.ems.coop

ptg999

Section 11.2 The DNS Name Space 515

example, most educational sites in England use the suffix .ac.uk, whereas names
for most for-profit companies there end in the suffix .co.uk. In the United States,
city government Web sites tend to use the subdomain ci.city.state.us where state
is the two-letter abbreviation for the name of the state and city is the name of the
city. For example, the site www.ci.manhattan-beach.ca.us is the site of Man-
hattan Beach, California’s, city government in the United States.

The example names we have seen so far are known as fully qualified domain
names (FQDNs). They are sometimes written more formally with a trailing period
(e.g., mit.edu.). This trailing period indicates that the name is complete; no
additional information should be added to the name when performing a name
resolution. In contrast to the FQDN, an unqualified domain name, which is used
in combination with a default domain or domain search list set during system
configuration, has one or more strings appended to the end. When a system is
configured (see Chapter 6), it is typically assigned a default domain extension and
search list using DHCP (or, less commonly, the RDNSS and DNSSL RA options).
For example, the default domain cs.berkeley.edu might be configured in sys-
tems at the computer science department at UC Berkeley. If a user on one of these
machines types in the name vangogh, the local resolver software converts this
name to the FQDN vangogh.cs.berkeley.edu. before invoking a resolver to
determine vangogh’s IP address.

A domain name consists of a sequence of labels separated by periods. The
name represents a location in the name hierarchy, where the period is the hierar-
chy delimiter and descending down the tree takes place from right to left in the
name. For example, the FQDN

www.net.in.tum.de.

contains a host name label (www) in a four-level-deep domain (net.in.tum.de).
Starting from the root, and working from right to left in the name, the TLD is de
(the ccTLD for Germany), tum is shorthand for Technische Universität München,
in is shorthand for informatik (German for “computer science”), and finally net is
shorthand for the networks group within the computer science department. Labels
are case-insensitive for matching purposes, so the name ACME.COM is equivalent
to acme.com or AcMe.cOm [RFC4343]. Each label can be up to 63 characters long,
and an entire FQDN is limited to at most 255 (1-byte) characters. For example, this
domain name:

thelongestdomainnameintheworldandthensomeandthensomemoreandmore.com

was allegedly submitted as a potential world record for the longest name, with
a label of length 63, but was judged to have been of insufficient merit to justify a
place in the Guinness World Records.

The hierarchical structure of the DNS name space allows different administra-
tive authorities to manage different parts of the name space. For example, creating

www.ci.manhattan-beach.ca.us
www.net.in.tum.de

ptg999

516 Name Resolution and the Domain Name System (DNS)

a new DNS name of the form elevator.cs.berkeley.edu would likely require
dealing with the owner of the cs.berkeley.edu subdomain only. The berkeley
.edu and edu portions of the name space would not require alteration, so the
owners of those would not need to be bothered. This feature of DNS is one key
aspect of its scalability. That is, no single entity is required to administer all the
changes for the entire DNS name space. Indeed, creating a hierarchical structure
for names was one of the first responses in the Internet community to the pres-
sures of scaling and a major motivator for the structure used today. The origi-
nal Internet naming scheme was flat (i.e., no hierarchy), and a single entity was
responsible for assigning, maintaining, and distributing the list of nonconflicting
names. Over time, as more names were required and more changes were being
made, this approach became unworkable [MD88].

11.3 Name Servers and Zones

Management responsibility for portions of the DNS name space is assigned to
individuals or organizations. A person given responsibility for managing part of
the active DNS name space (one or more domains) is supposed to arrange for at
least two name servers or DNS servers to hold information about the name space
so that users of the Internet can perform queries on the names. The collection of
servers forms the DNS (service) itself, a distributed system whose primary job is
to provide name-to-address mappings. However, it can also provide a wide array
of additional information.

The unit of administrative delegation, in the language of DNS servers, is
called a zone. A zone is a subtree of the DNS name space that can be administered
separately from other zones. Every domain name exists within some zone, even
the TLDs that exist in the root zone. Whenever a new record is added to a zone, the
DNS administrator for the zone allocates a name and additional information (usu-
ally an IP address) for the new entry and enters these into the name server’s data-
base. At a small campus, for example, one person could do this each time a new
server is added to the network, but in a large enterprise the responsibility would
have to be delegated (probably by departments or other organizational units), as
one person likely could not keep up with the work.

A DNS server can contain information for more than one zone. At any hierar-
chical change point in a domain name (i.e., wherever a period appears), a different
zone and containing server may be accessed to provide information for the name.
This is called a delegation. A common delegation approach uses a zone for imple-
menting a second-level domain name, such as berkeley.edu. In this domain,
there may be individual hosts (e.g., www.berkeley.edu) or other domains (e.g.,
cs.berkeley.edu). Each zone has a designated owner or responsible party who
is given authority to manage the names, addresses, and subordinate zones within
the zone. Often this person manages not only the contents of the zone but also the
name servers that contain the zone’s database(s).

www.berkeley.edu

ptg999

 Section 11.4 Caching 517

Zone information is supposed to exist in at least two places, implying that
there should be at least two servers containing information for each zone. This is
for redundancy; if one server is not functioning properly, at least one other server
is available. All of these servers contain identical information about a zone. Typi-
cally, among the servers, a primary server contains the zone database in a disk
file, and one or more secondary servers obtain copies of the database in its entirety
from the primary using a process called a zone transfer. DNS has a special protocol
for performing zone transfers, but copies of a zone’s contents can also be obtained
using other means (e.g., the rsync utility [RSYNC]).

11.4 Caching

Name servers contain information such as name-to-IP-address mappings that
may be obtained from three sources. The name server obtains the information
directly from the zone database, as the result of a zone transfer (e.g., for a slave
server), or from another server in the course of processing a resolution. In the first
case, the server is said to contain authoritative information about the zone and may
be called an authoritative server for the zone. Such servers are identified by name
within the zone information.

Most name servers (except some of the root and TLD servers) also cache zone
information they learn, up to a time limit called the time to live (TTL). They use this
cached information to answer queries. Doing so can greatly decrease the amount
of DNS message traffic that would otherwise be carried on the Internet [J02].
When answering a query, a server indicates whether the information it is return-
ing has been derived from its cache or from its authoritative copy of the zone.
When cached information is returned, it is common for a server to also include the
domain names of the name servers that can be contacted to retrieve authoritative
information about the corresponding zone.

As we shall see, each DNS record (e.g., name-to-IP-address mapping) has its
own TTL that controls how long it can be cached. These values are set and altered
by the zone administrator when necessary. The TTL dictates how long a mapping
can be cached anywhere within DNS, so if a zone changes, there still may exist
cached data within the network, potentially leading to incorrect DNS resolution
behavior until expiry of the TTL. For this reason, some zone administrators, antic-
ipating a change to the zone contents, first reduce the TTL before implementing
the change. Doing so reduces the window for incorrect cached data to be present
in the network.

It is worth mentioning that caching is applied both for successful resolutions
and for unsuccessful resolutions (called negative caching). If a request for a particu-
lar domain name fails to return a record, this fact is also cached. Doing so can help
to reduce Internet traffic when errant applications repeatedly make requests for
names that do not exist. Negative caching was changed from optional to manda-
tory by [RFC2308].

ptg999

518 Name Resolution and the Domain Name System (DNS)

In some network configurations (e.g., those using older UNIX-compatible sys-
tems), the cache is maintained in a nearby name server, not in the resolvers resi-
dent in the clients. Placing the cache in the server allows any hosts on the LAN
that use the nearby server to benefit from the server’s cache but implies a small
delay in accessing the cache over the local network. In Windows and more recent
systems (e.g., Linux), the client can maintain a cache, and it is made available to all
applications running on the same system. In Windows, this happens by default,
and in Linux, it is a service that can be enabled or disabled.

On Windows, the local system’s cache parameters may be modified by editing
the following registry entry:

HKLM\SYSTEM\CurrentControlSet\Services\DNSCache\Parameters

The DWORD value MaxNegativeCacheTtl gives the maximum number of
seconds that a negative DNS result remains in the resolver cache. The DWORD
value MaxCacheTtl gives the maximum number of seconds that a DNS record
may remain in the resolver cache. If this value is less than the TTL of a received
DNS record, the lesser value controls how long the record remains in cache. These
two registry keys do not exist by default, so they must be created in order to be
used.

In Linux and other systems that support it, the Name Service Caching Daemon
(NSCD) provides a client-side caching capability. It is controlled by the
/etc/nscd.conf file that can indicate which types of resolutions (for DNS and
some other services) are cached, along with some cache parameters such as TTL
settings. In addition, the file /etc/nsswitch.conf controls how name resolu-
tion for applications takes place. Among other things, it can control whether local
files, the DNS protocol (see Section 11.5), and/or NSCD is employed for mappings.

11.5 The DNS Protocol

The DNS protocol consists of two main parts: a query/response protocol used for
performing queries against the DNS for particular names, and another protocol
for name servers to exchange database records (zone transfers). It also has a way
to notify secondary servers that the zone database has evolved and a zone transfer
is necessary (DNS Notify), and a way to dynamically update the zone (dynamic
updates). By far, the most typical usage is a simple query/response to look up the
IPv4 address that corresponds to a domain name.

Most often, DNS name resolution is the process of mapping a domain name
to an IPv4 address, although IPv6 addresses mappings work in essentially the
same way. DNS query/response operations are supported over the distributed
DNS infrastructure consisting of servers deployed locally at each site or ISP, and a
special set of root servers. There is also a special set of generic top-level domain servers

ptg999

Section 11.5 The DNS Protocol 519

used for scaling some of the larger gTLDs, including COM and NET. As of mid-
2011, there are 13 root servers named by the letters A through M (see [ROOTS] for
more information about them); 9 of them have IPv6 addresses. There are also 13
gTLD servers, also labeled A through M; 2 of them have IPv6 addresses. By con-
tacting a root server and possibly a gTLD server, the name server for any TLD in
the Internet can be discovered. These servers are mutually coordinated to provide
the same information. Some of them are not a single physical server but instead
a group of servers (over 50 for the J root server) that use the same IP address (i.e.,
using IP anycast addressing; see Chapter 2).

A full resolution that is unable to benefit from preexisting cached entries takes
place among several entities, as shown in Figure 11-2.

110

2

3 4 5 6

7
8

9

Figure 11-2 A typical recursive DNS query for EXAMPLE.COM from A.HOME involves up to ten messages. The
local recursive server (GW.HOME here) uses a DNS server provided by its ISP. That server, in turn,
uses an Internet root name server and a gTLD server (for COM and NET TLDs) to find the name
server for the EXAMPLE.COM domain. That name server (A.IANA-SERVERS.NET here) provides
the required IP address for the host EXAMPLE.COM. All of the recursive servers cache any infor-
mation learned for later use.

Here, we have a laptop called A.HOME residing nearby the DNS server
GW.HOME. The domain HOME is private, so it is not known to the Internet—only
locally at the user’s residence. When a user on A.HOME wishes to connect to the
host EXAMPLE.COM (e.g., because a Web browser has been instructed to access
the page http://EXAMPLE.COM), A.HOME must determine the IP address for the
server EXAMPLE.COM. Assuming it does not know this address already (it might
if it has accessed the host recently), the resolver software on A.HOME first makes
a request to its local name server, GW.HOME. This is a request to convert the name
EXAMPLE.COM into an address and constitutes message 1 (labeled on an arrow in
Figure 11-2).

ptg999

520 Name Resolution and the Domain Name System (DNS)

Note

If the A.HOME system is configured with a default domain search list, there may
be additional queries. For example, if .HOME is a default search domain used by
A.HOME, the first DNS query may be for the name EXAMPLE.COM.HOME, which
will fail at the GW.HOME name server, which is authoritative for .HOME. A subse-
quent query will typically remove the default extension, resulting in a query for
EXAMPLE.COM.

If GW.HOME does not already know the IP address for EXAMPLE.COM or the
name servers for either the EXAMPLE.COM domain or the COM TLD, it forwards the
request to another DNS server (called recursion). In this case, a request (message
2) goes to an ISP-provided DNS server. Assuming that this server also does not
know the required address or other information, it contacts one of the root name
servers (message 3). The root servers are not recursive, so they do not process
the request further but instead return the information required to contact a name
server for the COM TLD. For example, it might return the name A.GTLD-SERVERS
.NET and one or more of its IP addresses (message 4). With this information, the
ISP-provided server contacts the gTLD server (message 5) and discovers the name
and IP addresses of the name servers for the domain EXAMPLE.COM (message 6).
In this case, one of the servers is A.IANA-SERVERS.NET.

Given the correct server for the domain, the ISP-provided server contacts the
appropriate server (message 7), which responds with the requested IP address
(message 8). At this point, the ISP-provided server can respond to GW.HOME with
the required information (message 9). GW.HOME is now able to complete the initial
query and responds to the client with the desired IPv4 and/or IPv6 address(es)
(message 10).

From the perspective of A.HOME, the local name server was able to per-
form the request. However, what really happened is a recursive query, where the
GW.HOME and ISP-provided servers in turn made additional DNS requests to sat-
isfy A.HOME’s query. In general, most name servers perform recursive queries such
as this. The notable exceptions are the root servers and other TLD servers that do
not perform recursive queries. These servers are a relatively precious resource, so
encumbering them with recursive queries for every machine that performs a DNS
query would lead to poor global Internet performance.

11.5.1 DNS Message Format

There is one basic DNS message format [RFC6195]. It is used for all DNS opera-
tions (queries, responses, zone transfers, notifications, and dynamic updates), as
illustrated in Figure 11-3.

The basic DNS message begins with a fixed 12-byte header followed by four
variable-length sections: questions (or queries), answers, authority records, and
additional records. All but the first section contain one or more resource records

ptg999

Section 11.5 The DNS Protocol 521

(RRs), which we discuss in detail in Section 11.5.6. (The question section contains
a data item that is very close in structure to an RR.) RRs can be cached; questions
are not.

In the fixed-length header, the Transaction ID field is set by the client and
returned by the server. It lets the client match responses to requests. The second
16-bit word includes a number of flags and other subfields. Beginning from the
left-most bit, QR is a 1-bit field: 0 means the message is a query; 1 means it is a
response. The next is the OpCode, a 4-bit field. The normal value is 0 (a standard
query) for requests and responses. Other values are: 4 (notify), and 5 (update).
Other values (1–3) are deprecated or never seen in operational use. Next is the AA
bit field that indicates an “authoritative answer” (as opposed to a cached answer).
TC is a 1-bit field that means “truncated.” With UDP, this flag being set means that
the total size of the reply exceeded 512 bytes, and only the first 512 bytes of the
reply were returned.

RD is a bit field that means “recursion desired.” It can be set in a query and
is then returned in the response. It tells the server to perform a recursive query.
If the bit is not set, and the requested name server does not have an authoritative
answer, the requested name server returns a list of other name servers to contact

Figure 11-3 The DNS message format has a fixed 12-byte header. The entire message is usually
carried in a UDP/IPv4 datagram and limited to 512 bytes. DNS UPDATE (DNS with
dynamic updates) uses the field names ZOCOUNT, PRCOUNT, UPCOUNT, and
ADCOUNT. A special extension format (called EDNS0) allows messages to be larger
than 512 bytes, which is required for DNSSEC (see Chapter 18).

ptg999

522 Name Resolution and the Domain Name System (DNS)

for the answer. At this point, the overall query may be continued by contacting
the list of other name servers. This is called an iterative query. RA is a bit field that
means “recursion available.” This bit is set in the response if the server supports
recursion. Root servers generally do not support recursion, thereby forcing clients
to perform iterative queries to complete name resolution. The Z bit field must be 0
for now but is reserved for future use.

The AD bit field is set to true if the contained information is authenticated,
and the CD bit is set to true if security checking is disabled (see Chapter 18). The
Response Code (or RCODE) field is a 4-bit field with the return code whose possible
values are given in [DNSPARAM]. The common values include 0 (no error) and
3 (name error or “nonexistent domain,” written as NXDOMAIN). A list of the
first 11 error codes is given in Table 11-2 (values 11 through 15 are unassigned).
Additional types are defined using a special extension (see Section 11.5.2). A
name error is returned only from an authoritative name server and means that the
domain name specified in the query does not exist.

Table 11-2 The first ten error types used with the RCODE field

Value Name Reference Description and Purpose

0 NoError [RFC1035] No error
1 FormErr [RFC1035] Format error; query cannot be interpreted
2 ServFail [RFC1035] Server failure; error in processing at server
3 NXDomain [RFC1035] Nonexistent domain; unknown domain referenced
4 NotImp [RFC1035] Not implemented; request not supported in server
5 Refused [RFC1035] Refused; server unwilling to provide answer
6 YXDomain [RFC2136] Name exists but should not (used with updates)
7 YXRRSet [RFC2136] RRSet exists but should not (used with updates)
8 NXRRSet [RFC2136] RRSet does not exist but should (used with updates)
9 NotAuth [RFC2136] Server not authorized for zone (used with updates)
10 NotZone [RFC2136] Name not contained in zone (used with updates)

The next four fields are 16 bits in size and specify the number of entries in the
question, answer, authority, and additional information sections that complete the
DNS message. For a query, the number of questions is normally 1 and the other
three counts are 0. For a reply, the number of answers is at least 1. Questions have
a name, type, and class. (Class supports non-Internet records, but we ignore this
for our purposes. The type identifies the type of object being looked up.) All of
the other sections contain zero or more RRs. RRs contain a name, type, and class
information, but also the TTL value that controls how long the data can be cached.
We shall discuss the most important RR types in detail once we have a look at how
DNS encodes names and selects which transport protocol to use when carrying
DNS messages.

ptg999

Section 11.5 The DNS Protocol 523

11.5.1.1 Names and Labels
The variable-length sections at the end of a DNS message contain a collection of
questions, answers, authority information (names of name servers that contain
authoritative information for certain data), and additional information that may
be useful to reduce the number of necessary queries. Each question and each RR
begins with a name (called the domain name or owning name) to which it refers.
Each name consists of a sequence of labels. There are two categories of label types:
data labels and compression labels. Data labels contain characters that constitute a
label; compression labels act as pointers to other labels. Compression labels help to
save space in a DNS message when multiple copies of the same string of characters
are present across multiple labels.

11.5.1.2 Data Labels
Each data label begins with a 1-byte count that specifies the number of bytes that
immediately follow. The name is terminated with a byte containing the value 0,
which is a label with a length of 0 (the label of the root). For example, the encoding
of the name www.pearson.com would be as shown in Figure 11-4.

Figure 11-4 DNS names are encoded as a sequence of labels. This example encodes the name www.
pearson.com, which (technically) has four labels. The end of the name is identified by
a 0-length label of the nameless root.

For data labels, each label Length byte must be in the range of 0 to 63, as labels
are limited to 63 bytes. No padding is used for labels, so the total name length
could be odd. Although these labels are sometimes called “text” labels, they are
capable of containing non-ASCII values. This use, however, is uncommon and
not recommended. Indeed, even the internationalized domain names, which can
encode Unicode characters [RFC5890][RFC5891], use a curious encoding syntax
called “punycode” [RFC3492] that expresses Unicode characters using the ASCII
character set. To be completely safe, it is recommended to follow the requirements
in [RFC1035], which suggest that labels “start with a letter, end with a letter or
digit, and have as interior characters only letters, digits and hyphen.”

11.5.1.3 Compression Labels
In many cases, a DNS response carries information in the answer, authority, and
additional information sections relating to the same domain name. If data labels
were used, the same characters would be repeated in the DNS message when refer-
ring to the same name. To avoid this redundancy and save space, a compression

www.pearson.com
www.pearson.com
www.pearson.com

ptg999

524 Name Resolution and the Domain Name System (DNS)

scheme is used. Anywhere the label portion of a domain name can occur, the
single preceding count byte (which is normally between 0 and 63) instead has its
2 high-order bits turned on, and the remaining bits are combined with the bits in
the subsequent byte to form a 14-bit pointer (offset) in the DNS message. The offset
gives the number of bytes from the beginning of the DNS message where a data
label (called the compression target) is to be found that should be substituted for the
compression label. Compression labels are thus able to point to a location up to
16,383 bytes from the beginning. Figure 11-5 illustrates how we might encode the
domain names usc.edu and ucla.edu using compression labels.

Figure 11-5 A compression label can reference other labels to save space. This is accomplished by
setting the 2 high-order bits of the byte preceding the label contents. This signals that
the following 14 bits are used in providing an offset for the replacement label. In this
example, usc.edu and ucla.edu share the edu label.

In Figure 11-5 we see how the common label edu can be shared by the two
domain names. Assuming the names start at offset 0, data labels are used to
encode usc.edu as described previously. The next name is ucla.edu, and the
label ucla is encoded using a data label. However, the label edu may be reused
from the encoding of usc.edu. This is accomplished by setting the 2 high-order
bits of the label Type byte to 1 and encoding the offset of edu in the remaining 14
bits. Because the first occurrence of edu is at offset 4, we only need to set the first
byte to 192 (6 bits of 0) and the next byte to 4. The example in Figure 11-5 shows a
savings of only 4 bytes, but it is clear how compression of larger common labels
can result in more substantial savings.

11.5.2 The DNS Extension Format (EDNS0)

The basic DNS message format described so far can be restrictive in a number of
ways. It has fixed-length fields, a total length limitation of 512 bytes when used
with UDP (not including UDP or IP headers), and limited space (the 4-bit RCODE
field) for indicating error types. An extension mechanism called EDNS0 (because
there could be future extensions beyond the index 0) is specified in [RFC2671].
While its use is not ubiquitous at present, it is necessary for supporting DNS secu-
rity (DNSSEC; see Chapter 18), so it is likely to receive more widespread deploy-
ment over time.

ptg999

Section 11.5 The DNS Protocol 525

EDNS0 specifies a particular type of RR (called an OPT pseudo-RR or meta-RR)
that is added to the additional data section of a request or response to indicate
the use of EDNS0. At most one such record may be present in any DNS message.
We will discuss the particular format of an OPT pseudo-RR when we discuss the
other RR types in Section 11.5.6. For now, the important thing to note is that if a
UDP DNS message includes an OPT RR, it is permitted to exceed the 512-byte
length limitation and may contain an expanded set of error codes.

EDNS0 also defines an extended label type (extending beyond the data labels
and compression labels mentioned earlier). Extended labels have their first 2 bits
in the label Type/Length byte set to 01, corresponding to values between 64 and
127 (inclusive). An experimental binary labeling scheme (type 65) was used at one
time but is now not recommended. The value 127 is reserved for future use, and
values above 127 are unallocated.

11.5.3 UDP or TCP

The well-known port number for DNS is 53, for both UDP and TCP. The most com-
mon format uses the UDP/IPv4 datagram structure shown in Figure 11-6.

Figure 11-6 DNS messages are typically encapsulated in a UDP/IPv4 datagram and are limited to
512 bytes in size unless TCP and/or EDNS0 is used. Each section (except the question
section) contains a set of resource records.

When a resolver issues a query and the response comes back with the TC bit
field set (“truncated”), the size of the true response exceeded 512 bytes, so only
the first 512 bytes are returned by the server. The resolver may issue the request
again, using TCP, which now must be a supported configuration [RFC5966]. This
allows more than 512 bytes to be returned because TCP breaks up large messages
into multiple segments.

When a secondary name server for a zone starts up, it normally performs
a zone transfer from the primary name server for the zone. Zone transfers can
also be initiated by a timer or as a result of a DNS NOTIFY message (see Sec-
tion 11.5.8.3). Full zone transfers use TCP as they can be large. Incremental zone
transfers, where only the updated entries are transferred, may use UDP at first but
switch to TCP if the response is too large, just like a conventional query.

ptg999

526 Name Resolution and the Domain Name System (DNS)

When UDP is used, both the resolver and the server application software must
perform their own timeout and retransmission. A recommendation for how to do
this is given in [RFC1536]. It suggests starting with a timeout of at least 4s, and that
subsequent timeouts result in an exponential increase of the timeout (a bit like
TCP’s algorithms; see Chapter 14). Linux and UNIX-like systems allow a change to
be made to the retransmission timeout parameters by altering the contents of the
/etc/resolv.conf file (by setting the timeout and attempts options).

11.5.4 Question (Query) and Zone Section Format

The question or query section of a DNS message lists the question(s) being refer-
enced. The format of each question in the question section is shown in Figure 11-7.
There is normally just one, although the protocol can support more. The same struc-
ture is also used for the zone section in dynamic updates (see Section 11.5.7), but
with different names.

Figure 11-7 The query (or question) section of a DNS message does not contain a TTL because it is
not cached.

The Query Name is the domain name being looked up, using the encoding for
labels we described before. Each question has a Query Type and Query Class. The
class value is 1, 254, or 255, indicating the Internet class, no class, or all classes,
respectively, for all cases in which we are interested (other values are not typically
used for TCP/IP networks). The Query Type field holds a value indicating the type
of query being performed using the values from Table 11-2. The most common
query type is A (or AAAA if IPv6 DNS resolution is enabled), which means that
an IP address is desired for the query name. It is also possible to create a query
of type ANY, which returns all RRs of any type in the same class that match the
query name.

11.5.5 Answer, Authority, and Additional Information Section Formats

The final three sections in the DNS message, the answer, authority, and additional
information sections, contain sets of RRs. RRs in these sections can, for the most
part, have wildcard domain names as owning names. These are domain names
in which the asterisk label—a data label containing only the asterisk character

ptg999

Section 11.5 The DNS Protocol 527

[RFC4592]—appears first (i.e., leftmost). Each resource record has the form shown
in Figure 11-8.

Figure 11-8 The format of a DNS resource record. For DNS in the Internet, the Class field always
contains the value 1. The TTL field gives the maximum amount of time the RR can be
cached (in seconds).

The Name field (sometimes called the “owning name,” “owner,” or “record
owner’s name”) is the domain name to which the following resource data cor-
responds. It is in the same format we described earlier for names and labels. The
Type field specifies one of the RR type codes (see Section 11.5.6). These are the
same as the query type values we described earlier. The Class field is 1 for Internet
data. The TTL field is the number of seconds for which the RR can be cached. The
Resource Data Length (RDLENGTH) field specifies the number of bytes contained
in the Resource Data (RDATA) field. The format of this data depends on the type.
For example, A records (type 1) have a 32-bit IPv4 address in the RDATA area. We
discuss other RR types later.

[RFC2181] defines the term Resource Record Set (RRSet) to be a set of resource
records that share the same name, class, and type but not the same data. This
occurs, for example, when a host has more than one address record for its name
(e.g., because it has more than one IP address). TTLs for RRs in the same RRSet
must be equal.

11.5.6 Resource Record Types

Although DNS is most commonly used to determine the IP address(es) that cor-
respond to a particular name, it can also be used for the opposite purpose and for
a number of other things. It can be used with both IPv4 and IPv6 and can even
provide a distributed database function for other than Internet data (other classes,

ptg999

528 Name Resolution and the Domain Name System (DNS)

in DNS terminology [RFC6195]). The wide range of capabilities provided by DNS
is largely attributable to its ability to have different types of resource records.

There are many types of resource records (see [DNSPARAMS] for the com-
plete list), and a single name may have multiple matching RRs. Table 11-3 provides
a listing of the most common RR types used with conventional DNS (i.e., DNS
without the DNSSEC security extensions).

Table 11-3 The popular resource record and query types used in DNS protocol messages. Additional records
(not shown) are used when DNS security (DNSSEC) is employed.

Value RR Type Reference Description and Purpose

1 A [RFC1035] Address record for IPv4 (32-bit IPv4 address)
2 NS [RFC1035] Name server; provides name of authoritative name server

for zone
5 CNAME [RFC1035] Canonical name; maps one name to another (to provide a

form of name aliasing)
6 SOA [RFC1035] Start of authority; provides authoritative information for the

zone (name servers, e-mail address of contact, serial number,
zone transfer timers)

12 PTR [RFC1035] Pointer; provides address to (canonical) name mapping;
used with in-addr.arpa and ip6.arpa domains for IPv4
and IPv6 reverse queries

15 MX [RFC1035] Mail exchanger; provides name of e-mail handling host for
a domain

16 TXT [RFC1035]
[RFC1464]

Text; provides a variety of information (e.g., used with SPF
anti-spam scheme to identify authorized e-mail servers)

28 AAAA [RFC3596] Address record for IPv6 (128-bit IPv6 address)
33 SRV [RFC2782] Server selection; transport endpoints of a generic service
35 NAPTR [RFC3403] Name authority pointer; supports alternative name spaces
41 OPT [RFC2671] Pseudo-RR; supports larger datagrams, labels, return codes

in EDNS0
251 IXFR [RFC1995] Incremental zone transfer
252 AXFR [RFC1035]

[RFC5936]
Full zone transfer; carried over TCP

255 (ANY) [RFC1035] Request for all (any) records

Resource records are used for many purposes but can be divided into three
broad categories: data types, query types, and meta types. Data types are used
to convey information stored in the DNS such as IP addresses and the names of
authoritative name servers. Query types use the same values as data types, with
a few additional values (e.g., AXFR, IXFR, and *). They can be used in the ques-
tion section we described previously. Meta types designate transient data associ-
ated with a particular single DNS message. The OPT RR is the only meta type we

ptg999

Section 11.5 The DNS Protocol 529

discuss in this chapter (all others are covered in Chapter 18). The most common
data-type RRs include A, NS, SOA, MX, CNAME, PTR, TXT, AAAA, SRV, and
NAPTR. The NS records are used to relate the DNS name space to the servers that
perform resolution, and they contain the names of authoritative name servers for
a zone. The A and AAAA records are used to provide an IPv4 or IPv6 address,
respectively, given a particular name. The CNAME record provides a way to have
an alias for another domain name. SRV and NAPTR records help applications to
discover the location of servers supporting particular services, and to use alterna-
tive naming schemes (beyond DNS) to access such services. We shall explore each
of these record types in the following sections.

11.5.6.1 Address (A, AAAA) and Name Server (NS) Records
Arguably, the most important records within DNS are the address (A, AAAA) and
name server (NS) records. The A records contain 32-bit IPv4 addresses, and AAAA
(called “quad-A”) records contain IPv6 addresses. An NS record contains the name
of an authoritative DNS server that contains information for a particular zone.
Because the name of a DNS server alone is not sufficient to perform a query, the
IP address(es) of these servers is also typically provided as a so-called glue record
in the additional information section of DNS responses. Indeed, such glue records
are required to avoid loops whenever the names of the authoritative name servers
use the same domain name for which they are authoritative. (Consider how ns1.
example.com would be resolved if the name server for example.com was ns1.
example.com.) We can see the structure of A, AAAA, and NS records using the
dig tool provided on most Linux/UNIX-like systems. Here, we make a request for
records of any type associated with the domain name rfc-editor.org:

Linux% dig +nostats -t ANY rfc-editor.org

; <<>> DiG 9.6.0-P1 <<>> +nostats -t ANY rfc-editor.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53052
;; flags: qr rd ra; QUERY: 1, ANSWER: 12, AUTHORITY: 0, ADDITIONAL: 2

;; QUESTION SECTION:
;rfc-editor.org. IN ANY

;; ANSWER SECTION:
...
rfc-editor.org. 1654 IN AAAA 2001:1890:1112:1::2f
rfc-editor.org. 1654 IN A 64.170.98.47
rfc-editor.org. 1654 IN NS ns0.ietf.org.
rfc-editor.org. 1654 IN NS ns1.hkg1.afilias-nst.info.
...
;; ADDITIONAL SECTION:
ns0.ietf.org. 756 IN A 64.170.98.2
ns0.ietf.org. 756 IN AAAA 2001:1890:1112:1::14

ptg999

530 Name Resolution and the Domain Name System (DNS)

In the command’s output, the first two lines indicate the version of the dig
program being used and the options provided to it, plus implied options (+cmd
means that this information itself should be printed). The next portion indicates
data in the DNS reply message: the QUERY opcode, NOERROR status indicating no
errors were encountered, and a transaction ID of 53052. In the OpCode field, QUERY
is used for both queries and responses. Next, the flags line indicates that the mes-
sage is a query response (qr flag) and not a query and that recursion was desired in
the original query (rd flag) and is provided by the responding server (ra flag). The
message contains a section with one query, and 12 resource records in the answer
section (only 4 are shown). There are no RRs in the authority section, meaning that
this response is likely from a caching server (the RRs are not authoritative). Differ-
ent results might be obtained by interacting with different servers. The additional
information section contains IPv4 and IPv6 addresses for one of the authoritative
servers, should we wish to contact it. The question section contains a copy of our
original query: type ANY for domain name rfc-editor.org.

Among the four RRs in the answer section shown, we find one A type, one
AAAA type, and two NS types. From this information we can see that the domain
name rfc-editor.org is a host with IPv4 address 64.170.98.47 and IPv6
address 2001:1890:1112:1::2f. It is also a subdomain, as indicated by the pres-
ence of the NS records. We can quickly guess and verify that there is at least one
host in this subdomain using the following command:

Linux% host ftp.rfc-editor.org
ftp.rfc-editor.org has address 64.170.98.47

This example indicates a few interesting aspects of A, AAAA, and NS records.
First, it is possible for a single domain name to have records of each of these types
(and more). This is fairly common for IPv6-capable servers that are the “well-
known” servers for a particular organization. We can also see that each record has
a TTL value, and they differ considerably, except for those in the same RRSet. The
TTL for the records in the answer section is 1654s (about half an hour), and the
TTL for records in the additional information section is 756s (about 12 minutes).
Note that the TTL value of a cached record is never more than the TTL of the same
record retrieved from the authoritative source. TTLs for cached records “decay”
until the record is retrieved again from an authoritative server. As a result, retriev-
ing a cached record multiple times from the same server usually shows a decreas-
ing TTL value.

11.5.6.2 Example
Now that we have seen the DNS message format, transport protocol options, and
RR types for basic queries and responses, let us see an example. We start with a
simple case to see the communication between a resolver on a client, a local name
server, and a remote name server managed by an ISP. This scenario demonstrates
the importance of caching in DNS. The topology is shown in Figure 11-9.

ptg999

Section 11.5 The DNS Protocol 531

1 2
34

Figure 11-9 A simple DNS query/response example. The local DNS server (GW.HOME) provides recursion to
the client (A.HOME), and uses the DNS server provided at the ISP when requested data is not pres-
ent in the cache.

On our Windows client (A.HOME) we begin with a command that removes
any DNS data cached by the resolver libraries. We then perform a query for the
address (A record type) of the domain name berkeley.edu:

C:\> ipconfig /flushdns
Windows IP Configuration

Successfully flushed the DNS Resolver Cache.

C:\> nslookup
Default Server: gw
Address: 10.0.0.1

> set type=a
> berkeley.edu.
Server: gw
Address: 10.0.0.1

Non-authoritative answer:
Name: berkeley.edu
Address: 169.229.131.81

The first command is specific to Windows and removes data cached by the cli-
ent’s resolver software. The nslookup program, available on both Windows and
Linux/UNIX-based systems, provides a basic way to query the DNS for specific
data. Upon execution, it indicates which name server it is using for resolution (here
the server is gw at the address 10.0.0.1). Using the set command, we arrange to
query for A records, and then query for the name berkeley.edu.. Once again,
nslookup indicates which server it uses for the resolution. It then also gives us
an indication that the answer is nonauthoritative (i.e., it is being provided by a
caching server) and the requested address is 169.229.131.81.

To see what happens with the DNS protocol at the packet level, we use Wire-
shark and have a look at the first packet in detail, as shown in Figure 11-10.

ptg999

532 Name Resolution and the Domain Name System (DNS)

Figure 11-10 A UDP/IPv4 datagram containing a DNS standard query for the IPv4 address associ-
ated with berkeley.edu..

There are two messages in the trace: a standard query and a standard query
response. In the first message (the query), the source IPv4 address is 10.0.0.120 (a
DHCP-assigned address at the client; see Chapter 6), and the destination is 10.0.0.1
(the DNS server). The query is a UDP/IPv4 datagram with source port 56288 (an
ephemeral port) and destination port 53 (the well-known DNS port). In terms of its
full encapsulation, the request is an Ethernet frame containing 72 bytes. This size
can be derived by summing the following parts: Ethernet header (14 bytes), IPv4
header (20 bytes), UDP header (8 bytes), DNS fixed header (12 bytes), query type (2
bytes), query class (2 bytes), plus the data labels for berkeley (9 bytes) and edu
(4 bytes), plus the trailing 0 byte.

Turning to the details of the DNS header, the transaction ID is 0x0002 and
forms the first 2 bytes of the DNS header, located at the start of the UDP payload.
Only a single flag (recursion requested, the default) is set, so this message is a
query. The message contains a standard query with one question. The other sec-
tions are empty. The question itself is for the name berkeley.edu and is seeking
information of type A (address records) in the IN (Internet) class. After receiv-
ing this message, the name server process running on 10.0.0.1, unable to directly
respond because it does not know the address, forwards the query to the next
(upstream) name server it is configured to use. In this particular case, that name
server is at the address 206.13.28.12 (see Figure 11-11).

In Figure 11-11 we see a query similar to the one sent by the client, but in this
case the source IPv4 address is 70.231.136.162 (the ISP-side IPv4 address of GW.HOME).
The destination address is 206.13.28.12, the IPv4 address of the ISP-provided DNS
server, and the source port is an ephemeral port on the local DNS server (60961).

ptg999

Section 11.5 The DNS Protocol 533

Figure 11-11 A DNS request generated at GW.HOME being sent to the ISP name server as a conse-
quence of recursion.

The transaction ID is generated anew and set to 0xb0b8. Note that Wireshark indi-
cates that the response to the query is contained in packet number 2.

Packet 2 in Figure 11-12 is the first DNS response we have seen. First, we note
that the UDP source port number is 53, but the destination port is the ephemeral
port number 60961. The transaction ID matches the query (0xb0b8), but the Flags
field now contains the value 0x8180 (response, recursion requested, and recursion
available are all set). The question section contains a copy of the question for which
answers are being provided and typically matches the original query sent by the
client exactly (e.g., case is preserved). There is one RR in the answer section. It is of
type A (address), has a TTL of 10 minutes and a data length of 4 bytes (the size of
an IPv4 address), and the value is 169.229.131.81, the IPv4 address we requested for
berkeley.edu. Note that the authority flag is not set, and the authority section of
the reply is empty. This response is based upon cached data; it is not authoritative
for the domain. At this point, the local name server also caches the value (but only
for up to 10 minutes as specified by the TTL in the RR it received) and responds to
the requesting client (see Figure 11-13).

The response in Figure 11-13, packet 2, is much like the one from 206.13.28.12,
except it is now sent from 10.0.0.1 to our original client at 10.0.0.120, and the trans-
action ID matches the one in the original DNS request. Note also that from the cli-
ent’s point of view the entire round-trip time of the transaction was about 14.7ms,
but we know that most of that time (14.2ms) was taken up in the transaction
between the local name server (GW.HOME) and the ISP’s name server (206.13.28.12).

ptg999

534 Name Resolution and the Domain Name System (DNS)

11.5.6.3 Canonical Name (CNAME) Records
The CNAME record stands for canonical name record and is used to introduce an
alias for a single domain name into the DNS naming system. For example, the
name www.berkeley.edu may have a CNAME record that maps to some other
machine (e.g., www.w3.berkeley.edu), so that if the Web server is located at a
different computer, a relatively simple change to the DNS database may be all that
is required for the rest of the world to find the new system. It is now common prac-
tice to use CNAME records to establish aliases for common services. As a result,
names such as www.berkeley.edu, ftp.sun.com, mail.berkeley.edu, and
www.ucsd.edu are all CNAME entries in the DNS that refer to other RRs.

Within a CNAME RR, the RDATA section contains the “canonical name” asso-
ciated with the domain name (alias). Such names use the same type of encoding as
other names (e.g., data labels and compression labels). When a CNAME RR is pres-
ent for a particular name, no other data is permitted [RFC1912] (unless DNSSEC

Figure 11-12 A standard DNS response sent from the ISP’s DNS server back to GW.HOME.

www.berkeley.edu
www.w3.berkeley.edu
www.berkeley.edu
www.ucsd.edu

ptg999

Section 11.5 The DNS Protocol 535

is in use; see Chapter 18). Domain names of CNAME RRs may not be used in all
places that regular domain names can (e.g., as the target of an NS RR). Also, the
canonical name may itself be a CNAME (called CNAME chaining), but this is usu-
ally discouraged, as it can cause DNS resolvers to make more queries than would
otherwise be necessary. Nonetheless, there are certain services that make use of
this feature. For example, the high-volume site www.whitehouse.gov (at the time
of writing) uses a content delivery network (CDN)2 provided by the Akamai Corpora-
tion. When we look up this domain name, we find the following:

Linux% host –t any www.whitehouse.gov
www.whitehouse.gov is an alias for www.whitehouse.gov.edgesuite.net.
Linux% host –t any www.whitehouse.gov.edgesuite.net
www.whitehouse.gov.edgesuite.net is an alias for a1128.h.akamai.net.
Linux% host –t any a1128.h.akamai.net
a1128.h.akamai.net has address 92.123.65.42
a1128.h.akamai.net has address 92.123.65.51

2. A content delivery network typically includes a number of synchronized content caches located in
particular topological locations in the network. CDNs attempt to minimize latency for consumers
accessing content in exchange for payment from content providers.

Figure 11-13 A response generated by GW.HOME and destined for the client. This message completes
the recursive DNS transaction.

www.whitehouse.gov

ptg999

536 Name Resolution and the Domain Name System (DNS)

Thus, CNAME chains can be used with DNS. However, because of their
potential performance impact, such chains are often limited by resolvers to a few
“links” (such as five). Long chains are likely the result of an error in execution or
a misunderstanding, as it is hard to imagine why they should be necessary under
normal circumstances.

Note

There is a standard resource record called DNAME (type 39) [RFC2672][IDDN].
DNAME records act like CNAME records but for an entire zone. For example,
all names of the form NAME.example.com could be mapped to NAME.newex-
ample.com using a single DNAME resource record. However, DNAME records
do not apply to the top-level record itself (example.com here).

11.5.6.4 Reverse DNS Queries: PTR (Pointer) Records
Although the most critical function of DNS is to provide mappings from names
to IP addresses, there are many circumstances where the reverse mapping is
required. For example, a server receiving an incoming TCP/IP connection request
is able to ascertain the source IP address of the connection from the incoming IP
datagram, but the name(s) corresponding to the address are not carried in the con-
nection itself; such name(s) must be looked up in some other way. Fortunately, a
clever use of the DNS can provide this capability.

The PTR RR type is used in response to reverse DNS queries, which are typi-
cally necessary when converting an IP address to a name. This uses the special
in-addr.arpa (ip6.arpa for IPv6) domain, in a special way. Consider an IPv4
address such as 128.32.112.208. In the classful address structure (see Chapter 2),
this address is taken from the 128.32 class B address space. To determine the name
corresponding to this address, the address is first reversed, and then the special
domain is added. In this example, a query for a PTR record using the name

208.112.32.128.in-addr.arpa.

would be used. In effect, this is a query for the “host” 208 in the “domain”
112.32.128.in-addr.arpa.. We shall see more examples of reverse DNS que-
ries later in this section.

Note

The regular DNS name space, which usually uses NS, A, and AAAA records,
is not automatically linked with the “reverse” name space supported by PTR
records. Thus it is possible (and even relatively common) to have an existing
forward resolution that does not have a corresponding reverse mapping set up
(or has a different one). Some services check to see that both directions are set
up with equivalent mappings and may deny service under such circumstances.

ptg999

Section 11.5 The DNS Protocol 537

Recall that IPv4 addresses are typically written in the “dotted-decimal” for-
mat and IPv6 addresses are written in the hex format (e.g., 169.229.131.81 and
2001:503:a83e::2:30, respectively). These addresses can be thought of as names
existing in a left-to-right hierarchy. For example, the address 169.229.131.81 has
the top-down hierarchy (reading left to right) 169, 229, 131, 81. By reversing the
dotted-decimal IPv4 address and treating it as a DNS name, we can employ DNS
to perform the mapping from IP address to name(s). So, the name 81.131.229.169
would effectively be the reversal of the IPv4 address 169.229.131.81. For IPv6, the
scheme is similar, but any suppressed zeros are expanded, and each hexadecimal
digit becomes a character. For example, the reversal of 2001:503:a83e::2:30 would
be 0.3.0.0.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.e.3.8.a.3.0.5.0.1.0.0.2. Fortunately, users rarely
have to type in these names directly.

As mentioned previously, the special domains .in-addr.arpa (for IPv4) and
.ip6.arpa (for IPv6) are used in conjunction with the PTR (“pointer”) RR type in
support of these types of names and reverse DNS lookups. For example, consider
the following commands:

C:\> nslookup
Default Server: gw
Address: 10.0.0.1
> server c.in-addr-servers.arpa
Default Server: c.in-addr-servers.arpa
Address: 196.216.169.10
> set type=ptr
> 81.131.229.169.in-addr.arpa.
Server: c.in-addr-servers.arpa
Address: 196.216.169.10

169.in-addr.arpa nameserver = w.arin.net
169.in-addr.arpa nameserver = t.arin.net
169.in-addr.arpa nameserver = dill.arin.net
169.in-addr.arpa nameserver = x.arin.net
169.in-addr.arpa nameserver = z.arin.net
169.in-addr.arpa nameserver = y.arin.net
169.in-addr.arpa nameserver = u.arin.net
169.in-addr.arpa nameserver = v.arin.net

This example shows how the .in-addr.arpa domain is set up. According
to [RFC5855], the in-addr-servers.arpa and ip6-servers.arpa domains
are used in forming the domain names associated with the servers that provide
reverse DNS mappings for IPv4 and IPv6, respectively. As of 2011, there are five
such servers for each version of IP: X.in-addr-servers.arpa and X.ip6-
servers.arpa, where X is any letter a through f (inclusive).

Although the ten servers we have mentioned contain authoritative data for
reverse mappings, they do not contain the information we are looking for. In our
example, the first server contacted instead told us to contact one of the eight name
servers maintained by ARIN, the American Registry for Internet Numbers, which
is authoritative for IPv4 addresses that start with 169. If we in turn contact one

ptg999

538 Name Resolution and the Domain Name System (DNS)

of these servers, we find that a PTR query for 81.131.229.169.in-addr.arpa.
gives the following response:

> server w.arin.net
Default Server: w.arin.net
Address: 72.52.71. 2
Default Server: w.arin.net
Address: 2001:470:1a::2
> 81.131.229.169.in-addr.arpa.
Server: w.arin.net
Address: 72.52.71.2

229.169.in-addr.arpa nameserver = adns1.berkeley.edu.
229.169.in-addr.arpa nameserver = phloem.uoregon.edu.
229.169.in-addr.arpa nameserver = aodns1.berkeley.edu.
229.169.in-addr.arpa nameserver = adns2.berkeley.edu.

Here we can surmise that the network prefix 169.229/16 is owned by an educa-
tional institution called Berkeley, that the campus maintains three name servers
covering its in-addr.arpa space, and that the University of Oregon also pro-
vides a copy. Continuing by contacting one of these servers, we find our answer
(this time using the Linux version of nslookup with slightly different output):

Linux% nslookup
> set type=ptr
> server adns1.berkeley.edu
Default Server: adns1.berkeley.edu
Address: 128.32.136.3#53
Default Server: adns1.berkeley.edu
Address: 2607:f140:ffff:fffe::3#53
> 81.131.229.169.in-addr.arpa.
Server: adns1.berkeley.edu
Address: 128.32.136.3#53

81.131.229.169.in-addr.arpa name = webfarm.Berkeley.EDU

Here we obtain the result we were looking for, that the IPv4 address
169.229.131.81 has the name webfarm.Berkeley.EDU. The DNS server uses
port 53, as indicated by the #53 following the IP addresses. This output makes
it obvious that accessing the DNS with UDP/IPv4 (as opposed to UDP/IPv6) can
still provide mappings for IPv6 addresses using “quad-A” (AAAA) DNS records
because we can see that the IPv6 address of the server is 2607:f140:ffff:fffe::3.

If there were not a separate branch of the DNS tree for handling the address-
to-name translation, there would be essentially no way to do the reverse transla-
tion other than starting at the root of the tree and trying every top-level domain.
This is clearly an unreasonable option, given the current size of the Internet. The
in-addr.arpa solution is effective and fairly efficient, although the reversed
bytes of the IPv4/IPv6 address and the special domains can be confusing.

ptg999

Section 11.5 The DNS Protocol 539

Fortunately, as mentioned before, users can typically avoid having to type or refer
to them. Even application writers do not typically have to manipulate addresses
to perform reverse queries, as library functions (such as the C library function
getnameinfo()) perform this task.

It is worth mentioning here that PTR queries have become a significant con-
cern for the global DNS servers. Consider a home network using one of the pri-
vate address prefixes such as 10.0.0.0/8 (IPv4) or fc00:/7 (IPv6). When a system
receives an incoming connection request from another system on the same pri-
vately addressed subnet, it may wish to resolve the source address to a name and
does so by performing a PTR query. If the query is not answered by the local DNS
server, it will likely propagate to the global Internet. For this reason (and a few
others), [RFC6303] specifies that local name servers—especially those operating
in networks using private IP addressing that are attached to the Internet—provide
PTR mappings for the private address space defined in [RFC1918] for IPv4 and
[RFC4193] for IPv6 (i.e., in IN-ADDR.ARPA and D.F.IP6.ARPA, respectively).

11.5.6.5 Classless in-addr.arpa Delegation
When organizations join the Internet and obtain authority to fill in a portion of
the DNS name space, they often also obtain authority for a portion of the in-
addr.arpa name space corresponding to their IPv4 addresses on the Internet. In
the case of UC Berkeley, authority includes the network prefix 169.229/16, which,
using older terminology, is “class B” network number 169.229. Thus, UC Berkeley
would be expected to populate a portion of the DNS tree with PTR records using
names ending in 229.169.in-addr.arpa. This works fine for cases where the
address prefix assigned to the organization is one of the older class A, B, or C
styles where the number of bits is an integral multiple of 8. However, many orga-
nizations today are given prefix lengths of greater than 24 bits or greater than 16
bits (but less than 24). In these cases, the address range is not easily written as a
simple reversal of the IP address. Instead, some method of conveying the network
prefix length must be included as well.

The standard method for implementing this, given by [RFC2317], is to append
the length of the prefix to the reversed octets and use it as the first label in the
domain name. For example, assume that a site is assigned the prefix 12.17.136.128/25,
a prefix that includes 128 addresses. According to [RFC2317], two types of records
should be provided. First, for each name of the form X.136.17.12.in-addr.arpa
(where X is at least 128 and not more than 255), a CNAME RR is created, likely
maintained by a site’s ISP, according to the following pattern:

128.136.17.12.in-addr.arpa. canonical name =
 128.128/25.136.17.12.in-addr.arpa.
129.136.17.12.in-addr.arpa. canonical name =
 129.128/25.136.17.12.in-addr.arpa.
...
255.136.17.12.in-addr.arpa. canonical name =
 255.128/25.136.17.12.in-addr.arpa.

ptg999

540 Name Resolution and the Domain Name System (DNS)

Here we can see how the network prefix is encoded, with the / notation asso-
ciated with the second label in the domain name (for this example). These entries
are typically placed by an ISP and allow for delegations on non-byte-aligned
address ranges. In this example, the customer is now able to provide mappings
for the zone 128.128/25.136.17.12.in-addr.arpa. We can trace the delegation
as follows:

C:\> nslookup
Default Server: gw
Address: 10.0.0.1
> server f.in-addr-servers.arpa
Default Server: f.in-addr-servers.arpa
Addresses: 193.0.9.1
> set type=ptr
> 129.128/25.136.17.12.in-addr.arpa.
Server: f.in-addr-servers.arpa
Address: 193.0.9.1
12.in-addr.arpa nameserver = dbru.br.ns.els-gms.att.net
12.in-addr.arpa nameserver = cbru.br.ns.els-gms.att.net
12.in-addr.arpa nameserver = cmtu.mt.ns.els-gms.att.net
12.in-addr.arpa nameserver = dmtu.mt.ns.els-gms.att.net
> server dbru.br.ns.els-gms.att.net.
Default Server: dbru.br.ns.els-gms.att.net
Address: 199.191.128.106

> 129.128/25.136.17.12.in-addr.arpa.
128/25.136.17.12.in-addr.arpa nameserver = ns2.intel-research.net
128/25.136.17.12.in-addr.arpa nameserver= ns1.intel-research.net

> server ns1.intel-research.net.
Server: ns1.intel-research.net
Address: 12.155.161.131
> 129.128/25.136.17.12.in-addr.arpa.

129.128/25.136.17.12.in-addr.arpa
 name = dmz.slouter.seattle.intel-research.net
128/25.136.17.12.in-addr.arpa
 nameserver = bldmzsvr.berkeley.intel-research.net
128/25.136.17.12.in-addr.arpa
 nameserver = sldmzsvr.intel-research.net
bldmzsvr.berkeley.intel-research.net internet address = 12.155.161.131
sldmzsvr.intel-research.net internet address = 12.17.136.131

In this example, we wish to find out the name for the host associated with IPv4
address 12.17.136.129. We have already seen that it has a CNAME RR pointing
to the canonical name 129.128/25.136.17.12.in-addr.arpa.. We instruct our
resolver to use one of the root servers (F) and arrange for the query type to be for
a PTR RR. At this point we request a resolution for 129.128/25.136.17.12.in-
addr.arpa.. The root name server does not have this information, and it does not
perform recursion, so it returns the name of the authoritative servers for the domain

ptg999

Section 11.5 The DNS Protocol 541

12.in-addr.arpa.. Picking one of them (DBRU), we again try to resolve our ques-
tion. This time we find two name servers (ns1 and ns2). Picking one of these, we
are able to resolve the PTR request. It resolves to the name dmz.slouter.seattle
.intel-research.net.

11.5.6.6 Authority (SOA) Records
In DNS, each zone has an authority record, using an RR type called start of author-
ity (SOA). These records provide authoritative links between portions of the DNS
name space and the servers that provide the zone information allowing various
queries to be performed for addresses and other information. The SOA RR is used
to identify the name of the host providing the official permanent database, the
responsible party’s e-mail address (where “.” is used instead of @), zone update
parameters, and the default TTL. The default TTL is applied to RRs in the zone
that are not otherwise assigned an explicit per-RR TTL.

The zone update parameters include a serial number, refresh time, retry time,
and expire time. The serial number is increased (by at least 1), usually by the
network administrator, anytime there is a change to the zone contents. It is used
by secondary servers to determine if they should initiate a zone transfer (when
they do not have a copy of the zone contents with largest serial number). The
refresh time tells secondary servers how long to wait before checking the SOA
record from the primary and its version number to determine if a zone transfer is
required. The retry and expire times are used in the case of zone transfer failure.
The retry value gives the time (in seconds) a secondary will wait before retrying.
The expire time is an upper bound (in seconds) that a secondary server will keep
retrying zone transfers before giving up. If it gives up, such a server ceases to
respond to queries for the zone. In general, a zone can contain a mix of IPv4 and
IPv6 data and can be accessed using either version of IP. In this example, we use
IPv6 (using nslookup on an IPv6-only Windows host):

C:\> nslookup
Default Server: gw
Address: fe80::204:5aff:fe9f:9e80

> set type=soa
> berkeley.edu.
Server: gw
Address: fe80::204:5aff:fe9f:9e80

Non-authoritative answer:
berkeley.edu
 primary name server = ns-master1.berkeley.edu
 responsible mail addr = hostmaster.berkeley.edu
 serial = 2009050116
 refresh = 10800 (3 hours)
 retry = 1800 (30 mins)
 expire = 3600000 (41 days 16 hours)
 default TTL = 300 (5 mins)

ptg999

542 Name Resolution and the Domain Name System (DNS)

> server adns1.berkeley.edu.
Default Server: adns1.berkeley.edu
Addresses: 2607:f140:ffff:fffe::3
 128.32.136.3

> berkeley.edu.
Server: adns1.berkeley.edu
Addresses: 2607:f140:ffff:fffe::3
 128.32.136.3

berkeley.edu
 primary name server = ns-master1.berkeley.edu
 responsible mail addr = hostmaster.berkeley.edu
 serial = 2009050116
 refresh = 10800 (3 hours)
 retry = 1800 (30 mins)
 expire = 3600000 (41 days 16 hours)
 default TTL = 300 (5 mins)
berkeley.edu nameserver = ns.v6.berkeley.edu
berkeley.edu nameserver = aodns1.berkeley.edu
berkeley.edu nameserver = adns2.berkeley.edu
berkeley.edu nameserver = phloem.uoregon.edu
berkeley.edu nameserver = adns1.berkeley.edu
berkeley.edu nameserver = ucb-ns.NYU.edu
ns.v6.berkeley.edu internet address = 128.32.136.6
ns.v6.berkeley.edu AAAA IPv6 address = 2607:f140:ffff:fffe::6
adns1.berkeley.edu internet address = 128.32.136.3
adns1.berkeley.edu AAAA IPv6 address = 2607:f140:ffff:fffe::3
adns2.berkeley.edu internet address = 128.32.136.14
adns2.berkeley.edu AAAA IPv6 address = 2607:f140:ffff:fffe::e
aodns1.berkeley.edu internet address = 192.35.225.133
aodns1.berkeley.edu AAAA IPv6 address =
 2607:f010:3f8:8000:214:4fff:fe45:e6a2
phloem.uoregon.edu internet address = 128.223.32.35
phloem.uoregon.edu AAAA IPv6 address = 2001:468:d01:20::80df:2023

Here we can see that not only did we receive the SOA record, but we also
received a list of six authoritative name servers, and the IPv4/IPv6 addresses (glue
records) for five of them (the address for the NYU server is not given, as glue
records for NYU.edu would be in a different zone supported by a different server).
As this is one of the more interesting responses we have seen, let us look at the
packet contents corresponding to the request sent to the authoritative name server,
adns1.berkeley.edu (see Figure 11-14).

This trace contains two packets, and we have chosen to display the reply,
which is the more interesting of the two. A query for an SOA RR was sent to the
host 2607:f140:ffff:fffe::3 (adns1.Berkeley.EDU) from the local system’s globally
scoped IPv6 address 2001:5c0:1101:ed00:5571:5f81:e0a6:4978. The response is car-
ried in an IPv6 datagram with 491 bytes total length (the Payload Length field is
451). This particular packet contains the IPv6 header (40 bytes), UDP header (8
bytes), plus the DNS message (443 bytes). The DNS message includes one ques-
tion, one answer, six authority RRs, and ten additional RRs.

ptg999

543

Figure 11-14 Response to a DNS query for an SOA record using IPv6. The response includes IPv4 and IPv6 addresses for the zone.

ptg999

544 Name Resolution and the Domain Name System (DNS)

The question section contains the labels berkeley and edu and is 18 bytes
long. The answer section contains the relevant information for the berkeley.
edu domain described earlier and is able to take advantage of compression labels
thanks to the contents of the question section. The total length for this section is 58
bytes. The authority section contains six NS records identifying name servers. This
information takes another 135 bytes. The additional information section includes
five A records and five AAAA records for a total of 220 bytes. The size of the
RDATA field for each AAAA record is 16 bytes, so although the IPv6 address can
be written in textual form with the :: convention to save space, it is not encoded
this way in the packet. Instead, the full 128 bits of the address are used.

11.5.6.7 Mail Exchanger (MX) Records
An MX record provides the name of a mail exchanger—a host willing to engage
in the Simple Mail Transfer Protocol (SMTP) [RFC5321] to receive incoming e-mail
on behalf of users associated with a domain name. When the Internet was still
developing, some sites did not have permanent connections but instead would
dial up and connect to hosts that did have permanent Internet connections. In
such scenarios, the e-mail destination might be disconnected from the network
when e-mail was in transit, so another host would hold on to the mail until the
destination was attached. This was one motivation for the inclusion of MX records
in the DNS—to allow sending hosts to deliver e-mail to an intermediary (“relay
server”) even if the true destination was not available. Today, MX records are still
used, and mail agents prefer to deliver e-mail to the host(s) listed in an MX record
associated with a particular domain name.

MX records include a preference value, so that more than one MX record may
be present for a particular domain name. The preference value allows a sending
agent to sort the hosts in preference order (smaller is more preferable) in deciding
which host to use as an e-mail destination. For example, we can use the host com-
mand again to query the DNS for MX records associated with the domain name
cs.ucla.edu:

Linux% host –t MX cs.ucla.edu ns3.dns.ucla.edu
Using domain server:
Name: ns3.dns.ucla.edu
Address: 2607:f600:8001:1::ff:fe01:35#53
Aliases:

cs.ucla.edu mail is handled by 13 Pelican.cs.ucla.edu.
cs.ucla.edu mail is handled by 3 Moa.cs.ucla.edu.
cs.ucla.edu mail is handled by 13 Mailman.cs.ucla.edu.

Here we can see that an e-mail addressed to person@cs.ucla.edu is han-
dled by one of three mail servers configured in the DNS. All of these mail servers
are part of the cs.ucla.edu domain, but in general mail servers do not have to be
named with the same domain as the e-mail they are handling. These three servers
can be grouped into two parts: one with preference 3 and one set with preference

ptg999

Section 11.5 The DNS Protocol 545

13. The server with the smaller preference number is preferred, so the sender first
tries Moa.cs.ucla.edu. If that fails, it tries either Pelican or Mailman, selected
at random.

It is possible that none of the MX record target hosts is reachable. This is an
error condition. It is also possible that there are no MX records present, but there
are CNAME, A, or AAAA records for the domain name. If there is a CNAME
record, the target of the CNAME is used in place of the original domain name. If
there are A or AAAA records, the mail agent may connect to these addresses. Each
is considered to have a preference of zero (called implicit MX). MX record targets
must be domain names that resolve to A or AAAA records; they cannot point to
CNAMEs [RFC5321].

11.5.6.8 Fighting Spam: The Sender Policy Framework (SPF) and Text (TXT)
Records

For outgoing e-mail, MX records allow the DNS to help determine the names of
mail relays and servers for a domain. More recently, the DNS has been leveraged
by receiving mail agents to determine which relaying or sending mail servers are
authorized to send mail from a particular domain name. This is used to help com-
bat spam (unwanted e-mail) that is sent by a rogue mail agent pretending to be an
authorized mail sender.

E-mail received by a mail server is rejected, stored, or forwarded to another mail
server. Rejection can happen for a number of reasons, such as a protocol error or lack
of available storage space at the receiver. It can also be rejected because the sending
mail client does not appear to be the proper one for sending e-mail. This capability
is supported by the Sender Policy Framework (SPF) and documented in [RFC4408], an
experimental RFC. There is another framework known as Sender ID [RFC4406] that
incorporates SPF’s functions. It is also experimental but less widely deployed.

Version 1 of SPF uses DNS TXT or SPF (type 99) resource records. Records are
set up and published in the DNS by a domain’s owner to indicate which servers
are authorized to send mail originating from the domain. Although the SPF record
type is a more “proper” place to carry SPF-related information in some sense, some
DNS client implementations do not process SPF records properly, so to avoid this
complication TXT records are used. TXT records hold simple strings associated
with a domain name. Historically they have held strings useful for human con-
sumption, to aid in debugging or identifying the owner or location of a domain.
Today, they are usually processed by programs such as the SPF application.

SPF supports a rich syntax to express criteria used to match against details
about an incoming mail message and the connection in which it is carried. For
example, UC Berkeley uses the following SPF entry (some lines have been wrapped
for clarity):

Linux% host –t txt berkeley.edu
berkeley.edu descriptive text
 "v=spf1 ip4:169.229.218.128/25 ip6:2607:F140:0:1000::/64
 include:outboundmail.convio.net ~all"

ptg999

546 Name Resolution and the Domain Name System (DNS)

In this example, the information being provided is for SPF version 1 (indicated
by the v=spf1 string in the version section) and uses a TXT RR. When a receiv-
ing mail agent receives e-mail purportedly coming from the domain berkeley.
edu, it performs a DNS query for records of type TXT against the berkeley.edu
domain. The value of the text record contains the matching criteria (called mecha-
nisms) and other information (called modifiers). Preceding each mechanism is a
qualifier that determines the consequence of a matching mechanism. Processing
of SPF records takes place using a function called check_host(). The function
evaluates various mechanisms and completes when the first matching mechanism
is encountered. Ultimately, check_host() provides a return value that is one of
the following: None, Neutral, Pass, Fail, SoftFail, TempError, PermError. The None
and Neutral return values indicate that no information was available or that infor-
mation was available but that no result is asserted. These are handled identically.
Pass indicates a match, as described in the next paragraph. Fail indicates that the
sending host is not authorized to send mail from the domain. SoftFail is some-
what ambiguous but is to be treated “somewhere between a ‘Fail’ and a ‘Neutral,’”
according to [RFC4408]. The TempError return indicates some transient failure
(e.g., communication failure) that is likely to abate. The PermError return indicates
that there was a problem in the SPF configuration, usually due to a malformed
TXT or SPF record for the domain.

Reading from left to right in the example, the string v=spf1 is a modifier indi-
cating that the SPF version is 1. The ip4 mechanism specifies that the SMTP sender
has an IPv4 address from the prefix 169.229.218.128/25. The ip6 mechanism
specifies any sending host with IPv6 address prefix 2607:F140:0:1000::/64.
Finally, the include mechanism incorporates, by reference, the TXT records with
outboundmail.convio.net:

Linux% host –t txt outboundmail.convio.net
outboundmail.convio.net descriptive text
 "v=spf1 +ip4:66.45.103.0/25 +ip4:69.48.252.128/25
 +ip4:209.163.168.192/26 ~all"
outboundmail.convio.net descriptive text
 "spf2.0/pra
 +ip4:66.45.103.0/25 +ip4:69.48.252.128/25
 +ip4:209.163.168.192/26 ~all"

Note that these TXT records are used for both SPF and for Sender ID (which
uses the value of spf2.0/pra in the version section). The first record is used
by SPF. The + qualifier indicates that a match results in a Pass indication. Any
mechanism missing a qualifier is assumed to have the + qualifier. Other possible
qualifiers include – (Fail), ~ (Soft Fail), and ? (Neutral). If none of the match-
ing mechanisms produces a Pass result, the final mechanism (all) matches any
condition. The tilde character (~) before the all criterion indicates that a SoftFail
return should be generated if all is the only matching mechanism. The exact way
a soft failure is handled is dependent on the receiving e-mail software. Note that

ptg999

Section 11.5 The DNS Protocol 547

even with SPF support, validation is provided only on the sending domain and
system, and not on the sending user. In Chapter 18 we will look at DKIM, which
provides SPF-like capabilities but uses cryptography for authentication.

11.5.6.9 Option (OPT) Pseudo-Records
In conjunction with EDNS0, described previously, a special OPT pseudo-RR has
been defined [RFC2671]. It is “pseudo” in the sense that it pertains only to the
contents of a single DNS message and is not conventional DNS RR data. Conse-
quently, OPT RRs are not cached, forwarded, or persistently stored, and they may
appear only once (or not at all) in a DNS message. If one is present in a DNS mes-
sage, it is found in the additional information section.

An OPT RR contains a 10-byte fixed portion followed by a variable portion.
The fixed portion includes 16 bits indicating the RR type (41), 16 bits indicating the
UDP payload size, 32 bits constituting an extended RCODE field and flags area,
and 16 bits giving the size of the variable portion in bytes. These fields are located
in the same relative positions as the Name, Type, Class, TTL, and RDLEN fields,
respectively, in a conventional RR (see Figure 11-8). OPT RRs use a null domain
name in the Name field (0 bytes). The extended RCODE and Flags area (32 bits, cor-
responding to the TTL field in Figure 11-8) is subdivided into an 8-bit area to hold
an extra 8 high-order bits augmenting the RCODE field in Figure 11-3, and an 8-bit
Version field (currently set to 0 to indicate EDNS0). The remaining 16 bits are not
yet defined and must be 0. The additional 8 bits provide an extended set of pos-
sible DNS error types, and these values are given in Table 11-4. (Note that value 16
is defined by two distinct RFCs.)

Table 11-4 Extended RCODE values. Most are used to support security extensions.

Value Name Reference Description and Purpose

16 BADVERS [RFC2671] Bad EDNS version
16 BADSIG [RFC2845] Bad TSIG signature (see Chapter 18)
17 BADKEY [RFC2845] Bad TSIG key (see Chapter 18)
18 BADTIME [RFC2845] Bad TSIG signature (time problem; see Chapter 18)
19 BADMODE [RFC2930] Bad TKEY mode (see Chapter 18)
20 BADNAME [RFC2930] Duplicate key name (see Chapter 18)
21 BADALG [RFC2930] Algorithm not supported (see Chapter 18)

As we have mentioned, OPT RRs contain a variable-length RDATA field. This
field is used to hold an extensible list of attribute-value pairs. The current set of
attributes, meanings, and defining RFCs is maintained by the IANA [DNSPAR-
AMS]. One such option, called NSID (EDNS option code 3) [RFC5001], indicates a
special identifying value for a responding DNS server. The format of this value is
not defined by standard but is instead configurable by the system administrator

ptg999

548 Name Resolution and the Domain Name System (DNS)

of the DNS server. This capability may be useful in circumstances where an any-
cast address is used to identify a group of servers. The NSID is able to identify a
specific responding server using a value other than the sending IP address. We
shall see more examples of OPT RRs and EDNS0 usage when we look at DNSSEC
in Chapter 18.

11.5.6.10 Service (SRV) Records
[RFC2782] defines the service (SRV) resource record. SRV RRs generalize the MX
record format to describe the host, protocols, and port numbers used to contact a
particular service. An SRV RR is ordinarily structured as follows:

_Service._Proto.Name TTL IN SRV Prio Weight Port Target

The Service identifier is the official name of a service. The Proto identifier
is the transport protocol used to access the service, usually TCP or UDP. The TTL
value is a conventional RR TTL, and IN and SRV indicate the Internet class and
SRV RR type, respectively. The Prio value is a 16-bit unsigned value and works
like the priority value in MX records (lower numbers represent higher priorities).
The Weight value is used to choose an RR among several whose priority values
are equal. The idea is that the weight is to be used as a weighted probability to
select the particular entry for load balancing, so larger weights indicate a greater
probability of selection. The Port is the TCP or UDP (or other transport protocol’s)
port number. The Target is the domain name of the target host where the ser-
vice is being provided. The Name identifier is the containing domain in which a
particular service is to be found. One of the purposes of SRV records is to identify
when multiple individual servers in a domain support the same service.

For example, if a client would like to determine the host and port where the
ldap service is available using the TCP protocol in the domain example.com,
it would perform a query for SRV records using the domain name _ldap._tcp
.example.com. Here is a real-world example:

Linux% host –t srv _ldap._tcp.openldap.org
_ldap._tcp.openldap.org has SRV record 0 0 389 www.openldap.org.

In this example, we are looking for a server providing the Lightweight Direc-
tory Access Protocol (LDAP) [RFC4510] service over TCP within the domain
openldap.org. We find that it can be accessed at the server www.openldap.org
using TCP port 389 (the default LDAP port). The Priority and Weight values
are 0, as there are no alternative servers.

 [RFC2782] did not specify a new IANA registry for SRV Service and Proto
values. So, by default, the names correspond to the names maintained in IANA’s
“Service Name and Transport Protocol Port Number” registry [ISPR], and the Proto
values are either _tcp or _udp. There are a few exceptions, however. [RFC5509]
establishes conventions for SIP-based presence and instant messaging using the

www.openldap.org

ptg999

Section 11.5 The DNS Protocol 549

following SRV Service and Proto names: _im._sip and _pres._sip. [RFC6186]
defines the following SRV Service names for e-mail user agents to easily discover
the contact information for IMAPS, SMTP, IMAP, and POP3 servers (the first two are
ordinarily preferred when setting up an an e-mail client): _ submission, _imap,
_imaps, _pop3, _pop3s. Although [RFC6186] doesn’t require these names to use
TCP as the corresponding Proto value, this is currently the only real option. For
example, a user configuring a new mail user agent (MUA, essentially an e-mail pro-
gram) might specify only the domain example.com. The MUA implementation
would then likely perform DNS queries for at least _submission._tcp. example.
com and _imaps._tcp.example.com.

11.5.6.11 Name Authority Pointer (NAPTR) Records
The Name Authority Pointer (NAPTR) RR type is used when DNS supports a
Dynamic Delegation Discovery System (DDDS) [RFC3401]. A DDDS is a general,
abstract algorithm for applying dynamically retrieved string transformation rules
to strings provided by applications and using the results, most often, for locating
resources. Each DDDS application customizes the operation of the general DDDS
rules for its particular use case. A DDDS includes a rules database and a set of
algorithms for forming strings that are used with the database to produce output
strings. DNS is one such database [RFC3403], and with it the NAPTR resource
record type is used to hold the transformation rules. One such DDDS application
has been defined for use with DNS to handle multinational telephone numbers
and convert them to a standard Uniform Resource Identifier (URI) format [RFC3986]
using ENUM (see Section 11.5.6.12).

In a DDDS, an algorithm [RFC3402] directs how an application-unique string
(AUS) is processed by rules contained in a database. The result can be either a
terminal string (complete output) or another (nonterminal) string used to retrieve
another rule that is applied to the AUS. In all, the collection forms a powerful
string rewriting system that can be used to encode nearly anything that has a suf-
ficiently regular syntax. The essence of this algorithm is captured in Figure 11-15.

The process illustrated in Figure 11-15 starts by applying the first Well-Known
Rule to the AUS, which is uniquely identified for each application. The result forms
a key used to retrieve another rule from a database. Rules are string-rewriting pat-
terns and flags that are applied to the AUS, but never to the result of a rewritten
string. The particular way this works is dependent on the application, but usu-
ally the rules are regular expression substitutions, similar to those used with the
UNIX sed program [DR97]. When using the DNS as a database for supporting a
DDDS [RFC3403], the case in which we are interested, the keys are domain names
and the rules are stored in NAPTR resource records. Each NAPTR RR contains
the following fields: Order, Preference, Flags, Services, Regular Expression (sometimes
abbreviated Regexp), and Replacement.

The Order field is a 16-bit unsigned integer specifying which NAPTR record to
use before others (lower numbers are preferred to higher ones), as the DNS archi-
tecture does not guarantee the ordering of any particular set of resource records.

ptg999

550 Name Resolution and the Domain Name System (DNS)

The Preference field is used to influence the order of records containing the same
order number. The Order field is supposed to place a mandatory ordering on RRs,
whereas the preference number is advisory. The Flags field contains an unor-
dered list of single characters from the set A–Z and 0–9 (case-insensitive). The
particular application using NAPTR records (e.g., ENUM, described in the next
section) defines the interpretation of the Flags field. The Services field is defined
by the application to indicate which type of service is being described. The Regu-
lar Expression field contains a substitution expression that is applied to the AUS
to form the identity of another server to use for another NAPTR lookup (non-
terminal case) or the output string (terminal case). The Replacement field (which
exists only when the Regular Expression does not) indicates the next server to query

Figure 11-15 Abstract operation of the DDDS algorithm. Non-terminal records are permitted to form
loops. Each iteration involves a string rewrite operation on the application’s unique
string.

ptg999

Section 11.5 The DNS Protocol 551

for NAPTR records. It is encoded as a separate FQDN (no name compression is
used within the DNS message). The uses for these two final (mutually exclusive)
fields are very similar for historical reasons in the development of the NAPTR RR.

To get a better sense of how NAPTR processing works with applications, we
will have a brief look at the ENUM and SIP DDDS applications, the URI/URN
DDDS applications, and alternatives for regular NAPTR records called S-NAPTR
and U-NAPTR. Specifying a DDDS entails specifying the application’s AUS, first
Well-Known Rule, expected output, valid databases, flags, and service parameters.

11.5.6.12 ENUM and SIP
In the ENUM DDDS [R06][RFC6116][RFC6117][RFC5483], which is used to map
phone numbers to URI information, the AUS is an E.164-format telephone number
(up to 15 digits starting with the + character). The initial + character differentiates
E.164 numbers acceptable for use with the ENUM DDS from numbers in other
name spaces. The first Well-Known Rule starts by removing any dashes or other
non-digit characters in the AUS. The DDDS database is the DNS, where keys are
domain names created from the AUS (which now consists only of digits) as fol-
lows: dot (.) characters are inserted between each digit and the result is reversed.
Then, the suffix .e164.arpa is added. For example, the E.164 number +1-415-
555-1212 would be tranformed to the key 2.1.2.1.5.5.5.5.1.4.1.e164.arpa.
The resulting domain name is used to query for NAPTR records.

The final output, possibly after multiple loops of the DDDS algorithm shown
in Figure 11-15, is an absolute (not relative) URI. The only flag defined is the U
flag, indicating a terminal rule that produces a URI. The lack of any flag indicates
a non-terminal rule, sometimes called a non-terminal NAPTR (NTN). The service
parameters, encoded in the Service field of the NAPTR record, are of the form
E2U+Service, which derives from the string E2U (an indicator for E.164 to URI)
plus a Service name subfield providing information about particular services
associated with the number. Together, they form an enumservice identifier, and such
services are registered with the IANA [ENUM][RFC6117]. Many have been created,
including enumservices for fax, instant messaging, and presence indicators.

To see how this all works, we can construct a query for the number
+420738511111 at the University of Ostrava in the Czech Republic (lines are
wrapped for clarity):

Linux% host -t naptr 1.1.1.1.1.5.8.3.7.0.2.4.e164.arpa
1.1.1.1.1.5.8.3.7.0.2.4.e164.arpa has NAPTR record
 50 50 "u" "E2U+sip" "!^\\+(.*)$!sip:\\1@osu.cz!" .
1.1.1.1.1.5.8.3.7.0.2.4.e164.arpa has NAPTR record
 100 50 "u" "E2U+sip""!^\\+(.*)$!sip:\\1@cesnet.cz!" .
1.1.1.1.1.5.8.3.7.0.2.4.e164.arpa has NAPTR record
 200 50 "u" "E2U+h323" "!^\\+(.*)$!h323:\\1@gk1ext.cesnet.cz!" .

Here we see the contents of three NAPTR records in the ENUM DDDS application,
two for the SIP service and one for the H.323 service, used for Internet telephony.
The order numbers are 50 and 100 for the SIP entries and 200 for the H.323 entry,

ptg999

552 Name Resolution and the Domain Name System (DNS)

showing how it is possible using ENUM and NAPTR records to have multiple
services associated with a single telephone number, and how the provider of the
NAPTR records can indicate a preferred ordering of more than one gateway pro-
viding the same service.

Note

SIP is an IETF-specified protocol used for signaling and is especially popular for
facilitating the connection of multimedia clients and servers. H.323 is an ITU-
specified protocol for multimedia conferencing and communication, including a
signaling sub-protocol. It is widely implemented in teleconferencing equipment.
In this example and those that follow, the host program produces output that can
be used as input to a zone file for a DNS server such as BIND. As a consequence,
the output shows extra escape “\” characters (which appear as “\\”) that are not
present in the actual DNS responses provided by the server.

To better understand how a NAPTR record’s rules are applied to the AUS,
we will look at the second SIP record from the preceding example. After the DNS
query is performed and the NAPTR RR is received, the string appearing between
the first and second ! characters is used as a regular expression match and replace-
ment. Thus, the string +420738511111 is matched against the regular expression
^\+(.*)$. According to the matching rules for regular expressions, the match is
successful, so the string rewrite rule becomes sip:\1@cesnet.cz . The special
variable \1 is replaced with the substring matching the first regular expression
contained in parenthesis characters, (), which in this case is everything in the
AUS except for the initial + character. In summary, the AUS +420738511111 is
transformed into the URI sip:420738511111@cesnet.cz.

Once this URI is formed, the natural next step is for the driving application to
contact a SIP server. However, SIP can itself be carried over different transport pro-
tocols, so the next step uses another DDDS that is tailored for SIP [RFC3263]. In this
application, NAPTR records contain targets that identify the domain that should
be used to perform SRV record queries. Continuing with the preceding example:

Linux% host -t naptr cesnet.cz
cesnet.cz has NAPTR record 200 50 "s" "SIP+D2T" "" _sip._tcp.cesnet.cz.
cesnet.cz has NAPTR record 100 50 "s" "SIP+D2U" "" _sip._udp.cesnet.cz.

Here we see the use of the s flag in the NAPTR, indicating that an SRV record
is the result. The Regexp field is not used, so the result is a simple domain name
substitution, given by the string in the Replacement field. The Service field is of the
form SIP+D2x or SIPS+D2x where SIP and SIPS indicate the use of the SIP pro-
tocol and SIP protocol with security (TLS; see Chapter 18), respectively, and x is
the single-letter identifier of the transport protocol: U for UDP, T for TCP, and S for
SCTP [RFC4960]. In this example, the application would first attempt to look up
and use the SRV record corresponding to SIP/UDP and would resort to SIP/TCP
if that fails because the UDP entry has a lower preference value.

ptg999

Section 11.5 The DNS Protocol 553

11.5.6.13 URI/URN Resolution
Although ENUM may be the most mature use of NAPTR records in the DNS, there
are also DDDS applications defined for resolving URIs [RFC3404] and for persis-
tent, location-independent URIs called Uniform Resource Names (URNs) [RFC2141].
All URIs (including URNs) consist of a scheme name followed by a substring com-
pliant with semantics that are specific to the scheme. The current list of official
schemes is maintained by the IANA [URI]. The URI and URN applications are so
similar that it is worth considering them together. For the URI/URN DDDS appli-
cation, then, the AUS is the URI or URN for which an authoritative “resolution”
server is being located. The first Well-Known Rule for the URI application is sim-
ply the scheme name. For URNs, it is the name space identifier (the substring that
appears after the urn: scheme identifier and before the next colon character). For
example, http://www.pearson.com is a URI using the scheme (key) http, and
the URN urn:foo:foospace would use foo as the first key. Four possible flags
are currently defined: S, A, U, and P. The first three are terminal and indicate that
the result is the domain name to use for fetching an SRV record, an IP address, or
a URI, respectively. The P flag indicates that processing of the DDDS algorithm is
to be discontinued and some application-specific processing (defined elsewhere)
begins. All such flags are mutually exclusive. As with ENUM, the lack of any flag
indicates an NTN.

Support for the URI/URN DDDS is still evolving. If we take a current (2011)
look into the DNS, we can see how some of the schemes have been populated into
the uri.arpa TLD:

Linux% host –t naptr http.uri.arpa
http.uri.arpa has NAPTR record 0 0 "" "" "!^http://([^:/?#]*).*$!\\1!i" .
Linux% host –t naptr ftp.uri.arpa
ftp.uri.arpa has NAPTR record 0 0 "" "" "!^ftp://([^:/?#]*).*$!\\1!i" .

Linux% host –t naptr mailto.uri.arpa
mailto.uri.arpa has NAPTR record 0 0 "" "" "!^mailto:(.*)@(.*)$!\\2!i" .
Linux% host –t naptr urn.uri.arpa
urn.uri.arpa has NAPTR record 0 0 "" "" "/urn:([^:]+)/\\1/i" .

The first three of these NAPTR records contain rewrite rules and no flags.
Thus, they essentially indicate that the application should extract the domain
name from the corresponding URI and continue the DDDS algorithm. The trail-
ing i flag after the last ! character indicates that case checking is to be performed
in an insensitive way. For example, mAiLto:person@example.com is rewritten
to be just example.com. The fourth record is used to extract the URN name space
ID and continue processing. For URNs, there are a small number (two at present)
of NAPTR records in the DNS set up in urn.arpa:

Linux% host –t naptr pin.urn.arpa
pin.urn.arpa has NAPTR record 100 100 "" "" "" pin.verisignlabs.com.
Linux% host –t naptr uci.urn.arpa
uci.urn.arpa has NAPTR record 100 100 "" "" "" uci.or.kr.

http://www.pearson.com

ptg999

554 Name Resolution and the Domain Name System (DNS)

These URN name spaces appear to be receiving little attention at present, and
it is still unclear to what extent URNs will be widely used, as there are now com-
peting methods for expressing and locating objects using persistent identifiers
(e.g., see [P10]). Nevertheless, more than 40 URN name spaces have been defined
[URN], so there continues to be community interest in establishing name spaces,
even though few have corresponding global, active NAPTR records.

11.5.6.14 S-NAPTR and U-NAPTR
A common issue arises when an application wishes to determine the particular
host, protocol, and port number to use for reaching a service within a domain.
For example, a mail-reading application running on a user’s computer in the
example.com domain may need to find a server offering the IMAP service. A
convention has arisen to simply prepend the service name to the domain (e.g.,
imap.example.com). Using CNAME, A, or AAAA records is somewhat inflex-
ible, because these record types do not convey any indication of which transport
protocol or port number to use. SRV records go further by providing another layer
of indirection, but their targets may contain only domain names for which an A or
AAAA record is subsequently retrieved. Using NAPTR records instead provides
more flexibility through an additional layer of indirection and allows for other
target record types (such as SRV records) to be used.

The NAPTR structure and rewrite capabilities have caused concern for some
implementers and operators given the complexity of the regular expressions. In
an effort to simplify the situation yet still provide a method beyond basic SRV
records for locating services, straightforward NAPTR (S-NAPTR) [RFC3958] speci-
fies a DDDS application for mapping domain “labels” that contain a service name
using certain simplifying restrictions on the contents of the NAPTR records.

For S-NAPTR, the AUS is a domain label for which an authoritative server for
a particular service is sought. The first Well-Known Rule is the identity function.
The expected output is the information necessary to contact a particular applica-
tion service within a domain (e.g., protocol, host, port). Only S and A terminal
flags are permitted, which indicate an SRV RR or a domain name (which is to
be used to form a subsequent request for an A or AAAA RR), respectively. The
service parameters are taken from a set maintained in an IANA registry [SNP],
and the Regexp field is not used. Only the Replacement field is active. S-NAPTR is
used in conjunction with the Internet Registry Information Service (IRIS) [RFC3981],
an XML-based text application protocol for exchanging information pertaining
to domain name and other registration information whose database is contained
within the iris.arpa portion of the DNS name space; for example:

Linux% host –t naptr areg.iris.arpa
reg.iris.arpa NAPTR
 100 10 "" "AREG1:iris.xpc:iris.lwz" "" areg.nro.net.

This example uses S-NAPTR (no regular expression) to indicate that in order to
perform an ISIS query for AREG1-type data (see [RFC4698]), a subsequent NAPTR
query should be initiated to areg.nro.net.

ptg999

Section 11.5 The DNS Protocol 555

Experience and further consideration of S-NAPTR led to the development of
URI-enabled NAPTR (U-NAPTR) [RFC4848], which relaxes some of the restrictions
of S-NAPTR but maintains all of its other features and registries. Most important,
an additional U flag is permitted, which enables the NAPTR record target to be
a URI and thus allows the use of regular expressions. This is similar to the fully
generic version of NAPTR, except U-NAPTR regular expressions are restricted to
the following form: !.*!<URI>!. That is, the entire AUS is replaced with a URI.
U-NAPTR is being used in conjunction with the Location-to-Service Translation pro-
tocol (LoST) [RFC5222], which can be used to determine the correct service given a
point of network attachment and geographical location. Such information is use-
ful in public safety applications where geography dictates the particular jurisdic-
tion and responsible parties that should provide emergency services.

11.5.7 Dynamic Updates (DNS UPDATE)

It is possible to dynamically update a zone, called DNS UPDATE, using a protocol
defined in [RFC2136]. It supports the ability to specify prerequisites in conjunction
with an update request. Prerequisites are evaluated at the server; if they are not
true, the update is not performed and an error message is returned.

DNS UPDATE is accomplished by sending dynamic update DNS messages to an
authoritative DNS server for a zone. The structure of such messages is the same as
for a conventional DNS message, except the header fields and sections have differ-
ent names (see Figure 11-3). The sections indicate the zone being updated, prereq-
uisites that require various RRs to be present (or not) for the update to take effect,
and the update information. In an update, the header mirrors the format for a query,
but the Opcode field is set to Update (5). The header fields ZOCOUNT, PRCOUNT,
UPCOUNT, and ADCOUNT contain counts of the following: zones to be updated
(this will have the value 1), prerequisites to consider, updates to be made, and
additional information records, respectively. [RFC2136] also defines a collection of
RCODE values carried in DNS response messages capable of indicating conditions
relating to problems with the prerequisites or server (values 6–10 in Table 11-2).

The zone section of an update message (see Figure 11-7) indicates the zone’s
name, a type, and a class. The type value will be 6 to indicate the presence of an
SOA record, which identifies the zone. The class value will be 1 (Internet) for any
update message with which we are concerned. All records being updated must be
in the same zone.

The prerequisite section of an update message contains one or more prereq-
uisites, expressed using the format for RRs we discussed previously in Section
11.5.5. There are five types of prerequisites: RRSet exists (value-dependent and
value-independent varieties), RRSet does not exist, name is in use, and name is not in
use. Recall that an RRSet is a group of RRs from the same zone sharing a common
name, class, and type. To express the semantics of a prerequisite, a combination of
an RR’s class, type, and RDATA values are set according to Table 11-5.

The RRSet exists type means that at least one RRSet exists in the zone specified
in the zone section that matches the name and type of the corresponding RR in

ptg999

556 Name Resolution and the Domain Name System (DNS)

Table 11-5 RR Class and Type fields used in prerequisite section to indicate prerequisite type

Prerequisite Type (Semantics) Class Setting Type Setting RDATA Setting

RRSet exists (value-independent) ANY Same as zone’s type Empty
RRSet exists (value-dependent) Same as zone’s class Type being checked RRSet being

checked
RRSet does not exist NONE Type being checked Empty
Name is in use ANY ANY Empty
Name is not in use NONE ANY Empty

the prerequisite section. In the value-dependent case, the prerequisite is true only
if the matching RRs also contain matching RDATA values. The RRSet does not exist
type means that no RRSet in the zone specified in the zone section matches the
name and type of the RR in the Prerequisites section. The last two cases (Name is
in use and Name is not in use) refer only to the domain name; the type value is not
used. The values for NONE and ANY as DNS classes are 254 and 255, respectively.

Following the Prerequisite section, the Update section contains RRs to be
added or deleted from the zone specified in the zone section. There are four types
of updates, encoded as an RR with various combinations of values in the Class,
Type, and RDATA fields, as indicated in Table 11-6.

Table 11-6 RR Class and Type fields used in Update section to indicate update type

Use Class Setting Type Setting RDATA

Add RR to RRSet Same as zone’s
class

Type of RR being
added

RDATA of RR being
added

Delete RRSet ANY Type of RRSet to
delete

Empty (TTL and
RDLENGTH also zero)

Delete all RRSets from a name ANY ANY Empty (TTL and
RDLENGTH also zero)

Delete RR from RRSet NONE Type of RR being
deleted

Matching RDATA to
delete

The update section contains a collection of RRs that are processed provided no
errors have occurred due to prerequisites or server problems. Each RR encodes an
addition or deletion operation. Modifications can be performed as a deletion fol-
lowed by an addition. To see an example of DNS UPDATE, we can induce a Win-
dows machine to perform a dynamic DNS update using the following command:

C:\> ipconfig /registerdns

Windows clients issue updates for their computer name and domain name by
default, but this behavior can also be enabled for IPv4 on a per-DNS-suffix basis
by checking the box labeled “Use this connection’s DNS suffix in DNS registration”

ptg999

Section 11.5 The DNS Protocol 557

under the DNS section of the Advanced TCP/IP Settings, found on the General tab
of the Internet Protocol (TCP/IP) Properties menu associated with each interface
enabled for TCP/IP. For IPv6, the same procedure is used, but on the IPv6 Properties
menu. In the example shown in Figure 11-16, we can see how the machine named
vista updates the local zone dyn.home as it issues the DNS update message shown.

Figure 11-16 A DNS dynamic update contains an SOA record in the zone section and RRs in
the update section. This case includes new IPv4 and IPv6 addresses for the host
vista.dyn.home.

Figure 11-16 shows how a dynamic update is encoded. The DNS server at
10.0.0.1 (running BIND9 [AL06] in this example) is configured to allow dynamic
updates. The zone section contains an SOA record identifying the zone to be
updated (vista.dyn.home). The prerequisite section contains an RR with a zero-
length RDATA section and 0 TTL value. The RR corresponds to the type of pre-
requisite in the third row of Table 11-5 (RRset does not exist) because its type is not
ANY (it is CNAME) and its class is set to NONE (254).

In this particular case, the addresses 10.0.0.57 and 2001:5c0:1101:ed00:fd26:
de93:5ab7:405a are to be associated with the name vista.dyn.home. This is
accomplished by first deleting the AAAA and A RRSets (corresponding to row 2
in Table 11-6), and then adding the AAAA and A RRSets (corresponding to row 1
in Table 11-6) for the desired addresses.

ptg999

558 Name Resolution and the Domain Name System (DNS)

Figure 11-17 The response to a dynamic update request includes a transaction ID and status flag set.

Responses to DNS updates are straightforward and compact. The response for
the update shown in Figure 11-16 is illustrated in Figure 11-17.

The Flags field indicates a successful update (no error). The transaction ID
(0x4089) is used to ensure that the update response matches a corresponding
request. Note that on Linux, the nsupdate program can be used to update a
cooperative DNS server. DNS servers cooperate with a requested update only if an
authentication and access control procedure indicates that the request is acceptable.
This can be as simple as nothing or listing the IP addresses of clients at the server,
neither of which is very secure, or using somewhat more complex and secure meth-
ods that provide transaction authentication (see TSIG and SIG(0) in Chapter 18).

11.5.8 Zone Transfers and DNS NOTIFY

A zone transfer is used to copy a set of RRs for a zone from one server to another
(generally from the master server to slave servers). The purpose of doing so is to
keep multiple servers in sync with respect to a zone’s contents. Multiple servers
provide resiliency to failure, in case a server should go down. Performance can
also be improved as multiple servers can be used to share the processing load for
incoming queries. Finally, the latency of a DNS query/response can potentially be
reduced if servers are placed in locations close to clients (i.e., where the network
latency between resolver and server is small).

ptg999

Section 11.5 The DNS Protocol 559

As originally specified, zone transfers are initiated after polling, where slaves
periodically contact masters to see if a zone transfer is necessary by comparing the
zones’ version numbers. A later method says if a zone transfer needs to be initi-
ated using an asynchronous update mechanism when the zone contents change.
This is called DNS NOTIFY. Once a zone transfer is initiated, either the entire
zone is transferred (using DNS AXFR messages) [RFC5936], or an incremental zone
transfer option may be used (using DNS IXFR messages) [RFC1995]. The general
scheme operates according to the illustration in Figure 11-18.

Figure 11-18 A DNS zone transfer copies the contents of zones between servers. An optional notifi-
cation can cause a slave to request a full or incremental zone transfer.

We will now have a closer look at each of the options, including full and incre-
mental zone transfers, plus DNS Notify.

11.5.8.1 Full Zone Transfers (AXFR Messages)
Full zone transfers are controlled by the zone transfer parameters carried in a zone’s
SOA record: primary name server, serial number, and the refresh, retry, and expire
intervals. When configured, a slave server attempts to contact the primary server to
see if a zone transfer is necessary. Contacts are attempted periodically, according to
the refresh interval. They are also attempted when a server first starts. If a contact
is not successful (no response from the server), retries are attempted periodically
according to the retry interval (generally shorter than the refresh interval). The
entire zone contents are flushed if not refreshed within the expire interval, effec-
tively incapacitating the server for the zone.

An All Zone Transfer (AXFR) DNS message (a standard query containing
type AXFR in the Question section) is used to request a complete zone transfer
using TCP. To see such a message, we may arrange for a request to be initiated
using the host program in our local network:

ptg999

560 Name Resolution and the Domain Name System (DNS)

Linux% host -l home.
Using domain server:
Name: 10.0.0.1
Address: 10.0.0.1#53
Aliases:

home name server gw.home.
ap.home has address 10.0.0.6
gw.home has address 10.0.0.1
...

The -l flag asks the host program to perform a full zone transfer from a local
DNS server. The program initiates a TCP-based query/response dialogue, illus-
trated in Figure 11-19.

Figure 11-19 A DNS request for a full zone transfer uses the AXFR record type and TCP as a trans-
port protocol.

In Figure 11-19 we can see how the zone transfer takes place using TCP. The
first three TCP segments are part of the standard TCP connection establishment
process (see Chapter 13). The fourth (decoded) packet is the request. It is a nor-
mal DNS standard, with type AXFR and class IN (Internet). The query is for the
domain name home. The response to this query is contained in message 6, follow-
ing the TCP ACK (see Figure 11-20).

ptg999

Section 11.5 The DNS Protocol 561

Figure 11-20 The successful response for a full zone transfer request includes all of the records for
the zone. The transaction takes place using TCP, as the zone contents may be large and
a reliable copy is required.

In Figure 11-20 we can see how the entire zone is carried in the response. After
receiving the response, the client’s TCP ACKs the data and initiates a TCP con-
nection close. The connection is closed gracefully using the FIN-ACK handshake
(packets 8–10). See Chapter 13 for more details on the standard TCP connection
establishment and clearing.

Although it used to be possible to perform such zone transfers with virtually
any DNS server, they are now typically restricted to the authoritative servers in a
zone (e.g., those listed in NS records for the zone). The reason for this restriction
is privacy and security—knowledge of the hosts within the zone might help an
attacker target particular services or hosts.

11.5.8.2 Incremental Zone Transfers (IXFR Messages)
To improve the efficiency of zone transfers, [RFC1995] defines the use of incremen-
tal zone transfers. Using incremental zone transfers and the IXFR message type,
only the changes in a zone are provided. To execute an incremental zone transfer,
the client (e.g., slave server) must provide its current serial number for the zone. In

ptg999

562 Name Resolution and the Domain Name System (DNS)

the following example, we can emulate a requesting server by providing the serial
number and using the dig program:

Linux% dig +short @10.0.0.1 -t ixfr=1997022700 home.
gw.home. hostmaster.gw.home. 1997022700 10800 15 604800 10800

The command line indicates that output from the command should be short,
10.0.0.1 is the address of the DNS server to use, and an incremental zone transfer
starting with serial number 1997022700 should be performed. This example cre-
ates an exchange similar to the one illustrated in Figures 11-19 and 11-20 for AXFR,
except in this case the serial number of the request matches the current serial
number (see Figure 11-21).

Figure 11-21 An incremental zone transfer request (IXFR record type) carried on TCP. The serial
number is used to determine which records, if any, have changed since an earlier zone
transfer took place.

ptg999

Section 11.5 The DNS Protocol 563

Figure 11-22 shows how the IXFR request includes a mostly empty SOA RR
in the authority section. The SOA record includes the serial number specified
(1997022700). The response (packet 6) contains no real information because this
serial number matches the current one at the server.

Figure 11-22 The response to an IXFR request when the serial number is current contains only an
SOA record and no additional information.

The response in Figure 11-22 contains only the SOA RR in the answer sec-
tion. Unlike the one contained in the query, this one is filled in with the complete
SOA fields (e.g., mailbox, zone transfer parameters). However, there are no addi-
tional answers because the current serial number for the zone matches that of the
request. Thus, the requesting client is assumed to be up-to-date and not in need of
any additional information or a zone transfer.

ptg999

564 Name Resolution and the Domain Name System (DNS)

11.5.8.3 DNS NOTIFY
As mentioned previously, polling has traditionally been used to determine the
need for zone transfers, meaning that the slave servers would check with a master
periodically (the “refresh” interval) to see if the zone had been updated (indicated
by a different serial number), in which case a zone transfer would be initiated.
This is a somewhat wasteful process because many useless polls may occur before
the zone is updated. To improve the situation, [RFC1996] developed the DNS
NOTIFY mechanism. DNS NOTIFY allows a server with modified zone contents
to notify slave servers that an update has been made and a zone transfer should
be initiated. More specifically, if enabled, a notification message is sent to a set
of interested servers if the SOA RR for a zone changes (e.g., if the serial number
increases). This allows zone transfers to be initiated easily when required. Using a
local (home) name server, we can see how this works (see Figure 11-23).

Figure 11-23 A DNS NOTIFY indicating an update to the zone file. There are two retransmissions
spaced 15s apart (contrary to the method suggested in the standard).

ptg999

Section 11.6 Sort Lists, Round-Robin, and Split DNS 565

This example illustrates the simple DNS NOTIFY message sent to a host in the
server’s notify set of servers that should be informed of a zone change. The message
is a UDP/IPv4 DNS query message with the Flags field indicating a zone change
notification. The query section contains the type and class for an SOA record, and
the answer section contains the current SOA RR for the zone (with TTL 0), includ-
ing the serial number. This provides sufficient information for a notified server
to determine that a zone transfer may be necessary. Note that a single server may
receive notifications from multiple other servers as they update their zone infor-
mation. This does not present a problem for the protocol’s operation.

The DNS NOTIFY mechanism defaults to using UDP, an unreliable protocol.
In this particular example, the notify set contains only the address 10.0.0.11, which
does not run a DNS server. Consequently, the message is resent every 15s hoping
for a response that never arrives.

Note

The time between retransmissions and the total number of retransmissions to
attempt are suggested by [RFC1996] to be 60s and five retransmissions, respec-
tively. It also suggests that a timer backoff method (additive or exponential) be
used. Here we can see that the BIND9 implementation fails to respect these sug-
gestions, as the two retransmissions are 15s apart.

Responses are simply DNS response messages with no useful information
except the transaction ID; they are used only to complete the protocol and cancel
retransmissions at the sending server.

11.6 Sort Lists, Round-Robin, and Split DNS

So far we have discussed how domain names are set up, the types of resource
records DNS supports, and the DNS protocol used to fetch and update a zone. One
subtle point to consider is what data is returned and in what order in response
to a DNS query. A DNS server could return all matching data to any client in
whatever order the server finds most convenient. However, special configuration
options and behaviors are available in most DNS server software to achieve cer-
tain operational, privacy, or performance goals. Consider the topology shown in
Figure 11-24.

The type of topology shown in Figure 11-24 is typical of a small enterprise.
There is a private network and a public network including a DNS server. In addi-
tion, there is a pair of hosts on the DMZ (A and B), one on the internal network (C)
and one on the Internet (R). A multihomed host (M) spans the DMZ and internal
networks. M therefore has two IP addresses drawn from two different network
prefixes.

ptg999

566 Name Resolution and the Domain Name System (DNS)

A host wishing to contact M performs a DNS lookup that returns two
addresses—one associated with the internal network and one with the DMZ.
Naturally, it would be more efficient if A, B, and R reached M via the DMZ and
C reached M via the internal network. This generally happens if the DNS server
orders its returned address records based on the source IP address of the request.
(It could also use the destination IP address, especially if M uses multiple IP
addresses from different subnets on the same network interface.) If the request-
ing system uses a source IP address with the same network prefix as the source
of a returning address record, the DNS server places the set of such matching
records early in the returned message. This behavior encourages the client to find
the “closest” IP address for a particular server it is attempting to contact, because
most simple applications attempt to contact the first address found among the
returned address records. The precise behavior can usually be controlled using
a so-called sortlist or rrset-order directive (options used in configuration
files for resolvers and servers). Such sorting behavior may also happen automati-
cally if performed by the DNS server software by default.

A somewhat related situation arises when one service is offered using more
than one server such that the incoming connections are load-balanced (i.e., divided
among the servers). In the preceding example, imagine that a service is offered on
both A and B. Such a service may be identified by the URL http://www.example
.com. Requesting clients (like R) perform a DNS query on the domain name
www.example.com, and the DNS server eventually returns a set of address
records. To achieve load balancing, the DNS server may be configured to use
DNS round-robin, which means that the server permutes the order of the returned
address records. Doing so encourages each new client to access the service on a
different server from the previous client. While this helps to balance load, it is far
from perfect. When records are cached, the desired effect may not occur because
of reuse of existing cached address records. In addition, this scheme may bal-
ance the number of connections well across servers, but not the load. Different

Figure 11-24 In a small enterprise topology, DNS may be configured to return different addresses
depending on the requesting IP address.

ptg999

Section 11.8 Transparency and Extensibility 567

connections can have radically different processing requirements, so the true pro-
cessing load is likely to remain unbalanced unless the particular service always
has the same processing requirements.

A final consideration regarding the data returned by a DNS server is sup-
port for privacy. In this example, we may wish to arrange for hosts within the
enterprise to be able to retrieve resource records for every computer in the net-
work, while we limit the set of systems that remain visible to R. A technique for
implementing this goal is called split DNS. In split DNS, the set of resource records
returned in response to a query is dependent on the identity of the client and pos-
sibly query destination address. Most often, the client is identified by IP address
or address prefix. With split DNS, we could arrange for any host in the enterprise
(i.e., those sharing a set of prefixes) to be provided with the entire DNS database,
whereas those outside are given visibility only to A and B, where the main Web
service is offered.

11.7 Open DNS Servers and DynDNS

Many home users are assigned a single IPv4 address by their ISP, and this address
may change over time as the user’s computer or home gateway connects, discon-
nects, and reconnects to the Internet. Consequently, it is often difficult for the user
to establish a DNS entry that allows for running services that are visible from
the Internet. A number of so-called open Dynamic DNS (DDNS) servers are avail-
able that support a special update protocol called the DNS Update API [DYNDNS],
whereby a user may update an entry in a provider’s DNS server given a preregis-
tration or account. This scheme does not use the [RFC2136] DNS UPDATE protocol
described earlier but is instead a separate application-layer protocol.

To use the service, a DDNS client program (e.g., inadyn or ddclient on
Linux and DynDNS Updater for Windows) runs on the client system, which could
also be a user’s home router. Most often, these programs are configured with login
information used to access a remote DDNS service. When the service is invoked,
the client program contacts the server, provides the current global IP address of its
host (the one assigned by an ISP, often a NAT mapped address), and goes quiescent.
After that, it periodically renews the information with the server. Doing so allows
the server to clear the information if an update is not received within a certain
time interval. Such services include those provided at the following Web sites (as of
2011): http://www.dyndns.com/services/dns/dyndns, http://freedns
.afraid.org, and http://www.no-ip.com/services/managed_dns/free_
dynamic_dns.html.

11.8 Transparency and Extensibility

The DNS is one of the most ubiquitous services on the Internet and has been
an attractive service to consider as a basis for adding new capabilities through

http://www.dyndns.com/services/dns/dyndns
http://freedns.afraid.org
http://freedns.afraid.org
http://www.no-ip.com/services/managed_dns/free_dynamic_dns.html
http://www.no-ip.com/services/managed_dns/free_dynamic_dns.html

ptg999

568 Name Resolution and the Domain Name System (DNS)

extensions. There are, for example, numerous record types such as TXT, SRV, and
even A (e.g., see [RFC5782]) that could be used for encoding data useful for vari-
ous future services. [RFC5507] considers various methods for extending the DNS,
ultimately concluding that creation and implementation of new RR types is the
most attractive approach. Thanks to an earlier specification [RFC3597], there is a
standard method for handling unknown RR types as opaque data. That is, they
are not interpreted unless recognized; the processing is transparent. This allows
for new RR types to be carried along without causing negative impact on the pro-
cessing of existing RR types.

One complication with preserving transparency is the encoding of embed-
ded domain names and compression. For known RR types, embedded domain
names are permitted to have their cases altered in order to achieve compression
with compression labels. Owner domain names (the “keys” of queries) are always
subject to compression. For unknown RR types, however, embedded domain
names are not permitted to use compression labels. In addition, future RR types
that contain embedded domain names are likewise prohibited (see Section 4 of
[RFC3597]). Unknown types can still be compared (e.g., for dynamic updates) in
a bitwise fashion. This implies that any embedded domain names are compared
in a case-sensitive manner [RFC4343], contrary to most other DNS operations. This
same situation appears for embedded domain names used with TXT records.

A different issue arises regarding transparency when new forms of servers
and proxies are introduced that process DNS traffic. It is now relatively common
practice to include a DNS proxy colocated inside a home gateway or firewall. A
typical proxy handles incoming DNS requests from a user’s home network and
forwards the request to an ISP-provided name server. It also receives returned
information and may or may not cache the results. Historically, some proxies have
tried to do more than merely relay requests and replies, and this has caused some
problems with DNS interoperability. [RFC5625] specifies the proper operation
of a DNS proxy, essentially requiring DNS RRs to be uninterpreted and merely
relayed by the proxy. In cases where packet truncation cannot be avoided, any
such proxy must set the TC bit field to indicate that some DNS data was removed.
Furthermore, any such proxies should be prepared to handle TCP requests, as this
is the conventional fallback mechanism when a previous UDP-based request was
truncated and is required by [RFC5966].

11.9 Translating DNS from IPv4 to IPv6 (DNS64)

In Chapter 7 we described a framework for translating IP datagrams back and
forth between IPv4 and IPv6. Translators supporting such capabilities are envi-
sioned to be deployed with a related capability that translates between DNS A
and AAAA records [RFC6147], allowing IPv6-only clients to access DNS informa-
tion that appears in A records (e.g., in the IPv4 Internet). The capability is called
DNS64, and one of its proposed deployment scenarios (called “DNS64 in DNS
recursive-resolver mode”) is illustrated in Figure 11-25.

ptg999

Section 11.10 LLMNR and mDNS 569

As shown in Figure 11-25, DNS64 is used in conjunction with an IPv4/IPv6
translator (see Chapter 7). Each device is configured with one or more common
IPv6 prefixes used in creating IPv4-embedded addresses. Each prefix may be a
Network-Specific Prefix (e.g., that is owned by an operator) or the Well-Known
Prefix (64:ff9b::/96). The DNS64 device acts as a caching DNS server. IPv6-only
clients use it as the primary DNS server and are able to request AAAA records for
domain names. DNS64 converts such requests to requests for both A and AAAA
records on its IPv4 side. If no AAAA records are returned, DNS64 provides syn-
thetic AAAA records by forming an IPv4-embedded address based on the config-
ured prefix and the contents of each A record it retrieves. DNS64 also responds to
PTR queries for any of the IPv6 prefixes it uses for synthesizing AAAA RRs.

To implement AAA RR synthesis in a DNS64 device, only the answer sec-
tion of a DNS message is effectively altered. Other sections remain as they appear
when retrieved on the IPv4 side. In cases of CNAME or DNAME chains, the chain
is followed recursively until an A or AAAA record is found and the elements of
the chain are included in the response. In addition, DNS64 may be configured so
as to avoid synthesis for particular excluded IPv6 or IPv4 address ranges. This
prevents certain anomalous behavior (e.g., forming IPv4-embedded addresses
based on special-use IPv4 addresses). Note that DNS64 has subtle interactions
with DNSSEC; these issues are covered in Chapter 18.

11.10 LLMNR and mDNS

The ordinary DNS system requires a set of DNS servers to be configured to provide
mappings between names and addresses, and possibly other information. Some-
times this is too much overhead when only a few local hosts wish to communicate.
In cases where a DNS server is not available (e.g., a quickly formed ad hoc network
of clients that connect only to each other), a special local version of DNS called
Link-Local Multicast Name Resolution (LLMRR) [RFC4795] may be available. It is a
(nonstandard) protocol based on DNS developed by Microsoft and used in local

Figure 11-25 DNS64 translates A records to AAAA records and works together with an IPv4/IPv6 translator
to allow IPv6-only clients to access services in IPv4 networks.

ptg999

570 Name Resolution and the Domain Name System (DNS)

environments to help discover devices on a local area network, such as printers
and file servers. It is supported in Windows Vista, Server 2008, and 7. It uses UDP
port 5355 with the IPv4 multicast address 224.0.0.252 and IPv6 address ff02::1:3.
The servers also use TCP on port 5355 from whatever unicast IP address they
respond from.

Multicast DNS (mDNS) [IDMDNS] is another form of local DNS-like capabil-
ity developed by Apple. When it is combined with the DNS Service Discovery
protocol, Apple calls the resulting framework Bonjour. mDNS uses DNS messages
carried over local multicast addresses. It uses UDP with port 5353. It specifies
that the special TLD .local is to be treated with special semantics. The .local
TLD is link-local in scope. Any DNS queries for domain names in this TLD are
sent to the mDNS IPv4 address 224.0.0.251 or the IPv6 address ff02::fb. Queries
for other domains may optionally be sent to these multicast addresses. Allow-
ing link-local servers to respond to mappings for global names can raise signifi-
cant security concerns. To combat this problem, DNSSEC can be employed (see
Chapter 18). mDNS supports autonomous assignment of names in the .local
pseudo-TLD, although this pseudo-TLD has not been officially reserved for this
purpose [RFC2606]. Thus, hosts on small networks such as home LANs can be
assigned convenient names such as printer.local, fileserver.local, cam-
era1.local, kevinlaptop.local, and the like. A mechanism in mDNS is used
to detect and resolve conflicts.

11.11 LDAP

So far we have discussed DNS and local name services that resemble DNS. To
support richer queries and data manipulations, there is a more general directory
service we mentioned earlier called LDAP [RFC4510]. LDAP (now LDAPv3) is
an application protocol for the Internet that provides access to general directo-
ries (e.g., “white pages”) in accordance with the X.500 (1993) [X500] data and ser-
vice models. It provides the ability to search, modify, add, compare, and remove
entries based on user-selected patterns. An LDAP directory is a tree of directory
entries, where each entry consists of a set of attributes. As TCP/IP has become
more popular, LDAP has evolved from its roots to work in conjunction with DNS.
For example, a query about directory entries matching the chancellor’s office at
MIT could be formed using the LDAP search tool ldapsearch (Microsoft has a
comparable tool called ldp available as a support tool from its Web site), which
works as follows:

Linux% ldapsearch -x -h ldap.mit.edu -b "dc=mit,dc=edu" \
"(ou=*Chancellor*)"
extended LDIF

LDAPv3
base <dc=mit,dc=edu> with scope sub

ptg999

Section 11.12 Attacks on the DNS 571

filter: (ou=*Chancellor*)
requesting: ALL

.....

The command line indicates that the server ldap.mit.edu should be
contacted without using any special authentication protocol (-x option). While a
complete discussion of LDAP is well beyond the scope of this chapter (and
book!), the partial output shows how the dc (domain component) attribute is
used to link LDAP data with the DNS. Each dc component holds one DNS label,
and together they can be used to encode an entire domain name, which is used as
the “base” portion for the LDAP query. Using this convention, it is not especially
difficult to form valid LDAP queries. In this case, it is for the organizational unit
(ou) containing the word Chancellor. Note that wildcards can be used.

LDAP servers are used most often within enterprises to hold directory information
such as location, telephone number, and organizational unit. Microsoft’s Active
Directory product includes LDAP capabilities and is used extensively for manag-
ing user accounts, services, and access rights in large enterprises using Windows.
Some LDAP servers (such as MIT’s and those of many other universities) are also
available through the public Internet.

11.12 Attacks on the DNS

The DNS is a critical component of the Internet and has been the object of sev-
eral attacks and countermeasures over the years [RFC3833]. Relatively recently,
a global effort called DNS Security (DNSSEC) has made substantial progress in
adding strong authentication to DNS operations. We defer the detailed discussion
of how DNSSEC works to Chapter 18, where we also cover the necessary cryp-
tography background. We now explore some of the attacks that have been waged
against the DNS.

There have been two main forms of attacks against the DNS. The first form
involves a DoS attack where the DNS is rendered inoperative because of overload-
ing of important DNS servers, such as the root or TLD servers. The second form
alters the contents of resource records or masquerades as an official DNS server
but responds with bogus resource records, thereby causing hosts to contact the
incorrect IP address when attempting to connect to another machine (e.g., a Web
site such as a bank).

The first major DoS attack on DNS took place in early 2001. The attack involved
generating many requests for the MX records of AOL.COM. The attacker generated
DNS requests for an MX record using forged source IP addresses. The request
is a relatively small packet, whereas the response is larger (by about a factor of
20), so this type of attack is called an amplification attack because the amount of
bandwidth consumed as the result of the attack is greater than the amount used
in generating the attack by a significant factor. The responses are directed at the

ptg999

572 Name Resolution and the Domain Name System (DNS)

IP address contained in the request packets, so the attacker could essentially cause
the response traffic to be directed wherever (s)he intended. The attack is docu-
mented in detail in a CERT incident note [CIN].

A form of attack involving modification of the data within DNS was reported
in late 2008 [CKB] and is now known as the Kaminsky Attack. It involves cache
poisoning, where the cached contents of a DNS server are replaced with erroneous
or forged data and ultimately served to the resolvers on end hosts. In one vari-
ant, an attacker responds to a caching server’s query for an A record with an NS
record for the domain using a particular host domain name. The host’s IP address
(chosen by the attacker) is also provided in the additional information section of
the DNS response. The host domain name may or may not share the same sub-
domains as the original DNS request. The main risk associated with this form of
attack is that clients that depend on proper DNS name-to-address resolution may
be directed to fake servers. If such servers are intentionally configured to mimic
the original host (e.g., masquerading as a bank’s Web server), users may unwit-
tingly trust the masquerading server and divulge sensitive information. Mitiga-
tion techniques for this and other related attacks are given by [RFC5452]. One
approach not described in [RFC5452] called DNS-0x20 [D08] involves encoding a
nonce in the 0x20 bit position of each character in the Query Name part of a ques-
tion section that is echoed back in the corresponding area of each response. This
is made possible because, although domain names are compared in a case-insen-
sitive way, servers tend to return an exact copy of the Query Name when forming
responses. If the case of the owner’s name is intentionally mixed up in the query,
an unsolicited response will have difficulty reproducing the nonce, and can more
readily be identified (and ignored).

11.13 Summary

The DNS is an essential part of the Internet, and DNS technology is widely used
in private networks as well. The DNS name space is worldwide in scope and is
divided into a hierarchy starting with top-level domains (TLDs). Domain names
can be represented in multiple languages and scripts using internationalized
domain names (IDNs). Applications use resolvers to contact one or more DNS
servers to perform lookup tasks against a zone database, such as converting a host
name to an IP address and vice versa. Resolvers then contact a local name server,
and this server may act recursively to contact one of the root servers or other serv-
ers to fulfill the request. Most DNS servers, and some resolvers, cache information
learned in order to provide it to subsequent clients for some period of time called
the time to live (TTL). Queries and responses use a special DNS protocol that
works with either TCP or UDP. The protocol also works with either IPv4 or IPv6,
or any mixture of the two.

All DNS queries and responses have the same basic message format that
includes questions, answers, authority information, and additional information.

ptg999

 Section 11.14 References 573

Resource records are used to hold most DNS information, and there are many
such types: addresses, mail exchange points, pointers to names, among others.
In the Internet, most DNS messages are carried using UDP/IPv4 and are limited
to 512 bytes in length, but a special extension option (EDNS0) provides for longer
messages and is required to support DNS security (DNSSEC), which we discuss
in detail in Chapter 18.

DNS supports some special features such as zone transfers and dynamic
updates. Zone transfers (complete or incremental) are used to allow redundant
slave servers to synchronize the zone contents with a master server, primarily for
redundancy. Dynamic updates allow zone contents to be modified by an appli-
cation using an online protocol. There are really two forms of this capability,
one standardized by [RFC2136] and used in enterprises and a nonstandard but
very popular dynamic DNS capability that allows users assigned temporary IP
addresses (e.g., on cable or DSL) to obtain a DNS entry so that services they pro-
vide can be found by name throughout the world.

DNS has been the subject of numerous attacks, ranging from DoS attacks that
leave the DNS with limited capability, to cache poisoning attacks that can be used
to make malicious servers appear to be legitimate. Various techniques have arisen
to combat this problem, including cryptographic techniques (covered in Chap-
ter 18) and modifications to DNS servers to be less accepting of unsolicited DNS
responses.

11.14 References

[AL06] P. Albitz and C. Liu, DNS and BIND, Fifth Edition (O’Reilly Media, Inc.,
2006).

[CIN] http://www.cert.org/incident_notes/IN-2000-04.html

[CKB] http://www.kb.cert.org/vuls/id/800113

[D08] D. Dagon et al., “Increased DNS Forgery Resistance Through 0x20-bit
Encoding,” Proc. ACM CCS, Oct. 2008.

[DNSPARAM] http://www.iana.org/assignments/dns-parameters

[DR97] D. Dougherty and A. Robbins, sed & awk, Second Edition (O’Reilly Media,
1997).

[DYNDNS] http://www.dyndns.com/about/technology

[ENUM] http://www.iana.org/assignments/enum-services

[GTLD] http://www.iana.org/domains/root/db

[ICANN] http://www.icann.org/en/tlds

http://www.cert.org/incident_notes/IN-2000-04.html
http://www.kb.cert.org/vuls/id/800113
http://www.iana.org/assignments/dns-parameters
http://www.dyndns.com/about/technology
http://www.iana.org/assignments/enum-services
http://www.iana.org/domains/root/db
http://www.icann.org/en/tlds

ptg999

574 Name Resolution and the Domain Name System (DNS)

[IDDN] S. Rose and W. Wijngaards, “Update to DNAME Redirection in the
DNS,” Internet draft-ietf-dnsext-rfc2672bis-dname, work in progress, July 2011.

[IDMDNS] S. Cheshire and M. Krochmal, “Multicast DNS,” Internet draft-
cheshire-dnsext-multicastdns, work in progress, Feb. 2011.

[IIDN] http://www.icann.org/en/topics/idn

[ISO3166] International Organization for Standardization, “International Stan-
dard for Country Codes,” ISO 3166-1, 2006.

[ISPR] http://www.iana.org/assignments/service-names-port-numbers

[J02] J. Jung et al., “DNS Performance and the Effectiveness of Caching,” IEEE/
ACM Transactions on Networking, 10(5), Oct. 2002.

[MD88] P. Mockapetris and K. Dunlap, “Development of the Domain Name Sys-
tem,” Proc. ACM SIGCOMM, Aug. 1988.

[P10] N. Paskin, “Digital Object Identifier (DOI©) System,” Encyclopedia of Library
and Information Sciences, Third Edition (Taylor and Francis, 2010).

[R06] H. Rice, “ENUM—The Mapping of Telephone Numbers to the Internet,”
The Telecommunications Review, 17, Aug. 2006.

[RFC1035] P. Mockapetris, “Domain Names—Implementation and Specification,”
Internet RFC 1035/STD 0013, Nov. 1987.

[RFC1464] R. Rosenbaum, “Using the Domain Name System to Store Arbitrary
String Attributes,” Internet RFC 1464 (experimental), May 1993.

[RFC1536] A. Kumar et al., “Common DNS Implementation Errors and Suggested
Fixes,” Internet RFC 1536 (informational), Oct. 1993.

[RFC1912] D. Barr, “Common DNS Operational and Configuration Errors,” Inter-
net RFC 1912 (informational), Feb. 1996.

[RFC1918] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear,
“Address Allocation for Private Internets,” RFC 1918/BCP 0005, Feb. 1996.

[RFC1995] M. Ohta, “Incremental Zone Transfer in DNS,” Internet RFC 1995,
Aug. 1996.

[RFC1996] P. Vixie, “A Mechanism for Prompt Notification of Zone Changes
(DNS NOTIFY),” Internet RFC 1996, Aug. 1996.

[RFC2136] P. Vixie, ed., S. Thomson, Y. Rekhter, and J. Bound, “Dynamic Updates
in the Domain Name System (DNS UPDATE),” Internet RFC 2136, Apr. 1997.

[RFC2141] R. Moats, “URN Syntax,” Internet RFC 2141, May 1997.

[RFC2181] R. Elz and R. Bush, “Clarifications to the DNS Specification,” Internet
RFC 2181, July 1997.

http://www.icann.org/en/topics/idn
http://www.iana.org/assignments/service-names-port-numbers

ptg999

 Section 11.14 References 575

[RFC2308] M. Andrews, “Negative Caching of DNS Queries (DNS NCACHE),”
Internet RFC 2308, Mar. 1998.

[RFC2317] H. Eidnes, G. de Groot, and P. Vixie, “Classless IN-ADDR.ARPA Del-
egation,” Internet RFC 2317/BCP 0020, Mar. 1998.

[RFC2606] D. Eastlake 3rd and A. Panitz, “Reserved Top Level DNS Names,”
Internet RFC 2606/BCP 0032, June 1999.

[RFC2671] P. Vixie, “Extension Mechanisms for DNS (EDNS0),” Internet RFC
2671, Aug. 1999.

[RFC2672] M. Crawford, “Non-Terminal DNS Name Redirection,” Internet RFC
2672, Aug. 1999.

[RFC2782] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for Specifying the
Location of Services (DNS SRV),” Internet RFC 2782, Feb. 2000.

[RFC2845] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Wellington, “Secret
Key Transaction Authentication for DNS (TSIG),” Internet RFC 2845, May 2000.

[RFC2930] D. Eastlake 3rd, “Secret Key Establishment for DNS (TKEY RR),”
Internet RFC 2930, Sept. 2000.

[RFC3172] G. Huston, ed., “Management Guidelines and Operational Require-
ments for the Address and Routing Parameter Area Domain (arpa),” Internet
RFC 3172/BCP 0052, Sept. 2001.

[RFC3263] J. Rosenberg and H. Schulzrinne, “Session Initiation Protocol (SIP):
Locating SIP Servers,” Internet RFC 3263, June 2002.

[RFC3401] M. Mealling, “Dynamic Delegation Discovery System (DDDS)—Part
One: The Comprehensive DDDS,” Internet RFC 3401 (informational), Oct. 2002.

[RFC3402] M. Mealling, “Dynamic Delegation Discovery System (DDDS)—Part
Two: The Algorithm,” Internet RFC 3402, Oct. 2002.

[RFC3403] M. Mealling, “Dynamic Delegation Discovery System (DDDS)—Part
Three: The Domain Name System (DNS) Database,” Internet RFC 3403, Oct. 2002.

[RFC3404] M. Mealling, “Dynamic Delegation Discovery System (DDDS)—Part
Four: The Uniform Resource Identifiers (URI) Resolution Application,” Internet
RFC 3404, Oct. 2002.

[RFC3492] A. Costello, “Punycode: A Bootstring Encoding of Unicode for Inter-
nationalized Domain Names in Applications (IDNA),” Internet RFC 3492, Mar.
2003.

[RFC3596] S. Thomson, C. Huitema, V. Ksinant, and M. Souissi, “DNS Extensions
to Support IP Version 6,” Internet RFC 3596, Oct. 2003.

ptg999

576 Name Resolution and the Domain Name System (DNS)

[RFC3597] A. Gustafsson, “Handling of Unknown DNS Resource Record (RR)
Types,” Internet RFC 3597, Sept. 2003.

[RFC3833] D. Atkins and R. Austein, “Threat Analysis of the Domain Name Sys-
tem (DNS),” Internet RFC 3833 (informational), Aug. 2004.

[RFC3958] L. Daigle and A. Newton, “Domain-Based Application Service Loca-
tion Using SRV RRs and the Dynamic Delegation Discovery Service (DDDS),”
Internet RFC 3958, Jan. 2005.

[RFC3981] A. Newton and M. Sanz, “IRIS: The Internet Registry Information
Service (IRIS) Core Protocol,” Internet RFC 3981, Jan. 2005.

[RFC3986] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Iden-
tifier (URI): Generic Syntax,” Internet RFC 3986/STD 0066, Jan. 2005.

[RFC4193] R. Hinden and B. Haberman, “Unique Local IPv6 Unicast Addresses,”
Internet RFC 4193, Oct. 2005.

[RFC4343] D. Eastlake 3rd, “Domain Name System (DNS) Case Insensitivity
Clarification,” Internet RFC 4343, Jan. 2006.

[RFC4406] J. Lyon and M. Wong, “Sender ID: Authenticating E-Mail,” Internet
RFC 4406 (experimental), Apr. 2006.

[RFC4592] E. Lewis, “The Role of Wildcards in the Domain Name System,” Inter-
net RFC 4592, July 2006.

[RFC4408] M. Wong and W. Schlitt, “Sender Policy Framework (SPF) for Autho-
rizing Use of Domains in E-Mail, Version 1,” Internet RFC 4408 (experimental),
Apr. 2006.

[RFC4510] K. Zeilenga, ed., “Lightweight Directory Access Protocol (LDAP):
Technical Specification Road Map,” Internet RFC 4510, June 2006.

[RFC4690] J. Klensin, P. Falstrom, and C. Karp, “Review and Recommendations
for Internationalized Domain Names (IDNs),” Internet RFC 4690 (informational),
Sept. 2006.

[RFC4698] E. Gunduz, A. Newton, and S. Kerr, “IRIS: An Address Registry (areg)
Type for the Internet Registry Information Service,” Internet RFC 4698, Oct. 2006.

[RFC4795] B . Aboba, D. Thaler, and L. Esibov, “Link-Local Multicast Name Reso-
lution (LLMNR),” Internet RFC 4795 (informational), Jan. 2007.

[RFC4848] L. Daigle, “Domain-Based Application Service Location Using URIs
and the Dynamic Delegation Discovery Service (DDDS),” Internet RFC 4848,
Apr. 2007.

[RFC4960] R. Stewart, ed., “Stream Control Transmission Protocol,” Internet RFC
4960, Sept. 2007.

ptg999

 Section 11.14 References 577

[RFC5001] R. Austein, “DNS Name Server Identifier (NSID) Option,” Internet
RFC 5001, Aug. 2007.

[RFC5222] T. Hardie et al., “LoST: A Location-to-Service Translation Protocol,”
Internet RFC 5222, Aug. 2008.

[RFC5321] J. Klensin, “Simple Mail Transfer Protocol,” Internet RFC 5321, Oct.
2008.

[RFC5452] A. Hubert and R. van Mook, “Measures for Making DNS More Resil-
ient against Forged Answers,” Internet RFC 5452, Jan. 2009.

[RFC5483] L. Conroy and K. Fujiwara, “ENUM Implementation Issues and Expe-
riences,” Internet RFC 5483 (informational), Mar. 2009.

[RFC5507] P. Falstrom, R. Austein, and P. Koch, eds., “Design Choices When
Expanding the DNS,” Internet RFC 5507 (informational), Apr. 2009.

[RFC5509] S. Loreto, “Internet Assigned Numbers Authority (IANA) Registra-
tion of Instant Messaging and Presence DNS SRV RRs for the Session Initiation
Protocol (SIP),” Internet RFC 5509, Apr. 2009.

[RFC5625] R. Bellis, “DNS Proxy Implementation Guidelines,” Internet RFC
5625/BCP 0152, Aug. 2009.

[RFC5782] J. Levine, “DNS Blacklists and Whitelists,” Internet RFC 5782 (infor-
mational), Feb. 2010.

[RFC5855] J. Abley and T. Manderson, “Nameservers for IPv4 and IPv6 Reverse
Zones,” Internet RFC 5855/BCP 0155, May 2010.

[RFC5890] J. Klensin, “Internationalized Domain Names for Applications
(IDNA): Definitions and Document Framework,” Internet RFC 5890, Aug. 2010.

[RFC5891] J. Klensin, “Internationalized Domain Names in Applications (IDNA):
Protocol,” Internet RFC 5891, Aug. 2010.

[RFC5936] E. Lewis and A. Hoenes, ed., “DNS Zone Transfer Protocol (AXFR),”
Internet RFC 5936, June 2010.

[RFC5966] R. Bellis, “DNS Transport over TCP—Implementation Requirements,”
Internet RFC 5966, Aug. 2010.

[RFC6116] S. Bradner, L. Conroy, and K. Fujiwara, “The E.164 to Uniform
Resource Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Appli-
cation (ENUM),” Internet RFC 6116, Mar. 2011.

[RFC6117] B. Hoeneisen, A. Mayrhofer, and J. Livingood, “IANA Registration of
Enumservices: Guide, Template, and IANA Considerations,” Internet RFC 6117,
Mar. 2011.

ptg999

578 Name Resolution and the Domain Name System (DNS)

[RFC6147] M. Bagnulo, A. Sullivan, P. Matthews, and I. van Beijnum, “DNS64:
DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Serv-
ers,” Internet RFC 6147, Apr. 2011.

[RFC6168] W. Hardaker, “Requirements for Management of Name Servers for the
DNS,” Internet RFC 6168 (informational), May 2011.

[RFC6186] C. Daboo, “Use of SRV Records for Locating Email Submission/Access
Services,” Internet RFC 6186, Mar. 2011.

[RFC6195] D. Eastlake 3rd, “Domain Name System (DNS) IANA Considerations,”
Internet RFC 6195/BCP 0042, Mar. 2011.

[RFC6303] M. Andrews, “Locally Served DNS Zones,” Internet RFC 6303/BCP
0163, July 2011.

[ROOTS] http://www.root-servers.org

[RSYNC] http://rsync.samba.org

[SNP] http://www.iana.org/assignments/s-naptr-parameters

[U11] The Unicode Consortium, The Unicode Standard, Version 6.0.0 (The Unicode
Consortium, 2011).

[URI] http://www.iana.org/assignments/uri-schemes

[URN] http://www.iana.org/assignments/urn-namespaces

[X500] International Telecommunication Union—Telecommunication Standard-
ization Sector, “The Directory—Overview of Concepts, Models and Services,”
ITU-T X.500, 1993.

http://www.root-servers.org
http://rsync.samba.org
http://www.iana.org/assignments/s-naptr-parameters
http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/urn-namespaces

ptg999

579

12

TCP: The Transmission Control
Protocol (Preliminaries)

12.1 Introduction

So far we have been discussing protocols that do not include their own mecha-
nisms for delivering data reliably. They may detect that erroneous data has been
received, using a mathematical function such as a checksum or CRC, but they do
not try very hard to repair errors. With IP and UDP, no error repair is done at all.
With Ethernet and other protocols based on it, the protocol provides some number
of retries and then gives up if it cannot succeed.

The problem of communicating in environments where the communication
medium may lose or alter the messages being delivered has been studied for
years. Some of the most important theoretical work on the topic was developed
by Claude Shannon in 1948 [S48]. This work, which popularized the term bit and
became the foundation of the field of information theory, helps us understand the
fundamental limits on the amount of information that can be moved across an
information channel that is lossy (that may delete or alter bits). Information theory
is closely related to the field of coding theory, which provides ways of encoding
information so that it is as resilient as possible to errors in the communications
channel. Using error-correcting codes (basically, adding redundant bits so that the
real information can be retrieved even if some bits are damaged) to correct com-
munications problems is one very important method for handling errors. Another
is to simply “try sending again” until the information is finally received. This
approach, called Automatic Repeat Request (ARQ), forms the basis for many com-
munications protocols, including TCP.

ptg999

580 TCP: The Transmission Control Protocol (Preliminaries)

12.1.1 ARQ and Retransmission

If we consider not only a single communication channel but the multihop cascade
of several, we realize that not only may we have the types of errors mentioned so
far (packet bit errors), but there may be others. These problems might arise at an
intermediate router and are the types of problems we brought up when discussing
IP: packet reordering, packet duplication, and packet erasures (drops). An error-
correcting protocol designed for use over a multihop communications channel
(such as IP) must cope with all of these problems. Let us now explore the protocol
mechanisms that can be brought to bear on them. After we discuss these in the
abstract, we shall explore how they are used by TCP in the Internet.

A straightforward method of dealing with packet drops (and bit errors) is to
resend the packet until it is received properly. This requires a way to determine (1)
whether the receiver has received the packet and (2) whether the packet it received
was the same one the sender sent. The method for a receiver to signal to a sender
that it has received a packet is called an acknowledgment, or ACK. In its most basic
form, the sender sends a packet and awaits an ACK. When the receiver receives
the packet, it sends the ACK. When the sender receives the ACK, it sends another
packet, and the process continues. Interesting questions to ask here are (1) How
long should the sender wait for an ACK? (2) What if the ACK is lost? (3) What if
the packet was received but had errors in it?

As we shall see, the first question turns out to be deep. Deciding how long to
wait relates to how long the sender should expect to wait for an ACK. Determin-
ing this may be difficult; we postpone the discussion of techniques for it until we
discuss TCP in detail later (see Chapter 14). The answer to question 2 is easier:
if an ACK is dropped, the sender cannot readily distinguish this case from the
case in which the original packet is dropped, so it simply sends the packet again.
Of course, the receiver may receive two or more copies in that case, so it must be
prepared to handle that situation (see the next paragraph). As for the third ques-
tion, we can appeal to the codes mentioned in Section 12.1. It is generally much
easier to use codes to detect errors in a large packet (with high probability) using
only a few bits than it is to correct them. Simpler codes are typically not capable
of correcting errors but are capable of detecting them. That is why checksums and
CRCs are so popular. In order to detect errors in a packet, then, we use a form of
checksum. When a receiver receives a packet containing an error, it refrains from
sending an ACK. Eventually, the sender resends the packet, which ideally arrives
undamaged.

Even with the simple scenario presented so far, there is the possibility that
the receiver might receive duplicate copies of the packet being transferred. This
problem is addressed using a sequence number. Basically, every unique packet gets
a new sequence number when it is sent at the source, and this sequence number is
carried along in the packet itself. The receiver can use this number to determine
whether it has already seen the packet and if so, discard it.

The protocol described so far is reliable but not very efficient. Consider what
happens when the time to deliver even a small packet from sender to receiver (the

ptg999

 Section 12.1 Introduction 581

delay or latency) is large (e.g., a second or two, which is not unusual for satellite
links) and there are several packets to send. The sender is able to inject a single
packet into the communications path but then must stop until it hears the ACK.
This protocol is therefore called “stop and wait.” Its throughput performance (data
sent on the network per unit time) is proportional to M/R where M is the packet
size and R is the round-trip time (RTT), assuming no packets are lost or irrepara-
bly damaged in transit. For a fixed-size packet, as R goes up, the throughput goes
down. If packets are lost or damaged, the situation is even worse: the “goodput”
(useful amount of data transferred per unit time) can be considerably less than the
throughput.

For a network that doesn’t damage or drop many packets, the cause for low
throughput is usually that the network is not being kept busy. The situation is
similar to using an assembly line where new work cannot enter the line until a
complete product emerges. Most of the line goes idle. If we take this comparison
one step further, it seems obvious that we would do better if we could have more
than one work unit in the line at a time. It is the same for network communica-
tion—if we could have more than one packet in the network, we would keep it
“more busy,” leading to higher throughput.

Allowing more than one packet to be in the network at a time complicates
matters considerably. Now the sender must decide not only when to inject a packet
into the network, but also how many. It also must figure out how to keep the
timers when waiting for ACKs, and it must keep a copy of each packet not yet
acknowledged in case retransmissions are necessary. The receiver needs to have
a more sophisticated ACK mechanism: one that can distinguish which packets
have been received and which have not. The receiver may need a more sophisti-
cated buffering (packet storage) mechanism—one that allows it to hold “out-of-
sequence” packets (those packets that have arrived earlier than those expected
because of loss or reordering), unless it simply wants to throw away such pack-
ets, which is very inefficient. There are other issues that may not be so obvious.
What if the receiver is slower than the sender? If the sender simply injects many
packets at a very high rate, the receiver might just drop them because of process-
ing or memory limitations. The same question can be asked about the routers in
the middle. What if the network infrastructure cannot handle the rate of data the
sender and receiver wish to use?

12.1.2 Windows of Packets and Sliding Windows

To handle all of these problems, we begin with the assumption that each unique
packet has a sequence number, as described earlier. We define a window of packets
as the collection of packets (or their sequence numbers) that have been injected by
the sender but not yet completely acknowledged (i.e., the sender has not received
an ACK for them). We refer to the window size as the number of packets in the
window. The term window comes from the idea that if you lined up all the packets
sent during a communication session in a long row but had only a small aperture

ptg999

582 TCP: The Transmission Control Protocol (Preliminaries)

through which to view them, you would see only a subset of them—like peering
through a window. The sender’s window (and the line of other packets) can be
graphically depicted as shown in Figure 12-1.

Figure 12-1 The sender’s window, showing which packets are eligible to be sent (or have already
been sent), which are not yet eligible, and which have already been sent and acknowl-
edged. In this example, the window size is fixed at three packets.

This figure shows the current window of three packets, for a total window
size of 3. Packet number 3 has already been sent and acknowledged, so the copy
of it that the sender was keeping can now be released. Packet 7 is ready at the
sender but not yet able to be sent because it is not yet “in” the window. If we now
imagine that data starts to flow from the sender to the receiver and ACKs start to
flow in the reverse direction, the sender might next receive an ACK for packet 4.
When this happens, the window “slides” to the right by one packet, meaning that
the copy of packet 4 can be released and packet 7 can be sent. This movement of
the window gives rise to another name for this type of protocol, a sliding window
protocol.

The sliding window approach can be used to combat many of the problems
described so far. Typically, this window structure is kept at both the sender and
the receiver. At the sender, it keeps track of what packets can be released, what
packets are awaiting ACKs, and what packets cannot yet be sent. At the receiver, it
keeps track of what packets have already been received and acknowledged, what
packets are expected (and how much memory has been allocated to hold them),
and which packets, even if received, will not be kept because of limited memory.
Although the window structure is convenient for keeping track of data as it flows
between sender and receiver, it does not provide guidance as to how large the
window should be, or what happens if the receiver or network cannot handle the
sender’s data rate. We shall now see how these are related.

ptg999

 Section 12.1 Introduction 583

12.1.3 Variable Windows: Flow Control and Congestion Control

To handle the problem that arises when a receiver is too slow relative to a sender,
we introduce a way to force the sender to slow down when the receiver cannot
keep up. This is called flow control and is usually handled in one of two ways. One
way, called rate-based flow control, gives the sender a certain data rate allocation
and ensures that data is never allowed to be sent at a rate that exceeds the alloca-
tion. This type of flow control is most appropriate for streaming applications and
can be used with broadcast and multicast delivery (see Chapter 9).

The other predominant form of flow control is called window-based flow con-
trol and is the most popular approach when sliding windows are being used. In
this approach, the window size is not fixed but is instead allowed to vary over
time. To achieve flow control using this technique, there must be a method for the
receiver to signal the sender how large a window to use. This is typically called a
window advertisement, or simply a window update. This value is used by the sender
(i.e., the receiver of the window advertisement) to adjust its window size. Logi-
cally, a window update is separate from the ACKs we discussed previously, but
in practice the window update and ACK are carried in a single packet, meaning
that the sender tends to adjust the size of its window at the same time it slides it
to the right.

If we consider the effect of changing the window size at the sender, it becomes
clear how this achieves flow control. The sender is allowed to inject W packets
into the network before it hears an ACK for any of them. If the sender and receiver
are sufficiently fast, and the network loses no packets and has an infinite capac-
ity, this means that the transfer rate is proportional to (SW/R) bits/s, where W is
the window size, S is the packet size in bits, and R is the RTT. When the window
advertisement from the receiver clamps the value of W at the sender, the sender’s
overall rate can be limited so as to not overwhelm the receiver. This approach
works fine for protecting the receiver, but what about the network in between? We
may have routers with limited memory between the sender and the receiver that
have to contend with slow network links. When this happens, it is possible for the
sender’s rate to exceed a router’s ability to keep up, leading to packet loss. This is
addressed with a special form of flow control called congestion control.

Congestion control involves the sender slowing down so as to not overwhelm
the network between itself and the receiver. Recall that in our discussion of flow
control, we used a window advertisement to signal the sender to slow down for the
receiver. This is called explicit signaling, because there is a protocol field specifi-
cally used to inform the sender about what is happening. Another option might be
for the sender to guess that it needs to slow down. Such an approach would involve
implicit signaling—that is, it would involve deciding to slow down based on some
other evidence.

The problem of congestion control in datagram-style networks, and more gen-
erally queuing theory to which it is closely related, has remained a major research
topic for years, and it is unlikely to ever be solved completely for all circumstances.
It is also not practical to discuss all the options and methods of performing flow

ptg999

584 TCP: The Transmission Control Protocol (Preliminaries)

control here. The interested reader is referred to [J90], [K97], and [K75]. In Chapter
16 we will explore the particular congestion control technique used with TCP in
more detail, along with a number of variants that have arisen over the years.

12.1.4 Setting the Retransmission Timeout

One of the most important performance issues the designer of a retransmission-
based reliable protocol faces is how long to wait before concluding that a packet
has been lost and should be resent. Stated another way, What should the retrans-
mission timeout be? Intuitively, the amount of time the sender should wait before
resending a packet is about the sum of the following times: the time to send the
packet, the time for the receiver to process it and send an ACK, the time for the
ACK to travel back to the sender, and the time for the sender to process the ACK.
Unfortunately, in practice, none of these times are known with certainty. To make
matters worse, any or all of them vary over time as additional load is added to or
removed from the end hosts or routers.

Because it is not practical for the user to tell the protocol implementation what
the values of all the times are (or to keep them up-to-date) for all circumstances, a
better strategy is to have the protocol implementation try to estimate them. This is
called round-trip-time estimation and is a statistical process. Basically, the true RTT
is likely to be close to the sample mean of a collection of samples of RTTs. Note that
this average naturally changes over time (it is not stationary), as the paths taken
through the network may change.

Once some estimate of the RTT is made, the question of setting the actual
timeout value, used to trigger retransmissions, remains. If we recall the defini-
tion of a mean, it can never be the extreme value of a set of samples (unless they
are all the same). So, it would not be sensible to set the retransmission timer to be
exactly equal to the mean estimator, as it is likely that many actual RTTs will be
larger, thereby inducing unwanted retransmissions. Clearly, the timeout should
be set to something larger than the mean, but exactly what this relationship is (or
even if the mean should be directly used) is not yet clear. Setting the timeout too
large is also undesirable, as this leads back to letting the network go idle, reducing
throughput. We shall defer further exploration of this topic to Chapter 14, where
we explore how TCP, in particular, approaches this problem.

12.2 Introduction to TCP

Given the background we now have regarding the issues affecting reliable deliv-
ery in general, let us see how they play out in TCP and what type of service it
provides to Internet applications. We also look at the fields in the TCP header,
noticing how many of the concepts we have seen so far (e.g., ACKs, window adver-
tisements) are captured in the header description. In the chapters that follow, we
examine all of these header fields in more detail.

ptg999

Section 12.2 Introduction to TCP 585

Our description of TCP starts in this chapter and continues in the next five
chapters. Chapter 13 describes how a TCP connection is established and termi-
nated. Chapter 14 details how TCP estimates the per-connection RTT and how
the retransmission timeout is set based on this estimate. Chapter 15 looks at the
normal transfer of data, starting with “interactive” applications (such as chat). It
then covers window management and flow control, which apply to both interac-
tive and “bulk” data flow applications (such as file transfer), along with TCP’s
urgent mechanism, which allows a sender to mark certain data in the data stream
as special. Chapter 16 takes a look at congestion control algorithms in TCP that
help to reduce packet loss when the network is very busy. It also discusses some
modifications that have been proposed to increase throughput on fast networks
or improve resiliency on lossy (e.g., wireless) networks. Finally, Chapter 17 shows
how TCP keeps connections active even when no data is flowing.

The original specification for TCP is [RFC0793], although some errors in that RFC
are corrected in the Host Requirements RFC, [RFC1122]. Since then, specifications
for TCP have been revised and extended to include clarified and improved conges-
tion control behavior [RFC5681][RFC3782][RFC3517][RFC3390][RFC3168], retrans-
mission timeouts [RFC6298][RFC5682][RFC4015], operation with NATs [RFC5382],
acknowledgment behavior [RFC2883], security [RFC6056][RFC5927][RFC5926], con-
nection management [RFC5482], and urgent mechanism implementation guidelines
[RFC6093]. There have also been a rich variety of experimental modifications cov-
ering retransmission behaviors [RFC5827][RFC3708], congestion detection and con-
trol [RFC5690][RFC5562][RFC4782][RFC3649][RFC2861], and other features. Finally,
there is an effort to explore how TCP might take advantage of multiple simultaneous
network-layer paths [RFC6182].

12.2.1 The TCP Service Model

Even though TCP and UDP use the same network layer (IPv4 or IPv6), TCP pro-
vides a totally different service to the application layer from what UDP does. TCP
provides a connection-oriented, reliable, byte stream service. The term connection-
oriented means that the two applications using TCP must establish a TCP connec-
tion by contacting each other before they can exchange data. The typical analogy
is dialing a telephone number, waiting for the other party to answer the phone
and saying “Hello,” and then saying “Who’s calling?” There are exactly two end-
points communicating with each other on a TCP connection; concepts such as
broadcasting and multicasting (see Chapter 9) are not applicable to TCP.

TCP provides a byte stream abstraction to applications that use it. The conse-
quence of this design decision is that no record markers or message boundaries
are automatically inserted by TCP (see Chapter 1). A record marker corresponds
to an indication of an application’s write extent. If the application on one end
writes 10 bytes, followed by a write of 20 bytes, followed by a write of 50 bytes, the
application at the other end of the connection cannot tell what size the individual
writes were. For example, the other end may read the 80 bytes in four reads of 20
bytes at a time or in some other way. One end puts a stream of bytes into TCP, and

ptg999

586 TCP: The Transmission Control Protocol (Preliminaries)

the identical stream of bytes appears at the other end. Each endpoint individually
chooses its read and write sizes.

TCP does not interpret the contents of the bytes in the byte stream at all. It has
no idea if the data bytes being exchanged are binary data, ASCII characters, EBCDIC
characters, or something else. The interpretation of this byte stream is up to the
applications on each end of the connection. TCP does, however, support the urgent
mechanism mentioned before, although it is no longer recommended for use.

12.2.2 Reliability in TCP

TCP provides reliability using specific variations on the techniques just described.
Because it provides a byte stream interface, TCP must convert a sending applica-
tion’s stream of bytes into a set of packets that IP can carry. This is called packetiza-
tion. These packets contain sequence numbers, which in TCP actually represent
the byte offsets of the first byte in each packet in the overall data stream rather
than packet numbers. This allows packets to be of variable size during a transfer
and may also allow them to be combined, called repacketization. The application
data is broken into what TCP considers the best-size chunks to send, typically
fitting each segment into a single IP-layer datagram that will not be fragmented.
This is different from UDP, where each write by the application usually gener-
ates a UDP datagram of that size (plus headers). The chunk passed by TCP to IP
is called a segment (see Figure 12-2). In Chapter 15 we shall see how TCP decides
what size a segment should be.

TCP maintains a mandatory checksum on its header, any associated appli-
cation data, and fields from the IP header. This is an end-to-end pseudo-header
checksum whose purpose is to detect any bit errors introduced in transit. If a
segment arrives with an invalid checksum, TCP discards it without sending any
acknowledgment for the discarded packet. The receiving TCP might acknowledge
a previous (already acknowledged) segment, however, to help the sender with its
congestion control computations (see Chapter 16). The TCP checksum uses the
same mathematical function as is used by other Internet protocols (UDP, ICMP,
etc.). For large data transfers, there is some concern that this checksum is not
really strong enough [SP00], so careful applications should apply their own error
protection methods (e.g., stronger checksums or CRCs) or use a middleware layer
to achieve the same result (e.g., see [RFC5044]).

When TCP sends a group of segments, it normally sets a single retransmission
timer, waiting for the other end to acknowledge reception. TCP does not set a dif-
ferent retransmission timer for every segment. Rather, it sets a timer when it sends
a window of data and updates the timeout as ACKs arrive. If an acknowledgment
is not received in time, a segment is retransmitted. In Chapter 14 we will look at
TCP’s adaptive timeout and retransmission strategy in more detail.

When TCP receives data from the other end of the connection, it sends an
acknowledgment. This acknowledgment may not be sent immediately but is nor-
mally delayed a fraction of a second. The ACKs used by TCP are cumulative in the
sense that an ACK indicating byte number N implies that all bytes up to number N

ptg999

Section 12.3 TCP Header and Encapsulation 587

(but not including it) have already been received successfully. This provides some
robustness against ACK loss—if an ACK is lost, it is very likely that a subsequent
ACK is sufficient to ACK the previous segments.

TCP provides a full-duplex service to the application layer. This means that
data can be flowing in each direction, independent of the other direction. There-
fore, each end of a connection must maintain a sequence number of the data flow-
ing in each direction. Once a connection is established, every TCP segment that
contains data flowing in one direction of the connection also includes an ACK for
segments flowing in the opposite direction. Each segment also contains a win-
dow advertisement for implementing flow control in the opposite direction. Thus,
when a TCP segment arrives on a connection, the window may slide forward,
the window size may change, and new data may have arrived. As we shall see in
Chapter 13, a fully active TCP connection is bidirectional and symmetric; data can
flow equally well in either direction.

Using sequence numbers, a receiving TCP discards duplicate segments and
reorders segments that arrive out of order. Recall that any of these anomalies
can happen because TCP uses IP to deliver its segments, and IP does not provide
duplicate elimination or guarantee correct ordering. Because it is a byte stream
protocol, however, TCP never delivers data to the receiving application out of order.
Thus, the receiving TCP may be forced to hold on to data with larger sequence
numbers before giving it to an application until a missing lower-sequence-num-
bered segment (a “hole”) is filled in.

We will now begin to look at some of the details of TCP. In this chapter we
will only introduce the encapsulation and header structure for TCP. Other details
appear in the next five chapters. TCP can be used with IPv4 or IPv6, and the
pseudo-header checksum it uses (similar to UDP’s) is mandatory for use with
either IPv4 or IPv6.

12.3 TCP Header and Encapsulation

TCP is encapsulated in IP datagrams as shown in Figure 12-2.

Figure 12-2 The TCP header appears immediately following the IP header or last IPv6 extension
header and is often 20 bytes long (with no TCP options). With options, the TCP header
can be as large as 60 bytes. Common options include Maximum Segment Size, Time-
stamps, Window Scaling, and Selective ACKs.

ptg999

588 TCP: The Transmission Control Protocol (Preliminaries)

The header itself is considerably more complicated than the header we saw
for UDP in Chapter 10. This is not very surprising, as TCP is a significantly more
complicated protocol that must keep each end of the connection informed (syn-
chronized) about the current state. It is shown in Figure 12-3.

Figure 12-3 The TCP header. Its normal size is 20 bytes, unless options are present. The Header
Length field gives the size of the header in 32-bit words (minimum value is 5). The
shaded fields (Acknowledgment Number, Window Size, plus ECE and ACK bits) refer to the
data flowing in the opposite direction relative to the sender of this segment.

Each TCP header contains the source and destination port number. These
two values, along with the source and destination IP addresses in the IP header,
uniquely identify each connection. The combination of an IP address and a port
number is sometimes called an endpoint or socket in the TCP literature. The latter
term appeared in [RFC0793] and was ultimately adopted as the name of the Berke-
ley-derived programming interface for network communications (now frequently
called “Berkeley sockets”). It is a pair of sockets or endpoints (the 4-tuple con-
sisting of the client IP address, client port number, server IP address, and server
port number) that uniquely identifies each TCP connection. This fact will become
important when we look at how a TCP server can communicate with multiple
clients (see Chapter 13).

The Sequence Number field identifies the byte in the stream of data from the
sending TCP to the receiving TCP that the first byte of data in the containing
segment represents. If we consider the stream of bytes flowing in one direction
between two applications, TCP numbers each byte with a sequence number. This
sequence number is a 32-bit unsigned number that wraps back around to 0 after
reaching (232) − 1. Because every byte exchanged is numbered, the Acknowledgment
Number field (also called the ACK Number or ACK field for short) contains the next
sequence number that the sender of the acknowledgment expects to receive. This
is therefore the sequence number of the last successfully received byte of data plus
1. This field is valid only if the ACK bit field (described later in this section) is on,

ptg999

Section 12.3 TCP Header and Encapsulation 589

which it usually is for all but initial and closing segments. Sending an ACK costs
nothing more than sending any other TCP segment because the 32-bit ACK Num-
ber field is always part of the header, as is the ACK bit field.

When a new connection is being established, the SYN bit field is turned on in
the first segment sent from client to server. Such segments are called SYN segments,
or simply SYNs. The Sequence Number field then contains the first sequence number
to be used on that direction of the connection for subsequent sequence numbers
and in returning ACK numbers (recall that connections are all bidirectional). Note
that this number is not 0 or 1 but instead is another number, often randomly cho-
sen, called the initial sequence number (ISN). The reason for the ISN not being 0 or 1
is a security measure and will be discussed in Chapter 13. The sequence number
of the first byte of data sent on this direction of the connection is the ISN plus 1
because the SYN bit field consumes one sequence number. As we shall see later,
consuming a sequence number also implies reliable delivery using retransmission.
Thus, SYNs and application bytes (and FINs, which we will see later) are reliably
delivered. ACKs, which do not consume sequence numbers, are not.

TCP can be described as “a sliding window protocol with cumulative positive
acknowledgments.” The ACK Number field is constructed to indicate the largest
byte received in order at the receiver (plus 1). For example, if bytes 1–1024 are
received OK, and the next segment contains bytes 2049–3072, the receiver cannot
use the regular ACK Number field to signal the sender that it received this new
segment. Modern TCPs, however, have a selective acknowledgment (SACK) option
that allows the receiver to indicate to the sender out-of-order data it has received
correctly. When paired with a TCP sender capable of selective repeat, a significant
performance benefit may be realized [FF96]. In Chapter 14 we will see how TCP
uses duplicate acknowledgments (multiple segments with the same ACK field) to
help with its congestion control and error control procedures.

The Header Length field gives the length of the header in 32-bit words. This is
required because the length of the Options field is variable. With a 4-bit field, TCP
is limited to a 60-byte header. Without options, however, the size is 20 bytes.

Currently eight bit fields are defined for the TCP header, although some older
implementations understand only the last six of them.1 One or more of them can
be turned on at the same time. We briefly mention their use here and discuss each
of them in more detail in later chapters.

 1. CWR—Congestion Window Reduced (the sender reduced its sending rate);
see Chapter 16.

 2. ECE—ECN Echo (the sender received an earlier congestion notification);
see Chapter 16.

 3. URG—Urgent (the Urgent Pointer field is valid—rarely used); see Chapter 15.

1. Note that [RFC3540], an experimental RFC, also defines the least significant of the Resv bits as a
nonce sum (NS). See Section 16.12.

ptg999

590 TCP: The Transmission Control Protocol (Preliminaries)

 4. ACK—Acknowledgment (the Acknowledgment Number field is valid—
always on after a connection is established); see Chapters 13 and 15.

 5. PSH—Push (the receiver should pass this data to the application as soon as
possible—not reliably implemented or used); see Chapter 15.

 6. RST—Reset the connection (connection abort, usually because of an error);
see Chapter 13.

 7. SYN—Synchronize sequence numbers to initiate a connection; see Chapter 13.

 8. FIN—The sender of the segment is finished sending data to its peer; see
Chapter 13.

TCP’s flow control is provided by each end advertising a window size using
the Window Size field. This is the number of bytes, starting with the one specified
by the ACK number, that the receiver is willing to accept. This is a 16-bit field,
limiting the window to 65,535 bytes, and thereby limiting TCP’s throughput per-
formance. In Chapter 15 we will look at the Window Scale option that allows this
value to be scaled, providing much larger windows and improved performance
for high-speed and long-delay networks.

The TCP Checksum field covers the TCP header and data and some fields in
the IP header, using a pseudo-header computation similar to the one used with
ICMPv6 and UDP that we discussed in Chapters 8 and 10. It is mandatory for this
field to be calculated and stored by the sender, and then verified by the receiver.
The TCP checksum is calculated with the same algorithm as the IP, ICMP, and
UDP (“Internet”) checksums.

The Urgent Pointer field is valid only if the URG bit field is set. This “pointer” is
a positive offset that must be added to the Sequence Number field of the segment to
yield the sequence number of the last byte of urgent data. TCP’s urgent mechanism
is a way for the sender to provide specially marked data to the other end.

The most common Option field is the Maximum Segment Size option, called
the MSS. Each end of a connection normally specifies this option on the first seg-
ment it sends (the ones with the SYN bit field set to establish the connection). The
MSS option specifies the maximum-size segment that the sender of the option is
willing to receive in the reverse direction. We describe the MSS option in more
detail in Chapter 13 and some of the other TCP options in Chapters 14 and 15. Other
common options we investigate include SACK, Timestamp, and Window Scale.

In Figure 12-2 we note that the data portion of the TCP segment is optional.
We will see in Chapter 13 that when a connection is established, and when a con-
nection is terminated, segments are exchanged that contain only the TCP header
(with or without options) but no data. A header without any data is also used
to acknowledge received data, if there is no data to be transmitted in that direc-
tion (called a pure ACK), and to notify the communication peer of a change in the
window size (called a window update). There are also some cases resulting from
timeouts when a segment can be sent without any data.

ptg999

 Section 12.5 References 591

12.4 Summary

The problem of providing reliable communications over lossy communication
channels has been studied for years. The two primary methods for dealing with
errors include error-correcting codes and data retransmission. The protocols using
retransmissions must also handle data loss, usually by setting a timer, and must
also arrange some way for the receiver to signal the sender what it has received.
Deciding how long to wait for an ACK can be tricky, as the appropriate time may
change as network routing or load on the end systems varies. Modern protocols
estimate the round-trip time and set the retransmission timer based on some
function of these measurements.

Except for setting the retransmission timer, retransmission protocols are sim-
ple when only one packet may be in the network at one time, but they perform
poorly for networks where the delay is high. To be more efficient, multiple packets
must be injected into the network before an ACK is received. This approach is more
efficient but also more complex. A typical approach to managing the complexity is
to use sliding windows, whereby packets are marked with sequence numbers, and
the window size bounds the number of such packets. When the window size var-
ies based on either feedback from the receiver or other signals (such as dropped
packets), both flow control and congestion control can be achieved.

TCP provides a reliable, connection-oriented, byte stream, transport-layer ser-
vice built using many of these techniques. We looked briefly at all of the fields
in the TCP header, noting that most of them are directly related to these abstract
concepts in reliable delivery. We will examine them in detail in the chapters that
follow. TCP packetizes the application data into segments, sets a timeout anytime
it sends data, acknowledges data received by the other end, reorders out-of-order
data, discards duplicate data, provides end-to-end flow control, and calculates and
verifies a mandatory end-to-end checksum. It is the most widely used protocol on
the Internet. It is used by most of the popular applications, such as HTTP, SSH/
TLS, NetBIOS (NBT—NetBIOS over TCP), Telnet, FTP, and electronic mail (SMTP).
Many distributed file-sharing applications (e.g., BitTorrent, Shareaza) also use TCP.

12.5 References

[FF96] K. Fall and S. Floyd, “Simulation-Based Comparisons of Tahoe, Reno and
SACK TCP,” ACM Computer Communications Review, July 1996.

[J90] R. Jain, “Congestion Control in Computer Networks: Issues and Trends,”
IEEE Network Magazine, May 1990.

[K75] L. Kleinrock, Queuing Systems, Volume 1: Theory (Wiley-Interscience, 1975).

[K97] S. Keshav, An Engineering Approach to Computer Networking (Addison-
Wesley, 1997). (Note: A second edition is being developed.)

ptg999

592 TCP: The Transmission Control Protocol (Preliminaries)

[RFC0793] J. Postel, “Transmission Control Protocol,” Internet RFC 0793/STD
0007, Sept. 1981.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

[RFC2861] M. Handley, J. Padhye, and S. Floyd, “TCP Congestion Window Vali-
dation,” Internet RFC 2861 (experimental), June 2000.

[RFC2883] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to
the Selective Acknowledgement (SACK) Option for TCP,” Internet RFC 2883, July
2000.

[RFC3168] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” Internet RFC 3168, Sept. 2001.

[RFC3390] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial Win-
dow,” Internet RFC 3390, Oct. 2002.

[RFC3517] E. Blanton, M. Allman, K. Fall, and L. Wang, “A Conservative Selec-
tive Acknowledgment (SACK)-Based Loss Recovery Algorithm for TCP,” Internet
RFC 3517, Apr. 2003.

[RFC3540] N. Spring, D. Wetherall, and D. Ely, “Robust Explicit Congestion Noti-
fication (ECN) Signaling with Nonces,” Internet RFC 3540 (experimental), June
2003.

[RFC3649] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” Internet
RFC 3649 (experimental), Dec. 2003.

[RFC3708] E. Blanton and M. Allman, “Using TCP Duplicate Selective Acknowl-
edgement (DSACKs) and Stream Control Transmission Protocol (SCTP)
Duplicate Transmission Sequence Numbers (TSNs) to Detect Spurious Retrans-
missions,” Internet RFC 3708 (experimental), Feb. 2004.

[RFC3782] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to
TCP’s Fast Recovery Algorithm,” Internet RFC 3782, Apr. 2004.

[RFC4015] R. Ludwig and A. Gurtov, “The Eifel Response Algorithm for TCP,”
Internet RFC 4015, Feb. 2005.

[RFC4782] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, “Quick-Start for TCP
and IP,” Internet RFC 4782 (experimental), Jan. 2007.

[RFC5044] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier, “Marker PDU
Aligned Framing for TCP Specification,” Internet RFC 5044, Oct. 2007.

[RFC5382] S. Guha, ed., K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh, “NAT
Behavioral Requirements for TCP,” Internet RFC 5382/BCP 0142, Oct. 2008.

[RFC5482] L. Eggert and F. Gont, “TCP User Timeout Option,” Internet RFC 5482,
Mar. 2009.

ptg999

 Section 12.5 References 593

[RFC5562] A. Kuzmanovic, A. Mondal, S. Floyd, and K. Ramakrishnan, “Adding
Explicit Congestion Notification (ECN) Capability to TCP’s SYN/ACK Packets,”
Internet RFC 5562 (experimental), June 2009.

[RFC5681] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”
Internet RFC 5681, Sept. 2009.

[RFC5682] P. Sarolahti, M. Kojo, K. Yamamoto, and M. Hata, “Forward RTO-
Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Time-
outs with TCP,” Internet RFC 5682, Sept. 2009.

[RFC5690] S. Floyd, A. Arcia, D. Ros, and J. Iyengar, “Adding Acknowledgement
Congestion Control to TCP,” Internet RFC 5690 (informational), Feb. 2010.

[RFC5827] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, and P. Hurtig,
“Early Retransmit for TCP and Stream Control Transmission Protocol (SCTP),”
Internet RFC 5827 (experimental), May 2010.

[RFC5926] G. Lebovitz and E. Rescorla, “Cryptographic Algorithms for the TCP
Authentication Option (TCP-AO),” Internet RFC 5926, June 2010.

[RFC5927] F. Gont, “ICMP Attacks against TCP,” Internet RFC 5927 (experimen-
tal), July 2010.

[RFC6056] M. Larsen and F. Gont, “Recommendations for Transport-Protocol
Port Randomization,” Internet RFC 6056/BCP 0156, Jan. 2011.

[RFC6093] F. Gont and A. Yourtchenko, “On the Implementation of the TCP
Urgent Mechanism,” Internet RFC 6093, Jan. 2011.

[RFC6182] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” Internet RFC 6182 (informational),
Mar. 2011.

[RFC6298] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s
Retransmission Timer,” Internet RFC 6298, June 2011.

[S48] C. Shannon, “A Mathematical Theory of Communication,” Bell System Tech-
nical Journal, July/Oct. 1948.

[SP00] J. Stone and C. Partridge, “When the CRC and TCP Checksum Disagree,”
Proc. ACM SIGCOMM, Aug./Sept. 2000.

ptg999

This page intentionally left blank

ptg999

595

13

TCP Connection Management

13.1 Introduction

TCP is a unicast connection-oriented protocol. Before either end can send data to the
other, a connection must be established between them. In this chapter, we take a
detailed look at what a TCP connection is, how it is established, and how it is ter-
minated. Recall that TCP’s service model is a byte stream. TCP detects and repairs
essentially all the data transfer problems that may be introduced by packet loss,
duplication, or errors at the IP layer (or below).

Because of its management of connection state (information about the connec-
tion kept by both endpoints), TCP is a considerably more complicated protocol
than UDP (see Chapter 10). UDP is a connectionless protocol that involves no con-
nection establishment or termination. One of the major differences we shall see
between the two is the amount of detail required to handle the various TCP states
properly: when connections are created, terminated normally, and reset without
warning. In other chapters we will look at what happens once the connection is
established and data is transferred.

During connection establishment, several options can be exchanged between
the two endpoints regarding the parameters of the connection. Some options are
allowed to be sent only when the connection is established, and others can be sent
later. Recall from Chapter 12 that the TCP header has a limited space for holding
options (40 bytes).

13.2 TCP Connection Establishment and Termination

A TCP connection is defined to be a 4-tuple consisting of two IP addresses and two
port numbers. More precisely, it is a pair of endpoints or sockets where each end-
point is identified by an (IP address, port number) pair.

ptg999

596 TCP Connection Management

A connection typically goes through three phases: setup, data transfer (called
established), and teardown (closing). As we will see, some of the difficulty in creat-
ing a robust TCP implementation is handling all of the transitions between and
among these phases correctly. A typical TCP connection establishment and close
(without any data transfer) is shown in Figure 13-1.

Figure 13-1 A normal TCP connection establishment and termination. Usually, the client initiates a three-way
handshake to exchange initial sequence numbers carried on SYN segments for the client and
server (ISN(c) and ISN(s), respectively). The connection terminates after each side has sent a FIN
and received an acknowledgment for it.

The figure shows a timeline of what happens during connection establish-
ment. To establish a TCP connection, the following events usually take place:

 1. The active opener (normally called the client) sends a SYN segment (i.e., a
TCP/IP packet with the SYN bit field turned on in the TCP header) specify-
ing the port number of the peer to which it wants to connect and the client’s

ptg999

Section 13.2 TCP Connection Establishment and Termination 597

initial sequence number or ISN(c) (see Section 13.2.3). It typically sends one
or more options at this point (see Section 13.3). This is segment 1.

2. The server responds with its own SYN segment containing its initial
sequence number (ISN(s)). This is segment 2. The server also acknowledges
the client’s SYN by ACKing ISN(c) plus 1. A SYN consumes one sequence
number and is retransmitted if lost.

3. The client must acknowledge this SYN from the server by ACKing ISN(s)
plus 1. This is segment 3.

These three segments complete the connection establishment. This is often
called the three-way handshake. Its main purposes are to let each end of the connec-
tion know that a connection is starting and the special details that are carried as
options, and to exchange the ISNs.

The side that sends the first SYN is said to perform an active open. As men-
tioned, this is typically a client. The other side, which receives this SYN and sends
the next SYN, performs a passive open. It is most commonly called the server. (In
Section 13.2.2 we describe a supported but unusual simultaneous open when both
sides can do an active open at the same time and become both clients and servers.)

Note

TCP supports the capability of carrying application data on SYN segments. This
is rarely used, however, because the Berkeley sockets API does not support it.

Figure 13-1 also shows how a TCP connection is closed (also called cleared or
terminated). Either end can initiate a close operation, and simultaneous closes are
also supported but are rare. Traditionally, it was most common for the client to
initiate a close (as shown in Figure 13-1). However, other servers (e.g., Web servers)
initiate a close after they have completed a request. Usually a close operation starts
with an application indicating its desire to terminate its connection (e.g., using the
close() system call). The closing TCP initiates the close operation by sending a
FIN segment (i.e., a TCP segment with the FIN bit field set). The complete close
operation occurs after both sides have completed the close:

 1. The active closer sends a FIN segment specifying the current sequence num-
ber the receiver expects to see (K in Figure 13-1). The FIN also includes an
ACK for the last data sent in the other direction (labeled L in Figure 13-1).

 2. The passive closer responds by ACKing value K + 1 to indicate its success-
ful receipt of the active closer’s FIN. At this point, the application is noti-
fied that the other end of its connection has performed a close. Typically
this results in the application initiating its own close operation. The passive
closer then effectively becomes another active closer and sends its own FIN.
The sequence number is equal to L.

ptg999

598 TCP Connection Management

3. To complete the close, the final segment contains an ACK for the last FIN.
Note that if a FIN is lost, it is retransmitted until an ACK for it is received.

While it takes three segments to establish a connection, it takes four to termi-
nate one. It is also possible for the connection to be in a half-open state (see Section
13.6.3), although this is not common. This reason is that TCP’s data communica-
tions model is bidirectional, meaning it is possible to have only one of the two
directions operating. The half-close operation in TCP closes only a single direction
of the data flow. Two half-close operations together close the entire connection.
The rule is that either end can send a FIN when it is done sending data. When a
TCP receives a FIN, it must notify the application that the other end has termi-
nated that direction of data flow. The sending of a FIN is normally the result of
the application issuing a close operation, which typically causes both directions
to close.

The seven segments we have seen are baseline overheads for any TCP connec-
tion that is established and cleared “gracefully.” (There are more abrupt ways to
tear down a TCP connection using special reset segments, which we cover later.)
When a small amount of data needs to be exchanged, it is now apparent why some
applications prefer to use UDP because of its ability to send and receive data with-
out establishing connections. However, such applications are then faced with han-
dling their own error repair features, congestion management, and flow control.

13.2.1 TCP Half-Close

As we have mentioned, TCP supports a half-close operation. Few applications
require this capability, so it is not common. To use this feature, the API must pro-
vide a way for the application to say, essentially, “I am done sending data, so send
a FIN to the other end, but I still want to receive data from the other end, until it
sends me a FIN.” The Berkeley sockets API supports half-close, if the application
calls the shutdown() function instead of calling the more typical close() func-
tion. Most applications, however, terminate both directions of the connection by
calling close. Figure 13-2 shows an example of a half-close being used. We show
the client on the left side initiating the half-close, but either end can do this.

The first two segments are the same as for a regular close: a FIN by the initia-
tor, followed by an ACK of the FIN by the recipient. The operation then differs
from Figure 13-1, because the side that receives the half-close can still send data.
We show only one data segment, followed by an ACK, but any number of data
segments can be sent. (We talk more about the exchange of data segments and
acknowledgments in Chapter 15.) When the end that received the half-close is
done sending data, it closes its end of the connection, causing a FIN to be sent, and
this delivers an end-of-file indication to the application that initiated the half-close.
When this second FIN is acknowledged, the connection is completely closed.

ptg999

Section 13.2 TCP Connection Establishment and Termination 599

13.2.2 Simultaneous Open and Close

It is possible, although highly improbable unless specifically arranged, for two
applications to perform an active open to each other at the same time. Each end
must have transmitted a SYN before receiving a SYN from the other side; the
SYNs must pass each other on the network. This scenario also requires each end
to have an IP address and port number that are known to the other end, which is
rare (except for the firewall “hole-punching” techniques we saw in Chapter 7). If
this happens, it is called a simultaneous open.

For example, a simultaneous open occurs when an application on host A using
local port 7777 performs an active open to port 8888 on host B, while at the same
time an application on host B using local port 8888 performs an active open to
port 7777 on host A. This is not the same as connecting a client on host A to a
server on host B, while at the same time having a client on host B connect to a
conventional server on host A. In that case, both servers perform passive opens,
not active opens, and the clients assign themselves different ephemeral port num-
bers. This results in two distinct TCP connections. Figure 13-3 shows the segments
exchanged during a simultaneous open.

Figure 13-2 With the TCP half-close operation, one direction of the connection can terminate while the other
continues until it is closed. Few applications use this feature.

ptg999

600 TCP Connection Management

A simultaneous open requires the exchange of four segments, one more than
the normal three-way handshake. Also note that we do not call either end a cli-
ent or a server, because both ends act as client and server. A simultaneous close is
not very different. We said earlier that one side (often, but not always, the client)
performs the active close, causing the first FIN to be sent. In a simultaneous close,
both do. Figure 13-4 shows the segments exchanged during a simultaneous close.

Figure 13-3 Segments exchanged during simultaneous open. One additional segment is required compared
to the ordinary connection establishment procedure. The SYN bit field is on in each segment
until an ACK for it is received.

Figure 13-4 Segments exchanged during simultaneous close work like a conventional close, but the
segment ordering is interleaved.

ptg999

Section 13.2 TCP Connection Establishment and Termination 601

With a simultaneous close the same number of segments are exchanged as in
the normal close. The only real difference is that the segment sequence is inter-
leaved instead of sequential. Later we will see that simultaneous open and close
operations use particular states in the TCP implementation that are not commonly
exercised.

13.2.3 Initial Sequence Number (ISN)

When a connection is open, any segment with the appropriate two IP addresses
and port numbers is accepted as valid provided the sequence number is valid
(i.e., within the window) and the checksum is OK. This brings up the question of
whether it might be possible to have TCP segments being routed through the net-
work that could show up later and disrupt a connection. This concern is addressed
by careful selection of the ISN, which we now investigate.

Before each end sends its SYN to establish the connection, it chooses an ISN
for that connection. The ISN should change over time, so that each connection
has a different one. [RFC0793] specifies that the ISN should be viewed as a 32-bit
counter that increments by 1 every 4µs. The purpose of doing this is to arrange
for the sequence numbers for segments on one connection to not overlap with
sequence numbers on a another (new) identical connection. In particular, new
sequence numbers must not be allowed to overlap between different instantiations
(or incarnations) of the same connection.

The idea of different instantiations of the same connection becomes clear
when we recall that a TCP connection is identified by a pair of endpoints, creat-
ing a 4-tuple of two address/port pairs. If a connection had one of its segments
delayed for a long period of time and closed, but then opened again with the same
4-tuple, it is conceivable that the delayed segment could reenter the new connec-
tion’s data stream as valid data. This would be most troublesome. By taking steps
to avoid overlap in sequence numbers between connection instantiations, we can
try to minimize this risk. It does suggest, however, that an application with a very
great need for data integrity should employ its own CRCs or checksums at the
application layer to ensure that its own data has been transferred without error.
This is generally good practice in any case, and it is commonly done for large files.

As we shall see, knowing the connection 4-tuple as well as the currently active
window of sequence numbers is all that is required to form a TCP segment that is
considered valid to a communicating TCP endpoint. This represents a form of vul-
nerability for TCP: anyone can forge a TCP segment and, if the sequence numbers,
IP addresses, and port numbers are chosen appropriately, can interrupt a TCP
connection [RFC5961]. One way of repelling this is to make the initial sequence
number (or ephemeral port number [RFC6056]) relatively hard to guess. Another
is encryption (see Chapter 18).

In modern systems, the ISN is typically selected in a semirandom way. An
interesting discussion of the subtleties of doing this properly is contained in CERT
Advisory CA-2001-09 [CERTISN]. Linux goes through a fairly elaborate process to

ptg999

602 TCP Connection Management

select its ISNs. It uses a clock-based scheme but starts the clock at a random offset
for each connection. The random offset is chosen as a cryptographically hashed
function on the connection identifier (4-tuple). A secret input to the hash func-
tion changes every 5 minutes. Of the 32 bits in the ISN, the top-most 8 bits are a
sequence number of the secret, and the remaining bits are generated by the hash.
This produces an ISN that is difficult to guess, but also one that increases over
time. Windows reportedly uses a similar scheme based on RC4 [S96].

13.2.4 Example

Now that we have a basic idea of how a TCP connection is established and cleared,
let us look at the packet-level details. To do so we make a TCP connection to a
nearby Web server running on the machine with IPv4 address 10.0.0.2. The cli-
ent is the Telnet application on Windows:

C:\> telnet 10.0.0.2 80
Welcome to Microsoft Telnet Client
Escape Character is 'CTRL+]'
... wait about 4.4 seconds ...
Microsoft Telnet> quit

The telnet command establishes a TCP connection with the host having IPv4
address 10.0.0.2 on the port corresponding to the http or Web service (port 80).
When the Telnet program connects to a port other than 23 (the well-known port
for the Telnet protocol [RFC0854]), it does not engage in the application protocol.
Instead, it merely copies bytes from its input to its TCP connection and vice versa.
When a Web server receives the incoming connection request, the first thing it does
is await a request for a Web page. In this case, we do not provide one, so the server
does not produce any data. This is ideal for us, because for now we are interested
only in the connection establishment and termination packet exchange. Figure 13-5
shows the Wireshark output for the segments generated by this command.

In the figure, we can see that the client begins with a SYN segment contain-
ing an ISN of 685506836 and window advertisement of 65535. This segment also
contains several options we discuss in Section 13.3. The second segment is both
a SYN from the server and an ACK for the client. The sequence number (server’s
ISN) is 1479690171 and the ACK number is 685506837, 1 more than the client’s ISN.
This indicates successful receipt of the client’s ISN. This segment also includes a
window advertisement indicating that the server is willing to accept up to 64,240
bytes. Completion of the three-way handshake takes place with segment 3, which
contains ACK number 1479690172. Remember that ACK numbers are cumulative
and always indicate the sequence number the sender of the ACK expects to see
next (not the one that it last received).

After a pause of about 4.4s, the Telnet application is instructed to close the
connection. This results in the client’s TCP sending the FIN in segment 4. The
sequence number of the FIN is 685506837, which is ACKed in segment 5 (with

ptg999

Section 13.2 TCP Connection Establishment and Termination 603

ACK number 685506838). Shortly thereafter the server sends its own FIN with
sequence number 1479690172. This segment also (redundantly) ACKs the client’s
FIN once again. Note that the PSH bit field is on. This has no real effect on the
closing of the connection but usually indicates that the server has no additional
data to send. The final segment ACKs the server’s FIN by including ACK number
1479690173.

Note

[RFC1025] calls a segment with the maximum number of features enabled (e.g.,
flags and options) a “Kamikaze” packet. Other colorful terms include “nastygram,”
“Christmas tree packet,” and “lamp test segment.”

One thing we can see in Figure 13-5 is that the SYN segments contain one or more
options. These take up additional space in the TCP header. For example, the length
of the first TCP header is 44 bytes, 24 bytes greater than the minimum size. TCP

Figure 13-5 A TCP connection between 192.168.35.130 and 10.0.0.2 is established and cleared without sending
any data. The PSH (Push) bit indicates that segment 6 is sending all data from its buffer (which
is none).

ptg999

604 TCP Connection Management

has several supported options, which we detail after we see what happens when a
connection cannot be established.

13.2.5 Timeout of Connection Establishment

There are several circumstances in which a connection cannot be established. One
obvious case is when the server host is down. To simulate this scenario, we issue
our telnet command to a nonexistent host in the same subnet. If we do this
without modifying the ARP table, the client exits with a “No route to host” error
message, generated because no ARP reply is ever returned for the ARP request
(see Chapter 4). If, however, we place an ARP entry for a nonexistent host in the
ARP table first, the ARP request is not sent, and the system immediately attempts
to contact the nonexistent host with TCP/IP. First, the commands:

Linux# arp -s 192.168.10.180 00:00:1a:1b:1c:1d
Linux% date; telnet 192.168.10.180 80; date
Tue June 7 21:16:34 PDT 2009
Trying 192.168.10.180...
telnet: connect to address 192.168.10.180: Connection timed out
Tue June 7 21:19:43 PDT 2009
Linux%

Here the MAC address 00:00:1a:1b:1c:1d was chosen simply as a MAC
address not being used on the LAN; it is of no special consequence. The timeout
occurs about 3.2 minutes after the initial command. Because there is no host to
respond, all of the segments generated are from the client. Listing 13-1 shows the
output using Wireshark in packet summary (text) mode.

Listing 13-1 Wireshark output for connection establishment that times out

No. Time Source Destination Protocol Info
 1 0.000000 192.168.10.144 192.168.10.180 TCP 32787 > http
 2 2.997928 192.168.10.144 192.168.10.180 TCP 32787 > http
 3 8.997962 192.168.10.144 192.168.10.180 TCP 32787 > http
 4 20.997942 192.168.10.144 192.168.10.180 TCP 32787 > http
 5 44.997936 192.168.10.144 192.168.10.180 TCP 32787 > http
 6 92.997937 192.168.10.144 192.168.10.180 TCP 32787 > http

The interesting point in this output is how frequently the client’s TCP sends a
SYN to try to establish the connection. The second segment is sent 3s after the first,
the third is sent 6s after the second, the fourth is sent 12s after the third, and so
on. This behavior is called exponential backoff, and we saw something like it before
when we discussed the behavior of Ethernet’s CSMA/CD media access control
protocol (see Chapter 3). In that case, it was a little different, however, because
here each backoff is deterministically (i.e., always) twice the previous backoff,
whereas in Ethernet, the maximum backoff is doubled and the actual backoff is
chosen randomly.

ptg999

Section 13.3 TCP Options 605

The number of times to retry an initial SYN can be configured on some sys-
tems and usually has a fairly small value such as 5. In Linux, the system configura-
tion variable net.ipv4.tcp_syn_retries gives the maximum number of times
to attempt to resend a SYN segment during an active open. A corresponding value
called net.ipv4.tcp_synack_retries gives the maximum number of times
to attempt to resend a SYN + ACK segment when responding to a peer’s active
open request. It can also be used on an individual connection basis by setting the
Linux-specific TCP_SYNCNT socket option. Its default value is five retries, as we
see here. The exponential backoff timing between these retransmissions is part of
TCP’s congestion management response. We shall examine it in detail when we
discuss Karn’s algorithm (see Chapter 16).

13.2.6 Connections and Translators

In Chapter 7 we discussed how conventional NAT translates the addresses and
port numbers used by protocols such as TCP and UDP. We also examined how IP
packets can be translated between IPv6 and IPv4. When NAT is used with TCP,
the pseudo-header checksum usually requires adjustment (except in cases where
a checksum-neutral address modifier is used). This is also true for other protocols
that use pseudo-header checksums, because the computation involves informa-
tion at the transport layer as well as the network layer.

When a TCP connection is first established, a NAT (or NAT64) can ascertain
this fact because of the presence of the SYN bit field in a segment. It can also deter-
mine when a connection has become fully established by looking for subsequent
SYN + ACK and ACK segments containing the appropriate sequence numbers.
The same applies for the termination of a connection. By implementing a portion
of the TCP state machine in a NAT (see, for example, Sections 3.5.2.1 and 3.5.2.2 of
[RFC6146]), the connection can be tracked, including the current states, sequence
numbers in each direction, and corresponding ACK numbers. Such state tracking
is typical for NAT implementations.

Further complications arise when a NAT acts as an editor and rewrites con-
tents in the transport protocol’s data payload. For TCP, this may involve removing
or adding bytes to the data stream, and consequently affecting the sequence num-
bers (and segment) lengths. Doing so also necessarily affects the checksum, but it
also affects the data sequence. If data is inserted or removed from the data stream
by the NAT, these values can be adjusted appropriately. Doing so is somewhat
fragile because if the NAT state becomes desynchronized with the state in the end
hosts, the connection will not operate properly.

13.3 TCP Options

The TCP header can contain options (see Figure 12-3). The only options defined in the
original TCP specification are the End of Option List (EOL), the No Operation (NOP),
and the Maximum Segment Size (MSS) options. Since then, several options have been

ptg999

606 TCP Connection Management

defined. The entire list is maintained by the IANA [TPARAMS]; Table 13-1 gives the
current options of interest (i.e., those with standards-track RFC descriptions).

Every option begins with a 1-byte kind that specifies the type of option. Options
that are not understood are simply ignored, according to [RFC1122]. The options
with a kind value of 0 and 1 occupy a single byte. The other options have a len byte
that follows the kind byte. The length is the total length, including the kind and
len bytes. The reason for the NOP option is to allow the sender to pad fields to a
multiple of 4 bytes, if it needs to. Remember that the TCP header’s length is always
required to be a multiple of 32 bits because the TCP Header Length field uses that
unit. The EOL option indicates the end of the list and that no further processing of
the options list is to be performed. Now we will have a look at the other options.

13.3.1 Maximum Segment Size (MSS) Option

The maximum segment size (MSS) is the largest segment that a TCP is willing to
receive from its peer and, consequently, the largest size its peer should ever use
when sending. The MSS value counts only TCP data bytes and does not include
the sizes of any associated TCP or IP header [RFC0879]. When a connection is
established, each end usually announces its MSS in an MSS option carried with its
SYN segment. The option allows for 16 bits to be used to specify the MSS value. If
no MSS option is provided, a default value of 536 bytes is used. Recall the rule that
requires any host to be capable of processing IPv4 datagrams at least as large as
576. With minimum-size IPv4 and TCP headers, a TCP using a sending MSS size
of 536 bytes produces an IPv4 datagram of size 20 + 20 + 536 = 576 bytes.

The MSS values in Figure 13-5 are all 1460, which is typical for IPv4. The
resulting IPv4 datagram is normally 40 bytes larger (1500 bytes total, the typical

Table 13-1 The TCP option values. Up to 40 bytes are available to hold options.

Kind Length Name Reference Description and Purpose

0 1 EOL [RFC0793] End of Option List
1 1 NOP [RFC0793] No Operation (used for padding)
2 4 MSS [RFC0793] Maximum Segment Size
3 3 WSOPT [RFC1323] Window Scaling Factor (left-shift amount on

window)
4 2 SACK-Permitted [RFC2018] Sender supports SACK options
5 Var. SACK [RFC2018] SACK block (out-of-order data received)
8 10 TSOPT [RFC1323] Timestamps option
28 4 UTO [RFC5482] User Timeout (abort after idle time)
29 Var. TCP-AO [RFC5925] Authentication option (using various

algorithms)
253 Var. Experimental [RFC4727] Reserved for experimental use
254 Var. Experimental [RFC4727] Reserved for experimental use

ptg999

Section 13.3 TCP Options 607

MTU size for Ethernet and path MTU for the Internet): 20 bytes for the TCP header
and 20 bytes for the IPv4 header. When IPv6 is used, the MSS is usually 1440, 20
bytes less because of the larger IPv6 header. The special MSS value of 65535 can be
used with IPv6 jumbograms to indicate an effective MSS of infinity [RFC2675]. In
this case the SMSS will be determined as the PMTU minus 60 bytes (40 bytes for
the IPv6 header and 20 bytes for the TCP header). Note that the MSS option is not
a negotiation between one TCP and its peer; it is a limit. When one TCP gives its
MSS option to the other, it is indicating its unwillingness to accept any segments
larger than that size for the duration of the connection.

13.3.2 Selective Acknowledgment (SACK) Options

In Chapter 12 we introduced the concept of a sliding window, and we described
how TCP handles its sequence numbers and acknowledgments. Because it uses
cumulative ACKs, TCP is never able to acknowledge data it has received correctly
but that is not contiguous, in terms of sequence numbers, with data it has received
previously. In such cases, the TCP receiver is said to have holes in its received data
queue. A receiving TCP prevents applications from consuming data beyond a hole
because of the byte stream abstraction it provides.

If a TCP sender were able to learn of the existence of holes (and out-of-
sequence data blocks beyond holes in the sequence space) at the receiver, it could
better select which particular TCP segments to retransmit when segments are lost
or otherwise missing at the receiver. The TCP selective acknowledgment (SACK)
options [RFC2018][RFC2883] provide this capability. The scheme works effec-
tively, however, only if the TCP sender logic is able to make effective use of the
SACK information it receives from a SACK-capable receiver.

A TCP learns that its peer is capable of advertising SACK information by
receiving the SACK-Permitted option in a SYN (or SYN + ACK) segment. Once
this has taken place, the TCP receiving out-of-sequence data may provide a SACK
option that describes the out-of-sequence data to help its peer perform retransmis-
sions more efficiently. SACK information contained in a SACK option consists of a
range of sequence numbers representing data blocks the receiver has successfully
received. Each range is called a SACK block and is represented by a pair of 32-bit
sequence numbers. Thus, a SACK option containing n SACK blocks is (8n + 2)
bytes long. Two bytes are used to hold the kind and length of the SACK option.

Because of the limited amount of space available in the option space of a TCP
header, the maximum number of SACK blocks available to be sent in a single seg-
ment is three (assuming the Timestamps option is also used, described in Section
13.3.4, which is typical for modern TCP implementations). Although the SACK-
Permitted option is only ever sent in a SYN segment, the SACK blocks themselves
may be sent in any segment once the sender has sent the SACK-Permitted option.
Because the operation of SACK is most easily (and importantly) related to the error
and congestion control operations of TCP, we discuss it in further detail when we
cover these topics in Chapters 14 and 16.

ptg999

608 TCP Connection Management

13.3.3 Window Scale (WSCALE or WSOPT) Option

The Window Scale option (denoted WSCALE or WSOPT) [RFC1323] effectively
increases the capacity of the TCP Window Advertisement field from 16 to about 30
bits. Instead of changing the field size, however, the header still holds a 16-bit
value, and an option is defined that applies a scaling factor to the 16-bit value. This
factor effectively left-shifts the window field value by the scale factor. This, in
effect, multiplies the window value by the value 2s, where s is the scale factor.
The 1-byte shift count is between 0 and 14 (inclusive). A shift count of 0 indicates
no scaling. The maximum scale value of 14 provides for a maximum window of
1,073,725,440 bytes (65,535 × 214), close to 1,073,741,823 (230 −1), effectively 1GB. TCP
then maintains the “real” window size internally as a 32-bit value.

This option can appear only in a SYN segment, so the scale factor is fixed
in each direction when the connection is established. To enable window scaling,
both ends must send the option in their SYN segments. The end doing the active
open sends the option in its SYN, but the end doing the passive open can send the
option only if the received SYN specifies the option. The scale factor can be differ-
ent in each direction. If the end doing the active open sends a nonzero scale factor
but does not receive a Window Scale option from the other end, it sets its send
and receive scale values to 0. This lets systems that do not understand the option
interoperate with systems that do.

Assume we are using the Window Scale option, with a shift count of S for
sending and a shift count of R for receiving. Then every 16-bit advertised window
that we receive from the other end is left-shifted by R bits to obtain the real adver-
tised window size. Every time we send a window advertisement to the other end,
we take our real 32-bit window size and right-shift it S bits, placing the resulting
16-bit value in the TCP header.

The shift count is automatically chosen by TCP, based on the size of the
receive buffer. The size of this buffer is set by the system, but the capability is
normally provided for the application to change it. The Window Scale option is
most relevant when TCP is used to provide bulk data transfer over networks with
large-bandwidth-delay products (i.e., those with a product of round-trip time and
bandwidth being relatively large). Thus, we shall discuss the importance and use
of this option more in Chapter 16.

13.3.4 Timestamps Option and Protection against Wrapped Sequence Numbers
(PAWS)

The Timestamps option (sometimes called the Timestamp option and written as
TSOPT or TSopt) lets the sender place two 4-byte timestamp values in every seg-
ment. The receiver reflects these values in the acknowledgment, allowing the
sender to calculate an estimate of the connection’s RTT for each ACK received.
(We must say “each ACK received” and not “each segment” because TCP often
acknowledges multiple segments per ACK; we will see this in Chapter 15.) When
using the Timestamps option, the sender places a 32-bit value in the Timestamp

ptg999

Section 13.3 TCP Options 609

Value field (called TSV or TSval) in the first part of the TSOPT, and the receiver
echoes this back unchanged in the second Timestamp Echo Retry field (called TSER
or TSecr). TCP headers containing this option increase by 10 bytes (8 bytes for the
two timestamp values and 2 to indicate the option value and length).

The timestamp is a monotonically increasing value. Because the receiver
simply echoes what it receives, it does not care what the timestamp units or val-
ues actually are. This option does not require any form of clock synchronization
between the two hosts. [RFC1323] recommends that the sender increment the
timestamp value by at least 1 every second. Figure 13-6 shows the Timestamps
option, as displayed by Wireshark.

Figure 13-6 A TCP connection with the Timestamps, Window Scaling, and MSS options being used.
The TCP header is 44 bytes long. The initial SYN (packet 1) starts with the TSV set to
81813090. The second packet, highlighted, echoes this value back to the active opener
and includes its own value of 349742014.

Here, both ends participate by generating and echoing back the other’s
timestamps. The first segment (client’s SYN) uses an initial timestamp value of
81813090. This value is placed in the TSV. The second portion, TSER, has a value
of 0 on the first segment because the client does not know the server’s timestamp
value yet.

ptg999

610 TCP Connection Management

The main reason for wishing to calculate a good estimate of the connection’s
RTT is to set the retransmission timeout, which tells TCP when it should try
resending a segment that is likely lost. In Chapter 12 we discussed the need to set
this timeout based on some function of the RTT. With the Timestamps option, we
can get relatively fine-grain measurements of the RTT. Prior to the creation of the
Timestamps option, most TCPs would perform just one RTT sample per window
of data. With the Timestamps option, more samples can be taken, leading to the
potential of a better RTT estimate (see [RFC1323] and [RFC6298]).

Because the Timestamps option is most relevant to the setting of the retrans-
mission timer, we discuss its use for that purpose in more detail when we dis-
cuss retransmission in Chapter 14. We say “for that purpose” because although
the Timestamps option allows for more frequent RTT samples, it also provides
a way for the receiver to avoid receiving old segments and considering them as
valid. This is called Protection Against Wrapped Sequence Numbers (PAWS), and it is
described in [RFC1323] along with the Timestamps option. We’ll now take a look
at how it works.

Consider a TCP connection using the Window Scale option with the larg-
est possible window, about 1GB (230). Also assume that the Timestamps option is
being used and that the timestamp value assigned by the sender increments by 1
for each window that is sent. (This is conservative. Normally the timestamp incre-
ments faster than this.) Table 13-2 shows the possible data flow between the two
hosts when transferring 6GB. To avoid lots of ten-digit numbers, we use the nota-
tion G to mean a multiple of 1,073,741,824. We also use the notation from tcpdump
that J:K means byte J through and including byte K − 1.

Table 13-2 The TCP Timestamps option can disambiguate segments with the same sequence num-
bers by providing an extra 32 bits of effective sequence number space.

Time Bytes Sent
Send
Seq. No.

Send
Timestamp Receive

A 0G:1G 0G:1G 1 OK
B 1G:2G 1G:2G 2 OK, but one segment lost and retransmitted
C 2G:3G 2G:3G 3 OK
D 3G:4G 3G:4G 4 OK
E 4G:5G 0G:1G 5 OK
F 5G:6G 1G:2G 6 OK, but retransmitted segment reappears

The 32-bit Sequence Number field wraps between times D and E. We assume
that one segment gets lost at time B and is retransmitted. We also assume that this
lost segment reappears at time F. This assumes that the time difference between
the segment getting lost and reappearing is less than the maximum time a seg-
ment can live in the network (called the MSL; see Section 13.5.2); otherwise the

ptg999

Section 13.3 TCP Options 611

segment would have been discarded by some router when its TTL expired. As we
mentioned earlier, it is only with relatively high-speed connections that this prob-
lem appears, where old segments can reappear and contain sequence numbers
currently being transmitted.

We can also see from Table 13-2 that using the Timestamps option prevents
this problem. The receiver considers the timestamp as a 32-bit extension of the
sequence number. Because the lost segment that reappears at time F has a time-
stamp of 2, which is less than the most recent valid timestamp (5 or 6), it is dis-
carded by the PAWS algorithm. The PAWS algorithm does not require any form of
time synchronization between the sender and the receiver. All the receiver needs
is for the timestamp values to be monotonically increasing, and to increase by at
least 1 per window of data.

13.3.5 User Timeout (UTO) Option

The User Timeout (UTO) option is a relatively new TCP capability described in
[RFC5482]. The UTO value (also called USER_TIMEOUT) specifies the amount of
time a TCP sender is willing to wait for an ACK of outstanding data before con-
cluding that the remote end has failed. USER_TIMEOUT has traditionally been a
local configuration parameter for TCP [RFC0793]. The UTO option allows one TCP
to signal its USER_TIMEOUT value to its connection peer. This allows the receiv-
ing TCP to adjust its behavior (e.g., to tolerate a longer period of disrupted con-
nectivity prior to aborting a connection). NAT devices could also interpret such
information to help set their connection activity timers.

UTO option values are advisory; just because one end of a connection might
wish to use a large or small UTO value does not mean that the other end needs to
comply. [RFC1122] refines the definition of USER_TIMEOUT and suggests that a
TCP reaching a threshold of three (R1) retransmissions should notify the request-
ing application, and that after 100s (R2) the connection should be closed. Some
implementations have an API function to change R1 and R2. Because long UTOs
might lead to resource exhaustion concerns and short UTOs might result in some
connections being torn down early (a type of DoS attack), upper and lower limits
are placed on the possible UTO values. The way to set USER_TIMEOUT, then, is
as follows:

USER_TIMEOUT = min(U_LIMIT, max(ADV_UTO, REMOTE_UTO, L_LIMIT))

where ADV_UTO is the UTO option advertised to the remote TCP, REMOTE_UTO
is the peer’s advertised UTO option value, U_LIMIT is the local system’s upper
UTO limit, and L_LIMIT is the local system’s UTO lower limit. Note that this for-
mula does not guarantee that each end of the same connection will arrive at the
same USER_TIMEOUT value. In all cases the L_LIMIT value must be greater than
the associated connection’s retransmission timeout (RTO) value (see Chapter 14),
and it is recommended to be set to 100s to retain compatibility with [RFC1122].

ptg999

612 TCP Connection Management

UTO options are included on SYN segments when a connection is estab-
lished, on the first non-SYN segments, and whenever the USER_TIMEOUT value
is changed. The option value is expressed as a 15-bit value in units of seconds
or minutes following a bit field (“granularity”) that indicates that the value is in
minutes (1) or seconds (0). As a relatively new option, it is not yet widely deployed.

13.3.6 Authentication Option (TCP-AO)

There is an option used to enhance the security of TCP connections. It is designed
to enhance and replace an earlier mechanism called TCP-MD5 [RFC2385]. Called
the TCP Authentication Option (TCP-AO) [RFC5925], it uses a cryptographic hash
algorithm (see Chapter 18), in combination with a secret value known to each
end of a TCP connection, to authenticate each segment. TCP-AO improves upon
TCP-MD5 by supporting a variety of cryptographic algorithms and identifying
changing of keys using in-band signaling. It does not provide a comprehensive
key management solution, however. That is, each end still has to have a way to
establish a shared set of keys prior to operation.

When sending, the TCP derives a traffic key from the shared secret key
and computes the hash value according to a particular cryptographic algorithm
[RFC5926]. A receiver, equipped with the same secret key, is likewise able to derive
the traffic key and use it to ensure that an arriving segment has not been modified
in transit (with high probability). This option is intended as a strong countermea-
sure to a variety of TCP spoofing attacks (see Section 13.8). However, because it
requires creation and distribution of a shared key (and is a relatively new option),
it is not yet widely deployed.

13.4 Path MTU Discovery with TCP

In Chapter 3, we described the concept of the path MTU. It is the minimum MTU
on any network segment that is currently in the path between two hosts. Knowing
the path MTU can help protocols such as TCP avoid fragmentation. In Chapter 10,
we looked at how discovery of the path MTU (PMTUD) is accomplished based on
ICMP messages, but in that case UDP is not usually able to adapt its datagram size
because the application specifies the size (i.e., not the transport protocol). TCP, in
providing the byte stream abstraction it implements, determines what segment
size to use and as a result has a much greater degree of control over the size of IP
datagrams that are ultimately generated.

In this section we will examine how PMTUD is used by TCP. Our discus-
sion will apply to both TCP/IPv4 and TCP/IPv6. More details are provided by
[RFC1191] and [RFC1981], respectively. A method that avoids the use of ICMP,
called Packetization Layer Path MTU Discovery (PLPMTUD), can also be used by
TCP [RFC4821] or by other transport protocols. We shall use the ICMPv6 Packet
Too Big (PTB) terminology to refer to either ICMPv4 Destination Unreachable
(Fragmentation Required) or ICMPv6 Packet Too Big messages.

ptg999

Section 13.4 Path MTU Discovery with TCP 613

TCP’s regular PMTUD process operates as follows: When a connection is
established, TCP uses the minimum of the MTU of the outgoing interface, or the
MSS announced by the other end, as the basis for selecting its send maximum
segment size (SMSS). PMTUD does not allow TCP to exceed the MSS announced
by the other end. If the other end does not specify an MSS, the sender assumes a
default of 536 bytes, but this situation is now rare. It is also possible for an imple-
mentation to save path MTU information on a per-destination basis to help in
selecting its segment size. Note that the path MTU in each direction of a connec-
tion could be different.

Once the initial SMSS is chosen, all IPv4 datagrams sent by TCP on that con-
nection have the IPv4 DF bit field set. For TCP/IPv6, this is not necessary because
there is no DF bit field; all datagrams are assumed to have it set implicitly. If a PTB
is received, TCP decreases the segment size and retransmits using a different seg-
ment size. If the PTB contains the suggested next-hop MTU, the segment size can
be set to the next-hop MTU minus the sizes of the IPv4 (or IPv6) and TCP headers.
If the next-hop MTU value is not present (e.g., an older ICMP error was returned
that lacks this information), the sender may try a variety of values (e.g., binary
search for a usable value). This also affects TCP’s congestion control management
(see Chapter 16). For PLPMTUD the situation is similar, except PTB messages are
not used. Instead, the protocol performing PMTUD must be able to detect message
discards quickly and perform its own datagram size adjustments.

Because routes can change dynamically, when some time has passed since
the last decrease of the segment size, a larger value (up to the initial SMSS) can be
tried. Guidance in [RFC1191] and [RFC1981] recommends that this time interval
be about 10 minutes.

There are a number of problems with PMTUD when it operates in an Internet
environment with firewalls that block PTB messages [RFC2923]. Of the various
operational problems with PMTUD, black holes have been the most problematic,
although the situation is improving (in [LS10], 80% of systems studied were able
to properly process PTB messages). PMTUD black holes arise when a TCP imple-
mentation that depends on the delivery of ICMP messages to adjust its segment
size never receives them. This could be for several reasons, including a firewall or
NAT configuration that prohibits such ICMP messages from being forwarded. The
consequence is a TCP connection that cannot proceed once it starts to use larger
packets. It can be difficult to diagnose because only large packets cannot be for-
warded. The smaller ones (such as SYN and SYN + ACK packets used to establish
the connection) generally succeed. Some TCP implementations have “black hole
detection,” which amounts to trying a smaller segment size when a segment is
retransmitted several times.

13.4.1 Example

We can see the correct behavior of PMTUD when an intermediate router has an
MTU less than either of the endpoints’ MSS. To create this situation, we begin with
a router (a Linux host with local address 10.0.0.1) that has a PPPoE interface to a

ptg999

614 TCP Connection Management

DSL service provider. The PPPoE link uses an MTU of 1492 (1500 bytes for Ether-
net, minus 6 bytes of PPPoE overhead, minus another 2 bytes of PPP overhead; see
Chapter 3). Figure 13-7 is an illustration of the topology.

Figure 13-7 The PPPoE encapsulation drops the path MTU of most TCP connections to 1492 bytes
from what might otherwise have been 1500 bytes (the typical MTU for Ethernet). To
demonstrate TCP’s use of PMTUD, we set the MTU even smaller (288 bytes).

In order to induce this behavior specifically, we can reduce the MTU size on
the PPPoE link from 1492 to, say, 288 bytes. On the GW machine, the following
command accomplishes this task:

Linux(GW)# ifconfig ppp0 mtu 288

In addition, we need to tell the client system (C) that small segments are allowed:

Linux(C)# sysctl -w net.ipv4.route.min_pmtu=68

If we did not perform this second operation, Linux would clamp its minimum
path MTU at the default value of 552 bytes, which helps avoid certain small MTU
attacks (see Section 13.8). The consequence of doing so in our example here is that
any packets larger than 288 bytes would be fragmented. To avoid this, and to dem-
onstrate PMTUD more effectively, we remove this minimum. We then start a file
transfer from machine C (address 10.0.0.123) to the server S on the Internet (address
169.229.62.97). Listing 13-2 shows a tcpdump packet trace from this exchange. Sev-
eral lines have been wrapped and extraneous fields have been removed for clarity.

Listing 13-2 The path MTU discovery mechanism finds an appropriate segment size to use when
transiting the network where the middle link has a smaller MTU than the endpoints.

1 20:20:21.992721 IP (tos 0x0, ttl 45, id 43565, offset 0, flags [DF],
 proto 6, length: 588)
 169.229.62.97.22 > 10.0.0.123.1027: P [tcp sum ok]
 41:577(536) ack 23

ptg999

Section 13.4 Path MTU Discovery with TCP 615

2 20:20:21.993727 IP (tos 0x0, ttl 64, id 57659, offset 0, flags [DF],
 proto 6, length: 588)
 10.0.0.123.1027 > 169.229.62.97.22: P [tcp sum ok]
 23:559(536) ack 577

3 20:20:21.994093 IP (tos 0xc0, ttl 64, id 57547, offset 0, flags
 [none], proto 1, length: 576)
 10.0.0.1 > 10.0.0.123: icmp 556:
 169.229.62.97 unreachable - need to frag (mtu 288) for
 IP (tos 0x0, ttl 63, id 57659, offset 0, flags [DF],
 proto 6, length: 588)
 10.0.0.123.1027 > 169.229.62.97.22:
 P 23:559(536) ack 577

4 20:20:21.994884 IP (tos 0x0, ttl 64, id 57660, offset 0, flags [DF],
 proto 6, length: 288)
 10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok]
 23:259(236) ack 577

...

5 20:20:22.488856 IP (tos 0x0, ttl 45, id 6712, offset 0, flags [DF],
 proto 6, length: 836)
 169.229.62.97.22 > 10.0.0.123.1027: P [tcp sum ok]
 857:1641(784)ack 855
...
6 20:20:29.672947 IP (tos 0x8, ttl 64, id 57679, offset 0, flags [DF],
 proto 6, length: 1452)
 10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok]
 1431:2831(1400) ack 2105

7 20:20:29.674123 IP (tos 0xc8, ttl 64, id 57548, offset 0, flags
 [none], proto 1, length: 576)
 10.0.0.1 > 10.0.0.123: icmp 556:
 169.229.62.97 unreachable - need to frag (mtu 288) for
 IP (tos 0x8, ttl 63, id 57679, offset 0, flags [DF],
 proto 6, length: 1452)
 10.0.0.123.1027 > 169.229.62.97.22: .
 1431:2831(1400) ack 2105

8 20:20:29.673751 IP (tos 0x8, ttl 64, id 57680, offset 0, flags [DF],
 proto 6, length: 1452)
 10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok]
 2831:4231(1400) ack 2105

9 20:20:29.675180 IP (tos 0xc8, ttl 64, id 57549, offset 0, flags
 [none], proto 1, length: 576)
 10.0.0.1 > 10.0.0.123: icmp 556:
 169.229.62.97 unreachable - need to frag (mtu 288) for
 IP (tos 0x8, ttl 63, id 57680, offset 0, flags [DF],
 proto 6, length: 1452)
 10.0.0.123.1027 > 169.229.62.97.22: .
 2831:4231(1400) ack 2105

ptg999

616 TCP Connection Management

10 20:20:29.674932 IP (tos 0x8, ttl 64, id 57681, offset 0, flags
 [DF], proto 6, length: 288)
 10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok]
 1431:1667(236) ack 2105

11 20:20:29.675143 IP (tos 0x8, ttl 64, id 57682, offset 0, flags
 [DF], proto 6, length: 288)
 10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok]
 1667:1903(236) ack 2105

In the tcpdump output, the connection has already been set up and MSS
options have been exchanged. All packets on the connection have the DF bit field
set, so both ends are performing PMTUD. The remote side’s first packet is 588
bytes long, which transitions the router successfully in one piece, despite our con-
figuration of the MTU on the PPPoE links being 288 bytes. The reason for this is
asymmetry in the MTU configuration. Although the local end of the PPPoE link
is using a maximum transmission unit of 288 bytes, the other end is using a larger
size SMSS, presumably 1492 bytes. This leaves us in the situation where our out-
going packets need to be small (288 bytes or less), and packets traveling in the
reverse direction can be larger.

When the local end attempts to send a larger packet of size 588 bytes with
the DF bit field turned on, a PTB message is generated by the router (10.0.0.1),
indicating that the appropriate MTU for the next-hop link is 288 bytes. The TCP
responds by sending its next packet with size 288 bytes, as instructed. To then
send the rest of the sequence numbers it attempted to send in its 588-byte packet,
it sends two additional packets, of sizes 288 and 116. We see a similar pattern of
sizes repeats during the course of the file transfer.

The PMTU discovery process is one of the only ways TCP explicitly attempts to
adapt its segment size after a connection has started, at least when large amounts
of data are transferred. The size of a segment can affect the overall throughput
performance, as can the window size. We discuss how these affect overall perfor-
mance in Chapter 15.

13.5 TCP State Transitions

We have described numerous rules regarding the initiation and termination of
a TCP connection, and we have seen which types of segments are sent during
different phases of a connection. The rules that determine what TCP does are
determined by what state TCP is in. The current state is changed based on vari-
ous stimuli, such as segments that are transmitted or received, timers that expire,
application reads or writes, or information from other layers. These rules can be
summarized in TCP’s state transition diagram.

ptg999

Section 13.5 TCP State Transitions 617

13.5.1 TCP State Transition Diagram

TCP’s state transition diagram is shown in Figure 13-8. States are indicated by
ovals and transitions between states by arrows. Each endpoint of a connection
transitions through the states. Some transitions are triggered by the receipt of a
segment with certain control bit fields set (e.g., SYN, ACK, FIN). Some transitions

Figure 13-8 The TCP state transition diagram (also called finite state machine). Arrows represent
transitions between states due to segment transmission, segment reception, or timers
expiring. The bold arrows indicate typical client behavior, and the dashed arrows indi-
cate typical server behavior. The boldface directives (e.g., open, close) are actions per-
formed by applications.

ptg999

618 TCP Connection Management

also cause a segment with particular control bit fields set to be sent. Other transi-
tions may be triggered by application actions or by timers expiring. Each of these
cases is indicated in the diagram as a textual annotation near the associated tran-
sition arrow. When initialized, TCP starts in the CLOSED state. Usually an imme-
diate transition takes it to either the SYN_SENT or LISTEN state, depending on
whether the TCP is asked to perform an active or passive open, respectively.

Note in this diagram that only a subset of the state transitions is “typical.”
We have marked the normal client transitions with a darker solid arrow, and the
normal server transitions with a dashed arrow. The two transitions leading to the
ESTABLISHED state correspond to opening a connection, and the two transitions
leading from the ESTABLISHED state are for the termination of a connection. The
ESTABLISHED state is where data transfer can occur between the two ends in
both directions. Chapters 14–17 describe what happens in this state.

We have labeled the FIN_WAIT_1, FIN_WAIT_2, and TIME_WAIT states
as being (at least partially) in a box called “Active Close.” These are the set of
states entered when the local application initiates a close request. Two other states
(CLOSE_WAIT and LAST_ACK) are collected in a dashed box with the label “Pas-
sive Close.” These states correspond to waiting for a peer to acknowledge a FIN
segment and perform its close. Simultaneous close, which is a form of double
active close, uses the CLOSING state.

The names of the 11 states (CLOSED, LISTEN, SYN_SENT, etc.) in this figure
are based on the names output by the netstat command in UNIX, Linux, and
Windows, which are themselves based on the names originally used in [RFC0793].
The state CLOSED is not really an “official” state but has been added as a useful
starting point and ending point for the diagram.

The state transition from LISTEN to SYN_SENT is legal in the TCP protocol
but is not supported by Berkeley sockets and is rarely seen. The transition from
SYN_RCVD back to LISTEN is valid only if the SYN_RCVD state was entered
from the LISTEN state (the normal scenario), not from the SYN_SENT state (a
simultaneous open). This means that if we perform a passive open (enter LISTEN),
receive a SYN, send a SYN with an ACK (enter SYN_RCVD), and then receive a
reset instead of an ACK, the endpoint returns to the LISTEN state and waits for
another connection request to arrive.

Figure 13-9 shows the normal TCP connection establishment and termination,
detailing the different states through which the client and server pass. It is a simpler
version of Figure 13-1 showing the relevant states but not the options or ISN details.
We assume in Figure 13-9 that the client on the left side does an active open and
the server on the right side does a passive open. Although we show the client
doing the active close, as we mentioned earlier, either side can do the active close.

13.5.2 TIME_WAIT (2MSL Wait) State

The TIME_WAIT state is also called the 2MSL wait state. It is a state in which TCP
waits for a time equal to twice the Maximum Segment Lifetime (MSL), sometimes
called timed wait. Every implementation must choose a value for the MSL. It is

ptg999

Section 13.5 TCP State Transitions 619

the maximum amount of time any segment can exist in the network before being
discarded. We know that this time limit is bounded, because TCP segments are
transmitted as IP datagrams, and the IP datagram has the TTL field or Hop Limit
field that limits its effective lifetime (see Chapter 5). [RFC0793] specifies the MSL
as 2 minutes. Common implementation values, however, are 30s, 1 minute, or 2
minutes. In most cases, the value can be modified. On Linux, the value net.ipv4.
tcp_fin_timeout holds the 2MSL wait timeout value (in seconds). On Win-
dows, the following registry key:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay

holds the timeout. It is permitted to be in the range of 30 to 300s. For IPv6, replace
the term Tcpip with Tcpip6.

Given the MSL value for an implementation, the rule is: When TCP performs
an active close and sends the final ACK, that connection must stay in the TIME_
WAIT state for twice the MSL. This lets TCP resend the final ACK in case it is lost.
The final ACK is resent not because the TCP retransmits ACKs (they do not con-
sume sequence numbers and are not retransmitted by TCP), but because the other
side will retransmit its FIN (which does consume a sequence number). Indeed,
TCP will always retransmit FINs until it receives a final ACK.

Figure 13-9 TCP states corresponding to normal connection establishment and termination

ptg999

620 TCP Connection Management

Another effect of this 2MSL wait state is that while the TCP implementation
waits, the endpoints defining that connection (client IP address, client port num-
ber, server IP address, and server port number) cannot be reused. That connection
can be reused only when the 2MSL wait is over, or when a new connection uses
an ISN that exceeds the highest sequence number used on the previous instantia-
tion of the connection [RFC1122], or if the use of the Timestamps option allows
the disambiguation of segments from a previous connection instantiation to not
otherwise be confused [RFC6191]. Unfortunately, some implementations impose a
more stringent constraint. In these systems, a local port number cannot be reused
while that port number is the local port number of any endpoint that is in the
2MSL wait state on the system. We will see examples of this constraint in Listings
13-3 and 13-4.

Most implementations and APIs provide a way to bypass this restriction. With
the Berkeley sockets API, the SO_REUSEADDR socket option enables the bypass
operation. It lets the caller assign itself a local port number even if that port num-
ber is part of some connection in the 2MSL wait state. We will see, however, that
even with this bypass mechanism for one socket (address, port number pair), the
rules of TCP still (should) prevent this port number from being reused by another
instantiation of the same connection that is in the 2MSL wait state. Any delayed
segments that arrive for a connection while it is in the 2MSL wait state are dis-
carded. Because the connection defined by the address/port 4-tuple in the 2MSL
wait state cannot be reused during this time period, when a valid connection is
finally established, we know that delayed segments from an earlier instantiation
of this connection cannot be misinterpreted as being part of the new connection.

For interactive applications, it is normally the client that does the active close
and enters the TIME_WAIT state. The server usually does the passive close and
does not go through the TIME_WAIT state. The implication is that if we terminate
a client, and restart the same client immediately, that new client cannot reuse the
same local port number. This is not ordinarily a problem, because clients normally
use ephemeral ports assigned by the operating system and do not care what the
assigned port number is. (Recall, it is actually a recommended practice for them
to be randomized for security reasons [RFC6056].) This is important to know
because a client that makes a large number of connections quickly (especially to
the same server) could conceivably have to delay while other connections termi-
nate if ephemeral ports are in short supply.

With servers, however, the situation is different. They almost always use well-
known ports. If we terminate a server process that has a connection established
and immediately try to restart it, the server cannot assign its assigned port num-
ber to its endpoint (it gets an “Address already in use” binding error), because that
port number is part of a connection that is in a 2MSL wait state. It may take from
1 to 4 minutes for the server to be able to restart, depending on the local system’s
value for the MSL. We can see this scenario using our sock program. In Listing
13-3 we start the server, connect to it from a client, and then terminate the server.

ptg999

Section 13.5 TCP State Transitions 621

Listing 13-3 A TCP connection must complete a 2MSL delay in the TIME_WAIT state before a port
number can be reused by another process.

Linux% sock -v -s 6666
(now a client on another computer connects to this server)
connection on 192.168.10.144.6666 from 192.168.10.140.2623
(server stopped by typing interrupt character)
(now server is restarted)
Linux% sock -v -s 6666
can't bind local address: Address already in use

Linux% netstat -n -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.10.144:6666 192.168.10.140:2623 TIME_WAIT

(wait one minute and restart server again)
Linux% sock -v -s 6666

When we try to restart the server, the program outputs an error message indi-
cating that it cannot bind its port number because the address is already in use.
This really means that the address and port number combination is already in
use; it is in a 2MSL wait state because of the previous connection. This is the more
stringent restriction on port number reuse mentioned before. The output from
the netstat command shows that the connection is in the TIME_WAIT state.
Although clients do not typically experience as many issues with 2MSL wait states
as servers do, we can demonstrate the same issue by having the client specify its
own port number, as shown in Listing 13-4.

Listing 13-4 A client cannot reuse a port number while it is still being used by another connection
in the 2MSL wait state.

(start server in one window)
Linux% sock -s -v 6666

(connect to it from another window)
Linux% sock -v 127.0.0.1 6666

(server identifies incoming connection)
connection on 127.0.0.1.6666 from 127.0.0.1.2091

(client identifies connection establishment, and is interrupted)
connected on 127.0.0.1.2091 to 127.0.0.1.6666

^C

(server identifies connection has terminated and exits)
connection closed by peer
Linux%

ptg999

622 TCP Connection Management

(client is restarted, specifying same port number as before)
Linux% sock -b 2091 -v 127.0.0.1 6666
bind() error: Address already in use

(wait 30 seconds and try again)
Linux% sock -b 2091 -v 192.168.10.144 6666
connect() error: Connection refused

The first time we execute the client we specify the -v option to see what the
local (ephemeral) port number assigned to the client is (2091). The second time we
execute the client we specify the -b option, telling the client to assign itself 2091
as its local port number instead of being given another ephemeral port number by
the operating system. As we expect, the client cannot do this, because port 2091
is part of a connection that is in a 2MSL wait state. Once the wait is over (1 minute
on this Linux machine), the client attempts to connect again, but the server exited
when the connection was interrupted the first time, so it is refused. We shall see
how TCP reset segments are used to signal this connection refused condition in
Section 13.6.

We mentioned earlier that most systems provide a way of overriding the
default behavior, which allows processes to bind to ports even if those ports are
part of connections in the 2MSL wait state. Now we try the same scenario as
before, but using the -A option to sock, which enables the bypass mechanism:

Linux% sock -A -v -s 6666
Linux% sock -A -v -s 6666

In this example, we start the server with the -A option, which enables the
SO_REUSEADDR socket option that we mentioned. By doing this, we allow the
server to bind to its port even though it is part of a connection in the 2MSL wait
state. If we try to use the client right away with the same port, however, the fol-
lowing happens:

Linux% sock -b 32840 -v 127.0.0.1 6666
bind() error: Address already in use

Once again, the endpoint 127.0.0.1.32840 is in use, so the client fails. If, how-
ever, we also use the -A option for the client, we can force the connection to work:

Linux% sock -A -b 32840 -v 127.0.0.1 6666
Connected on 127.0.0.1.32840 to 127.0.0.1.6666
TCP_MAXSEG = 16383

Here we see that even though the same connection (4-tuple) is being used
again before the 2MSL wait state expires, the use of the -A option has forced the
connection to be allowed. Of course, this is all taking place on the same computer,
so the operating system is able to ascertain what processes represent what ends

ptg999

Section 13.5 TCP State Transitions 623

of the connections in the 2MSL wait state and (potentially, at least) keep them
separate. What if we try the same thing again but establish the connection from
another host? Here we test this idea:

(start server on first machine)
Linux% sock -v -s 6666

(connect to it from second - Windows - machine)
C:\> sock -A -v 10.0.0.1 6666

(server identifies incoming connection)
connection on 10.0.0.1.6666 from 10.0.0.3.2172

(client identifies connection establishment, and is interrupted)
connected on 10.0.0.3.2172 to 10.0.0.1.6666
^C
C:\>

(server identifies connection has terminated and exits)

connection closed by peer
Linux%

(client is restarted, specifying same port number as before)

C:\> sock -A -b 2091 -v 10.0.0.1 6666
connect() error: Address already in use
C:\> sock -A -b 2091 -v 10.0.0.1 6666
connect() error: Address already in use

(wait 30 seconds and try again)

C:\> sock -A -b 2091 -v 10.0.0.1 6666
connect() error: Connection refused

This example is similar to the previous one, except the client and server are on
different machines. We observe that irrespective of the -A flag on the client, the
2MSL wait time is induced. Here the 2MSL wait lasts for 30s. After that, the client
attempts to contact the server, which has already exited.

One interesting thing happens if we switch the client and server machines.
We will now use Windows as the server and Linux as the client and repeat the
experiment:

(start server on Windows machine)
C:\> sock -v -s 6666

(connect to it from second - Linux - machine)
Linux% sock -A -v 192.168.10.145 6666

(server identifies incoming connection)
connection on 192.168.10.145.6666 from 192.168.10.145.32843

ptg999

624 TCP Connection Management

(client identifies connection establishment, and is interrupted)
connected on 192.168.10.144.32843 to 192.168.10.145.6666
^C
Linux%

(server identifies connection has terminated and exits)

connection closed by peer
C:\>

(client is restarted, specifying same port number as before)

Linux% sock -A -b 32843 -v 192.168.10.144 6666
bind() error: Connection refused

At this point we would expect local port 32843 to be unavailable, but because
of the way -A works on Linux, we are allowed to make use of it. This is a violation
of the original TCP specification, but it is allowed by [RFC1122] and [RFC6191], as
mentioned before. These specifications allow a new connection request to arrive
and be accepted for a connection that is in the TIME_WAIT state, if there is a
strong reason to believe that segments on the new connection will not be confused
with segments on the previous instantiation of the connection based on a combi-
nation of the sequence numbers and timestamps. [RFC1337] and the appendix of
[RFC1323] show some of the pitfalls related to this rule.

13.5.3 Quiet Time Concept

The 2MSL wait provides protection against delayed segments from an earlier
instantiation of a connection being interpreted as part of a new connection that
uses the same local and foreign IP addresses and port numbers. But this works
only if a host with connections in the 2MSL wait does not crash.

What if a host with connections in the TIME_WAIT state crashes, reboots
within the MSL, and immediately establishes new connections using the same
local and foreign IP addresses and port numbers corresponding to the local con-
nections that were in the TIME_WAIT state before the crash? In this scenario,
delayed segments from the connections that existed before the crash can be mis-
interpreted as belonging to the new connections created after the reboot. This can
happen regardless of how the initial sequence number is chosen after the reboot.

To protect against this scenario, [RFC0793] states that TCP should wait an
amount of time equal to the MSL before creating any new connections after a
reboot or crash. This is called the quiet time. Few implementations abide by this
because most hosts take longer than the MSL to reboot after a crash. Also, if appli-
cations use their own checksums or encryption, errors such as these are easily
detected.

ptg999

Section 13.6 Reset Segments 625

13.5.4 FIN_WAIT_2 State

In the FIN_WAIT_2 state, TCP has sent a FIN and the other end has acknowledged
it. Unless a half-close is being performed, the TCP must wait for the application
on the other end to recognize that it has received an end-of-file notification and
close its end of the connection, which causes a FIN to be sent. Only when the
application performs this close (and its FIN is received) does the active closing
TCP move from the FIN_WAIT_2 to the TIME_WAIT state. This means that one
end of the connection can remain in this state forever. The other end is still in the
CLOSE_WAIT state and can remain there forever, until the application decides to
issue its close.

Many implementations prevent this infinite wait in the FIN_WAIT_2 state as
follows: If the application that does the active close does a complete close, not a
half-close indicating that it expects to receive data, a timer is set. If the connection
is idle when the timer expires, TCP moves the connection into the CLOSED state.
In Linux, the variable net.ipv4.tcp_fin_timeout can be adjusted to control
the number of seconds to which the timer is set. Its default value is 60s.

13.5.5 Simultaneous Open and Close Transitions

We have seen the normal uses for the SYN_SENT and SYN_RCVD states that
correspond to sending and receiving SYN segments, respectively. As illustrated
in Figure 13-3, TCP was purposely designed to handle simultaneous opens that
result in a single connection. When a simultaneous open occurs, the state tran-
sitions differ from those shown in Figure 13-9. Both ends send a SYN at about
the same time, entering the SYN_SENT state. When each end receives its peer’s
SYN segments, the state changes to SYN_RCVD, and each end resends a SYN and
acknowledges the received SYN. When each end receives the SYN plus the ACK,
the state changes to ESTABLISHED.

For a simultaneous close, in terms of Figure 13-6, both ends go from ESTAB-
LISHED to FIN_WAIT_1 when the application issues the close. This causes both
FINs to be sent, and they probably pass each other somewhere in the network.
When its peer’s FIN arrives, each end transitions from FIN_WAIT_1 to the CLOS-
ING state, and each endpoint sends its final ACK. Upon receiving a final ACK,
each endpoint’s state changes to TIME_WAIT, and the 2MSL wait is initiated.

13.6 Reset Segments

We mentioned the RST bit field in the TCP header in Chapter 12. A segment hav-
ing this bit set to “on” is called a “reset segment” or simply a “reset.” In general, a
reset is sent by TCP whenever a segment arrives that does not appear to be correct
for the referenced connection. (We use the term referenced connection to mean the

ptg999

626 TCP Connection Management

connection specified by the 4-tuple in the TCP and IP headers of the reset.) Resets
ordinarily result in a fast teardown of a TCP connection. We can construct sce-
narios to demonstrate the use of reset segments.

13.6.1 Connection Request to Nonexistent Port

A common case for generating a reset segment is when a connection request
arrives and no process is listening on the destination port. We saw this previously
when we encountered the “connection refused” error messages. These are com-
mon with TCP. In the case of UDP, we saw in Chapter 10 that an ICMP Destination
Unreachable (Port Unreachable) message is generated when a datagram arrives
for a destination port that is not in use. TCP uses a reset segment instead.

An example of this is trivial to generate—we use the Telnet client and specify
a port number that is not in use on the destination. This destination can just as
well be the local computer:

Linux% telnet localhost 9999
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Connection refused

This error message is output by the Telnet client immediately. Listing 13-5
shows the packet exchange corresponding to this command.

Listing 13-5 Reset generated by attempt to open connection to nonexistent port

1 22:15:16.348064 127.0.0.1.32803 > 127.0.0.1.9999:
 S [tcp sum ok] 3357881819:3357881819(0) win 32767
 <mss 16396,sackOK,timestamp 16945235 0,nop,wscale 0>
 (DF) [tos 0x10] (ttl 64, id 42376, len 60)
2 22:15:16.348105 127.0.0.1.9999 > 127.0.0.1.32803:
 R [tcp sum ok] 0:0(0) ack 3357881820 win 0
 (DF) [tos 0x10] (ttl 64, id 0, len 40)

The values we need to examine in Listing 13-5 are the Sequence Number field
and ACK Number field in the reset (second) segment. Because the ACK bit field
was not on in the arriving SYN segment, the sequence number of the reset is set
to 0 and the ACK number is set to the incoming ISN plus the number of data bytes
in the segment. Although there is no data in the arriving segment, the SYN bit
logically occupies 1 byte of sequence number space; therefore, in this example the
ACK number in the reset segment is set to the ISN, plus the data length (0), plus
1 for the SYN bit.

For a reset segment to be accepted by a TCP, the ACK bit field must be set and
the ACK Number field must be within the valid window (see Chapter 12). This
helps to prevent a simple attack in which anyone able to generate a reset matching
the appropriate connection (4-tuple) could disrupt a connection [RFC5961].

ptg999

Section 13.6 Reset Segments 627

13.6.2 Aborting a Connection

We saw in Figure 13-1 that the normal way to terminate a connection is for one
side to send a FIN. This is sometimes called an orderly release because the FIN is
sent after all previously queued data has been sent, and there is normally no loss
of data. But it is also possible to abort a connection by sending a reset instead of a
FIN at any time. This is sometimes called an abortive release.

Aborting a connection provides two features to the application: (1) any queued
data is thrown away and a reset segment is sent immediately, and (2) the receiver
of the reset can tell that the other end did an abort instead of a normal close.
The API being used by the application must provide a way to generate the abort
instead of a normal close.

The sockets API provides this capability by using the “linger on close” socket
option (SO_LINGER) with a 0 linger value. Essentially this means “Linger for
no time in making sure data gets to the other side, then abort.” In the following
example, we show what happens when a remote command that generates a large
amount of output is canceled by the user:

Linux% ssh linux cat /usr/share/dict/words
Aarhus
Aaron
Ababa
aback
abaft
abandon
abandoned
abandoning
abandonment
abandons
... continues ...
^C
Killed by signal 2.

Here the user has decided to abort the output of this command. The words
file has 45,427 words in it, so this command was probably some sort of mistake.
When the user types the interrupt character, the system indicates that the process
(here, the ssh program) has been killed by signal number 2. This signal is called
SIGINT and usually terminates a program when it is delivered. Listing 13-6 shows
the tcpdump output for this example. (We have deleted many of the intermediate
packets, because they add nothing to the discussion.)

Listing 13-6 Aborting a connection with a reset (RST) instead of a FIN

Linux# tcpdump -vvv -s 1500 tcp

1 22:33:06.386747 192.168.10.140.2788 > 192.168.10.144.ssh:

 S [tcp sum ok] 1520364313:1520364313(0) win 65535
 <mss 1460,nop,nop,sackOK>
 (DF) (ttl 128, id 43922, len 48)

ptg999

628 TCP Connection Management

2 22:33:06.386855 192.168.10.144.ssh > 192.168.10.140.2788:
 S [tcp sum ok] 181637276:181637276(0) ack 1520364314
 win 5840
 <mss 1460,nop,nop,sackOK>
 (DF) (ttl 64, id 0, len 48)

3 22:33:06.387676 192.168.10.140.2788 > 192.168.10.144.ssh:

 . [tcp sum ok] 1:1(0) ack 1 win 65535
 (DF) (ttl 128, id 43923, len 40)

(... ssh encrypted authentication exchange and bulk data transfer ...)

4 22:33:13.648247 192.168.10.140.2788 > 192.168.10.144.ssh:
 R [tcp sum ok] 1343:1343(0) ack 132929 win 0
 (DF) (ttl 128, id 44004, len 40)

Segments 1–3 show the normal connection establishment. When the interrupt
character is hit, the connection is aborted. The reset segment contains a sequence
number and acknowledgment number. Also notice that the reset segment elicits
no response from the other end—it is not acknowledged at all. The receiver of the
reset aborts the connection and advises the application that the connection was
reset. This often results in the error indication “Connection reset by peer” or a
similar message.

13.6.3 Half-Open Connections

A TCP connection is said to be half-open if one end has closed or aborted the con-
nection without the knowledge of the other end. This can happen anytime one of
the peers crashes. As long as there is no attempt to transfer data across a half-open
connection, the end that is still up does not detect that the other end has crashed.

Another common cause of a half-open connection is when one host is pow-
ered off instead of shut down properly. This happens, for example, when PCs are
being used to run remote login clients and are switched off at the end of the day.
If there was no data transfer going on when the power was cut, the server will
never know that the client disappeared (it would still think the connection is in
the ESTABLISHED state). When the user comes in the next morning, powers on
the PC, and starts a new session, a new occurrence of the server is started on the
server host. This can lead to many half-open TCP connections on the server host.
(In Chapter 17 we will see a way for one end of a TCP connection to discover that
the other end has disappeared using TCP’s keepalive option.)

We can easily create a half-open connection. In this case, we do so on the
client rather than the server. We will execute the Telnet client on 10.0.0.1, con-
necting to the Sun RPC Service (sunrpc, port 111) server at 10.0.0.7 (see Listing
13-7). We type one line of input and watch it go across with tcpdump, and then
we disconnect the Ethernet cable on the server’s host and reboot the server host.
This simulates the server host crashing. (We disconnect the Ethernet cable before
rebooting the server to prevent it from sending a FIN out of the open connections,

ptg999

Section 13.6 Reset Segments 629

which some TCPs do when they are shut down.) After the server has rebooted, we
reconnect the cable and try to send another line from the client to the server. After
rebooting, the server’s TCP has lost all memory of the connections that existed
before, so it knows nothing about the connection that the data segment references.
The rule of TCP is that the receiver responds with a reset.

Listing 13-7 The server host is disconnected and rebooted, leaving a half-open connection at the
client. When it receives additional data on the connection it now knows nothing about,
the server responds with a reset segment, closing the connection at both ends.

Linux% telnet 10.0.0.7 sunrpc
Trying 10.0.0.7...
Connected to 10.0.0.7.
Escape character is '^]'.
foo
(Ethernet cable disconnected and server rebooted)
bar
Connection closed by remote host

Listing 13-8 shows the tcpdump output for this example.

Listing 13-8 Reset in response to data segment on a half-open connection

1 23:15:48.804142 IP (tos 0x10, ttl 64, id 20095, offset 0,
 flags [DF], proto 6, length: 60)
 10.0.0.1.1310 > 10.0.0.7.sunrpc:
 S [tcp sum ok] 2365970104:2365970104(0) win 5840
 <mss 1460,sackOK,timestamp 3849492679 0,nop,wscale 2>

2 23:15:48.804742 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
 proto 6, length: 60)
 10.0.0.7.sunrpc > 10.0.0.1.1310:
 S [tcp sum ok] 2093796387:2093796387(0) ack 2365970105 win 5792
 <mss 1460,sackOK,timestamp 654784 3849492679,nop,wscale 0>

3 23:15:48.805028 IP (tos 0x10, ttl 64, id 20097, offset 0,
 flags [DF], proto 6, length: 52)
 10.0.0.1.1310 > 10.0.0.7.sunrpc:
 . [tcp sum ok] 1:1(0) ack 1 win 1460
 <nop,nop,timestamp 3849492680 654784>

4 23:15:51.999394 IP (tos 0x10, ttl 64, id 20099, offset 0,
 flags [DF], proto 6, length: 57)
 10.0.0.1.1310 > 10.0.0.7.sunrpc:
 P [tcp sum ok] 1:6(5) ack 1 win 1460
 <nop,nop,timestamp 3849495875 654784>

5 23:15:51.999874 IP (tos 0x0, ttl 64, id 12773, offset 0,
 flags [DF], proto 6, length: 52)
 10.0.0.7.sunrpc > 10.0.0.1.1310:
 . [tcp sum ok] 1:1(0) ack 6 win 5792
 <nop,nop,timestamp 656421 3849495875>

ptg999

630 TCP Connection Management

6 23:17:19.419611 arp who-has 10.0.0.7 (Broadcast) tell 0.0.0.0
7 23:17:20.419142 arp who-has 10.0.0.7 (Broadcast) tell 0.0.0.0
8 23:17:21.427458 arp reply 10.0.0.7 is-at 00:e0:00:88:ad:d6

9 23:17:21.921745 arp who-has 10.0.0.1 tell 10.0.0.7
10 23:17:21.921892 arp reply 10.0.0.1 is-at 00:04:5a:9f:9e:80

11 23:17:23.437114 arp who-has 10.0.0.7 (Broadcast) tell 10.0.0.7

12 23:17:34.804196 arp who-has 10.0.0.7 tell 10.0.0.1
13 23:17:34.804650 arp reply 10.0.0.7 is-at 00:e0:00:88:ad:d6

14 23:17:43.684786 IP (tos 0x10, ttl 64, id 20101, offset 0,
 flags [DF], proto 6, length: 57)
 10.0.0.1.1310 > 10.0.0.7.sunrpc:
 P [tcp sum ok] 6:11(5) ack 1 win 1460
 <nop,nop,timestamp 3849607577 656421>

15 23:17:43.685277 IP (tos 0x10, ttl 64, id 0, offset 0,
 flags [DF], proto 6, length: 40)
 10.0.0.7.sunrpc > 10.0.0.1.1310:
 R [tcp sum ok] 2093796388:2093796388(0) win 0

Segments 1–3 are the normal connection establishment. Segment 4 sends the
line “foo” to the sunrpc server (the 5 bytes required include a carriage return and
newline character), and segment 5 is the acknowledgment.

At this point we disconnect the Ethernet cable from the server (address
10.0.0.7), reboot, and reconnect the cable. This takes about 90s. We then type the
next line of input to the client (“bar”), and when we type the return key the line is
sent to the server (the first TCP segment after the ARP traffic in Listing 13-9). This
elicits a reset response from the server, which no longer has any knowledge of the
existence of the connection.

Note that when the host reboots, it uses gratuitous ARP (see Chapter 4) in
order to determine if its IPv4 address is already in use on the segment, and to
supply it to others. It also requests the MAC address for IPv4 address 10.0.0.1
because that is its default router to the Internet.

13.6.4 TIME-WAIT Assassination (TWA)

As mentioned previously, the TIME_WAIT state is intended to allow any data-
grams lingering from a closed connection to be discarded. During this period, the
waiting TCP usually has little to do; it merely holds the state until the 2MSL timer
expires. If, however, it receives certain segments from the connection during this
period, or more specifically an RST segment, it can become desynchronized. This
is called TIME-WAIT Assassination (TWA) [RFC1337]. Consider the exchange of
packets shown in Figure 13-10.

ptg999

Section 13.7 TCP Server Operation 631

In the example shown in Figure 13-10, the server has completed its role in the
connection and cleared any state. The client remains in the TIME_WAIT state.
When the FIN exchange completes, the client’s next sequence number is K and
the server’s is L. The late-arriving segment is sent from the server to the client
using sequence number L - 100 and containing ACK number K - 200. When the cli-
ent receives this segment, it determines that both the sequence number and ACK
values are “old.” When receiving such old segments, TCP responds by sending an
ACK with the most current sequence number and ACK values (K and L, respec-
tively). However, when the server receives this segment, it has no information
whatsoever about the connection and therefore replies with an RST segment. This
is no problem for the server, but it causes the client to prematurely transition from
TIME_WAIT to CLOSED. Most systems avoid this problem by simply not reacting
to reset segments while in the TIME_WAIT state.

13.7 TCP Server Operation

We said in Chapter 1 that most TCP servers are concurrent. When a new con-
nection request arrives at a server, the server accepts the connection and invokes

Figure 13-10 An RST segment can “assassinate” the TIME_WAIT state and force the connection to
close prematurely. Various methods exist to resist this problem, including ignoring
RST segments when in the TIME_WAIT state.

ptg999

632 TCP Connection Management

a new process or thread to handle the new client. Depending on the operating
system, various other resources may be allocated to invoke the new server. We are
interested in the interaction of TCP with concurrent servers. In particular, we wish
to become familiar with how TCP servers use port numbers and how multiple
concurrent clients are handled.

13.7.1 TCP Port Numbers

We can see how TCP handles port numbers by watching any TCP server. We shall
watch the secure shell server (called sshd) using the netstat command on a
dual-stack IPv4/IPv6-capable host. The sshd application implements the Secure
Shell Protocol [RFC4254], which provides an encrypted and authenticated remote
terminal capability. The following output is on a system with no active secure
shell connections. (We have deleted all of the output lines except the one associ-
ated with the server.)

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 :::22 :::* LISTEN

The -a option reports on all network endpoints, including those in either lis-
tening or non-listening state. The -n flag prints IP addresses as dotted-decimal (or
hex) numbers, instead of trying to use the DNS to convert the address to a name,
and prints numeric port numbers (e.g., 22) instead of service names (e.g., ssh).
The -t option selects only TCP endpoints.

The local address (which really means local endpoint) is output as :::22,
which is the IPv6-oriented way of referring to the all-zeros address, also called
the wildcard address, along with port number 22. This means that an incoming
connection request (i.e., a SYN) to port 22 will be accepted on any local interface.
If the host were multihomed (this one is), we could specify a single IP address for
the local IP address (one of the host’s IP addresses), and only connections received
on that interface would be accepted. (We will see an example of this later in this
section.) Port 22 is the well-known port number reserved for the Secure Shell Pro-
tocol. Other port numbers are maintained by the IANA [ITP].

The foreign address is output as :::*, which means both a wildcard address
and port number (i.e., it represents a wildcard endpoint). Here, the foreign IP
address and foreign port number are not known yet, because the local endpoint is
in the LISTEN state, waiting for a connection to arrive. We now start a secure shell
client on the host 10.0.0.3 that connects to this server. Here are the relevant lines
from the netstat output (the Recv-Q and Send-Q columns, which contain only
values of zero, have been removed for clarity):

Linux% netstat -a -n -t
Active Internet connections (servers and established)

ptg999

Section 13.7 TCP Server Operation 633

Proto Local Address Foreign Address State
tcp :::22 :::* LISTEN
tcp ::ffff:10.0.0.1:22 ::ffff:10.0.0.3:16137 ESTABLISHED

The second line for port 22 is the ESTABLISHED connection. All four elements
of the local and foreign endpoints are filled in for this connection: the local IP
address and port number, and the foreign IP address and port number. The local IP
address corresponds to the interface on which the connection request arrived (the
Ethernet interface, identified by its IPv4-mapped IPv6 address, ::ffff:10.0.0.1).

The local endpoint in the LISTEN state is left alone. This is the endpoint that
the concurrent server uses to accept future connection requests. It is the TCP mod-
ule in the operating system that creates the new endpoint in the ESTABLISHED
state, when the incoming connection request arrives and is accepted. Also notice
that the port number for the ESTABLISHED connection does not change: it is 22,
the same as the LISTEN endpoint.

We now initiate another client request from the same system (10.0.0.3) to this
server. Here is the relevant netstat output:

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Proto Local Address Foreign Address State
tcp :::22 :::* LISTEN
tcp ::ffff:10.0.0.1:22 ::ffff:10.0.0.3:16140 ESTABLISHED
tcp ::ffff:10.0.0.1:22 ::ffff:10.0.0.3:16137 ESTABLISHED

We now have two ESTABLISHED connections from the same host to the same
server. Both have a local port number on the server of 22. This is not a problem
for TCP because the foreign port numbers are different. They must be different
because each of the secure shell clients uses an ephemeral port, and the definition
of an ephemeral port is one that is not currently in use on that host (10.0.0.3).

This example reiterates, yet again, that TCP demultiplexes incoming segments
using all four values that constitute the local and foreign endpoints: destination
IP address, destination port number, source IP address, and source port number.
TCP cannot determine which process gets an incoming segment by looking at the
destination port number only. Also, the only one of the three endpoints at port
22 that will receive incoming connection requests is the one in the LISTEN state.
The endpoints in the ESTABLISHED state cannot receive SYN segments, and the
endpoint in the LISTEN state cannot receive data segments. The host operating
system ensures this. (If it did not, TCP could become quite confused and not work
properly.)

Next we initiate a third client connection, from the IP address 169.229.62.97
that is across the DSL PPPoE link from the server 10.0.0.1, and not on the same
Ethernet. (The output below has the Proto column removed, which contains only
tcp, for clarity.)

ptg999

634 TCP Connection Management

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Send-Q Local Address Foreign Address State
 0 :::22 :::* LISTEN
 0 ::ffff:10.0.0.1:22 ::ffff:10.0.0.3:16140 ESTABLISHED
 0 ::ffff:10.0.0.1:22 ::ffff:10.0.0.3:16137 ESTABLISHED
 928 ::ffff:67.125.227.195:22 ::ffff:169.229.62.97:1473 ESTABLISHED

The local IP address of the third ESTABLISHED connection now corresponds to
the interface address of the PPPoE link on the multihomed host (67.125.227.195).
Note that the Send-Q status is not 0 but is instead 928 bytes. This means that the
server host has sent 928 bytes on the connection for which it has not yet heard an
acknowledgment.

13.7.2 Restricting Local IP Addresses

We can see what happens when the server does not wildcard the local IP address
but instead sets it to one particular local address. If we run our sock program as a
server and provide it with a particuclar IP address, that address becomes the local
address of the listening endpoint. For example:

Linux% sock -s 10.0.0.1 8888

This restricts this server to using connections that arrive only on the local IPv4
address 10.0.0.1. The netstat output reflects this:

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 10.0.0.1:8888 0.0.0.0:* LISTEN

One thing that is especially interesting about this example is that our sock
program is binding only to the local IPv4 address 10.0.0.1, so our netstat out-
put looks significantly different. In our previous example, the wildcard address
and port number indications were across both versions of IP. In this case, how-
ever, we are bound to a particular address, port, and address family (IPv4 only).
If we now connect to this server from the local network, from the host 10.0.0.3,
it works fine:

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 10.0.0.1:8888 0.0.0.0:* LISTEN
tcp 0 0 10.0.0.1:8888 10.0.0.3:16153 ESTABLISHED

If we instead try to connect to this server from a host using a destination
address other than 10.0.0.1 (even including the local address 127.0.0.1), the

ptg999

Section 13.7 TCP Server Operation 635

connection request is not accepted by the TCP module. If we watch with tcp-
dump, the SYN elicits an RST segment, as we show in Listing 13-9.

Listing 13-9 Rejection of a connection request based on local IP address of server

1 22:29:19.905593 IP 127.0.0.1.1292 > 127.0.0.1.8888:
 S 591843787:591843787(0) win 32767
 <mss 16396,sackOK,timestamp 3587463952 0,nop,wscale 2>
2 22:29:19.906095 IP 127.0.0.1.8888 > 127.0.0.1.1292:
 R 0:0(0) ack 591843788 win 0

The server application never sees the connection request—the rejection is
done by the operating system’s TCP module, based on the local address specified
by the application and the destination address contained in the arriving SYN seg-
ment. We see that the capability of restricting local IP addresses is quite strict.

13.7.3 Restricting Foreign Endpoints

In Chapter 10, we saw that a UDP server can normally specify the foreign IP address
and foreign port number, in addition to specifying the local IP address and local
port number. The abstract interface functions for TCP given in [RFC0793] allow a
server doing a passive open to have either a fully specified foreign endpoint (to
wait for a particular client to issue an active open) or an unspecified foreign end-
point (to wait for any client).

Unfortunately, the ordinary Berkeley sockets API does not provide a way to
do this. The server must leave the client’s endpoint unspecified, wait for the con-
nection to arrive, and then examine the IP address and port number of the client.
Table 13-3 summarizes the three types of address bindings that a TCP server can
establish.

Table 13-3 Address and port number binding options available to a TCP server

Local Address Foreign Address Restricted to Comment

local_IP.lport foraddr.foreign_port One client Not usually supported
local_IP.lport *.* One local

endpoint
Unusual (used by DNS
servers)

*.local_port *.* One local port Most common; multiple
address families (IPv4/IPv6)
may be supported

In all cases, local_port is the server’s assigned port and local_IP must
be a unicast IP address used by the local system. The ordering of the three rows
in the table is the order that the TCP module applies when trying to determine
which local endpoint receives an incoming connection request. The most specific
binding (the first row, if supported) is tried first, and the least specific (the last row

ptg999

636 TCP Connection Management

with both IP addresses wildcarded) is tried last. For systems supporting IPv4 and
IPv6 (“dual-stack”), the port space may be combined. In essence, this means that
writing a server that binds to a port using IPv6 addressing is also bound to the
same port in IPv4.

13.7.4 Incoming Connection Queue

A concurrent server invokes a new process or thread to handle each client, so
the listening server should always be ready to handle the next incoming connec-
tion request. That is the underlying reason for using concurrent servers. But there
is still a chance that multiple connection requests will arrive while the listening
server is creating a new process, or while the operating system is busy running
other higher-priority processes, or worse yet, that the server is being attacked with
bogus connection requests that are never allowed to be established. How does
TCP handle these scenarios?

To fully explore this question, we must first understand that new connections
may be in one of two distinct states before they are made available to an applica-
tion. The first case is connections that have not yet completed but for which a
SYN has been received (these are in the SYN_RCVD state). The second case is
connections that have already completed the three-way handshake and are in the
ESTABLISHED state but have not yet been accepted by the application. Internally,
the operating system ordinarily has two distinct connection queues, one for each
of these cases.

An application has limited control over the sizing of these queues. Tradition-
ally, using the Berkeley sockets API, an application had only indirect control of the
sum of the sizes of these two queues. In modern Linux kernels this behavior has
been changed to be the number of connections in the second case (ESTABLISHED
connections). The application can therefore limit the number of fully formed con-
nections waiting for it to handle. In Linux, then, the following rules apply:

1. When a connection request arrives (i.e., the SYN segment), the system-wide
parameter net.ipv4.tcp_max_syn_backlog is checked (default 1000).
If the number of connections in the SYN_RCVD state would exceed this
threshold, the incoming connection is rejected.

2. Each listening endpoint has a fixed-length queue of connections that have
been completely accepted by TCP (i.e., the three-way handshake is com-
plete) but not yet accepted by the application. The application specifies
a limit to this queue, commonly called the backlog. This backlog must be
between 0 and a system-specific maximum called net.core.somaxconn,
inclusive (default 128).

Keep in mind that this backlog value specifies only the maximum number
of queued connections for one listening endpoint, all of which have already
been accepted by TCP and are waiting to be accepted by the application.

ptg999

Section 13.7 TCP Server Operation 637

This backlog has no effect whatsoever on the maximum number of estab-
lished connections allowed by the system, or on the number of clients that
a concurrent server can handle concurrently.

3. If there is room on this listening endpoint’s queue for this new connection,
the TCP module ACKs the SYN and completes the connection. The server
application with the listening endpoint does not see this new connection
until the third segment of the three-way handshake is received. Also, the
client may think the server is ready to receive data when the client’s active
open completes successfully, before the server application has been noti-
fied of the new connection. If this happens, the server’s TCP just queues the
incoming data.

4. If there is not enough room on the queue for the new connection, the TCP
delays responding to the SYN, to give the application a chance to catch
up. Linux is somewhat unique in this behavior—it persists in not ignoring
incoming connections if it possibly can. If the net.ipv4.tcp_abort_on_
overflow system control variable is set, new incoming connections are
reset with a reset segment.

Sending reset segments on overflow is not generally advisable and is not
turned on by default. The client has attempted to contact the server, and if it
receives a reset during the SYN exchange, it may falsely conclude that no server is
present (instead of concluding that there is a server present but it is busy). Being
too busy is really a form of “soft” or temporary error rather than a hard error.
Normally, when the queue is full, the application or the operating system is busy,
preventing the application from servicing incoming connections. This condition
could change in a short while. But if the server’s TCP responded with a reset,
the client’s active open would abort (which is what we saw happen if the server
was not started). Without the reset, if the listening server does not get around to
accepting some of the already-accepted connections that have filled its queue to
the limit, the client’s active open eventually times out, according to normal TCP
mechanisms. In the case of Linux, the connecting clients are just slowed for a sig-
nificant period of time—they will neither time out nor be reset.

We can see what happens when the incoming connection queue becomes full
using our sock program. We invoke it with a new option (-O) that tells it to pause
after creating the listening endpoint, before accepting any connection requests.
If we then invoke multiple clients during this pause period, the server’s queue of
accepted connections should fill, and we can see what happens with tcpdump.

Linux% sock -s -v -q1 -O30000 6666

The -q1 option sets the backlog of the listening endpoint to 1. The -O30000
option causes the program to sleep for 30,000s (basically a long time, about 8
hours) before accepting any client connections. If we now try to connect to this

ptg999

638 TCP Connection Management

server continually, the first four connections are completed immediately. After
that, two connections are completed every 9s. Other operating systems vary con-
siderably in how this is handled. In Solaris 8 and FreeBSD 4.7, for example, two
connections are handled immediately and the third times out; subsequent con-
nections time out as well.

Listing 13-10 shows the tcpdump output of a Linux client connecting to a
FreeBSD server running the sock program with the arguments just given. (We
have marked the client port numbers in bold when the TCP connection is estab-
lished—when the three-way handshake completes.)

Listing 13-10 The FreeBSD server accepts two connections immediately. Subsequent connections
receive no response and eventually time out at the client.

1 21:28:47.399872 IP (tos 0x0, ttl 64, id 46646, offset 0,
 flags [DF], proto 6, length: 60)
 63.203.76.212.2461 > 169.229.62.97.6666:
 S [tcp sum ok] 2998137201:2998137201(0) win 5808
 <mss 1452,sackOK,timestamp 4102309703 0,nop,wscale 2>

2 21:28:47.413770 IP (tos 0x0, ttl 47, id 6876, offset 0,
 flags [DF], proto 6, length: 60)
 169.229.62.97.6666 > 63.203.76.212.2461:
 S [tcp sum ok] 5583769:5583769(0) ack 2998137202 win 1460
 <mss 1412,nop,wscale 0,nop,nop,timestamp 219082980 4102309703>

3 21:28:47.414058 IP (tos 0x0, ttl 64, id 46648, offset 0,
 flags [DF], proto 6, length: 52)
 63.203.76.212.2461 > 169.229.62.97.6666:
 . [tcp sum ok] 1:1(0) ack 1 win 1452
 <nop,nop,timestamp 4102309717 219082980>

4 21:28:47.423673 IP (tos 0x0, ttl 64, id 19651, offset 0,
 flags [DF], proto 6, length: 60)
 63.203.76.212.2462 > 169.229.62.97.6666:
 S [tcp sum ok] 2996964252:2996964252(0) win 5808
 <mss 1452,sackOK,timestamp 4102309727 0,nop,wscale 2>

5 21:28:47.436897 IP (tos 0x0, ttl 47, id 26581, offset 0,
 flags [DF], proto 6, length: 60)
 169.229.62.97.6666 > 63.203.76.212.2462:
 S [tcp sum ok] 3761536245:3761536245(0) ack 2996964253 win 1460
 <mss 1412,nop,wscale 0,nop,nop,timestamp 219082983 4102309727>

6 21:28:47.437186 IP (tos 0x0, ttl 64, id 19653, offset 0,
 flags [DF], proto 6, length: 52)
 63.203.76.212.2462 > 169.229.62.97.6666:
 . [tcp sum ok] 1:1(0) ack 1 win 1452
 <nop,nop,timestamp 4102309741 219082983>

7 21:28:47.446198 IP (tos 0x0, ttl 64, id 24292, offset 0,
 flags [DF], proto 6, length: 60)

ptg999

Section 13.7 TCP Server Operation 639

 63.203.76.212.2463 > 169.229.62.97.6666:
 S [tcp sum ok] 2991331729:2991331729(0) win 5808
 <mss 1452,sackOK,timestamp 4102309749 0,nop,wscale 2>

8 21:28:50.445771 IP (tos 0x0, ttl 64, id 24294, offset 0,
 flags [DF], proto 6, length: 60)
 63.203.76.212.2463 > 169.229.62.97.6666:
 S [tcp sum ok] 2991331729:2991331729(0) win 5808
 <mss 1452,sackOK,timestamp 4102312750 0,nop,wscale 2>

9 21:28:56.444900 IP (tos 0x0, ttl 64, id 24296, offset 0,
 flags [DF], proto 6, length: 60)
 63.203.76.212.2463 > 169.229.62.97.6666:
 S [tcp sum ok] 2991331729:2991331729(0) win 5808
 <mss 1452,sackOK,timestamp 4102318750 0,nop,wscale 2>

10 21:29:08.443031 IP (tos 0x0, ttl 64, id 24298, offset 0,
 flags [DF], proto 6, length: 60) 6
 3.203.76.212.2463 > 169.229.62.97.6666:
 S [tcp sum ok] 2991331729:2991331729(0) win 5808
 <mss 1452,sackOK,timestamp 4102330750 0,nop,wscale 2>

11 21:29:32.439406 IP (tos 0x0, ttl 64, id 24300, offset 0,
 flags [DF], proto 6, length: 60)
 63.203.76.212.2463 > 169.229.62.97.6666:
 S [tcp sum ok] 2991331729:2991331729(0) win 5808
 <mss 1452,sackOK,timestamp 4102354750 0,nop,wscale 2>

12 21:30:20.432118 IP (tos 0x0, ttl 64, id 24302, offset 0,
 flags [DF], proto 6, length: 60)
 63.203.76.212.2463 > 169.229.62.97.6666:
 S [tcp sum ok] 2991331729:2991331729(0) win 5808
 <mss 1452,sackOK,timestamp 4102402750 0,nop,wscale 2>

The first client’s connection request from port 2461 is accepted by TCP (seg-
ments 1–3). The second client’s connection request from port 2462 is also accepted
by TCP (segments 4–6). The server application is still asleep and has not accepted
either connection yet. Everything has been done by the TCP module in the oper-
ating system. Also, the two clients have returned successfully from their active
opens, because the three-way handshakes are complete.

We try to start a third whose SYN appears as segment 7 (port 2463), but the
server-side TCP ignores the SYNs because the queue for this listening endpoint
is full. The client retransmits its SYN in segments 8–12 using binary exponential
backoff. In FreeBSD and Solaris, TCP ignores the incoming SYN when the queue
is full.

Recall that TCP accepts an incoming connection request (i.e., a SYN) if there is
room on the listener’s queue, without giving the application a chance to see where
it is from (the source IP address and source port number). This is not required
by TCP; it is just the common implementation technique (i.e., the way Berkeley

ptg999

640 TCP Connection Management

sockets work). If an alternative to the Berkeley sockets API were used (e.g., TLI/
XTI), the application could be provided a way to learn when a connection request
arrives and then allow the application to choose whether to accept the connection
or not. Even though TLI provided this capability in theory, it never fully caught
on, so we are effectively left with the TCP interface provided by Berkeley sockets.

So with Berkeley sockets, be aware that with TCP, when the application is told
that a connection has just arrived, TCP’s three-way handshake is already over. This
behavior also means that a TCP server has no way to cause a client’s active open to
fail. When a new client connection is passed to the server application, TCP’s three-
way handshake is over, and the client’s active open has completed successfully. If
the server then looks at the client’s IP address and port number and decides it does
not want to service this client, all the server can do is either close the connection
(causing a FIN to be sent) or reset the connection (causing an RST to be sent). In
either case the client thought everything was OK when its active open completed
and may have already sent a request to the server. Other transport-layer proto-
cols may be implemented that provide this separation to the application between
arrival and acceptance (i.e., the OSI transport layer), but not TCP.

13.8 Attacks Involving TCP Connection Management

A SYN flood is a TCP DoS attack whereby one or more malicious clients generate
a series of TCP connection attempts (SYN segments) and send them at a server,
often with a “spoofed” (e.g., random) source IP address. The server allocates some
amount of connection resources to each partial connection. Because the connec-
tions are never established, the server may start to deny service to future legiti-
mate requests because its memory is exhausted holding state for many half-open
connections.

This attack is somewhat difficult to repel, because it is not always easy to dis-
tinguish between legitimate connection attempts and SYN floods. One mecha-
nism invented to deal with this issue is called SYN cookies [RFC4987]. The main
insight with SYN cookies is that most of the information that would be stored for a
connection when a SYN arrives could be encoded inside the Sequence Number field
supplied with the SYN + ACK. The target machine using SYN cookies need not
allocate any storage for the incoming connection request—it allocates real memory
only once the SYN + ACK segment has itself been acknowledged (and the initial
sequence number is returned). In that case, all the vital connection parameters can
be recovered and the connection can be placed in the ESTABLISHED state.

Producing SYN cookies involves a careful selection process of the TCP ISN
at servers. Essentially, the server must encode any essential state in the Sequence
Number field in its SYN + ACK that is returned in the ACK Number field from a
legitimate client. There are several ways of doing this, but we will mention the
technique adopted by Linux.

ptg999

Section 13.8 Attacks Involving TCP Connection Management 641

A server receiving an incoming SYN causes its ISN (supplied to the client in
the SYN + ACK segment) to be set to a value constructed in the following way: the
top 5 bits are (t mod 32) where t is a 32-bit counter that increases by 1 every 64s,
the next 3 bits are an encoding of the server’s MSS (one of eight possibilities), and
the remaining 24 bits are a server-selected cryptographic hash of the connection
4-tuple and t value. (See Chapter 18 for a detailed explanation of cryptographic
hashes.)

When SYN cookies are used, the server always responds with a SYN + ACK (as
with any typical TCP connection establishment), and the server is able to rebuild
its queue of arriving SYNs when it receives a legitimate ACK where the value for
t still produces the same output from the cryptographic hash. There are at least
two pitfalls of this approach. First, the scheme prohibits the use of arbitrary-size
segments because of the encoding of the MSS. Second, and much less serious,
connection establishment cycles that are very long (longer than 64s) do not work
properly because the counter would wrap. For these reasons, this function is not
enabled by default.

Another type of degradation attack on TCP involves PMTUD. In this case, an
attacker fabricates an ICMP PTB message containing a very small MTU value (e.g.,
68 bytes). This forces the victim TCP to attempt to fit its data into very small pack-
ets, greatly reducing its performance. This problem can be addressed in several
ways. The most brute-force way would be to simply disable PMTUD for the host.
Other options would be to disable PMTUD in cases where an ICMP PTB message
with next-hop MTU under 576 bytes is received. Another option, implemented
by Linux and mentioned briefly earlier, is to insist that the minimum packet size
(for large packets used by TCP) always be fixed at some value, and larger packets
simply not have the IPv4 DF bit field turned on. This approach is similar, although
perhaps somewhat more attractive, than completely disabling PMTUD.

Another type of attack involves disrupting an existing TCP connection and
possibly taking it over (called hijacking). These forms of attacks usually involve a
first step of “desynchronizing” the two TCP endpoints so that if they were to talk
to each other, they would be using invalid sequence numbers. They are particu-
lar examples of sequence number attacks [RFC1948]. They can be accomplished in
at least two ways: by causing invalid state transitions during connection estab-
lishment (similar to TWA; see Section 13.6.4), and by generating extra data while
in the ESTABLISHED state. Once the two ends can no longer communicate (but
believe they have an open connection), an attacker can introduce traffic into the
connection, which is considered (by TCP at least) as valid.

A collection of attacks generally called spoofing attacks involve TCP segments
that have been specially tailored by an attacker to disrupt or alter the behavior of
an existing TCP connection. A variety of these attacks and their mitigation tech-
niques are discussed in [RFC4953]. An attacker can generate a spoofed reset seg-
ment and send it to an existing TCP endpoint. Provided the connection 4-tuple
and checksum are correct, and the sequence number is in range, the reset gener-
ally results in a connection abort at either endpoint. This is of growing concern

ptg999

642 TCP Connection Management

because as networks become faster, a wider range of sequence numbers are con-
sidered “in window” to maintain performance (see Chapter 15). Other types of
segments (SYNs, even ACKs) can also be spoofed (and combined with flooding
attacks), causing myriad problems. Mitigation techniques include authenticating
each segment (e.g., using the TCP-AO option), requiring reset segments to have
one particular sequence number instead of one from a range, requiring particular
values in the Timestamps option, and using other forms of cookies in which other-
wise noncritical data values are arranged to depend on more exact knowledge of
the connection or a secret value.

There are spoofing attacks that are not part of the TCP protocol yet can affect
TCP’s operation. For example, ICMP can be used to modify PMTUD behavior.
It can also be used to indicate that a port or host is not available, and this often
causes a TCP connection to be terminated. Many of these attacks are described in
[RFC5927], which also suggests a number of ways of improving robustness against
spoofed ICMP messages. The suggestions amount to validating not only the ICMP
message but also as much of the contained TCP segment as possible. For example,
the contained segment should have an appropriate 4-tuple and sequence number.

13.9 Summary

Before two processes can exchange data using TCP, they must establish a connec-
tion between themselves. When they are done, they terminate the connection. This
chapter has provided a detailed look at how connections are established using a
three-way handshake, and how they are terminated using four segments. We also
saw how TCP can handle simultaneous open and close operations and how vari-
ous options, including the Selective ACK, Timestamps, MSS, TCP-AO, and UTO
options, are handled.

We used tcpdump and Wireshark to show TCP’s behavior and its use of the
fields in the TCP header. We also saw how connection establishment can time out,
how resets are sent and interpreted, what happens with a half-open connection,
and how TCP provides a half-close. TCP bounds both the number of connection
attempts it will try when performing an active open and also the number of con-
nection attempts it will service after performing a passive open.

Fundamental to understanding the operation of TCP is its state transition
diagram. We followed through the steps involved in connection establishment
and termination, and the state transitions that take place. We also looked at the
implications of TCP’s connection establishment for the design of concurrent TCP
servers.

A TCP connection is uniquely defined by a 4-tuple: the local IP address, local
port number, foreign IP address, and foreign port number. Whenever a connec-
tion is terminated, one end must maintain knowledge of the connection, and we
saw that the TIME_WAIT state handles this. The rule is that the end that does
the active close enters this state for twice the implementation’s MSL, which helps

ptg999

 Section 13.10 References 643

protect TCP from processing segments from an older instantiation of the same
connection. Using the Timestamps option can shorten the waiting time when new
connections attempt to use the same 4-tuple, and it has other benefits for detecting
wrapped sequence numbers and performing better RTT measurements.

TCP can be vulnerable to both resource exhaustion and spoofing attacks, but
a number of methods have been developed to resist such issues. In addition, TCP
can be affected by other protocols such as ICMP. Additional protection for ICMP
is possible by carefully processing the original datagram returned by ICMP mes-
sages. Finally, TCP can be used in combination with protocols that provide secu-
rity at other layers (e.g., IPsec and TLS/SSL, described in Chapter 18), which is
now standard practice.

13.10 References

[CERTISN] http://www.cert.org/advisories/CA-2001-09.html

[ITP] http://www.iana.org/assignments/service-names-port-numbers

[LS10] M. Luckie and B. Stasiewicz, “Measuring Path MTU Discovery Behavior,”
Proc. ACM IMC, Nov. 2010.

[RFC0793] J. Postel, “Transmission Control Protocol,” Internet RFC 0793/STD
0007, Sept. 1981.

[RFC0854] J. Postel and J. K. Reynolds, “Telnet Protocol Specification,” Internet
RFC 0854/STD 0008, May 1983.

[RFC0879] J. Postel, “The TCP Maximum Segment Size and Related Topics,”
Internet RFC 0879, Nov. 1983.

[RFC1025] J. Postel, “TCP and IP Bake Off,” Internet RFC 1025, Sept. 1987.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

[RFC1191] J. C. Mogul and S. E. Deering, “Path MTU Discovery,” Internet RFC
1191, Nov. 1990.

[RFC1323] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High
Performance,” Internet RFC 1323, May 1992.

[RFC1337] R. Braden, “TIME-WAIT Assassination Hazards in TCP,” Internet RFC
1337 (informational), May 1992.

[RFC1948] S. Bellovin, “Defending against Sequence Number Attacks,” Internet
RFC 1948 (informational), May 1996.

[RFC1981] J. McCann, S. Deering, and J. Mogul, “Path MTU Discovery for IP
Version 6,” Internet RFC 1981, Aug. 1996.

http://www.cert.org/advisories/CA-2001-09.html
http://www.iana.org/assignments/service-names-port-numbers

ptg999

644 TCP Connection Management

[RFC2018] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options,” Internet RFC 2018, Oct. 1996.

[RFC2385] A. Heffernan, “Protection of BGP Sessions via the TCP MD5 Signature
Option,” Internet RFC 2385 (obsolete), Aug. 1998.

[RFC2675] D. Borman, S. Deering, and R. Hinden, “IPv6 Jumbograms,” Internet
RFC 2675, Aug. 1999.

[RFC2883] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to
the Selective Acknowledgement (SACK) Option for TCP,” Internet RFC 2883, July
2000.

[RFC2923] K. Lahey, “TCP Problems with Path MTU Discovery,” Internet RFC
2923 (informational), Sept. 2000.

[RFC4254] T. Ylonen and C. Lonvick, ed., “The Secure Shell (SSH) Connection
Protocol,” Internet RFC 4254, Jan. 2006.

[RFC4727] B. Fenner, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP,
and TCP Headers,” Internet RFC 4727, Nov. 2006.

[RFC4821] M. Mathis and J. Heffner, “Packetization Layer Path MTU Discovery,”
Internet RFC 4821, Mar. 2007.

[RFC4953] J. Touch, “Defending TCP against Spoofing Attacks,” Internet RFC
4953 (informational), July 2007.

[RFC4987] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations,”
Internet RFC 4987 (informational), Aug. 2007.

[RFC5482] L. Eggert and F. Gont, “TCP User Timeout Option,” Internet RFC 5482,
Mar. 2009.

[RFC5925] J. Touch, A. Mankin, and R. Bonica, “The TCP Authentication Option,”
Internet RFC 5925, June 2010.

[RFC5926] G. Lebovitz and E. Rescorla, “Cryptographic Algorithms for the TCP
Authentication Option (TCP-AO),” Internet RFC 5926, June 2010.

[RFC5927] F. Gont, “ICMP Attacks against TCP,” Internet RFC 5927 (informa-
tional), July 2010.

[RFC5961] A. Ramaiah, R. Stewart, and M. Dalal, “Improving TCP’s Robustness
to Blind In-Window Attacks,” Internet RFC 5961, Aug. 2010.

[RFC6056] M. Larsen and F. Gont, “Recommendations for Transport-Protocol
Port Randomization,” Internet RFC 6056/BCP 0156, Jan. 2011.

[RFC6146] M. Bagnulo, P. Matthews, and I. van Beijnum, “Stateful NAT64:
Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers,”
Internet RFC 6146, Apr. 2011.

ptg999

 Section 13.10 References 645

[RFC6191] F. Gont, “Reducing the TIME-WAIT State Using TCP Timestamps,”
Internet RFC 6191/BCP 0159, Apr. 2011.

[RFC6298] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s
Retransmission Timer,” Internet RFC 6298, June 2011.

[S96] B. Schneier, Applied Cryptography (Wiley, 1996).

[TPARAMS] http://www.iana.org/tcp-parameters

http://www.iana.org/tcp-parameters

ptg999

This page intentionally left blank

ptg999

647

14

TCP Timeout and
Retransmission

14.1 Introduction

Efficiency and performance are issues that we have not discussed much so far.
We have primarily been concerned with correctness of operation. In this chapter
and the next two, we will be focusing not only on the basic tasks TCP performs,
but also on how well it performs them. The TCP protocol provides a reliable data
delivery service between two applications using an underlying network layer
(IP) that may lose, duplicate, or reorder packets. In order to provide an error-free
exchange of data, TCP resends data it believes has been lost. To decide what data
it needs to resend, TCP depends on a continuous flow of acknowledgments from
receiver to sender. When data segments or acknowledgments are lost, TCP initi-
ates a retransmission of the data that has not been acknowledged. TCP has two
separate mechanisms for accomplishing retransmission, one based on time and
one based on the structure of the acknowledgments. The second approach is usu-
ally much more efficient than the first.

TCP sets a timer when it sends data, and if the data is not acknowledged when
the timer expires, a timeout or timer-based retransmission of data occurs. The time-
out occurs after an interval called the retransmission timeout (RTO). It has another
way of initiating a retransmission called fast retransmission or fast retransmit, which
usually happens without any delay. Fast retransmit is based on inferring losses by
noticing when TCP’s cumulative acknowledgment fails to advance in the ACKs
received over time, or when ACKs carrying selective acknowledgment informa-
tion (SACKs) indicate that out-of-order segments are present at the receiver. Gen-
erally speaking, when the sender believes that the receiver might be missing some
data, a choice needs to be made between sending new (unsent) data and retrans-
mitting. In this chapter we look closely at how TCP determines that a segment

ptg999

648 TCP Timeout and Retransmission

is lost and what to send in response. The issue of how much to send is deferred
until Chapter 16, where we discuss TCP’s congestion control procedures that are
commonly invoked when packet loss is suspected. Here, we investigate how the
RTO is set based on measurements of a connection’s round-trip time (RTT), the
mechanics of a timer-based retransmission, and how TCP’s fast retransmission
mechanism works. We also look at how SACKs are used to help a TCP sender
determine what data is missing at the receiver, the effect of reordering and dupli-
cation of IP packets on TCP’s behavior, and the way TCP can change its packet size
when retransmitting. We also look briefly at some attacks that can be mounted to
fool TCP into behaving more aggressively or more passively.

14.2 Simple Timeout and Retransmission Example

We have already seen some examples of timeout and retransmission. (1) In the
ICMP Destination Unreachable (Port Unreachable) example in Chapter 8 we saw
the TFTP client using UDP employing a simple (and poor) timeout and retrans-
mission strategy: it assumed 5s was an adequate timeout period and retransmit-
ted every 5s. (2) In the attempted connection to a nonexistent host in Chapter 13,
we saw that when TCP tried to establish the connection it retransmitted its SYN
segment using a longer and longer delay between each successive retransmission.
(3) In Chapter 3, we saw what happens when Ethernet encounters a collision. All
of these mechanisms are initiated by the expiration of a timer.

We shall first look at the timer-based retransmission strategy used by TCP. We
will establish a connection, send some data to verify that everything is OK, isolate
one end of the connection, send some more data, and watch what TCP does. In this
case, we will use Wireshark to see how the connection progresses (see Figure 14-1).

Segments 1, 2, and 3 correspond to the normal TCP connection establish-
ment handshake. When the Web server completes the connection establishment,
it remains silent, awaiting a Web request. Before we provide the request, we isolate
(disconnect) the server host. The input at the client side is as follows:

Linux% telnet 10.0.0.10 80
Trying 10.0.0.10...
Connected to 10.0.0.10.
Escape character is '^]'.
GET / HTTP/1.0
Connection closed by foreign host.

This request cannot be delivered to the server, so it remains in TCP’s queue at
the client for quite some time. During this period, the netstat command on the
client indicates that the queue is not empty:

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 18 10.0.0.9:1043 10.0.0.10:www ESTABLISHED

ptg999

649

Figure 14-1 A simple example of TCP’s timeout and retransmission mechanism. The first retransmit occurs at time 42.954, followed
by other retransmissions at times 43.374, 44.215, 45.895, and 49.255. The intervals between successive retransmissions
are 206ms, 420ms, 841ms, 1.68s, and 3.36s, respectively. These times represent a doubling of the timeout between suc-
cessive retransmissions of the same segment.

ptg999

650 TCP Timeout and Retransmission

Here we see that 18 bytes are in the send queue, waiting to be delivered to
the Web server. The 18 bytes consist of the characters displayed in the preceding
request, plus two sets of carriage-return and newline characters. Details of the
rest of the output, including addresses and state information, are described in the
following paragraphs.

Segment 4 is the client’s first attempt to send the Web request, at 42.748s. The
next try is at 42.954, 0.206s later. Then it launches another try at 43.374, which
is 0.420s later. Additional retries (retransmissions) occur at 44.215, 45.895, and
49.255s. These represent time differences of 0.841, 1.680, and 3.360s, respectively.

This doubling of time between successive retransmissions is called a binary
exponential backoff, and we saw it in Chapter 13 during a failed TCP connection
establishment attempt. We shall explore it in more detail later. If we measure the
elapsed time between the initial request and the time at which the connection is
finally aborted, the total time is about 15.5 minutes. After that, the following error
message is displayed at the client:

Connection closed by foreign host.

Logically, TCP has two thresholds to determine how persistently it will attempt
to resend the same segment. These thresholds are described in the Host Require-
ments RFC [RFC1122], and we mentioned them briefly in Chapter 13. Threshold R1
indicates the number of tries TCP will make (or the amount of time it will wait) to
resend a segment before passing “negative advice” to the IP layer (e.g., causing it to
reevaluate the IP route it is using). Threshold R2 (larger than R1) dictates the point
at which TCP should abandon the connection. These thresholds are suggested to
be at least three retransmissions and 100s, respectively. For connection establish-
ment (sending SYN segments), these values may be different from those for data
segments, and the R2 value for SYN segments is required to be at least 3 minutes.

In Linux, the R1 and R2 values for regular data segments are available to be
changed by applications or can be changed using the system-wide configuration
variables net.ipv4.tcp_retries1 and net.ipv4.tcp_retries2, respec-
tively. These are measured in the number of retransmissions, and not in units of
time. The default value for tcp_retries2 is 15, which corresponds roughly to
13–30 minutes, depending on the connection’s RTO. The default value for net.
ipv4.tcp_retries1 is 3. For SYN segments, net.ipv4.tcp_syn_retries
and net.ipv4.tcp_synack_retries bounds the number of retransmissions
of SYN segments; their default value is 5 (roughly 180s). Windows also has a num-
ber of variables that affect the overall behavior of TCP, including values for R1 and
R2. These are all available by modifying values under the following registry keys
[WINREG]:

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters
HKLM\System\CurrentControlSet\Services\Tcpip6\Parameters

ptg999

Section 14.3 Setting the Retransmission Timeout (RTO) 651

Of immediate interest is the value called TcpMaxDataRetransmissions.
This corresponds to the value of tcp_retries2 in Linux. It has a default value of
5. Even in the simple retransmission example we have seen so far, TCP is required
to assign some timeout value to its retransmission timer to dictate how long it
should await an ACK for data it sends. If TCP were only ever used in one static
environment, it would be possible to determine one particular correct value for the
timeout value. Because TCP needs to operate in a large variety of environments,
which themselves may change over time, TCP needs to determine this timeout
value based on the current situation. For example, if a network link failed and traf-
fic were rerouted, the RTT would change (possibly in a major way). In other words,
TCP needs to dynamically determine its RTO. We consider this problem next.

14.3 Setting the Retransmission Timeout (RTO)

Fundamental to TCP’s timeout and retransmission procedures is how to set the
RTO based upon measurement of the RTT experienced on a given connection.
If TCP retransmits a segment earlier than the RTT, it may be injecting duplicate
traffic into the network unnecessarily. Conversely, if it delays sending until much
longer than one RTT, the overall network utilization (and single-connection
throughput) drops when traffic is lost. Knowing the RTT is made more compli-
cated because it can change over time, as routes and network usage vary. TCP
must track these changes and modify its timeout accordingly in order to maintain
good performance.

Because TCP sends acknowledgments when it receives data, it is possible to
send a byte with a particular sequence number and measure the time required to
receive an acknowledgment that covers that sequence number. Each such mea-
surement is called an RTT sample. The challenge for TCP is to establish a good
estimate for the range of RTT values given a set of samples that vary over time.
The second step is how to set the RTO based on these values. Getting this “right”
is very important for TCP’s performance.

The RTT is estimated for each TCP connection separately, and one retransmis-
sion timer is pending whenever any data is in flight that consumes a sequence
number (including SYN and FIN segments). The proper way to set this timer has
been a subject of research for years, and improvements are made on an occasional
basis. In this section, we will explore some of the more important milestones in the
evolution of the method used to compute the RTO. We begin with the first (“clas-
sic”) method, as detailed in [RFC0793].

14.3.1 The Classic Method

The original TCP specification [RFC0793] had TCP update a smoothed RTT estima-
tor (called SRTT) using the following formula:

SRTT ← α(SRTT) + (1 − α) RTTs

ptg999

652 TCP Timeout and Retransmission

Here, SRTT is updated based on both its existing value and a new sample,
RTTs. The constant α is a smoothing or scale factor with a recommended value
between 0.8 and 0.9. SRTT is updated every time a new measurement is made.
With the original recommended value for α, it is clear that 80% to 90% of each new
estimate is from the previous estimate and 10% to 20% is from the new measure-
ment. This type of average is also known as an exponentially weighted moving aver-
age (EWMA) or low-pass filter. It is convenient for implementation reasons because
it requires only one previous value of SRTT to be stored in order to keep the run-
ning estimate.

Given the estimator SRTT, which changes as the RTT changes, [RFC0793] rec-
ommended that the RTO be set to the following:

RTO = min(ubound, max(lbound,(SRTT)β))

where β is a delay variance factor with a recommended value of 1.3 to 2.0, ubound
is an upper bound (suggested to be, e.g., 1 minute), and lbound is a lower bound
(suggested to be, e.g., 1s) on the RTO. We shall call this assignment procedure the
classic method. It generally results in the RTO being set either to 1s, or to about twice
SRTT. For relatively stable distributions of the RTT, this was adequate. However,
when TCP was run over networks with highly variable RTTs (e.g., early packet
radio networks in this case), it did not perform so well.

14.3.2 The Standard Method

In [J88], Jacobson detailed problems with the classic method further—basically,
that the timer specified by [RFC0793] cannot keep up with wide fluctuations in the
RTT (and in particular, it causes unnecessary retransmissions when the real RTT is
much larger than expected). Unnecessary retransmissions add to the network load,
when the network is already loaded, as indicated by the increasing sample RTT.

To address this problem, the method used to assign the RTO was enhanced
to accommodate a larger variability in the RTT. This is accomplished by keeping
track of an estimate of the variability in the RTT measurements in addition to the
estimate of its average. Setting the RTO based on both a mean and a variability
estimator provides a better timeout response to wide fluctuations in the round-
trip times than just calculating the RTO as a constant multiple of the mean.

Figures 5 and 6 in [J88] show a comparison of the [RFC0793] RTO values for
some actual round-trip times, versus the RTO calculations we show next, which
take into account the variability of the round-trip times. If we think of the RTT
measurements made by TCP as samples of a statistical process, estimating both
the mean and variance (or standard deviation) helps to make better predictions
about the possible future values the process may take on. A good prediction for
the range of possible values for the RTT helps TCP determine an RTO that is nei-
ther too large nor too small in most cases.

ptg999

Section 14.3 Setting the Retransmission Timeout (RTO) 653

As described by Jacobson, the mean deviation is a good approximation to the
standard deviation, but it is easier and faster to compute. Calculating the standard
deviation requires executing a square root mathematical operation on the vari-
ance, which was considered to be too expensive for a fast TCP implementation.
(This is not the whole story, really. See the fascinating history of “the debate” in
[G04].) We therefore need running estimates of both the average as well as the
mean deviation. This leads to the following equations that are applied to each RTT
measurement M (called RTTs earlier):

srtt ← (1 - g)(srtt) + (g)M

rttvar ← (1 - h)(rttvar) + (h)(|M - srtt|)

RTO = srtt + 4(rttvar)

Here, the value srtt effectively replaces the earlier value of SRTT, and the value
rttvar, which becomes an EWMA of the mean deviation, is used instead of β to
help determine the RTO. This set of equations can also be written in a form that
requires a smaller number of operations when implemented on a conventional
computer:

Err = M − srtt

srtt ← srtt + g(Err)

rttvar ← rttvar + h(|Err| − rttvar)

RTO = srtt + 4(rttvar)

As suggested, srtt is the EWMA for the mean and rttvar is the EWMA for
the absolute error, |Err|. Err is the difference between the measured value M and
the current RTT estimator srtt. Both srtt and rttvar are used to calculate the RTO,
which varies over time. The gain g is the weight given to a new RTT sample M
in the average srtt and is set to 1/8. The gain h is the weight given to a new mean
deviation sample (absolute difference of the new sample M from the running aver-
age srtt) for the deviation estimate rttvar and is set to 1/4. The larger gain for the
deviation makes the RTO go up faster when the RTT changes. The values for g and
h are chosen as (negative) powers of 2, allowing the overall set of computations to
be implemented in a computer using fixed-point integer arithmetic with shift and
add operations instead of multiplies and divides.

Note

[J88] specified 2 * rttvar in the calculation of RTO, but after further research, [J90]
changed the value to 4 * rttvar, which is what appeared in the BSD Net/1 imple-
mentation and ultimately in the standard [RFC6298].

ptg999

654 TCP Timeout and Retransmission

Comparing the classic method with Jacobson’s, we see that the calculations of
the RTT average are similar (α is 1 minus the gain g) but a different gain is used.
Also, Jacobson’s calculation of the RTO depends on both the smoothed RTT and
the smoothed deviation, whereas the classic method used a simple multiple of the
smoothed RTT. This is the basis for the way many TCP implementations compute
their RTOs to this day, and because of its adoption as the basis for [RFC6298] we
shall call it the standard method, although there are slight refinements in [RFC6298],
which we shall now discuss.

14.3.2.1 Clock Granularity and RTO Bounds
TCP has a continuously running “clock” that is used when taking RTT measure-
ments. As with initial sequence numbers, real TCP connections do not start their
clocks at zero and the clock does not have infinite precision. Rather, the TCP clock
is usually the value of a variable that is updated as the system clock advances, not
necessarily one-for-one. The length of the TCP’s clock “tick” is called its granular-
ity. Traditionally, this value was relatively large (about 500ms), but more recent
implementations use finer-granularity clocks (e.g., 1ms for Linux).

The granularity can affect the details of making RTT measurements and also
how the RTO is set. In [RFC6298], the granularity is used to refine how updates to
the RTO are made. In addition, a lower bound is placed on the RTO. The equation
used is as follows:

RTO = max(srtt + max(G, 4(rttvar)), 1000)

where G is the timer granularity and 1000ms represents a lower bound on the total
RTO (recommended by rule (2.4) of [RFC6298]). Consequently, the RTO is always at
least 1s. An optional upper bound is also allowed, provided it has a value of at least 60s.

14.3.2.2 Initial Values
We have seen how the estimators are updated as time progresses, but we also need
to know how to set their initial values. Before the first SYN exchange, TCP has no
good idea what value to use for setting the initial RTO. It also does not know what
to use as the initial values for its estimators, unless the system has provided hints
at this information (some systems cache this information in the forwarding table;
see Section 14.9). According to [RFC6298], the initial setting for the RTO should be
1s, although 3s is used in the event of a timeout on the initial SYN segment. When
the first RTT measurement M is received, the estimators are initialized as follows:

srtt ← M

rttvar ← M/2

We now have enough detail to see how the estimators are initialized and main-
tained. The procedures depend on obtaining RTT samples, which would appear to
be straightforward. We now look at why this might not always be the case.

ptg999

Section 14.3 Setting the Retransmission Timeout (RTO) 655

14.3.2.3 Retransmission Ambiguity and Karn’s Algorithm
A problem measuring an RTT sample can occur when a packet is retransmitted.
Say a packet is transmitted, a timeout occurs, the packet is retransmitted, and an
acknowledgment is received for it. Is the ACK for the first transmission or the sec-
ond? This is an example of the retransmi ssion ambiguity problem. It happens because
unless the Timestamps option is being used, an ACK provides only the ACK num-
ber with no indication of which copy (e.g., first or second) of a sequence number
is being ACKed.

The paper [KP87] specifies that when a timeout and retransmission occur, we
cannot update the RTT estimators when the acknowledgment for the retransmit-
ted data finally arrives. This is the “first part” of Karn’s algorithm. It eliminates
the acknowledgment ambiguity problem by removing the ambiguity for purposes
of computing the RTT estimate. It is a requirement in [RFC6298].

If we were to simply ignore retransmitted segments entirely when setting the
RTO, however, we would be failing to take into account some useful information
being provided by the network (i.e., that it is probably experiencing some form of
inability to deliver packets quickly). In such cases, it would be beneficial to reduce
the load on the network by decreasing the retransmission rate, at least until pack-
ets are no longer being lost. This reasoning is the basis for the exponential backoff
behavior we saw in Figure 14-1.

 TCP applies a backoff factor to the RTO, which doubles each time a subsequent
retransmission timer expires. Doubling continues until an acknowledgment is
received for a segment that was not retransmitted. At that time, the backoff factor
is set back to 1 (i.e., the binary exponential backoff is canceled), and the retrans-
mission timer returns to its normal value. Doubling the backoff factor on subse-
quent retransmissions is the “second part” of Karn’s algorithm. Note that when
TCP times out, it also invokes congestion control procedures that alter its sending
rate. (Congestion control is discussed in detail in Chapter 16.) Karn’s algorithm,
then, really consists of two parts. As quoted directly from the 1987 paper [KP87]:

When an acknowledgement arrives for a packet that has been sent more than once
(i.e., is retransmitted at least once), ignore any round-trip measurement based on
this packet, thus avoiding the retransmission ambiguity problem. In addition, the
backed-off RTO for this packet is kept for the next packet. Only when it (or a suc-
ceeding packet) is acknowledged without an intervening retransmission will the
RTO be recalculated from SRTT.

This algorithm has been a required procedure in a TCP implementation for
some time (since [RFC1122]). There is an exception, however, when the TCP Time-
stamps option is being used (see Chapter 13). In that case, the acknowledgment
ambiguity problem can be avoided and the first part of Karn’s algorithm does not
apply.

ptg999

656 TCP Timeout and Retransmission

14.3.2.4 RTT Measurement (RTTM) with the Timestamps Option
The TCP Timestamps option (TSOPT), in addition to providing a basis for the
PAWS algorithm we saw in Chapter 13, can be used for round-trip time measurement
(RTTM) [RFC1323]. The basic format of the TSOPT was described in Chapter 13. It
allows the sender to include a 32-bit number in a TCP segment that is returned in
a corresponding acknowledgment.

The timestamp value (TSV) is carried in the TSOPT of the initial SYN and
returned in the TSER part of the TSOPT in the SYN + ACK, which is how the initial
values for srtt, rttvar, and RTO are determined. Because the initial SYN “counts”
as data (i.e., it is retransmitted if lost and consumes a sequence number), its RTT is
measured. TSOPTs are also carried in other segments, so the connection’s RTT can
be estimated on an ongoing basis. This seems straightforward enough but is made
more complex because TCP does not always provide an ACK for each segment it
receives. For example, TCP often provides one ACK for every other segment (see
Chapter 15) when large volumes of data are transferred. In addition, when data is
lost, reordered, or successfully retransmitted, the cumulative ACK mechanism of
TCP means that there is not necessarily any fixed correspondence between a seg-
ment and its ACK. To handle these challenges, TCPs that use this option (most of
them today—Linux and Windows included), employ the following algorithm for
taking RTT samples:

1. The sending TCP includes a 32-bit timestamp value in the TSV portion of
the TSOPT in each TCP segment it sends. This field contains the value of
the sender’s TCP “clock” when the segment is transmitted.

2. A receiving TCP keeps track of the received TSV value to send in the next
ACK it generates (in a variable typically named TsRecent) and the ACK num-
ber in the last ACK that it sent (in a variable named LastACK). Recall that
ACK numbers represent the next in-order sequence number the receiver
(i.e., sender of the ACK) expects to see.

3. When a new segment arrives, if it contains the sequence number matching
the value in LastACK (i.e., it is the next expected segment), the segment’s
TSV is saved in TsRecent.

4. Whenever the receiver sends an ACK, a TSOPT is included such that the
timestamp value contained in TsRecent is placed in the TSER part of the
TSOPT in the ACK.

5. A sender receiving an ACK that advances its window subtracts the TSER
from its current TCP clock and uses the difference as a sample value to
update its RTT estimators.

Timestamps are enabled by default in FreeBSD, Linux, and in response to sys-
tems that use them for later versions of Windows. In Linux, the system configura-
tion variable net.ipv4.tcp_timestamps dictates whether or not they are used

ptg999

Section 14.3 Setting the Retransmission Timeout (RTO) 657

(value 0 for not used, value 1 for used). In Windows, their use is controlled by the
Tcp1323Opts value in the registry area mentioned earlier. If it has the value 0,
timestamps are disabled. If its value is 2, timestamps are enabled. This key has
no default value (it is not in the registry by default). The default behavior is to use
timestamps if a peer uses them when initiating a connection.

14.3.3 The Linux Method

The Linux RTT estimation procedure works somewhat differently from the stan-
dard method. It uses a clock granularity of 1ms, which is finer than that of many
other implementations, along with the TSOPT. The combination of frequent mea-
surements of the RTT and the fine-grain clock contributes to a more accurate esti-
mate of the RTT but also tends to minimize the value of rttvar over time [LS00].
This happens because when a large enough number of mean deviation samples
are accumulated, they tend to cancel each other out. This is one consideration for
setting the RTO that differs somewhat from the standard method. Another relates
to the way the standard method increases rttvar when an RTT sample is signifi-
cantly below the existing RTT estimate srtt.

To understand the second issue better, recall that the RTO is usually set to the
value srtt + 4(rttvar). Consequently, any large change in rttvar causes the RTO to
increase, whether the latest RTT sample is greater or less than srtt. This is counter-
intuitive—if the actual RTT has dropped significantly, it is not desirable to have
the RTO increase as a consequence. Linux deals with this issue by limiting the
impact of significant downward drops in RTT sample values on the value of rttvar.
We will now look at the details for the procedure Linux uses to set its RTO; the
procedure addresses both of the issues just discussed.

Linux keeps the variables srtt and rttvar, as with the standard method, but
also two new ones called mdev and mdev_max. The value mdev keeps the running
estimate of the mean deviation using the standard algorithm for rttvar described
before. The value mdev_max holds the maximum value of mdev seen over the last
measured RTT and is never allowed to be less than 50ms. In addition, rttvar is
regularly updated to ensure that it is at least as large as mdev_max. Consequently,
the RTO never dips below 200ms.

Note

The minimum RTO can be changed. TCP_RTO_MIN, which is a kernel configu-
ration constant, can be changed prior to recompiling and installing the kernel.
Some Linux versions also allow it to be changed using the ip route command.
When TCP is used in data-center networks where RTTs may be a few microsec-
onds, 200ms minimum RTO can lead to severe performance degradations due to
slow TCP recovery after packet loss in local switches. This is the so-called TCP
“incast” problem. Various solutions exist to this problem, including modification of
the TCP timer granularity and minimum RTO to be on the order of microseconds
[V09]. Such small minimum RTO values are not recommended for use on the
global Internet.

ptg999

658 TCP Timeout and Retransmission

Linux updates rttvar to the value of mdev_max whenever the maximum
increases. It always sets the RTO to be the sum of srtt and 4(rttvar) and ensures
that the RTO never exceeds TCP_RTO_MAX, which defaults to 120s. See [SK02]
for more details. We can see how the details of all of this work in Figure 14-2. This
figure also shows how the Timestamps option operates.

Figure 14-2 The TCP Timestamps option carries a copy of the TCP clock at the sender. ACKs return
this value to the sender, which uses the difference (current clock - returned timestamp)
to update its srtt and rttvar estimates. For clarity, only one set of timestamps is depicted.
In this Linux system, the rttvar value is constrained to be at least 50 (millisecond) units,
and the RTO has a lower bound of 200ms.

ptg999

Section 14.3 Setting the Retransmission Timeout (RTO) 659

In Figure 14-2 we see a TCP connection using the Timestamps option as it
starts up. The sender is a Linux 2.6 system and the receiver is a FreeBSD 5.4 system.
Sequence numbers and timestamp values are depicted as relative values for clarity.
In addition, only the sender’s timestamps are shown. The figure is not drawn exactly
to temporal scale, in order to make the numerical values easier to read. Based on the
initial RTT measurement in this example, Linux makes the following updates:

• srtt = 16ms

• mdev = (16/2)ms = 8ms

• rttvar = mdev_max = max(mdev, TCP_RTO_MIN) = max(8, 50) = 50ms

• RTO = srtt + 4(rttvar) = 16 + 4(50) = 216ms

After the initial SYN exchange, the sender supplies an ACK for the receiver’s
SYN and the receiver responds with a window update. As neither of these packets
contains data (or SYN or FIN bit fields, which are counted as data), they are not
timed, and no RTT estimator update is performed when the window update arrives
back at the sender. Segments that do not contain data are not reliably delivered by
TCP, meaning they are not retransmitted if lost. These types of segments do not
require a retransmission timer to be set, because they are never retransmitted.

Note

It is worth mentioning that TCP options, by themselves, are also not retransmitted
or reliably delivered. Only when options are specifically arranged to be present in
data segments (including SYN and FIN segments) will options be retransmitted if
lost, and then only as a side effect.

When the application performs its first write, the sending TCP emits two seg-
ments, each with a TSV value equal to 127. The values are identical in these two
segments because the TCP clock has advanced less than 1ms (the sending TCP’s
clock granularity) between the first and second transmission. It is not unusual to
see the clock fail to advance, or advance by small amounts, when the sender is
sending multiple segments “back-to-back” in this fashion.

The LastACK variable at the receiver holds the ACK number last sent by the
receiver. In this example, LastACK starts with the value 1 because the last ACK
sent was the SYN + ACK packet sent during connection establishment. When the
first full-size segment arrives, its sequence number matches the LastACK value,
so the TsRecent variable is updated to contain the value 127 from the arriving seg-
ment’s TSV. The arrival of the second segment does not update the TsRecent vari-
able because its Sequence Number field does not match the value in LastACK. The
ACK sent in response to the arriving packets includes the value of TsRecent in its
TSER, and its transmission also causes the receiver to update the LastACK variable
to the ACK number, 2801.

ptg999

660 TCP Timeout and Retransmission

When this ACK arrives, TCP is able to make its second RTT measurement.
It takes the current TCP clock and subtracts the TSER value from the arriving
packet, forming the measurement m: m = 223 – 127 = 96. With this measurement,
the Linux TCP updates the connection variables as follows:

• mdev = mdev (3/4) + |m-srtt|(1/4) = 8(3/4) + |80|(1/4) = 26ms

• mdev_max = max(mdev_max, mdev) = max(50, 26) = 50ms

• srtt = srtt (7/8) + m(1/8) = 16(7/8) + 96(1/8) = 14 + 12 = 26ms

• rttvar = mdev_max = 50ms

• RTO = srtt + 4(rttvar) = 26 + 4(50) = 226ms

As mentioned previously, Linux TCP has several special modifications to the
classic RTT estimation algorithm that merit discussion. At the time the classic
algorithms were developed, the typical granularity of the TCP clock was 500ms
and the Timestamps option was not in widespread use. It was typical to take only
one RTT sample per window and update the estimators accordingly. This is still
used if timestamps are not available or not enabled.

If only one RTT sample is taken per window, the rttvar term changes relatively
slowly. With timestamps and per-packet timestamp measurements, many more
measurements can take place. Because it is common for the RTT to vary little from
one packet to the next in the same window of data, taking so many measurements
in a small period of time (e.g., when the window is large) can lead to the mean
deviation estimate being small (near zero, thanks to the law of large numbers
[F68]). To address this issue, Linux maintains the mdev variable as the running
mean deviation estimate but sets the RTO based on the rttvar, which is increased
to the maximum value of mdev during one window of data and also clamped to
be at least 50ms. Rttvar is allowed to decrease only one time, from one window to
the next.

The standard approach uses a heavy weight (factor of 4) given to the rttvar
term, and consequently the RTO tends to increase, even when the RTT is decreas-
ing. With a coarse-granularity clock (e.g., 500ms) this may have relatively little
effect because there are so few values the RTO can take on. However, with a
finer-granularity clock, such as the 1ms used by Linux, this can be of concern. To
address this issue, Linux handles the case where the RTT is decreasing by giving
less weight to the new sample if it is below the “lower end” of the estimated RTT
range (srtt - mdev). The complete relationship is as follows:

if (m < (srtt – mdev))

 mdev = (31/32) * mdev + (1/32) * |srtt - m|

else

 mdev = (3/4) * mdev + (1/4) * |srtt - m|

ptg999

Section 14.3 Setting the Retransmission Timeout (RTO) 661

The conditional determines if the new RTT sample is below the bottom of the
range of what an RTT measurement is expected to be. If so, the new sample indi-
cates that the connection may be experiencing a significantly reducing RTT. To
avoid increasing mdev (and consequently rttvar and RTO) in such cases, the new
mean deviation sample, |srtt - m|, is given an 8x reduced weight versus its nor-
mal weighting. Overall, this results in avoiding the problem of increasing the RTO
in cases where the RTT is decreasing. For an in-depth discussion of these issues,
please see [LS00] and [SK02]. In [RKS07], the authors evaluated the TCP RTT esti-
mation algorithms with various operating systems on 2.8 million TCP flows. They
conclude that the Linux estimator is the most effective among those studied, largely
because of its relatively quick convergence, but that it can also be tuned most effec-
tively by reducing the influence of RTT variance on setting the RTO.

Returning now to Figure 14-2, when ACK 7001 is generated at the receiver, we
see that its TSER contains a copy of a TSV value, not from the most recently arriv-
ing segment, but instead from the oldest segment that has not been ACKed. When
returned to the sender, this ACK causes the RTT sample to be measured from the
first of the two segments, rather than from the last one sent. This is how the time-
stamp algorithm works with delayed or otherwise erratic ACKs. When the RTT
sample from the oldest packet is measured, the RTT sample is taken to be the time
the sender should wait to expect an ACK, rather than the actual network RTT. This
is important because the sender needs to base its RTO on the rate at which it can
expect ACKs from the receiver, which may be less than the packet sending rate.

14.3.4 RTT Estimator Behaviors

As we have seen, substantial innovation and engineering have been invested in
how to set TCP’s RTO and how to estimate the RTT. Figure 14-3 shows how the
more popular estimators work, based on applying the standard and Linux algo-
rithms to a synthetic data set. The 1s RTO minimum recommended by [RFC6298]
has been removed for the standard method for illustration. Most real-world TCP
implementations today violate this directive anyhow [RKS07].

The graph shows a time-series plot of 200 synthetic values drawn from two
Gaussian probability distributions, N(200, 50) and N(50, 50). The first distribution
is used for the first 100 points, and the second is used for the second 100 points.
Any negative samples were made positive by sign inversion (applicable only to the
second distribution). Each plus (+) indicates a specific sample value. The signifi-
cant drop in sample values after sample 100 is apparent, and it is easy to see how
the Linux approach drops the RTO almost immediately after sample 100, while the
standard approach requires another 20 samples.

If we focus now on the Linux rttvar line, we can see that it remains relatively
constant. This is because of the 50ms minimum on the mdev_max value (and con-
sequently the rttvar value). This has the effect of making the Linux RTO value
always at least 200ms, and all unnecessary retransmissions are avoided (although
the timer may not fire as quickly, leading to reduced performance when packets

ptg999

662 TCP Timeout and Retransmission

are lost). The standard approach runs into potential problems at samples 78 and
191, where a spurious retransmission could take place. We shall discuss this problem
later.

14.3.5 RTTM Robustness to Loss and Reordering

The TSOPT has been shown to work properly when packets are not lost, whether
or not the receiver delays some ACKs. The algorithm also operates correctly in the
following cases:

• Out-of-order segments: When a receiver receives an out-of-order segment,
typically because of the loss of a previous segment, an ACK is supposed
to be generated immediately to help the fast retransmit algorithm (see
Section 14.5) operate. This ACK includes as its TSER value the TSV value
from the most recent in-order segment that arrived at the receiver (i.e., the
most recent one to advance the window, which is generally not the arriving

Figure 14-3 The Linux and standard RTO assignment and RTT estimation algorithms applied to
synthetic (pseudorandom) sample points. The first 100 points are drawn from an N(200,
50) distribution, and the second 100 are drawn from an N(50, 50) distribution with neg-
ative values turned positive. Linux avoids the increase in RTO when the mean drops
after sample 100. With Linux, the minimum RTO is effectively set to 200ms, so after
sample 120, the standard method is tighter. Linux avoids setting the RTO too low in all
cases for this example. The standard approach runs into potential problems at samples
78 and 191.

ptg999

Section 14.3 Setting the Retransmission Timeout (RTO) 663

out-of-order segment). This tends to cause the sender’s RTT sample values
to increase, leading to a corresponding increase in the sender’s RTO. When
packets are being reordered, this is beneficial because it tends to allow the
sender a bit more time to realize that packets are reordered rather than lost
before initiating a retransmission.

• Successful retransmissions: When a receiver receives a segment that fills a
hole in its receive buffer (e.g., because of the successful arrival of a retrans-
mission), the window generally jumps forward. In this case, the value
carried in the TSER of the corresponding ACK is from the most recently
arriving segment. This is useful because if an older segment’s TSV were
used, it might be more than one RTO’s worth of time old, leading to a large
unwanted bias in the sender’s RTT estimate.

The example in Figure 14-4 illustrates these points. Assume that three seg-
ments, each containing 1024 bytes, are received in the following order: segment 1
with bytes 1–1024, segment 3 with bytes 2049–3072, and then segment 2 with bytes
1025–2048.

Figure 14-4 When segments are reordered, the returned timestamp is that of the last segment to
advance the receiver’s window (not the largest timestamp to arrive at the receiver).
This biases the sender’s RTO toward overestimating the RTT during periods of packet
reordering and reduces its aggressiveness.

The ACKs sent back in Figure 14-4 are ACK 1025 with the timestamp from
segment 1 (a normal ACK for data that was expected), ACK 1025 with the time-
stamp from segment 1 (a duplicate ACK in response to the in-window but out-of-
sequence segment), then ACK 3073 with the timestamp from segment 2 (not the

ptg999

664 TCP Timeout and Retransmission

timestamp from segment 3). This has the effect of overestimating the RTT when
segments are reordered (or lost). A larger RTT estimate leads to a larger RTO, mak-
ing the sender less aggressive to retransmit. This is especially desirable in cases
where packet reordering occurs, because aggressive retransmissions are likely to
be spurious.

So, we have seen that the Timestamps option allows the sender to make esti-
mates of the RTT even when there are packet delays, losses, and reorderings. The
sender can measure the RTT using whatever values it wishes to in the option, but
these units must at least be proportional to real time and of a reasonable granu-
larity to be compatible with TCP sequence numbers and plausible link rates (see
[RFC1323] for more details on this). In particular, to be useful to the sender, the
TCP clock must “tick” at least once for any plausible RTT. On the other hand, it
should not change faster than once every 59ns. If it did, the 32-bit TSV value hold-
ing the TCP clock value could wrap around within the maximum time permitted
by the IP layer for a single packet to exist (255s) [ID1323b]. Assuming all this to be
correct, the RTO value can now be used to trigger retransmissions.

14.4 Timer-Based Retransmission

Once a sending TCP has established its RTO based upon measurements of the
time-varying values of effective RTT, whenever it sends a segment it ensures that
a retransmission timer is set appropriately. When setting a retransmission timer,
the sequence number of the so-called timed segment is recorded, and if an ACK
is received in time, the retransmission timer is canceled. The next time the sender
emits a packet with data in it, a new retransmission timer is set, the old one is
canceled, and the new sequence number is recorded. The sending TCP therefore
continuously sets and cancels one retransmission timer per connection; if no data
is ever lost, no retransmission timer ever expires.

Note

This observation proved somewhat of a surprise to the designers of the host
operating systems. In a typical operating system, timers are used to signal a wide
variety of events, and the implementation of the timer facility is tuned to efficiently
set up and expire timers (which invoke system functions). For TCP, however, the
requirement is for efficient setting and resetting or canceling of timers; if TCP is
working well, timers never expire.

When TCP fails to receive an ACK for a segment it has timed on a connec-
tion within the RTO, it performs a timer-based retransmission. We have seen this
already in Figure 14-1. TCP considers a timer-based retransmission as a fairly
major event; it reacts very cautiously when it happens by quickly reducing the rate
at which it sends data into the network. It does this in two ways. The first way is

ptg999

Section 14.4 Timer-Based Retransmission 665

to reduce its sending window size based on congestion control procedures (see
Chapter 16). The other way is to keep increasing a multiplicative backoff factor
applied to the RTO each time a retransmitted segment is again retransmitted. This
is implemented in the “second part” of Karn’s algorithm mentioned previously.
In particular, the RTO value is (temporarily) multiplied by the value γ to form the
backed-off timeout when multiple retransmissions of the same segment occur:

RTO = γRTO

In ordinary circumstances, γ has the value 1. On subsequent retransmissions,
γ is doubled: 2, 4, 8, and so forth. There is typically a maximum backoff factor that γ
is not allowed to exceed (Linux ensures that the used RTO never exceeds the value
TCP_RTO_MAX, which defaults to 120s). Once an acceptable ACK is received, γ is
reset to 1.

14.4.1 Example

We can see the action of the retransmission timer by creating a connection similar
to the one we looked at in Figures 14-1 and 14-2, but where we purposely drop the
segment with sequence number 1401 twice (see Figure 14-5).

For this example, we send the TCP segments through a special function that
is able to drop them a certain number of times based on their TCP sequence num-
bers. This adds a bit of extra delay to the RTT as compared with Figure 14-2. The
connection starts out as before, except when the pair of segments with sequence
numbers 1 and 1401 is sent, the second packet is dropped. Presumably the first of
these segments reaches the receiver, but the receiver is delaying ACKs and does not
respond immediately. Lacking a response in 219ms, the sender’s retransmission
timer expires, causing the packet with sequence number 1 to be resent (this time
with TSV value 577). Its arrival elicits an ACK from the receiver, which returns to
the sender. Because this ACK acknowledges data and moves the sender’s window
forward, its TSER value is used to update the srtt and RTO values to 34 and 234,
respectively.

The next three ACKs are generated in response to packets that arrive at the
receiver. The ACKs with the asterisks (*) are all duplicate ACKs and contain SACK
information. We will discuss the effect of duplicate ACKs and SACKs in Sections
14.5 and 14.6. For now, because these ACKs do not move the sender’s window for-
ward, their TSER values are not used.

With the eventual retransmission and arrival of segment 1401 (at TCP clock
time 911) at the receiver, the repair period is complete, and the receiver responds
with ACK number 7001, indicating that all data has been received.

The retransmission timer provides a form of “last-resort restart” for a TCP
connection that has ceased to move data through the network regularly. In most
cases it is unnecessary (and undesirable) to have retransmission timers trigger
retransmissions because the RTO is generally established to be larger than the

ptg999

666 TCP Timeout and Retransmission

Figure 14-5 Segment 1401 is forcibly dropped twice. This results in a timer-based retransmission at the sender.
The srtt, rttvar, and RTO values are updated only by a returning ACK that advances the sender’s
window. ACKs with asterisks (*) include SACK information.

ptg999

Section 14.5 Fast Retransmit 667

typical RTT (by about a factor of 2 or more), so a timer-based retransmission often
leads to underutilization of the network capacity. Fortunately, TCP has another
method for detecting and repairing lost packets, which is almost always more effi-
cient than timer-based retransmissions. It is called fast retransmit because it does
not require the expiration of a retransmission timer to be invoked.

14.5 Fast Retransmit

Fast retransmit [RFC5681] is a TCP procedure that can induce a packet retransmis-
sion based on feedback from the receiver instead of requiring a retransmission
timer to expire. As a result, packet loss can often be more quickly and efficiently
repaired using fast retransmit than with timer-based retransmission. A typical
TCP implements both fast retransmit and timer-based retransmission. Before
we describe fast retransmit in more detail, it is important to realize that TCP is
required to generate an immediate acknowledgment (a “duplicate ACK”) when
an out-of-order segment is received, and that the loss of a segment implies out-of-
order arrivals at the receiver when subsequent data arrives. When this happens, a
hole is created at the receiver. The sender’s job then becomes filling the receiver’s
holes as quickly and efficiently as possible.

The duplicate ACKs sent immediately when out-of-order data arrives are not
delayed. The reason is to let the sender know that a segment was received out of
order, and to indicate what sequence number is expected (i.e., where the hole is).
When SACK is used, these duplicate ACKs typically contain SACK blocks as well,
which can provide information about more than one hole.

A duplicate ACK (with or without SACK blocks) arriving at a sender is a
potential indicator that a packet sent earlier has been lost. As we discuss in Sec-
tion 14.8 in more detail, duplicate ACKs can also appear when there is packet
reordering in the network—if a receiver receives a packet for a sequence number
beyond the one it is expecting next, the expected packet could be either missing
or merely delayed. Because we generally do not know which one, TCP waits for a
small number of duplicate ACKs (called the duplicate ACK threshold or dupthresh)
to be received before concluding that a packet has been lost and initiating a fast
retransmit. Traditionally, dupthresh has been a constant (with value 3), but some
nonstandard implementations (including Linux) alter this value based on the cur-
rent measured level of reordering (see Section 14.8).

A TCP sender observing at least dupthresh duplicate ACKs retransmits one
or more packets that appear to be missing without waiting for a retransmission
timer to expire. It may also send additional data that has not yet been sent. This is
the essence of the fast retransmit algorithm. Packet loss inferred by the presence
of duplicate ACKs is assumed to be related to network congestion, and congestion
control procedures (discussed in Chapter 16) are invoked along with fast retrans-
mit. Without SACK, no more than one segment is typically retransmitted until
an acceptable ACK is received. With SACK, ACKs contain additional information

ptg999

668 TCP Timeout and Retransmission

allowing the sender to fill more than one hole in the receiver per RTT. We explore
the use of SACK with fast retransmit after illustrating an example of the basic fast
retransmit algorithm.

14.5.1 Example

In the following example, we create a TCP connection similar to the one from
Figure 14-4, except this time we drop segments 23801 and 26601 and SACK is dis-
abled. We will see how TCP uses the basic fast retransmit algorithm to repair these
holes. The sender is a Linux 2.6 system and the receiver is a FreeBSD 5.4 system.
The plot in Figure 14-6 from Wireshark’s Statistics | TCP Stream Graph | Time-
Sequence Graph (tcptrace) screen shows fast retransmit in action.

Fast Retransmit
Retransmit Due
to Partial ACK

Figure 14-6 In this plot, TCP sequence numbers are on the y-axis and time is on the x-axis. Outgo-
ing segments are displayed as darker line segments, and the incoming ACK numbers
appear as lighter gray segments. Fast retransmit is triggered by the arrival of the third
duplicate ACK at time 0.993s. This connection does not use SACK, so it is able to repair
at most only one hole per RTT. Additional duplicate ACKs arriving after the third cause
the sender to send new segments (not retransmissions). A “partial ACK” arriving at
time 1.32 causes the next retransmission.

ptg999

Section 14.5 Fast Retransmit 669

This plot indicates the relative sending sequence number on the y-axis and
the elapsed time on the x-axis. The black vertical I-shaped extents indicate the
span of sequence numbers present in the transmitted segment. The blue lines in
Wireshark (lower light gray line in Figure 14-6) indicate ACK numbers in return-
ing packets. At approximately time 1.0, sequence number 23801 is retransmitted
because of the fast retransmit algorithm (the initial transmission is not visible
because it was dropped by the process at the sender below the TCP protocol layer).
The retransmission is triggered by the arrival of the third duplicate ACK, as illus-
trated by the repeated lower line segments. The retransmit can also be seen using
the basic analysis screen of Wireshark (see Figure 14-7).

Figure 14-7 The TCP exchange showing relative sequence numbers. Packets 50 and 66 are retransmissions.
Packet 50 is retransmitted because of the fast retransmit algorithm, which triggers as a result of
three duplicate ACKs. No retransmission timer is required, so recovery is relatively quick.

The first line of Figure 14-7 (number 40) indicates the first time ACK 23801 is
received. Wireshark highlights (in red, appearing as black in Figure 14-7) other
“interesting” TCP packets. Such packets differ from what would be expected for

ptg999

670 TCP Timeout and Retransmission

a TCP transfer with no losses or other anomalies. We see window updates, dupli-
cate ACKs, and retransmissions. The window update at time 0.853 is an ACK with
a duplicate sequence number (because no data is being carried) but contains a
change to the TCP flow control window. The window changes from 231,616 bytes
to 233,016 bytes. Thus, it is not counted toward the three-duplicate-ACK threshold
required to initiate a fast retransmit. Window updates merely provide a copy of
the window advertisement. We will look at these in more detail in Chapter 15.

The packets arriving at times 0.890, 0.926, and 0.964 are all duplicate ACKs for
sequence number 23801. The arrival of the third of these duplicate ACKs triggers
the fast retransmit of segment 23801 at time 0.993. This can also be seen using
Wireshark’s Statistics | Flow Graph feature (see Figure 14-8).

Figure 14-8 The retransmission at time 0.993 is triggered by the fast retransmit algorithm after
receiving duplicate ACKs at times 0.890, 0.926, and 0.964. The ACK at time 0.853 is not
considered a duplicate ACK because it contains a window update.

ptg999

Section 14.6 Retransmission with Selective Acknowledgments 671

Here we see, in a slightly different way, the same fast retransmit at time 0.993.
We can also see the second retransmission that takes place at time 1.326. This
second retransmission takes place because of the arrival of the ACK at time 1.322.

The second retransmission is somewhat different from the first. When the
first retransmission takes place, the sending TCP notes the highest sequence num-
ber it had sent just before it performed the retransmission (43401 + 1400 = 44801).
This is called the recovery point. TCP is considered to be recovering from loss after
a retransmission until it receives an ACK that matches or exceeds the sequence
number of the recovery point. In this example, the ACKs at times 1.322 and 1.321
are not for 44801, but instead for 26601. This number is larger than the previous
highest ACK value seen (23801), but not enough to meet or exceed the recovery
point (44801). This type of ACK is called a partial ACK for this reason. When par-
tial ACKs arrive, the sending TCP immediately sends the segment that appears to
be missing (26601 in this case) and continues this way until the recovery point is
matched or exceeded by an arriving ACK. If permitted by congestion control pro-
cedures (see Chapter 16), it may also send new data it has not yet sent.

This example illustrates the behavior of a TCP not using SACKs, when using
fast retransmit, and when performing additional retransmits during recovery
based on the “NewReno” sending algorithm [RFC3782]. Because no SACKs are
being used, the sender can learn of at most one receiver hole per round-trip time,
indicated by the increase in the ACK number of returning packets, which can only
occur once a retransmission filling the receiver’s lowest-numbered hole has been
received and ACKed.

The precise behavior during recovery varies, depending on the type and
configuration of the TCP sender and receiver. This example illustrates a non-
SACK sender using the NewReno algorithm, a fairly common arrangement. With
NewReno, partial ACKs keep the sender in recovery as described. With older TCP
variants (plain Reno), there is no such concept, and any acceptable ACK brings the
TCP out of recovery. Doing so can present some performance problems for TCP,
and these are discussed in detail in Chapter 16. NewReno and SACK, which we
discuss next, are sometimes called “advanced loss recovery” techniques to distin-
guish them from the older approaches.

14.6 Retransmission with Selective Acknowledgments

With the standardization of the Selective Acknowledgment options in [RFC2018],
a SACK-capable TCP receiver is able to describe data it has received with sequence
numbers beyond the cumulative ACK Number field it sends in the primary portion
of the TCP header. As we mentioned before, gaps between the ACK number and
other in-window data cached at the receiver are called holes. Data with sequence
numbers beyond the holes are called out-of-sequence data because that data is not
contiguous, in terms of its sequence numbers, with the other data the receiver has
already received.

ptg999

672 TCP Timeout and Retransmission

The job of a sending TCP is to fill the holes in the receiver by retransmitting
any data the receiver is missing, yet to be as efficient as possible by not resend-
ing data the receiver already has. In many circumstances, the properly operating
SACK sender is able to fill these holes more quickly and with fewer unnecessary
retransmissions than a comparable non-SACK sender because it does not have to
wait an entire RTT to learn about additional holes. When the SACK option is being
used, an ACK can be augmented with up to three or four SACK blocks that contain
information about out-of-sequence data at the receiver. Each SACK block contains
two 32-bit sequence numbers representing the first and last sequence numbers
(plus 1) of a continuous block of out-of-sequence data being held at the receiver.

A SACK option that specifies n blocks has a length of 8n + 2 bytes, so the
40 bytes available to hold TCP options can specify a maximum of four blocks. It
is expected that SACK will often be used in conjunction with the TSOPT, which
takes an additional 10 bytes (plus 2 bytes of padding), meaning that SACK is typi-
cally able to include only three blocks per ACK.

With three distinct blocks, up to three holes can be reported to the sender. If
not limited by congestion control (see Chapter 16), all three could be filled within
one round-trip time using a SACK-capable sender. An ACK packet containing one
or more SACK blocks is sometimes called simply a “SACK.”

14.6.1 SACK Receiver Behavior

A SACK-capable receiver is allowed to generate SACKs if it has received the
SACK-Permitted option during the TCP connection establishment (see Chapter
13). Generally speaking, a receiver generates SACKs whenever there is any out-of-
order data in its buffer. This can happen either because data was lost in transit, or
because it has been reordered and newer data has arrived at the receiver before
older data. We consider the first case here and discuss the second one later.

The receiver places in the first SACK block the sequence number range con-
tained in the segment it has most recently received. Because the space in a SACK
option is limited, it is best to ensure that the most recent information is always
provided to the sending TCP, if possible. Other SACK blocks are listed in the order
in which they appeared as first blocks in previous SACK options. That is, they are
filled in by repeating the most recently sent SACK blocks (in other segments) that
are not subsets of another block about to be placed in the option being constructed.

The purpose of including more than one SACK block in a SACK option and
repeating these blocks across multiple SACKs is to provide some redundancy in
the case where SACKs are lost. If SACKs were never lost, [RFC2018] points out that
only one SACK block would be required per SACK for full SACK functionality.
Unfortunately, SACKs and regular ACKs are sometimes lost and are not retrans-
mitted by TCP unless they contain data (or the SYN or FIN control bit fields are
turned on).

ptg999

Section 14.6 Retransmission with Selective Acknowledgments 673

14.6.2 SACK Sender Behavior

Although it is necessary for a SACK-capable receiver to generate proper SACK
information to make full use of SACK, it is not sufficient for a TCP connection to
benefit from SACKs. A SACK-capable sender must be used that treats the SACK
blocks appropriately and performs selective retransmission by sending only those
segments missing at the receiver, a process also called selective repeat. The SACK
sender keeps track of any cumulative ACK information it receives (like any TCP
sender), plus any SACK information it receives. It uses the SACK information it
receives in ACKs generated at the receiver to avoid retransmitting data the receiver
reports that it already has. One way it can do this is to keep a “SACKed” indication
for each segment in its retransmission buffer that is set whenever a corresponding
range of sequence numbers arrives in a SACK.

When a SACK-capable sender has the opportunity to perform a retransmis-
sion, usually because it has received a SACK or seen multiple duplicate ACKs, it
has the choice of whether it sends new data or retransmits old data. The SACK
information provides the sequence number ranges present at the receiver, so the
sender can infer what segments likely need to be retransmitted to fill the receiver’s
holes. The simplest approach is to have the sender first fill the holes at the receiver
and then move on to send more new data [RFC3517] if the congestion control pro-
cedures allow. This is the most common approach.

There is one exception to this behavior. In [RFC2018], the current specification
for SACK options, SACK blocks are considered advisory. This means that a receiver
could provide a SACK to the sender indicating that some sequence numbers have
been received successfully and then change its mind later (“renege”). Because of
this, the SACK sender is not able to free its retransmission buffer of data it has
received only a SACK for; it is permitted to free a block of data only once the regu-
lar TCP ACK number of the receiver has passed by the highest sequence number of
this data. The rule also affects what TCP is supposed to do when a retransmission
timer expires. When a sending TCP initiates a timer-based retransmission, any
information regarding out-of-sequence data at the receiver derived from SACKs is
supposed to be forgotten. If out-of-sequence data remains at the receiver, the ACK
for the retransmitted segment contains additional SACK blocks the sender can
then use. Fortunately, reneging is rare and discouraged.

14.6.3 Example

To understand how the use of SACK alters the sender and receiver behaviors, we
repeat the preceding fast retransmit experiment with the same setup (dropping
sequence numbers 23601 and 28801), but this time the sender and receiver are
using SACK. To get an immediate idea of what happens, we again use Wireshark’s
TCP sequence number (tcptrace) plot function (see Figure 14-9).

ptg999

674 TCP Timeout and Retransmission

Figure 14-9 is similar to Figure 14-6, but the SACK sender has not had to wait
an RTT to retransmit lost segment 28801 after retransmitting segment 23601. This
is a result of the SACK information contained in the arriving ACKs. We will look
at those in detail later, but first we verify the negotiation of the SACK-Permitted
option during connection setup. This can be seen in Figure 14-10.

As expected, the receiver indicates its ability to use SACKs with the SACK-
Permitted option. The SYN packet from the sender, the first packet of the trace,
also contains an identical option. These options are present only at connection
setup, and thus they only ever appear in segments with the SYN bit field set.

Once the connection is permitted to use SACKs, packet loss generally causes
the receiver to start producing SACKs. For example, Wireshark shows the contents
of the SACK options when the first SACK is selected (see Figure 14-11).

First Retransmission Triggered
by First Duplicate ACK

Second Retransmission
Sent During Same RTT

Figure 14-9 Fast retransmit is triggered by the arrival of the first duplicate ACK containing SACK informa-
tion. The arrival of the next ACK allows the sender to learn of the second missing segment and
retransmit it within the same RTT.

ptg999

Section 14.6 Retransmission with Selective Acknowledgments 675

Figure 14-11 shows the series of events after the first SACK is received. Wire-
shark indicates SACK information by indicating the left edge and right edge of
the SACK range. Here we see that the ACK for 23801 contains a SACK block of
[25201,26601], indicating a hole at the receiver. The receiver is missing the sequence
number range [23801,25200], which corresponds to the single 1400-byte packet
starting with sequence number 23801. Note that this SACK is a window update
and is not counted as a duplicate ACK for the reasons discussed earlier. It does not
trigger fast retransmit.

The SACK arriving at time 0.967 contains two SACK blocks: [28001,29401] and
[25201,26601]. Recall that the first SACK blocks from previous SACKs are repeated
in later positions in subsequent SACKs for robustness against ACK loss. This SACK
is a duplicate ACK for sequence number 23801 and suggests that the receiver now
requires two full-size segments starting with sequence numbers 23801 and 26601.
The sender reacts immediately by initiating fast retransmit, but because of conges-
tion control procedures (see Chapter 16), the sender sends only one retransmis-
sion, for segment 23801. With the arrival of two additional ACKs, the sender is
permitted to send its second retransmission, for segment 26601.

Figure 14-10 The SACK-Permitted option is exchanged in SYN segments to indicate the capability to gener-
ate and process SACK information. Most modern TCPs support the MSS, Timestamps, Window
Scale, and SACK-Permitted options during connection establishment.

ptg999

676 TCP Timeout and Retransmission

A TCP SACK sender uses the recovery point idea introduced with NewReno.
In this example, the highest sequence number sent prior to the retransmission is
43400, which is lower than in the NewReno example from Figure 14-5. For this
implementation of SACK fast retransmit, three duplicate ACKs are not required;
the TCP initiates its retransmission earlier. The recovery exit is essentially the
same, though. Once the ACK for sequence number 43401 is received at time 1.3958,
recovery is complete.

It is interesting to note that the potential for better control of the sender using
SACKs does not always lead to increased overall throughput performance. This
fact is suggested by looking at the two examples we have seen. The NewReno
(non-SACK) sender completes the data transfer of 131,074 bytes in 3.592s. The
SACK sender completes it in 3.674s. These two measurements are not directly com-
parable, however, because they did not face precisely the same network conditions
(this was not a simulation but rather a live test), although the conditions were
largely similar. The benefits of SACKs are more pronounced when the RTT is large
and packet loss is severe. Under such circumstances, the benefits of being able to
fill more than one hole per RTT are likely to be more significant.

Figure 14-11 The first ACK containing SACK information indicates an out-of-order block with
sequence number range 25201 to 26601.

ptg999

Section 14.7 Spurious Timeouts and Retransmissions 677

14.7 Spurious Timeouts and Retransmissions

Under a number of circumstances, TCP may initiate a retransmission even when
no data has been lost. Such undesirable retransmissions are called spurious retrans-
missions and are caused by spurious timeouts (timeouts firing too early) and other
reasons such as packet reordering, packet duplication, or lost ACKs. Spurious
timeouts can occur when the real RTT has recently increased significantly, beyond
the RTO. This happens more frequently in environments where lower-layer pro-
tocols have widely varying performance (e.g., wireless) and was a concern men-
tioned in [KP87]. Here we focus primarily on spurious retransmissions caused by
spurious timeouts. The effects of reordering and duplication on TCP are deferred
until the following section.

A number of approaches have been suggested to deal with spurious time-
outs. They generally involve a detection algorithm and a response algorithm. The
detection algorithm attempts to determine whether a timeout or timer-based
retransmission was spurious. The response algorithm is invoked once a timeout
or retransmission is deemed spurious. Its purpose is to undo or mitigate some
action that is otherwise normally performed by TCP when a retransmission timer
expires. In this chapter we discuss only the segment retransmission behavior. The
response algorithms typically involve congestion control changes as well, and
those aspects are discussed in Chapter 16.

Figure 14-12 illustrates a highly simplified exchange that shows what happens
to a basic TCP when a spurious retransmission occurs because of a delay spike in
the ACK path after segment 8 is sent. After the retransmission of segment 5 occurs
because of a timeout, there are still ACKs in flight from the original transmis-
sions of segments 5 through 8. In this illustration, sequence and ACK numbers are
based on packets instead of bytes, with ACKs indicating what has already arrived
instead of what is expected next, for simplicity. When they arrive, TCP begins to
retransmit additional segments that have already been received, starting with the
segment following the ACKed segment. This causes TCP to behave in an unde-
sirable “go-back-N” behavior pattern and in turn causes a collection of duplicate
ACKs to be generated and returned to the sender, possibly triggering fast retrans-
mit as well. Several techniques have been developed to mitigate these problems.
We now have a look at some of the more popular ones.

14.7.1 Duplicate SACK (DSACK) Extension

With a non-SACK TCP, an ACK can indicate only the highest in-sequence segment
back to the sender. With SACK, it can signal other (out-of-order) segments as well.
The basic SACK mechanism we discussed previously does not say what happens
when a receiver receives duplicate data segments. Such segments can be the result
of spurious retransmissions, duplication within the network, or other reasons.

ptg999

678 TCP Timeout and Retransmission

DSACK or D-SACK, which stands for duplicate SACK [RFC2883], is a rule,
applied at the SACK receiver and interoperable with conventional SACK senders,
that causes the first SACK block to indicate the sequence numbers of a duplicate
segment that has arrived at the receiver. The main purpose of DSACK is to deter-
mine when a retransmission was not necessary and to learn additional facts about
the network. With it, a sender has at least the possibility of inferring whether
packet reordering, loss of ACKs, packet replication, and/or spurious retransmis-
sions are taking place.

The implementation of DSACK is compatible with conventional SACK in the
sense that no separate negotiation is required to make use of it. For it to work
properly, a change is made to the content of SACKs sent from the receiver and
a corresponding change to the logic at the sender. If a non-DSACK TCP shares
a connection with a DSACK TCP, they will interoperate, but without any of the
benefits of DSACK.

The change to the SACK receiver is to allow a SACK block to be included even
if it covers sequence numbers below (or equal to) the cumulative ACK Number field.

Figure 14-12 A delay spike occurs after the transmission of packet 8, causing a spurious retransmis-
sion timeout and retransmission of packet 5. After retransmission, an ACK for the first
copy of 5 arrives. The retransmission for 5 creates a duplicate packet at the receiver, fol-
lowed by an undesirable “go-back-N” behavior whereby packets 6, 7, and 8 are retrans-
mitted even though they are already present at the receiver.

ptg999

Section 14.7 Spurious Timeouts and Retransmissions 679

This was not the original intent of SACK, but its capability is well matched to this
purpose. (It applies equally well in cases where the DSACK information is above
the cumulative ACK Number field; this happens for duplicated out-of-order seg-
ments.) DSACK information is included in only a single ACK, and such an ACK
is called a DSACK. DSACK information is not repeated across multiple SACKs as
conventional SACK information is. As a consequence, DSACKs are less robust to
ACK loss than regular SACKs.

Exactly what a sender given DSACK information is supposed to do with it
is not specified by [RFC2883]. An experimental algorithm is given in [RFC3708]
for detecting spurious retransmissions using DSACK but does not provide any
response algorithm. One option it mentions is to use the Eifel Response Algo-
rithm, which we investigate in Section 14.7.4 after introducing a few other detec-
tion algorithms.

14.7.2 The Eifel Detection Algorithm

At the beginning of this chapter, we discussed the retransmission ambiguity prob-
lem. The experimental Eifel Detection Algorithm [RFC3522] deals with this problem
using the TCP TSOPT to detect spurious retransmissions. After a retransmission
timeout occurs, Eifel awaits the next acceptable ACK. If the next acceptable ACK
indicates that the first copy of a retransmitted packet (called the original transmit)
was the cause for the ACK, the retransmission is considered to be spurious.

The Eifel Detection Algorithm is able to detect spurious behavior earlier than
the approach using only DSACK because it relies on ACKs generated as a result
of packets arriving before loss recovery is initiated. DSACKs, conversely, are able
to be sent only after a duplicate segment has arrived at the receiver and able to be
acted upon only after the DSACK is returned to the sender. Detecting spurious
retransmissions early can offer advantages, because it allows the sender to avoid
most of the go-back-N behavior mentioned earlier.

The mechanics of the Eifel Detection Algorithm are simple. It requires the use
of the TCP TSOPT. When a retransmission is sent (either a timer-based retransmis-
sion or a fast retransmit), the TSV value is stored. When the first acceptable ACK
covering its sequence number is received, the incoming ACK’s TSER is examined.
If it is smaller than the stored value, the ACK corresponds to the original transmis-
sion of the packet and not the retransmission, implying that the retransmission
must have been spurious. This approach is fairly robust to ACK loss as well. If an
ACK is lost, any subsequent ACKs still have TSER values less than the stored TSV
of the retransmitted segment. Thus, a retransmission can be deemed spurious as a
result of any of the window’s worth of ACKs arriving, so a loss of any single ACK
is not likely to cause a problem.

The Eifel Detection Algorithm can be combined with DSACKs. This can be
beneficial in the situation where an entire window’s worth of ACKs are lost but
both the original transmit and retransmission have arrived at the receiver. In this
particular case, the arriving retransmit causes a DSACK to be generated. The Eifel

ptg999

680 TCP Timeout and Retransmission

Detection Algorithm would by default conclude that the retransmission is spuri-
ous. It is thought, however, that if so many ACKs are being lost, allowing TCP
to believe the retransmission was not spurious is useful (e.g., to induce it to start
sending more slowly—a consequence of the congestion control procedures we dis-
cuss in Chapter 16). Thus, arriving DSACKs cause the Eifel Detection Algorithm to
conclude that the corresponding retransmission is not spurious.

14.7.3 Forward-RTO Recovery (F-RTO)

Forward-RTO Recovery (F-RTO) [RFC5682] is a standard algorithm for detecting
spurious retransmissions. It does not require any TCP options, so when it is imple-
mented in a sender, it can be used effectively even with an older receiver that does
not support the TCP TSOPT. It attempts to detect only spurious retransmissions
caused by expiration of the retransmission timer; it does not deal with the other
causes for spurious retransmissions or duplications mentioned before.

F-RTO makes a modification to the action TCP ordinarily takes after a timer-
based retransmission. These retransmissions are for the smallest sequence number
for which no ACK has yet been received. Ordinarily, TCP continues sending addi-
tional adjacent packets in order as additional ACKs arrive. This is the go-back-N
behavior described previously.

F-RTO modifies the ordinary behavior of TCP by having TCP send new (so far
unsent) data after the timeout-based retransmission when the first ACK arrives.
It then inspects the second arriving ACK. If either of the first two ACKs arriv-
ing after the retransmission was sent are duplicate ACKs, the retransmission is
deemed OK. If they are both acceptable ACKs that advance the sender’s window,
the retransmission is deemed to have been spurious. This approach is fairly intui-
tive. If the transmission of new data results in the arrival of acceptable ACKs, the
arrival of the new data is moving the receiver’s window forward. If such data is
only causing duplicate ACKs, there must be one or more holes at the receiver. In
either case, the reception of new data at the receiver does not harm the overall data
transfer performance (provided there are sufficient buffers at the receiver).

14.7.4 The Eifel Response Algorithm

The Eifel Response Algorithm [RFC4015] is a standard set of operations to be exe-
cuted by a TCP once a retransmission has been deemed spurious. Because the
response algorithm is logically decoupled from the Eifel Detection Algorithm, it
can be used with any of the detection algorithms we just discussed. The Eifel
Response Algorithm was originally intended to operate for both timer-based and
fast retransmit spurious retransmissions but is currently specified only for timer-
based retransmissions.

Although the Eifel Response Algorithm can be used with any of the detec-
tion algorithms, it behaves somewhat differently based on whether a spurious
timeout was detected early (e.g., by the Eifel or F-RTO detection algorithms) or

ptg999

Section 14.7 Spurious Timeouts and Retransmissions 681

later (e.g., by DSACKs). The former cases are called spurious timeouts and operate
by inspecting ACKs for original transmissions. The latter are called late spurious
timeouts and are based on ACKs for retransmissions invoked as a result of (spuri-
ous) timeouts.

The response algorithm operates on the first retransmission timer event only.
It is not executed if a subsequent timeout occurs before recovery is complete. After
the retransmission timer expires, it takes a snapshot of the values in srtt and rttvar
and records them in new variables srtt_prev and rttvar_prev as follows:

srtt_prev = srtt + 2(G)

rttvar_prev = rttvar

These variables are assigned on any timer expiration but are used only when the
timeout is determined to be spurious. If so, they help form the basis for setting
the new RTO. In the formula, the value G represents the TCP clock granularity.
srtt_prev is set to srtt plus twice the timer granularity based on the following chain
of reasoning: The spurious timeout may have been invoked because the value of
srtt is just a tad too small. If it were just a bit larger, no timeout would have hap-
pened. Adding the term 2(G) to srtt deals with this situation by storing a slightly
increased value into srtt_prev, which is used later for setting the RTO.

After the srtt_prev and rttvar_prev values are stored, one of the detection algo-
rithms is invoked. The result of running the algorithm produces a value assigned
to a special variable called SpuriousRecovery. If the algorithm detects a spurious
timeout, SpuriousRecovery is set to SPUR_TO. If it detects a late spurious timeout, it
sets SpuriousRecovery to LATE_SPUR_TO. Otherwise, the timeout is not spurious,
and ordinary TCP timeout processing continues.

If SpuriousRecovery is SPUR_TO, TCP can take action before recovery is com-
plete. It does this by adjusting the sequence number of the next segment it is about
to send (called SND.NXT) to the first new, unsent segment (called SND.MAX).
This avoids the undesirable go-back-N behavior after the initial retransmission
discussed previously. If the detection algorithm detects a late spurious timeout,
an ACK for the initial retransmission has already taken place, so SND.NXT is not
changed. In either case, however, the congestion control state is reset (see Chapter
16). In addition, once an acceptable ACK is received for a segment transmitted
after the retransmission timer expires, the values of srtt, rttvar, and RTO can be
updated as follows:

srtt ← max(srtt_prev, m)

rttvar ← max(rttvar_prev, m/2)

RTO = srtt + max(G, 4(rttvar))

Here, m is a sample of the RTT of the connection based on the arrival of the
first acceptable ACK for data sent after the timeout. The motivation for these

ptg999

682 TCP Timeout and Retransmission

modifications is that the real RTT may have changed so significantly that the RTT
history in the current estimators is no longer a valid basis for setting the RTO. If
the real path RTT has increased abruptly (e.g., because of wireless handoff to a
new base station), the current srtt and rttvar values are likely to be too small and
should be reinitialized. On the other hand, an increase in path RTT could be only
temporary, implying that reinitializing srtt and rttvar might not be such a good
idea because they are likely to be approximately correct.

These equations try to balance between the two situations by reassigning the
moving averages srtt and rttvar only if the new RTT samples are larger. Doing so
effectively throws out the previous history of the RTT (and RTT variance). The val-
ues of srtt and rttvar can only increase as a result of the response algorithm. If the
RTT does not appear to be increasing, the running estimators remain unchanged,
essentially ignoring the fact that a timeout has occurred. The RTO is reassigned
in the conventional way in any case, and a new retransmission timer is set for this
timeout value.

14.8 Packet Reordering and Duplication

Most of the issues discussed so far relate to how TCP handles packet loss. This
is a relatively common issue, and a great deal of work has gone into making TCP
robust to packet drops. As we began to see in the last section, other packet delivery
anomalies such as duplication and reordering can also affect TCP’s operation. In
both of these cases, we wish TCP to be able to distinguish between packets that
are reordered or duplicated and those that are lost. As we shall now see, this is
sometimes not so simple.

14.8.1 Reordering

Packet reordering can occur in an IP network because IP provides no guarantee
that relative ordering between packets is maintained during delivery. This can be
beneficial (to IP at least), because IP can choose another path for traffic (e.g., that is
faster) without having to worry about the consequences that doing so may cause
traffic freshly injected into the network to pass ahead of older traffic, resulting in
the order of packet arrivals at the receiver not matching the order of transmission
at the sender. There are other reasons packet reordering may occur. For example,
some high-performance routers employ multiple parallel data paths within the
hardware [BPS99], and different processing delays among packets can lead to a
departure order that does not match the arrival order.

Reordering may take place in the forward path or the reverse path of a TCP
connection (or in some cases both). The reordering of data segments has a some-
what different effect on TCP as does reordering of ACK packets. Recall that
because of asymmetric routing, it is frequently the case that ACKs travel along

ptg999

Section 14.8 Packet Reordering and Duplication 683

different network links (and through different routers) from data packets on the
forward path.

 When traffic is reordered, TCP can be affected in several ways. If reordering
takes place in the reverse (ACK) direction, it causes the sending TCP to receive
some ACKs that move the window significantly forward followed by some evi-
dently old redundant ACKs that are discarded. This can lead to an unwanted
burstiness (instantaneous high-speed sending) behavior in the sending pattern
of TCP and also trouble in taking advantage of available network bandwidth,
because of the behavior of TCP’s congestion control (see Chapter 16).

If reordering occurs in the forward direction, TCP may have trouble distin-
guishing this condition from loss. Both loss and reordering result in the receiver
receiving out-of-order packets that create holes between the next expected packet
and the other packets received so far. When reordering is moderate (e.g., two adja-
cent packets switch order), the situation can be handled fairly quickly. When reor-
derings are more severe, TCP can be tricked into believing that data has been
lost even though it has not. This can result in spurious retransmissions, primarily
from the fast retransmit algorithm.

Recall from previous discussions that the fast retransmit algorithm relies
on observing duplicate acknowledgments from a TCP receiver in order to infer
the loss of a packet and to initiate a retransmission without having to wait for a
retransmission timer to expire. Because a TCP receiver is supposed to immedi-
ately ACK any out-of-sequence data it receives in order to help induce fast retrans-
mit to be triggered on packet loss, any packet that is reordered within the network
causes a receiver to produce a duplicate ACK. If fast retransmit were to be invoked
whenever any duplicate ACK is received at the sender, a large number of unnec-
essary retransmissions would occur on network paths where a small amount of
reordering is common. To handle this situation, fast retransmit is triggered only
after the duplicate threshold (dupthresh) has been reached.

The effect is illustrated in Figure 14-13. The left portion of the figure indicates
how TCP behaves with light reordering, where dupthresh is set to 3. In this case, the
single duplicate ACK does not affect TCP. It is effectively ignored and TCP over-
comes the reordering. The right-hand side indicates what happens when a packet
has been more severely reordered. Because it is three positions out of sequence,
three duplicate ACKs are generated. This invokes the fast retransmit procedure in
the sending TCP, producing a duplicate segment at the receiver.

The problem of distinguishing loss from reordering is not trivial. Dealing
with it involves trying to decide when a sender has waited long enough to try to
fill apparent holes at the receiver. Fortunately, severe reordering on the Internet is
not common [J03], so setting dupthresh to a relatively small number (such as the
default of 3) handles most circumstances. That said, there are a number of research
projects that modify TCP to handle more severe reordering [LLY07]. Some of these
adjust dupthresh dynamically, as does the Linux TCP implementation.

ptg999

684 TCP Timeout and Retransmission

14.8.2 Duplication

Although rare, the IP protocol may deliver a single packet more than one time.
This can happen, for example, when a link-layer network protocol performs a
retransmission and creates two copies of the same packet. When duplicates are
created, TCP can become confused in some of the ways we have seen already.
Consider the case shown in Figure 14-14 in which packet number 3 has been dupli-
cated three times.

Figure 14-13 Mild reordering (left) is overcome by ignoring a small number of duplicate ACKs.
When reordering is more severe (right), as in this case where packet 4 is three places
out of sequence, a spurious fast retransmit can be triggered.

Figure 14-14 Packet duplication in the network has caused a spurious fast retransmission due to the
presence of duplicate ACKs.

ptg999

Section 14.9 Destination Metrics 685

As we can see, the effect of packet 3 being duplicated is to produce a series
of duplicate ACKs from the receiver. This is enough to trigger a spurious fast
retransmit, as the non-SACK sender may mistakenly believe that packets 5 and
6 have arrived earlier. With SACK (and DSACK, in particular) this is more easily
diagnosed at the sender. With DSACK, each of the duplicate ACKs for A3 con-
tains DSACK information that segment 3 has already been received. Furthermore,
none of them contains an indication of any out-of-order data, meaning the arriv-
ing packets (or their ACKs) must have been duplicates. TCP can often suppress
spurious retransmissions in such cases.

14.9 Destination Metrics

As we have seen, TCP “learns” the characteristics of the network path between
the sender and the receiver over time. The learning is kept in state variables at
the sender such as srtt and rttvar. Some TCP implementations also keep track of
an estimate of the amount of packet reordering that has occurred recently along
a path. Historically, this learning is lost once the connection is closed. That is, if
a new TCP connection is opened to the same receiver, it must start to determine
values for the state variables from scratch.

Newer TCP implementations maintain many of the metrics that we have
described in this chapter in a routing or forwarding table entry or other system-
wide data structure that exists even after TCP connections are closed. When a
new connection is created, TCP consults the data structure to see if there is any
preexisting information regarding the path to the destination host with which it
will be communicating. If so, initial values for srtt, rttvar, and so on can be initial-
ized to some value based on previous, relatively recent experience. When a TCP
connection closes down, it has the opportunity to update the statistics. This can be
accomplished by replacing the existing statistics or updating them in some other
way. In the case of Linux 2.6, the values are updated to be the maximum of the
existing values and those measured by the most recent TCP. These values can be
inspected using the ip program available from the iproute2 suite of tools [IPR2]:

Linux% ip route show cache 132.239.50.184
132.239.50.184 from 10.0.0.9 tos 0x10 via 10.0.0.1 dev eth0
 cache mtu 1500 rtt 29ms rttvar 29ms cwnd 2 advmss 1460 hoplimit 64

This command shows information cached about previous connections with a
particular DSCP value (16, indicating CS2 but represented using the older “ToS”
byte terminology with value 0x10) between the local system and 132.239.50.184
using the IPv4 next hop 10.0.0.1 and accessed using the network device eth0.
We can see packet size information (the path MTU learned with PMTUD, the MSS
advertised by the remote side), the maximum number of hops to use (for IPv6; not

ptg999

686 TCP Timeout and Retransmission

applicable here), values of srtt and rttvar, along with congestion control informa-
tion such as cwnd that we discuss in Chapter 16.

14.10 Repacketization

When TCP times out and retransmits, it does not have to retransmit the identi-
cal segment. Instead, TCP is allowed to perform repacketization, sending a bigger
segment, which can increase performance. (Naturally, this bigger segment cannot
exceed the MSS announced by the receiver and should not exceed the path MTU.)
This is allowed in the protocol because TCP identifies the data being sent and
acknowledged by its byte number, not its segment (or packet) number.

TCP’s ability to retransmit a segment with a different size from the original
segment provides another way of addressing the retransmission ambiguity prob-
lem. This has been the basis of an idea called STODER [TZZ05] that uses repack-
etization to detect spurious timeouts.

We can easily see repacketization in action. We use our sock program as a
server and connect to it with Telnet. First we type the line hello there. This
produces a segment of 13 data bytes, including the carriage-return and newline
characters produced when the Enter key is pressed. We then disconnect the net-
work and type line number 2 (14 bytes, including the newline). We then wait
about 45s, type and 3, and terminate the connection:

Linux% telnet 169.229.62.97 6666
hello there (first line gets sent OK)
 (then we disconnect the Ethernet cable)
line number 2 (this line gets retransmitted)
and 3 (reconnect Ethernet)
^] telnet> quit

We can see the results using tcpdump:t

1 19:51:47.674418 IP 10.0.0.7.1029 > 169.229.62.97.6666:
 P 1:14(13) ack 1 win 5840
 <nop,nop,timestamp 2343578137 596377728>

2 19:51:47.788992 IP 169.229.62.97.6666 > 10.0.0.7.1029:
 . ack 14 win 58254 <nop,nop,timestamp 596378252 2343578137>

3 19:52:35.130837 IP 10.0.0.7.1029 > 169.229.62.97.6666:
 FP 29:36(7) ack 1 win 5840
 <nop,nop,timestamp 2343602439 596378252>

4 19:52:35.146358 IP 169.229.62.97.6666 > 10.0.0.7.1029:
 . ack 14 win 58254
 <nop,nop,timestamp 596382987 2343578137,nop,nop,
 sack sack 1 {29:36}>

"hello there\r\n"

"and 3\r\n"

ptg999

Section 14.11 Attacks Involving TCP Retransmission 687

5 19:52:39.414253 IP 10.0.0.7.1029 > 169.229.62.97.6666:
 FP 14:36(22) ack 1 win 5840
 <nop,nop,timestamp 2343604633 596382987>

6 19:52:39.429228 IP 169.229.62.97.6666 > 10.0.0.7.1029:
 . ack 37 win 58248 <nop,nop,timestamp 596383416 2343604633>

7 19:52:39.429696 IP 169.229.62.97.6666 > 10.0.0.7.1029:
 F 1:1(0) ack 37 win 58254
 <nop,nop,timestamp 596383416 2343604633>

8 19:52:39.430119 IP 10.0.0.7.1029 > 169.229.62.97.6666:
 . ack 2 win 5840 <nop,nop,timestamp 2343604641 596383416>

In this trace, the initial SYN exchange has been removed. The first two seg-
ments contain the data strings hello there and its acknowledgment. The next
packet in the trace is not in sequence: it starts with sequence number 29 and con-
tains the string and 3 (7 bytes). Its returning ACK contains ACK number 14 but
a SACK block with relative sequence numbers {29,36}. The middle sequence of
characters has been lost. TCP retransmits this but uses a larger packet, containing
sequence numbers 14:36. Thus, we can see how the retransmission for sequence
number 14 resulted in a repacketization to form a larger packet of size 22 bytes.
Interestingly, this packet overlaps the data present in the SACK block and also car-
ries the FIN bit field, indicating that it is the last data of the connection.

14.11 Attacks Involving TCP Retransmission

There is a class of DoS attack called low-rate DoS attacks [KK03]. In such an attack,
an attacker sends bursts of traffic to a gateway or host, causing the victim sys-
tem to experience a retransmission timeout. Given an ability to predict when the
victim TCP will attempt to retransmit, the attacker generates a burst of traffic at
each retransmission attempt. As a consequence, the victim TCP perceives conges-
tion in the network, throttles its sending rate to near zero, keeps backing off its
RTO according to Karn’s algorithm, and effectively receives very little network
throughput. The proposed mechanism to deal with this type of attack is to add
randomization to the RTO, making it difficult for the attacker to guess the precise
times when a retransmission will take place.

A related but distinct form of DoS attack involves slowing a victim TCP’s seg-
ments down so that the RTT estimate is too high. Doing so causes the victim TCP
to be less aggressive in retransmitting its own packets when they are lost. The
opposite attack is also possible: an attacker forges ACKs when data has been trans-
mitted but has not actually arrived at the receiver yet. In this case, the attacker can
cause the victim TCP to believe that the connection RTT is significantly smaller
than it really is, leading to an overaggressive TCP that creates numerous unwanted
retransmissions.

“line number2\r\n
and 3\r\n”

ptg999

688 TCP Timeout and Retransmission

14.12 Summary

This chapter provided a detailed look at TCP’s timeout and retransmission strat-
egy. Our first example illustrated a case in which we simply unplugged the net-
work when a TCP had a packet to send. This resulted in a retransmission timer
initiating a timeout-based retransmission. Each successive retransmit took place
at an interval twice as long as the previous transmission, the result of the second
part of Karn’s algorithm that incorporates binary exponential backoff.

TCP measures the RTT and then uses these measurements to keep track of a
smoothed RTT estimator and a smoothed mean deviation estimator. These two
estimators are then used to calculate the next retransmission timeout value. With-
out the Timestamps option, a TCP measures only a single RTT per window of data.
Karn’s algorithm removes the retransmission ambiguity problem by preventing
the use of RTT measurements for segments that have been lost. Today, most TCPs
use the Timestamps option, which permits each segment to be individually timed.
The Timestamps option operates correctly even in the face of packet reordering or
packet duplication.

We looked at the fast retransmit algorithm, which can be triggered without
requiring a timer to expire. This is the most efficient method (and the most fre-
quently used one) for TCP to fill holes at the receiver caused by missing packets.
Fast retransmit can be improved with the use of selective ACKs. These carry addi-
tional information in the ACKs and permit the SACK-capable TCP sender to repair
more than one hole per RTT. Doing so can lead to improved performance under
some circumstances.

If the RTT estimate is below the actual RTT of the connection, a spurious
retransmission may take place. In such cases, if TCP waited a little longer, the
(unnecessary) retransmission would not happen. A number of algorithms have
been developed to detect when a TCP has experienced a spurious timeout. The
DSACK approach requires the arrival of a duplicate segment at the receiver. The
Eifel Detection Algorithm depends on TCP timestamps but can react faster than
DSACKs because it detects spurious timeouts based on ACKs returning from seg-
ments that were sent prior to the timeout. F-RTO is another algorithm that behaves
similarly to Eifel but does not require timestamps. It also changes the sender to
send new data after a timeout that is deemed to be spurious. All of these detection
algorithms can be combined with a response algorithm. The main one described
so far is the Eifel Response Algorithm, which can reset RTT and RTT variance
estimates if the delay has increased substantially (and otherwise “undoes” any
changes TCP would otherwise perform on a timeout).

We also looked at how TCP state can be cached across connections, how TCP
is allowed to repacketize its data, and some attacks that can be mounted to fool
TCP into behaving in undesired ways such as being too passive or aggressive. We
shall see more about the consequences of these attacks in Chapter 16, where we
investigate TCP’s congestion control procedures.

ptg999

 Section 14.13 References 689

14.13 References

[G04] S. Gorard, “Revisiting a 90-Year-Old Debate: The Advantages of the Mean
Deviation,” Department of Educational Studies, University of York, paper
presented at the British Educational Research Association Annual Conference,
University of Manchester, September 16–18, 2004.

[BPS99] J. Bennett, C. Partridge, and N. Shectman, “Packet Re-ordering Is Not
Pathological Network Behavior,” IEEE/ACM Transactions on Networking, 7(6), Dec.
1999.

[F68] W. Feller, An Introduction to Probability Theory and Its Applications, Volume 1
(Wiley, 1968).

[ID1323b] V. Jacobson, B. Braden, and D. Borman, “TCP Extensions for High Per-
formance” (expired), Internet draft-jacobson-tsvwg-1323bis-01, work in progress,
Mar. 2009.

[IPR2] http://www.linuxfoundation.org/collaborate/workgroups/networking/
iproute2

[J88] V. Jacobson, “Congestion Avoidance and Control,” Proc. ACM SIGCOMM,
Aug. 1988.

[J90] V. Jacobson, “Berkeley TCP Evolution from 4.3-Tahoe to 4.3 Reno,” Proc. 18th
IETF, Sept. 1990.

[J03] S. Jaiswal et al., “Measurement and Classification of Out-of-Sequence Pack-
ets in a Tier-1 IP Backbone,” Proc. IEEE INFOCOM, Apr. 2003.

[KK03] A. Kuzmanovic and E. Knightly, “Low-Rate TCP-Targeted Denial of Ser-
vice Attacks,” Proc. ACM SIGCOMM, Aug. 2003.

[KP87] P. Karn and C. Partridge, “Improving Round-Trip Time Estimates in Reli-
able Transport Protocols,” Proc. ACM SIGCOMM, Aug. 1987.

[LLY07] K. Leung, V. Li, and D. Yang, “An Overview of Packet Reordering in
Transmission Control Protocol (TCP): Problems, Solutions and Challenges,” IEEE
Trans. Parallel and Distributed Systems, 18(4), Apr. 2007.

[LS00] R. Ludwig and K. Sklower, “The Eifel Retransmission Timer,” ACM Com-
puter Communication Review, 30(3), July 2000.

[RFC0793] J. Postel, “Transmission Control Protocol,” Internet RFC 0793/
STD0007, Sept. 1981.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts,” Internet RFC 1122/
STD 0003, Oct. 1989.

[RFC1323] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High
Performance,” Internet RFC 1323, May 1992.

http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2

ptg999

690 TCP Timeout and Retransmission

[RFC2018] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options,” Internet RFC 2018, Oct. 1996.

[RFC2883] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to
the Selective Acknowledgement (SACK) Option for TCP,” Internet RFC 2883, July
2000.

[RFC3517] E. Blanton, M. Allman, K. Fall, and L. Wang, “A Conservative Selec-
tive Acknowledgment (SACK)-Based Loss Recovery Algorithm for TCP,” Internet
RFC 3517, Apr. 2003.

[RFC3522] R. Ludwig and M. Meyer, “The Eifel Detection Algorithm for TCP,”
Internet RFC 3522 (experimental), Apr. 2003.

[RFC3708] E. Blanton and M. Allman, “Using TCP Duplicate Selective Acknowl-
edgement (DSACKs) and Stream Control Transmission Protocol (SCTP)
Duplicate Transmission Sequence Numbers (TSNs) to Detect Spurious Retrans-
missions,” Internet RFC 3708 (experimental), Feb. 2004.

[RFC3782] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to
TCP’s Fast Recovery Algorithm,” Internet RFC 3782, Apr. 2004.

[RFC4015] R. Ludwig and A. Gurtov, “The Eifel Response Algorithm for TCP,”
Internet RFC 4015, Feb. 2005.

[RFC5681] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”
Internet RFC 5681, Sept. 2009.

[RFC5682] P. Sarolahti, M. Kojo, K. Yamamoto, and M. Hata, “Forward RTO-
Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Time-
outs with TCP,” Internet RFC 5682, Sept. 2009.

[RFC6298] V. Paxson, M. Allman, and J. Chu, “Computing TCP’s Retransmission
Timer,” Internet RFC 6298, June 2011.

[RKS07] S. Rewaskar, J. Kaur, and F. D. Smith, “Performance Study of Loss Detec-
tion/Recovery in Real-World TCP Implementations,” Proc. IEEE ICNP, Oct. 2007.

[SK02] P. Sarolahti and A. Kuznetsov, “Congestion Control in Linux TCP,” Proc.
Usenix Freenix Track, June 2002.

[TZZ05] K. Tan and Q. Zhang, “STODER: A Robust and Efficient Algorithm for
Handling Spurious Timeouts in TCP,” Proc. IEEE Globecomm, Dec. 2005.

[V09] V. Vasudevan et al., “Safe and Fine-Grained TCP Retransmissions for Data-
center Communication,” Proc. ACM SIGCOMM, Aug. 2009.

[WINREG] TCP/IP Registry Values for Microsoft Windows Vista and Windows
Server 2008, Jan. 2008. See http://www.microsoft.com/download/en/details.
aspx?id=9152

http://www.microsoft.com/download/en/details.aspx?id=9152
http://www.microsoft.com/download/en/details.aspx?id=9152

ptg999

691

15

TCP Data Flow and Window
Management

15.1 Introduction

Chapter 13 dealt with the establishment and termination of TCP connections, and
Chapter 14 examined how TCP ensures reliable delivery using retransmissions
of data that has been lost. We now examine the dynamics of TCP data transfers,
focusing initially on interactive connections and then introducing flow control
and associated window management procedures that are used in conjunction
with congestion control (see Chapter 16) for bulk data transfers.

An “interactive” TCP connection is one in which user input such as keystrokes,
short messages, or joystick/mouse movements need to be delivered between a cli-
ent and a server. If small segments are used to carry such user input, the protocol
imposes more overhead because there are fewer useful payload bytes per packet
exchanged. On the other hand, filling packets with more data usually requires
them to be delayed, which can have a negative impact on delay-sensitive appli-
cations such as online games and collaboration tools. We shall investigate tech-
niques with which the application can trade off between these two issues.

After discussing interactive communications, we discuss the methods used
by TCP for achieving flow control by dynamically adapting the window size to
ensure that a sender does not overrun a receiver. This issue primarily impacts
bulk data transfer (i.e., noninteractive communications) but can also affect inter-
active applications. In Chapter 16 we will explore how the concept of flow control
can be extended to protect not only the receiver, but also the network between the
sender and the receiver.

ptg999

692 TCP Data Flow and Window Management

15.2 Interactive Communication

The amount of network traffic carried in a particular portion of the Internet over
a certain amount of time is usually measured in terms of bytes or packets. There
is considerable variation in these numbers. For example, local area traffic differs
from wide area traffic, and traffic between different sites tends to vary. Studies
of TCP traffic [P05][F03] usually find that 90% or more of all TCP segments con-
tain bulk data (e.g., Web, file sharing, electronic mail, backups) and the remain-
ing portion contains interactive data (e.g., remote login, network games). Bulk data
segments tend to be relatively large (1500 bytes or larger), while interactive data
segments tend to be much smaller (tens of bytes of user data).

TCP handles both types of data using the same protocol and packet format,
but different algorithms come into play for each. In this section, we will look at
how interactive data is transferred by TCP, using the ssh (secure shell) application
as one example. Secure shell [RFC4251] is a remote login protocol that provides
strong security (privacy and authentication based on cryptography). It has mostly
replaced the earlier UNIX rlogin and Telnet programs that provide remote login
service but without strong security.

As we investigate ssh, we will see how delayed acknowledgments work and
how the Nagle algorithm reduces the number of small packets across wide area net-
works. The same algorithms apply to other applications supporting remote login
capability such as Telnet, rlogin, and Windows Terminal Services.

Let us look at the flow of data when we type an interactive command on an
ssh connection. The client captures what the user types and ships it over to the
server to be interpreted, and the server ships any responses back to the client. The
client encrypts the data it sends, meaning that the characters typed by the user are
encoded before being transferred over the connection (see Chapter 18). The encod-
ing makes determining the typed keys difficult for an eavesdropper. The client
supports several encryption algorithms and different authentication methods. It
also supports several other advanced features such as tunneling other protocols
(see Chapter 3 and [RFC4254]).

Many newcomers to TCP/IP are surprised to find that each interactive key-
stroke normally generates a separate data packet. That is, the keystrokes are sent
from the client to the server individually (one character at a time rather than one
line at a time). Furthermore, ssh invokes a shell (command interpreter) on the
remote system (the server), which echoes the characters that are typed at the cli-
ent. A single typed character could thus generate four TCP segments: the inter-
active keystroke from the client, an acknowledgment of the keystroke from the
server, the echo of the keystroke from the server, and an acknowledgment of the
echo from the client back to the server (see Figure 15-1(a)).

Normally, however, segments 2 and 3 are combined—in Figure 15-1(b), the
acknowledgment of the keystroke is sent along with the echo of the characters
typed. We describe the technique that combines these (called delayed acknowledg-
ments with piggybacking) in the next section.

ptg999

Section 15.2 Interactive Communication 693

We purposely use ssh for this example because it generates a packet for each
character typed from the client to the server. If the user types especially fast,
however, more than one character might be carried in a single packet. Figure 15-2
shows the flow of data using Wireshark when we type the date command across
an active ssh connection to a Linux server.

Figure 15-1 One possible way to remotely echo an interactive keystroke is a separate ACK and echo
packet (a). A typical TCP coalesces the ACK for the data byte and the echo of the byte
into a single packet (b).

Figure 15-2 TCP segments sent when the date command is typed on an already-established ssh connection.

In Figure 15-2, packet 1 carries the character d from the client to the server.
Packet 2 is the acknowledgment of this character and its echo (combining the mid-
dle two segments as in Figure 15-1). Packet 3 is the acknowledgment of the echoed
character. Packets 4–6 correspond to the character a, packets 7–9 to the character t,
and packets 10–12 to the character e. Packets 13–15 correspond to the Enter (carriage

ptg999

694 TCP Data Flow and Window Management

return) key. The delays between packets 3–4, 6–7, 9–10, and 12–13 are the human
delays between typing each character, which were intentionally made unusually
long (about 1.5s) in this case for illustration.

Notice that packets 16–19 are slightly different because they have grown in
size from 48 bytes to 64 bytes. Packet 16 contains the output of the date command
from the server. The 64 bytes are the encrypted version of the following 28 clear-
text (not-yet-encrypted) characters:

Wed Dec 28 22:47:16 PST 2005

plus the carriage-return and line-feed characters at the end. The next packet sent
from the server to the client (packet 18) contains the client’s prompt on the server
host: Linux%. Packet 19 acknowledges this data.

Figure 15-3 is the same trace as in Figure 15-2, except now more of the TCP-
layer information is shown, indicating how TCP acknowledgments operate and the
packet sizes used by ssh. Packet 1 (containing the d character) starts with the relative
sequence number 0. Packet 2 ACKs the packet from line 1 by setting the ACK number
to 48, the sequence number of the last successfully received byte plus 1. Packet 2 also
sends the data byte with a sequence number of 0 from the server to the client, contain-
ing the echo of the d character. The echoed d is ACKed by the client in packet 3 by set-
ting the ACK number to 48. We see that the connection has two streams of sequence
numbers in use—one from the client to the server, and one in the reverse direction.
We shall explore this in more detail when we discuss window advertisements.

Figure 15-3 The same trace as in Figure 15-2, except the protocol decode for ssh has been disabled, revealing
the TCP sequence number information. Note that all data packets are 48 bytes in size except the
last two. The size of 48 bytes relates to the cryptography used in ssh (see Chapter 18).

One other observation we can make about this trace is that each packet with
data in it (not zero length) also has the PSH bit field set. As mentioned earlier,
this flag is conventionally used to indicate that the buffer at the side sending the

ptg999

Section 15.3 Delayed Acknowledgments 695

packet has been emptied in conjunction with sending the packet. In other words,
when the packet with the PSH bit field set left the sender, the sender had no more
data to send.

15.3 Delayed Acknowledgments

In many cases, TCP does not provide an ACK for every incoming packet. This is
possible because of TCP’s cumulative ACK field (see Chapter 12). Using a cumula-
tive ACK allows TCP to intentionally delay sending an ACK for some amount of
time, in the hope that it can combine the ACK it needs to send with some data the
local application wishes to send in the other direction. This is a form of piggyback-
ing that is used most often in conjunction with bulk data transfers. Obviously a
TCP cannot delay ACKs indefinitely; otherwise its peer could conclude that data
has been lost and initiate an unnecessary retransmission.

Note

The Host Requirements RFC [RFC1122] states that TCP should implement a
delayed ACK but the delay must be less than 500ms. Many implementations use
a maximum of 200ms.

Delaying ACKs causes less traffic to be carried over the network than when
ACKs are not delayed because fewer ACKs are used. A ratio of 2 to 1 is fairly com-
mon for bulk transfers. The use of delayed ACKs and the maximum amount of
time TCP is allowed to wait before sending an ACK can be configured, depend-
ing on the host operating system. Linux uses a dynamic adjustment algorithm
whereby it can change between ACKing every segment (called “quickack” mode)
and conventional delayed ACK mode. On Mac OS X, the system variable net.
inet.tcp.delayed_ack determines how delayed ACKs are to be used. The val-
ues work as follows: disable delay (0), always delay (1), ACK every other packet
(2), and autodetect when to respond (3). The default is 3. On recent versions of
Windows, the registry entries under

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\IG

(where IG refers to the GUID of the particular network interface being referenced)
for each interface GUID work a bit differently. The value for TcpAckFrequency
(which needs to be added) can range from 0 to 255 and defaults to 2. It determines
the number of ACKs outstanding before the delayed ACK timer is ignored. Setting
the value to 1 effectively causes ACKs to be generated for every segment received.
The ACK timer, when used, can be controlled with the TcpDelAckTicks registry
entry. This value can be set in the range from 2 to 6 and defaults to 2. It is the num-
ber of hundreds of milliseconds to wait before sending a delayed ACK.

ptg999

696 TCP Data Flow and Window Management

For the reasons mentioned earlier, TCP is generally set up to delay ACKs
under certain circumstances, but not to delay them too long. We will see extensive
use of delayed ACKs in Chapter 16, when we look at how TCP’s congestion control
behaves during bulk transfers with large packets. When smaller packets are used,
such as for interactive applications, another algorithm comes into play. The com-
bination of this algorithm with delayed ACKs can lead to poor performance if not
handled carefully, so we will now look at it in more detail.

15.4 Nagle Algorithm

We saw in the previous section that as little as one keystroke at a time often flows
from the client to the server across an ssh connection. When using IPv4, sending
one single key press generates TCP/IPv4 packets of about 88 bytes in size (using
the encryption and authentication from the example): 20 bytes for the IP header,
20 bytes for the TCP header (assuming no options), and 48 bytes of data. These
small packets (called tinygrams) have a relatively high overhead for the network.
That is, they contain relatively little useful application data compared to the rest
of the packet contents. Such high-overhead packets are normally not a problem on
LANs, because most LANs are not congested and such packets would not need to
be carried very far. However, these tinygrams can add to congestion and lead to
inefficient use of capacity on wide area networks. A simple and elegant solution
was proposed by John Nagle in [RFC0896], now called the Nagle algorithm. First we
will describe how it operates, and then we will discuss some pitfalls and problems
that can occur as a result of using it with delayed ACKs.

The Nagle algorithm says that when a TCP connection has outstanding data
that has not yet been acknowledged, small segments (those smaller than the SMSS)
cannot be sent until all outstanding data is acknowledged. Instead, small amounts
of data are collected by TCP and sent in a single segment when an acknowledg-
ment arrives. This procedure effectively forces TCP into stop-and-wait behavior—it
stops sending until an ACK is received for any outstanding data. The beauty of
this algorithm is that it is self-clocking: the faster the ACKs come back, the faster the
data is sent. On a comparatively high-delay WAN, where reducing the number of
tinygrams is desirable, fewer segments are sent per unit time. Said another way,
the RTT controls the packet sending rate.

We saw in Figure 15-3 that the RTT for a single byte to be sent, acknowledged,
and echoed can be small (under 15ms). To generate data faster than this we would
have to type more than 60 characters per second. This means that we rarely
encounter any observable effects of this algorithm when sending data between
two hosts with a small RTT, such as when they are on the same LAN.

To illustrate the effect of the Nagle algorithm, we can compare the behaviors
of an application using TCP with the Nagle algorithm enabled and disabled. We
modify a version of the ssh client for this purpose. Using a connection with a rela-
tively large RTT of about 190ms, we can see the differences. First, we examine the
case when Nagle is disabled (the default for ssh), as shown in Figure 15-4.

ptg999

Section 15.4 Nagle Algorithm 697

Figure 15-4 An ssh trace showing a TCP connection with approximately a 190ms RTT. The Nagle
algorithm is disabled. Transmissions and ACKs are intermingled, and the exchange
takes 0.58s using 19 packets. Many packets are relatively small (48 bytes of user data).
Pure ACKs (segments with no data) indicate that command output at the server has
been processed by the client.

The trace in Figure 15-4 begins after the initial authentication protocol has
completed and the login session has begun. The date command is then typed.
We see that 19 packets are captured, and the entire exchange lasts 0.58s. There are
five ssh request packets, seven ssh response packets, and seven TCP-level pure
ACKs (no data). If we repeat this measurement soon after (i.e., in similar network
conditions), but instead leave the Nagle algorithm enabled, we see the behavior
shown in Figure 15-5.

We can see immediately that the number of packets in Figure 15-5 is smaller
than in Figure 15-4 (by eight). The other striking difference is the regularity of
how the requests and responses are ordered and separated by time. Recall that the
Nagle algorithm forces TCP to operate in a stop-and-wait fashion, so that the TCP
sender cannot proceed until ACKs are received. If we look at the times for each
request/response pair—0.0, 0.19, 0.38, and 0.57—we see that they follow a pattern;
each is separated by almost exactly 190ms, which is very close to the RTT of the
connection. The consequence of having to wait one RTT for each request/response
adds to the overall time to complete the exchange (0.80s instead of the 0.58s when
Nagle was disabled). This is the trade-off the Nagle algorithm makes: fewer and
larger packets are used, but the required delay is higher. The different behaviors
can be seen even more clearly in Figure 15-6.

The effect of the Nagle algorithm’s stop-and-wait behavior can be seen clearly
in Figure 15-6. The exchange on the left side keeps both directions of the connec-
tion busy, while with the Nagle algorithm enabled only one direction of the con-
nection is busy at any given time.

ptg999

698 TCP Data Flow and Window Management

Figure 15-5 An ssh trace showing a TCP connection with a 190ms RTT and the Nagle algorithm in
operation. Requests are followed in lockstep with responses, and the exchange takes
0.80s using 11 packets.

Figure 15-6 Comparing the use of the Nagle algorithm for TCP connections with a similar operat-
ing environment. With Nagle enabled, at most one packet is allowed to be outstanding
at any given time. This reduces the number of small packets but increases delay.

ptg999

Section 15.4 Nagle Algorithm 699

15.4.1 Delayed ACK and Nagle Algorithm Interaction

If we consider what happens when the delayed ACK and Nagle algorithms are
used together, we can construct an undesirable scenario. Consider a client using
delayed ACKs that sends a request to a server, and the server responds with an
amount of data that does not quite fit inside a single packet (see Figure 15-7).

Figure 15-7 The interaction between the Nagle algorithm and delayed ACKs. A temporary form of
deadlock can occur until the delayed ACK timer fires.

Here we see that the client, after receiving two packets from the server, with-
holds an ACK, hoping that additional data headed toward the server can be piggy-
backed. Generally, TCP is required to provide an ACK for two received packets
only if they are full-size, and they are not here. At the server side, because the
Nagle algorithm is operating, no additional packets are permitted to be sent to the
client until an ACK is returned because at most one “small” packet is allowed to
be outstanding. The combination of delayed ACKs and the Nagle algorithm leads
to a form of deadlock (each side waiting for the other) [MMSV99][MM01]. Fortu-
nately, this deadlock is not permanent and is broken when the delayed ACK timer
fires, which forces the client to provide an ACK even if the client has no additional
data to send. However, the entire data transfer becomes idle during this deadlock
period, which is usually not desirable. The Nagle algorithm can be disabled in
such circumstances, as we saw with ssh.

15.4.2 Disabling the Nagle Algorithm

As we might conclude from the previous example, there are times when the Nagle
algorithm needs to be turned off. Typical examples include cases where as little
delay as possible is required, for example, when a mouse movement or keystroke

ptg999

700 TCP Data Flow and Window Management

must be delivered without delay to provide real-time feedback for a user whose
display is handled remotely. Another example is in multiplayer online games,
where character movements must be delivered as quickly as possible so as to not
interfere with proper causality in the game (and to not delay it too much for other
players).

The Nagle algorithm can be disabled in a number of ways. The ability to dis-
able it is required by the Host Requirements RFC [RFC1122]. An application can
specify the TCP_NODELAY option when using the Berkeley sockets API. In addi-
tion, it is possible to disable the Nagle algorithm on a system-wide basis. In Win-
dows, this can be accomplished using the following registry key:

HKLM\SOFTWARE\Microsoft\MSMQ\Parameters\TCPNoDelay

This DWORD value, which must be added by the user, should be set to the value 1
in order to disable the Nagle algorithm. Message Queuing may have to be installed
for this change to be effective [MMQ].

15.5 Flow Control and Window Management

Recall from Chapter 12 that a variable sliding window can be used to implement
flow control. In Figure 15-8, a TCP client and server are interacting, providing each
other with information about the data flow, including segment sequence numbers,
ACK numbers, and window sizes (i.e., available space at the receiver).

Figure 15-8 Each TCP connection is bidirectional. Data going in one direction causes the peer to respond
with ACKs and window advertisements. The same is true for the reverse direction.

ptg999

Section 15.5 Flow Control and Window Management 701

The two large arrows in Figure 15-8 indicate the direction of data flow (the
direction in which TCP segments are sent). Recalling that every TCP connection
has data flowing in both directions, we have two arrows, one in the client-to-
server direction (C→S) and another in the server-to-client direction (S→C). Every
segment contains ACK and window information and may also contain some user
data. The fields used in the TCP header are shaded based on the direction of data
flow they describe. For example, data flowing in the C→S direction is included
in segments flowing along the bottom arrow, but the ACK number and window
advertisement for this data are returned in segments following the top arrow.
Every TCP segment (except those exchanged during connection establishment)
includes a valid Sequence Number field, an ACK Number or Acknowledgment field,
and a Window Size field (containing the window advertisement).

In each of the ssh examples in this chapter so far, we have seen an unchang-
ing window advertisement conveyed from one TCP peer to the other. Examples
include 8320 bytes, 4220 bytes, and 32,900 bytes. These sizes represent the amount
of space the sender of the segment has reserved for storing incoming data the
peer sends. When TCP-based applications are not busy doing other things, they
are typically able to consume any and all data TCP has received and queued for
them, leading to no change of the Window Size field as the connection progresses.
On slow systems, or when the application has other things to accomplish, data
may have arrived for the application, been acknowledged by TCP, and be sitting
in a queue waiting for the application to read or “consume” it. When TCP starts to
queue data in this way, the amount of space available to hold new incoming data
decreases, and this change is reflected by a decreasing value of the Window Size
field. Eventually, if the application does not read or otherwise consume the data
at all, TCP must take some action to cause the sender to cease sending new data
entirely, because there would be no place to put it on arrival. This is accomplished
by sending a window advertisement of zero (no space).

The Window Size field in each TCP header indicates the amount of empty
space, in bytes, remaining in the receive buffer. The field is 16 bits in TCP, but with
the Window Scale option, values larger than 65,535 can be used (see Chapter 13).
The largest sequence number the sender of a segment is willing to accept in the
reverse direction is equal to the sum of the Acknowledgment Number and Window
Size fields in the TCP header (scaled appropriately).

15.5.1 Sliding Windows

Each endpoint of a TCP connection is capable of sending and receiving data. The
amount of data sent or received on a connection is maintained by a set of window
structures. For each active connection, each TCP endpoint maintains a send window
structure and a receive window structure. These structures are similar to the con-
ceptual window structures described in Chapter 12, but here we describe them in
more detail. Figure 15-9 shows a hypothetical TCP send window structure.

ptg999

702 TCP Data Flow and Window Management

TCP maintains its window structures in terms of bytes (not packets). In Fig-
ure 15-9 we have numbered the bytes 2 through 11. The window advertised by the
receiver is called the offered window and covers bytes 4 through 9, meaning that the
receiver has acknowledged all bytes up through and including number 3 and has
advertised a window size of 6. Recall from Chapter 12 that the Window Size field con-
tains a byte offset relative to the ACK number. The sender computes its usable window,
which is how much data it can send immediately. The usable window is the offered
window minus the amount of data already sent but not yet acknowledged. The vari-
ables SND.UNA and SND.WND are used to hold the values of the left window edge
and offered window. The variable SND.NXT holds the next sequence number to be
sent, so the usable window is equal to (SND.UNA + SND.WND – SND.NXT).

Over time this sliding window moves to the right, as the receiver acknowl-
edges data. The relative motion of the two ends of the window increases or
decreases the size of the window. Three terms are used to describe the movement
of the right and left edges of the window:

 1. The window closes as the left edge advances to the right. This happens when
data that has been sent is acknowledged and the window size gets smaller.

 2. The window opens when the right edge moves to the right, allowing more
data to be sent. This happens when the receiving process on the other end
reads acknowledged data, freeing up space in its TCP receive buffer.

 3. The window shrinks when the right edge moves to the left. The Host
Requirements RFC [RFC1122] strongly discourages this, but TCP must be
able to cope with it. Section 15.5.3 on silly window syndrome shows an
example where one side would like to shrink the window by moving the
right edge to the left but cannot.

(SND.WND)

(SND.UNA) (SND.UNA + SND.WND)SND.NXT

Figure 15-9 The TCP sender-side sliding window structure keeps track of which sequence numbers
have already been acknowledged, which are in flight, and which are yet to be sent. The
size of the offered window is controlled by the Window Size field sent by the receiver
in each ACK.

ptg999

Section 15.5 Flow Control and Window Management 703

Because every TCP segment contains both an ACK number and a window
advertisement, a TCP sender adjusts the window structure based on both values
whenever an incoming segment arrives. The left edge of the window cannot move
to the left, because this edge is controlled by the ACK number received from the
other end that is cumulative and never goes backward. When the ACK number
advances the window but the window size does not change (a common case), the
window is said to advance or “slide” forward. If the ACK number advances but
the window advertisement grows smaller with other arriving ACKs, the left edge
of the window moves closer to the right edge. If the left edge reaches the right
edge, it is called a zero window. This stops the sender from transmitting any data.
If this happens, the sending TCP begins to probe the peer’s window (see Section
15.5.2) to look for an increase in the offered window.

The receiver also keeps a window structure, which is somewhat simpler than
the sender’s. The receiver window structure keeps track of what data has already
been received and ACKed, as well as the maximum sequence number it is willing
to receive. The TCP receiver depends on this structure to ensure the correctness
of the data it receives. In particular, it wishes to avoid storing duplicate bytes it
has already received and ACKed, and it also wishes to avoid storing bytes that it
should not have received (any bytes beyond the sender’s right window edge). The
receiver’s window structure is illustrated in Figure 15-10.

(RCV.WND)

(RCV.NXT+RCV.WND)

Figure 15-10 The TCP receiver-side sliding window structure helps the receiver know which
sequence numbers to expect next. Sequence numbers in the receive window are stored
when received. Those outside the window are discarded.

This structure also contains a left and right window edge like the sender’s
window, but the in-window bytes (4–9 in this picture) need not be differentiated
as they are in the sender’s window structure. For the receiver, any bytes received
with sequence numbers less than the left window edge (called RCV.NXT) are dis-
carded as duplicates, and any bytes received with sequence numbers beyond the

ptg999

704 TCP Data Flow and Window Management

right window edge (RCV.WND bytes beyond RCV.NXT) are discarded as out of
scope. Bytes arriving with any sequence number in the receive window range are
accepted. Note that the ACK number generated at the receiver may be advanced
only when segments fill in directly at the left window edge because of TCP’s
cumulative ACK structure. With selective ACKs, other in-window segments can
be acknowledged using the TCP SACK option, but ultimately the ACK number
itself is advanced only when data contiguous to the left window edge is received
(see Chapter 14 for more details on SACK).

15.5.2 Zero Windows and the TCP Persist Timer

We have seen that TCP implements flow control by having the receiver specify
the amount of data it is willing to accept from the sender: the receiver’s adver-
tised window. When the receiver’s advertised window goes to zero, the sender is
effectively stopped from transmitting data until the window becomes nonzero.
When the receiver once again has space available, it provides a window update to
the sender to indicate that data is permitted to flow once again. Because such
updates do not generally contain data (they are a form of “pure ACK”), they are
not reliably delivered by TCP. TCP must therefore handle the case where such
window updates that would open the window are lost.

If an acknowledgment (containing a window update) is lost, we could end up
with both sides waiting for the other: the receiver waiting to receive data (because
it provided the sender with a nonzero window and expects to see incoming data)
and the sender waiting to receive the window update allowing it to send. To pre-
vent this form of deadlock from occurring, the sender uses a persist timer to query
the receiver periodically, to find out if the window size has increased. The persist
timer triggers the transmission of window probes. Window probes are segments
that force the receiver to provide an ACK, which also necessarily contains a Win-
dow Size field. The Host Requirements RFC [RFC1122] suggests that the first probe
should happen after one RTO and subsequent problems should occur at exponen-
tially spaced intervals (i.e., similar to the “second part” of Karn’s algorithm, which
we discussed in Chapter 14).

Window probes contain a single byte of data and are therefore reliably deliv-
ered (retransmitted) by TCP if lost, thereby eliminating the potential deadlock
condition caused by lost window updates. The probes are sent whenever the TCP
persist timer expires, and the byte included may or may not be accepted by the
receiver, depending on how much buffer space it has available. As with the TCP
retransmission timer (see Chapter 14), the normal exponential backoff can be used
when calculating the timeout for the persist timer. An important difference, how-
ever, is that a normal TCP never gives up sending window probes, whereas it may
eventually give up trying to perform retransmissions. This can lead to a certain
resource exhaustion vulnerability that we discuss in Section 15.7.

ptg999

Section 15.5 Flow Control and Window Management 705

15.5.2.1 Example
To illustrate the use of the dynamic window size adjustment and flow control in
TCP, we create a TCP connection and cause the receiving process to pause before
consuming data from the network. For this experiment, we use a Mac OS X 10.6
sender and a Windows 7 receiver. The receiver runs our sock program with the
–P flag as follows:

C:\> sock -i -s -P 20 6666

This arranges for the receiver to pause 20s prior to consuming data from the net-
work. The result is that eventually the receiver’s advertised window begins to
close, as shown with packet 125 in Figure 15-11.

Figure 15-11 After a period when the advertised window does not change, acknowledgments
continue but the window size grows smaller as the receiver’s buffer fills up. If the
receiving application fails to consume any data and the sender continues, the window
eventually reaches zero.

ptg999

706 TCP Data Flow and Window Management

In this trace we see that for more than 100 packets the receiver’s window
remains pegged at 64KB. This is because of an automatic window adjustment
algorithm (see Section 15.5.4) that allocates memory to the receiving TCP even if
not requested by the application. However, this eventually runs short, so we see
the window begin to reduce starting with packet 125. A large number of ACKs fol-
low, each reducing the window further while increasing the ACK number by 2896
bytes per ACK. This indicates that the receiving TCP is storing the data, but the
application is not consuming it. If we look further into the trace, we see that even-
tually the receiver has no more space to hold the incoming data (see Figure 15-12).

Figure 15-12 The receiver’s buffer has filled up. When the receiving application starts reading again, a win-
dow update tells the sender that there is now an opportunity to transfer more data.

Here we can see that packet 151 fills the small 327-byte window, as indicated
by the TCP Window Full comment provided by Wireshark. After about 200ms,
at time 4.979, a zero window advertisement is produced, indicating that no more
data can be received. This is no surprise, given that the sender has filled the last
known available window and the receiving application will not consume any data
until time 20.143.

After receiving the zero window advertisement, the sending TCP tries to probe
the receiver three times at 5s intervals to see if the window has opened. At time
20, as instructed, the receiver begins to consume the data present in TCP’s queue.
This causes two window updates to be sent to the sender, indicating that further
data transmission (up to 64KB) is now possible. Such segments are called window
updates because they do not acknowledge any new data—they just advance the
right edge of the window. At this point, the sender is able to resume normal data
transmission and complete the transfer.

ptg999

Section 15.5 Flow Control and Window Management 707

There are numerous points that we can summarize using Figures 15-11 and
15-12:

1. The sender does not have to transmit a full window’s worth of data.

2. A single segment from the receiver acknowledges data and slides the win-
dow to the right at the same time. This is because the window advertise-
ment is relative to the ACK number in the same segment.

3. The size of the window can decrease, as shown by the series of ACKs in
Figure 15-11, but the right edge of the window does not move left, so as to
avoid window shrinkage.

4. The receiver does not have to wait for the window to fill before sending an
ACK.

In addition to these points, it is instructive to look at the throughput this connec-
tion achieves as a function of time. Using Wireshark’s Statistics | TCP Stream Graph
| Throughput Graph function, we observe the time series as shown in Figure 15-13.

Figure 15-13 With a relatively large receive buffer, a significant amount of data can be transferred
even before the receiving application reads any data from the network.

ptg999

708 TCP Data Flow and Window Management

Here we see an interesting behavior. Even before the receiving application has
consumed any data, the connection still achieves a throughput of approximately
1.3MB/s. This continues until approximately time 0.10. After that, the throughput is
essentially zero until the receiver begins consuming data much later (after time 20).

15.5.3 Silly Window Syndrome (SWS)

Window-based flow control schemes, especially those that do not use fixed-size
segments (such as TCP), can fall victim to a condition known as the silly window
syndrome (SWS). When it occurs, small data segments are exchanged across the
connection instead of full-size segments [RFC0813]. This leads to undesirable inef-
ficiency because each segment has relatively high overhead—a small number of
data bytes relative to the number of bytes in the headers.

SWS can be caused by either end of a TCP connection: the receiver can adver-
tise small windows (instead of waiting until a larger window can be advertised),
and the sender can transmit small data segments (instead of waiting for addi-
tional data to send a larger segment). Correct avoidance of silly window syndrome
requires a TCP to implement rules specifically for this purpose, whether operating
as a sender or a receiver. TCP never knows ahead of time how a peer TCP will
behave. The following rules are applied:

1. When operating as a receiver, small windows are not advertised. The receive
algorithm specified by [RFC1122] is to not send a segment advertising a
larger window than is currently being advertised (which can be 0) until the
window can be increased by either one full-size segment (i.e., the receive
MSS) or by one-half of the receiver’s buffer space, whichever is smaller.
Note that there are two cases where this rule can come into play: when buf-
fer space has become available because of an application consuming data
from the network, and when TCP must respond to a window probe.

2. When sending, small segments are not sent and the Nagle algorithm gov-
erns when to send. Senders avoid SWS by not transmitting a segment
unless at least one of the following conditions is true:

a. A full-size (send MSS bytes) segment can be sent.

b. TCP can send at least one-half of the maximum-size window that the
other end has ever advertised on this connection.

c. TCP can send everything it has to send and either (i) an ACK is not cur-
rently expected (i.e., we have no outstanding unacknowledged data) or
(ii) the Nagle algorithm is disabled for this connection.

Condition (a) is the most straightforward and directly avoids the high-over-
head segment problem. Condition (b) deals with hosts that always advertise tiny
windows, perhaps smaller than the segment size. Condition (c) prevents TCP from

ptg999

Section 15.5 Flow Control and Window Management 709

sending small segments when there is unacknowledged data waiting to be ACKed
and the Nagle algorithm is enabled. If the sending application is doing small writes
(e.g., smaller than the segment size), condition (c) avoids silly window syndrome.

These three conditions also let us answer the following question: If the Nagle
algorithm prevents us from sending small segments while there is outstanding
unacknowledged data, how small is small? From condition (a) we see that “small”
means that the number of bytes is less than the SMSS (i.e., the largest packet size
that does not exceed the PMTU or the receiver’s MSS). Condition (b) comes into
play only with older, primitive hosts or when a small advertised window is used
because of a limited receive buffer size.

Condition (b) of step 2 requires that the sender keep track of the maximum
window size advertised by the other end. This is an attempt by the sender to guess
the size of the other end’s receive buffer. Although the size of the receive buffer
could decrease while the connection is established, in practice this is rare. Further-
more, recall that TCP avoids window shrinkage.

15.5.3.1 Example
We will now present a detailed example to see silly window syndrome avoidance
in action; this example also involves the persist timer. We will use our sock pro-
gram with a Windows XP sending host and a FreeBSD receiver, doing three 2048-
byte writes to the network. The command at the sender is as follows:

C:\> sock -i -n 3 -w 2048 10.0.0.8 6666

The corresponding command at the receiver is

FreeBSD% sock -i -s -P 15 -p 2 -r 256 -R 3000 6666

This fixes the receive buffer at 3000 bytes, causes an initial delay of 15s before
reading from the network, injects 2s of delay between each read, and sets each
read amount to be 256 bytes. The reason for the initial pause is to let the receiver’s
buffer fill, ultimately forcing the transmitter to stop. By having the receiver then
perform small reads from the network, we expect to see it perform silly window
syndrome avoidance. Figure 15-14 is the trace as displayed by Wireshark.

The contents of the entire connection are displayed in the figure. Packet
lengths are described in terms of how many TCP payload bytes are included in
each segment. During connection establishment, the receiver advertises a window
of 3000 bytes with an MSS of 1460 bytes. The sender sends a 1460-byte packet
(packet 4) at time 0.052 and 588 bytes (packet 5) at time 0.053. The sum of these
sizes equals the 2048-byte write size used by the application. Packet 6 acknowl-
edges both data packets from the sender and provides a window advertisement of
952 bytes (3000 – 1460 – 588 = 952).

The 952-byte window (packet 6) is not as large as a full MSS, so the Nagle
algorithm at the sender prevents filling it immediately. Instead, we see a delay

ptg999

710 TCP Data Flow and Window Management

of 5s before any further action is taken. The sender waits for 5s, until the persist
timer expires, before sending a window probe. Given that the sender is sending a
packet anyhow, the sending TCP adds the permitted 952 bytes to fill the available
window. This fills the window, as confirmed by the zero window advertisement
contained in packet 8.

The next event in the trace is when TCP sends a window probe at time 6.970,
about 2s after receiving the first zero window advertisement. The probe itself con-
tains a single data byte and is labeled “TCP ZeroWindowProbe” by Wireshark,
but the ACK for this does not move the ACK number forward (Wireshark labels
this a “TCP ZeroWindowProbeAck”), so the byte has not been kept at the receiver.
Another 1-byte probe is produced at time 10.782 (about 4s later), and another at
time 18.408 (about 8s later), showing the characteristic exponential timeout back-
off. Note that for this latter window probe, the single byte is acknowledged by the
receiver.

Figure 15-14 Trace of a TCP transfer illustrating silly window syndrome avoidance. The sender avoids filling
the offered window at time 0.053 because of sender-side SWS avoidance. Instead, it waits until
time 5.066, also acting effectively as a window probe. Receiver-side SWS avoidance can be seen
by looking at packet 14, which advertises a zero window even though the receiver has consumed
some data.

ptg999

Section 15.5 Flow Control and Window Management 711

At time 25.061, after the application has had a chance to perform six 256-byte
reads (spaced 2s apart), a window update indicates that 1535 bytes (plus 1 for the
ACK number) are now free in the receiver’s buffer. This is “large enough” accord-
ing to receiver-side SWS avoidance. The sender begins to fill the window, starting
with a 1460-byte packet at time 25.064, resulting in an ACK at time 25.161 for byte
4462 with a window advertisement of only 75 bytes (packet 17). This advertise-
ment appears to violate our rule that the amount advertised should be at least an
MSS or (in the case of FreeBSD) one-quarter of the total buffer. The reason is to
avoid window shrinkage. With the last window update (packet 15), the receiver
advertises a right window edge of byte (3002 + 1535) = 4537. If the present ACK
(packet 17) were to advertise less than 75 bytes, as would be required by receiver-
side SWS avoidance, the right window edge would move left, a condition TCP is
not supposed to allow. Consequently the 75-byte advertisement represents a form
of override: avoiding window shrinkage is preferred to avoiding SWS.

We see the effect of sender-side SWS avoidance once again with the 5s delay
between packets 17 and 18. The sender is forced to send the 75-byte packet and
the receiver responds with another zero window advertisement. Packet 20, which
appears a second later, is another window probe, which results in a window of 767
bytes. Another round of sender-side SWS avoidance results in a 5s delay; the sender
fills the window, again resulting in a zero window; and the pattern repeats. The
pattern is eventually broken because the sender has no more data to send. Packet
30 represents the last data sent, and the connection is eventually closed some 20s
later (because of the 2s delays between each read at the receiving application).

To understand the relationships among the application behavior, the adver-
tised window, and SWS avoidance, we can capture the connection’s dynamics in
tabular form. Table 15-1 gives the action at the sender and the receiver, as well as
an estimated time when the receiving application performs its reads.

Table 15-1 Dynamics of the window advertisement and application to avoid silly window syndrome

Time
Packet
Number

Action Receive Buffer

TCP Sender TCP Receiver Application Data Available

0.000 1 SYN 0 3000
0.000 2 SYN + ACK 1

win 3000
0 3000

0.001 3 ACK 0 3000
0.052 4 1:1460(1460) 1460 1539
0.053 5 1461:2049(588) 2048 952
0.053 6 ACK 2049

win 952
2048 952

5.066 7 2049:3000(952) 3000 0
5.160 8 ACK 3001

win 0
3000 0

(continues)

ptg999

712 TCP Data Flow and Window Management

Table 15-1 Dynamics of the window advertisement and application to avoid silly window syndrome (continued)

Time
Packet
Number

Action Receive Buffer

TCP Sender TCP Receiver Application Data Available

6.970 9 3001:3001(1) 3000 0
6.970 10 ACK 3001

win 0
3000 0

10.782 11 3001:3001(1) 3000 0
10.782 12 ACK 3001

win 0
3000 0

15 256 byte read 2744 256
17 256 byte read 2488 512
18.408 13 3001:3001(1) 2489 511
18.408 14 ACK 3002

win 0
2489 511

19 256 byte read 2233 767
21 256 byte read 1977 1023
23 256 byte read 1721 1279
25 256 byte read 1465 1535
25.061 15 ACK 3002

win 1535
1465 1535

25.064 16 3002:4461(1460) 2925 75
25.161 17 ACK 4462

win 75
2925 75

27 256 byte read 2669 331
29 256 byte read 2413 587
30.043 18 4462:4536(75) 2488 512
30.141 19 ACK 4537

win 0
2488 512

31 256 byte read 2232 768
31.548 20 4537:4537(1) 2233 767
31.548 21 ACK 4538

win 767
2233 767

33 256 byte read 1977 1023
35 256 byte read 1721 1279
36.574 22 4538:5304(767) 2488 512
36.671 23 ACK 5305

win 0
2488 512

37 256 byte read 2232 768
37.667 24 5305:5305(1) 2233 767
37.667 25 ACK 5306

win 767
2233 767

39 256 byte read 1977 1023

ptg999

Section 15.5 Flow Control and Window Management 713

In Table 15-1, the first column is the relative point in time for each action if it
appears in the trace. Those times with three digits to the right of the decimal point
are taken from the Wireshark output (refer to Figure 15-16). Those times with no
digits to the right of the decimal point are the inferred times of the action on the
receiving host, which are not represented in the trace.

The amount of data in the receiver’s buffer (labeled “Data” in the table)
increases when data arrives from the sender and decreases as the application
reads (consumes) data from the buffer. What we want to follow are the window
advertisements sent by the receiver to the sender, and what those window adver-
tisements contain. This lets us see how the receiver avoids SWS.

As discussed previously, the first evidence of SWS avoidance is the 5s delay
between segments 6 and 7, where the sender avoids trying to send with a 952-
byte window until it is forced to. When this happens, the receiver fills up, caus-
ing a series of zero window advertisements and window probe exchanges. We
can see the exponential backoff on the persist timer in action: probes are sent at
times 6.970, 10.782, and 18.408. These are approximately 2, 4, and 8s from when the
sender first received the zero window advertisement at time 5.160.

Table 15-1 Dynamics of the window advertisement and application to avoid silly window syndrome (continued)

Time
Packet
Number

Action Receive Buffer

TCP Sender TCP Receiver Application Data Available

41 256 byte read 1721 1279
42.784 26 5306:6073(767) 2488 512
42.881 27 ACK 6074

win 0
2488 512

43 256 byte read 2232 768
43.485 28 6073:6073(1) 2233 767
43.485 29 ACK 6074

win 767
2233 767

43.486 30 6074:6144(71) 2304 696
43.581 31 ACK 6145

win 696
2304 696

43.711 32 6145 (FIN)
43.711 33 ACK 6146

win 695
2305 695

45,47,49,51
53,55

6x256 byte
read

769 2231

55.212 34 ACK 6146
win 2232

768 2232

57,59,61 3x256 byte
read

0 3000

63 0 byte read 0 3000
63.252 35 FIN 0 3000

ptg999

714 TCP Data Flow and Window Management

Although the application reads data at times 15 and 17, it has read only 512
bytes by time 18.408. The receiver-side SWS avoidance rules dictate that no win-
dow update should be provided to the sender because the available 512 bytes of
buffer are neither half the size of the total buffer (3000 bytes) nor at least one MSS
(1460 bytes). Lacking a window update, the sender sends a window probe at time
18.408 (segment 13). This probe is received and the byte is kept by the receiver,
because some buffer space is available, as verified by the increasing ACK number
between segments 12 and 14.

Although 511 bytes are available in the receiver’s buffer, receiver-side SWS
avoidance kicks in once again. The FreeBSD implementation of receiver SWS
avoidance differentiates between when to send a window update and how to
respond to a window probe. Although it follows the rules in [RFC1122] and sends
a window update only when at least half of the total receive buffer (or an MSS) can
be advertised, when responding to a window probe it advertises a larger window
when the window is either at least an MSS size or when at least one-fourth of the
total receive buffer size can be advertised. In either case, the 511 bytes are less than
a full MSS and also less than 3000/4 = 750 bytes, so this form of receiver-side SWS
avoidance dictates that the window advertisement included in the ACK for seg-
ment 13 must contain the value 0.

By the time the application completes its sixth read at time 25, the receive buf-
fer has 1535 bytes free (more than half of the total 3000-byte size), so a window
update is sent (segment 15). The sender continues with a full-size segment (seg-
ment 16), for which it receives an ACK but a window advertisement of only 75
bytes. In the next 5s, both sender- and receiver-side SWS avoidance takes place.
The sender waits for a larger window advertisement, and the application performs
reads at times 27 and 29, but the 587 bytes of free receive buffer space are not
enough to allow a window update to be sent. The sender therefore has to wait the
entire 5s and eventually sends its 75 bytes, forcing the receiver again into SWS
avoidance.

With the receiver not providing a window update, the sender’s persist timer
causes a window probe to be sent at time 31.548. In this case, the FreeBSD receiver
responds with a nonzero window, of size 767 bytes (larger than one-fourth of the
total receive buffer). This window is not large enough for the sender’s SWS avoid-
ance procedure, however, so the sender waits another 5s and the process repeats.
Finally, at time 43.486, the last 71 bytes are sent and acknowledged. The acknowl-
edgment contains a window advertisement of 696 bytes. Although it is less than
one-quarter of the receiver’s total buffer size, the advertisement is not made zero
by receiver-side SWS avoidance in order to avoid window shrinkage.

The connection termination begins with segment 32, which contains no data.
It is acknowledged immediately with a window advertisement of 695 bytes (the
FIN consumed a sequence number at the receiver). After the application completes
another six reads, the receiver provides a window update, but the sender is done
sending and remains silent. The application performs another four reads, three of
which return 256 bytes and the final one of which returns nothing, indicating the

ptg999

Section 15.5 Flow Control and Window Management 715

end of arriving data. At this point, the receiver closes the connection, causing the
FIN to be sent to the sender. The sender responds with the final ACK, completing
the bidirectional closing of the connection.

Because the sending application issues a close operation after performing its
three 2048-byte writes, the sender’s end of the connection goes from the ESTAB-
LISHED state to the FIN_WAIT_1 state after sending segment 32 (see Chapter
13). It then goes to the FIN_WAIT_2 state after receiving segment 33. Although
it receives a window update while in this state, no action is taken, because it has
already sent a FIN that has been acknowledged (there is no timer in this state).
Instead, it merely sits in this state until receiving a FIN from the other end. This is
why we see no further transmissions by the sender until it receives the FIN (seg-
ment 35).

15.5.4 Large Buffers and Auto-Tuning

In this chapter, we have seen that an application using a small receive buffer size
may be doomed to significant throughput degradation compared to other applica-
tions using TCP in similar conditions. Even if the receiver specifies a large enough
buffer, the sender might specify too small a buffer, ultimately leading to bad per-
formance. This problem became so important that many TCP stacks now decouple
the allocation of the receive buffer from the size specified by the application. In
most cases, the size specified by the application is effectively ignored, and the
operating system instead uses either a large fixed value or a dynamically calcu-
lated value.

In newer versions of Windows (Vista/7) and Linux, receive window auto-
tuning [S98] is supported. With auto-tuning, the amount of data that can be out-
standing in the connection (its bandwidth-delay product, an important concept
we discuss in Chapter 16) is continuously estimated, and the advertised window
is arranged to always be at least this large (provided enough buffer space remains
to do so). This has the advantage of allowing TCP to achieve its maximum avail-
able throughput rate (subject to the available network capacity) without having to
allocate excessively large buffers at the sender or receiver ahead of time. In Win-
dows, the receiver’s buffer size is auto-sized by the operating system by default.
However, the behavior can be modified using the netsh command:

C:\> netsh interface tcp set heuristics disabled

C:\> netsh interface tcp set global autotuninglevel=X

where X is one of the following: disabled, highlyrestricted, restricted,
normal, or experimental. The setting affects the automatic selection of the
receiver’s advertised window. In the disabled state, auto-tuning is not used, and the
window size uses a default value. The restricted modes slow the window growth,
and the normal setting allows it to grow relatively quickly. The experimental
mode allows the window to grow very aggressively but is not recommended for

ptg999

716 TCP Data Flow and Window Management

normal use because many Internet sites and some firewalls interfere with or fail to
implement the TCP Window Scale option properly.

With Linux 2.4 and later, sender-side auto-tuning is supported. With version
2.6.7 and later, both receiver- and sender-side auto-tuning is supported. However,
auto-tuning is subject to limits placed on the buffer sizes. The following Linux
sysctl variables control the sender and receiver maximum buffer sizes. The val-
ues after the equal sign are the default values (which may vary depending on the
particular Linux distribution), which should be increased if the system is to be
used in high bandwidth-delay-product environments:

net.core.rmem_max = 131071
net.core.wmem_max = 131071
net.core.rmem_default = 110592
net.core.wmem_default = 110592

In addition, the auto-tuning parameters are given by the following variables:

net.ipv4.tcp_rmem = 4096 87380 174760
net.ipv4.tcp_wmem = 4096 16384 131072

Each of these variables contains three values: the minimum, default, and max-
imum buffer size used by auto-tuning.

15.5.4.1 Example
To demonstrate the behavior of receiver auto-tuning, we use a Windows XP sender
(set to use large windows and window scaling) and a Linux 2.6.11 receiver that
includes auto-tuning. At the sender, we issue the following command:

C:\> sock -n 512 -i 10.0.0.1 6666

At the receiver, we do not specify any setting for the receive buffer, but we do
arrange for an initial delay of 20s before the application performs any reads:

Linux% sock -i -s -v -P 20 6666

To illustrate the growth of the receiver’s advertised window, we can use Wire-
shark to sort the displayed packets based on the receiver’s address (see Figure 15-15).
During connection establishment, the receiver begins with an initial window size
of 1460 bytes and an initial MSS of 1412 bytes. It is using window scaling, with a
shift amount of 2 (not shown), leading to a maximum usable window of 256KB.
We can see that after the initial packets, the window increases, which corresponds
to the sender’s increase in the data sending rate. We explore the sender’s data rate
control when we investigate TCP congestion control in Chapter 16. For now, we
need only know that when the sender starts up, it typically starts by sending one
packet and then increases the amount of outstanding data by one MSS packet for

ptg999

Section 15.5 Flow Control and Window Management 717

each ACK it receives that indicates progress. Thus, it typically sends two MSS-size
segments for each ACK it receives.

Looking at the pattern of the window advertisements—10712, 13536, 16360,
19184, . . .—we can see that the advertised window is increased by twice the MSS
on each ACK, which mimics the way the sender’s congestion control scheme oper-
ates, as we shall see in Chapter 16. Provided enough memory is available at the
receiver, the advertised window is always larger than what the sender is permit-
ted to send according to its congestion control limitations. This is the best case—
the minimal amount of buffer space is being used and advertised by the receiver
that keeps the sender sending as fast as possible.

Figure 15-15 The Linux receiver performs receiver-side auto-tuning by increasing the window as more data is
received. Because the application does not read for 20s, the window eventually closes.

ptg999

718 TCP Data Flow and Window Management

If the receiver exhausts its buffers, auto-tuning is compromised. In this
example, by time 0.678 the pattern of window growth reverses, having achieved
a maximum of 33,304 bytes. The window size is no longer increasing, but instead
the buffer is filling up while the application pauses. When the application begins
reading at time 20, the window size again increases and goes beyond the point
where it was previously (see Figure 15-16).

Figure 15-16 With the application pausing before reading, auto-tuning is compromised because the receive
buffer becomes full. As the application begins reading, the advertised window increases,
exceeding its previous value.

The zero window advertisement (packet 117) forces the sender to perform a
series of window probes, resulting in a series of zero window advertisements.
After the application begins reading at time 20.043, a window update is sent to
the sender. The window begins to grow once again, twice the MSS in bytes for
each ACK. As the sender continues to send additional data and the receiver con-
sumes it, the receiver continues to increase the advertised window until the value

ptg999

Section 15.6 Urgent Mechanism 719

67808 is reached, which is the largest value the receiver ever advertises on this
connection. This version of Linux also measures the time between adjacent appli-
cation read completions and compares this value against the estimated connection
round-trip time. If the RTT estimate increases, the buffer size is also increased
(it is not decreased if the RTT becomes smaller). This helps auto-tuning keep the
receiver’s advertised window ahead of the sender’s window even when the con-
nection’s bandwidth-delay product is increasing.

The problem of TCP applications using too-small buffers became a signifi-
cant one as faster wide area Internet connections became available. In the United
States, with cross-country round-trip times of approximately 100ms, using a 64KB
window over a 1Gb/s network limits TCP throughput to about 640KB/s instead
of the calculated maximum of about 130MB/s (a 99% waste of bandwidth). Practi-
cally speaking, it is not uncommon to see a factor of 100 increase in throughput
performance when moving from a TCP with limited buffers to one with larger
buffers on such networks. Significant credit should be given to the Web100 project
[W100]. It created a set of tools and software patches in an effort to maximize the
available throughput performance an application can obtain from various TCP
implementations.

15.6 Urgent Mechanism

We saw in Chapter 12 that the TCP header has a special URG bit field to indicate
“urgent data.” An application is able to mark data as urgent by specifying a special
option to the Berkeley sockets API (MSG_OOB) when it performs a write opera-
tion, although the use of urgent data is no longer recommended [RFC6093]. When
the sender’s TCP receives such a write request, it enters a special state called urgent
mode. Upon entering urgent mode, it records the last byte the application specified
as urgent data. This is used to set the Urgent Pointer field in each subsequent TCP
header the sender generates until the application ceases writing urgent data and
all the sequence numbers up to the urgent pointer have been acknowledged by
the receiver. According to [RFC6093], the urgent pointer points to the sequence
number of the byte of data following the last byte of urgent data. This resolves a
longstanding ambiguity in various RFCs that included contradictory statements
about the semantics of the Urgent Pointer field. When an IPv6 jumbogram is used,
the Urgent Pointer value of 65535 may be used to indicate the end of urgent data is
to be found at the end of the TCP data area [RFC2675], beyond the 64K byte offset
expressible using the conventional 16-bit Urgent Pointer field.

A receiving TCP enters urgent mode when it receives a segment with the URG
bit field set. The receiving application can discover whether its TCP has entered
urgent mode using a standard socket API call (select()). The operation of the
urgent mechanism has been a source of confusion because the Berkeley sockets
API and documentation use the term out-of-band (OOB) data, although in real-
ity TCP does not implement any true OOB capability. Instead, virtually all TCP

ptg999

720 TCP Data Flow and Window Management

implementations deliver the last byte of urgent data to an application using a dis-
tinct API call parameter at the receiver. The receiver must specify either the MSG_
OOB option to retrieve the special byte or specify MSG_OOBINLINE to have the
special byte remain in the regular data stream (this is now the required method,
assuming the urgent mechanism is used at all).

15.6.1 Example

To get a better understanding of the urgent mechanism, we use a Mac OS X sender
and Linux receiver to show how urgent mode behaves, including what happens
during a zero window event. To achieve this, we first limit receive window auto-
tuning on the Linux receiver:

Linux# sysctl –w net.ipv4.tcp_rmem='4096 4096 174760'

Linux% sock –i –v –s –p 1 –P 10 5555

The first command ensures that any receive window automatic adjustment
does not exceed 4KB. This will be useful to us in order to see what happens when
the window closes. The second command invokes the server and instructs it to
wait 10s before performing any reads, and to wait 1s between each read operation
it does perform. At the client, we execute the following command:

Mac% sock –i –n 7 –U 7 –p 1 –S 8192 10.0.1.1 5555
SO_SNDBUF = 8192
connected on 10.0.1.33.51101 to 10.0.1.1.5555
TCP_MAXSEG = 1448
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1 byte of urgent data
wrote 1024 bytes

This command creates a client that performs seven 1024-byte writes spaced 1s
apart but also performs a write of 1 byte of urgent data prior to the last write. The
client’s buffer is sufficiently large (set to 8192 bytes) that this application completes
execution immediately because all the data it sends is buffered by the sending TCP.

In Figure 15-17, we can see how the initial right window edge advertised by
the receiver is 2800 and is quickly increased to 5121. At time 1.0 the application
performs a write, and the right window edge advances to about 6145. From then on
the receiver’s window increases no more because auto-tuning has been effectively
disabled above 4192 bytes and the receiving application has not performed any
reads. Until time 10.0, the sender probes the receiver but no additional window

ptg999

Section 15.6 Urgent Mechanism 721

Figure 15-17 After six write operations, the receiver’s window has not advanced. The sending TCP stops
transmitting until the window opens at time 10.

growth occurs. Finally, when the receiver starts performing read operations after
time 10.0, the window opens and the sender completes the transfer. The packets
exchanged are shown in Figure 15-18.

The “exit point” for urgent mode is defined to be the sum of the Sequence Num-
ber field and the Urgent Pointer field in a TCP segment. Only one urgent “point” (a
sequence number offset) is maintained per TCP connection, so a packet arriving
with a valid Urgent Pointer field causes the information contained in any previous
urgent pointer to be lost. Segment 16 is the first segment containing a valid urgent
pointer, resulting in an exit point relative sequence number of 6146. Note that this
sequence number may not be contained in the segment providing the indication
but could instead be in some later segment. This is the case with segment 17, for
example, which contains no data but includes the urgent pointer (with value 1).

As mentioned before, there has been some historical confusion about whether
the exit point indicates the last byte of urgent data or the following first byte of

ptg999

722 TCP Data Flow and Window Management

nonurgent data. In [RFC1122], the pointer is declared to point to the last byte of
urgent data. However, essentially all TCP implementations do not follow this
specification, so [RFC6093] recognizes this fact and changes various specifications
to make the pointer indicate the first byte of nonurgent data. In this example, the
byte with sequence number 6145 contains the 1 byte of urgent data produced by
the sock client, but in all the segments we have seen the urgent pointer has a
value of 1 when the sequence number field is 6145. Consequently, we can see that
with this implementation of TCP, as with most, the exit point is the sequence num-
ber of the first byte of nonurgent data.

As we can see from this example, TCP carries urgent data inline with the data
stream (not “out of band”). If an application really wants a separate out-of-band
channel, a second TCP connection is the easiest way to accomplish this. (Some
transport-layer protocols do provide what most people consider OOB data: a logi-
cally separate data path using the same connection as the normal data path. This
is not what TCP provides.)

Figure 15-18 The entire data transfer showing a zero window advertisement from the receiver at time 5.012.
When the application performs its next writes, the sending TCP enters urgent mode, resulting
in the URG bit being set starting at time 6.0113 on a window probe segment containing one
sequence number. At time 7 the application performs its final write and closes, producing two
empty segments. A window update at time 10.006 restarts the data transfer. A zero window
advertisement at time 10.009 again stops the transfer but also indicates that urgent mode can
now be exited because the urgent pointer has been acknowledged. The FIN at time 11.007 con-
tains the final data byte.

ptg999

 Section 15.8 Summary 723

15.7 Attacks Involving Window Management

The window management procedures for TCP have been the subject of various
attacks, primarily forms of resource exhaustion. In essence, advertising a small
window slows a TCP transfer, tying up resources such as memory for a potentially
long time. This has been used as a form of attack on bad traffic (i.e., worms). The
LaBrea tarpit [L01], for example, arranges to complete the TCP three-way hand-
shake and then either does nothing or produces minimal responses that simply
cause the sending TCP to continually slow down. This keeps the sending TCP
busy and essentially slows down worm propagation. Tarpits are thus attacks on
attacking traffic.

A more recent attack was published in 2009 [I09], based on a known vulner-
ability of the persist timer. It uses a client-side variety of the “SYN cookies” tech-
nique (see Chapter 13). All the necessary connection state can thus be offloaded
onto the victim machine, minimizing the amount of resources consumed at the
attacker’s machine. The attack itself is similar to the LaBrea idea, except it focuses
specifically on the persist timer. Multiple such attacks can be mounted on the
same server, which can lead to resource exhaustion (e.g., running out of system
memory). The “solution” to this attack, as suggested by [C723308], is to allow some
other process to terminate TCP connections when resource exhaustion appears to
be taking place.

15.8 Summary

Interactive data is normally transmitted in segments smaller than the SMSS.
Delayed acknowledgments may be used by the receiver of these small segments
to see if the acknowledgment can be piggybacked along with data going back to
the sender. This often reduces the number of segments, especially for interactive
traffic, where the server is echoing the characters typed at the client. However, it
may introduce additional delay.

On connections with relatively large round-trip times, such as WANs, the
Nagle algorithm is often used to reduce the number of small segments. This algo-
rithm limits the sender to a single small packet of unacknowledged data at any
time. While this can reduce the number of high-overhead small packets in the
network and reduce the total number of packets carried during a connection, it
adds delay that is sometimes unacceptable to applications. In addition, the interac-
tion between delayed ACKs and the Nagle algorithm can lead to an undesirable
form of temporary deadlock. Because of these issues, the Nagle algorithm can be
disabled by applications, and most interactive applications take advantage of this
capability.

TCP implements flow control by including a window advertisement on every
ACK it sends. Such window advertisements signal the peer TCP how much buf-
fer space is left at the endpoint that sent the window advertisement ACK. The

ptg999

724 TCP Data Flow and Window Management

maximum window advertisement is 65,535 bytes unless the Window Scale TCP
option is used. In that case, the maximum window advertisement can be much
larger (about 1GB).

The window advertisement can be as small as 0 bytes, indicating that the
receiver is completely full. When this happens, the sender stops sending data
and instead begins probing the closed window using a retransmission interval
with a backoff scheme similar to timer-based retransmissions (see Chapter 14).
This probing of the closed window continues indefinitely, until either an ACK is
returned indicating a larger window or the receiver sends an unsolicited window
advertisement (a window update) because buffer space has become available. This
indefinite behavior has been used to create a resource exhaustion attack against
TCP.

During the development of TCP, a curious phenomenon was observed. When
a small window was advertised, the sender would immediately fill it. This behav-
ior, which causes the connection to use a large number of high-overhead small
packets, would continue until the connection became idle and was dubbed “silly
window syndrome.” Techniques were created to avoid it, applying to both the
TCP send and receive logic. The sender avoids sending small segments when a
small window is advertised; receivers try to avoid ever sending small window
advertisements.

The size of the receiver’s window is limited by the size of the receiver’s buffer.
Historically, applications that failed to specify their receive buffers would be allo-
cated a relatively small buffer that would cause throughput performance to suffer
over network paths with high bandwidth and high delay. In more recent operat-
ing systems, auto-tuning sets the buffer size allocated automatically in an efficient
way, causing such concerns to largely be a thing of the past.

15.9 References

[C723308] US-CERT Vulnerability Note VU#723308, Nov. 2009.

[F03] C. Fraleigh et al., “Packet-Level Traffic Measurements from the Sprint IP
Backbone,” IEEE Network Magazine, Nov./Dec. 2003.

[I09] F. Hantzis (ithilgore), “Exploiting TCP and the Persist Timer Infiniteness,”
Phrack, 66(9), June 2009.

[L01] T. Liston, “LaBrea: ‘Sticky’ Honeypot and IDS,” http://labrea.sourceforge.net

[MM01] J. Mogul and G. Minshall, “Rethinking the TCP Nagle Algorithm,” ACM
Computer Communication Review, 31(6), Jan. 2001.

[MMQ] http://technet.microsoft.com/en-us/library/cc730960.aspx

http://labrea.sourceforge.net
http://technet.microsoft.com/en-us/library/cc730960.aspx

ptg999

 Section 15.9 References 725

[MMSV99] G. Minshall, J. Mogul, Y. Saito, and B. Verghese, “Application Per-
formance Pitfalls and TCP’s Nagle Algorithm,” Proc. Workshop on Internet Server
Performance, May 1999.

[P05] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney, “A First
Look at Modern Enterprise Traffic,” Proc. Internet Measurement Conference, Oct.
2005.

[RFC0813] D. Clark, “Window and Acknowledgment Strategy in TCP,” Internet
RFC 0813, July 1982.

[RFC0896] J. Nagle, “Congestion Control in IP/TCP Internetworks,” Internet RFC
0896, Jan. 1984.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

[RFC2675] D. Borman, S. Deering, and R. Hinden, “IPv6 Jumbograms,” Internet
RFC 2675, Aug. 1999.

[RFC4251] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol Architec-
ture,” Internet RFC 4251, Jan. 2006.

[RFC4254] T. Ylonen and C. Lonvick, ed., “The Secure Shell (SSH) Connection
Protocol,” Internet RFC 4254, Jan. 2006.

[RFC6093] F. Gont and A. Yourtchenko, “On the Implementation of the TCP
Urgent Mechanism,” Internet RFC 6093, Jan. 2011.

[S98] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP Buffer Tuning,” Proc.
ACM SIGCOMM, Oct. 1998.

[W100] http://www.web100.org

http://www.web100.org

ptg999

This page intentionally left blank

ptg999

727

16

TCP Congestion Control

16.1 Introduction

In this chapter we investigate how TCP approaches the issue of congestion control,
which is most important in the context of bulk data transfers. Congestion control
is a set of behaviors determined by algorithms that each TCP implements in an
attempt to prevent the network from being overwhelmed by too large an aggre-
gate offered traffic load. The basic approach is to have TCP slow down when it has
reason to believe the network is about to be congested (or is already so congested
that routers are discarding packets). The challenge is to determine exactly when
and how TCP should slow down, and when it can speed up again.

TCP is a protocol designed to provide reliable delivery of data from one system
to another. We have already seen in Chapter 15 how a sending TCP can be made
to slow down if its peer (receiving) TCP cannot keep up. This is accomplished by
TCP’s procedures for flow control and is realized by a sender adapting its sending
rate based on the advertised Window Size field provided by a receiver in its ACKs.
This provides explicit information about the state of the receiver back to the sender
and allows it to avoid overrunning the receiver’s buffers.

Consider what happens when the network between a collection of senders and
receivers is asked to carry more traffic than it can handle. Either the senders must
slow down or the network must ultimately throw some data away (or some combi-
nation thereof). This fact arises from the most basic observation from queuing the-
ory as applied at a router: even if the router can store some data, if the long-term data
arrival rate exceeds the long-term departure rate, any amount of intermediate stor-
age will grow without bound. Stated more simply, if a router receives more data per
unit time than it can send out, it must store that data. If this situation persists, eventu-
ally the storage will run out and the router will be forced to drop some of the data.

This situation, when a router is forced to discard data because it cannot handle
the arriving traffic rate, is called congestion. The router is said to be congested when
it is in this state, and even a single connection can drive one or more routers into

ptg999

728 TCP Congestion Control

congestion. Left unaddressed, congestion can cause the performance of a network
to be reduced so badly that it becomes unusable. In the very worst cases, it is said
to be in a state of congestion collapse. To either avoid or at least react effectively to
mitigate this situation, each TCP implements congestion control procedures. Differ-
ent versions or variants of TCP (and the operating systems that host the TCP/IP
stack) have somewhat different procedures and behaviors. We will discuss most
of the better-known ones in this chapter.

16.1.1 Detection of Congestion in TCP

As we have seen, the primary mechanism TCP has available to combat packet loss
is retransmission, induced either by a retransmission timer expiring, or by the fast
retransmit algorithm (see Chapter 14). Consider, for a moment, the consequence
of many TCP connections that share an Internet path simply retransmitting more
packets while the network is in a state of congestion collapse. As you can imagine,
this only makes the situation worse. It has been called the analog of pouring gaso-
line on a fire and is something to be avoided.

In order to deal with congestion, we would like to have sending TCPs slow
down when congestion is present (or about to be) and, if the congestion has sub-
sided, detect and use an appropriate amount of new bandwidth when it becomes
available. In the Internet, this can be quite challenging, as there has traditionally
been no explicit way for a sending TCP to learn about the state of the intermediate
routers. In other words, there is no explicit signaling about congestion. Instead, if
a typical TCP is to react somehow to congestion, it must first conclude that con-
gestion is occurring. This is usually accomplished by detecting that one or more
packets have been lost. In TCP, an assumption is made that a lost packet is an indi-
cator of congestion, and that some response (i.e., slowing down in some way) is
required. We shall see that TCP has been this way since the late 1980s. Other meth-
ods for detecting congestion, including measuring delay and network-supported
Explicit Congestion Notification (ECN), which we discuss in Section 16.11, allow TCP
to learn about congestion even before it has become so bad as to cause dropped
packets. We discuss these approaches after studying the “classic” algorithms.

Note

In today’s wired networks, packet loss is caused primarily by congestion in routers
or switches. With wireless networks, transmission and reception errors become a
significant cause of packet loss. Determining whether loss is due to congestion or
transmission errors has been an active research topic since the mid-1990s when
wireless networks started to attain widespread use.

In Chapter 14 we saw how TCP can use timers, acknowledgments, and selec-
tive acknowledgments to detect and recover from dropped packets. When packets
are detected as lost, it is TCP’s responsibility to resend them. We are now concerned

ptg999

 Section 16.1 Introduction 729

with what else TCP does when it observes a lost packet. In particular, we are inter-
ested in how it interprets this as a signal that congestion has occurred, and that it
should slow down. Just how it slows down and when (and how it speeds back up
again) are the main subjects of the following sections. We begin with the classic
algorithm used on a new connection to establish the base data rate and continue
with another classic algorithm that is used by TCP during its steady-state operation
when performing large data transfers. We will also incorporate the recommended
variations on these algorithms into the discussion and discuss other modifica-
tions that have been made over the years. We will also examine an extended trace
in detail. We conclude with a discussion of some of the security issues related to
TCP congestion control and summarize the most important points. The area of
congestion control has been a fertile area for networking researchers [RFC6077],
and several new papers on this subject tend to appear each year.

16.1.2 Slowing Down a TCP Sender

One detail we need to address right away is just how to slow down a TCP sender.
We saw in Chapter 15 that the Window Size field in the TCP header is used to sig-
nal a sender to adjust its window based on the availability of buffer space at the
receiver. We can go a step further and arrange for the sender to slow down if either
the receiver is too slow or the network is too slow. This is accomplished by intro-
ducing a window control variable at the sender that is based on an estimate of the
network’s capacity and ensuring that the sender’s window size never exceeds the
minimum of the two. In effect, a sending TCP then sends at a rate equal to what
the receiver or the network can handle, whichever is less.

The new value used to hold the estimate of the network’s available capacity is
called the congestion window, written more compactly as simply cwnd. The sender’s
actual (usable) window W is then written as the minimum of the receiver’s adver-
tised window awnd and the congestion window:

W = min(cwnd, awnd)

With this relationship, the TCP sender is not permitted to have more than W
unacknowledged packets or bytes outstanding in the network. The total amount
of data a sender has introduced into the network for which it has not yet received
an acknowledgment is sometimes called the flight size, which is always less than or
equal to W. In general, W can be maintained in either packet or byte units.

Note

When TCP does not make use of selective acknowledgment, the restriction on
W means that the sender is not permitted to send a segment with a sequence
number greater than the sum of the highest acknowledged sequence number and
the value of W. A SACK TCP sender treats W somewhat differently, using it as an
overall limit to the flight size.

ptg999

730 TCP Congestion Control

This all seems logical but is far from the whole story. Because both the state
of the network and the state of the receiver change with time, the values of both
awnd and cwnd change over time. In addition, because of the lack of explicit signals
(see the preceding section), the “correct” value of cwnd is generally not directly
available to the sending TCP. Thus, all of the values W, cwnd, and awnd must be
empirically determined and dynamically updated. In addition, as we said before,
we do not want W to be too big or too small—we want it to be set to about the
bandwidth-delay product (BDP) of the network path, also called the optimal window
size. This is the amount of data that can be stored in the network in transit to the
receiver. It is equal to the product of the RTT and the capacity of the lowest capac-
ity (“bottleneck”) link on the path from sender to receiver. Generally, the sending
strategy is to keep the network busy by arranging to have an amount of data at
least as large as the BDP in the network. Using an outstanding limit that substan-
tially exceeds the BDP, however, is usually undesirable as it can lead to unwanted
delays (see Section 16.10). On the Internet, determining the BDP for a connection
can be challenging, given that routes, delay, and the level of statistical multiplex-
ing (i.e., sharing of capacity) change as a function of time.

Note

Although handling congestion at the TCP sender is our primary area of inter-
est, work has been done on handling the cases where congestion occurs on the
reverse path, because of ACKs. In [RFC5690] a method is introduced to inform
a TCP receiver of the ACK ratio it should use (i.e., how many packets it should
receive before sending an ACK).

16.2 The Classic Algorithms

When a new TCP connection first starts out, it usually has no idea what the initial
value for cwnd should be, as it has no idea how much network capacity is available
for it to send its data. (There are some exceptions, such as systems that cache per-
formance values that were determined earlier. These were called destination met-
rics in Chapter 14.) TCP learns the value for awnd with one packet exchange to the
receiver, but without any explicit signaling, the only obvious way it has to learn a
good value for cwnd is to try sending data at faster and faster rates until it experi-
ences a packet drop (or other congestion indicator). This could be accomplished
by either sending immediately at the maximum rate it can (subject to the value
of awnd), or it could start more slowly. Because of the detrimental effects on the
performance of other TCP connections sharing the same network path that could
be experienced when starting at full rate, a TCP generally uses one algorithm to
avoid starting so fast when it starts up to get to steady state. It uses a different one
once it is in steady state.

The operation of TCP congestion control at a sender is driven or “clocked” by
the receipt of ACKs. If a TCP is operating at steady state (with an appropriate value

ptg999

Section 16.2 The Classic Algorithms 731

of cwnd), receipt of an ACK indicates that one or more packets have been removed
from the network, and consequently that an opportunity to send more has arisen.
Following this line of reasoning, the TCP congestion behavior in steady state
attempts to achieve a conservation of packets in the network (see Figure 16-1). The
term conservation here is used in the sense it is in physics—that some quantity
(e.g., momentum, energy) going into a system does not simply disappear or appear
but rather can be found as long as proper accounting is performed.

Figure 16-1 TCP congestion control operates on a principle of conservation of packets. Packets (Pb)
are “stretched out” in time as they are sent from sender to receiver over links with con-
strained capacity. As they are received at the receiver spaced apart (Pr), ACKs are gener-
ated (Ar), which return to the sender. ACKs traveling from receiver to sender become
spaced out (Ab) in relation to the inter-packet spacing of the packets. When ACKs reach
the sender (As), their arrivals provide a signal or “ACK clock,” used to tell the sender it
is time to send more. In steady state, the overall system is said to be “self-clocked.” The
figure is adapted from [J88] and copied from S. Seshan’s CMU Lecture Notes dated March 22, 2005.

This idea is illustrated in Figure 16-1. We shall call the top and bottom objects
“funnels.” The top funnel holds (larger) data packets traveling along the path from
the sender to the receiver. The comparatively narrow width of the funnel depicts
how packets are “stretched out” in time as they travel through a relatively slow
link. The ends of the funnels (at sender and receiver) show the queues where pack-
ets are held before or after they travel along the path. The bottom funnel holds the
ACKs sent by the receiver back to the sender that correspond to the data packets
in the top funnel. When operating efficiently at steady state, there are no bunches
of packets in the top or bottom funnels. In addition, there is no significant extra
space between packets in the top funnel. Note that an arrival of an ACK at the
sender “liberates” another data packet to be sent into the top funnel, and that
this happens at just the right time (i.e., when the network is able to accept another
packet). This relationship is sometimes called self-clocking, because the arrival of
an ACK, called the ACK clock, triggers the system to take the action of sending
another packet.

We now turn to the main two algorithms of TCP: slow start and congestion
avoidance. These algorithms, based on the principles of packet conservation and
ACK clocking, were first formally described in the classic paper by Jacobson [J88].

ptg999

732 TCP Congestion Control

An update to the congestion avoidance algorithm was given by Jacobson a couple
of years later [J90]. These algorithms do not operate at the same time—TCP exe-
cutes only one at any given time, but it may switch back and forth between the
two. We now explore these in more detail and examine what determines when
each of them is used. We also look at how they have been modified and extended
since they were initially implemented. Each TCP connection is able to individually
execute these algorithms.

16.2.1 Slow Start

The slow start algorithm is executed when a new TCP connection is created or
when a loss has been detected due to a retransmission timeout (RTO). It may also
be invoked after a sending TCP has gone idle for some time. The purpose of slow
start is to help TCP find a value for cwnd before probing for more available band-
width using congestion avoidance and to establish the ACK clock. Typically, a
TCP begins a new connection in slow start, eventually drops a packet, and then
settles into steady-state operation using the congestion avoidance algorithm (Sec-
tion 16.2.2). To quote from [RFC5681]:

Beginning transmission into a network with unknown conditions requires TCP
to slowly probe the network to determine the available capacity, in order to avoid
congesting the network with an inappropriately large burst of data. The slow start
algorithm is used for this purpose at the beginning of a transfer, or after repairing
loss detected by the retransmission timer.

A TCP begins in slow start by sending a certain number of segments (after
the SYN exchange), called the initial window (IW). The value of IW was originally
one SMSS, although with [RFC5681] it is allowed to be larger. The formula works
as follows:

IW = 2*(SMSS) and not more than 2 segments (if SMSS > 2190 bytes)

IW = 3*(SMSS) and not more than 3 segments (if 2190 ≥ SMSS > 1095 bytes)

IW = 4*(SMSS) and not more than 4 segments (otherwise)

While this assignment for IW may allow several packets (e.g., three or four)
in the initial window, we shall discuss the case where IW = 1 SMSS for simplicity.
A TCP just starting out begins its connection, then, with cwnd = 1 SMSS, meaning
the initial usable window W is also equal to SMSS. Note that in most cases SMSS
is equal to the smaller of the receiver’s MSS and the path MTU (less header sizes).

Assuming no packets are lost and each packet causes an ACK to be sent in
response, an ACK is returned for the first segment, allowing the sending TCP
to send another segment. However, slow start operates by incrementing cwnd by
min(N, SMSS) for each good ACK received, where N is the number of previously

ptg999

Section 16.2 The Classic Algorithms 733

unacknowledged bytes ACKed by the received “good ACK.” A good ACK is one
that returns a higher ACK number than has been seen so far.

Note

The number of bytes ACKed is used to support Appropriate Byte Counting (ABC)
[RFC3465], an experimental specification recommended by [RFC5681]. It can be
used to counter an “ACK division” attack, described in Section 16.12, where many
small ACKs are used in an attempt to cause a TCP sender to send faster than nor-
mal. Linux uses the Boolean system configuration variable net.ipv4.tcp_abc
to determine if ABC is enabled (default no). In recent versions of Windows, ABC
defaults to on.

Thus, after one segment is ACKed, the cwnd value is ordinarily increased to 2,
and two segments are sent. If each of those causes new good ACKs to be returned,
2 increases to 4, 4 to 8, and so on. In general, assuming no loss and an ACK for
every packet, the value of W after k round-trip exchanges is W = 2k. Rewriting,
we can say that k = log2W RTTs are required to reach an operating window of W.
This growth seems quite “fast” (increasing as an exponential function) but is still
“slower” than what TCP would do if it were allowed to send immediately a win-
dow of packets equal in size to the receiver’s advertised window. (Recall that W is
still never allowed to exceed awnd.)

If we imagine a TCP connection where the receiver’s advertised window is
very large (say, infinitely large), cwnd is the primary governor of the sending rate
(provided there is something for the sender to send). As we saw, this value grows
exponentially fast in the RTT of the connection. So, eventually, cwnd (and thus
W) could become so large that the corresponding window of packets sent over-
whelms the network (recall that TCP’s throughput rate is proportional to W/RTT).
When this happens, cwnd is reduced substantially (to half of its former value). In
addition, this is the point at which TCP switches from operating in slow start to
operating in congestion avoidance. The switch point is determined by the relation-
ship between cwnd and a value called the slow start threshold (or ssthresh).

Figure 16-2 (left) illustrates the operation of slow start. The numbers are in
units of the RTT of the connection. Assuming the connection starts out with one
packet (top), one ACK is returned, allowing two packets to be sent during the
second RTT. These packets cause two ACKs to be returned. The TCP sender incre-
ments cwnd by one segment for each ACK returned, so the process continues. The
exponential growth of cwnd as a function of time is illustrated on the right. The
second line shows how cwnd grows when every other packet is acknowledged,
which is common when delayed ACKs are being used. In this case, the growth
is still exponential but not as rapid. For this reason, some TCPs arrange to delay
ACKs only after the connection has completed slow start. In Linux, this is called
quick acknowledgments (“quickack mode”) and has been part of the basic TCP/IP
stack since kernel version 2.4.4.

ptg999

734 TCP Congestion Control

16.2.2 Congestion Avoidance

Slow start, just described, is used when initiating data flow across a connection or
after a loss event invoked by a timeout. It increases cwnd fairly rapidly and helps to
establish a value for ssthresh. Once this is achieved, there is always the possibility
that more network capacity may become available for a connection. If such capac-
ity were to be immediately used with large traffic bursts, other TCP connections
with packets sharing the same queues in routers would likely experience signifi-
cant packet drops, leading to overall instability in the network as many connec-
tions simultaneously experience packet drops and react with retransmissions.

To address the problem of trying to find additional capacity that may become
available, but to not do so too aggressively, TCP implements the congestion avoid-
ance algorithm. Once ssthresh is established and cwnd is at least at this level, a
TCP runs the congestion avoidance algorithm, which seeks additional capacity by
increasing cwnd by approximately one segment for each window’s worth of data
that is moved from sender to receiver successfully. This provides a much slower
growth rate than slow start: approximately linear in terms of time, as opposed to
slow start’s exponential growth. More precisely, cwnd is usually updated as fol-
lows for each received nonduplicate ACK:

cwndt+1 = cwndt + SMSS * SMSS/cwndt

Figure 16-2 Operation of the classic slow start algorithm. In the simple case where ACKs are not delayed,
every arriving good ACK allows the sender to inject two new packets (left). This leads to an expo-
nential growth in the size of the sender’s window as a function of time (right, upper line). When
ACKs are delayed, such as when an ACK is produced for every other packet, the growth is still
exponential but slower (right, lower line).

ptg999

Section 16.2 The Classic Algorithms 735

Looking at this relationship briefly, assume cwnd0 = k*SMSS bytes were sent
into the network in k segments. After the first ACK arrives, cwnd is updated to be
larger by a factor of (1/k):

cwnd1 = cwnd0 + SMSS * SMSS/cwnd0 = k*SMSS + SMSS * (SMSS/(k*SMSS)) =
k*SMSS + (1/k) * SMSS = (k + (1/k))*SMSS = cwnd0 + (1/k)*SMSS

Because the value of cwnd grows slightly with each new ACK arrival, and this
value is in the denominator of the expression in the first equation above, the overall
growth rate of cwnd is slightly sublinear. Nonetheless, we generally think of con-
gestion avoidance growing the window linearly with respect to time (Figure 16-3),
whereas slow start grows it exponentially with respect to time (Figure 16-2). This
function is also called additive increase because a particular value (about one packet
in this case) is added to cwnd for each successfully received window’s worth of data.

Figure 16-3 Operation of the congestion avoidance algorithm. In the simple case where ACKs are not delayed,
every arriving good ACK allows the sender to inject approximately 1/W fraction of a new packet.
This leads to approximately linear growth in the size of the sender’s window as a function of time
(right, upper line). When ACKs are delayed, such as when an ACK is produced for every other
packet, the growth is still approximately linear but somewhat slower (right, lower line).

Figure 16-3 (left) illustrates the operation of congestion avoidance. Once again,
the numbers are in units of the RTT of the connection. Assuming the connection
sends four packets (top), four ACKs are returned, allowing cwnd to grow slightly.
By the second RTT period, the growth is enough to overcome the integer rounding
and cause an increase of one SMSS to cwnd, allowing one additional packet to be

ptg999

736 TCP Congestion Control

sent. The growth of cwnd as a nearly linear function of time is illustrated on the
right, on a linear-linear plot. The second line to the right shows how cwnd grows
when every other packet is acknowledged, simulating the use of delayed ACKs. In
this case, the growth is still about linear, but not as rapid.

The assumption of the algorithm is that packet loss caused by bit errors is very
small (much less than 1%), and therefore the loss of a packet signals congestion
somewhere in the network between the source and destination. If this assumption
is false, which it sometimes is for wireless networks, TCP slows down even when
no congestion is present. In addition, many RTTs may be required for the value
of cwnd to grow large, which is required for efficient use of networks with high
capacity. Fixing these issues with TCP has been a popular area for research, and
we discuss some of the various approaches later.

16.2.3 Selecting between Slow Start and Congestion Avoidance

In normal operations, a TCP connection is always running either the slow start or
the congestion avoidance procedure, but never the two simultaneously. We now
turn to the question, What determines the algorithm TCP uses at any given time?
We already know that slow start is used when a new connection is created or
when a timeout-based retransmission occurs. We now turn to what controls the
selection between slow start and congestion avoidance.

We mentioned ssthresh earlier. This threshold is a limit on the value of cwnd
that determines which algorithm is in operation, slow start or congestion avoid-
ance. When cwnd < ssthresh, slow start is used, and when cwnd > ssthresh, con-
gestion avoidance is used. When they are equal, either can be used. The most
important distinction between slow start and congestion avoidance, as we have
seen, is how each modifies the value of cwnd when new ACKs arrive. What makes
TCP somewhat tricky and interesting is that the value of ssthresh is not fixed but
instead varies over time. Its main purpose is to remember the last “best” estimate
of the operating window when no loss was present. Said another way, it holds the
lower bound on TCP’s best estimate of the optimal window size.

The initial value of ssthresh may be set arbitrarily high (e.g., to awnd or higher),
which causes TCP to always start with slow start. When a retransmission occurs,
caused by either a retransmission timeout or the execution of fast retransmit,
ssthresh is updated as follows:

ssthresh = max(flight size/2, 2*SMSS) [1]

Note

In Microsoft’s most recent (“Next Generation”) TCP/IP stack, this equation is
reportedly changed to the somewhat more conservative relationship: ssthresh =
max(min(cwnd, awnd)/2, 2*SMSS) [NB08].

ptg999

Section 16.2 The Classic Algorithms 737

Here we see that if a retransmission is required, TCP assumes that the oper-
ating window must have been too large for the network to handle. Reducing
the estimate of the optimal window size is accompanied by altering ssthresh to
be about half of what the current window size is (but not ever below twice the
SMSS). This usually results in lowering ssthresh, but it can also result in increasing
ssthresh. If we examine the congestion avoidance procedure for TCP, we recall that
if an entire window’s worth of data is successfully exchanged, the value of cwnd is
allowed to increase by approximately 1 SMSS. Thus, if cwnd has grown large over
a considerable amount of time, setting ssthresh to half of the flight size could cause
it to increase. This happens when TCP has discovered more usable bandwidth.
The interplay between ssthresh and cwnd, in conjunction with the operation of slow
start and congestion avoidance, gives TCP its characteristic behavior in the face of
congestion. We now explore the complete, combined algorithms.

16.2.4 Tahoe, Reno, and Fast Recovery

The algorithms discussed so far, slow start and congestion avoidance, constitute
the first congestion control algorithms applied to TCP. They were introduced in
the late 1980s with the 4.2 release of UC Berkeley’s version of UNIX, called the
Berkeley Software Distribution, or BSD UNIX. Thus began the convention of nam-
ing various versions of TCP after U.S. cities, especially those where gambling is
permitted.

The 4.2 release of BSD (called Tahoe) included a version of TCP that started
connections in slow start, and if a packet was lost, detected by either a timeout or
the fast retransmit procedure, the slow start algorithm was reinitiated. Tahoe was
implemented by simply reducing cwnd to its starting value (1 SMSS at that time)
upon any loss, forcing the connection to slow start until cwnd grew to the value
ssthresh.

One problem with this approach is that for large BDP paths, this can cause the
connection to significantly underutilize the available bandwidth while the send-
ing TCP goes through slow start to get back to the point at which it was operating
before the packet loss. To address this problem, the reinitiation of slow start on any
packet loss was reconsidered. Ultimately, if packet loss is detected by duplicate
ACKs (invoking fast retransmit), cwnd is instead reset to the last value of ssthresh
instead of only 1 SMSS. (Slow start is still initiated on a timeout, which is generally
the case for most TCP variants.) This approach allows the TCP to slow down to
half of its previous rate without reverting to slow start.

In exploring the issue of large BDP paths further and thinking back to the
conservation of packets principle mentioned before, it has been observed that any
ACKs that are received, even while recovering after a loss, still represent oppor-
tunities to inject new packets into the network. This became the basis of the fast
recovery procedure, which was released in conjunction with the popular 4.3 BSD
Reno version of BSD UNIX. Fast recovery allows cwnd to (temporarily) grow by 1
SMSS for each ACK received while recovering. The congestion window is therefore

ptg999

738 TCP Congestion Control

inflated for a period of time, allowing an additional new packet to be sent for each
ACK received, until a good ACK is seen. Any nonduplicate (“good”) ACK causes
TCP to exit recovery and reduces the congestion back to its pre-inflated value. TCP
Reno became very popular and ultimately the basis for what might reasonably be
called “standard TCP.”

16.2.5 Standard TCP

Although what constitutes “standard” TCP is subject to some debate, the algo-
rithms we have discussed so far constitute the primary procedures identified
with standard TCP operation. The slow start and congestion avoidance algorithms
are usually implemented together, and the baseline overall behavior is given in
[RFC5681]. This specification does not require the use of these exact algorithms,
but a requirement is imposed that any TCP implementation not be more aggres-
sive than these algorithms would allow.

To summarize the combined algorithm from [RFC5681], TCP begins a con-
nection in slow start (cwnd = IW) with a large value of ssthresh, generally at least
the value of awnd. Upon receiving a good ACK (one that acknowledges new data),
TCP updates the value of cwnd as follows:

 cwnd += SMSS (if cwnd < ssthresh) Slow start

 cwnd += SMSS*SMSS/cwnd (if cwnd > ssthresh) Congestion avoidance

When fast retransmit is invoked because of receipt of a third duplicate ACK
(or other signal, if conventional fast retransmit initiation is not used), the follow-
ing actions are performed:

 1. ssthresh is updated to no more than the value given in equation [1].

2. The fast retransmit algorithm is performed, and cwnd is set to (ssthresh +
3*SMSS).

 3. cwnd is temporarily increased by SMSS for each duplicate ACK received.

4. When a good ACK is received, cwnd is reset back to ssthresh.

The actions in steps 2 and 3 constitute fast recovery. Step 2 first adjusts cwnd,
which usually causes it to be reduced to half of its former value, and then tempo-
rarily inflates it to take into account the fact that the receipt of each duplicate ACK
indicates that some packet has left the network (and thus should permit another to
be inserted). This step is also where multiplicative decrease occurs, as cwnd is ordi-
narily multiplied by some value (0.5 here) to form its new value. Step 3 continues
the inflation process, allowing the sender to send additional packets (assuming
awnd is not exceeded). In step 4, the TCP is assumed to have recovered, so the
temporary inflation is removed (and so this step is sometimes called “deflation”).

ptg999

Section 16.3 Evolution of the Standard Algorithms 739

Slow start is always used in two cases: when a new connection is started, and
when a retransmission timeout occurs. It can also be invoked when a sender has
been idle for a relatively long time or there is some other reason to suspect that
cwnd may not accurately reflect the current network congestion state (see Section
16.3.5). In this case, the initial value of cwnd is set to the restart window (RW). In
[RFC5681], the recommended value of RW = min(IW, cwnd). Other than this case,
when slow start is invoked, cwnd is set to IW.

16.3 Evolution of the Standard Algorithms

The classic and standard TCP algorithms made a tremendous contribution to the
operation of TCP, essentially addressing the major problem of Internet congestion
collapse.

Note

The problem of Internet congestion collapse was a serious concern during the
years 1986–1988. In October 1986 the NSFNET backbone, an important compo-
nent of the early Internet, had been observed to operate with an effective capac-
ity some 1000 times less than it should have (called the “NSFNET meltdown”).
The primary reason for the problem was aggressive retransmissions during times
of loss without any controls. This behavior drove the network into a persistently
congested state where packet loss was massive (causing more retransmissions)
and throughput was low. Adoption of the classic congestion control algorithms
effectively eliminated this problem.

However, there remained several areas for improvement. Given TCP’s popu-
larity, a growing amount of effort was put into ensuring that TCP could be made
to work well under a wider range of conditions. We now mention several of these
that are found in many TCP implementations today.

16.3.1 NewReno

One problem with fast recovery is that when multiple packets are dropped in
a window of data, once one packet is recovered (i.e., successfully delivered and
ACKed), a good ACK can be received at the sender that causes the temporary
window inflation in fast recovery to be erased before all the packets that were lost
have been retransmitted. ACKs that trigger this behavior are called partial ACKs.
A Reno TCP reacting to a partial ACK by reducing its inflated congestion window
can go idle until a retransmission timer fires. To understand why this happens,
recall that (non-SACK) TCP depends on the signal of three (or dupthresh) duplicate
ACKs to trigger its fast retransmit procedure. If there are not enough packets in
the network, it is not possible to trigger this procedure on packet loss, ultimately

ptg999

740 TCP Congestion Control

leading to the expiration of the retransmission timer and invocation of the slow
start procedure, which drastically impacts TCP throughput performance.

To address this problem with Reno, a modification called NewReno [RFC3782]
has been developed. This procedure modifies fast recovery by keeping track of the
highest sequence number from the last transmitted window of data (the recovery
point, which we first saw in Chapter 14). Only when an ACK with an ACK num-
ber at least as large as the recovery point is received is the inflation of fast recov-
ery removed. This allows a TCP to continue sending one segment for each ACK
it receives while recovering and reduces the occurrence of retransmission time-
outs, especially when multiple packets are dropped in a single window of data.
NewReno is a popular variant of modern TCPs—it does not suffer from the prob-
lems of the original fast recovery and is significantly less complicated to imple-
ment than SACKs. With SACKs, however, a TCP can perform better than NewReno
when multiple packets are lost in a window of data, but doing this requires careful
attention to the congestion control procedures, which we discuss next.

16.3.2 TCP Congestion Control with SACK

With the introduction of SACKs and selective repeat to TCP, a sender is able to
make better decisions about what segments to send in order to fill holes at the
receiver (see Chapter 14). In filling the receiver’s holes, the sender generally sends
each of the missing segments, in order, until all of the retransmissions for the lost
segments have been received successfully. This procedure differs from the basic
fast retransmit/recovery procedure mentioned previously in a somewhat subtle
way.

In the case of fast retransmit/recovery, when a packet is lost, the sending TCP
transmits only the segment it believes is lost and is able to send new data if the
window W allows. Because the window is inflated for each arriving ACK dur-
ing fast recovery, with larger windows TCP typically is able to send some addi-
tional data after performing its retransmission. With SACK TCP, the sender can be
informed of multiple missing segments and would theoretically be able to send
them all immediately because they would all be in the valid window. However,
this might involve sending too much data into the network at once, thereby com-
promising the congestion control. The following issue arises with SACK TCP:
using only cwnd as a bound on the sender’s sliding window to indicate how many
(and which) packets to send during recovery periods is not sufficient. Instead, the
selection of which packets to send needs to be decoupled from the choice of when
to send them. Said another way, SACK TCP underscores the need to separate the
congestion management from the selection and mechanism of packet retransmis-
sion. Conventional (non-SACK) TCP mixes these together.

One way to implement this decoupling is to have a TCP keep track of how
much data it has injected into the network separately from the maintenance of
the window. In [RFC3517] this is called the pipe variable, an estimate of the flight
size. Importantly, the pipe variable counts bytes (or packets, depending on the

ptg999

Section 16.3 Evolution of the Standard Algorithms 741

implementation) of transmissions and retransmissions, provided they are not
known to be lost. Assuming a large value of awnd, a SACK TCP is permitted to
send a segment anytime the following relationship holds true: cwnd - pipe ≥ SMSS.
In other words, cwnd is still used to place a limit on the amount of data that can
be outstanding in the network, but the amount of data estimated to be in the net-
work is accounted for separately from the window itself. How SACK TCP using
this approach to congestion control compares with conventional TCP was first
explored in detail with a series of simulations in [FF96].

16.3.3 Forward Acknowledgment (FACK) and Rate Halving

For TCP variants based on Reno (including NewReno), the typical behavior is that
when cwnd is reduced after a fast retransmit, ACKs for at least one-half of the
current window’s outstanding data must be received before the sending TCP is
allowed to continue transmitting. This is an expected consequence of reducing
the congestion window by half immediately when a loss is detected. It causes the
sending TCP to wait for about half of an RTT and then send any new data during
the second half of the same RTT, a more bursty behavior than is really required.

In an effort to avoid the initial pause after loss but not violate the convention
of emerging from recovery with a congestion window set to half of its size on
entry, forward acknowledgment (FACK) was described in [MM96]. It consists of two
algorithms called “overdamping” and “rampdown.” Since the initial proposal,
the authors updated their approach to form a unified and improved algorithm
they call rate halving, based on earlier work by Hoe [H96]. To ensure that it works
as effectively as possible, they further govern its behavior by adding bounding
parameters, resulting in the complete algorithm being called Rate-Halving with
Bounding Parameters (RHBP) [PSCRH].

The basic operation of RHBP allows the TCP sender to send one packet for
every two duplicate ACKs it receives during one RTT. This causes the recovering
TCP to have sent the appropriate amount of data by the end of the recovery period,
but it spaces or paces this data evenly, rather than bunching all the transmissions
into the second half of the RTT period. Avoiding the bunching or burstiness is
advantageous because bursts tend to persist across multiple RTTs, stressing router
buffers more than required.

To keep an accurate estimate of the flight size, RHBP uses information from
SACKs to determine the FACK: the highest sequence number known to have
reached the receiver, plus 1. Taking the difference between the highest sequence
number about to be sent by the sender (SND.NXT in Figure 15-9) and the FACK
gives an estimate of the flight size, not including retransmissions.

With RHBP, a distinction is made between the adjustment interval (the period
when cwnd is modified) and the repair interval (when some segments are retrans-
mitted). The adjustment interval is entered immediately upon a loss or conges-
tion indicator. The final value for cwnd when the interval completes is half of
the correctly delivered portion of the window of data in the network at the time

ptg999

742 TCP Congestion Control

of detection. The following expression allows the RHBP sender to transmit, if
satisfied:

(SND.NXT – fack + retran_data + len) < cwnd

This expression captures the flight size, including retransmissions, and
ensures that if injecting another packet of length len, cwnd will not be exceeded.
Provided all the data prior to the FACK is indeed no longer in the network (i.e.,
is lost or stored at the receiver), this causes the SACK sender to be appropriately
controlled by cwnd. However, it can be overly aggressive if packets have been reor-
dered in the network because the holes indicated by SACK have not been lost.

In Linux, FACK and rate halving are implemented and enabled by default.
FACK is activated only when SACK is enabled and the Boolean configuration vari-
able net.ipv4.tcp_fack is set to 1. When reordering is detected in the network,
the more aggressive behavior of FACK is disabled.

Rate halving is one of several ways of pacing TCP’s sending procedure to
avoid or limit burstiness. Although it offers a number of benefits, it also has a few
problems. In [ASA00], the authors analyze TCP pacing in some detail using simu-
lations, concluding that in many cases it offers inferior performance to TCP Reno.
Furthermore, rate-halving TCP has been known to exhibit poor performance when
the connection may become limited by the receiver’s advertised window [MM05].

16.3.4 Limited Transmit

In [RFC3042], the authors propose limited transmit, a small modification to TCP
designed to help it perform better when the usable window is small. Recall from
the experience with Reno TCP that when operating with a small window, there
may not be enough packets in the network to trigger the fast retransmit/recovery
algorithms when loss occurs, as these algorithms typically require three duplicate
ACKs to be observed prior to initiation.

With limited transmit, a TCP with unsent data is permitted to send a new
packet for each pair of consecutive duplicate ACKs it receives. Doing this helps
to keep at least a minimal number of packets in the network—enough so that
fast retransmit can be triggered upon packet loss. This is advantageous to TCP
because waiting for an RTO (which can be a relatively large amount of time—sev-
eral hundred milliseconds) can degrade throughput performance considerably.
As of [RFC5681], limited transmit is now a recommended TCP behavior. Note that
rate halving is one form of limited transmit.

16.3.5 Congestion Window Validation (CWV)

One of the issues with congestion management in TCP arises when the TCP
sender stops sending for a period of time, either because it has no more data to
send, or because it has been prevented from sending when it wants to for some

ptg999

Section 16.3 Evolution of the Standard Algorithms 743

other reason. If all goes well, a sender never pauses, and it continues sending data
and receiving ACKs from its peer. This continuous feedback enables it to keep a
reasonably current (within one RTT) estimate of what cwnd and ssthresh should be.

If the TCP sender has been sending for some time, its cwnd may have grown
to a substantial size. If it then fails to send for some time but resumes later, the
large cwnd may allow the sender to inject an undesirably large number of packets
(i.e., a high-rate burst) into the network without delay. Furthermore, if the pause
is sufficiently long, its last cwnd value may no longer be appropriate for the path
and congestion state.

In [RFC2861], the authors propose an experimental Congestion Window Valida-
tion (CWV) mechanism. Essentially, the sender’s current value of cwnd decays over
a period of nonuse, and ssthresh maintains the “memory” of it prior to the initia-
tion of the decay. To understand the scheme, a distinction is made between an idle
sender and an application-limited sender. The idle sender has stopped producing
data it wants to send into the network; ACKs for all the data it has sent so far
have been received. Thus, the connection is truly quiescent—no data is flowing,
so no ACKs are either, except for occasional window updates (see Chapter 15). The
application-limited sender does have more data to send but has been unable to
for some reason. This could be because the sending computer is busy doing other
tasks, or because some mechanism or protocol layer below TCP is preventing data
from being sent. This case results in underutilization of the allowed congestion
window, but the connection is not completely quiescent. In particular, ACKs may
still be returning for previously sent data.

The CWV algorithm work as follows: Whenever a new packet is to be sent, the
time since the last send event is measured to determine if it exceeds one RTO. If so,

• ssthresh is modified but not reduced—it is set to max(ssthresh, (3/4)*cwnd).

• cwnd is reduced by half for each RTT of idle time but is always at least 1
SMSS.

For application-limited periods that are not idle, the following similar behav-
ior is used:

• The amount of window actually used is stored in W_used.

• ssthresh is modified but not reduced—it is set to max(ssthresh, (3/4)*cwnd).

• cwnd is set to the average of cwnd and W_used.

Both of these changes decay the value of cwnd while “remembering” it in
ssthresh. The first case can dramatically affect cwnd in one operation, if the applica-
tion has been idle for a long time. Handling the congestion window in this way
can lead to better performance under some circumstances. As the authors report,
reducing the burst of packets that can arise after an idle period eases the pressure

ptg999

744 TCP Congestion Control

on potentially limited buffer space in routers, ultimately leading to fewer dropped
packets. Note that because cwnd is decayed and ssthresh is not, the typical conse-
quence of applying this algorithm is to place the sender into slow start after a long
enough pause. CWV is enabled by default in Linux TCP implementations.

16.4 Handling Spurious RTOs—the Eifel Response Algorithm

As we saw in Chapter 15, when TCP encounters a large delay spike, it can expe-
rience a retransmission timeout even if no packet has been lost. Such spurious
retransmissions arise in a number of circumstances relating to changes in the
underlying link layer (such as cellular handoff) or sudden onset of severe conges-
tion contributing to a large increase in RTT. When this happens, the TCP adjusts
ssthresh and enters slow start by setting cwnd to IW. If no packets have been lost,
ACKs arriving after the RTO cause cwnd to grow relatively quickly, but TCP still
sends unnecessary retransmissions and underutilizes the capacity until cwnd and
ssthresh resettle.

To avoid the performance problems associated with spurious retransmissions,
several methods have been proposed to detect them. We discussed some of them
(e.g., DSACK, Eifel, F-RTO) in Chapter 14. Any one of these, or possibly others
that may be developed, can be coupled with a response algorithm used to “undo”
the changes TCP makes to its congestion control variables after a timeout. One
popular (i.e., in the IETF standards track) response algorithm is the Eifel Response
Algorithm [RFC4015].

Eifel comprises both a detection and a response algorithm, which are logically
disjoint. Any TCP implementation using the Eifel Response Algorithm is com-
pelled to use some detection algorithm specified in a standards-track or experi-
mental RFC (i.e., one that is documented).

The Eifel Response Algorithm is aimed at handling the retransmission timer
and congestion control state after a retransmission timer has expired. Here we
discuss only the congestion-related portions of the response algorithm. It is initi-
ated after the first timeout-based retransmission is sent. Its purpose is to undo a
change to ssthresh when a retransmission is deemed to be spurious. In all cases,
before ssthresh is modified as a result of the RTO, it is captured in a special variable
as follows: pipe_prev = min(flight size, ssthresh). Once this has been accomplished,
a detection algorithm, such as one of those mentioned previously, is invoked in
order to determine if the RTO is spurious. If it is, the following steps are executed
when an ACK arrives after the retransmission:

1. If a received good ACK includes an ECN-Echo flag, stop (see Section 16.11).

 2. cwnd = flight size + min(bytes_acked, IW) (assuming cwnd is measured in
bytes).

 3. ssthresh = pipe_prev.

ptg999

Section 16.5 An Extended Example 745

The pipe_prev variable is set before ssthresh is changed in the ordinary way. It
provides a memory for ssthresh, so that it can be reinstantiated in step 3 if necessary.
Step 1 deals with the case of an arriving ACK carrying the ECN flag. (We discuss
ECN more in Section 16.11.) When this happens, it is considered unsafe to avoid
undoing the reduction of ssthresh, so the algorithm terminates. Steps 2 and 3 consti-
tute the important part of the algorithm (with respect to cwnd). Step 2 restores cwnd
to a point where it may be able to inject some additional traffic into the network, but
not more than IW new data. IW is considered a safe amount of data to inject into a
network path with unknown congestion state. Step 3 restores ssthresh to its value
before the RTO occurred, completing the undo operation.

16.5 An Extended Example

We now turn to an extended example to demonstrate most of the behaviors
described in the preceding sections. Using the sock program, we arrange to send
about 2.5MB of data from a Linux (2.6) sender to a FreeBSD (5.4) receiver over a
DSL line. The DSL line is rate-limited in this direction to approximately 300Kb/s.
The FreeBSD receiver is attached to a high-bandwidth connection. The minimum
RTT between sender and receiver is 15.9ms, and there are 17 hops in the path. The
systems are configured to use the baseline algorithms (i.e., slow start and conges-
tion avoidance) for most of their processing. This avoids many of the operating-
system-specific details. (We cover some of these later.) To set up this experiment,
we run the following command at the receiver:

FreeBSD% sock -i -r 32768 -R 233016 -s 6666

This command arranges for the sock program to use a fairly large socket receive
buffer (228KB) and perform fairly large application reads (32KB). For the path
used, this is an adequate size of buffer for the receiver. At the sender we run the
sock program in sending mode, as follows:

Linux% sock -n20 -i -w 131072 -S 262144 128.32.37.219 6666

This selects a large send buffer and sends 20*131,072 bytes (2.5MB) of data. The
packet trace is captured using tcpdump on the sender. The command used to
capture this trace is as follows:

Linux# tcpdump -s 128 -w sack-to-free-12.td port 6666

This ensures that at least 128 bytes of each packet are captured, plenty to capture
all interesting TCP and IP header information. After the trace is collected, we can
use the tcptrace tool [TCPTRACE] to get a number of useful summary statistics
regarding the connection:

Linux% tcptrace -Wl sack-to-free-12.td

ptg999

746 TCP Congestion Control

This command requests the program to provide information on the congestion
window and output using a long (verbose) format. It produces the following
output:

1 arg remaining, starting with 'sack-to-free-12.td'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

3175 packets seen, 3175 TCP packets traced
elapsed wallclock time: 0:00:00.167213, 18987 pkts/sec analyzed
trace file elapsed time: 0:01:40.475872
TCP connection info:
1 TCP connection traced:
TCP connection 1:
 host a: adsl-63-203-72-138.dsl.snfc21.pacbell.net:1059
 host b: dwight.CS.Berkeley.EDU:6666
 complete conn: yes
 first packet: Wed Sep 28 22:15:29.956897 2005
 last packet: Wed Sep 28 22:17:10.432769 2005
 elapsed time: 0:01:40.475872
 total packets: 3175
 filename: sack-to-free-12.td
 a->b: b->a:
 total packets: 1903 total packets: 1272
 ack pkts sent: 1902 ack pkts sent: 1272
 pure acks sent: 2 pure acks sent: 1270
 sack pkts sent: 0 sack pkts sent: 79
 dsack pkts sent: 0 dsack pkts sent: 0
 max sack blks/ack: 0 max sack blks/ack: 2
 unique bytes sent: 2621440 unique bytes sent: 0
 actual data pkts: 1900 actual data pkts: 0
 actual data bytes: 2659240 actual data bytes: 0
 rexmt data pkts: 27 rexmt data pkts: 0
 rexmt data bytes: 37800 rexmt data bytes: 0
 zwnd probe pkts: 0 zwnd probe pkts: 0
 zwnd probe bytes: 0 zwnd probe bytes: 0
 outoforder pkts: 0 outoforder pkts: 0
 pushed data pkts: 44 pushed data pkts: 0
 SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1
 req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y
 adv wind scale: 2 adv wind scale: 2
 req sack: Y req sack: Y
 sacks sent: 0 sacks sent: 79
 urgent data pkts: 0 pkts urgent data pkts: 0 pkts
 urgent data bytes: 0 bytes urgent data bytes: 0 bytes
 mss requested: 1412 bytes mss requested: 1460 bytes
 max segm size: 1400 bytes max segm size: 0 bytes
 min segm size: 640 bytes min segm size: 0 bytes
 avg segm size: 1399 bytes avg segm size: 0 bytes
 max win adv: 5808 bytes max win adv: 233016 bytes
 min win adv: 5808 bytes min win adv: 170016 bytes
 zero win adv: 0 times zero win adv: 0 times
 avg win adv: 5808 bytes avg win adv: 232268 bytes

ptg999

Section 16.5 An Extended Example 747

 max owin: 137201 bytes max owin: 1 bytes
 min non-zero owin: 1 bytes min non-zero owin: 1 bytes
 avg owin: 37594 bytes avg owin: 1 bytes
 wavg owin: 33285 bytes wavg owin: 0 bytes
 initial window: 2800 bytes initial window: 0 bytes
 initial window: 2 pkts initial window: 0 pkts
 ttl stream length: 2621440 bytes ttl stream length: 0 bytes
 missed data: 0 bytes missed data: 0 bytes
 truncated data: 2556640 bytes truncated data: 0 bytes
 truncated packets: 1900 pkts truncated packets: 0 pkts
 data xmit time: 99.631 secs data xmit time: 0.000 secs
 idletime max: 7778.8 ms idletime max: 7930.4 ms
 throughput: 26090 Bps throughput: 0 Bps

From this useful tool we can learn quite a bit about the connection. We are
primarily interested in the left portion of the output (a->b). First of all, we see that
1903 packets were sent in the a->b direction and 1902 of them were ACKs. This is
expected, as the very first packet is normally a SYN—the only packet without the
ACK flag turned on. Pure ACKs refer to packets containing no data. The sender
produces one of these early in the connection, when providing an ACK to its peer’s
SYN + ACK and when producing the final ACK when the connection is closed,
so this is also expected. In the second column (b->a direction), we find that the
receiver sent 1272 packets, all of which are ACKs. Of these, 1270 were pure ACKs,
and 79 SACK packets (i.e., ACKs containing the SACK option) were sent. The two
“non-pure” ACKs are the SYN + ACK and the FIN + ACK sent at the beginning
and end of the connection, respectively.

The next five values indicate the proportion of data that was retransmitted. As
we can see, 2,621,440 unique bytes were sent (i.e., not retransmitted), but 2,659,240
bytes were sent in total, meaning some 2,659,240 – 2,621,440 = 37,800 bytes must
have been sent more than once. The next two fields confirm this and indicate
that these retransmitted bytes were contained in 27 retransmitted packets, for an
average retransmitted segment size of 1399 bytes. Because this connection trans-
ferred 2,659,240 bytes in 100.476s, its average throughput is 26,466 bytes/s (about
212Kb/s). Its average goodput, the amount of unretransmitted data transferred
per unit time, is 2,621,440/100.476 = 26,090 B/s, about 209Kb/s. As we shall see, this
connection experiences a number of significant disruptions to its normal opera-
tion. We shall use Wireshark’s analysis capabilities and our own analysis to follow
TCP’s behavior when such events occur.

To get a visual image of the trace, we can use the Statistics | TCP Stream
Graph | Time-Sequence Graph (tcptrace) function in Wireshark’s Statistics
menu to obtain the image shown in Figure 16-4 (enhanced with arrows for the
discussion that follows).

The y-axis of Figure 16-4 represents the relative TCP sequence number. Each
small tick mark represents 100,000 sequence numbers. The x-axis is time, in sec-
onds. The dark solid line comprises many smaller I-shaped line segments, each
of which represents the range of sequence numbers contained in a TCP segment.

ptg999

748 TCP Congestion Control

The height of the I indicates the user-data payload size, in bytes. The slope of the
“line” formed by these I-shaped characters is the data rate achieved by the con-
nection. Any movement to the lower right indicates a retransmission. The slope of
the line for any given time range provides the average throughput over that time.
As we can see, the highest sequence number sent was about 2600000 at time 100,
which provides for a rough average goodput rate of 26,000 bytes/s, quite close to
the numeric value from the preceding tcptrace output.

The top line is the largest sequence number the receiver is willing to accept
(its highest advertised window) so far. As we can see, at the beginning of the time
series, this line is at about 250000, with the actual value being 233016, as indi-
cated in the tcptrace output, in the b→a column. The bottom line represents the
highest ACK number received at the sender so far. As discussed previously, TCP
searches for additional bandwidth while it operates, by increasing its congestion

Figure 16-4 Wireshark trace of a 2.5MB file upload executed by a Linux 2.6.10 TCP sender over a
DSL line rate-limited to approximately 300Kb/s. The dark line represents sent sequence
numbers. The top line is the highest sequence number advertised by the receiver (its
right window edge), and the lower line represents the highest segment acknowledged
by the receiver so far seen at the sender. The 11 events labeled represent cases where the
congestion window has been modified.

ptg999

Section 16.5 An Extended Example 749

window. It does not violate the receiver’s advertised window. We see this in opera-
tion in this graph as the solid line moves from the lower line toward the upper
line over time. If the upper line is never reached, either the sender or the usable
network capacity is the limiting factor for the throughput of the connection. If the
upper line is always reached, the receiver’s window is the likely limiting factor.

16.5.1 Slow Start Behavior

We begin our analysis by observing the operation of the slow start algorithm
described earlier. In Wireshark, we select the first packet of the trace and then
use its Statistics | Flow graph function to illustrate the packets exchanged at the
beginning of the connection (see Figure 16-5).

Figure 16-5 The Wireshark analysis shows the sequence and ACK numbers exchanged when the
connection is first established. Each ACK received at the sender liberates two or three
packets. This characteristic is typical of a sender in slow start.

Here we see the initial SYN and SYN + ACK exchange. The ACK at time 0.032
is a window update (see Chapter 15). The first two data packets are sent at times
0.126 and 0.127. The ACK at time 0.210 is not for a single packet. Its ACK num-
ber is 2801 and thus ACKs both of the previously sent data packets because of the
cumulative property of TCP ACKs. This is an example of delayed ACKs, which are
often generated for every other data packet (or more frequently, as recommended
by [RFC5681]). As we shall see for this particular (FreeBSD 5.4) receiver, it alter-
nates between ACKing one packet and two packets. This means there are two

ptg999

750 TCP Congestion Control

ACKs returned for every three data packets sent on average (assuming no errors or
retransmissions). We discussed delayed ACKs and window updates in Chapter 15.

An ACK arriving that covers two packets allows the sliding window at the
sender to move forward by two packets and therefore permits two additional
packets to be sent into the network. However, because this connection is just start-
ing out and it is still executing slow start, the arrival of a good ACK causes the
sender to increase its congestion window by one packet (this Linux TCP manages
its congestion window in packet units). In this case, the cwnd grows from 2 to 3.
This has effect of allowing three packets to be sent overall as a result of the arriving
ACK. They are sent at times 0.215, 0.216, and 0.217.

The ACK arriving at time 0.264 ACKs a single packet and indicates that the
receiver next expects to see sequence number 4201. That packet, however, and the
one after it with sequence number 5601, have already been sent and are still out-
standing. Thus, the ACK arrival allows cwnd to grow from 3 to 4, but because
two packets are already outstanding, only two more are allowed to be sent (one
because the ACK slid the window forward, another because the received good
ACK allowed cwnd to grow by one packet). They are sent at times 0.268 and 0.268
(within the same 1/1000s).

This startup behavior is typical of a sender executing slow start with a receiver
delaying ACKs. The process continues in this fashion (each ACK liberating two
or three packets) until something interesting occurs at about time 5.6. We now
explore this further.

16.5.2 Sender Pause and Local Congestion (Event 1)

Looking at Figure 16-4, we find that after a segment is sent at time 5.512, a pause
occurs until the next data segment is set at time 6.162. This can be better seen by
using Wireshark’s graphical zoom-in feature as shown in Figure 16-6.

In this figure we see that the sender has stopped sending, no retransmitted
packet appears to be present, yet the data rate appears to decrease after the pause.
Why is this? We can investigate further with the flow trace function once again
(see Figure 16-7).

The sending TCP has evidently ceased its sending demand at time 5.559. This
is supported by the fact that the last transmitted data segment before the pause
has the PSH flag turned on, which typically indicates that the sending buffer has
been emptied. There could be several reasons for this, including the possibility
that the host system is busy doing something else, preventing the sending applica-
tion from initiating its next write of data into the network.

We can observe that this pause is not the beginning of a retransmission recov-
ery period, yet the slope of the line decreases after the pause, indicating a reduced
sending rate. Let us explore this behavior more closely to figure out why.

The last sequence number sent before the pause is 343001 + 1400 – 1 = 344400,
which has never been sent before and is therefore not a retransmission. After the
segment is sent at time 5.486 (highlighted), this connection will have its greatest
amount of outstanding data: 341,601 + 1400 – 205,801 = 137,200 bytes (98 packets).

ptg999

Section 16.5 An Extended Example 751

This tells us that the value of cwnd is 98 packets. The arrival of the ACK at time
5.556 indicates that two more packets have been received at the receiver. The last
packet to be sent before the pause contains sequence number 344400, so 97 packets
are outstanding.

While the application is paused, 11 ACKs arrive (each alternating between
ACKing either one or two full-size segments as mentioned before). The last one
indicates that sequence number 233800 has been received, meaning 110,600 bytes
(79 packets) now remain outstanding. At this point, the sender wakes up and con-
tinues to transmit. As a result of receiving this ACK at time 6.204, it should be able
to inject 98 – 79 = 19 more packets at this point but is able to send only 8. The last
sequence number it is able to send is 354201 + 1400 – 1 = 355600 at time 6.128.

What happens to the TCP at this point is not immediately obvious from the
trace. We would have expected 19 packets to be sent, but only 8 were. The reason
is that the sender filled a local (lower-layer) queue with its burst of packets and the
subsequent ones were unable to be sent. Using the following command in Linux,
and knowing that our transfer takes place over the ppp0 network interface, we
can try to determine if some lower layer has caused TCP to have problems:

Figure 16-6 After starting using the slow start procedure, the connection pauses for about 512ms, at
time 5.512, and then continues by sending a burst.

ptg999

752 TCP Congestion Control

Linux% tc -s -d qdisc show dev ppp0
qdisc pfifo_fast 0: bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
Sent 122569547 bytes 348574 pkts (dropped 2, overlimits 0 requeues 0)

The tc program is used to administer the packet scheduling and traffic control
subsystem in Linux [LARTC]. The –s and –d options provide detailed statistics.
The directive qdisc show dev ppp0 means the queuing discipline for device
ppp0 should be displayed, which is the method used to hold and prioritize the
order in which packets are sent. Notice the two dropped packets. These packets
were not dropped in the network but rather in the sending computer in a protocol
layer below TCP. Furthermore, because they were dropped in a layer below TCP
but above the layer where the packet capture facility operates, these packet trans-
mission attempts are not visible in the trace. Dropping transmitted TCP packets at
the sending system is sometimes called local congestion, and it arises because TCP
is producing data faster than the underlying local queues can be emptied.

Figure 16-7 The sender pauses at time 5.559. In addition, the burst of packets at time 6.209 is limited
to eight because of local congestion. Some TCP implementations such as this one limit
the sending rate to avoid congesting queues on the sending host.

ptg999

Section 16.5 An Extended Example 753

Note

The Linux traffic control subsystem and other priority or QoS features supported
in routers and operating systems (e.g., Microsoft’s qWave API [WQOS]) support
different queuing disciplines that may order packets differently based on features
in the packets (e.g., the IP DSCP value or TCP port number). Placing priority
on some packets (e.g., multimedia data packets, TCP pure ACKs) may improve
the user experience for interactive applications in networks that support priority.
Much of the Internet does not support such priorities, but many LANs and some
enterprise IP networks do.

Local congestion is one of several reasons the Linux TCP implementation may
be placed in the Congestion Window Reducing (CWR) state [SK02]. It starts by set-
ting ssthresh to cwnd/2, and by setting cwnd to min(cwnd, flight size + 1). In the
CWR state, the sender reduces cwnd by one packet for every two ACKs received
until cwnd reaches the new ssthresh or the CWR state is exited for some other rea-
son such as a loss event. It is essentially the rate-halving algorithm we mentioned
previously. It is also invoked when the sending TCP receives an ECN-Echo indica-
tion in the received TCP header (see Section 16.1.1).

With this knowledge, we can now understand what happened. When TCP
continues after the pause, it is able to send only 8 packets. Any additional packets
cannot be sent because of local congestion and instead place the TCP into the CWR
state. Immediately, ssthresh is reduced to 98/2 = 49 packets and cwnd is set to 79 + 8
= 87 packets. It then remains in the CWR state where it reduces cwnd by 1 for every
two ACKs it receives, leading to a reduction in sending rate, until cwnd reaches 66
packets at time 8.364.

The reduction in sending rate can also be observed as follows: Looking at Fig-
ure 16-6, before time 5.5 the slope of the line gives an effective data rate of approxi-
mately 500Kb/s. This is higher than the capacity of the link in the direction of the
data transfer, so this extra apparent capacity is the result of one or more queues
being filled up in the path, leading to an increased RTT because of queuing delay.
We can use the Statistics | TCP Stream Graph | Round Trip Time Graph to visual-
ize this effect (see Figure 16-8).

In this figure, the y-axis represents the estimated RTT in seconds and the x-axis
represents the sequence number. We can see that at approximately sequence num-
ber 340000, the RTT begins to decrease. This sequence number corresponds closely
to the last sequence number sent before the pause described earlier (344400). The
decreasing RTT corresponds to the fact that as the sender slows down, the net-
work is becoming less loaded (i.e., the rate at which data is draining from the net-
work exceeds the rate at which new traffic is arriving). This causes queues within
network routers to empty, leading to a smaller wait time and a consequentially
lower RTT.

The sending rate reduction continues while TCP remains in the CWR state.
Eventually, if this continued, the RTT would decrease to its bare minimum value
of about 17ms. In general, TCP avoids allowing this to happen because it wants to

ptg999

754 TCP Congestion Control

Figure 16-8 The sender’s estimated connection round-trip time. Periods of increasing RTT (dense
groupings of increasing values) correspond to buffers filling because of an excess of
sending rate over forwarding rate at a router along the path. Decreasing RTTs represent
the opposite effect, resulting from the sender slowing down and the queues draining.

“keep the pipe full” to ensure that it is using the maximum amount of network
capacity currently available to it.

16.5.3 Stretch ACKs and Recovery from Local Congestion

At time 8.364, following the gradual reduction in cwnd initially caused by the TCP
entering the CWR state, the TCP appears to start decreasing more quickly. This is
a consequence of a change in the relationship of cwnd and the amount of outstand-
ing data indicated by the ACK at time 8.362 (highlighted in Figure 16-9).

The ACK at time 8.362 is for sequence number 317801, but the previously
received ACK is for sequence number 313601, meaning this new ACK is for 317,801
– 313,601 = 4200 bytes (three packets). This is commonly called a stretch ACK, mean-
ing it ACKs more than twice the largest segment sent so far. It could be caused by
a number of possibilities, the simplest of which is a lost ACK. It is usually difficult
to determine with certainty the cause of the stretch ACK, but the precise reason

ptg999

Section 16.5 An Extended Example 755

Figure 16-9 A “stretch ACK” acknowledges three packets’ worth of sequence numbers. Such ACKs
can cause the sender to act in a bursty manner and can occur when other ACKs are lost
in transit.

is not usually important. In this example, we can assume that an earlier ACK was
lost and continue to investigate how the sender behaves. Its arrival causes cwnd to
drop from 68 to 66.

The Linux TCP implementation attempts to revise its estimate of the number
of outstanding packets whenever it receives an ACK. (It also attempts to validate
the congestion window whenever it sends segments, according to the Conges-
tion Window Validation algorithm described previously, but this does not have
an effect here.) When in CWR state, if the outstanding packet count estimate is
reduced for some reason, as it is here after receiving the stretch ACK, cwnd is
adjusted to be the estimate plus 1. Note that this is in addition to its ordinary
behavior in CWR, where it reduces cwnd by 1 for each pair of ACKs received.
Generally, cwnd is reduced by either 1 or 0 for each ACK, and then cwnd is set to
min(flight size + 1, [possibly reduced] cwnd). The CWR state remains operating
until cwnd reaches ssthresh or some other event, such as a loss and retransmission,
occurs.

Prior to receiving the stretch ACK, at time 8.258, 407,401 + 1400 – 313,601 =
95,200 bytes (68 packets) are outstanding. After the stretch ACK is received, the
number of outstanding packets is reduced to 65 and cwnd is set to 66.

Because the flight size estimate and cwnd are closely coupled in the CWR
state, and the TCP receiver in this example delays ACKs, the result of a pair of
ACKs arriving is to reduce cwnd by 2 and to liberate one packet. The reason for

ptg999

756 TCP Congestion Control

this is as follows: Assume that before the arrival of any ACKs, cwnd is c0 and the
flight size estimate is f0 = c0. When the first ACK arrives (i.e., for one packet), f1 =
f0 - 1 and cwnd is updated to c1 = min(c0 - 1, f1 + 1) = c0 - 1. When the second ACK
arrives (for two packets, because of delayed ACKs), f2 = f1 – 2 = c0 - 3 and cwnd is set
to c2 = min(c1, f2 + 1) = min(c0 - 1,c0 - 2) = c0 - 2. Because the congestion window has
shrunk by two packets, but three packets have been ACKed during this period, a
single packet is liberated after the receipt of the second ACK.

The sender exits the CWR state at time 9.37 when cwnd reaches ssthresh at 49
packets. TCP now returns to normal behavior and continues in congestion avoid-
ance (see Figures 16-10 and 16-11).

Figure 16-10 By time 9.369, the sender reverts to normal and sends either one or two packets per
received ACK.

In Figure 16-10, the circled packets indicate where the sender’s state changes
from CWR back to normal, where the congestion avoidance algorithm takes over.
Figure 16-11 shows this behavior in more detail.

The sender continues in congestion avoidance, achieving relatively stable
throughput until time 17.232. At this point, severe network congestion begins to

ptg999

Section 16.5 An Extended Example 757

form, contributing to a large increase in the RTT. In Figure 16-8, this happens at
sequence number 720000, where the RTT grows to about 6.5s—a more than three-
fold increase from its previously stable value of about 2s. This effect is common
with the onset of severe congestion. Eventually, the network congestion is suf-
ficiently severe so as to cause a packet to be dropped. The sending TCP responds
with its first retransmission.

16.5.4 Fast Retransmission and SACK Recovery (Event 2)

At time 21.209, after the dramatic increase in measured RTT, we observe the first
retransmission. We can see this in more detail by zooming in as shown in Figure 16-12.
The first retransmission (circled) is for the packet starting with sequence number
690201, matching the highest ACK received so far (also 690201). It is triggered by
the receipt of a single duplicate ACK carrying the SACK block [698601,700001].
Recall that these numbers indicate the sequence number range already received at
the receiver. In this case, it is a single packet.

At time 21.209, when the retransmission takes place, the largest sequence
number sent so far is 761601 + 1400 – 1 = 763000, and cwnd is 52. In conjunction
with this fast retransmit, ssthresh is reduced from 49 to 26, and TCP enters the
Recovery state. This TCP remains in Recovery state until it receives a cumula-
tive ACK for the recovery point: sequence number 763000 (or higher). In addition,

Figure 16-11 TCP has completed its recovery and is back in the normal (congestion avoidance) state.
It sends one or two packets for each ACK received.

ptg999

758 TCP Congestion Control

cwnd is reduced to (flight size + 1) packets. However, because data has likely been
lost, determining the flight size is not so straightforward. It is accomplished using
the following relationship:

flight size = packets_outstanding + packets_retransmitted - packets_removed

The first term on the right-hand side represents all the packets sent once by
the sender and not yet ACKed with the regular TCP cumulative ACK field. The
second term represents any that have been resent (and not ACKed), and the final
term represents any packets that are no longer in the network but also have not
been ACKed by the basic TCP cumulative ACK. The value of packets_removed must
be estimated because TCP has no reliable way to directly learn it. It represents the
sum of any (out-of-order) packets cached at the receiver plus any packets that have
been lost in the network. With SACK, it is possible to learn the number of packets
cached at the receiver, but the number of lost packets must still be estimated.

Figure 16-12 The first retransmission (circled) occurs at time 21.209. SACK blocks are used to guide
the sender as to what packets to retransmit. Eight retransmissions in total occur
between times 21.0 and 22.0.

ptg999

Section 16.5 An Extended Example 759

The value of packets_outstanding here is (763,001 – 690,201)/1400 = 72,800/1400
= 52 and the number of packets cached in the receiver is (700,001 – 698,601)/1400
= 1400/1400 = 1 (derived from the sequence numbers in the SACK block). With
FACK enabled, as it is here by default, holes in the receiver inferred by SACK infor-
mation are considered to be lost. Thus, in this case, TCP estimates that 698,601 –
690,201 = 8400 (6 packets) have been lost. The flight size is therefore 52 + 1 - (1 + 6)
= 46 packets, and cwnd is set to 47. While in the Recovery state, TCP reduces cwnd
by one packet for every two packets it receives, similar to the CWR state. After the
first retransmission, another seven retransmissions take place, followed by trans-
mission of new data, based on SACK option data carried in each of the arriving
ACKs between times 21.2 and 21.7 (see Figure 16-13).

In this figure, much of the normal Wireshark information has been removed
to more clearly see the SACK options on each ACK. By looking at the SACK
sequence numbers (SLE and SRE), we can see that most of the time there are two
active blocks at the receiver: [698601,700001], which holds one packet, and another
[702801,763001] (at its largest), that grows to be 43 packets. During the recovery
period, the general rate-halving algorithm applicable to the CWR and Recovery
states reduces cwnd by at least one packet for every pair of ACKs received. Because
each received ACK effectively ACKs one packet in this case (through an increase
in the SACK block size by one packet), flight size reduces by 1, which would permit
another packet to be sent. However, because cwnd is also reduced by 1 for every
other ACK, it takes two ACKs to liberate a new packet. Note how this differs from
the CWR case. In that case, some ACKs provided acknowledgment for two pack-
ets, whereas here only one packet is ACKed (SACKed) per arriving ACK. Thus, for
each of the transmissions and retransmissions shown in the plot, cwnd is reduced
by 1 after each pair of ACKs has been received. During this recovery period, over-
all, cwnd shrinks from 47 to 20.

Most ACKs containing SACK options are duplicate ACKs for sequence num-
ber 690201 (44 of them), as Wireshark points out. There are five good ACKs that
contain the SACK blocks [702801,763001] and [698601,700001]. Two more contain
only the SACK block [702801,763001]. These good ACKs do not take the sender out
of recovery, because their ACK numbers are all below the sequence number of the
recovery point at 763000; they are partial ACKs, as discussed earlier.

TCP recovers from fast retransmit at time 23.301 with the arrival of a good
ACK equal to a sequence number (765801) larger than the recovery point. At this
point, cwnd is 20 and ssthresh is 26, meaning TCP is in slow start. By time 23.659,
after several round trips, cwnd reaches the value 27, TCP is in the normal operat-
ing state, and the congestion avoidance algorithm takes over. This completes the
sender’s first fast retransmit recovery period.

16.5.5 Additional Local Congestion and Fast Retransmit Events

The next four events consist of local congestion, a fast retransmit, and two more
local congestion episodes. They are very similar to the types of events we have
seen already, so they are summarized here only briefly.

ptg999

760

Figure 16-13 SACK recovery after fast retransmission. Packet 871 contains the first SACK option used on the connection.
Subsequent ACKs contain SACK information until packet 950.

ptg999

Section 16.5 An Extended Example 761

16.5.5.1 CWR Again (Event 3)
A CWR event due to local congestion occurs at time 30.745. At this point, 1,090,601
+ 1400 – 1,051,401 = 40,600 (29 packets) are outstanding, and cwnd is 31. This should
allow two additional packets to be injected, but none are, because of local conges-
tion. In this particular case, cwnd is set to flight size + 1 = 30, and ssthresh is reduced
to 15. TCP exits the CWR state when cwnd reaches ssthresh. This happens at time
34.759, after another significant increase in the connection’s RTT.

16.5.5.2 Second Fast Retransmit (Event 4)
At time 36.914, there is another fast retransmit when cwnd = 16. Using the basic
display from Wireshark, such retransmissions are easy to spot (see Figure 16-14).

Figure 16-14 A Linux TCP sender enters the Disorder state upon receiving a duplicate ACK or an ACK with
SACK information. Packets arriving while in this state trigger transmissions of new data. Subse-
quent duplicate ACKs (or presence of SACK information) place the sender into the Recovery state
where retransmissions take place.

ptg999

762 TCP Congestion Control

Here, the ACK arriving at time 36.878 (packet 1366) carries the SACK block
[1117201,1118601] and ACK number 1110201. This places Linux TCP in the Disorder
state, where arriving packets liberate one packet each (similar to limited transmit)
of new data. Packet 1367 is the packet liberated in this case.

With the arrival of the ACK at time 36.912 (packet 1368), containing SACK
block [1117201,1120001] and a duplicate ACK, TCP enters the Recovery state and
triggers the fast retransmit at time 36.914 (packet 1369). The highest sequence num-
ber sent so far is 1132601 + 1400 – 1 = 113400. Recovery is eventually completed
at time 37.455, with the arrival of the ACK containing sequence number 1134001
(packet 1391). Note that immediately following this ACK is a window update. For
bulk data transfers such as the present example, where the receiver’s window is
large relative to the bandwidth-delay product of the network, such updates are not
usually of much consequence. When we have interactive traffic, small windows,
or servers that only occasionally read from the network, these updates can become
quite important, as we saw in Chapter 15. When the first retransmission takes
place, ssthresh is reduced from 16 to 8. Eventually, when recovery completes, cwnd
= 4 and ssthresh = 8. This leaves the sender in slow start because cwnd is smaller
than ssthresh.

16.5.5.3 CWR Again (Events 5 and 6)
After the arrival of the ACK for sequence number 1359401 at time 43.356, TCP
once again enters the CWR state because of local congestion when it tries to send
subsequent packets. This ultimately reduces ssthresh to 8 and cwnd becomes 15. A
second transmission failure, while in the CWR state, brings ssthresh down to 12.
The CWR state is exited with cwnd = 7 and ssthresh = 8.

Another round of local congestion at time 59.652 forces TCP into CWR when
cwnd = 19 and ssthresh = 10. In this case, the CWR state is interrupted by a timeout
that places TCP into the Loss state. This represents a new type of event for us to
investigate.

16.5.6 Timeouts, Retransmissions, and Undoing cwnd Changes

Although TCP keeps a retransmission timer in case fast retransmit is unable to
repair a loss, we have not yet seen it in operation. This is fortunate, because gener-
ally when a timeout occurs, the connection is experiencing significant congestion
and performance problems. In the next portion of the trace, shown in Figure 16-15,
we see how the sending TCP handles the situation when its retransmission timer
expires.

16.5.6.1 First Timeout (Event 7)
A retransmission occurs at time 62.486 (packet 2157) for sequence number 1773801
(highlighted in Figure 16-15). Immediately prior to this, there is no evidence of
duplicate ACKs or SACKs.

ptg999

Section 16.5 An Extended Example 763

In Figure 16-15, at time 62.486, about 1.58s have elapsed since the last ACK was
received, but according to Figure 16-8, the estimated RTT at this point is only about
800ms. Thus, we may conclude this retransmission to be the result of a retransmis-
sion timer expiration. This places TCP into the Loss state, which ordinarily causes
a drastic reduction of cwnd and effectively restarts the TCP in slow start. Here,
TCP sets cwnd = 1 and ssthresh = 5, placing TCP in slow start, as expected. The
timeout also forces any stored SACK information to be discarded. However, the
receiver continues to send SACK information, so the sender can still make use of
new SACK information it receives.

Note

TCP is supposed to “forget” its knowledge about received SACK information when
experiencing a timeout because of the possibility that a receiver may renege on
SACK information it provided earlier. This is suggested by [RFC2018] because
of the (obscure) possibility that a receiver may wish to adjust its buffering so
as to delete out-of-order data it has accumulated. Although not common, such
behavior is permitted. When a receiver reneges, it is required to include the most

Figure 16-15 The sender experiences its first timeout when RTO = 1.57s. In this case, the sender declares the
timeout to be spurious and undoes the modifications it made to its congestion control state.

ptg999

764 TCP Congestion Control

recently received data blocks in the first SACK block of ACKs generated, even if
it is discarded. Except for this block, additional blocks must cease to report data
no longer being held at the receiver.

Most interestingly here, this congestion action is undone. As discussed earlier,
the Eifel Response Algorithm can be invoked when TCP believes a retransmission
timeout to be erroneous. In this case, it is declared erroneous because of evidence
in the timestamp. The ACK received at time 62.757 for sequence number 1775201
(packet 2158) carries a TSOPT with TSV of 17152514. However, the retransmission
has the TSV of 17155274. Because the TSER field in the ACK covering the retrans-
mitted segment is earlier than the retransmission, the hole the retransmission was
attempting to fill was not really a hole at all. Instead, the expiration of the retrans-
mission timer must have been erroneous.

By declaring the retransmission timer expiration to be erroneous and invok-
ing an Eifel-like response algorithm, TCP restores cwnd and ssthresh to their for-
mer values of 10 and immediately shifts to a normal operating state. This activates
the congestion avoidance algorithm, and TCP continues without much fuss.

16.5.6.2 Fast Retransmit (Event 8)
The arrival of a duplicate ACK for sequence number 1789201 carrying SACK block
[1792001,1793401] at time 67.510 (packet 2179) places TCP into the Disorder state
once again. The largest sequence number sent so far when this state is entered
is 1806000. Additional arriving SACKs trigger entry into the Recovery state and
sending of another fast retransmit at time 67.550 for sequence number 1789201
(packet 2182). This reduces ssthresh to 5 and cwnd begins shrinking until it also
reaches 5. Recovery is complete with the arrival of an ACK at time 67.916 contain-
ing sequence number 1806001 (packet 2197).

16.5.6.3 CWR Again (Event 9)
There is another local congestion event at time 77.121 when cwnd = 18. This sets
ssthresh = 9 and places TCP into the CWR state once again. However, the reduction
of cwnd in the CWR state this time is interrupted early by a timeout, when cwnd
has been reduced by only 1, to 8.

16.5.6.4 Second Timeout (Event 10)
Another retransmission timeout triggers a retransmission at time 78.515 for
sequence number 2175601 (not pictured). This sets cwnd = 1; ssthresh is still 9 and
the retransmitted segment carries the TSOPT TSV value of 17171306. As with
timeout event 7, this congestion action is also undone, by the arrival of the ACK
at time 80.093 for sequence number 2179801 (packet 2641) containing the TSOPT
TSER value of 17169948. When this happens, the flight size estimate is 2,184,001 +
1400 – 2,179,801 = 5600 bytes (four packets). If cwnd were immediately restored
to its pre-timeout condition (8), this would allow four packets to be immediately

ptg999

Section 16.5 An Extended Example 765

injected into the network. Doing so is considered undesirable because it may lead
to increased changes of dropped packets because of burstiness.

To prevent this bursty behavior, this Linux TCP implementation has a conges-
tion window moderation procedure, which limits the maximum number of packets
generated in response to a single ACK to maxburst, with a value of 3 packets in
this example. In this case, cwnd is therefore set to (flight size + maxburst) = 4 + 3 =
7. This regulation is related to the parameter of the same name proposed for TCP
and evaluated using the NS-2 network simulator. This simulator has been used
extensively in the exploration and development of new TCP algorithms [NS2].

16.5.6.5 Timeout and Final Recovery (Event 11)
At time 88.929 a retransmission timer has expired and a retransmission for
sequence number 2185401 occurs, as depicted in Figure 16-16.

Figure 16-16 A retransmission timer expires, initiating a timeout-based retransmission that cannot be undone.
TCP continues in slow start.

The expiring timer places the sender into slow start with ssthresh = 5. This
time, TCP is not able to undo the timeout, so cwnd is set to 1 and slow start pro-
gresses. This can be seen more clearly from the flow trace (see Figure 16-17).

ptg999

766 TCP Congestion Control

The retransmission for sequence number 2185401 is highlighted. Following
the retransmission, we see the typical slow start behavior we saw during the
beginning of the connection, when each arriving ACK liberates two or three pack-
ets, depending on how many packets were covered by the ACK. By time 89.434,
when cwnd has reached ssthresh at 5, TCP continues in congestion avoidance.

16.5.7 Connection Completion

The final exchange of packets commences with the sender’s transmission of a FIN
at time 99.757. Following this transmission, 13 ACKs arrive followed by the receiv-
er’s FIN. The very last packet (a final ACK) is sent at time 100.476. This exchange
is depicted in Figure 16-18.

The largest sequence number sent is 2620801 + 640 – 1 = 2621440, equiva-
lent to the size of the overall transfer, 2.5MB. At time 99.757, (2,619,401 + 1400 –
2,594,201)/1400 + 1 = 20 packets are outstanding. The arrival of 13 ACKs (7 of
which ACK two packets each) covers the whole window of (2*7) + (13 - 7) = 20
packets. Note that the ACK arriving at time 100.474 ACKs the final two packets of
sizes 1400 and 640 bytes, respectively: 2,621,442 – 2,619,401 = 1400 + 640.

Figure 16-17 In Wireshark, the slow start behavior is apparent after a retransmission timeout. Each
arriving ACK liberates two or three packets.

ptg999

Section 16.6 Sharing Congestion State 767

This extended example illustrates most of the algorithms described so far and
includes aspects of the basic TCP algorithms (slow start, congestion avoidance),
selective acknowledgment, rate halving, as well as some newer procedures such
as spurious RTO detection. We now discuss some modifications and capabilities
that are less widespread, more speculative, or more recent. The Linux TCP stack
implements many of these procedures, but not all of them are enabled by default.
Frequently, a small change using the sysctl program is sufficient to experiment
with them. More recent versions of the Windows stack (i.e., Windows Vista and
later) also implement improvements beyond the features discussed so far.

16.6 Sharing Congestion State

The discussion so far and the example we have just seen have focused on how a
single TCP connection adapts to congestion along the path. If other connections
between the same hosts are made later, these subsequent connections typically

Figure 16-18 During the connection closing procedure, the receiver produces 13 pure ACKs to indi-
cate that it has received all of the data the sender has produced. The final FIN-ACK
exchange completes closure of the other half of the connection. Note that the FIN seg-
ments contain valid ACK numbers.

ptg999

768 TCP Congestion Control

have to establish their own values for ssthresh and cwnd over time as described pre-
viously. In many cases, subsequent connections could possibly learn of these values
from earlier connections to the same hosts or from other currently active connec-
tions to the same hosts. This idea involves sharing the congestion state across mul-
tiple connections in the same machine. An early description in [RFC2140], entitled
“TCP Control Block Interdependence,” describes how this might be accomplished.
This work notes the difference between temporal sharing (new connections share
information with others that are now CLOSED) and ensemble sharing (new connec-
tions share state with other active connections).

In an effort to generalize this idea and extend it to protocols and applica-
tions other than TCP, [RFC3124] describes the Congestion Manager, which provides
a local operating system service available to protocol implementations to learn
information such as path loss rate, estimated congestion, RTT, and so forth to des-
tination hosts.

In Linux, this idea is made available in the same subsystem that contains rout-
ing information and is known as destination metrics, which we saw in Chapter
15. These metrics are enabled (but they were disabled for the extended example
by setting the sysctl variable net.ipv4.tcp_no_metrics_save to 1). When
a TCP connection goes to the CLOSED state, the following information is saved:
RTT measurements (srtt and rttvar), an estimate of reordering, and the congestion
control variables cwnd and ssthresh. These are used when new connections to the
same destination start to help initialize the corresponding measurements.

16.7 TCP Friendliness

TCP being the dominant transport protocol on the Internet, it is commonplace for
several TCP connections to be sharing one or more routers along their delivery
paths. While they do not always share bandwidth equally in such circumstances,
they do at least react to the dynamics of other TCP connections as they come and
go over time. This is not guaranteed to be the case, however, when TCP competes
for bandwidth with other (non-TCP) protocols, or when it competes with a TCP
using some alternative set of controls on its congestion window.

To provide a guideline for protocol designers to avoid unfairly competing with
TCP flows when operating cooperatively on the Internet, researchers have devel-
oped an equation-based rate control limit that provides a bound of the bandwidth
used by a conventional TCP connection operating in a particular environment.
This method is called TCP Friendly Rate Control (TFRC) [RFC5348][FHPW00]. It
is designed to provide a sending rate limit based on a combination of connection
parameters and with environmental factors such as RTT and packet drop rate. It
also gives a more stable bandwidth utilization profile than conventional TCP, so it
is expected to be appropriate for streaming applications that use moderately large
packets (e.g., video transfer). TFRC uses the following equation to determine a
sending rate:

ptg999

Section 16.7 TCP Friendliness 769

X s R bp pt p bp2 3 3 1 32 3 8RTO
2)()(= + + [2]

Here, X is the throughput rate limit (bytes/second), s is the packet size (bytes,
excluding headers), R is the RTT (seconds), p is the number of loss events as a frac-
tion of packets sent [0,1.0], tRTO is the retransmission timeout (seconds), and b is the
maximum number of packets acknowledged by a single ACK. The value of tRTO is
recommended to be 4R, and the recommended value of b is 1.

The TCP sending rate can be expressed another way, based on how it adjusts
its window in response to receiving a good ACK during congestion avoidance.
Recall from the earlier discussion that standard TCP, when using the congestion
avoidance algorithm, increases cwnd by an additive amount of 1/cwnd for each
arriving good ACK and decreases it by a multiplicative factor of one-half on a loss
event. This is called additive increase/multiplicative decrease (AIMD) congestion con-
trol, and we can produce a generalized AIMD congestion avoidance equation by
replacing the values of 1/cwnd and ½ with variables a and b as follows:

cwndt+1 = cwnd t + a / cwndt

cwndt+1 = cwndt – b* cwndt

Based on results from [FHPW00], this equation gives TCP the following sending
rate, in packets per RTT:

a b
b
p

T

2
2

)(
=

−

 [3]

For regular TCP, where a = 1 and b = 0.5, this simplifies to . pT 1 2= , known
as the simplified standard TCP response function. It relates the speed of TCP (regula-
tion of cwnd) to the packet drop rate the TCP experiences, without accounting for
retransmission timeouts. When TCP is not limited by other factors (sender’s or
receiver’s buffers, window scaling, etc.), this relationship governs TCP’s perfor-
mance in benign operating environments.

Any alteration to TCP’s response function obviously affects the way it (or
another protocol implementing a similar congestion control scheme) competes
with standard TCP. Therefore, new proposed congestion control schemes are typi-
cally analyzed using a measure of relative fairness. Relative fairness gives the ratio
of the speed of the protocol using a modified congestion control scheme relative
to standard TCP, as a function of the packet drop rate. This is a strong indicator of
how fair any such modified schemes are with respect to sharing bandwidth across
a common Internet path.

ptg999

770 TCP Congestion Control

Note that understanding these equations is only the first step in creating a
speed regulation regime that competes fairly with standard TCP. The details of
implementing TFRC for any particular protocol can be subtle and include how to
correctly measure the RTT, loss event rate, and packet size. These issues are dis-
cussed in some detail in [RFC5348].

16.8 TCP in High-Speed Environments

In high-speed networks with large BDPs (e.g., WANs of 1Gb/s or more), conven-
tional TCP may not perform well because its window increase algorithm (the con-
gestion avoidance algorithm, in particular) takes a long time to grow the window
large enough to saturate the network path. Said another way, TCP can fail to take
advantage of fast networks even when no congestion is present. This issue arises
primarily from the fixed additive increase behavior of congestion avoidance. If
we consider a TCP using 1500-byte packets operating over a 10Gb/s long-distance
link, some 83,000 segments are required to be outstanding in order to fully uti-
lize the available bandwidth, assuming no packet drops or errors in five billion
packets. For an RTT of 100ms, this takes about 1.5 hours to achieve. In order to
address this deficiency, a number of researchers and developers have explored
ways to alter TCP in order for it to perform better in such networks, while retain-
ing a degree of fairness to standard TCP, especially for more common lower-speed
environments.

16.8.1 HighSpeed TCP (HSTCP) and Limited Slow Start

The experimental HighSpeed TCP (HSTCP) specifications [RFC3649][RFC3742]
propose to alter the standard TCP behavior when the congestion window is larger
than a base value Low_Window, suggested to be 38 MSS-size segments. This value
corresponds to a packet drop rate of 10-3 based on the simplified TCP response
function given previously. This function is linear on a log-log plot of sending rate
versus packet loss rate, so it is really a power law function.

Note

Functions that form a line on a log-log plot are called power law functions. They
have equations of the form y = axk, meaning log y = log a + k log x (a and k are
constants). This equation forms a line with slope k on a log-log plot.

To construct the type of power law function required, we select two points
and create the equation that describes the line passing between them. Consider
two such points as (p1, w1) and (P0, W0) where w1 > W0 > 0 and 0 < p1 < P0. On a lin-
ear plot, this would form a line with slope (w1 - W0)/(p1 - P0), but on a log-log plot
it forms a line with slope S = (log w1 - log W0)/(log p1 - log P0). Then, based on the

ptg999

Section 16.8 TCP in High-Speed Environments 771

equation in the Note, we have w = CpS, and we require some point, say (P0, W0), to
determine C. After some algebra, we find that C = P0

-S W0, meaning w = pS P0
-S W0.

In Figure 16-19, we see a plot of both the conventional TCP response func-
tion and a proposed response function for HSTCP based on the point (P0, W0) =
(.0015, 31) and S = -0.82. Note that for larger packet drop rates (over about .001)
the response functions are the same, so these equations apply only for a certain
maximum value of p. Comparing the two lines, when the packet drop rate is small
enough, HSTCP is allowed to send more aggressively.

Figure 16-19 With HighSpeed TCP, the TCP response function is altered to be more aggressive
for low packet drop rates and large windows, leading to higher throughputs for
high bandwidth-delay-product networks. Image from presentation by Sally Floyd to IETF
TWVWG, Mar. 2003.

To have TCP achieve this response function, the congestion avoidance proce-
dure is modified to take into account the current size of the window when making
changes. This takes place, as with conventional TCP, upon the arrival of a good
ACK. The response for a good arriving ACK is generalized as follows:

cwndt+1 = cwndt + a(cwndt)/cwndt

When responding to a congestion event (e.g., packet loss, ECN indication), it
responds as follows:

cwndt+1 = cwndt - b(cwndt)* cwndt

ptg999

772 TCP Congestion Control

Here, a() is the additive increase function and b() is the multiplicative decrease
function. In this generalization of standard TCP, they are functions of the current
window size. To achieve the desired response function, we start by generalizing
from equation [3]:

P
W0

0

=

a(w)(2 – b(w))
2b(w)

This gives:

a(w) = 2P0W0
2 b(w)/(2 – b(w))

This relationship does not have a unique solution—that is, there are many
combinations of a() and b() that satisfy the relationship, even though some of
them may not be practical or desirable for deployment.

Additional details of the changes proposed to the congestion avoidance pro-
cedure for TCP suggested by HSTCP are available in [RFC3649]. A companion
document [RFC3742] describes how slow start can be modified to help TCP obtain
a working congestion window in such environments. This is called limited slow
start and is designed to slow down slow start, so that a TCP operating with large
windows (thousands or tens of thousands of packets) does not double its window
in one RTT.

With limited slow start, a new parameter called max_ssthresh is introduced.
This value is not the maximum value of ssthresh but instead a threshold for cwnd
that works as follows: If cwnd <= max_ssthresh, slow start proceeds as normal. If
max_ssthresh < cwnd <= ssthresh, then cwnd is increased by at most (max_ssthresh/2)
SMSS per RTT. This is accomplished by modifying the management of cwnd dur-
ing slow start as follows:

if (cwnd <= max_ssthresh) {
 cwnd = cwnd + SMSS (regular slow start)
} else {
 K = int(cwnd / (0.5 * max_ssthresh))
 cwnd = cwnd + int((1/K)*SMSS) (limited slow start)
}

A suggested possible initial value for max_ssthresh is 100 packets, or 100*SMSS
in bytes.

16.8.2 Binary Increase Congestion Control (BIC and CUBIC)

HSTCP is one of several proposals for modifying TCP to provide higher through-
put for large BDP networks. While it considers throughput and fairness with
respect to conventional TCPs in similar circumstances, and elects to be more

ptg999

Section 16.8 TCP in High-Speed Environments 773

aggressive than standard TCP under certain circumstances, it does not attempt
to directly control what happens when HSTCP connections with differing RTTs
compete with each other (called “RTT fairness”). This was studied for standard
TCP some years back, revealing that TCPs with shorter RTTs obtain a larger share
of the bandwidth on shared links as compared to those having larger RTTs, when
using the same packet size and ACK strategy [F91]. For TCPs that increase cwnd
as a function of its size (so-called bandwidth-scalable TCPs), this unfairness can be
even more severe. Whether RTT fairness should be considered desirable is sub-
ject to debate. Although RTT fairness would seem attractive from first principles,
connections with larger RTTs are likely to be using more network resources (e.g.,
passing through more routers), so it may be reasonable for them to receive some-
what less throughput. In any case, knowing just how RTT (un)fairness behaves is
a driving factor behind the popular TCP variants we explore next.

16.8.2.1 BIC-TCP
In an effort to create a scalable TCP and deal with the issue of RTT fairness, BIC-
TCP (formerly called BI-TCP) [XHR04] was developed and deployed in Linux ker-
nels starting with version 2.6.8. The main goal of BIC TCP is to provide linear RTT
fairness even though congestion windows may be quite large (which is required
to use high-bandwidth links). Linear RTT fairness means that connections receive
a bandwidth share inversely proportional to their RTTs, rather than some more
complicated or unknown function.

The approach modifies a standard TCP sender with two algorithms: binary
search increase and additive increase. These algorithms are invoked after a conges-
tion indication (e.g., packet loss), but only one of the algorithms is in operation at
any given point in time. The binary search increase algorithm operates as follows:
The current minimum window is the last point at which the connection experienced
no packet loss during an entire RTT. The maximum window is the window size at
which the connection last experienced loss, if known. The desired window lies
somewhere between the two. Using a binary search technique, BIC-TCP selects a
trial window in the midpoint of these two values and tries again recursively. If this
point shows continued packet loss, it becomes the new maximum and the process
repeats. If not, it becomes the new minimum and the process repeats. The process
terminates when the difference between the minimum and maximum windows is
less than a predefined threshold called the minimum increment, or Smin.

The algorithm tends to find the desirable window, also called the saturation
point, in a logarithmic number of trials, whereas a standard TCP would require
a linear number (half of the difference in window sizes, on average). Thus, this
approach makes BIC-TCP more aggressive than standard TCP during certain
periods of operation, but this is desired in order to take advantage of high-speed
environments without unwanted delay. The protocol is unusual, relative to other
proposals, because its increase function is concave at some points—that is, its
increase gets smaller as it gets closer to the saturation point. Most other algorithms
use large change increments nearest the saturation point.

ptg999

774 TCP Congestion Control

The additive increase algorithm works as follows: When using binary search
increase, the situation can arise where the distance from the current window size
to the midpoint (in the sense of the binary search described previously) is large.
Increasing the window to the midpoint in one RTT may be ill advised because of
the potential for injecting large packet bursts into the network. This is prevented
by the additive increase algorithm, which is invoked when the distance to the
midpoint from the current window is more than some amount Smax. When this
happens, the increment is limited to Smax per RTT, called window clamping. Once the
midpoint is closer than Smax to the trial window, binary search increase takes over.
Overall, upon detection of a loss, the window is reduced by a multiplicative factor
β, and its growth starts again with additive increase and switches to binary search
once the desired increase amount is less than Smax. The authors call the combined
algorithms binary increase, or BI.

When the window grows beyond the current maximum, or no maximum
is yet known because no loss event has occurred, it must be established. This is
accomplished by a procedure known as max probing. The purpose of max probing
is to use bandwidth when it becomes available. It proceeds in a way symmetric to
the additive increase and binary increase algorithms. It starts in small initial incre-
ments, followed by larger increments if no congestion is indicated. The approach
shows good stability because small changes are made near the saturation point,
where the network is believed to be operating near its greatest capacity.

Linux (kernels 2.6.8 through 2.6.17) includes an implementation of BIC-
TCP that is enabled by default. Four sysctl parameters control its operation:
net.ipv4.tcp_bic, net.ipv4.tcp_bic_beta, net.ipv4.tcp_bic_low_
window, and net.ipv4.tcp_bic_fast_convergence. The first Boolean vari-
able controls whether BIC is used (as opposed to the conventional fast retransmit/
recovery procedures). The next contains a scaling factor for cwnd to determine
Smax (default 819). The next parameter controls the minimum size of the conges-
tion window before the BIC-TCP control algorithms take over. Its default value
is 14, meaning that for small window values standard TCP congestion control is
used. The last parameter is a flag, enabled by default. When set, it affects the way
the new maximum and target windows are selected when the binary increase
algorithm is in a downward trend. During a window reduction, the new maxi-
mum and minimum windows are set to the current and scaled (down by a factor
of beta) values of cwnd, respectively. If fast convergence is enabled and the value
of the new maximum is less than its previous value before it was set to cwnd, the
value of the maximum window is further reduced between the average of it and
the minimum window. After this, whether or not fast convergence is enabled, the
target window is the average of the maximum and minimum values. This helps to
achieve even bandwidth sharing more quickly when multiple BIC-TCP flows are
sharing the same router.

ptg999

Section 16.8 TCP in High-Speed Environments 775

16.8.2.2 CUBIC
The authors of BIC-TCP revised their basic algorithms to form a new control algo-
rithm called CUBIC [HRX08]. It has been the default congestion control algorithm
used in Linux TCP since kernel version 2.6.18. It addresses concerns raised that
BIC-TCP may be too aggressive under some circumstances. It also simplifies the
window growth procedures. Instead of using a threshold (Smax) to decide when to
invoke the binary search increase versus additive increase, an odd-degree polyno-
mial function, in particular a cubic function, is used instead to control the window
increase function. Cubic functions can have both convex and concave portions,
meaning that they can grow more slowly in some portions (concave) and more
quickly in others (convex). Until BIC and CUBIC, virtually all of the TCP literature
advocated convex window growth functions. The specific window growth func-
tion, used by CUBIC to set cwnd, is as follows:

W(t) = C(t – K)3 + Wmax

In this equation, W(t) is the window at time t. C is a constant parameter (default
0.4), t is the elapsed time in seconds since the last window reduction, and K is the
time period the function takes to increase W to Wmax when there is no further loss
event. Wmax is the last window size prior to the last window adjustment. K can be
calculated as follows:

K
W
C

max3= β

where β is the multiplicative decrease constant (default 0.2). An illustration of the
CUBIC window growth function for K = 2.71, Wmax = 10, and C = 0.4 on the interval
t = [0, 5] is shown in Figure 16-20.

This figure illustrates how the CUBIC window growth function contains both
a concave portion and convex portion. When a fast retransmit occurs, Wmax is set to
cwnd, and new values of cwnd and ssthresh are set to β*cwnd. CUBIC uses a default
value of 0.8 for β. The value W(t + RTT) gives the next target congestion win-
dow value. When an additional ACK arrives during congestion avoidance, cwnd is
increased by (W(t + RTT) - cwnd)/cwnd.

It is worth noting that having t be the amount of elapsed time since the last
window reduction event helps to ensure RTT fairness. Instead of changing the
window by some fixed amount when ACKs arrive, the window change amount is
a function of the elapsed time since the last window change. This decouples the
window change operations from the particular pattern of ACK arrivals.

In addition to the cubic operating region, CUBIC also has a “TCP-friendly”
region that operates when the window is small to ensure that CUBIC is not

ptg999

776 TCP Congestion Control

penalized relative to regular TCP. More specifically, the window size of standard
TCP in terms of the elapsed time t, Wtcp(t), is given by

W t
RTT

t
3 W

1
1tcp max

)
)

(
()(=

− β
+ β

+ β

So if cwnd is less than Wtcp(t) when an ACK arrives during congestion avoidance,
CUBIC sets cwnd = Wtcp(t). This ensures TCP friendliness in common low- to mod-
erate-speed networks, where CUBIC would otherwise be disadvantaged.

As mentioned earlier, CUBIC has been the default congestion control algorithm
for Linux kernels since 2.6.18. Since kernel version 2.6.13, however, Linux supports
pluggable congestion avoidance modules [P07], allowing the user to pick which algo-
rithm to use. The variable net.ipv4.tcp_congestion_control contains the
current default congestion control algorithm (default: cubic). The variable net.
ipv4.tcp_available_congestion_control contains the congestion control
algorithms loaded on the system (in general, additional ones can be loaded as
kernel modules). The variable net.ipv4.tcp_allowed_congestion_con-
trol contains those algorithms permitted for use by applications (either selected
specifically or by default). The default supports CUBIC and Reno.

Figure 16-20 The CUBIC window growth function is a cubic function of t. It has a concave por-
tion in the area where W(t) < Wmax. In this region, CUBIC searches for the saturation
point by growing cwnd with decreasing aggressiveness. After Wmax is reached, the
growth function becomes convex, where it searches by growing cwnd with increasing
aggressiveness.

ptg999

Section 16.9 Delay-Based Congestion Control 777

16.9 Delay-Based Congestion Control

The approaches to congestion control we have seen so far are usually triggered by
packet loss, detected using some combination of ACKs or SACKs, ECN (if avail-
able), and expiration of a retransmission timer. ECN (see Section 16.11) allows a
sending TCP to be informed about congestion prior to the need for the network
to drop packets, but this requires participation from routers within the network
that may not be available. However, even without ECN it is still possible to try to
determine from a host whether congestion is about to occur within the network.
One clue that congestion may be forming is an increase in measured RTT as the
sender injects more packets into the network. We saw this situation in Figure 16-8,
where additional packets were being queued rather than delivered, contributing
to a higher measured RTT (until packets were ultimately discarded). Several con-
gestion control techniques depend on this observation. They are called delay-based
congestion control algorithms, as opposed to the loss-based congestion control
algorithms we have seen so far.

16.9.1 Vegas

In 1994, TCP Vegas was introduced [BP95]. It was the first delay-based congestion
control approach for TCP published and tested by the community of TCP devel-
opers. Vegas operates by estimating the amount of data it expects to transfer in a
certain amount of time and comparing this with the amount of data it is actually
able to transfer. If the requisite amount of data is not transferred, it is likely to
be held up in a router queue along the path. If this condition persists, the Vegas
sender slows down. This is in contrast to the standard TCP approach, which forces
a packet drop to occur in order to determine the point at which the network is
congested.

While in its congestion avoidance phase, during each RTT, Vegas measures
the amount of data transferred and divides this number by the minimum delay
observed across the connection. It maintains two thresholds, α and β (where α
< β). When the difference in expected throughput (window size divided by the
smallest RTT observed) versus achieved throughput is less than α, the conges-
tion window is increased; when it is greater than β, the congestion window is
decreased. Otherwise, it is left as is. All changes to the congestion window are
linear, meaning the scheme is an additive increase/additive decrease (AIAD) conges-
tion control scheme.

The authors describe α and β in terms of buffer utilization at a bottleneck link.
The smallest values of interest are 1 for α and 3 for β. The reasoning behind these
values is as follows: At least one packet buffer should be occupied in the network
path (i.e., at the queue in the router incident with the minimum-bandwidth link
on the path) to keep the network busy. If extra bandwidth becomes available, occu-
pying two additional buffers (up to 3, the value for α) obviates the need to wait
an extra RTT in order to inject more, which would be required if Vegas tried to

ptg999

778 TCP Congestion Control

maintain only one buffer full. Furthermore, having the region (β–α) as the oper-
ating range leaves some room for minor changes in throughput without causing
an immediate change in the window, a form of damping that aims to reduce rate
oscillations.

With a slight modification, this approach can also be applied to the slow start
period. Here, increasing cwnd by 1 for each good ACK is allowed only every other
RTT. For those RTTs when it is not increased, a measurement is made to ensure
that throughput is increasing. If not, the sender switches to the Vegas congestion
avoidance scheme.

Under certain circumstances, Vegas can be “fooled” into believing that the
forward-direction delay is higher than it really is. This happens when there is
significant congestion in the reverse direction (recall that the paths in the two
directions of a TCP connection may be different and have different states of con-
gestion). In such cases, packets (ACKs) returning to the sending TCP are delayed,
even though the sender is not really contributing to the (reverse-path) congestion.
This causes Vegas to reduce the congestion window even though such an adjust-
ment is not really necessary. This is a potential pitfall for most techniques based
on measuring RTT as a basis for congestion control decisions. Indeed, significant
traffic in the reverse direction can cause the ACK clock (Figure 16-1) to be signifi-
cantly perturbed [M92].

Vegas is fair relative to other Vegas TCPs sharing the same path because each
pushes the network to hold only a minimal amount of data. However, Vegas and
standard TCP flows do not share paths equally. A standard TCP sender tends
to fill queues in the network, whereas Vegas tends to keep them nearly empty.
Consequently, as the standard sender injects more packets, the Vegas sender sees
increased delay and slows down. Ultimately, this leads to an unfair bias in favor
of the standard TCP. Vegas is supported by Linux but not enabled by default. For
kernels prior to 2.6.13, the Boolean sysctl variable net.ipv4.tcp_vegas_
cong_avoid determines whether it is used (default 0). The variables net.ipv4.
tcp_vegas_alpha (default 2) and net.ipv4.tcp_vegas_beta (default
6) correspond to the alpha and beta described previously but are expressed in
half-packet units (i.e., 6 corresponds to 3 packets). The variable net.ipv4.
tcp_vegas_gamma (default 2) configures how many half-packets Vegas should
attempt to keep outstanding during slow start. For kernels after 2.6.13, Vegas must
be loaded as a separate kernel module and enabled by setting net.ipv4.tcp_
congestion_control to vegas.

16.9.2 FAST

FAST TCP was developed with particular attention to operations in high-speed
environments with large bandwidth-delay products [WJLH06]. Similar to Vegas
in spirit, it adjusts the window based on the difference between an expected
throughput rate and an experienced rate. It differs from Vegas by adjusting the
window based not only on the window size, but also on the difference between

ptg999

Section 16.9 Delay-Based Congestion Control 779

the current and expected performance. It updates the sending rate every other
RTT using a rate-pacing technique. If the measured delay is significantly below
a threshold, the window is updated aggressively followed by a period when the
increase is less aggressive. When the delay increases, the reverse takes place. FAST
differs from the other approaches we have discussed because it is the subject of
several patents and is being commercialized independently. It has received some-
what less scrutiny from the research community, but an independent evaluation
[S09] has shown it to have good stability and fairness properties.

16.9.3 TCP Westwood and Westwood+

TCP Westwood (TCPW) and TCP Westwood+ (TCPW+) aim at handling large band-
width-delay-product paths by modifying a conventional TCP NewReno sender.
TCPW+ is a correction to the original TCPW algorithm, so we will just refer to
either as TCPW. In TCPW, the sender’s eligible rate estimate (ERE) is an estimate of
the bandwidth available on the connection. It is continuously computed in a fash-
ion somewhat similar to Vegas (based upon the difference between an expected
and an achieved rate), but with a variable measurement interval for the rates
based on the dynamics of ACK arrivals. When congestion is low, the measurement
interval is small, and vice versa. When a packet loss is detected, instead of reduc-
ing cwnd by half, TCPW computes an estimated BDP (ERE times the minimum
RTT observed) and uses this as the new value for ssthresh. Agile probing [WYSG05]
adaptively and repeatedly sets ssthresh when a connection would otherwise oper-
ate in slow start. This causes cwnd to grow exponentially in cases where ssthresh
has been increased (by initiating slow start). Westwood can be enabled in Linux
kernels after 2.6.13 by loading a TCPW module and setting net.ipv4.tcp_con-
gestion_control to westwood.

16.9.4 Compound TCP

Starting with Windows Vista, it is possible to choose which congestion control
procedure (“provider”) TCP should use, in a way similar to Linux’s pluggable
congestion avoidance modules. One such option (but not the default, except for
Windows Server 2008) is called Compound TCP (CTCP) [TSZS06]. CTCP makes
window adjustments based upon packet loss, but also based on measured delays.
In some sense it is a combination of standard TCP and Vegas, but with the scal-
ability features of HSTCP.

The authors begin by recounting a number of results shown in the Vegas and
FAST research that suggest that delay-based congestion control schemes tend to
have better utilization, less self-induced packet loss, faster convergence (to the
correct operating point), plus better RTT fairness and stabilization. However, as
mentioned previously, delay-based approaches tend to lose bandwidth when com-
peting with loss-based congestion control approaches. CTCP attempts to address
this situation by combining a delay-based approach with a loss-based approach.

ptg999

780 TCP Congestion Control

To do this, CTCP introduces a new window control variable called dwnd (the
“delay window”). The usable window W then becomes

W = min(cwnd + dwnd, awnd)

The handling of cwnd is similar to that of standard TCP, but the addition of dwnd
may allow additional packets to be sent if the delay conditions are appropriate.
When ACKs arrive during congestion avoidance, cwnd is updated as follows:

cwnd = cwnd + 1/(cwnd + dwnd)

The management of dwnd is based on Vegas and is nonzero only during con-
gestion avoidance (CTCP uses conventional slow start). As a connection operates,
the minimum RTT measured is maintained in the variable baseRTT. Then, the dif-
ference in expected data outstanding versus the actual amount, diff, is computed
as follows: diff = W*(1 - (baseRTT/RTT)), where RTT is the estimated (smoothed)
RTT estimate. The value of diff estimates the number of packets (or bytes) queued
in the network. CTCP, like most delay-based schemes, attempts to keep diff at a
certain threshold, called γ, in order to ensure that the network remains utilized
but not congested. Given this goal, the control process for dwnd is then expressed
as follows:

 dwnd(t) + (α * win(t)k – 1)+, if diff < γ
dwnd(t + 1) = (dwnd(t) – ζ * diff)+, if diff ≥ γ

 (win(t) * (1 – β) – cwnd/2)+, if loss detected{
where (x)+ means max(x, 0). Note that dwnd can never be negative. Rather, it may
be zero, in which case CTCP behaves like standard TCP.

In the first case, where the network may be underutilized, CTCP grows dwnd
according to the polynomial α * win(t)k. This is a form of binomial increase and
accounts for the way CTCP can be made more aggressive (similar to HSTCP) when
the buffer occupancy is estimated to be less than γ. In the second case, where the
buffer occupancy appears to be growing beyond the desired threshold γ, the con-
stant ζ dictates how quickly the delay-based component should be reduced (but
recall that dwnd is always added to cwnd). This is what contributes to CTCP’s RTT
and TCP fairness. When loss is detected, dwnd has its own multiplicative decrease
factor β applied.

As can be seen, CTCP can be tuned using the parameters k, α, β, γ, and ζ. The
value of k affects the level of aggressiveness. A value of about 0.8 was desired to
be similar to HSTCP, but 0.75 was chosen for implementation reasons. The values
of α and β affect smoothness and responsiveness. The default values are 0.125 and
0.5, respectively. For γ, the authors suggest a default value of 30 packets based on
empirical evaluation. If this value is too small, there may not be enough packets

ptg999

Section 16.10 Buffer Bloat 781

outstanding to obtain good delay measurements. Conversely, values that are too
large could result in undesirable persistent congestion.

CTCP is relatively new, so further experimentation and evaluation will no
doubt be performed to see how well and fairly it competes with standard TCP,
and how well it is able to adapt to significant changes in available bandwidth. In a
simulation study, the author of [W08] noted that CTCP can perform poorly when
network buffers are small (i.e., smaller than γ). They also suggest that CTCP can
fall victim to some of the problems with Vegas, including rerouting (adapting to
new paths with different delays) and persistent congestion. Finally, they observe
that if many CTCP flows, each trying to keep γ packets in flight, share the same
bottleneck link, performance can be poor.

As mentioned previously, CTCP is not enabled by default on most versions of
Windows. However, the following command can be used to select CTCP as the
congestion provider:

C:\> netsh interface tcp set global congestionprovider=ctcp

It can be disabled by selecting a different provider (or none). CTCP has also been
ported to Linux as a pluggable congestion avoidance module but is not included
by default.

16.10 Buffer Bloat

Although memory has traditionally been expensive (and remains so for high-
end routers), it is now commonplace to find commodity networking equipment
that contains a significant amount of memory, potentially multiple megabytes of
packet buffers. Perhaps ironically, this large amount of memory (as compared to
traditional networking devices) can actually lead to degraded performance for
protocols such as TCP. This problem has been termed buffer bloat [G11][DHGS07].
It relates to high amounts of latency introduced by queuing delay, primarily at the
uplink side of residential gateways and access points in homes and small offices.
The standard TCP congestion control algorithms, which tend to keep buffers full
at bottleneck links, do not operate well when a large amount of buffering occurs
between the sender and receiver because the congestion indicator (a packet drop)
takes a long time to be delivered to a sender.

In [KWNP10], the authors find that upload bandwidth in the United States
over cable and DSL ranges from about 256Kb/s to 4Mb/s. They also inferred buf-
fer sizing on commodity routers in the range from 16KB to 256KB. Figure 16-21
shows how latency relates to data rate for several buffer sizes to help provide a
perspective on these findings.

In this figure, the log-log graph displays the amount of latency experienced
by data required to queue for various buffer sizes (1KB–2MB). Residential Internet
upload bandwidth rates (typically 250Kb/s to 10Mb/s) can lead to latencies in the

ptg999

782 TCP Congestion Control

multiple-second range if buffers are sized to be a few hundred kilobytes or more.
Interactive applications generally require one-way delays to be below 150ms to
provide a good quality of experience to users [G114]. Thus, if buffers remain filled
to capacity because of one or more large competing uploads (e.g., BitTorrent file
sharing), interactive applications can be adversely affected.

Buffer bloat is not a problem in all networking equipment. Indeed, the primary
concern appears to be in overbuffered end-user access devices. There are mul-
tiple potential ways to deal with the issue, including protocol modifications (e.g.,
delay-based congestion control such as Vegas, but it may be negatively affected by
high jitter [DHGS07]), dynamic buffer sizing at the access devices (suggested in
[KWNP10]), or a combination of the two. We next turn to a combination approach
that may help the buffer bloat problem but also has a number of other benefits.

16.11 Active Queue Management and ECN

The discussion of TCP’s congestion response so far has assumed that the only way
a TCP infers that congestion is happening is observation of packet drops. In par-
ticular, routers (the things that are mostly likely to become congested) do not ordi-
narily help inform the TCP at each host that congestion is imminent. Instead, they
simply drop arriving packets when no more buffer space is available (called “drop
tail”) and send packets that have already arrived in a first-in-first-out (FIFO) man-
ner. When Internet routers are passive like this (that is, they simply discard packets

Figure 16-21 The log-log plot shows the latency due to queuing delay experienced by data in fully
congested queues of various sizes. When large buffers remain full (“buffer bloat”),
interactive applications can experience unacceptable latencies in the multiple-second
range.

ptg999

Section 16.11 Active Queue Management and ECN 783

when overloaded and provide no feedback regarding their congestion state), there
is little a TCP can do other than react after the fact. If, however, these routers had
a way to more actively manage their queues (i.e., by using a more sophisticated
scheduling and buffer management policy than FIFO/drop tail), perhaps the situ-
ation could be improved. If they could also signal their congestion state to TCP
endpoints, so much the better.

Routers that apply scheduling and buffer management policies other than
FIFO/drop tail are usually said to be active, and the corresponding methods they
use to manage their queues are called active queue management (AQM) mechanisms.
The authors of [RFC2309] provide a discussion of the potential benefits of AQM.
Although AQM can be useful independently, it becomes more useful when rout-
ers and switches implementing AQM have a common method for conveying their
status to the end systems. For TCP, this is described in [RFC3168] and extended
with additional security in an experimental specification [RFC3540]. These RFCs
describe Explicit Congestion Notification (ECN), which is a way for routers to
mark packets (by ensuring both of the ECN bits in the IP header are set) to indicate
the onset of congestion.

Random Early Detection (RED) gateways [FJ93] are one mechanism suggested
as being capable of detecting the onset of congestion and controlling the mark-
ing of packets. These gateways implement a queue management discipline that
measures the average queue occupancy over time. If the occupancy exceeds the
minimum (called minthresh) and is less than the maximum (called maxthresh), a
packet is marked with an increasing probability. If the average queue occupancy
exceeds maxthresh, packets are marked with a configurable maximum probability
(called MaxP), which could be 1.0. RED can also be configured to drop packets
instead of marking them.

Note

The RED algorithm is the basis for a number of variants (e.g., Cisco’s WRED,
which uses different RED instances based on IP DSCP or precedence values)
that are supported on many routers and switches.

When received by a TCP, a congestion mark indicates that the packet has passed
through a congested router. Of course, it is the sender (rather than the receiver) that
really needs this information in order to react by slowing down. Thus, the receiver
echoes this indication back to the sender in a series of ACK packets.

The ECN mechanism operates partially at the IP layer and so is potentially
applicable to transport protocols other than TCP, although most of the work on
ECN has been with TCP, and it is what we discuss here. When an ECN-capable
router experiencing persistent congestion receives an IP packet, it looks in the
IP header for an ECN-Capable Transport (ECT) indication (currently defined as
either of the two ECN bits in the IP header being set). If set, the transport protocol
responsible for sending the packet understands ECN. At this point, the router sets

ptg999

784 TCP Congestion Control

a Congestion Experienced indication in the IP header (by setting both ECN bits to 1)
and forwards the datagram. Routers are discouraged from setting a CE indication
when congestion does not appear to be persistent (e.g., upon a single recent packet
drop due to queue overrun) because the transport protocol is supposed to react
given even a single CE indication.

The TCP receiver observing an incoming data packet with a CE set is obliged
to return this indication to the sender (there is an experimental extension to add
ECN to SYN + ACK segments as well [RFC5562]). Because the receiver normally
returns information to the sender by using (unreliable) ACK packets, there is a
significant chance that the congestion indicator could be lost. For this reason, TCP
implements a small reliability-enhancing protocol for carrying the indication back
to the sender. Upon receiving an incoming packet with CE set, the TCP receiver sets
the ECN-Echo bit field in each ACK packet it sends until receiving a CWR bit field
set to 1 from the TCP sender in a subsequent data packet. The CWR bit field being
set indicates that the congestion window (i.e., sending rate) has been reduced.

Note

Although RED and ECN have been known for nearly two decades, they have not
seen widespread Internet deployment. A variety of reasons have been asserted
as to why (e.g., difficulty in setting RED parameters, a perception of limited ben-
efits). In 2005, a “reexamination” of ECN [K05] pointed out that using ECN on
only data packets limits its benefits substantially. An experimental extension
[RFC5562] defines the use of ECN in SYN + ACK packets with the possibility of
greatly increasing the utility of ECN for certain workloads (e.g., Web traffic).

A sending TCP receiving an ECN-Echo indicator in an ACK reacts the same
way it would when detecting a single packet drop by adjusting cwnd, and it also
arranges to set the CWR bit field in a subsequent data packet. The prescribed con-
gestion response of the fast retransmit/recovery algorithms is invoked (of course,
without the packet retransmission), causing the TCP to slow down prior to suffer-
ing packet drops. Note that the TCP should not overreach; in particular, it should
not react more than once for the same window of data. Doing so would overly
penalize an ECN TCP relative to others.

In Windows Vista and later, ECN needs to be enabled to be used:

C:\> netsh int tcp set global ecncapability=enabled

In Linux, ECN is enabled if the Boolean sysctl variable net.ipv4.tcp_ecn
is nonzero. The default varies based on which Linux distribution is used, with
off being most common. On Mac OS 10.5 and later, the variables net.inet.tcp.
ecn_initiate_out and net.inet.tcp.ecn_negotiate_in control whether
ECN is enabled for outgoing traffic and for incoming traffic with ECN flags set,
respectively. Of course, without cooperation from routers or switches, the utility

ptg999

Section 16.12 Attacks Involving TCP Congestion Control 785

of ECN is limited in any case. Only time will tell if the vision for AQM will ever be
fully realized in the global Internet.

Note

RED and ECN have been used successfully in a radically different operating envi-
ronment from that for which they were designed. Microsoft and Stanford have
developed Data Center TCP (DCTCP) [A10], which uses RED implemented in
layer 2 switches with simplified parameters to mark packets when instantaneous
congestion is experienced. They also modify the TCP receiver behavior to set
ECN-Echo in ACKs only when the last received packet contains a CE mark. They
report a 90% reduction in buffer occupancy for comparable TCP throughput,
allowing a tenfold increase in background traffic to be supported.

16.12 Attacks Involving TCP Congestion Control

We have seen already how TCP can be attacked by generating packets that cause
TCP’s connection state machine to terminate the connection. TCP can also be
attacked (or at least induced to behave in peculiar ways) when operating in the
ESTABLISHED state. Most attacks on TCP congestion control attempt to force a
TCP to send faster or slower than it would under ordinary circumstances.

Perhaps the earliest attack involves the fabrication of ICMPv4 Source Quench
messages. When these are delivered to a host running TCP, any connection to the
IP address contained in the offending datagram inside the ICMP message slows
down. While this may have been a vulnerability some years back, using Source
Quench messages for congestion control has been deprecated for use by routers
since about 1995 (via [RFC1812], Section 5.3.6). On the other hand, for end hosts,
[RFC1122] stated that a TCP must react to a Source Quench by slowing down.
Combining these two facts, the simplest solution is to block ICMP Source Quench
traffic at the router or host, and this is now common.

A more sophisticated and more recent set of attacks have been considered
by looking at misbehaving receivers [SCWA99]. The authors describe three types of
attacks that can cause a TCP sender to inject data at a rate faster than intended.
Such attacks could be used, for example, to cause a Web client to have an unfair
advantage over competing clients. The attacks are named ACK division, DupACK
spoofing, and Optimistic ACKing and are implemented in a TCP variant the authors
(jokingly) call “TCP Daytona.”

ACK division operates by producing more than one ACK for the range of
bytes being acknowledged. Because the TCP congestion control typically operates
based on the arrival of ACK packets (rather than the ACK field contained in the
ACK itself), a sending TCP can be induced to increase cwnd faster than it would
otherwise. This problem can be mitigated by basing the congestion control com-
putations on the amount of data acknowledged rather than the arrival of a packet,
as is done with ABC.

ptg999

786 TCP Congestion Control

DupACK spoofing causes a sender to increase its congestion window during
fast recovery. Recall from the previous discussion that during standard fast recov-
ery, cwnd is incremented for each duplicate ACK received. The attack involves cre-
ating extra duplicate ACKs that cause this to happen more quickly than intended.
This attack is more difficult to defend against, because there is no clean way to
map received duplicate ACKs to the segments they acknowledge (a nonce, an asso-
ciated value that changes with time, which we discuss in Chapter 18, would solve
this problem). While the Timestamps option relates to this problem, it is an option
and can be disabled on a per-connection basis. The best approach to addressing
this problem appears to be modification of the sender side to limit the amount of
outstanding data during recovery.

Optimistic ACKing involves producing ACKs for segments that have not yet
arrived. Because TCP’s congestion control computations are based on end-to-end
RTTs, ACKing data that has not yet arrived causes the sender to react faster than
it would because it is fooled into believing the actual RTT is smaller. Furthermore,
there is little penalty for doing this, as a sender typically ignores ACKs for data it
has not yet sent. While this approach does not preserve data reliability at the TCP
layer as the other attacks do (i.e., ACKed data could still be lost), it is frequently
the case (e.g., in HTTP/1.1) that missing data can be reconstructed by an applica-
tion- or session-layer protocol. The authors describe a cumulative nonce that can
address this problem and a way to alter the sizes of sent segments over time to
better match up ACKs with sent segments. When the ACKs do not correspond,
the sender can take action.

The problems described for misbehaving receivers have also received atten-
tion with respect to ECN by some of the same authors. Recall that with AQM using
ECN, the TCP receiver returns the ECN indication to the sender in an ACK. The
sender is then supposed to respond by slowing down. If the receiver fails to return
the ECN indications to the sender (or routers in the network clear the indicators),
the sender would never be informed of congestion and would not slow down. In
[RFC3540], the authors describe an experimental way to use the ECT bit field of
the ECN field (2 bits) of an IP packet as a form of nonce. The sender places a ran-
dom binary value in the field, and the receiver returns a 1-bit sum (an XOR opera-
tion) of the values of this field over time. When generating an ACK, the receiver
places the sum bit 7 of the TCP header (currently reserved as zero). A misbehaving
receiver has a 50/50 chance of guessing the sum. Because each packet represents
an independent trial and a successful misbehaving receiver must have every sum
correct, its chance of doing so is 1/2k for k packets (vanishingly small for a connec-
tion of any reasonable duration).

16.13 Summary

TCP was designed as the primary reliable transport protocol for the Internet.
Although its initial design included a flow control capability, used to cause a

ptg999

 Section 16.13 Summary 787

sender to slow down when a receiver could not keep up, no provision was made
initially for preventing the sender from overwhelming the network in between. In
the late 1980s, the slow start and congestion avoidance algorithms were developed
to regulate a TCP sender’s aggressiveness so as to avoid losing packets because
of congestion in the network. These algorithms depend on using an implicit sig-
nal, packet loss, and an indicator of congestion. They are triggered when loss is
detected, either by the fast retransmit algorithm or by retransmission timeouts.

Slow start and congestion avoidance regulate a sender’s operation by introduc-
ing a congestion window at the sender. This is used in conjunction with the con-
ventional window (based on window advertisements provided by the receiver). A
standard TCP limits its window to the minimum of the two. Slow start grows the
value of the congestion window exponentially with time, and congestion avoid-
ance grows it about linearly with time. Only one of the two algorithms is in opera-
tion at any one time, and this decision is made by comparing the current value
of the congestion window to the slow start threshold: if the congestion window
exceeds the threshold, congestion avoidance takes control; otherwise, slow start
is used. Slow start is used initially when TCP establishes its connection and after
restart conditions due to timeouts. It can also be used when a connection has gone
idle for a significant amount of time. The slow start threshold is adjusted dynami-
cally during the course of the connection.

Congestion control has been a significant focus of the networking research
community over the years. After more experience was gained with TCP and its
slow start and congestion avoidance procedures, a number of improvements have
been suggested, implemented, and standardized. By keeping track of when TCP
is recovering from a collection of lost packets, the NewReno variant of TCP avoids
some of the stalls that can occur with Reno variants when multiple packets are
dropped in a single window of data. SACK TCP can improve upon NewReno’s
behavior by permitting the sender to intelligently repair more than one packet
drop per RTT. With SACK TCP, careful accounting must be established to ensure
that the sender is not overly aggressive with respect to other TCPs with which it
may be sharing an Internet path.

Some of the more recent changes to TCP congestion management include rate
halving, congestion window validation and moderation, and “undo” procedures.
The rate-halving algorithm causes the congestion window to reduce gradually
after detected loss events instead of reducing it immediately. Congestion window
validation tries to ensure that the congestion window is not overly large if a send-
ing application has been idle or unable to send for some time. Congestion window
moderation limits the size of a burst in response to the receipt of a single ACK. The
“undo” procedures, such as the Eifel Response Algorithm, undo congestion win-
dow modifications if the packet loss signal is deemed to be spurious, a condition
detectable using a number of techniques. In such cases, the negative impact on
performance by reducing the congestion window is minimized by restoring the
congestion state to its condition prior to the reduction of the congestion window.

ptg999

788 TCP Congestion Control

After significant experience with TCP, it was observed that the congestion
avoidance procedure can take a long time to find and exploit additional band-
width that becomes available. As a result, numerous proposals for “bandwidth-
scalable” TCP variants have been made. One of the better-known versions (within
the IETF) is HSTCP, which allows the congestion window to grow much more
aggressively in operating regimes where few packets are dropped and windows
are large, as compared with conventional TCP. Subsequent suggestions have
included FAST and CTCP, which base their window growth procedures on packet
loss and latency measures. Widely deployed in Linux, the BIC-TCP and CUBIC
algorithms use growth functions that are convex in some portions and concave in
others. This supports small window changes during the saturation point, leading
to enhanced stability at the possible cost of somewhat sluggish response to new
available bandwidth (but still faster than standard TCP).

A significant change to the operation of TCP and Internet routers has been
proposed with the specification of Explicit Congestion Notification (ECN), which
would allow TCP to detect the onset of congestion before a packet loss is experi-
enced. Although simulations and research results have shown this to be desirable,
it requires a moderate change to TCP implementations and a significant change to
the way Internet routers operate. The extent to which this capability is deployed
remains to be seen.

Although TCP provides the most widely used method for reliably moving
data on the Internet, it does not implement much in the way of its own security. It
is generally vulnerable to packet-forging attacks that can cause disruptions of con-
nections; an attacker need only have a good guess at a viable (in-window) sequence
number to launch such attacks. In addition, modification of the ACK stream (or
ECN bits, if they are supported) can induce a sender to behave in ways that are
unfair to other TCP connections. Furthermore, nothing physically prevents an
overly aggressive sender from simply violating all congestion control rules.

Combining all of the various algorithms and techniques developed for TCP
into a single TCP implementation is not an easy task (Linux 2.6.38 TCP/IPv4 is
about 20,000 lines of C code), and analyzing traces of a real-world TCP in action
can be time-consuming. Tools such as tcpdump, Wireshark, and tcptrace make
this job considerably easier. Because of its dynamic adaptation to the performance
of the network, understanding TCP’s behavior is most easily accomplished with
visualization techniques based on time-series plots, such as those used in this
chapter.

16.14 References

[A10] M. Alizadeh et al., “Data Center TCP (DCTCP),” Proc. ACM SIGCOMM,
Aug./Sept. 2010.

[ASA00] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the Perfor-
mance of TCP Pacing,” Proc. INFOCOM, Mar. 2004.

ptg999

 Section 16.14 References 789

[BP95] L. Brakmo and L. Peterson, “TCP Vegas: End to End Congestion Avoid-
ance on a Global Internet,” IEEE JSAC, 13(8), Oct. 1995.

[DHGS07] M. Dischinger, A. Haeberlen, K. Gummadi, and S. Saroiu, “Character-
izing Residential Broadband Networks,” Proc. ACM IMC, Oct. 2007.

[F91] S. Floyd, “Connections with Multiple Congested Gateways in Packet-
Switched Networks, Part 1: One-Way Traffic,” ACM Computer Communication
Review, 21, 1991.

[FF96] S. Floyd and K. Fall, “Simulation-Based Comparisons of Tahoe, Reno, and
SACK TCP,” ACM Computer Communications Review, July 1996.

[FHPW00] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based Con-
gestion Control for Unicast Applications,” Proc. ACM SIGCOMM, Aug. 2000.

[FJ93] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Conges-
tion Avoidance,” IEEE/ACM Transactions on Networking, 1(4), Aug. 1993.

[G11] J. Gettys, “Bufferbloat: Dark Buffers in the Internet,” Internet Computing,
May/June 2011.

[G114] International Telecommunication Union Recommendation G.114, “One-
Way Transmission Time,” May 2003.

[H96] J. Hoe, “Improving the Start-up Behavior of a Congestion Control Scheme
for TCP,” Proc. ACM SIGCOMM, Aug. 1996.

[HRX08] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf

[J88] V. Jacobson, “Congestion Avoidance and Control,” Proc. ACM SIGCOMM,
Aug. 1988. This paper was later updated in 1992 to include M. Karels as coauthor.
The update is available at http://www-nrg.ee.lbl.gov/papers/congavoid.pdf

[J90] V. Jacobson, “Modified TCP Congestion Avoidance Algorithm,” posting
to the end2end-interest group mailing list, Apr. 1990, available at
ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt

[K05] A. Kuzmanovic, “The Power of Explicit Congestion Notification,” Proc.
ACM SIGCOMM, Aug. 2005.

[KWNP10] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illu-
minating Edge Network Neutrality, Security and Performance,” Proc. ACM IMC,
Nov. 2010.

[LARTC] http://lartc.org

[M92] J. Mogul, “Observing TCP Dynamics in Real Networks,” Proc. ACM SIG-
COMM, Aug. 1992.

[MM05] M. Mathis, personal communication, Sept. 2005.

http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
http://www-nrg.ee.lbl.gov/papers/congavoid.pdf
http://lartc.org

ptg999

790 TCP Congestion Control

[MM96] M. Mathis and J. Mahdavi, “Forward Acknowledgment: Refining TCP
Congestion Control,” Proc. ACM SIGCOMM, Aug. 1996.

[NB08] J. Nievelt and V. Bhanu, “Developing TCP Chimney Drivers for Windows
7,” presentation at Microsoft Windows Drivers Developer Conference, 2008.

[NS2] http://www.isi.edu/nsnam/ns (also see NS3 at http://www.nsnam.org)

[P07] http://lwn.net/Articles/128681

[PSCRH] M. Mathis, J. Mahdavi, and J. Semke, “TCP Rate Halving,”
http://www.psc.edu/networking/projects/rate-halving

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts—Communication
Layers,” Internet RFC 1122/STD 0003, Oct. 1989.

[RFC1812] F. Baker, ed., “Requirements for IP Version 4 Routers,” Internet RFC
1812, June 1995.

[RFC2018] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options,” Internet RFC 2018, Oct. 1996.

[RFC2140] J. Touch, “TCP Control Block Interdependence,” Internet RFC 2140,
Apr. 1997.

[RFC2309] B. Braden et al., “Recommendations on Queue Management and Con-
gestion Avoidance in the Internet,” Internet RFC 2309 (informational), Apr. 1998.

[RFC2861] M. Handley, J. Padhye, and S. Floyd, “TCP Congestion Window Vali-
dation,” Internet RFC 2861 (experimental), June 2000.

[RFC3042] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s Loss
Recovery Using Limited Transmit,” Internet RFC 3042, Jan. 2001.

[RFC3124] H. Balakrishnan and S. Seshan, “The Congestion Manager,” Internet
RFC 3124, June 2001.

[RFC3168] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” Internet RFC 3168, Sept. 2001.

[RFC3465] M. Allman, “TCP Congestion Control with Appropriate Byte Count-
ing (ABC),” Internet RFC 3465 (experimental), Feb. 2003.

[RFC3517] E. Blanton, M. Allman, K. Fall, and L. Wang, “A Conservative Selec-
tive Acknowledgment (SACK)-Based Loss Recovery Algorithm for TCP,” Internet
RFC 3517, Apr. 2003.

[RFC3540] N. Spring, D. Wetherall, and D. Ely, “Robust Explicit Congestion Noti-
fication (ECN) Signaling with Nonces,” Internet RFC 3540 (experimental), June
2003.

http://www.isi.edu/nsnam/ns
http://www.nsnam.org
http://lwn.net/Articles/128681
http://www.psc.edu/networking/projects/rate-halving

ptg999

 Section 16.14 References 791

[RFC3649] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” Internet
RFC 3649 (experimental), Dec. 2003.

[RFC3742] S. Floyd, “Limited Slow-Start for TCP with Large Congestion Win-
dows,” Internet RFC 3742 (experimental), Mar. 2004.

[RFC3782] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to
TCP’s Fast Recovery Algorithm,” Internet RFC 3782, Apr. 2004.

[RFC4015] R. Ludwig and A. Gurtov, “The Eifel Response Algorithm for TCP,”
Internet RFC 4015, Feb. 2005.

[RFC5348] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly Rate
Control (TFRC): Protocol Specification,” Internet RFC 5348, Sept. 2008.

[RFC5562] A. Kuzmanovic, A. Mondal, S. Floyd, and K. Ramakrishnan, “Adding
Explicit Congestion Notification (ECN) Capability to TCP’s SYN/ACK Packets,”
Internet RFC 5562 (experimental), June 2009.

[RFC5681] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”
Internet RFC 5681, Sept. 2009.

[RFC5690] S. Floyd, A. Arcia, D. Ros, and J. Iyengar, “Adding Acknowledgement
Congestion Control to TCP,” Internet RFC 5690 (informational), Feb. 2010.

[RFC6077] D. Papadimitriou, ed., M. Welzl, M. Sharf, and B. Briscoe, “Open
Research Issues in Internet Congestion Control,” Internet RFC 6077 (informa-
tional), Feb. 2011.

[S09] B. Sonkoly, Fairness and Stability Analysis of High Speed Transport Protocols,
Ph.D. Thesis, Budapest University of Technology and Economics, 2009.

[SCWA99] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP Con-
gestion Control with a Misbehaving Receiver,” ACM Computer Communication
Review, Apr. 1999.

[SK02] P. Sarolahti and A. Kuznetsov, “Congestion Control in Linux TCP,” Proc.
Usenix Freenix Track, June 2002.

[TCPTRACE] http://jarok.cs.ohiou.edu/software/tcptrace/index.html

[TSZS06] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound TCP
Approach for High-Speed and Long-Distance Networks,” Proc. INFOCOM, Apr.
2006.

[W08] X. Wu, “A Simulation Study of Compound TCP,” http://www.comp.nus
.edu.sg/~wuxiucha/research/reactive/publication/ctcp_study.pdf

[WJLH06] D. Wei, C. Jin, S. Low, and S. Hegde, “FAST TCP: Motivation, Architec-
ture, Algorithms, Performance,” IEEE/ACM Trans. on Networking, Mar. 2006.

[WQOS] http://technet.microsoft.com/en-us/network/bb530836.aspx

http://jarok.cs.ohiou.edu/software/tcptrace/index.html
http://www.comp.nus.edu.sg/~wuxiucha/research/reactive/publication/ctcp_study.pdf
http://www.comp.nus.edu.sg/~wuxiucha/research/reactive/publication/ctcp_study.pdf
http://technet.microsoft.com/en-us/network/bb530836.aspx

ptg999

792 TCP Congestion Control

[WYSG05] R. Wang, K. Yamada, M. Sanadidi, and M. Gerla, “TCP with Sender-
Side Intelligence to Handle Dynamic, Large, Leaky Pipes,” IEEE JSAC, 23(2), Feb.
2005.

[XHR04] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control
for Fast Long-Distance Networks,” Proc. INFOCOM, Mar. 2004.

ptg999

793

17

TCP Keepalive

17.1 Introduction

Many newcomers to TCP/IP are surprised to learn that no data whatsoever flows
across an idle TCP connection. That is, if neither process at the ends of a TCP con-
nection is sending data to the other, nothing is exchanged between the two TCP
endpoints. There is no polling, for example, as you might find with other network-
ing protocols. This means that we can start a client process that establishes a TCP
connection with a server and walk away for hours, days, weeks, or months, and
the connection should remain up. In theory, intermediate routers can crash and
reboot, data lines may go down and back up, but as long as neither host at the
ends of the connection reboots (or changes its IP address), the connection remains
established. This is how TCP/IP was designed.

Note

The previous statement assumes that neither application—neither the client nor
the server—has application-level timers to detect inactivity, causing either appli-
cation to terminate. It also assumes that no intermediate router is keeping state
about the connection (such as a NAT box) that is required for proper operation
that it might delete because of inactivity or lose because of system failure. In
today’s Internet, these are big assumptions.

Under some circumstances, it is useful for a client or server to become aware
of the termination or loss of connection with its peer. In other circumstances, it is
desirable to keep a minimal amount of data flowing over a connection, even if the
applications do not have any to exchange. TCP keepalive provides a capability use-
ful for both cases. Keepalive is a method for TCP to probe its peer without affect-
ing the content of the data stream. It is driven by a keepalive timer. When the timer
fires, a keepalive probe (keepalive for short) is sent, and the peer receiving the probe
responds with an ACK.

ptg999

794 TCP Keepalive

Note

Keepalives are not part of the TCP specification. The Host Requirements RFC
[RFC1122] says that this is because they could (1) cause perfectly good con-
nections to break during transient Internet failures, (2) consume unnecessary
bandwidth, and (3) cost money for an Internet path that charges for packets. Nev-
ertheless, most implementations provide the keepalive capability.

TCP keepalive is a controversial feature. Many feel that polling of the other
end has no place in TCP and should be done by the application, if desired. On
the other hand, if many applications require such functionality, it is convenient
to place it in TCP so that its implementation can be shared. The keepalive is an
optionally enabled feature that can cause an otherwise good connection between
two processes to be terminated because of a temporary loss of connectivity in the
network joining the two end systems. For example, if the keepalive probes are sent
during the time that an intermediate router has crashed and is rebooting, TCP
incorrectly thinks its peer host has crashed.

The keepalive feature was originally intended for server applications that
might tie up resources on behalf of a client and want to know if the client host
crashes or goes away. Using TCP keepalive to detect dead clients is most useful for
servers that expect to have a relatively short-duration dialogue with a noninterac-
tive client (e.g., Web servers, POP and IMAP e-mail servers). Servers implement-
ing more interactive-style services that last for a long time (e.g., remote login such
as ssh and Windows Remote Desktop) might wish to avoid using keepalives.

A common example showing the utility of the keepalive feature nowadays is
when a user uses the ssh (secure shell) remote login program to log in to a remote
host through a NAT router. If the user were to establish the connection, do some
work, then just power off the computer at the end of the day, without logging off,
a half-open connection would be left. In Chapter 13 we showed that sending data
across a half-open connection causes a reset to be returned, but that was from the
server end, where the client was sending the data. If the client disappears, leaving
the half-open connection on the server’s end, and the server is waiting for some
data from the client, the server will wait forever. The keepalive feature is intended
to detect these half-open connections from the server side.

Another reason for using keepalives is somewhat the reverse. If the user does
not power off the computer but instead leaves a connection open all night (and
wishes to continue using it the next day), the connection goes idle for many hours.
In Chapter 7 we discussed how most NAT routers include a timeout mechanism
that flushes the state of a connection after some period of inactivity. If the NAT
timeout is less than the several hours before the user returns to use the login ses-
sion, and the NAT is not smart enough to probe the end station to make sure it is
still active, or the NAT crashes, the connection is terminated. To avoid this common
problem, ssh can be configured to use TCP keepalives. ssh also has the ability to
use application-managed keepalives, and the two behave differently, especially with
respect to their security properties. (Please see Section 17.3 for more on this.)

ptg999

 Section 17.2 Description 795

17.2 Description

Either end of a TCP connection may request keepalives, which are turned off by
default, for their respective direction of the connection. A keepalive can be set
for one side, both sides, or neither side. There are several configurable param-
eters that control the operation of keepalives. If there is no activity on the connec-
tion for some period of time (called the keepalive time), the side(s) with keepalive
enabled sends a keepalive probe to its peer(s). If no response is received, the probe
is repeated periodically with a period set by the keepalive interval until a number of
probes equal to the number keepalive probes is reached. If this happens, the peer’s
system is determined to be unreachable and the connection is terminated.

A keepalive probe is an empty (or 1-byte) segment with sequence number
equal to one less than the largest ACK number seen from the peer so far. Because
this sequence number has already been ACKed by the receiving TCP, the arriving
segment does no harm, but it elicits an ACK that is used to determine whether the
connection is still operating. Neither the probe nor its ACK contains any new data
(it is “garbage” data), and neither is retransmitted by TCP if lost. [RFC1122] dictates
that because of this fact, the lack of response for a single keepalive probe should
not be considered sufficient evidence that the connection has stopped operating.
This is the reason for the keepalive probes parameter setting mentioned previously.
Note that some (mostly older) TCP implementations do not respond to keepalives
lacking the “garbage” byte of data.

Anytime it is operating, a TCP using keepalives may find its peer in one of
four states:

1. The peer host is still up and running and reachable. The peer’s TCP
responds normally and the requestor knows that the other end is still up.
The requestor’s TCP resets the keepalive timer for later (equal to the value
of the keepalive time). If there is application traffic across the connection
before the next timer expires, the timer is reset back to the value of keepalive
time.

2. The peer’s host has crashed and is either down or in the process of reboot-
ing. In either case, its TCP is not responding. The requestor does not receive
a response to its probe, and it times out after a time specified by the keepalive
interval. The requestor sends a total of keepalive probes of these probes, kee-
palive interval time apart, and if it does not receive a response, the requestor
considers the peer’s host as down and terminates the connection.

3. The client’s host has crashed and rebooted. In this case, the server receives a
response to its keepalive probe, but the response is a reset segment, causing
the requestor to terminate the connection.

4. The peer’s host is up and running but is unreachable from the requestor for
some reason (e.g., the network cannot deliver traffic and may or may not

ptg999

796 TCP Keepalive

inform the peers of this fact using ICMP). This is effectively the same as
state 2, because TCP cannot distinguish between the two. All TCP can tell
is that no replies are received to its probes.

The requestor does not have to worry about the peer’s host being shut down
gracefully and then rebooting (as opposed to crashing). When the system is shut
down by an operator, all application processes are terminated (i.e., the peer’s pro-
cess), which causes the peer’s TCP to send a FIN on the connection. Receiving the
FIN would cause the requestor’s TCP to report an end-of-file to the requestor’s
process, allowing the requestor to detect this scenario and exit.

In the first state the requestor’s application has no idea that keepalive probes
are taking place (except that it chose to enable keepalives in the first place). Every-
thing is handled at the TCP layer. It is transparent to the application until one
of states 2, 3, or 4 is determined. In these three cases, an error is returned to the
requestor’s application by its TCP. (Normally the requestor has issued a read from
the network, waiting for data from the peer. If the keepalive feature returns an
error, it is returned to the requestor as the return value from the read.) In sce-
nario 2 the error is something like “Connection timed out,” and in scenario 3 we
expect “Connection reset by peer.” The fourth scenario may look as if the connec-
tion timed out, or may cause another error to be returned, depending on whether
an ICMP error related to the connection is received and how it is processed (see
Chapter 8). We look at all four scenarios in the next section.

The values of the variables keepalive time, keepalive interval, and keepalive probes
can usually be changed. Some systems allow these changes on a per-connection
basis, while others allow them to be set only system-wide (or both in some cases).
In Linux, these values are available as sysctl variables with the names net.ipv4
.tcp_keepalive_time, net.ipv4.tcp_keepalive_intvl, and net.ipv4
.tcp_keepalive_probes, respectively. The defaults are 7200 (seconds, or 2
hours), 75 (seconds), and 9 (probes).

In FreeBSD and Mac OS X, the first two values are also available as sysctl
variables called net.inet.tcp.keepidle and net.inet.tcp.keepintvl,
with default values 7,200,000 (milliseconds, or 2 hours) and 75,000 (milliseconds,
or 75s), respectively. These systems also have a Boolean variable called net.inet
.tcp.always_keepalive. If this value is enabled, all TCP connections have the
keepalive function enabled, even if the application did not request it. In these sys-
tems, the number of probes is a fixed default value: 8 (FreeBSD) or 9 (Mac OS X).

In Windows, these values are available for modification via registry entries
under the system key:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

The value KeepAliveTime defaults to 7,200,000ms (2 hours); KeepAlive-
Interval defaults to 1000ms (1s). If there is no response to ten keepalive probes,
Windows terminates the connection.

ptg999

 Section 17.2 Description 797

Note that [RFC1122] places certain restrictions on the use of keepalives. In
particular, the keepalive time must be configurable and must not default to less
than 2 hours. In addition, keepalives must not be enabled unless an application
requests one (although this behavior is violated if the net.inet.tcp.always_
keepalive variable is set). Linux does not provide a native facility for adding
keepalives to applications that do not request it, but a special library can be pre-
loaded (i.e., loaded prior to ordinary shared libraries) to get this effect [LKA].

17.2.1 Keepalive Examples

We shall now go through states 2, 3, and 4 from the previous section, to see the
packets exchanged using the keepalive mechanism. The operation in state 1 will
be illustrated in the course of looking at the others.

17.2.1.1 Other End Crashes
Let us see what happens when the server host crashes and does not reboot. To
simulate this we will do the following steps:

 1. Using the regedit program on a Windows client, modify the registry key,
and set KeepAliveTime to 7000ms (7s). This may require the system to be
rebooted to accept the new value.

 2. Establish an ssh connection between the Windows client and a Linux
server using an option that enables TCP keepalives.

3. Verify that data can go across the connection.

4. Watch the client’s TCP send keepalive packets every 7s, and see them
acknowledged by the server’s TCP.

5. Disconnect the network cable from the server, and leave it disconnected
until the example is complete. This makes the client think the server host
has crashed.

6. We expect the client to send ten keepalive probes, 1s apart, before declaring
the connection dead.

Here is the interactive output on the client:

C:\> ssh -o TCPKeepAlive=yes 10.0.1.1
(password prompt and login continues)
Write failed: Connection reset by peer (about 15 seconds after disconnect)

Figure 17-1 shows the results using Wireshark. In this example, the connec-
tion has already been established. The Wireshark output begins with a keepalive
(packet 1) that is not identified as such. At this point, Wireshark has not processed
enough packets to determine that the one sequence number in packet 1 is below

ptg999

798 TCP Keepalive

the receiver’s left window edge and is therefore a keepalive. Packet 2 contains an
ACK number that allows Wireshark to process the sequence numbers in subse-
quent packets appropriately.

Most of this connection consists of keepalives and corresponding ACKs. Pack-
ets 1, 3, 5, 7, 14, 16, 18, 20, and 22–31 are all keepalives. Packets 2, 4, 6, 8, 15, 17,
19, and 21 are the corresponding ACKs. Keepalives are sent periodically every 7s

Figure 17-1 TCP keepalives are generated every 7s after the connection becomes idle. Each contains a below-
window sequence number that is ACKed by the peer. A cable disconnection after 1 minute causes
subsequent keepalives to not be ACKed. The client tries ten times before giving up and terminat-
ing the connection. The termination is signaled to the server by the final reset segment (which the
server cannot hear). This example also illustrates the use of DSACKs at the server and a spurious
retransmission caused by the client delaying ACKs.

ptg999

 Section 17.2 Description 799

provided they are ACKed. When no ACK is returned for a keepalive, the sender
switches to a 1s interval for sending keepalives, according to the default value
of KeepAliveInterval. This starts with packet 23 at time 62.120. The sender
produces ten unacknowledged keepalives in total (packets 22–31). After that, it
terminates the connection, which results in the final reset segment (packet 32)
that is never received by the disconnected receiver. The user receives the following
output when the connection terminates:

Write failed: Connection reset by peer

This is a clear indication that the connection has terminated, but it is not entirely
accurate. It was really the sender that terminated the connection, but it did so
based on the lack of response from the receiver.

Apart from the use of keepalive segments, there are some other interesting
features of this connection we will mention briefly. First, the server uses DSACKs
(see Chapter 14). Each ACK contains the sequence number range of the previously
received in-window segment. Next, a small bit of data is exchanged at time 26.09.
The data represents a single key press. It is sent to the server, ACKed by the server,
and echoed back. The data is encrypted, causing the packets containing data to be
48 bytes in user data size (see Chapter 18).

Interestingly, the echoed character is sent twice. We can see that packet 11,
which contains the echoed character is not ACKed immediately. Recall from
Chapter 14 that Linux uses an RTO of at least 200ms. Here we see that the Linux
server retransmits the echoed character 200ms later, which produces an immedi-
ate response from the client. Because this test was performed on an uncongested
LAN, it is highly unlikely that segment 11 was dropped. Instead, it appears that
Linux produced a spurious retransmission due to the client delaying ACKs. This
is a similar sort of hazard we saw when exploring the poor interaction between
the Nagle algorithm and delayed ACKs we discussed in Chapter 15. Here, the
dynamic results in an unnecessary delay of about 200ms.

17.2.1.2 Other End Crashes and Reboots
In this example we will see what happens when the peer crashes and reboots. The
initial scenario is the same as the previous one, except this time we set KeepAl-
iveTime to 120,000 (2 minutes). We establish a connection and then wait just over
2 minutes to allow a keepalive message to be sent and ACKed. Then we discon-
nect the server from the network, reboot it, and then reconnect it. We expect the
next keepalive probe to generate a reset from the server, because the server now
knows nothing about this connection. Figure 17-2 presents the trace as displayed
by Wireshark.

In this example, the connection has been established and small amounts of
data are exchanged starting at seconds 0.00 and 3.46. Then the connection goes
idle. After 2 minutes have elapsed (the keepalive time), the client sends the first
keepalive probe at time 123.47, containing the “garbage” byte below the receiver’s

ptg999

800 TCP Keepalive

left window edge. It is acknowledged, and the server is disconnected, rebooted,
and reconnected. At time 243.47, 120s later, the client sends its second keepalive
probe. Although this reaches the server, the server no longer has any knowledge
about the connection and responds with a reset segment (packet 18). This informs
the client that the connection is no longer active, and the user is provided the same
“Connection reset by peer” error message we saw before.

17.2.1.3 Other End Is Unreachable
In this case, the server has not crashed but becomes unreachable during the inter-
val when the keepalive probes are sent. An intermediate router may have crashed,
a phone line may be temporarily out of order, or something similar. To simulate
this example we will use our sock program with the keepalive option set to

Figure 17-2 The server has rebooted between keepalives sent by the client. The last keepalive elicits a reset
segment because the server no longer knows anything about the connection.

ptg999

 Section 17.2 Description 801

establish a connection to a Web server. We will use a Mac OS X client and an LDAP
server (port 389) running on ldap.mit.edu. After shortening the client’s keepalive
time (for convenience) and opening the connection, we disconnect the network to
see the effects. Here are the command lines and output at the client:

Mac# sysctl -w net.inet.tcp.keepidle=75000
Mac% sock –K ldap.mit.edu 389
recv error: Operation timed out about 14 minutes later

The trace is displayed using Wireshark (see Figure 17-3).

Figure 17-3 The WAN connection is taken down after the first keepalive probe is acknowledged. Another
probe is sent every 75s. After nine keepalives are sent without a response, the connection is ter-
minated and the client sends a reset to its peer. For the client, the situation is very similar to when
the server crashes, as illustrated in Figure 17-1.

In this figure we can see the entire connection. After the initial three-way
handshake, the connection remains idle and a keepalive is sent and acknowledged
at about time 75 (packet 4). This first keepalive is triggered by the value of the net
.inet.tcp.keepidle variable. Shortly thereafter, the network is severed. Neither
end of the connection produces data, so the next event is another keepalive sent by
the client at time 150 (75s later, the value of the net.inet.tcp.keepintvl vari-
able). This pattern repeats with packets 7–14, with no ACKs present, even though
the server is up and running. Finally, the client gives up 75s after its ninth unac-
knowledged keepalive probe. The connection termination is indicated to the server
by a reset segment at the end (packet 15). Of course, the server is unable to receive
this packet because the network is not operating.

When a client TCP using keepalives is unable to communicate across the
network with its peer, as this example shows, it retries some number of times
before giving up. This is essentially the same behavior we saw when the other

ptg999

802 TCP Keepalive

end crashed. In most cases, the sending TCP cannot tell the difference. There are
some exceptions, such as when ICMP indicates that the destination has become
unreachable or otherwise unavailable because of problems in the network, but
these conditions are relatively rare because ICMP is often blocked. As a result,
mechanisms such as TCP keepalive (or similar mechanisms implemented by
applications) are used to detect disconnection periods.

17.3 Attacks Involving TCP Keepalives

As we mentioned before, ssh (version 2) has an application-level form of keep-
alive called server alive messages and client alive messages. These are different from
TCP keepalive messages because they are sent over an encrypted channel at the
application layer and contain data. TCP keepalives contain no user-level data, so
the use of encryption is limited at best. The consequence is that TCP keepalives
may be spoofed. When TCP keepalives are spoofed, the victim can be coerced into
keeping resources allocated for a period longer than intended.

Although it may be a relatively minor concern, TCP keepalives are driven off a
timer based on the various configuration parameters discussed earlier, and not off
the dynamically adjusted retransmission timer used to retransmit segments with
data. A passive observer could notice the existence of keepalives and their inter-
arrival times to conceivably learn information about the configuration parameters
(possibly identifying the type of sending system, called fingerprinting) or about the
network topology (i.e., whether downstream routers are forwarding traffic or not).
These issues could be of concern in some environments.

17.4 Summary

As we said earlier, the keepalive feature has been somewhat controversial. Proto-
col experts continue to debate whether it belongs in the transport layer or should
be handled entirely by the application. All popular TCP implementations now
include the keepalive feature, which applications may optionally use to establish
a “heartbeat” of traffic moving across a connection. Doing so can help a server by
allowing it to detect nonresponsive clients and can help clients by keeping con-
nections active (e.g., to keep NAT state active) even if no application-layer data is
flowing.

Keepalives operate by sending a probe packet (usually containing a “garbage”
byte, although zero-length probes are also possible) across a connection after the
connection has been idle for some relatively long period of time, often 2 hours.
Four different scenarios can occur: the other end is still there, the other end has
crashed, the other end has crashed and rebooted, or the other end is currently
unreachable. We saw each of these scenarios with an example.

ptg999

 Section 17.5 References 803

In the first two keepalive examples that we examined, had keepalives not
been used, and without any application-level timer or activity, TCP would never
have known that the other end had crashed (or crashed and rebooted). In the final
example, however, nothing was wrong with the other end; the connection was
temporarily down. We must be aware of this limitation when using keepalives
and consider whether or not such behavior is desired.

Attacks against the keepalive mechanism include causing a system to keep
resources allocated longer than intended and possibly learning some otherwise
hidden information about the end systems (although such information may be
of limited use to an attacker). In addition, by default TCP does not use its own
encryption, so keepalives and keepalive ACKs can be spoofed, whereas applica-
tion-level keepalives that employ encryption (e.g., ssh) cannot.

17.5 References

[LKA] http://libkeepalive.sourceforge.net

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts,” Internet RFC 1122,
Oct. 1989.

http://libkeepalive.sourceforge.net

ptg999

This page intentionally left blank

ptg999

805

18

Security: EAP, IPsec, TLS,
DNSSEC, and DKIM

18.1 Introduction

In this chapter we will take a look at several forms of security used with TCP/IP.
Security is a very broad and interesting topic, and covering it comprehensively is
far beyond the scope of this book. Consequently, we will be interested to know
about the various types of security threats on the Internet, and we will delve into
some detail on those security mechanisms aimed at countering them that are
applicable to the operation of various protocols such as IP, TCP, and the important
e-mail and DNS application protocols.

Although our partitioning is not really formal, security threats can be bro-
ken down into attacks that target implementation problems by trying to subvert
processes into running code that was not intended, trying to get users to run pro-
grams that do bad things, and using network protocols in compliant but unau-
thorized ways. We have already seen forms of these attacks in other chapters. For
example, one of the earliest worms (self-propagating software) on the Internet used
a buffer overflow that overwrites the server process’s memory. Doing so allows a cli-
ent program to inject software into a server that ultimately runs this injected code.
The injected code then performs the same action, thereby causing the program to
self-propagate. Naturally, such code could perform more malicious activities than
simply self-propagation.

The various types of attacks and techniques can be combined, and compli-
cated software and security analysis tools have been developed as the value of the
information on the Internet has increased. A variety of texts, including [MSK09],
discuss the tools and techniques in more detail. Today, essentially any software
executed by a user or as a user against the user’s intentions is known by the gen-
eral term malware, short for “malicious software.” Entire industries have been

ptg999

806 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

developed to both create and reduce the effects of malware. Malware can be deliv-
ered in e-mail messages or attachments (e.g., in spam), picked up while visiting
a Web site (drive-by attacks), or acquired when using portable media such as por-
table USB drives.

In some cases, malware is used to take control of a large number of computers
in the Internet (botnets). Botnets are controlled by individuals or organizations (bot
herders) and can be used on a wide scale for a number of purposes such as send-
ing spam, compromising other computers, exfiltrating information from the com-
promised system (e.g., credit card and bank account information, and the user’s
logged keystrokes), and launching DoS attacks by sending a large aggregate vol-
ume of Internet traffic to one or more victims. Botnets are now commonly offered
as a service on a rental basis—a client can hire a bot herder to perform one or more
nefarious tasks. One common task is to generate e-mails in hopes of inducing the
recipient(s) to visit a particular Web site or purchase a particular product (phish-
ing). When a specific victim is targeted in this way, the activity is usually called
spear phishing.

Our interest is in understanding how secure communication protocols on the
Internet work. Ironically, perhaps, many worms or viruses implement secure com-
munication protocols. In most cases, we will see how the types of protocols we
have already studied such as IP, TCP, e-mail, and DNS have been augmented with
security extensions (sometimes in the form of additional protocols) to enhance
security. We need to be somewhat precise in defining what “security” means in
terms of a communication protocol, in order to understand if the techniques avail-
able to us are sufficient to provide our desired level of protection. Therefore, we
shall begin by studying the properties of information protection considered desir-
able in the field of information security.

18.2 Basic Principles of Information Security

There are three primary properties of information, whether in a computer net-
work or not, that may be desirable from an information security point of view:
confidentiality, integrity, and availability (the CIA triad) [L01], summarized here:

• Confidentiality means that information is made known only to its intended
users (which could include processing systems).

• Integrity means that information has not been modified in an unauthor-
ized way before it is delivered.

• Availability means that information is available when needed.

These are core properties of information, yet there are other properties we
may also desire, including authentication, nonrepudiation, and auditability. Authen-
tication means that a particular identified party or principal is not impersonating

ptg999

Section 18.3 Threats to Network Communication 807

another principal. Nonrepudiation means that if some action is performed by a
principal (e.g., agreeing to the terms of a contract), this fact can be proven later (i.e.,
cannot successfully be denied). Auditability means that some sort of trustworthy
log or accounting describing how information has been used is available. Such
logs are often important for forensic (i.e., legal and prosecuritorial) purposes.

These principles are applicable to information in physical (e.g., printed) form,
for which mechanisms such as safes, secured facilities, and guards have been used
for thousands of years to enforce controlled sharing, storage, and dissemination.
When information is to be moved through an unsecured environment, additional
techniques are required. To see why, let us examine the types of threats to which
information can be exposed when it travels through an unsecured communica-
tion channel.

18.3 Threats to Network Communication

When considering the design and operation of network protocols, ensuring that
information has the desired properties of integrity, availability, and confidentiality
can be quite a challenge because of the wide range of possible attacks that can be
carried out in an otherwise uncontrolled network such as the Internet. Attacks can
generally be categorized as either passive or active [VK83]. Identifying the category
is useful because different techniques are required to provide security depending
on the particular category. Passive attacks are mounted by monitoring or eaves-
dropping on the contents of network traffic, and if not handled they can lead to
unauthorized release of information (loss of confidentiality). Active attacks can
cause modification of information (with possible loss of integrity) or denial of ser-
vice (loss of availability). Logically, such attacks are carried out by an “intruder” or
adversary. This is often depicted using the scenario shown in Figure 18-1.

Alice Bob

Mallory
Eve

Figure 18-1 The principals, Alice and Bob, attempt to communicate securely, but Eve may eavesdrop
and Mallory may modify messages in transit.

ptg999

808 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

The figure depicts the principals, Alice and Bob, trying to communicate. How-
ever, there are two attackers, Eve and Mallory. Eve (eavesdropper) is only able to
monitor the traffic exchanged between Alice and Bob and thus can carry out only
passive attacks. Mallory (malicious attacker) can store, modify, and replay traffic
passing between Alice and Bob, so she can carry out active and passive attacks.
Table 18-1 summarizes the major categories of passive and active attacks that Alice
and Bob may face.

Table 18-1 Attacks on communication are broadly classified as passive or active. Passive attacks are ordinarily
more difficult to detect, and active attacks are ordinarily more difficult to prevent.

Passive Active

Type Threats Type Threats

Eavesdropping Confidentiality Message stream
modification

Authenticity, integrity

Traffic analysis Confidentiality Denial of service (DoS) Availability
Spurious association Authenticity

From an attacker’s perspective, Table 18-1 gives a quick summary of the pas-
sive attacks available to Eve and the active (and passive) attacks available to Mal-
lory. Eve is able to eavesdrop (listen in on, also called capture or sniff) and perform
traffic analysis on the traffic passing between Alice and Bob. Capturing the traffic
could lead to compromise of confidentiality, as sensitive data may be available to
Eve without Alice or Bob knowing. In addition, traffic analysis can determine the
features of the traffic, such as its size and when it is sent, and possibly identify the
parties to a communication. This information, although it does not reveal the exact
contents of the communication, could also lead to disclosure of sensitive informa-
tion and could be used to mount more powerful active attacks in the future.

While the passive attacks are essentially impossible for Alice or Bob to detect,
Mallory is capable of performing more easily noticed active attacks. These include
message stream modification (MSM), denial-of-service (DoS), and spurious associa-
tion attacks. MSM attacks (including so-called called man-in-the-middle or MITM
attacks) are a broad category and include any way traffic is modified in transit,
including deletion, reordering, and content modification. DoS might include dele-
tion of traffic, or generation of such large volumes of traffic so as to overwhelm
Alice, Bob, or the communication channel connecting them. Spurious associations
include masquerading (Mallory pretends to be Bob or Alice) and replay, whereby
Alice or Bob’s earlier (authentic) communications are replayed later, from Mal-
lory’s memory.

Two major methods are available to prevent the passive and active attacks
we have just described. One method would be to ensure through physical secu-
rity that only trusted parties have access to the communication infrastructure

ptg999

Section 18.4 Basic Cryptography and Security Mechanisms 809

connecting Alice and Bob. This approach is used in limited circumstances but is
effectively impractical for any network spanning a large geographical distance. Of
course, if the communication channel is wireless, securing it using only physical
methods is effectively impossible. Given these considerations, some mechanism is
needed to allow information to pass through unsecured communication channels
in such a way that adversaries like Eve and Mallory are, for the most part at least,
thwarted. This mechanism is cryptography. With effective and careful use of cryp-
tography, passive attacks are rendered ineffective, and active attacks are made
detectable (and to some degree preventable).

18.4 Basic Cryptography and Security Mechanisms

Cryptography evolved from the desire to protect the confidentiality, integrity, and
authenticity of information carried through unsecured communication channels.
Such a capability is clearly of significant importance in protecting confidential
information such as military orders, intelligence, and recipes for creating espe-
cially dangerous or valuable materials. The use of cryptography, at least in a prim-
itive form, dates back to at least 3500 BCE. The earliest systems were usually codes.
Codes involve substitutions of groups of words, phrases, or sentences with groups
of numbers or letters as given in a codebook. Codebooks needed to be kept secret
in order to keep communications private, so distributing them required consider-
able care.

More advanced systems used ciphers, in which both substitution and rear-
rangement are used. Several codes were used in the Middle Ages, and by the
late 1800s large code and cipher systems were commonly use for diplomatic and
military communications. By the early twentieth century, cryptography was well
established but would not take its major leap forward until World War II. Dur-
ing this period, electromechanical cryptographic machines such as the German
ENIGMA and Lorenz machines posed a challenge to Allied cryptanalysts (code
breakers). One of the first digital computers, Colossus, was developed by the
British to decipher Lorenz-enciphered messages. A functioning Colossus Mark
2 machine was created in 2007, after a 14-year effort, by Tony Sale of the National
Museum of Computing at Bletchley Park, UK [TNMOC].

18.4.1 Cryptosystems

While the historical basis for cryptography is primarily for preserving confiden-
tiality, other desirable properties such as integrity and authentication can also
be achieved using cryptographic and related mathematical techniques. To help
understand the basics, Figure 18-2 illustrates how the two most important types of
cryptographic algorithms, called symmetric key and public (asymmetric) key ciphers,
work.

ptg999

810 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

This figure shows the high-level operation of symmetric and asymmetric key
cryptography. In each case, a cleartext message is processed by an encryption algo-
rithm to produce ciphertext (scrambled text). The key is a particular sequence of
bits used to drive the encryption algorithm or cipher. With different keys, the same
input produces different outputs. Combining the algorithms with supporting pro-
tocols and operating methods forms a cryptosystem. In a symmetric cryptosystem,
the encryption and decryption keys are typically identical, as are the encryption
and decryption algorithms. In an asymmetric cryptosystem, each principal is gen-
erally provided with a pair of keys consisting of one public and one private key.
The public key is intended to be known to any party that might want to send a
message to the key pair’s owner. The public and private keys are mathematically
related and are themselves outputs of a key generation algorithm. One of the major
benefits of asymmetric key cryptosystems is that secret key material does not have
to be securely distributed to every party that wishes to communicate.

Figure 18-2 The unencrypted (cleartext) message is passed through an encryption algorithm to
produce an encrypted (ciphertext) message. In a symmetric cryptosystem, the same
(secret) key is used for encryption and decryption. In an asymmetric or public key
cryptosystem, confidentiality is achieved by using the recipient’s public key for encryp-
tion and private (secret) key for decryption.

ptg999

Section 18.4 Basic Cryptography and Security Mechanisms 811

Without knowing the symmetric key (in a symmetric cryptosystem) or the
private key (in a public key cryptosystem), it is (believed to be) effectively impossi-
ble for any third party that intercepts the ciphertext to produce the corresponding
cleartext. This provides the basis for confidentiality. For the symmetric key cryp-
tosystem, it also provides a degree of authentication, because only a party holding
the key is able to produce a useful ciphertext that can be decrypted to something
sensible. A receiver can decrypt the ciphertext, look for a portion of the resulting
cleartext to contain a particular agreed-upon value, and conclude that the sender
holds the appropriate key and is therefore authentic. Furthermore, most encryp-
tion algorithms work in such a way that if messages are modified in transit, they
are unable to produce useful cleartext upon decryption. Thus, symmetric cryp-
tosystems provide a measure of both authentication and integrity protection for
messages, but this approach alone is weak. Instead, special forms of checksums
are usually coupled with symmetric cryptography to ensure integrity. We discuss
these later, after the cryptographic preliminaries.

A symmetric encryption algorithm is usually classified as either a block cipher
or a stream cipher. Block ciphers perform operations on a fixed number of bits (e.g.,
64 or 128) at a time, and stream ciphers operate continuously on however many bits
(or bytes) are provided as input. For years, the most popular symmetric encryption
algorithm was the Data Encryption Standard (DES), a block cipher that uses 64-bit
blocks and 56-bit keys. Eventually, the use of 56-bit keys was felt to be insecure,
and many applications turned to triple-DES (also denoted 3DES or TDES—apply-
ing DES three times with two or three different keys to each block of data). Today,
DES and 3DES have been largely phased out in favor of the Advanced Encryption
Standard (AES) [FIPS197], also known occasionally by its original name the Rijn-
dael algorithm (pronounced “rain-dahl”), in deference to its Belgian cryptographer
inventors Vincent Rijmen and Joan Daemen. Different variants of AES provide key
lengths of 128, 192, and 256 bits and are usually written with the corresponding
extension (i.e., AES-128, AES-192, and AES-256).

Asymmetric cryptosystems have some additional interesting properties
beyond those of symmetric key cryptosystems. Assuming we have Alice as sender
and Bob as intended recipient, any third party is assumed to know Bob’s public
key and can therefore send him a secret message—only Bob is able to decrypt it
because only Bob knows the private key corresponding to his public key. How-
ever, Bob has no real assurance that the message is authentic, because any party
can create a message and send it to Bob, encrypted in Bob’s public key. Fortunately,
public key cryptosystems also provide another function when used in reverse:
authentication of the sender. In this case, Alice can encrypt a message using her
private key and send it to Bob (or anyone else). Using Alice’s public key (known to
all), anyone can verify that the message was authored by Alice and has not been
modified. However, it is not confidential because everyone has access to Alice’s
public key. To achieve authenticity, integrity, and confidentiality, Alice can encrypt
a message using her private key and encrypt the result using Bob’s public key. The
result is a message that is reliably authored by Alice and is also confidential to
Bob. This process is illustrated in Figure 18-3.

ptg999

812 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

When public key cryptography is used in “reverse” like this, it provides a
digital signature. Digital signatures are important consequences of public key cryp-
tography and can be used to help ensure authenticity and nonrepudiation. Only a
party possessing Alice’s private key is able to author messages or carry out trans-
actions as Alice.

In a hybrid cryptosystem, elements of both public key and symmetric key
cryptography are used. Most often, public key operations are used to exchange a
randomly generated confidential (symmetric) session key, which is used to encrypt
traffic for a single transaction using a symmetric algorithm. The reason for doing
so is performance—symmetric key operations are less computationally intensive
than public key operations. Most systems today are of the hybrid type: public key
cryptography is used to establish keys used for symmetric encryption of indi-
vidual sessions.

18.4.2 Rivest, Shamir, and Adleman (RSA) Public Key Cryptography

We have seen how public key cryptography can be used for both digital signatures
and confidentiality. The most common approach is called RSA in deference to its
authors’ names, Rivest, Shamir, and Adleman [RSA78]. The security of this sys-
tem hinges on the difficulty of factoring large numbers into constituent primes.

Figure 18-3 The asymmetric cryptosystem can be used for confidentiality (encryption), authentica-
tion (digital signatures or signing), or both. When used for both, it produces a signed
output that is confidential to the sender and the receiver. Public keys, as their name
suggests, are not kept secret.

ptg999

Section 18.4 Basic Cryptography and Security Mechanisms 813

To initialize RSA, two large prime numbers p and q are generated, which usually
involves checking a number of large odd numbers that are randomly generated
until two primes are found. The product of these primes n = pq is called the modu-
lus. The length of n, p, and q is usually measured in bits, with n often being 1024
bits and the others being about 512, although larger sizes such as 2048 are now rec-
ommended. The value Φ(v) is known in number theory as the Euler totient of the
integer v. It gives the number of positive integers less than v that are also coprime
to v (i.e., whose greatest common divisor is 1). Because of the way n is constructed
for RSA, Φ(n) = (q - 1)(p - 1).

Using the defnition for Φ(n), we can choose the RSA public exponent (called
e for “encryption”) and derive a private exponent (called d for “decryption”) as
multiplicative inverses using the relation d = e-1 (mod Φ(n)). In practice, e is often
some value with a fairly small population count (i.e., has a small number of 1 bits)
such as 65,537 (10000000000000001 binary), for faster computations. To form an
encrypted ciphertext c from a cleartext message m, the value c = me (mod n) is com-
puted. To form the value m from c, decryption is performed: m = cd (mod n). An
RSA public key consists of the public exponent e and modulus n. The correspond-
ing private key consists of the private exponent d and the modulus n.

As suggested earlier, public key algorithms such as RSA can also be used to
produce digital signatures by essentially running RSA “in reverse.” To create an
RSA signature of a message m, the value s = md (mod n) can be produced as a
signed version of m. Anyone receiving the value s can apply the public exponent
e to produce m = se (mod n), which provides the basis for verifying that whatever
produced the value s was in possession of the private value d (otherwise the value
m produced would not be sensible).

The security of RSA is based on the difficulty of factoring large numbers. In
the context of RSA and our scenario of Figure 18-1, Eve is able to obtain n and e but
does not know p, q, or Φ(n). If she could determine any of these last three values,
it would be trivial to determine d using the relation we have described. However,
doing so appears to involve factoring n, and factoring numbers of 1000 or more bits
is currently believed to be out of reach for even the best factorization algorithms.
Indeed, factoring semiprimes (numbers that are a product of two primes) appears
to represent the most difficult case for such algorithms.

18.4.3 Diffie-Hellman-Merkle Key Agreement (aka Diffie-Hellman or DH)

A common requirement in security protocols is to have two parties agree on a
common set of secret bits that can be used as a symmetric key. Doing so in a net-
work that may contain eavesdroppers (such as Eve) is a challenge, because it is not
immediately obvious how to have two principals (such as Alice and Bob) agree
on a common secret number without Eve knowing. The Diffie-Hellman-Merkle Key
Agreement protocol (more commonly called simply Diffie-Hellman or DH) provides
a method for accomplishing this task, based on the use of finite field arithmetic

ptg999

814 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

[DH76].1 DH techniques are used in many of the Internet-related security proto-
cols [RFC2631] and are closely related to the RSA approach for public key cryptog-
raphy. We shall have a brief look at how they work.

With the same cast of characters (Alice, Bob, etc.), let us assume that all parties
are aware of two integers p and g. Let p be a (large) prime number and g < p be a
primitive root mod p. With these assumptions, every integer in the group Zp = {1,
..., p - 1} can be generated by raising g to some power. Said another way, for every
n, there exists some k for which gk ≡ n (mod p). Finding the value (or values) of k
given g, n, and p (called the discrete log problem) is considered to be difficult, result-
ing in the belief that DH is secure. Finding the value of n given g, k, and p is easy,
resulting in the approach being practical.

For Alice and Bob to establish a shared secret key, they can use the following
protocol: Alice chooses a secret random number a and computes A = ga (mod p),
which she sends to Bob. Bob chooses a secret random number b and computes B =
gb (mod p), which he sends to Alice. Alice and Bob arrive at the same shared secret
K = gab (mod p). Alice computes this value this way:

K = Ba (mod p) = gba (mod p)

and Bob computes it this way:

K = Ab (mod p) = gab (mod p)

Given that gba is equal to gab (because Zp is so-called power associative and we
assumed all parties are aware of the group Zp being used), both Alice and Bob
know K. Note that Eve has access only to g, p, A, and B so cannot determine K
without solving the discrete log problem [MW99]. However, this basic protocol
is vulnerable to an attack from Mallory. Mallory can pretend to be Bob when
communicating with Alice and vice versa by supplying her own A and B values.
However, the basic DH protocol can be extended to protect from this man-in-the-
middle attack if the public values for A and B are authenticated [DOW92]. The
classic approach, called the Station-to-Station protocol (STS), involves Alice and Bob
signing their public values.

18.4.4 Signcryption and Elliptic Curve Cryptography (ECC)

When using RSA, additional security is provided with larger numbers. However,
the basic mathematical operations required by RSA (e.g., exponentiation) can be
computationally intensive and scale as the numbers grow. Reducing the effort of
combining digital signatures and encryption for confidentiality, a class of sign-
cryption schemes [Z97] (also called authenticated encryption) provides both features

1. The technique was described in a then-classified reference in 1973 by C. Cocks, “A Note on ‘Non-
Secret Encryption.’” See http://www.cesg.gov.uk/publications/media/notense.pdf.

http://www.cesg.gov.uk/publications/media/notense.pdf

ptg999

Section 18.4 Basic Cryptography and Security Mechanisms 815

at a cost less than the sum of the two if computed separately. However, even
greater efficiency can sometimes be achieved by changing the mathematical basis
for public key cryptography.

In a continuing search for security with greater efficiency and performance,
researchers have explored other public key cryptosystems beyond RSA. An alter-
native based on the difficulty of finding the discrete logarithm of an elliptic curve
element has emerged, known as elliptic curve cryptography (ECC, not to be con-
fused with error-correcting code) [M85][K87][RFC5753]. For equivalent security,
ECC offers the benefit of using keys that are considerably smaller than those of
RSA (e.g., by about a factor of 6 for a 1024-bit RSA modulus). This leads to sim-
pler and faster implementations, issues of considerable practical concern. ECC has
been standardized for use in many of the applications where RSA still retains
dominance, but adoption has remained somewhat sluggish because of patents on
ECC technology held by the Certicom Corporation. (The RSA algorithm was also
patented, but patent protection lapsed in the year 2000.)

18.4.5 Key Derivation and Perfect Forward Secrecy (PFS)

In communication scenarios where multiple messages are to be exchanged, it is
common to establish a short-term session key to perform symmetric encryption.
The session key is ordinarily a random number (see the following section) gener-
ated by a function called a key derivation function (KDF), based on some input such
as a master key or a previous session key. If a session key is compromised, any of
the data encrypted with the key is subject to compromise. However, it is common
practice to change keys (rekey) multiple times during an extended communication
session. A scheme in which the compromise of one session key keeps future com-
munications secure is said to have perfect forward secrecy (PFS). Usually, schemes
that provide PFS require additional key exchanges or verifications that introduce
overhead. One example is the STS protocol for DH mentioned earlier.

18.4.6 Pseudorandom Numbers, Generators, and Function Families

In cryptography, random numbers are often used as initial input values to cryp-
tographic functions, or for generating keys that are difficult to guess. Given that
computers are not very random by nature, obtaining true random numbers is
somewhat difficult. The numbers used in most computers for simulating random-
ness are called pseudorandom numbers. Such numbers are not usually truly random
but instead exhibit a number of statistical properties that suggest that they are
(e.g., when many of them are generated, they tend to be uniformly distributed
across some range).

Pseudorandom numbers are produced by an algorithm or device known as a
pseudorandom number generator (PRNG) or pseudorandom generator (PRG), depending
on the author. Simple PRNGs are deterministic. That is, they have a small amount
of internal state initialized by a seed value. Once the internal state is known, the

ptg999

816 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

sequence of PNs can be determined. For example, the common Linear Congruential
Generator (LCG) algorithm produces random-appearing values that are entirely
predictable if the input parameters are known or guessed. Consequently, LCGs
are perfectly fine for use in certain programs (e.g., games that simulate random
events) but insufficient for cryptographic purposes.

A pseudorandom function family (PRF) is a family of functions that appear to
be algorithmically indistinguishable (by polynomial time algorithms) from truly
random functions [GGM86]. A PRF is a stronger concept than a PRG, as a PRG can
be created from a PRF. PRFs are the basis for cryptographically strong (or secure)
pseudorandom number generators, called CSPRNGs. CSPRNGs are necessary in
cryptographic applications for several purposes, including session key generation,
for which a sufficient amount of randomness must be guaranteed [RFC4086].

18.4.7 Nonces and Salt

A cryptographic nonce is a number that is used once (or for one transaction) in a
cryptographic protocol. Most commonly, a nonce is a random or pseudorandom
number that is used in authentication protocols to ensure freshness. Freshness is
the (desirable) property that a message or operation has taken place in the very
recent past. For example, in a challenge-response protocol, a server may provide a
requesting client with a nonce, and the client may need to respond with authenti-
cation material as well as a copy of the nonce (or perhaps an encrypted copy of the
nonce) within a certain period of time. This helps to avoid replay attacks, because
old authentication exchanges that are replayed to the server would not contain the
correct nonce value.

A salt or salt value, used in the cryptographic context, is a random or pseudo-
random number used to frustrate brute-force attacks on secrets. Brute-force attacks
usually involve repeatedly guessing a password, passphrase, key, or equivalent
secret value and checking to see if the guess was correct. Salts work by frustrat-
ing the checking portion of a brute-force attack. The best-known example is the
way passwords used to be handled in the UNIX system. Users’ passwords were
encrypted and stored in a password file that all users could read. When logging
in, each user would provide a password that was used to double encrypt a fixed
value. The result was then compared against the user’s entry in the password file.
A match indicated that a correct password was provided.

At the time, the encryption method (DES) was well known and there was
concern that a hardware-based dictionary attack would be possible whereby many
words from a dictionary were encrypted with DES ahead of time (forming a rain-
bow table) and compared against the password file. A pseudorandom 12-bit salt
was added to perturb the DES algorithm in one of 4096 (nonstandard) ways for
each password in an effort to thwart this attack. Ultimately, the 12-bit salt was
determined to be insufficient with improved computers (that could guess more
values) and was expanded.

ptg999

Section 18.4 Basic Cryptography and Security Mechanisms 817

18.4.8 Cryptographic Hash Functions and Message Digests

In most of the protocols we have studied, including Ethernet, IP, ICMP, UDP, and
TCP, we have seen the use of a frame check sequence (FCS, either a checksum or
a CRC) to determine whether a PDU has likely been delivered without bit errors.
Such mathematical functions tend to trade off the likelihood of detecting random
errors against the amount of overhead required to carry the FCS value. When
considering security, however, we are interested in ensuring message integrity
not only against random, infrequent errors, but also against intentional message
stream modification attacks. We are worried about Mallory modifying messages
as they travel through the network. Ordinary FCS functions are not sufficient for
this purpose.

A checksum or FCS can be used to verify message integrity against an adver-
sary like Mallory if properly constructed using special functions. Such functions
are called cryptographic hash functions and often resemble portions of encryption
algorithms. The output of a cryptographic hash function H, when provided a mes-
sage M, is called the digest or fingerprint of the message, H(M). A message digest
is a type of strong FCS that is easy to compute and has the following important
properties:

• Preimage resistance: Given H(M), it should be difficult to determine M if
not already known.

• Second preimage resistance: Given H(M1), it should be difficult to deter-
mine an M2 ≠ M1 such that H(M1) = H(M2).

• Collision resistance: It should be difficult to find any pair M1, M2 where
H(M1) = H(M2) when M2 ≠ M1.

If a hash function has all of these properties, then if two messages have the
same cryptographic hash value, they are, with negligible doubt, the same mes-
sage. The two most common cryptographic hash algorithms are at present the
Message Digest Algorithm 5 (MD5, [RFC1321]), which produces a 128-bit (16-byte)
digest, and the Secure Hash Algorithm 1 (SHA-1), which produces a 160-bit (20-byte)
digest. More recently, a family of functions based on SHA called SHA-2 [RFC6234]
produce digests with lengths of 224, 256, 384, or 512 bits (28, 32, 48, and 64 bytes,
respectively). Others are under development.

Notes

Cryptographic hash functions are often based on a compression function f, which
takes an input of length L and produces a collision-resistant but deterministic
output of size less than L. The Merkle-Damgård construction, which essentially
breaks an arbitrarily long input into blocks of length L, pads them, passes them to
f, and combines the results, produces a cryptographic hash function capable of
taking a long input and producing an output with collision resistance.

ptg999

818 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

MD5 had been in widespread use with Internet protocols until it was reported
broken in 2005 (i.e., two different 128-byte sequences were shown to have the
same MD5 value) [WY05]. SHA-1 was used as an alternative, but it was also
thought to possibly have weaknesses, so a SHA-2 family of algorithms was devel-
oped. Given SHA-2’s similarity to SHA-1, there is concern that it, too, may have
weaknesses. In December 2010, the National Institute of Standards and Technol-
ogy (NIST) in the United States announced that five algorithms had been selected
as final candidates for a new “SHA-3” cryptographic hash algorithm [CHP]. The
selection of the final winning algorithm is scheduled for sometime after spring
2012.

18.4.9 Message Authentication Codes (MACs, HMAC, CMAC, and GMAC)

A message authentication code (unfortunately abbreviated MAC or sometimes
MIC but unrelated to the link-layer MAC addresses we discussed in Chapter 3)
can be used to ensure message integrity and authentication. MACs are usually
based on keyed cryptographic hash functions. Such functions are like message
digest algorithms (see Section 18.4.8) but require a private key to produce or verify
the integrity of a message and may also be used to verify (authenticate) the mes-
sage’s sender.

MACs require resistance to various forms of forgery. For a given keyed hash
function H(M,K) taking input message M and key K, resistance to selective forgery
means that it is difficult for an adversary not knowing K to form H(M,K) given a
specific M. H(M,K) is resistant to existential forgery if it is difficult for an adversary
lacking K to find any previously unknown valid combination of M and H(M,K).
Note that MACs do not provide exactly the same features as digital signatures. For
example, they cannot be a solid basis for nonrepudiation because the secret key is
known to more than one party.

A standard MAC that uses cryptographic hash functions in a particular way
is called the keyed-hash message authentication code (HMAC) [FIPS198][RFC2104].
The HMAC “algorithm” uses a generic cryptographic hash algorithm, say H(M).
To form a t-byte HMAC on message M with key K using H (called HMAC-H), we
use the following definition:

HMAC-H (K, M)t = Λt (H((K ⊕ opad)||H((K ⊕ ipad)||M)))

In this definition, opad (outer pad) is an array containing the value 0x5C
repeated |K| times, and ipad (inner pad) is an array containing the value 0x36
repeated |K| times. ⊕ is the vector XOR operator, and || is the concatenation oper-
ator. Normally the HMAC output is intended to be a certain number t of bytes in
length, so the operator Λt(M) takes the left-most t bytes of M.

The careful reader will observe that the definition of HMAC is a hash around
another hash, of the form H(K1 || H(K2 || M)) using keys K1 and K2. This structure
resists so-called extension attacks in which a selected pad value can be combined

ptg999

Section 18.4 Basic Cryptography and Security Mechanisms 819

(e.g., by Mallory) with an intercepted message and digest value to form a new,
valid message and digest value (not sent by Alice). The values of ipad and opad are
not critical but tend to produce K1 and K2 values with few bits in common (i.e.,
they have a large hamming distance). Certain extension attacks have been shown to
be effective against naively constructed MACs such as those of the form H(K ||
M) or H(M || K) but ineffective against the HMAC construct (or NMAC construct
[BCK96], of which HMAC is a derivative)[B06].

More recently, other forms of MACs have been standardized, called the cipher-
based MAC (CMAC) [FIPS800-38B] and GMAC [NIST800-38D]. Instead of using a
cryptographic hash function such as HMAC, these use a block cipher such as AES
or 3DES. CMAC is envisioned for use in environments where it is more convenient
or efficient to use a block cipher in place of a hash function. Details of CMAC
using AES-128, called AES-CMAC, are provided in [RFC4493]. In essence, it works
by encrypting a message block using AES-128 with a key K, taking the result and
XORing it with the subsequent block, encrypting the result, and repeating the pro-
cess until no more message blocks remain, with the output value being the result
of the final encryption operation. If the final message block’s length is an even
multiple of the algorithm’s block size, one subkey, derived from K using a special
subkey-generating algorithm [IK03], is used in performing the final encryption.
If not, the final message block is first padded and a second subkey, also generated
from K, is used to perform the final encryption. GMAC uses a special mode of
AES called Galois/Counter Mode (GCM). It also uses a keyed hash function (called
GHASH, which is not a cryptographic hash function). We will see more about
cryptographic operating modes in the next section.

18.4.10 Cryptographic Suites and Cipher Suites

At this point we have seen mechanisms to ensure confidentiality, authenticity, and
integrity of information sent across an unsecured communication network. There
are other capabilities (e.g., nonrepudiation) that can also be achieved by selecting
the appropriate mathematical or cryptographic techniques. The combination of
techniques used in a particular system, especially those we see used with Internet
protocols, are called a cryptographic suite or sometimes a cipher suite, although the
first term is more accurate. A cryptographic suite defines not only an enciphering
(encryption) algorithm but may also include a particular MAC algorithm, PRF,
key agreement algorithm, signature algorithm, and associated key lengths and
parameters.

Many cryptographic suites are defined for use with the security protocols
we shall discuss. Usually, an encryption algorithm is specified by its name and
description, how many bits are used for its keys (often a multiple of 128 bits), along
with its operating mode. Encryption algorithms that have been standardized for
use with Internet protocols include AES, 3DES, NULL [RFC2410], and CAMEL-
LIA [RFC3713]. The NULL encryption algorithm does not modify the input and is
used in certain circumstances where confidentiality is not required.

ptg999

820 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

The operating mode of an encryption algorithm, especially a block cipher,
describes how to use the encryption function for a single block repeatedly (e.g.,
in a cascade) to encrypt or decrypt an entire message with a single key. Common
modes today include cipher block chaining (CBC) and counter (CTR) mode, although
many others have been defined. When performing encryption using CBC mode,
a cleartext block to be encrypted is first XORed with the previous ciphertext block
(the first block is XORed with a random initialization vector or IV). Encrypting in
CTR mode involves first creating a value combining a nonce (or IV) and a counter
that increments with each successive block to be encrypted. The combination is
then encrypted, the output is XORed with a cleartext block to produce a ciphertext
block, and the process repeats for successive blocks. In effect, this approach uses a
block cipher to produce a keystream. A keystream is a sequence of (random-appear-
ing) bits that are combined (e.g., XORed) with cleartext bits to produce a cipher-
text. Doing so essentially converts a block cipher into a stream cipher because no
explicit padding of the input is required.

CBC requires a serial process for encryption and a partly serial process for
decryption, whereas counter mode algorithms allow more efficient fully paral-
lel encryption and decryption implementations. Consequently, counter mode is
gaining popularity. In addition, variants of CTR mode (e.g., counter mode with
CBC-MAC (CCM), Galois Counter Mode, or GCM) can be used for authenticated
encryption [RFC4309], and possibly to authenticate (but not encrypt) additional
data (called authenticated encryption with associated data or AEAD) [RFC5116]. When
authenticated encryption algorithms are used, separate MACs are generally not
necessary. In the degenerate case of an AEAD algorithm operating on data that
does not require confidentiality, a form of MAC is effectively produced (e.g.,
GMAC). When an encryption algorithm is specified as part of a cryptographic
suite, its name usually includes the mode, and the key length is often implied. For
example, ENCR_AES_CTR refers to AES-128 used in CTR mode.

When a PRF is included in the definition of a cryptographic suite, it is usu-
ally based on a cryptographic hash algorithm family such as SHA-2 [RFC6234] or
a cryptographic MAC such as CMAC [RFC4434][RFC4615]. Constructions of this
type generally include the name of the function serving as the basis. For example,
the algorithm AES-CMAC-PRF-128 refers to a PRF constructed using a CMAC
based on AES-128. It is also written as PRF_AES128_CMAC. The algorithm PRF_
HMAC_SHA1 refers to a PRF based on HMAC-SHA1.

Key agreement parameters, when included with an Internet cryptographic
suite definition, refer to DH group definitions, as no other key agreement pro-
tocol is in widespread use. When DH key agreement is used in generating keys
for a particular encryption algorithm, care must be taken to ensure that the keys
produced are of sufficient length (strength) to avoid compromising the security
of the encryption algorithm. Consequently, more than 16 groups for use with DH
in different contexts have been standardized [RFC5114]. The first 5 have become
known as the “Oakley Groups” because they were specified by the Oakley pro-
tocol [RFC2409], an early component of IPsec that has since been deprecated. The

ptg999

Section 18.5 Certificates, Certificate Authorities (CAs), and PKIs 821

modular exponential or MODP groups are based on exponentiation and modular
arithmetic. The elliptic curve groups modulo a prime or ECP groups [RFC5903] are
based on curves over the Galois field GF(P) for a prime P, and the elliptic curve
groups modulo a power of two or EC2N are based on curves over the field GF(2N) for
some N.

A signature algorithm is sometimes included in the definition of a crypto-
graphic suite. It may be used for signing a variety of values including data, MACs,
and DH values. The most common is to use RSA to sign a hashed value for some
block of data, although the digital signature standard (written as DSS or DSA to indi-
cate the digital signature algorithm) [FIPS186-3] is also used in some circumstances.
With the advent of ECC, signatures based on elliptic curves (e.g., ECDSA [X9.62-
2005]) are also now supported in many systems.

The concept of a cryptographic suite evolved in the context of Internet secu-
rity protocols because of a need for modularity and decoupled evolution. As com-
putational power has improved, older cryptographic algorithms and smaller key
lengths have fallen victim to various forms of brute-force attacks. In some cases,
more sophisticated attacks have revealed flaws that necessitate the replacement of
the underlying mathematical and cryptographic methods, but the basic protocol
machinery is otherwise sound. As a result, the choice of a cryptographic suite can
now be made separately from the communication protocol details and depends
on factors such as convenience, performance, and security. Protocols tend to make
use of the components of a cryptographic suite in a standard way, so an appro-
priate cryptographic suite can be “snapped in” when deemed appropriate. It is
now common practice in protocol design to “outsource” the security processing
to a separately defined set of cryptographic suites that have been analyzed by a
large community with the necessary cryptographic and mathematical expertise.
Although the ability to “snap in” a new cipher suite is appealing, it can still take
years to standardize on acceptable suites and get them deployed. For interoper-
ability, each participant in a communication exchange must usually employ the
same suite. This can be a significant hurdle when cipher suites may be imple-
mented in a wide range of software and hardware systems.

18.5 Certificates, Certificate Authorities (CAs), and PKIs

The tools provided by cryptography and related mathematics, including digital
signatures and enciphering algorithms, provide a sound basis for constructing
secure systems, but a great deal of additional work is required to create an entire
system from these parts. Among the items of particular concern are the construc-
tion of secure protocols that use cryptographic methods in safe ways, and how
keys are created, exchanged, and revoked (called key management). Key manage-
ment remains one of the greatest challenges in deploying cryptographic systems
on a widespread basis across multiple administrative domains.

ptg999

822 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

One of the challenges with public key cryptosystems is to determine the cor-
rect public key for a principal or identity. In our running example, if Alice were to
send her public key to Bob, Mallory could modify it in transit to be her own public
key, and Bob (called the relying party here) might unknowingly be using Mallory’s
key, thinking it is Alice’s. This would allow Mallory to effectively masquerade as
Alice. To address this problem, a public key certificate is used to bind an identity to
a particular public key using a digital signature. At first glance, this presents a
certain “chicken-egg” problem: How can a public key become signed if the digital
signature itself requires a reliable public key? There are two ways this is accom-
plished today.

One model, called a web of trust, involves having a certificate (identity/key
binding) endorsed by a collection of existing users (called endorsers). An endorser
signs a certificate and distributes the signed certificate. The more endorsers for
a certificate over time, the more reliable it is likely to be. An entity checking a
certificate might require some number of endorsers or possibly some particular
endorsers to trust the certificate. The web of trust model is decentralized and
“grassroots” in nature, with no central authority. This has mixed consequences.
Having no central authority suggests that the scheme will not collapse because
of a single point of failure, but it also means that a new entrant may experience
some delay in getting its key endorsed to a degree sufficient to be trusted by a
significant number of users. Some groups hold “key signing parties” to hasten
this process. The web of trust model was first described as part of the Pretty Good
Privacy (PGP) encryption system for electronic mail [NAZ00], which has evolved
to support a standard encoding format called OpenPGP, defined by [RFC4880].

A more formal approach, which has the added benefit of being provably
secure under certain theoretical assumptions in exchange for more dependence
on a centralized authority, involves the use of a public key infrastructure (PKI). A
PKI is a service responsible for creating, revoking, distributing, and updating key
pairs and certificates. It operates with a collection of certificate authorities (CAs). A
CA is an entity and service set up to manage and attest to the bindings between
identities and their corresponding public keys. There are several hundred com-
mercial CAs. A CA usually employs a hierarchical signing scheme. This means that
a public key may be signed using a parent key which is in turn signed by a grand-
parent key, and so on. Ultimately a CA has one or more root certificates upon which
many subordinate certificates depend for trust. An entity that is authoritative for
certificates and keys (e.g., a CA) is called a trust anchor, although this term is also
used to describe the certificates or other cryptographic material associated with
such entities [RFC6024], which we discuss next.

18.5.1 Public Key Certificates, Certificate Authorities, and X.509

While several types of certificates have been used in the past, the one of most inter-
est to us is based on an Internet profile of the ITU-T X.509 standard [RFC5280]. In
addition, any particular certificate may be stored and exchanged in a number of

ptg999

Section 18.5 Certificates, Certificate Authorities (CAs), and PKIs 823

file or encoding formats. The most common ones include DER, PEM (a Base64
encoded version of DER), PKCS#7 (P7B), and PKCS#12 (PFX). We also saw the use
of PKCS#1 [RFC3447] in Chapter 8. Today, Internet PKI-related standards tend to
use the cryptographic message syntax [RFC5652], which is based on PKCS#7 version
1.5. In the following example, we use an X.509 certificate in PEM format, which is
the default format for many Internet applications and has the added advantage of
being easily displayed as ASCII.

Certificates are primarily used in identifying four types of entities on the
Internet: individuals, servers, software publishers, and CAs. One popular com-
mercial CA, Verisign, assigns a “class” to each certificate, in the range 1 through
5. Class 1 certificates are intended for individuals, class 2 for organizations, class
3 for servers and software signing, class 4 for online transactions between com-
panies, and class 5 for private organizations and governments. Certificate classes
are primarily a convenience for grouping and naming types of certificates and for
defining different security policies associated with them. Generally speaking, a
higher class number is supposed to indicate more rigorous controls on the process
required to validate an identity (called identity proofing) prior to issuing the associ-
ated certificate.

This still does not totally solve the chicken-egg PKI bootstrapping problem
mentioned before. In practice, systems requiring public key operations have root
certificates for popular CAs installed at configuration time (e.g., Microsoft Inter-
net Explorer, Mozilla’s Firefox, and Google’s Chrome are all capable of accessing
a preconfigured database of root certificates). To see how this works, we can use
a command that gives information about certificates. The openssl command,
available for most common platforms including Linux and Windows, allows us to
see the certificates for a Web site (some lines are wrapped for clarity):

Linux% CDIR=`openssl version –d | awk ’{print $2}’`
Linux% openssl s_client –CApath $CDIR \
 –connect www.digicert.com:443 > digicert.out 2>1
^C (to interrupt)

The first command determines where the local system stores its preconfig-
ured CA certificates. This is usually a directory that varies by system. In this case,
the name of the directory is stored in the shell variable CDIR. We next make a con-
nection to the HTTPS port (443) on the www.digicert.com server and redirect
the output to the digicert.out file. The openssl command2 takes care to print
the entity identified by each of the certificates, and at what depth they are in the
certificate hierarchy relative to the root (depth 0 is the server’s certificate, so the
depth numbers are counted bottom to top). It also checks the certificates against
the stored CA certificates to see if they verify properly. In this case, they do, as
indicated by “verify return” having value 0 (ok).

2. Note that a similar command unique to Windows called certutil is available with Windows
2003 Server and the Windows Server 2003 Administration Tools Pack.

www.digicert.com

ptg999

824 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Linux% grep ”return code” digicert.out
 Verify return code: 0 (ok)

The file digicert.out contains not only a trace of the connection to the
server but also a copy of the server’s certificate. To get the certificate into a more
usable form, we can extract the certificate data, convert it, and place the result into
a PEM-encoded certificate file:

Linux% openssl x509 –in digicert.out –out digicert.pem

Given the certificate in PEM format, we can now use a variety of openssl
functions to manipulate and inspect it. At the highest level, the certificate includes
some data to be signed (called the “TBSCertificate”) followed by a signature algo-
rithm identifier and signature value. To see the server certificate, we can use the
following command (some lines are wrapped or removed for clarity):

Linux% openssl x509 –in digicert.pem –text
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 02:c7:1f:e0:1d:70:41:4b:8b:a7:e2:9e:5e:58:42:b9
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com,
 CN=DigiCert High Assurance EV CA-1
 Validity
 Not Before: Oct 6 00:00:00 2010 GMT
 Not After : Oct 9 23:59:59 2012 GMT
 Subject: 2.5.4.15=V1.0, Clause 5.(b)/
 1.3.6.1.4.1.311.60.2.1.3=us/
 1.3.6.1.4.1.311.60.2.1.2=Utah/
 serialNumber=5299537-0142,
 C=US, ST=Utah, L=Lindon, O=DigiCert, Inc.,
 CN=www.digicert.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)
 Modulus (2048 bit):
 00:d1:76:0b:1e:4e:96:d2:08:c1:b8:75:bd:20:9c:
 66:7f:42:6b:54:8b:7f:7a:4a:f8:3e:df:70:68:1f:
 ...
 25:7b:40:e9:e3:cc:a2:0d:95:29:f4:08:ed:50:16:
 52:11:6f:de:a0:bb:34:bc:8b:b5:60:c1:ab:e4:78:
 75:9f
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Authority Key Identifier:
 keyid:4C:58:CB:25:F0:41:4F:52:F4:
 28:C8:81:43:9B:A6:A8:A0:E6:92:E5

ptg999

Section 18.5 Certificates, Certificate Authorities (CAs), and PKIs 825

 X509v3 Subject Key Identifier:
 4F:E0:97:FF:C1:AE:06:53:03:19:F7:
 0A:37:4B:9F:F0:13:E2:88:D8
 X509v3 Subject Alternative Name:
 DNS:www.digicert.com, DNS:content.digicert.com
 Authority Information Access:
 OCSP - URI:http://ocsp.digicert.com
 CA Issuers - URI:
 http://www.digicert.com/CACerts/
 DigiCertHighAssuranceEVCA-1.crt
 Netscape Cert Type:
 SSL Client, SSL Server
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 CRL Distribution Points:
 URI:http://crl3.digicert.com/ev2009a.crl
 URI:http://crl4.digicert.com/ev2009a.crl
 X509v3 Certificate Policies:
 Policy: 2.16.840.1.114412.2.1
 CPS: http://www.digicert.com/ssl-cps-repository.htm
 User Notice:
 Explicit Text:

 X509v3 Extended Key Usage:
 TLS Web Server Authentication,
 TLS Web Client Authentication
 Signature Algorithm: sha1WithRSAEncryption
 e1:e6:dd:0e:23:5f:08:9a:63:63:c7:a1:f3:95:f0:ca:7e:3c:
 57:81:2c:2a:19:2b:24:fe:e4:26:bd:91:27:7c:11:50:35:e7:
 ...
 fd:64:6f:97:8b:15:fb:d1:7a:f7:67:80:da:da:41:d8:e3:f9:
 e4:bd:92:97
-----BEGIN CERTIFICATE-----
MIIHLTCCBhWgAwIBAgIQAscf4B1wQUuLp+KeXlhCuTANBgkqhkiG9w0BAQUFADBp
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
...
8+qQ0wF/xY9rHM0+eIqy3da4AFhfW4sAmyafs7hcEMjUAkS6Yb0qIw8ud/1kb5eL
FfvRevdngNraQdjj+eS9kpc=
-----END CERTIFICATE-----

Looking at the command’s output, we see a decoded version of the certificate
followed by an ASCII (PEM) representation of the certificate (between the BEGIN
CERTIFICATE and END CERTIFICATE indicators). The decoded certificate shows
a data portion and a signature portion. Within the data portion is some metadata
including a Version field, indicating the particular X.509 certificate type (3, the
most recent, is encoded using hex value 0x02), a Serial Number of the particular cer-
tificate, a number assigned by the CA unique to each certificate, and a Validity field
that gives the time during which the certificate should be treated as legitimate,

ptg999

826 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

starting with the Not Before subfield and ending with the Not After subfield. The
certificate metadata also indicates which signature algorithm is used to sign the
data portion. In this case, it is signed by computing a hash using SHA-1 and sign-
ing the result using RSA. The signature itself appears at the end of the certificate.

The Issuer field indicates the distinguished name (jargon from the ITU-T X.500
standard) of the entity that issued the certificate and may have these special sub-
fields (based on X.501): C (country), L (locale or city), O (organization), OU (orga-
nizational unit), ST (state or province), CN (common name). Other subfields have
also been defined. In this case, we can see that an extended validation (EV) [CABF09]
CA certificate has been used to sign the server’s certificate.

EV certificates represent an industry response to certain phishing attacks
involving malicious Web sites that were issued certificates without rigorous iden-
tity proofing. Issuing of an EV certificate takes place only under an agreed-upon
set of stringent criteria, and a user visiting a Web site using EV certificates and a
modern browser typically sees a green title bar and CA information to indicate the
enhanced level of rigor. One of the requirements for EV certificates placed upon
each CA is to provide a certification practice statement (CPS), which outlines the
practices used in issuing certificates. Considerations for authors of CPSs (and cer-
tificate policies or CPs that apply on a per-certificate basis) are given in [RFC5280].
Note that although EV certificates may provide higher assurance (e.g., for some
Web sites), most users do not pay careful attention to the cues provided by Web
browsers that reveal this fact [BOPSW09].

The Subject field identifies the entity this certificate is about, and the owner
of the public key contained in the subsequent Subject Public Key Info field. In this
example, the Subject field is a somewhat complex structure like the Issuer field
and contains multiple object IDs (OIDs) [ITUOID]. Most are decoded with names
(e.g., O, C, ST, L, CN), but some are not because the particular version of openssl
that printed the output did not understand them. The OID 1.3.6.1.4.1.311.60.2.1.3
is also called jurisdictionOfIncorporationCountryName, and 1.3.6.1.4.1.311.60.2.1.2
is called jurisdictionOfIncorporationStateOrProvinceName, both with obvious
meanings. The OID 2.5.4.15 is businessCategory (see [CABF09] for details). Note
that the CN subfield tends to be an important one when identifying subjects and
issuers for certificates used on the Internet. For this certificate, it gives the cor-
rect matching name for the server (along with any names included in the Subject
Alternative Name (SAN) extension). Nonmatching names or URLs (e.g., https://
digicert.com instead of https://www.digicert.com) referring to the same
server, when accessed, result in an error. Note that CN is not really the field for
holding a DNS name; SANs are intended for this purpose.

When a certificate needs to be validated, a recursive process works up the
certificate hierarchy to a root CA certificate by matching the issuer distinguished
name in one certificate with the subject name in another. In this case, the certificate
was issued by DigiCert High Assurance EV CA-1 (the issuer’s CN subfield).
Assuming all certificates are current in their validity periods and are being used
in appropriate ways, some parent certificate (immediate parent, grandparent, etc.,

https://www.digicert.com
https://digicert.com
https://digicert.com

ptg999

Section 18.5 Certificates, Certificate Authorities (CAs), and PKIs 827

but usually a root CA certificate) to the Subject field of the certificate we are evalu-
ating must be trusted for validation to be successful.

The Subject Public Key Info field gives the algorithm and public key belonging
to the entity specified in the Subject field. In this case, the public key is an RSA
public key with a 2048-bit modulus and public exponent of 65537. The subject is
in possession of the matching RSA private key (modulus plus private exponent)
that is paired to the public key. If the private key is compromised, or if the public
key needs to be changed for other reasons, the public and private keys must be
regenerated and a new certificate issued. The old certificate is then revoked (see
Section 18.5.2).

Version 3 X.509 certificates may include zero or more extensions. Extensions
are either critical or noncritical, and some are required by the Internet profile in
[RFC5280]. If critical, an extension must be processed and found acceptable by
the relying party’s (CPS jargon) policy. Noncritical extensions are processed if
supported but do not otherwise cause errors. In the present example, there are
ten X.509v3 extensions. Although many extensions have been defined, those we
shall discuss tend to fall into two informal categories. The first category includes
information about the subject and how the certificate in question can be used.
The second category relates to items describing the issuer and may include key
identification and URIs indicating locations of additional information related to
the issuing CA that is not included elsewhere. The certificate in our example is an
end entity (not CA) certificate. CA certificates often have somewhat different exten-
sions or values for their extensions.

The Basic Constraints extension, a critical extension, indicates whether the cer-
tificate is a CA certificate. In this case it is not, so it cannot be used for signing
other certificates. A certificate indicating that it is a CA certificate may be used in
a certificate validation chain at a location other than a leaf. This is common for root
CA certificates or for other certificate-signing certificates (“intermediate” certifi-
cates, such as the DigiCert High Assurance EV CA-1 certificate referenced
in this example).

The Subject Key Identifier extension identifies the public key in the certificate.
It allows different keys owned by the same subject to be differentiated. The Key
Usage extension, a critical extension, determines the valid usage for the key. Pos-
sible usages include digital signature, nonrepudiation (content commitment), key
encipherment, data encipherment, key agreement, certificate signing, CRL signing
(see Section 18.5.2), encipher only, and decipher only. Because server certificates of
this kind are primarily used for identifying the two endpoints of a connection and
encrypting a session key (see Section 18.9), the possible usages may be somewhat
limited, as in this case. The Extended Key Usage extension, which may be critical or
noncritical, may provide further restrictions on the key use. Possible values of this
extension when used in the Internet profile include the following: TLS client and
server authentication, signing of downloadable code, e-mail protection (nonrepu-
diation and key agreement or encipherment), various IPsec operating modes (see
Section 18.8), and timestamping. The SAN extension allows a single certificate to be

ptg999

828 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

used for multiple purposes (e.g., for multiple Web sites with distinct DNS names).
This alleviates the need to have a separate certificate for each Web site, which can
significantly reduce cost and administrative burden. In this case, the certificate can
be used for either of the DNS names www.digicert.com or content.digicert.
com (but not digicert.com, as mentioned before). The Netscape Cert Type exten-
sion is now deprecated but was used to indicate key usage to Netscape software.

The remaining extensions in our example certificate relate to the manage-
ment and status of the certificate and its issuing CA. The CRL Distribution Points
(CDP) extension gives a list of URLs for finding the CA’s certificate revocation list
(CRL), a list of revoked certificates used to determine if a certificate in a valida-
tion chain has been revoked (see Section 18.5.2). The Certificate Policies (CP) exten-
sion includes certificate policies applicable to the certificate [RFC5280]. In this
example, the CP extension contains a policy with two qualifiers. The Policy value of
2.16.840.1.114412.2.1 indicates that the certificate complies with an EV policy. The
CPS qualifier gives a pointer to the URI where the particular applicable CPS for
the policy may be found. The User Notice qualifier may contain text intended to be
displayed to a relying party. In this case it contains the following string:

Any use of this Certificate constitutes acceptance of the DigiCert EV CPS and the
Relying Party Agreement which limit liability and are incorporated herein by
reference.

The Authority Key Identifier identifies the public key corresponding to the pri-
vate key used to sign the certificate. It is useful when an issuer has multiple pri-
vate keys used for generating signatures. The Authority Information Access (AIA)
extension indicates where information may be retrieved from the CA. In this case,
it indicates a URI used to determine if the certificate has been revoked using an
online query protocol (see Section 18.5.2). It also indicates the list of CA issuers,
which includes a URL containing the CA certificate responsible for signing the
example server certificate.

Following the extensions, the certificate contains the signature portion. It con-
tains the identification of the signature algorithm (SHA-1 with RSA here), which
must match the Signature Algorithm field we encountered earlier. In this case, the
signature itself is a 256-byte value, corresponding to the 2048-bit modulus used
for this use of RSA.

18.5.2 Validating and Revoking Certificates

We have already encountered the idea that a certificate may have to be revoked
and possibly replaced with a freshly issued certificate. Within the IETF, [RFC5280]
defines the use of X.509 version 3 certificates with X.509 version 2 CRLs for the
Internet. This brings up the question of how a certificate is revoked and how this
fact is made known to relying parties that need to know that the certificates on
which they depend are no longer trustworthy.

www.digicert.com

ptg999

Section 18.5 Certificates, Certificate Authorities (CAs), and PKIs 829

To validate a certificate, a validation or certification path must be established that
includes a set of validated certificates, usually up to some trust anchor (e.g., root
certificate) that is already known to the relying party. One of the key steps involves
determining if one or more of the certificates in a chain have been revoked. If so,
the path validation fails. We saw some of this in Section 8.5.5.

There are several reasons why a certificate may need to be revoked, such as
when a certificate’s subject (or issuer) changes affiliations or name. When a certifi-
cate is revoked, it may no longer be used. The challenge is to ensure that entities
that wish to use a certificate become aware if it has been revoked. In the Internet,
there are two primary ways this is accomplished: CRLs and the Online Certifi-
cate Status Protocol (OCSP) [RFC2560]. When the CRL Distribution Point extension
includes an HTTP or FTP URI scheme, as it does in the preceding example, the
complete URL gives the name of a file encoded in DER format containing an X.509
CRL. In our example, we can retrieve the CRL corresponding to the certificate
using the following command:

Linux% wget http://crl3.digicert.com/ev2009a.crl

and print it out as follows:

Linux% openssl crl –inform der –in ev2009a.crl –text
Certificate Revocation List (CRL):
 Version 2 (0x1)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: /C=US/O=DigiCert Inc/OU=www.digicert.com/
 CN=DigiCert High Assurance EV CA-1
 Last Update: Jan 2 06:20:13 2011 GMT
 Next Update: Jan 9 06:20:00 2011 GMT
 CRL extensions:
 X509v3 Authority Key Identifier:
 keyid:4C:58:CB:25:F0:41:4F:52:F4:
 28:C8:81:43:9B:A6:A8:A0:E6:92:E5

 X509v3 CRL Number:
 732Revoked Certificates:
 Serial Number: 0119BF8D1A24460EBE59355A11AD7B1C
 Revocation Date: Jul 29 19:25:40 2009 GMT
 CRL entry extensions:
 X509v3 CRL Reason Code:
 Unspecified
 ...
 Serial Number: 0D2ED685A9A828A21067D1826C5015A9
 Revocation Date: Dec 17 17:18:40 2010 GMT
 CRL entry extensions:
 X509v3 CRL Reason Code:
 Superseded
 Signature Algorithm: sha1WithRSAEncryption
 d4:a3:50:07:1b:b8:17:ff:e2:83:3d:b9:6a:3e:22:8d:e4:22:
 40:12:0b:cf:26:d9:16:99:b1:96:5a:86:ea:3e:8a:3f:f9:39:
 ...

ptg999

830 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

 c7:e0:92:f6:66:72:7e:a4:f0:fd:16:d4:ec:2f:10:35:ea:2d:
 45:06:19:4b
-----BEGIN X509 CRL-----
MIIHeDCCBmACAQEwDQYJKoZIhvcNAQEFBQAwaTELMAkGA1UEBhMCVVMxFTATBgNV
BAoTDERpZ2lDZXJ0IEluYzEZMBcGA1UECxMQd3d3LmRpZ2ljZXJ0LmNvbTEoMCYG
...
hzcRf+ITVZ76LtHdzWDDPFujPyqPzMnkbGqGVsve9Gd4NcQiozOyoCDvaLezgO69
EYmMayk9zXFSaBVdEZ5Tgekrj0fFnsfgkvZmcn6k8P0W1OwvEDXqLUUGGUs=
-----END X509 CRL-----

Here we can see the format of an X.509 v2 CRL. The format is very similar
to that of a certificate, and the entire message is signed by a CA as certificates
are. This is useful because CRLs can be distributed like certificates: using oth-
erwise untrusted communication channels and servers. In comparison with a
certificate, the validity period is replaced by a list of the previous and next CRL
updates. There is no subject and no public key but instead a list of serial numbers
for revoked certificates plus the time and reason for revocation. There may also be
CRL extensions that are unique to CRLs. In this example, the Authority Key Identi-
fier extension gives a number identifying the key used by the CA in signing the
CRL. The CRL Number extension gives the sequence number of the CRL. Other
values are given in [RFC5280].

The other primary method for determining if a certificate has been revoked
is OCSP. OCSP is an application-level request/response protocol usually oper-
ated over HTTP (i.e., using the HTTP protocol with TCP/IP on TCP port 80). An
OCSP request includes information identifying a particular certificate, plus some
optional extensions. A response indicates whether the certificate is not revoked,
unknown, or revoked. An error may be returned if the request cannot be parsed
or otherwise acted upon. The key used for signing the OCSP response need not
necessarily match the key used to sign the original certificate. This is possible if
the issuer included a Key Usage extension indicating an alternate OCSP provider.

To see an OCSP request/response exchange, we can execute the following
commands once we have obtained the appropriate Class 1 certificate in the file
DigiCertHighAssuranceEVCA-1.pem (not shown). In the following example,
some lines are wrapped for clarity:

Linux% CERT=DigiCertHighAssuranceEVCA-1.pem
Linux% openssl ocsp –issuer $CERT –cert digicert.pem \
-url http://ocsp.digicert.com –VAfile $CERT –no_nonce –text
OCSP Request Data:
 Version: 1 (0x0)
 Requestor List:
 Certificate ID:
 Hash Algorithm: sha1
 Issuer Name Hash: B8A299F09D061DD5C1588F76CC89FF57092B94DD
 Issuer Key Hash: 4C58CB25F0414F52F428C881439BA6A8A0E692E5
 Serial Number: 02C71FE01D70414B8BA7E29E5E5842B9

ptg999

Section 18.5 Certificates, Certificate Authorities (CAs), and PKIs 831

OCSP Response Data:
 OCSP Response Status: successful (0x0)
 Response Type: Basic OCSP Response
 Version: 1 (0x0)
 Responder Id: 4C58CB25F0414F52F428C881439BA6A8A0E692E5
 Produced At: Jan 2 08:03:24 2011 GMT
 Responses:
 Certificate ID:
 Hash Algorithm: sha1
 Issuer Name Hash: B8A299F09D061DD5C1588F76CC89FF57092B94DD
 Issuer Key Hash: 4C58CB25F0414F52F428C881439BA6A8A0E692E5
 Serial Number: 02C71FE01D70414B8BA7E29E5E5842B9
 Cert Status: good
 This Update: Jan 2 08:03:24 2011 GMT
 Next Update: Jan 9 08:18:24 2011 GMT

Response verify OK
digicert.pem: good
 This Update: Jan 2 08:03:24 2011 GMT
 Next Update: Jan 9 08:18:24 2011 GMT

As we can see, the OCSP transaction has indicated that the certificate is good.
The request included the identification of a hash algorithm (SHA-1), a hash of the
issuer name, a number identifying the issuer’s key (the same as the Key ID exten-
sion in the certificate), plus the certificate’s serial number. The responder, identi-
fied by the responder ID, identifies itself and signs the response. The response
includes the hashes and numbers from the request, as well as the certificate status
of “good” (i.e., not revoked). The OCSP protocol alleviates the client from having
to download the latest CRL to check but still requires the client to form and verify
the entire certification path. In some cases, this can be a considerable burden for
the client.

To help address the burden of certificate chain formation and validation
imposed on client systems, the Server-Based Certificate Validation Protocol (SCVP)
has been defined in [RFC5055] but is not widely used. With SCVP, formulation of
a certification path (called delegated path discovery or DPD) and, optionally, valida-
tion (called delegated path validation or DPV) of it can be offloaded to a server. Vali-
dation is offloaded only to a trusted server. Not only does this provide a method
to reduce the load on clients, but it also offers a method for helping to ensure that
a common validation policy is used consistently throughout an enterprise.

18.5.3 Attribute Certificates

In addition to public key certificates (PKCs) used to bind names to public keys,
X.509 defines another type of certificate called an attribute certificate (AC). ACs are
similar in structure to PKCs but lack a public key. They are used to indicate other
information, including authorization information that may have a lifetime differ-
ent from (e.g., shorter than) a corresponding PKC [RFC5755]. ACs contain other
structures similar to PKCs, including extensions and AC policies.

ptg999

832 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

18.6 TCP/IP Security Protocols and Layering

We have seen that cryptography provides a basis for building communication sys-
tems that have a number of desirable security properties. Protocols involving cryp-
tography can (and do) exist at a number of different layers in the protocol stack.
Consistent with our understanding of the OSI reference model we discussed in
Chapter 1, we now see that encryption, and thus various forms of strong security,
can be supported at essentially every layer.

As we might expect, security services at the link layer protect information
only as it flows across a single communication hop, security at the network layer
protects information flowing between hosts, security at the transport layer pro-
tects process-to-process communication, and security at the application layer pro-
tects information manipulated by applications. It is also possible to protect the
data manipulated by applications independently of the communication layers
(e.g., files can be encrypted and sent as e-mail attachments). Figure 18-4 illustrates
the most common security protocols used in conjunction with TCP/IP.

Figure 18-4 Security protocols exist at essentially every OSI stack layer, plus some “in-between” lay-
ers. Selecting the appropriate protocols for the threats to be addressed requires atten-
tion to detail.

In Figure 18-4, we can see that there are many security protocols, and the ones
we care about at any given time depend on what scope of functionality we require.
We shall discuss most of the protocols in Figure 18-4 in what follows, with par-
ticular emphasis on IPsec (machine-to-machine security at layer 3), TLS (Trans-
port Layer Security designed for supporting applications), and DNSSEC. TLS and
IPsec are the most prevalent, as TLS is used with all secure Web communications
(HTTPS) and IPsec is used with most network-layer security, including VPNs.

ptg999

Section 18.7 Network Access Control: 802.1X, 802.1AE, EAP, and PANA 833

DNSSEC, which secures the DNS (see Chapter 11), is being introduced slowly, but
the perceived demand is significant. Security of the DNS will help to limit DNS
hijacking attacks, in which client systems are redirected to bogus DNS servers that
supply incorrect information. Two of the fairly popular protocols we do not dis-
cuss in detail are Kerberos [RFC4120]—a trusted third-party authentication sys-
tem now used in Windows enterprise environments—and SSH [RFC4251]—the
secure shell remote login and tunneling protocol used most often with UNIX-like
systems. These protocols tend to be used among computers running particular
operating systems, although this is by no means required. We have elected to use
the detailed protocol descriptions in this chapter to cover the protocols that we
believe will apply to an even broader Internet audience over time.

Although virtually every modern networking technology has some associ-
ated security approach, we shall move up the layers in the OSI stack from the bot-
tom, starting with the link layer. We have already seen (see Chapter 3) that some of
the link-layer protocols have their own security mechanisms (e.g., 802.11-2007 has
WPA2 included in the specification, based on the earlier 802.11i specification). We
shall be especially concerned with protocols that apply to more than one specific
type of link layer network.

18.7 Network Access Control: 802.1X, 802.1AE, EAP, and PANA

Network Access Control (NAC) refers to methods used to authorize or deny network
communications to particular systems or users. Defined by the IEEE, the 802.1X
Port-Based Network Access Control (PNAC) standard is commonly used with TCP/
IP networks to support LAN security in enterprises, for both wired and wireless
networks. The purpose of PNAC is to provide access to a network (e.g., intranet or
the Internet) only if a system and/or its user has been authenticated based on the
system’s network attachment point. Used in conjunction with the IETF standard
Extensible Authentication Protocol (EAP) [RFC3748], 802.1X is sometimes called
EAP over LAN (EAPoL), although the 802.1X standard covers more than just the
EAPoL packet format.

The most common variant of 802.1X is based on the standard as published in
2004, however, [802.1X-2010] includes compatibility with 802.1AE (IEEE standard
LAN encryption called MACSec) and 802.1AR (X.509 certificates for secure device
identities). It also includes a somewhat complex MACSec key agreement protocol
called MKA that we do not discuss further. In 802.1X, a system being authenti-
cated implements a function known as a supplicant. The supplicant interacts with
an authenticator and a backend authentication server to perform authentication and
gain network access. VLANs (see Chapter 3) are often used in helping to enforce
the access control decisions made by 802.1X.

EAP can be used with multiple link-layer technologies and supports multiple
methods for implementing authentication, authorization, and accounting (AAA). EAP
does not perform encryption itself, so it must be used in conjunction with some
other cryptographically strong protocol to be secure. When used with link-layer

ptg999

834 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

encryption such as WPA2 on wireless networks or 802.1AE on wired networks,
802.1X is relatively secure. EAP uses the same concepts of supplicant and authen-
tication server as does 802.1X, but with different terminology (EAP uses the terms
peer, authenticator, and AAA server although even in EAP-related literature backend
authentication server is sometimes used). An example setup is shown in Figure 18-5.

Figure 18-5 EAP, supported by 802.11i and 802.1X, allows for a peer (supplicant) to be authenticated by an
authenticator that is separate from an AAA server. The authenticator can operate in “pass-
through” mode in which it does little more than forward EAP packets. It can also participate
more directly in the EAP protocol. The pass-through mode allows authenticators to avoid having
to implement a large number of authentication methods.

In this figure we see a hypothetical enterprise network including wired and
wireless peers, a protected network that includes the AAA server and another
intranet server on a particular VLAN, and an unauthenticated or “remediation”
VLAN. The authenticator’s job is to interact with unauthenticated peers and the
AAA server (via AAA protocols such as RADIUS [RFC2865][RFC3162] or Diameter
[RFC3588]) to determine if each peer should be granted access to the protected net-
work. If so, this can be accomplished in several ways. The most common approach is
to make a VLAN mapping adjustment so that the authenticated peer is assigned to
the protected VLAN or to another VLAN that provides connectivity to the protected
VLAN using a router (layer 3). An authenticator may use VLAN trunking (IEEE
802.1AX link aggregation; see Chapter 3) and may be capable of assigning VLAN
tags based on port number or forwarding VLAN tagged frames sent by the peer.

Note

In some EAP deployments, the authenticator is used without an AAA server, and
the authenticator must evaluate the peer’s credentials on its own. When refer-
ring to the location where authentication is determined, the term EAP server is
used in the EAP literature. Generally, the EAP server is the AAA server (backend
authentication server) when the authenticator acts in pass-through mode and is
the authenticator otherwise.

ptg999

Section 18.7 Network Access Control: 802.1X, 802.1AE, EAP, and PANA 835

In 802.1X, the protocol between the supplicant and the authenticator is divided
into a lower and upper sublayer. The lower layer is called the port access control
protocol (PACP). The higher layer is ordinarily some variant of EAP. For use with
802.1AR, the variant is called EAP-TLS [RFC5216]. PACP uses EAPoL frames for
communication, even if EAP authentication is not used (e.g., when MKA is used).
EAPoL frames use an Ethertype field value of 0x888E (see Chapter 3).

Moving to IETF standards, EAP is not a single protocol but rather a frame-
work for achieving authentication using a combination of other protocols, some of
which we discuss throughout the chapter, including TLS and IKEv2. The baseline
EAP packet format is shown in Figure 18-6.

Figure 18-6 The EAP header includes a Code field for demultiplexing packet types (Request,
Response, Success, Failure, Initiate, Finish). The Identifier helps match requests to
responses. For request and response messages, the first data byte is a Type field.

The EAP packet format is simple. In Figure 18-6, the Code field contains one
of six EAP packet types: Request (1), Response (2), Success (3), Failure (4), Initiate
(5), and Finish (6). The last two are defined by the EAP Re-authentication Protocol
(see Section 18.7.2); the official field values are maintained by the IANA [IEAP].
The Identifier field contains a number chosen by the sender and is used to match
requests with replies. The Length field gives the number of bytes in the EAP mes-
sage, including the Code, Identifier, and Length fields. Requests and responses are
used to perform identification and authentication with the peer, ultimately result-
ing in a Success or Failure indication. The protocol is capable of carrying an infor-
mative message so that human users can be given some instructions about what
to do if their system is unable to authenticate. It is a reliable protocol that runs on
a lower-layer protocol that is assumed to preserve order but is not assumed to be
reliable. EAP itself does not implement other features such as congestion or flow
control but may use protocols that do.

The typical EAP exchange starts with the authenticator sending a Request
message to the peer. The peer responds with a Response message. Both messages
use the same format, as shown in Figure 18-6. An overview of the exchange is
shown in Figure 18-7.

The primary purpose of the Request and Response messages is to exchange
whatever information is required to allow an authentication method to succeed.
Numerous methods are defined within [RFC3748], and several are defined in
other standards. The particular method being used is encoded in the Type field of

ptg999

836 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Request and Response messages using values of 4 or greater. Other special Type
field values include Identity (1), Notification (2), Nak (“Legacy Nak”) (3), and an
Expanded Type extension (254). The Identity type is used by an authenticator
to ask the peer its identifying information and provide a method for the peer to
respond. The Notification type is used to display a message or notification to a
user or log file (not for errors, but for notifications). When a peer does not support
a method requested by the authenticator, it replies with a negative ACK (either a
Legacy Nak or an Extended Nak). Extended Naks include a vector of implemented
authentication methods not present in Legacy Naks.

EAP is a layered architecture that supports its own multiplexing and demulti-
plexing. Conceptually, it consists of four layers: the lower layer (for which there are
multiple protocols), EAP layer, EAP peer/authenticator layer, and EAP methods

Figure 18-7 The baseline EAP messages carry authentication material between the peer and the
authenticator. In many deployments, the authenticator is a relatively simple device that
acts in a “pass-through” mode. In such cases, most of the protocol processing takes
place on the peer and AAA server. IETF standard AAA-specific protocols such as
RADIUS or Diameter may be used to encapsulate EAP messages carried between the
AAA server and authenticator.

ptg999

Section 18.7 Network Access Control: 802.1X, 802.1AE, EAP, and PANA 837

layer (for which there are many methods). The lower layer is responsible for trans-
porting EAP frames in order. Perhaps ironically, some of the protocols used to
transport EAP are actually higher-layer protocols, many of which we have dis-
cussed already. Examples of EAP “lower-layer” protocols include 802.1X, 802.11
(802.11i) (see Chapter 3), UDP with L2TP (see Chapter 3), UDP with IKEv2 (see
Section 18.8.1), and TCP (see Chapters 12–17). Figure 18-8 shows how the layers are
implemented in conjunction with a pass-through authenticator. A pass-through
server would be the opposite but is not supported by RADIUS or Diameter.

Figure 18.8 The EAP stack and implementation model. In the pass-through mode, the peer and
AAA server are responsible for implementing the EAP authentication methods. The
authenticator need only implement EAP message processing, the authenticator process-
ing, and enough of an AAA protocol (e.g., RADIUS, Diameter) to exchange information
with the AAA server.

In the “EAP stack” depicted in Figure 18-8, the EAP layer implements reliabil-
ity and duplicate elimination. It also performs demultiplexing based on the code
value in EAP packets. The peer/authenticator layer is responsible for implementing
the peer and/or authenticator protocol messages, based on demultiplexing of the
Code field. The EAP methods layer consists of all the specific methods to be used for
authentication, including any required protocol operations to handle large mes-
sages. This is necessary because the rest of the EAP protocol does not implement
fragmentation and some methods may require large messages (e.g., containing
certificates or certificate chains).

18.7.1 EAP Methods and Key Derivation

Given its architecture, many EAP authentication and encapsulation methods are
available for use (more than 50). Some are specified by IETF standards, and others
have evolved separately (e.g., from Cisco or Microsoft). Some of the more common

ptg999

838 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

methods include TTLS [RFC5281], TLS [RFC5216], FAST [RFC4851], LEAP (Cisco
proprietary), PEAP (EAP over TLS, Cisco proprietary), IKEv2 (experimental)
[RFC5106], and MD5. Of these, only MD5 is specified in [RFC3748], but it is no
longer recommended for use. Unfortunately, the complexity does not end when
specifying one of these methods alone. Within each method there are sometimes
different options for cryptographic suites or identity verification. With PEAP, for
example, some versions of Microsoft Windows support MSCHAPv2 and TLS.

The reasons for having so many options are partly historical. As security and
operational experience have evolved over time, some methods were found to be
too insecure or insufficiently flexible. Some authentication methods require an
operating PKI that can provide client certificates (e.g., EAP-TLS), while others (e.g.,
PEAP, TTLS) do not require such infrastructure. Older protocols (e.g., LEAP) were
designed at a time when other standards such as 802.11 (incorporating 802.11i)
were not yet mature. Consequently, depending on the particular environment,
various combinations of smart cards or tokens, passwords, or certificates may be
required to use EAP.

The purpose of the EAP methods is to establish authentication, and possibly
authorization for network access. In some cases (e.g., EAP-TLS), the methods pro-
vide bidirectional authentication, whereby each end acts as both an authenticator
and a peer. The type of authentication provided by a method is often a conse-
quence of the cryptographic primitives it employs.

Some methods provide more than authentication. Those that provide key deri-
vation are able to agree upon and export keys in a key hierarchy [RFC5247] and
must provide for mutual authentication between the EAP peer and EAP server.
The master session key (MSK, also called AAA-key) is used in deriving other keys
using a KDF, either at an EAP peer or authenticator. MSKs are at least 64 bytes in
length and are typically used to derive transient session keys (TSKs) that are used to
enforce access control between a peer and an authenticator, often at lower layers.
Extended MSKs (EMSKs) are also provided along with MSKs but are made avail-
able only to the EAP server or peer, not to pass-through authenticators, and are
used in deriving root keys [RFC5295]. Root keys are keys associated with particular
usages or domains. A usage-specific root key (USRK) is a key derived from an EMSK
in the context with a particular usage. A domain-specific root key (DSRK) is a key
derived from an EMSK for use in a particular domain (i.e., collection of systems).
Child keys derived from a DSRK are known as domain-specific usage-specific root
keys (DSUSRKs).

During an EAP exchange, multiple peer and server identities may be used,
and a session identifier is allocated. On completion of an EAP-based authentica-
tion where key derivation is supported, the MSK, EMSK, peer identifier(s), server
identifier(s), and a session ID are made available to lower layers. (A now-depre-
cated initialization vector might also be provided.) Keys generally have an asso-
ciated lifetime (8 hours is recommended), after which EAP re-authentication is
required. For an in-depth discussion of EAP’s key management framework and an
accompanying detailed security analysis, please see [RFC5247].

ptg999

Section 18.7 Network Access Control: 802.1X, 802.1AE, EAP, and PANA 839

18.7.2 The EAP Re-authentication Protocol (ERP)

In cases where EAP authentication has completed successfully, it is often desirable
to reduce latency if a subsequent authentication exchange is required (e.g., a mobile
node moves from one access point to another). The EAP Re-authentication Protocol
(ERP) [RFC5296] provides the ability to do this independent of any particular EAP
method. EAP peers and servers that support ERP are called ER peers and servers,
respectively. ERP uses a re-authentication root key (rRK) derived from a DSRK (or
the EMSK, but [RFC5295] suggests avoiding this) along with a re-authentication
integrity key (rIK) derived from the rRK used to prove knowledge of the rRK.

ERP operates in a single round-trip time, which is consistent with its goal
of reducing re-authentication latency. ERP begins with a full conventional EAP
exchange, assumed to be in the “home” domain. The MSK generated is distrib-
uted to the authenticator and peer as usual. However, the rIK and rRK values are
also determined at this time and shared only between the peer and EAP server.
These values can be used in the home domain, along with rMSKs generated for
each authenticator. When the ER peer moves to a different domain, different val-
ues (DS-rIK and DS-rRK, which are DSUSRKs) are used. The domain of the ER
server is contained in a TLV area in ERP messages, allowing peers to determine
the domain of the server with which they are communicating. Details of the pro-
tocol are given in [RFC5296].

18.7.3 Protocol for Carrying Authentication for Network Access (PANA)

While combinations of EAP, 802.1X, and PPP have all been used to support authen-
tication of the client (and network, in some cases), they are not entirely link-inde-
pendent. EAP tends to be implemented for particular links, 802.1X applies to IEEE
802 networks, and PPP uses a point-to-point network model. To address this con-
cern, the Protocol for Carrying Authentication for Network Access (PANA) has been
defined in [RFC5191], [RFC5193], and [RFC6345] based on requirements set out in
[RFC4058] and [RFC4016]. It acts as an EAP lower layer, meaning it acts as a “car-
rier” for EAP information. It uses UDP/IP (port 716) and is therefore applicable to
more than a single type of link, and it is not limited to a point-to-point network
model. In effect, PANA allows EAP authentication methods to be used on any
link-layer technology for determining network access.

The PANA framework includes three main functional entities: the PANA Cli-
ent (PaC), PANA Authentication Agent (PAA), and the PANA Relay Element (PRE).
Normal usage also involves an Authentication Server (AS) and Enforcement Point
(EP). The AS may be a conventional AAA server accessed using access protocols
such as RADIUS or Diameter. The PAA is responsible for conveying authentica-
tion material from a PaC to the AS, and for configuration of the EP when network
access is approved or revoked. Some of these entities may be colocated. The PaC
and associated EAP peer are always colocated, as are the EAP authenticator and
PAA. A PRE can be used to relay communications between a PaC and PAA when
direct communication is not otherwise possible.

ptg999

840 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

The PANA protocol consists of a set of request/response messages including
an extensible set of attribute-value pairs managed by the IANA [IPANA]. The pri-
mary payloads are EAP messages, sent in UDP/IP datagrams as part of a PANA
session. There are four phases in a PANA session: authentication/authorization,
access, re-authentication, and termination. The re-authentication phase is really a
portion of the access phase wherein the session lifetime is extended by re-execut-
ing EAP-based authentication. The termination phase is entered either explicitly
or as the result of the session timing out (either because of lifetime exhaustion
or failure of liveness detection). PANA sessions are identified by a 32-bit session
identifier included in each PANA message.

PANA also provides a form of reliable transport protocol. Each message
contains a 32-bit sequence number. The sender keeps track of the next sequence
number to send, and receivers keep track of the next expected sequence number.
Answers contain the same sequence number as the corresponding request. Ini-
tial sequence numbers are randomly selected by the sender of the message (i.e.,
PaC or PAA). PANA also implements time-based retransmission. PANA is a weak
transport protocol—it operates in a stop-and-wait fashion, does not use an adap-
tive retransmission timer, and cannot perform repacketization. It does, however,
perform exponential backoff on its retransmission timer when faced with multiple
packet losses.

18.8 Layer 3 IP Security (IPsec)

IPsec is an architecture and collection of standards that provide data source
authentication, integrity, confidentiality, and access control at the network layer
for IPv4 and IPv6 [RFC4301], including Mobile IPv6 [RFC4877]. It also provides
a way to exchange cryptographic keys between two communicating parties, a
recommended set of cryptographic suites, and a method for signaling the use of
compression. Each communicating party may be an individual host or a security
gateway (SG) that provides a boundary between a protected and an unprotected
portion of a network. Thus, IPsec can be used in applications such as remote
access to a corporate LAN (forming a VPN), to interconnect different portions of
an enterprise securely across the open Internet, or to secure the communications
of hosts or routers acting as hosts when exchanging routing information. When
choosing a security approach for newly developed protocols, IPsec is sometimes
selected [RFC5406].

Figure 18-9 indicates the types of deployments that can be accomplished using
IPsec. A host implementation of IPsec may be integrated within the IP stack itself
or may act as a driver sitting “below” the rest of the network stack (called the
“Bump in the Stack” or BITS implementation). Alternatively, it may reside inside
an inline SG, which is sometimes called the “Bump in the Wire” or BITW imple-
mentation approach. For BITW implementations, both host and SG functionality
is generally required, as the device typically needs to be managed remotely. This

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 841

is similar to the reasons we see applications and transport protocols implemented
in routers that would otherwise be pure layer 3 devices (see Chapter 1). IPsec can
support multicast communications, but we focus first on the simpler and more
common unicast case.

Figure 18-9 IPsec is applicable to securing host-to-host communications, host-to-gateway communications,
and gateway-to-gateway communications. It also supports multicast distribution and mobility.

The operation of IPsec can be divided into the establishment phase, where
key material is exchanged and a security association (SA) is built, followed by the
data exchange phase, where different types of encapsulation schemes, called the
Authentication Header (AH) and Encapsulating Security Payload (ESP), may be used
in different modes such as tunnel mode or transport mode to protect the flow of IP
datagrams. Each of these IPsec components uses a cryptographic suite, and IPsec
is designed to support a wide range of suites. A complete IPsec implementation
includes the SA establishment protocol, AH (optionally), ESP, and a collection of
appropriate cryptographic suites, configuration information, and setup tools. An
overview that summarizes the evolution and current specifications for all IPsec
components is given in [RFC6071].

Although an IPsec implementation may be present in a system (it is required
to be present for IPv6 implementations), IPsec operates only selectively on certain
packets based on policies set by administrators. The policies are contained in a
security policy database (SPD), logically resident with each IPsec implementation.
IPsec also requires two additional databases called the security association database
(SAD) and peer authorization database (PAD). These are consulted when determin-
ing how packets are to be handled, as illustrated in Figure 18-10.

Taking the (somewhat simplified) SG of Figure 18-10 as an example, particular
fields of an arriving packet (traffic selectors) are inspected to determine whether

ptg999

842 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

the arriving packet is using IPsec and has a preexisting SA. If so, processing is
relatively simple and usually involves applying either ESP or AH, as described
in Sections 18.8.2 and 18.8.3. If not, the SPD is used to determine what type of SA
should be established, if any, and the SAD is populated to contain information on
the new SA. If a new SA needs to be established, the simplest way is using some
automated key establishment protocol. Although IPsec mandates the support of
manual keying, where keys are simply typed in by hand, this method does not
scale well and is error-prone. Therefore, it is expected that normally a key estab-
lishment protocol is used in establishing SAs. For IPsec, the most recent version of
this protocol is what we explore next.

18.8.1 Internet Key Exchange (IKEv2) Protocol

The first step in using IPsec is to establish an SA. An SA is a simplex (one-direction)
authenticated association established between two communicating parties, or
between a sender and multiple receivers if IPsec is supporting multicast. Most
frequently, communication is bidirectional between two parties, so a pair of SAs is
required to use IPsec effectively. A special protocol called the Internet Key Exchange

Figure 18-10 In a security gateway, IPsec packet processing takes place at layer 3 in a logical entity separating
a protected and an unprotected network. The security policy database dictates the disposition of
packets: bypass, discard, or protect. Protection generally involves applying or validating integ-
rity protection or encryption. An administrator configures the SPD to achieve desired security
goals.

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 843

(IKE) is used to accomplish this task automatically. The current version of the pro-
tocol is called IKEv2 [RFC5996]. We will refer to it simply as IKE. Note that IKE is
one of the more complicated pieces of IPsec, so once we understand it, the rest is
comparatively straightforward. Note, however, that we will discuss only the major
points of how IKE operates as a protocol. For particular details, such as the myriad
cryptographic suites and configuration parameters supported, the reader should
consult [RFC5996] directly.

To establish an SA, IKE begins with a simple request/response message pair
that includes a request to establish the following parameters: an encryption algo-
rithm, an integrity protection algorithm, a Diffie-Hellman group, and a PRF that
gives a random-appearing output given any input bit string. In IKE, a PRF is used
for generation of session keys. IKE first establishes an SA for itself (called an IKE_
SA) and can subsequently establish SAs for either AH or ESP (called CHILD_SAs).
IKE is also capable of negotiating the use of IP Payload Compression (IPComp)
[RFC3173] with each CHILD_SA, because applying compression at other layers
after performing encryption is ineffective. We discuss the details of AH and ESP
in Sections 18.8.2 and 18.8.3.

IKE operates using pairs of messages called exchanges that are sent between
an initiator and a responder. The first two exchanges, called IKE_SA_INIT and
IKE_AUTH, establish an IKE_SA and a single CHILD_SA. Subsequently, CREATE_
CHILD_SA exchanges, used to establish additional CHILD_SAs, and INFORMA-
TIONAL exchanges, used to initiate changes in or gather status information about
an SA, may occur. In most cases, a single IKE_SA_INIT and IKE_AUTH exchange
(a total of four messages) is sufficient. Messages used in an exchange contain pay-
loads identified by type numbers that identify the type of information carried in
each payload. Multiple payloads per message are common, and some long mes-
sages may require IP fragmentation.

IKE messages are sent encapsulated in UDP using port number 500 or 4500.
However, because IKE traffic may pass through a NAT where the port number is
rewritten, an IKE receiver should be prepared to receive traffic originating from
any port. Port 4500 is reserved for UDP-encapsulated ESP and IKE [RFC3948]. IKE
messages appearing on port 4500 are required to have their initial 4 data bytes set
to 0 (the “non-ESP marker”) to differentiate them from other (i.e., ESP or WESP)
messages.

IKE initiators perform timer-based retransmissions when IKE messages
appear to have been lost. Responders perform retransmissions only when trig-
gered by an incoming request. An exponentially increasing retransmission timer
is used for retransmissions, but the total number of retransmissions is left unspec-
ified. Both initiators and responders keep track of their last transmitted messages
and corresponding sequence numbers. Sequence numbers are used to match
requests with responses, and to identify message retransmissions. This makes
IKE a window-based protocol with a maximum window size given by a responder
that is initialized when an SA is first set up but can be increased later. The maxi-
mum window size limits the total number of outstanding requests.

ptg999

844 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

18.8.1.1 IKEv2 Message Formats
IKE messages contain a header followed by zero or more IKE payloads. The header
structure is shown in Figure 18-11.

Figure 18-11 The IKE v2 header. All IKE messages contain a header followed by zero or more payloads. IKE
uses 64-bit SPI values. The Exchange Type gives the purpose of the exchange and the payloads
that may be expected in the message. The Flags field indicates whether the message was sent
from an initiator or a responder. The Message ID associates requests with responses and is used
for detecting replay attacks.

In the headers of IKE messages, as shown in Figure 18-11, the Security Param-
eter Index (SPI) is a 64-bit number that identifies a particular IKE_SA (other IPsec
protocols use a 32-bit SPI value). Both the initiator and the responder have an
SA for their peer, so each provides the SPI it is using, and this pair of values,
combined with the IP addresses of the endpoints, can be used to form an effec-
tive connection identifier. The Next Payload field is discussed later in this section.
The Major Version and Minor Version fields are set to 2 and 0, respectively, for
this version of IKE. The major version number is changed when interoperability
cannot be maintained between versions. The Exchange Type field gives the type
of exchange of which the message is part: IKE_SA_INIT (34), IKE_AUTH (35),
CREATE_CHILD_SA (36), INFORMATIONAL (37), and IKE_SESSION_RESUME
(38; see [RFC5723]). Other values are reserved; the range 240–255 is reserved for
private use. Three bit fields are defined for the Flags field (bits are labeled right

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 845

to left, starting from 0): I (Initiator, bit 3), V (Version, bit 4), and R (Response, bit 5).
The I bit field is set by the original initiator and cleared by the recipient for return
messages. The V bit field indicates that the sender supports a higher major version
number of the protocol than is currently being used. The R bit field indicates that
the message is a response to a previous message using the same message ID.

The Message ID field in IKE acts somewhat like the Sequence Number field in
TCP (see Figure 12-3 in Chapter 12), except the message ID starts with 0 for the
initiator and 1 for the responder. The field is incremented by 1 for each subsequent
transmission, and responses use the same message ID as the requests. The I and
R bit fields differentiate requests from responses. Message IDs are remembered
when sent or received. Doing so allows each end to perform replay detection. Old
message IDs are not processed. Wrapping of the Message ID field (possible, but not
likely with 4 billion IKE messages) is handled by reinitiating the IKE_SA_INIT
exchange.

The other fields (Next Payload and Length) help describe what the IKE message
contains. Each message contains zero or more payloads, and each payload has its
own particular structure. The Length field gives the size (in bytes) of the header
plus all payloads in the message. The Next Payload field gives the type of the fol-
lowing payload. At present, 16 nontrivial types are defined (value 0 indicates no
next payload), as shown in Table 18-2. The official current list can be found in
[IKEPARAMS], which contains all standardized field values for IKEv2.

Table 18-2 IKEv2 payload types. A value of 0 indicates no next payload.

Value Notation Purpose Value Notation Purpose

33 SA Security association 41 N Notify
34 KE Key exchange 42 D Delete
35 IDi Identification

(initiator)
43 V Vendor ID

36 IDr Identification
(responder)

44 TSi Traffic selector (initiator)

37 CERT Certificate 45 TSr Traffic selector (responder)
38 CERTREQ Certificate request

(indicates trust
anchors)

46 SK { } Encrypted and authenticated
(contains other payloads)

39 AUTH Authentication 47 CP Configuration
40 Ni, Nr Nonces (initiator,

responder)
48 EAP Extensible authentication

(EAP)

The ranges 1–32 and 49–255 are reserved; the range 128–255 is reserved for
private use. Each IKE payload begins with an IKE generic payload header, shown in
Figure 18-12.

ptg999

846 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

The generic payload header is fixed at 32 bits, and the Next Payload and Payload
Length fields provide for a “chain” of variable-size payloads (up to 65,535 bytes
each, including the 4-byte payload header) to be present in a single IKE message.
Each payload type has its own set of special headers. The C (critical) bit field indi-
cates that the current payload (not the one identified by the Next Payload field) is
deemed “critical” for a successful IKE exchange. Receivers of critical payloads that
do not understand the type code (provided in the previous payload’s Next Payload
field or in the IKE header’s Next Payload field) must abort the IKE exchange. Note
that this capability provides the ability to create new payload types that may not
be understood by all implementations.

18.8.1.2 The IKE_SA_INIT Exchange
To get a better idea of how IKE operates, we will start by describing the IKE_SA_
INIT exchange. It is the first of two exchanges, IKE_SA_INIT and IKE_AUTH,
constituting the “initial exchanges” of IKE shown in Figure 18-13. The initial
exchanges were formerly known as Phase 1 in earlier versions of IKE. Other
exchanges (CREATE_CHILD_SA and INFORMATIONAL) may be initiated by
either party only after the initial exchanges have completed, and they are always
secured (encrypted and integrity-protected) based on the parameters established
using the first two exchanges.

As shown in Figure 18-13, IKE_SA_INIT negotiates the choice of crypto-
graphic suite, exchanges nonces, and performs a DH key agreement. It may also
include additional information, depending on the particular implementation and
deployment scenario. It begins when the initiator sends an IKE message contain-
ing its set of supported cryptographic suites, DH information, and nonce using
three payloads (SA, KE, and Ni). Details of each payload type are given in Section
3 of [RFC5996], and we discuss some of them in Section 18.8.1.3; note that in some
implementations additional payloads are also included. A lack of response to this
message triggers retransmissions at the initiator.

Upon receiving the first message, the responder becomes aware that an IKE
transaction is requested by the initiator, the initiator’s supported cryptographic
suites, and configuration parameters. The responder selects an acceptable crypto-
graphic suite and expresses this in the SAr1 payload (see Section 18.8.1.3). It also
provides its portion of the DH key agreement parameters in KEr, its nonce in Nr,
and an optional request for the initiator’s certificate in the CERTREQ payload.
CERTREQ payloads include an indication of CAs the responder finds acceptable
for validating certificates that may be used in subsequent exchanges (i.e., it indi-
cates the responder’s trust anchors). A message containing the responder’s IKE

Figure 18-12 A “generic” IKEv2 payload header. Each payload begins with a header of this form.

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 847

header and all of these payloads is then sent in response to the initiator, complet-
ing the IKE_SA_INIT exchange. In some implementations, extra payloads (e.g.,
Notify and Configuration payloads; see Section 18.8.1.5) are also included. To bet-
ter understand how IKE_SA_INIT operates, we shall begin by discussing its most
important payloads: SA, KE, Ni, and Nr.

18.8.1.3 Security Association (SA) Payloads and Proposals
SA payloads contain an SPI value and a set of proposals (often one). Proposals are
built using proposal structures that are somewhat complex. Each proposal struc-
ture is numbered and contains an IPsec protocol ID. A protocol ID indicates one
of the following IPsec protocols: IKE, AH, or ESP (see Sections 18.8.2 and 18.8.3).
Multiple proposal structures using the same proposal number are considered
to be part of the same proposal (an “AND” of the specified protocols). Proposal
structures with different proposal numbers are considered different proposals (an
“OR” of the specified protocols).

Each proposal/protocol structure contains one or more transform structures
that describe algorithms to be used with the specified protocols. Typically, AH
has a single transform (integrity check algorithm), ESP has two (integrity check
and encryption algorithms), and IKE has four (DH group number, PRF, integrity

Figure 18-13 The IKE_SA_INIT and IKE_AUTH exchange involves payloads used to establish the
first two security associations (IKE_SA and one CHILD_SA). Certificates and certifi-
cate request payloads (with trust anchors) may also be included, as may Notification
and Configuration payloads (not shown).

ptg999

848 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

check, and encryption algorithms). Combined encryption/integrity algorithms
(e.g., authenticated encryption algorithms) are expressed solely as encryption
algorithms with no separate integrity protection specification. A special extended
sequence number “transform,” which is really just a Boolean value, indicates
whether sequence numbers used with the SA (i.e., for AH or ESP) should be com-
puted using 32 or 64 bits.

If there are multiple transforms of the same type, the proposal is the union of
the transforms (i.e., any are acceptable). If there are multiple transforms with dif-
ferent types, the proposal is the intersection. An individual transform may have
zero or more attributes. These are necessary when a transform can be used in more
than one way (e.g., a transform capable of processing keys of differing lengths
would have an associated attribute with the particular key length to be used for
the proposal). Most transforms do not require attributes, but the relatively com-
mon AES encryption transform does.

18.8.1.4 Key Exchange (KE) and Nonce (Ni, Nr) Payloads
In addition to SA payloads, IKE_SA_INIT messages include a KE (Key

Exchange) and Nonce payload (written as Ni, Nr, or sometimes No). The KE pay-
load contains the DH group number and key exchange data representing the
public numbers used in forming an ephemeral Diffie-Hellman key (initial shared
secret). The DH group number gives the group in which the public value was
computed. The Nonce payload contains a recently generated nonce between 16
and 256 bytes in length. It is used in generating key material to ensure freshness
and protect against replay attacks.

Once the DH exchange completes, each side can compute its SKEYSEED value,
which is used for all subsequent key generation associated with the IKE_SA (unless
a key-generating EAP method is used for this purpose; see Section 18.8.1.9), a total
of seven secret values: SK_d, SK_ai, SK_ar, SK_ei, SK_er, SK_pi, and SK_pr. These
values are computed as follows:

SKEYSEED = prf(Ni | Nr, g^ir)

{SK_d|SK_ai|SK_ar|SK_ei|SK_er|SK_pi|SK_pr} =
prf+ (SKEYSEED, Ni|Nr|SPIi|SPIr)

Here, | is the concatenation operator. The cascading PRF function prf+ (K,S) =
T1 | T2 | ..., where T1 = prf(K, S|0x01), T2 = prf(K, T1|S|0x03), T3 = prf(K, T2|S|0x03),
T4 = prf(K, T3|S|0x04),... . The value g^ir is the shared secret established during
the DH exchange. Ni and Nr are nonces (stripped of any payload headers). Note
that each direction of each SA uses different keys, which explains why so many
keys are required. The SK_d key is used for deriving keys for CHILD_SAs. The
SK_a and SK_e keys are for authentication and encryption, respectively. The SK_p
keys are used in generating AUTH payloads during the IKE_AUTH exchange.

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 849

18.8.1.5 Notification (N) and Configuration (CP) Payloads
The N payload is a Notification or Notify payload. Although this type of payload
is not shown in Figure 18-13, we shall see it used in the examples later. It can be
used for conveying error messages and indications of various processing capabili-
ties with most of the IKE exchange types. It contains a variable-length SPI field
and a 16-bit field to indicate the notification type [IKEPARAMS]. Values below
8192 are used for standard errors, and values above 16383 are used for status indi-
cators. For example, when requesting the creation of a transport mode SA instead
of the default tunnel mode, a Notify payload containing the USE_ TRANSPORT_
MODE value (16391) is used. If IP compression [RFC3173] is supported, this fact
can be indicated by the IPCOMP_SUPPORTED value (16387). If Robust Header
Compression (ROHC) [RFC5857] is supported, this can be indicated using the
ROHC_ SUPPORTED value (16416), which also includes ROHC parameters used
to establish a so-called ROHCoIPsec SA. A desire to use the “wrapped ESP” mode
(see Section 18.8.3.2) is indicated using the USE_WESP_MODE value (16415). Notify
payloads may contain a variable-length data portion whose content depends on
the notification type.

A CP or Configuration payload also contains additional information like a
Notify payload but is used primarily for initial system configuration. For example,
obtaining information that might ordinarily be conveyed using DHCP (see Chap-
ter 6) can be carried over IKE using a CP. Configuration payloads are of the fol-
lowing major types: CFG_REQUEST, CFG_REPLY, CFG_SET, and CFG_ACK. CPs
use attribute-value (ATV) pairs that contain a variable-length associated data area.
Some 20 ATV pairs are defined [IKEPARAMS]. Most involve methods to learn
about IPv4 or IPv6 addresses, subnet masks, or DNS server addresses. IPv6 con-
figuration requires special attention because of the way IPv6 ordinarily employs
ICMPv6 for stateless autoconfiguration and Neighbor Discovery (see Chapter 8).
An experimental specification [RFC5739] explores how IKEv2 can be used in con-
figuring an IPv6 node across an IPsec association in a VPN configuration.

18.8.1.6 Algorithm Selection and Application
IKE divides the set of transforms forming a cryptographic suite into four types:
encryption (type 1, used with IKE and ESP), PRF (type 2, used with IKE), integrity
protection (type 3, used with IKE and AH and optional in ESP), and DH group
(type 4, used with IKE and optional in AH and ESP). Although IKE is capable of
negotiating which particular cryptographic suite is to be used for each direction of
an SA, support for a baseline set of algorithms (transforms) is deemed mandatory
for any implementation. In addition, several algorithms have been chosen as rec-
ommended, with the strong possibility that they will be mandatory in the future.
These algorithms are provided in [RFC4307] (see Table 18-3).

The IANA also keeps an official registry of values [IKEPARAMS], and
although the list here includes the mandatory algorithms at the time of writing,
many other algorithms, groups, and techniques have been proposed and pub-
lished, including options for ECC-based digital signatures (see [RFC4754]).

ptg999

850 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

18.8.1.7 The IKE_AUTH Exchange
As mentioned earlier, the SKEYSEED value is used to derive encryption and
authentication keys that are in turn used to secure payloads during the IKE_
AUTH exchange. These keys are called SK_e and SK_a, respectively. The notation
SK{P1, P2, ..., PN} indicates that payloads P1, ..., PN are encrypted and integrity-
protected using these keys. The primary purpose of the IKE_AUTH exchange is to
provide identity validation for each peer. It also exchanges sufficient information
to establish the first CHILD_SA.

To begin the IKE_AUTH exchange, the initiator sends the payload SK{IDi,
AUTH, SAi2, TSi, TSr}. Given the proper decryption key, it provides the initiator’s
identity, authentication information validating the initiator’s identity, another SA
payload for the first CHILD_SA called SAi2, and a pair of traffic selectors (payloads
TSi and TSr, discussed in Section 18.8.1.8). The initiator may also include its certifi-
cate in a CERT payload, a certificate request in a CERTREQ payload that identifies
its trust anchors, and identification of the responder in the IDr payload. Sending
the responder’s identity is useful in the case where the responder has multiple
identities associated with the same IP address and needs to ensure that the proper
SA is set up. Several different identity types are supported for ID payloads, includ-
ing IP address, FQDN, e-mail address, and distinguished name (to be used with
X.509 certificates). The various types are maintained in the IKEv2 Identification
Payload ID Types registry [IKEPARAMS].

The final message of the exchange includes the responder’s identity (IDr),
authentication material to prove the responder’s identity (AUTH), the other SA

Table 18-3 Mandatory-to-implement algorithms for use with IKEv2, grouped by type number

Purpose Name Number Status

Original
Defining RFC/
Reference

IKE Transform
Type 1
(encryption)

ENCR_3DES

ENCR_NULL

ENCR_AES_CBC

ENCR_AES_CTR

3

11

12

13

Required

Optional

Recommended

Recommended

[RFC2451]

[RFC2410]

[RFC3602]

[RFC3686]
IKE Transform
Type 2

(for PRFs)

PRF_HMAC_MD5

PRF_HMAC_SHA1

PRF_AES128_CBC

1

2

4

Optional

Required

Recommended

[RFC2104]

[RFC2104]

[RFC4434]
IKE Transform
Type 3 (integrity)

AUTH_HMAC_MD5_96

AUTH_HMAC_SHA1_96

AUTH_AES_XCBC_96

1

2

5

Optional

Required

Recommended

[RFC2403]

[RFC2404]

[RFC3566]
IKE Transform
Type 4
(DH groups)

1024 MODP (Group 2)

2048 MODP (Group 14)

2

14

Required

Recommended

[RFC2409]

[RFC3526]

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 851

constituting the CHILD_SA (SAr2), and a set of traffic selectors (TSi and TSr),
which may be subsets of the original TSi and TSr values. All payloads in the
IKE_AUTH exchange are encrypted and integrity-protected. A certificate payload
(CERT) containing one or more certificates may also be sent at this point. If so,
any public key required to validate the AUTH payload appears first in the certifi-
cate list. The specific contents vary depending on the cryptographic suite selected.
During the exchanges, both sides must check all applicable signatures in order to
be safe from compromise, including MITM attacks.

18.8.1.8 Traffic Selectors and TS Payloads
Traffic selectors indicate the fields and corresponding values of an IP datagram
that cause it to be “selected” for IPsec processing. They are used in combination
with an IPsec SPD to determine whether the containing datagram should be pro-
tected using IPsec. As mentioned previously, datagrams that are not protected are
either bypassed or dropped by IPsec processing.

The contents of a TS payload may include IPv4 or IPv6 address ranges, port
number ranges, and an IPv4 protocol ID or IPv6 header value. Ranges are some-
times denoted with wildcard notation. For example, the notation 192.0.2.* or
192.0.2.0/24 would represent the range 192.0.2.0–192.0.2.255. Traffic selectors can
be used to help implement policies such as which cryptographic suite is required
to establish an SA to a particular host or port range. Most of these details are han-
dled in the management interface to the SPD. During an IKE_AUTH exchange,
each party specifies a TSi and TSr payload containing TS values. When one range
is smaller than another, the smaller range is selected for use in a process called
“narrowing.”

18.8.1.9 EAP and IKE
Although IKE includes its own authentication methods (see Section 2.15 of
[RFC5996]), it can also make use of EAP (see Sections 2.16 and 3.16 of [RFC5996]).
With EAP, a wide array of authentication methods can be used beyond the rela-
tively limited set of pre-shared keys or public key certificates otherwise required
by IKE. Indeed, these limited sets of options for keying are one reason for the
relatively limited success of IPsec more generally.

A desire to use EAP is indicated by omitting the first AUTH payload from
the IKE_AUTH exchange in message 3 (Figure 18-1). By including the IDi pay-
load but no AUTH payload, the initiator asserts an identity but does not prove it.
If EAP is acceptable, the responder returns an EAP payload and defers sending
the SAr2, TSi, and TSr payloads until the EAP-based authentication is complete.
This happens once the initiator has finally sent an EAP-acceptable AUTH payload
that can be verified by the responder after one or more EAP payloads have been
exchanged.

One issue regarding EAP with IKE involves a possible inefficiency due to
double authentication. In particular, older EAP methods provided only one direc-
tion of authentication (peer to authenticator), so IKE requires certificate-based

ptg999

852 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

authentication to perform authentication in the other direction. Recognizing that
deploying the necessary key infrastructure is sometimes difficult, and that newer
EAP methods support mutual authentication and key derivation, [RFC5998] pro-
vides a way to use only EAP for authentication. Using an EAP_ONLY_AUTHEN-
TICATION Notification payload sent by the initiator, the responder is able to
suppress sending the AUTH and CERT payloads carried in message 4 (in Fig-
ure 18-1). In this case, subsequent AUTH payloads use the key generated by EAP
instead of SK_pi and SK_pr.

Performing EAP-only authentication relies on EAP methods that are suffi-
ciently secure so as to obviate the need for IKE authentication. These are called
safe EAP methods. To be safe, an EAP method must provide mutual authentica-
tion, be capable of generating keys, and be resistant to dictionary attacks. Some 13
methods are given in [RFC5998], including EAP-TLS, EAP-FAST, and EAP-TTLS,
that are believed to be safe.

18.8.1.10 Better-than-Nothing Security (BTNS)
A relatively recent development with IKE and IPsec is called better-than-nothing
security (BTNS, pronounced “buttons”). BTNS aims to address some of the usabil-
ity and ease of deployment issues with IPsec, especially the need to establish a
PKI or other deployed authentication system [RFC5387] to use certificates. Tech-
nically, BTNS is essentially unauthenticated IPsec [RFC5386], and it can be sup-
ported when IKE is used to establish an SA. With BTNS, public keys are used,
but their containing certificates are not checked against a chain or root certificate.
Consequently, an SA can ensure that the same entity is communicating over time
but cannot ensure that any particular, validated entity established the SA. This
form of authentication is called continuity of association and is weaker than the data
origin authentication present in ordinary IPsec. BTNS makes no other substantive
changes to IPsec; the formats of IKE, AH, and ESP messages remain the same.

18.8.1.11 The CREATE_CHILD_SA Exchange
The CREATE_CHILD_SA exchange is used to create CHILD_SAs for ESP or AH,
or to rekey existing SAs (either IKE_SAs or CHILD_SAs) once the initial exchanges
have completed. It uses a single exchange of packets and may be initiated by either
side of the IKE_SA established during the initial exchanges. There are two vari-
ants, depending on whether a CHILD_SA or IKE_SA is being modified. Figure
18-14 shows the variants, where the initiator is the entity initiating the CREATE_
CHILD_SA exchange and not necessarily the original initiator of the IKE_SA.

In Figure 18-14, the first exchange depicts a CREATE_CHILD_SA used to cre-
ate a new CHILD_SA or rekey an existing one. Rekeying is indicated by the pres-
ence of an N(REKEY_SA) Notification payload sent by the initiator. To complete
the rekey operation, a new SA is first created, and the old one is subsequently
deleted (see the next section). The new SA and traffic selector (TS) information
allows most of the connection parameters to be altered. If desired, new DH val-
ues can also be exchanged at this point using KE payloads. This provides better

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 853

forward secrecy for the new SA. Rekeying an IKE_SA uses a similar exchange,
except the KE payloads are required and the TS payloads are not used, as shown
in the second part of Figure 18-14.

18.8.1.12 The INFORMATIONAL Exchange
The INFORMATIONAL exchange is used for conveying status and error informa-
tion, usually using Notify (N) payloads. It is also used for deleting SAs using a
Delete (D) payload and therefore constitutes one portion of the SA rekeying pro-
cedure. The exchange is shown in Figure 18-15.

An INFORMATIONAL exchange can take place only after successful comple-
tion of the initial exchanges. It includes an optional set of notifications, Delete (D)
payloads that specify SAs to delete by SPI value, and Configuration (CP) payloads.
Some response is always required for any message received from an initiator,
even if it is an empty IKE message (i.e., contains only a header). Otherwise, the
initiator would retransmit its message unnecessarily. In unusual cases, INFOR-
MATIONAL messages may be sent outside the context of an INFORMATIONAL
exchange, usually to signal the receipt of an IPsec message containing an unrec-
ognized SPI value or unsupported IKE major version number.

Figure 18-14 The CREATE_CHILD_SA exchange can be used to create or rekey a CHILD_SA, or to rekey an
IKE_SA. A Notification payload is used when modifying a CHILD_SA to indicate the SPI of the
SA to modify.

ptg999

854 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

18.8.1.13 Mobile IKE (MOBIKE)
Once the IKE_SA has been established, it is ordinarily used until no longer
required. However, when IPsec operates in an environment where IP addresses
may change because of mobility or interface failure, a variant of IKE has been
specified in [RFC4555] called MOBIKE. MOBIKE augments the basic IKEv2 proto-
col to include additional “address change” options available in INFORMATIONAL
exchanges. MOBIKE specifies what to do when the changed addresses are known.
It does not address the discovery problem of how to determine these addresses.

18.8.2 Authentication Header (AH)

Defined in [RFC4302], the IP Authentication Header (AH), one of the three major
components of IPsec, is an optional portion of the IPsec protocol suite that pro-
vides a method for achieving origin authentication and integrity (but not confi-
dentiality) of IP datagrams. By providing only integrity and not confidentiality
(and not working with NAT; see the remainder of this section), AH is the (far)
less popular of the two primary IPsec data-securing protocols. In transport mode,
AH uses a header placed between the layer 3 (IPv4, IPv6 base, or IPv6 extension)
header and the following protocol header (e.g., UDP, TCP, ICMP). With IPv6, AH
may appear immediately before a Destination Options extension header, if pres-
ent. In tunnel mode, the “inner” IP header carries the original IP datagram, con-
taining the ultimate IP source and destination information, and a newly created
“outer” IP header contains information describing the IPsec peers. In this mode,
AH protects the entire inner IP datagram. Generally speaking, transport mode
is used between end hosts that are directly connected, and tunnel mode is used
between SGs or between a single host and an SG (e.g., for supporting a VPN). The
IPv4 and IPv6 encapsulations for transport-mode AH, using TCP as an example,
are shown in Figure 18-16.

Figure 18-15 The INFORMATIONAL exchange is used to convey status information and delete SAs.
It makes use of Notification (N), Delete (D), and Configuration (CP) payloads.

ptg999

855

Figure 18-16 The IPsec Authentication Header is used to provide authentication and integrity protection for IPv4 and IPv6 datagrams. In
transport mode (depicted here with TCP), a conventional IP datagram is modified to include the AH.

ptg999

856 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

In the figure, the IPv4 encapsulation uses a special IPv4 protocol number (51).
For IPv6, the AH is placed between the destination and other options. In either
case, the resulting datagram has a mutable portion of its header and an immuta-
ble portion of its header. The mutable portion is changed as the datagram moves
through the network. Modifications include changing the IPv4 TTL or IPv6 Hop
Limit field, IPv6 Flow Label field, DS Field, and ECN bits. The immutable portion,
containing the source and destination IP addresses, is not changed by the net-
work and is integrity-protected using fields in the AH. This prevents transport
mode AH datagrams from being rewritten by NATs, a potential problem for many
deployments. Transport mode cannot be used with fragments (IPv4 or IPv6).

An alternative to transport mode is AH tunnel mode, shown in Figure 18-17.
In this mode, the original datagram is untouched and instead is inserted inside an
integrity-protecting new IP datagram.

In tunnel mode, the entire original IP datagram is encapsulated and protected
with the AH. The “inner” header is unmodified, and the “outer” header is created
using the source and destination IP addresses associated with an SG or host. In
such cases, AH protects all of the original datagram, plus some portions of the
new header (which prevents it being modified by a NAT).

Both modes of AH use the same AH shown in Figure 18-18. It identifies the
datagram length and associated SA and includes integrity check information
The Payload Length specifies the length of the AH in 32-bit-word units minus 2.
The Security Parameters Index (SPI) field contains a 32-bit identifier of an SA at
the receiver that contains SA-derived information relating to the association. For
multicast SAs, the SPI value is handled in a special way (see Section 18.8.4). The
Sequence Number is a 32-bit field that increments by 1 for each packet sent on the
SA. This field is used for replay protection if enabled by the receiver (but it is
always included by the sender, even if not checked by the receiver). An extended
sequence number (ESN) operating mode is also defined and recommended and is
negotiated during the IKE_SA_INIT exchange. If enabled, the sequence number
is calculated using 64 bits, but only the lower-order 32 bits are included in the
Sequence Number field. The length of the Integrity Check Value (ICV) field is vari-
able and depends on the cryptographic suite used. This field is always an integral
multiple of 32 bits in length.

The algorithm used for integrity protection is specified in the correspond-
ing SA as a type 3 transform and can be established manually or by using some
automatic method such as IKE. The optional, recommended, and mandatory algo-
rithms for AH (and ESP, later) are provided in [RFC4835] and include HMAC-
MD5-96 (optional), AES-XCBC-MAC-96 (recommended), and HMAC-SHA1-96
(mandatory). The integrity check is computed over the following portions of the
datagram: header fields before the AH that are either immutable in transit or pre-
dictable in value when arriving at the destination AH SA endpoint, the AH, every-
thing after the AH, high-order bits of the ESN (if employed, even though they are
not sent), plus any padding.

ptg999

857

Figure 18-17 The IPsec tunnel mode AH encapsulations provide authentication and integrity protection for IPv4 and IPv6 datagrams. In
tunnel mode (depicted here carrying TCP), a conventional IP datagram is encapsulated inside a new “outside” IP datagram
that carries the original datagram.

ptg999

858 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Some controversy has arisen over the disposition of mutable fields such as the
ECN bits used to signal incipient congestion (see Chapters 5 and 16) when tunnel
modes are used. In [RFC4301], such fields are simply copied to the correspond-
ing fields present in the newly created “outer” IP header. In [RFC6040], however,
normal mode and compatibility mode for tunnel encapsulation are defined. In normal
mode, the CE and ECT bit fields are copied to the new header on encapsulation. In
compatibility mode, the bits are cleared, producing an “outer” packet indicating
a non-ECN-capable transport. During decapsulation, if the outer or inner header
contains a CE indication, the indication is copied to the packet produced after
decapsulation unless the original packet did not indicate ECT (in which case the
packet is dropped). In addition, if ECT is indicated by either the outer or inner
headers, ECT is set to true in the decapsulated packet.

18.8.3 Encapsulating Security Payload (ESP)

The ESP protocol of IPsec, defined in [RFC4303] (where it is called ESP (v3) even
though ESP provides no formal version numbers), provides a selectable combina-
tion of confidentiality, integrity, origin authentication, and anti-replay protection
for IP datagrams. It can employ a NULL encryption method [RFC2410], which is
mandatory to support, if only integrity is to be used. Conversely, encryption can
be used for confidentiality without integrity protection, although this combina-
tion is effective only against passive attacks and is highly discouraged. In the con-
text of ESP, integrity includes data origin authentication. Given its flexibility and
feature set, ESP is (far) more popular than AH.

18.8.3.1 Transport and Tunnel Modes
Like AH, ESP has transport and tunnel modes. In tunnel mode, an “outer” IP
packet includes an “inner” IP packet that may be entirely encrypted. This pro-
vides for a limited form of traffic flow confidentiality (TFC) because the “inner”

Figure 18-18 The IPsec AH is used to provide authentication and integrity protection for IPv4 and IPv6 data-
grams in either transport or tunnel mode. The SPI value indicates which SA the AH belongs to.
The Sequence Number field is used for countering replay attacks. The ICV provides a form of MAC
over the immutable portions of the payload.

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 859

datagram’s size and contents can be hidden using encryption. ESP may be used
in combination with AH, if desired, and supports both IPv4 and IPv6. Using ESP
in “integrity-only” mode may be preferable to AH in some cases for performance
reasons (ESP may be more amenable to pipelining) and is a required configuration
option for IPsec implementations. The encapsulations for ESP transport mode are
shown in Figure 18-19.

The transport mode structure is similar to AH transport mode, except ESP
trailer structures are used in support of ESP’s encryption and integrity protection
methods (see Section 18.8.3). As with AH, ESP transport mode cannot be used
with fragments. The tunnel mode encapsulations for ESP, similar to those for AH,
are shown in Figure 18-20.

ESP does not use a strict header in the same way AH does. Instead, there
is an overall ESP structure that includes a header and trailer portion. There is
an optional (second) trailer structure if ESP is used with an integrity protection
mechanism that requires space for additional check bits (labeled ESP ICV). The
ESP structure is shown in Figure 18-21.

ESP-encapsulated IP datagrams use the value 50 in the Protocol (IPv4) or Next
Header (IPv6) header fields. The ESP payload structure, shown in Figure 18-21,
includes the SPI and sequence numbers, used in the same way as with AH. The
primary difference is in the payload area. This area may be confidentiality-pro-
tected (encrypted) and can include a variable-length pad portion required by
some encryption algorithms.

The payload is required to end on a 32-bit boundary (64 for IPv6) and have the
last two 8-bit fields identify the Pad Length and Next Header (Protocol) field values.
The Pad, Pad Length, and Next Header fields constitute the ESP trailer shown in Fig-
ures 18-19 and 18-20. Certain cryptographic algorithms may employ an IV. If pres-
ent, the IV appears at the beginning of the payload area (not shown). Additional
padding for TFC purposes (called TFC padding) is permitted to appear within the
payload area in front of the ESP trailer (see Figure 2 of [RFC4303] for details). It is
used to disguise the length of the datagram to help resist traffic analysis attacks,
although this features does not appear to be widely used. The Next Header field
contains values chosen from the same space used in the IPv4 Protocol field or IPv6
Next Header field (e.g., 4 for IPv4, 41 for IPv6). It may contain the value 59, indicat-
ing “no next header,” when carrying a dummy packet that is to be discarded.
Dummy packets are another method sometimes used for resisting traffic analysis
attacks.

The ESP ICV is a variable-length trailer used if integrity support is enabled
and required by the integrity-checking algorithm. It is computed over the ESP
header, payload, and ESP trailer. Implicit values (e.g., high-order ESN bits) are also
included. The length of the ICV is known as a consequence of selecting the par-
ticular integrity-checking method. It is therefore established at the time the cor-
responding SA is set up and not changed as long as the SA exists.

Anti-replay is supported provided integrity protection is enabled. This is
accomplished using a sequence number derived from a running counter. The

ptg999

860

Figure 18-19 The IPsec ESP is used to provide confidentiality (encryption), authentication, and integrity protection for IPv4 and IPv6 data-
grams. In transport mode (depicted here with TCP), a conventional IP datagram is modified to include the ESP head er. ESP in
transport mode allows the transport payload to be encrypted, authenticated, and integrity-protected.

ptg999

861

Figure 18-20 In tunnel mode (depicted here with TCP), ESP encapsulates a conventional IP datagram inside a new “outside” IP datagram
that carries the original datagram. ESP allows the outer datagram to be modified (e.g., for NAT traversal) while the inner data-
gram remains intact. ESP is more popular than AH for most applications.

ptg999

862

Figure 18-21 The ESP message structure includes the encrypted payload in the middle. The SPI and Sequence Number constitute the ESP
header, and the combination of the Pad, Pad Length, and Next Header fields constitutes the ESP trailer. An optional ESP ICV
trailer is also used when integrity protection is employed.

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 863

counter is initialized to 0 when an SA is first set up and incremented before being
copied into each datagram sent on the SA. When anti-replay is enabled (the nor-
mal default), the sender checks to see that the counter has not wrapped and cre-
ates a new SA if wrapping is about to occur. The receiver implementing anti-replay
keeps a valid window of sequence numbers (similar in some ways to the TCP
receiver’s window). Datagrams containing out-of-window sequence numbers are
dropped.

For systems that implement auditing, ESP processing can result in one or more
auditable events. These events include the following: no valid SA exists for a session,
the datagram given to ESP for processing is a fragment, the anti-replay counter
is about to wrap, a received packet was out of the valid anti-replay window, the
integrity check failed. Auditable events are recorded in a logging system. These
events include metadata such as the SPI value, current date and time, source and
destination IP addresses, sequence number, and IPv6 flow ID (if present).

18.8.3.2 ESP-NULL, Wrapped ESP (WESP), and Traffic Visibility
As mentioned previously, ESP ordinarily provides privacy using encryption, but
it can also operate in an integrity-only mode using the NULL encryption algo-
rithm. Integrity-only mode (also called ESP-NULL) may be desirable in some cir-
cumstances, especially in enterprise environments where sophisticated packet
inspection takes place within the network and confidentiality may be addressed
in other ways. For example, some network infrastructure devices inspect pack-
ets for unwanted content (e.g., malware signatures) and are capable of providing
alerts or shutting down network access when policy is violated. Such devices are
essentially disabled if ESP is used with encryption in an end-to-end fashion (i.e.,
the way it was designed). Said another way, unless they have traffic visibility, they
cannot do their jobs.

When a packet inspection device is faced with ESP traffic, it needs to make
a decision about whether the traffic is encrypted (i.e., whether NULL encryption
is being used or not). Given that the negotiation of an IPsec cryptographic suite
is handled outside ESP (e.g., manually or using a protocol such as IKE), there are
two current methods for doing so. The first is simply to use a set of nonstandard
heuristics to make a guess [RFC5879]. Use of these has the benefit of not requiring
any modification to ESP for supporting traffic visibility. The other method is to
add a special description to ESP to indicate whether encryption is used. Wrapped
ESP (WESP) [RFC5840], a standards-track RFC, defines a header that is placed
ahead of the ESP packet structure. WESP uses a different protocol number (141)
from ESP and can be negotiated with IKE using the USE_WESP_MODE (value
16415) Notify payload. The variable-length WESP header includes fields to indi-
cate the location of payload information, along with a Flags field (maintained by
the IANA [IWESP]) containing a bit indicating whether ESP-NULL is being used.
Although WESP makes the job of determining whether ESP-NULL is being used
or not easier for network infrastructure, its utility also depends on end hosts using
the WESP header appropriately. Given that WESP is relatively new, this is not yet

ptg999

864 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

the case today. On the other hand, the WESP format is extensible, so once imple-
mented it could be adapted for other purposes in the future.

18.8.4 Multicast

IPsec optionally supports multicast operations [RFC5374], although this capabil-
ity is not often used. The most basic form involves using manual key configura-
tion, but there are also multicast group key establishment methods called group
key management (GKM) protocols managed by group controller/key servers (GCKSs).
These are used to produce group security associations (GSAs), which include one
or more IPsec SAs plus one or more GKM SAs used to provide parameters for
establishing the IPsec SAs [RFC3740]. Given that members may dynamically join
or leave a group, GKM protocols must deal with rekeying more frequently and
carefully than regular two-party key establishment protocols, and such protocols
have been a favorite topic for security researchers [AKNT04]. We shall not explore
the details of how GKMs operate (such an explanation would be lengthy), but the
interested reader may consult documentation for GDOI [RFC3547] or GSAKMP
[RFC4535].

At present, multicast IPsec operation requires all members of a group to be
homogeneous in their algorithmic and protocol processing capabilities. Both any-
source and single-source multicast (ASM and SSM) operations are supported (see
Chapter 9), and the same procedures are used for IPv4 local broadcast addresses
and for IPv6 anycast addresses. Host IPsec implementations may use any combi-
nation of tunnel and transport mode, but SGs must use tunnel mode where the
tunnel destination addresses are multicast addresses.

Multicast IP datagrams present a challenge for IPsec when a tunnel mode is
used because the outer IP datagram’s addressing needs to be a multicast desti-
nation address in order to be routed efficiently using a multicast-capable infra-
structure. This requires a special procedure, known as tunnel mode with address
preservation, to be applied when placing datagrams into AH or ESP tunnels.
In short, this procedure involves choosing the outer IP source and destination
addresses to match the inner addresses (assuming the same version of IP is being
used). The purposes of doing so are (1) to ensure that multicast routing is invoked
on the datagram and (2) to ensure that the reverse path forwarding (RPF) check
used in computing multicast routes works properly (see Chapter 9).

Introduction of multicast requires modification of some of the low-level IPsec
machinery we saw in Figure 18-10. For example, the SPD and SAD are modified to
include an “address preservation” flag used in implementing the address-preserv-
ing tunnel modes. In addition, a directionality flag in the SPD is used to determine
under what circumstances SAs should be automatically created. This ensures that
no SAs are created that would use prohibited multicast source addresses as a con-
sequence of simply reversing source and destination IP addresses (as with unicast
SAs). The SPD may need to include state as to when a GKM protocol needs to be
invoked (e.g., for obtaining a needed group key), and a group PAD (GPAD) holds

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 865

the information specific to each GCKS, including for which traffic selectors each
GCKS is able to produce SAs and authentication information that may be required
to engage in a particular GKM protocol with a particular GCKS. GPAD material is
not consulted by non-GKM protocols such as IKE, but the PAD and GPAD struc-
tures might be implemented together.

18.8.5 L2TP/IPsec

The Layer 2 Tunneling Protocol (L2TP) (see Chapter 3) supports tunneling of layer
2 traffic such as PPP through IP and non-IP networks. It relies on authentication
methods that provide some authentication during connection initiation, but no
subsequent per-packet authentication, integrity protection, or confidentiality. To
address this concern, L2TP can be combined with IPsec [RFC3193]. The combi-
nation, called L2TP/IPsec, provides a recommended method to establish remote
layer 2 VPN access to enterprise (or home) networks. L2TP can be secured with
IPsec using either a direct L2TP-over-IP encapsulation (protocol number 115) or a
UDP/IP encapsulation that eases NAT traversal.

L2TP/IPsec uses IKE by default, although other keying methods are possible.
It uses an ESP SA in either transport mode (support required) or tunnel mode
(support optional). The SA is used to secure the L2TP traffic, which is then respon-
sible for establishing the layer 2 tunnel. Because it is really a combination of two
protocols, both of which involve authentication, L2TP/IPsec often requires two
distinct authentication procedures: one for the machine (using IPsec with pre-
shared keys or certificates) and another for the user (e.g., using a name and pass-
word or access token).

L2TP/IPsec is supported on most modern platforms. On Windows, creating a
new connection with the “Connect to a workplace” option can be used to enable
L2TP and L2TP/IPsec. Some smartphones (e.g., Android, iPhone) support L2TP in
their networking configuration setup screens. Mac OS X includes an L2TP/IPsec
network adapter type that can be added using the system preferences. On Linux,
it may be necessary to configure both IPsec and L2TP for them to work together. If
L2TP is not required on such systems, direct IPsec may be preferable.

18.8.6 IPsec NAT Traversal

Using NATs with IPsec can present something of a challenge, primarily because IP
addresses have traditionally been used in identifying communication endpoints
and are assumed to not change. These assumptions were not entirely avoided (or
obviated) when IPsec was first designed, so NAT has posed a problem. This is
one factor contributing to the relatively slow deployment of IPsec. However, today
IPsec supports both changing addresses (with MOBIKE) and NAT traversal.

To have a complete NAT traversal solution, we must take into account IKE, AH,
and ESP in both transport and tunnel modes. As we shall see, when NATs must be
accommodated, not all combinations of IPsec may be usable with all applications.

ptg999

866 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Guidance for what a solution requires is given in [RFC3715]. We shall first discuss
a variety of issues that highlight fundamental incompatibilities between NATs
and IPsec and then describe the methods that have been adopted to handle the
problems.

One fundamental problem arises with AH and how NATs update the
addresses in datagrams. Because the AH includes a MAC computation covering
the datagram’s IP addresses, a NAT is unable to rewrite addresses without invali-
dating the AH. Note that ESP does not share this issue, as its integrity protection
mechanism does not include the IP addresses in its MAC.

Another problem arises with the UDP and TCP transport protocols because of
the pseudo-header checksum, which incorporates IP addresses in its computation.
When the transport-layer checksum is integrity-protected or encrypted, the NAT
is unable to update the checksum without forming an invalid packet. A similar
situation can arise for NAPT when changing port numbers, or for other protocols
that perform layering violations.

A third major problem relates to the ID payloads in IKE. There are several ways
to identify an IKE peer, one of which is to use IP addresses. As these addresses are
embedded within an encrypted IKE payload, they are not able to be modified by
a conventional NAT, leading to failure. Alternative methods for identifying peers
may be available, however (e.g., FQDN or the distinguished name from an X.509
certificate).

A fourth significant concern is how a NAT or NAPT demultiplexes incoming
traffic to the proper host. In protocols such as TCP and UDP, the port number is
used for this purpose. However, IPsec AH and ESP act like transport protocols
that carry no port numbers but instead use an SPI value. While some NATs can
make use of the SPI value for demultiplexing, these values are chosen by an IPsec
responder as a local matter and multiple independent hosts may choose the same
value. Because a NAT cannot easily modify these values, it is possible for a NAT to
improperly demultiplex incoming (returning) traffic, with a potential for errone-
ous delivery.

There are other potential problems for NATs that become more acute when
IPsec is employed. For example, application protocols that carry IP addresses (e.g.,
SIP), if integrity-protected or encrypted, cannot be modified by a conventional
NAT. In addition, configuration and analysis are more difficult because traffic that
could otherwise be decoded for analysis is now obscured because of encryption.
Fortunately, some network analysis tools (e.g., Wireshark) can process encrypted
traffic if provided the necessary key material.

The primary approach to dealing with most of the NAT traversal concerns is
to encapsulate IPsec ESP and IKE traffic using UDP/IP, which can be modified by
conventional NATs when necessary. (There is no supported solution for NAT tra-
versal of AH.) An IKE initiator can use UDP port 500 or 4500 for sending IKE and
then transition to using port 4500 for UDP-encapsulated ESP and IKE, whether or
not a NAT is present. UDP ESP encapsulation is prohibited on port 500 according

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 867

to [RFC5996]. The purpose of using port 4500 is to avoid some NATs that improp-
erly process IPsec traffic on port 500.

NAT traversal for IKE is an optional feature of an IKE implementation. If
supported, the following two Notification payloads can be included with the
IKE_SA_INIT exchange: NAT_DETECTION_DESTINATION_IP and NAT_
DETECTION_SOURCE_IP. If present, these appear after the Ni and Nr payloads
and before CERTREQ payloads. The data associated with these payloads includes
a SHA-1 hash of the SPIs for the SA, the source or destination IP address, and the
source or destination port number. Such information is preserved as the IKE mes-
sages are passed through NATs. When receiving IKE messages that suggest a NAT
is present, IKE processing continues using a UDP/IP encapsulation on port 4500,
which tends to pass through NATs unimpeded.

After having traversed one or more NATs, arriving IKE traffic being used to
set up a transport-mode SA may contain traffic selectors (TS payloads) with IP
addresses or ranges that are not meaningful (i.e., they are private IP addresses
“behind” a NAT) and that do not match the IP addresses contained in the address-
ing fields of the IKE datagram arriving at the responder. This is handled by first
storing the addresses in TSi and TSr IKE payloads for later use and later replacing
them with the source and destination IP addresses present in the received data-
gram. In essence, this is a form of “delayed NAT” on TS payloads performed by
the recipient. The resulting datagram and TS payloads are used to query the SPD
in order to determine the security policy for the requested SA. If transport mode is
used, the responder completes the exchange and the initiator performs similar TS
payload substitution processing (see Section 2.23.1 of [RFC5996] for more details).

18.8.7 Example

There are several open-source and proprietary IPsec implementations. Windows 7
supports IKEv2 and MOBIKE in Microsoft’s Agile VPN subsystem. Linux includes
kernel-level IPsec support in kernel version 2.6 and later, and the OpenSwan and
StrongSwan packages can be used to implement complete VPN solutions. In the
following example, we use a Linux server running StrongSwan (IPv4 address
10.0.0.3) with a Windows 7 client (IPv4 address 10.0.1.48) using RSA-based machine
certificates we have created for authentication to demonstrate IKE. The IKE initial
exchanges are shown in Figure 18-22.

Looking at this figure, we can see that Wireshark decodes the IKE exchange
using ISAKMP as the protocol name. This is the now-deprecated Internet Security
Association and Key Management Protocol and is the historical name of what ulti-
mately became IKE. The IKE header contains the initiator’s SPI (labeled “Initiator
cookie”) and the responder’s SPI, which has not yet been established. The version
number is 2, indicating that this packet contains IKEv2, and the exchange type is
IKE_SA_INIT.

Looking closer, we can see this is an IKE_SA_INIT message containing five
payloads: one SA, one KE, one Nonce, and two of type Notify. The SA payload
includes six proposals, each of which contains a list of transforms. The proposals

ptg999

868 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Figure 18-22 A trace of the initial IKE exchanges, highlighting the first packet. The IKE_SA_INIT exchange is
carried on UDP port 500 and includes the initiator’s SPI, proposals for cryptographic suite algo-
rithms, DH key exchange material, a nonce, and Notify payloads used to indicate addresses for
NAT traversal. Each proposal in the SA payload requests the establishment of an IKE_SA using
a set of transforms for encryption, integrity protection, a PRF used for generation of random
numbers, and DH group parameters used in key agreement.

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 869

represent sets of algorithms the initiator is willing to use. Proposal 6 (the last one)
has been expanded to show more detail. It suggests AES in CBC mode with a 256-
bit key length for encryption, HMAC with SHA-256 for integrity protection, a PRF
based on SHA-384, and the alternate 1024-bit MODP group for DH key agreement.
The other proposals (not detailed) include suggestions for 3DES encryption, AES
encryption with different key lengths, SHA-1 for integrity protection, and other
SHA variants for the PRF. Following the SA payload, the Key Exchange payload
contains the public information required to perform a DH exchange using the
“alternate 1024-bit MODP group.” In the other payloads, we find a nonce contain-
ing a 48-byte random bit string and two Notify payloads used for NAT traversal.
The first Notify payload is of type NAT_DETECTION_SOURCE_IP, and the sec-
ond contains NAT_DETECTION_DESTINATION_IP. The value in the first con-
tains a 20-byte SHA-1 hash over these values: 8 bytes of the initiator’s SPI, 8 bytes
of the responder’s SPI (0 here), 4 bytes of source IPv4 address, and 2 bytes of UDP
source port number. The value in the second covers the same as the first, except
the destination port is used in place of the source port. Figure 18-23 illustrates the
response to the first IKE_SA_INIT message.

In this figure, the IKE_SA_INIT message contains the following payloads: SA,
KE, Nonce, three of type Notify, and a Certificate Request. The SA payload con-
tains only one proposal, comprising the following transforms: 3DES for encryp-
tion, HMAC_SHA1_96 for integrity, HMAC_SHA1 for the PRF, and group 2 for the
DH exchange. The KE payload contains a 128-byte value from the 1024-bit MODP
group. The Nonce payload contains a 32-byte random value for freshness. The next
two Notify payloads contain NAT_DETECTION_SOURCE_IP and NAT_DETEC-
TION_DESTINATION_IP, as described earlier. Following these are new payloads
we have not yet encountered: CERTREQ and MULTIPLE_AUTH_SUPPORTED.

The Certificate Request (CERTREQ) payload indicates the responder’s pre-
ferred certificates. In this case, the responder indicates that any certificates later
supplied by the initiator should be associated with a particular certificate author-
ity. The encoding used to express the CA is one of several defined in Section 3.6
of [RFC5996], but only the values 4, 12, and 13 are currently standardized. Here,
the payload contains the value 4, meaning the Certificate Authority Data subfield
contains a concatenation of SHA-1 hashes of the public keys (X.509 Subject Public
Key Info element) of trusted CAs. Given that the length of this subfield is only 20
bytes in this example, we can see that only a single CA is listed. It happens to be
the SHA-1 hash of the DER encoding of the public key of the sample root certificate
for the “Test CA” we created for this example.

Note

The binary Distinguished Encoding Rules (DER) format is a subset of the ASN.1
standard Basic Encoding Rules (BER). DER permits values to be encoded in only
a single, unambiguous way. DER is one of the two most popular ways to encode
X.509 certificates. The other is PEM, an ASCII format, which we showed earlier. Var-
ious utilities, including openssl, may be used to convert between the two formats.

ptg999

870 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Figure 18-23 The completion of the IKE_SA_INIT exchange includes the responder’s SPI (labeled
“cookie”), a single proposal with transforms, DH parameters, a nonce value, and NAT
traversal address parameters. This message also includes a CERTREQ payload to
indicate and request acceptable certificates, and a notification indicating that multiple
authentication methods (in series) are supported.

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 871

The final payload in Figure 18-23 is a Notify payload containing the MULTIPLE_
AUTH_SUPPORTED indication and no associated data. Defined as an experi-
mental extension to IKE in [RFC4739], it indicates the ability to use more than one
authentication method. Such a situation may arise, for example, when using an
IKE_AUTH exchange based on certificates to establish IKE SAs to a service pro-
vider, followed by some form of EAP-based authentication for the individual user.

The remaining packets shown in Figure 18-23 contain IKE_AUTH messages
that are encrypted. They are carried using source and destination port number
4500 instead of 500, and the encapsulation uses the special “non-ESP marker” con-
taining 4 bytes of 0 [RFC3947], indicating that the traffic is IKE and not ESP. The
marker and port numbers are also used for the INFORMATIONAL exchanges we
discussed previously.

Wireshark has the capability to decrypt encrypted IKE traffic if provided with
the proper keys and SPI values. By providing a copy of the log trace file from the
IKE server to Wireshark (located under Edit | Preferences | Protocols | ISAKMP),
we can see the decrypted IKE payload information. (The Wireshark developers
tend to prefer the original names of protocols such as ISAKMP and SSL instead of
IKE and TLS, so that is what we see when looking at Wireshark output.)

The third packet in Figure 18-22 is the first fragment of a UDP/IP datagram
that Wireshark reassembles when it receives the second fragment (packet 4). The
decrypted and reassembled result is shown in Figure 18-24.

Here we can see the contents of the reassembled and decrypted UDP/IPv4
fragments constituting the first packet of the IKE_AUTH exchange. The client
provides the following IKE payloads: IDi, CERT, CERTREQ, AUTH, N(MOBIKE_
SUPP), CP, SA, TSi, and TSr. The IDi payload contains the name of the initiator,
test client. The CERT payload contains a client certificate for test client signed by
the Test CA certificate authority that we know the corresponding server should
accept (because it was configured to). The CERTREQ payload contains requests
for Test CA as well as 21 other CAs (not shown) known by this Windows 7 cli-
ent. The AUTH payload contains a data block signed using the RSA private key
of the initiator (see Section 2.15 of [RFC5996]), which provides origin authentica-
tion. The N(MOBIKE_SUPPORTED) indicates the client’s willingness to follow
the MOBIKE protocol. The CP(CFG_REQUEST) payload (not detailed) contains
the following attributes: INTERNAL_IP4_ADDRESS, INTERNAL_IP4_DNS,
INTERNAL_IP4_NBNS, and a PRIVATE_USE type (23456). These are used to
help in configuring VPN access and serve a similar purpose to the configuration
information typically provided locally by DHCP (see Chapter 6). NBNS refers to a
NetBIOS name server. NetBIOS is an API that can be implemented on a number of
networking protocols and is common in Microsoft Windows environments.

The SA payload in Figure 18-24 represents the information required to form a
CHILD_SA. There are two proposals (not detailed), each for ESP using 32-bit SPI
values (note that IKE uses 64-bit SPI values) with AUTH_HMAC_SHA1_96 as the
integrity algorithm and not using extended sequence numbers (indicated using
a proposal transform). The first proposal suggests the use of ENCR_AES_CBC

ptg999

872 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Figure 18-24 The IKE_AUTH exchange contains encrypted information and operates on UDP port 4500. The
reassembly of two fragments produces an IKE message with an Encrypted/Authenticated data
payload containing the following payloads: Identification initiator (IDi), Certificate (CERT), Cer-
tificate Request (CERTREQ), Authentication (AUTH), Notify (N), Configuration (CP), Security
Association (SA), Traffic Selector initiator (TSi), and Traffic Selector responder (TSr).

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 873

(256-bit keys) for encryption, and the second suggests ENCR_3DES. Because there
is no N(USE_TRANSPORT_MODE) payload present, we conclude that each of the
proposals involves using ESP in the default tunnel mode.

The Traffic Selector (TSi and TSr) payloads in Figure 18-24 indicate the IPv4
and IPv6 address ranges that are permitted to be associated with the forming SA.
The TSi has both a TS_IPv6_ADDR_RANGE and TS_IPv4_ADDR_RANGE that
contain their entire address and port number ranges. TSr (not detailed) contains
the same values.

The first IKE_AUTH message we just discussed is fairly complicated and
requires more than a single 1500-byte UDP/IPv4 datagram to hold it. After pro-
cessing by the responder, the final message in the exchange is produced. It is
shown in Figure 18-25.

In this figure, the server sends a response with the following payloads: IDr,
CERT, AUTH, CP(CFG_REPLY), SA, TSi, TSr, N(AUTH_LIFETIME), N(MOBIKE_
SUPPORTED), and N(NO_ADDITIONAL_ADDRESSES). The IDr payload contains
a DER-encoded name of the server. The CERT payload contains the matching (server)
certificate, and the AUTH payload indicates knowledge of the corresponding pri-
vate key. The CP(CFG_REPLY) payload includes an INTERNAL_IP4_ADDRESS
attribute, which is useful for VPN configuration. The SA payload is similar to the cli-
ent’s SA payload from Figure 18-24 and includes a single proposal with transforms
ENCR_AES_CBC (256-bit keys), AUTH_HMAC_SHA1_96, and no ESNs.

The TSi and TSr values in this packet have been “narrowed” to be much smaller
ranges than in the client’s IKE_AUTH message. In this case, the TSi is narrowed to
the single IPv4 address 10.100.0.1. The TSr has been narrowed to 10.0.0.0/16. Each
uses the full port range 0–65535. This is a relatively simple case of narrowing. In
cases where more than one discontinuous subset of the range specified by the
initiator is acceptable, an N(ADDITIONAL_TS_POSSIBLE) payload may be gener-
ated. Narrowing is used to achieve mutually agreeable address ranges for an SA.

The N(AUTH_LIFETIME) payload indicates that the authentication is going
to last at most only 2.8 hours (10,154s, expressed as 000027aa in the trace). The
N(MOBIKE_SUPPORTED) payload indicates the responder’s support for MOBIKE.
The N(NO_ADDITIONAL_ADDRESSES) payload (not detailed) is used with
MOBIKE to indicate that no additional IP addresses other than those used in the
exchange are being used.

At this point, a tunnel mode ESP CHILD_SA has been set up and traffic can
flow. We do not detail the traffic flow containing ESP packets (they are compara-
tively straightforward) but instead jump to the point where the SAs are to be torn
down. This is accomplished using two sets of INFORMATIONAL exchanges con-
taining Delete payloads—one for the ESP SA and one for the IKE SA. Figure 18-26
shows the request to close the ESP SA.

We can see in this figure the SA being deleted based on a close request at
the client. Like other IKE traffic, it includes an encrypted and authenticated pay-
load. The encrypted payload in turn includes a single Delete payload. The Delete
payload can indicate that more than one SPI is to be deleted, but in this case it

ptg999

874 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Figure 18-25 Completing the IKE_AUTH exchange, the responder produces an Encrypted/Authenticated data
payload containing the following payloads: Identification responder (IDr), CERT, AUTH, CP(CFG_
REPLY), SA, narrowed TSi and TSR, along with N(AUTH_LIFETIME), N(MOBIKE_ SUPPORTED),
and N(NO_ADDITIONAL_ADDRESSES). The first CHILD_SA can now commence.

ptg999

Section 18.8 Layer 3 IP Security (IPsec) 875

indicates only the one with SPI value 0x6cfca5ef. Packet 7 from the responder is
essentially the same but contains a different setting in the Flags field (responder
instead of initiator and response instead of request), a different encryption IV
and integrity checksum data, and specification of a different SPI (c348faf2) in the
Delete payload.

To close the IKE_SA, another exchange of INFORMATIONAL messages is
required. The initiator begins with the packet shown in Figure 18-27. We can see
here a request to close the IKE SA. Encrypted like other traffic, the Delete payload
does not need to include an SPI value because it is implied to be the IKE SA car-
rying the deletion request. To complete the IKE SA deletion, the responder replies
with an IKE message containing only an empty encrypted/authenticated payload
type in packet 9. Its Next Payload type field is NONE (zero). This indicates the
completion of the IKE SA deletion.

Figure 18-26 A request to delete the child ESP SA with SPI 6cfca5ef is carried on the IKE SA. The
Delete payload shows Port: 1, which is mislabeled by Wireshark. (It should be Number
of SPIs: 1.)

ptg999

876 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

18.9 Transport Layer Security (TLS and DTLS)

So far we have discussed security protocols at layers 2 and 3. The most widely
used protocol for security operates just above the transport layer and is called
Transport Layer Security (TLS). TLS is used for securing Web communications and
for several other popular protocols, including POP and IMAP (which are called
POP3S and IMAPS, respectively, when protected with TLS). One reason for TLS’s
popularity is that it can be implemented within or underneath applications that
ride on top of the lower layers, whereas protocols such as EAP and IPsec usually
require capabilities within the operating systems and protocol implementations of
hosts and embedded devices.

There are several versions of TLS and its predecessor, the Secure Sockets Layer
(SSL) [RFC6101]. We shall focus on TLS version 1.2 [RFC5246], which is the most

Figure 18-27 A request to delete the IKE SA. SPI values are not required because the entire message
is carried on the IKE SA and there is no ambiguity.

ptg999

Section 18.9 Transport Layer Security (TLS and DTLS) 877

recent at the time of writing. TLS 1.2 can support backward compatibility with
most older versions of TLS and SSL (e.g., TLS 1.0, 1.1, and SSL 3.0). However, SSL
2.0 is weaker, and while interoperability with it is possible, it is now prohibited
[RFC6176]. After discussing TLS 1.2, which operates over a stream-oriented proto-
col (usually TCP), we will look at the datagram-oriented variant called the Datagram
Transport Layer Security (DTLS) [RFC4347]. DTLS is slowly gaining popularity for
some applications such as VPN implementations that do not use IPsec. Its current
specification is based on TLS 1.1 [RFC4346], but updates are under way [IDDTLS].

18.9.1 TLS 1.2

The security goals of TLS are not unlike those for IPsec, but TLS operates at a
higher layer. Confidentiality and data integrity are provided based on a variety of
cryptographic suites that use certificates that can be provided by a PKI. TLS can
also establish secure connections between two anonymous parties (without using
certificates), but this application is vulnerable to a MITM attack (not surprising,
given that each end is not even strongly identified). The TLS protocol has two
layers of its own, called the record layer and the upper layer. The Record protocol
implements the record (lower) layer and is assumed to be layered on a reliable
underlying protocol (e.g., TCP). Figure 18-28 shows the basic organization.

Figure 18-28 The TLS protocol “stack” has a lower record layer and three of its own upper-layer protocols
called handshaking protocols. A fourth upper-layer protocol is the application protocol using
TLS. The record layer provides fragmentation, compression, integrity protection, and encryp-
tion. The handshaking protocols perform many of the same tasks for TLS that IKE does for IPsec.

TLS is a client/server protocol, designed to support security for a connection
between two applications. The Record protocol provides fragmentation, compres-
sion, integrity protection, and encryption for data objects exchanged between
clients and servers, and the handshake protocols establish identities, perform
authentication, indicate alerts, and provide unique key material for the Record
protocol to use on each connection. The handshaking protocols comprise four spe-
cific protocols: the Handshake protocol, the Alert protocol, the Change Cipher
Spec protocol, and the application data protocol. Like IPsec, TLS is extensible and

ptg999

878 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

can accommodate existing or future cryptographic suites, which TLS calls cipher
suites (CS). Many such combinations have been defined, and the IANA maintains
a registry of the current set [TLSPARAMS]. Modern variants of TLS are based
on SSL 3.0, originally developed by Netscape. TLS and SSL do not directly inter-
operate, but there are negotiation mechanisms that allow clients and servers to
dynamically discover which protocol to use when a connection is first established.

The Change Cipher Spec protocol is used to change the current operating
parameters. This is accomplished by first using the Handshake protocol to set up
a “pending” state, followed by an indication to switch from the current state to the
pending state (which then becomes the current state). Such switching is allowed
only after the pending state has been readied. TLS depends on five cryptographic
operations: digital signing, stream cipher encryption, block cipher encryption,
AEAD, and public key encryption. For integrity protection, the TLS record layer
uses HMAC. For key generation, TLS 1.2 uses a PRF based on HMAC with SHA-
256. TLS also integrates an optional compression algorithm that is negotiated
when a connection is first established.

18.9.1.1 TLS Record Protocol
The Record protocol uses an extensible set of record content type values to iden-
tify which message type (i.e., which of the higher-layer protocols) is being mul-
tiplexed. At any given point in time, the Record protocol has an active current
connection state and another set of state parameters called the pending connection
state. Each connection state is further divided into a read state and a write state.
Each of these states specifies a compression algorithm, encryption algorithm, and
MAC algorithm to be used for communication, along with any necessary keys
and parameters. When a key is changed, the pending state is first set up using
the Handshake protocol, and then a synchronization operation (usually accom-
plished using the Cipher Change protocol) sets the current state equal to the pend-
ing state. When first initialized, all states are set up with NULL encryption, no
compression, and no MAC processing.

The Record protocol’s processing flow is shown in Figure 18-29. It divides
(fragments) higher-layer information blocks into records called TLSPlaintext
records, which can be at most 214 bytes in length (but are usually much less). The
choice of record size resides within TLS; higher-layer message boundaries are
not preserved. Once formed, TLSPlaintext records are compressed using a com-
pression algorithm [RFC3749] identified in the current connection state. There is
always one compression protocol active, although it may be (and usually is) the
NULL compression protocol (which, not surprisingly, provides no compression
gain). The compression algorithm converts a TLSPlaintext record into a TLSCom-
pressed structure. Compression algorithms are required to be lossless and may not
produce an output that is larger than the input by more than 1KB. To protect the
payload from disclosure and modification, encryption and integrity protection
algorithms convert a TLSCompressed structure into a TLSCiphertext structure,
which is then sent on the underlying transport connection.

ptg999

Section 18.9 Transport Layer Security (TLS and DTLS) 879

Figure 18-29 The TLS record layer starts with a TLSPlaintext record, which is compressed by a lossless com-
pression algorithm to form a TLSCompressed record. The TLSCompressed record is encrypted
(and has a MAC applied) to form a TLSCiphertext record, which is sent for transmission. Con-
ventional stream and block ciphers require a MAC, and block ciphers may include padding.
When using AEAD ciphers, a nonce is included with the encrypted and integrity-protected con-
tent, but no separate MAC is used.

Referring to Figure 18-29, when producing a TLSCiphertext structure, a
sequence number is first computed (but not placed in the message), then a MAC
is computed if necessary, and finally symmetric encryption is performed. Prior
to encryption, the message may be padded (up to 255 bytes) to meet any block
length requirements imposed by the encryption algorithm (e.g., for block ciphers).
A MAC is not required for AEAD algorithms that provide both integrity and
encryption (e.g., CCM, GCM), but a nonce is used in such cases.

Keys for the Record protocol are derived from a master secret provided by some
method outside the Record protocol, most often by the Handshake protocol. Using
the master secret, along with random values provided by the client and server
applications at the beginning of the connection, the following keys are generated:

Mc | Ms | Dc | Ds | IVc | IVs = PRF(master_secret, "key expansion",
server_random + client_random)

ptg999

880 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

In this assignment, | is the splitting operator and + is the concatenation opera-
tor. Mc denotes the MAC write key for the client, Ms denotes the MAC write key for
the server, Dc denotes the client’s data write key, Ds denotes the server’s data write
key, IVc denotes the client’s IV, and IVs denotes the server’s IV. With the | opera-
tor, each key uses however many bytes from the PRF function are required. MAC,
encryption, and IV keys, if used, have a fixed length based on the cipher suite
selected. The last two values are used only in cases where implicit nonce genera-
tion takes place with AEAD ciphers (see Section 3.2.1 of [RFC5116]). According to
[RFC5246], the cipher suite requiring the most material is AES_256_CBC_SHA256.
It requires four 32-byte keys, for a total of 128 bytes.

18.9.1.2 TLS Handshaking Protocols
There are three subprotocols to TLS, which perform tasks roughly equivalent
to those performed by IKE in IPsec. More specifically, these other protocols are
identified by numbers used for multiplexing and demultiplexing by the record
layer and are called the Handshake protocol (22), Alert protocol (21), and Cipher
Change protocol (20). The Cipher Change protocol is very simple. It consists of one
message containing a single byte that has the value 1. The purpose of the message
is to indicate to the peer a desire to change from the current to the pending state.
Receiving such a message moves the read pending state to the current state and
causes an indication to the record layer to transition to the pending write state as
soon as possible. This message is used by both client and server.

The Alert protocol is used to deliver status information from one end of a
TLS connection to another. This can include terminating conditions (either fatal
errors or controlled shutdowns) or nonfatal error conditions. As of the publica-
tion of [RFC5246], 24 alert messages were defined in standards. More than half of
them are always fatal (e.g., bad MACs, missing or unknown messages, algorithm
failures).

The Handshake protocol sets up the relevant connection operating parameters.
It allows the TLS endpoints to achieve six major objectives: agree on algorithms
and exchange random values used in forming symmetric encryption keys, estab-
lish algorithm operating parameters, exchange certificates and perform mutual
authentication, generate a session-specific secret, provide security parameters to
the record layer, and verify that all of these operations have executed properly.
Figure 18-30 shows the messages required.

The handshake shown in Figure 18-30 begins with Hello messages. The
ClientHello message is usually the first message sent from client to server. It con-
tains a session ID, proposals for the cryptographic suite number (CS in Figure
18-30), and a set of acceptable compression algorithms (which are usually just
NULL, although [RFC3749] also defines DEFLATE). TLS supports in excess of 250
cipher suite options [TLSPARAMS].

The ClientHello message also contains the TLS version number and a ran-
dom number called ClientHello.random. Upon receiving the ClientHello message,
the server checks to see if the session ID is present in its cache. If so, the server

ptg999

Section 18.9 Transport Layer Security (TLS and DTLS) 881

may agree to continue a previously existing connection (called a “resume”) by
performing an abbreviated handshake. The abbreviated handshake is key to TLS
performance and avoids having to repeatedly verify the authenticity of each end-
point, but it does require synchronization with respect to the cipher specification.
The ServerHello message completes the first part of the exchange by carrying the
server’s random number (ServerHello.random) to the client. This message also con-
tains a session ID value. If the value is the same as that provided by the client, it
indicates the server’s willingness to resume. If not, it has the value 0 and a full
handshake is required.

If a full (nonabbreviated) handshake is executed, the exchange of Hello mes-
sages results in each end becoming aware of the cipher suites, compression algo-
rithms, and random values of its peer. The server selects among the cryptographic
suites specified by the client and may be required to provide its certificate chain in

Figure 18-30 The normal TLS connection initiation exchange consists of several messages that
may be pipelined. Required messages have solid arrows and are shown in boldface
type. An abbreviated exchange takes place if a previously existing connection can be
restarted. This avoids endpoint authentication, which can be costly for systems with
limited processing capabilities.

ptg999

882 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

a Certificate message if it is to be authenticated (which is the typical case for secure
Web traffic or HTTPS). The server may also send a ServerKeyExchange message if
its certificate is not valid for signing, it has no certificate, or a temporary or ephem-
eral key is to be used to generate session keys.

Note

The ServerKeyExchange message is used only in cases where the Certificate
(server) message does not contain enough information to establish a premaster
secret. Such cases include anonymous or ephemeral DH key agreement (i.e.,
cipher suites starting with TLS_DHE_anon, TLS_DHE_DSS, TLS_ DHE_RSA).
The ServerKeyExchange message is not used for other suites, including those
starting with TLS_RSA, TLS_DH_DSS, or TLS_DH_RSA.

At this point, the server may require client authentication. If so, it generates
a CertificateRequest message. Once this message is sent, the server completes the
second portion of the exchange by sending the mandatory ServerHelloDone mes-
sage. Upon receiving this (possibly pipelined) message from the server, the client
may be required to prove its identity (i.e., knowledge of an appropriate private
key corresponding to a certificate). If so, it first sends its certificate using a Cer-
tificate message in the same format used by the server. It then sends the manda-
tory ClientKeyExchange message. The contents of this message depend on the
cryptographic suite used, but it generally contains either an RSA-encrypted key or
Diffie-Hellman parameters that may be used to create a type of seed for creating
new keys (called the premaster secret). Finally, it sends a CertificateVerify message
to demonstrate that it possesses the private key corresponding to the previously
provided certificate, if the server requested client authentication. This message
contains a signature on the hash of all of the handshake messages the client has
received and sent up to this point.

The final portion of the exchange includes a ChangeCipherSpec message,
which is an independent TLS protocol content type (i.e., technically not a Hand-
shake protocol message). However, the mandatory Handshake protocol Finished
messages can be exchanged only after a successful exchange of ChangeCipher-
Spec messages. The Finished messages are the first ones to be protected using the
parameters exchanged up to this point. The Finished message themselves contain
“verify data,” which consists of the following value:

verify_data = PRF(master_secret, finished_label, Hash(handshake_messages))

where finished_label has the value “client finished” for the client and
“server finished” for the server. The particular hash function Hash is associ-
ated with the selection of the PRF made during the initial Hello exchange. TLS 1.2
provides the ability to have variable-length verify data, but all previous versions
and current cipher suites produce 12 bytes of verify data. The 48-byte master_
secret value is computed as follows:

ptg999

Section 18.9 Transport Layer Security (TLS and DTLS) 883

master_secret = PRF(premaster secret, “master secret”,
ClientHello.random + ServerHello.random)

where + is the concatenation operator. The Finished message is important because
it can be used to know with a high degree of certainty that the Handshake proto-
col has completed successfully and subsequent data exchange can take place.

18.9.1.3 TLS Extensions
If we compare the capabilities of IKE and TLS we have discussed so far, we can
see that IKE includes the ability to carry information beyond that required for
basic SA establishment. This is accomplished using IKE Notify and Configuration
payloads. To provide a similar extensible mechanism for TLS, various extensions
can be included with TLS 1.2 messages in a standard way. The baseline specifica-
tion for TLS 1.2 [RFC5246] includes a “signature algorithms” extension that a client
uses to specify to a server what types of hash and signature algorithms it supports
(MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 for hashes and RSA, DSA,
ECDSA for digital signatures are defined). They are indicated in descending order
of preference by pairs, as some systems allow only certain combinations. The cur-
rent list of extensions is given in [TLSEXT].

Previous versions of TLS had about a half-dozen extensions, and [RFC6066]
updates these extensions for TLS 1.2. It defines the following extensions: server_
name (DNS-style name of the server being contacted), max_fragment_length
(maximum length of a message as 2n bytes for n having values 9–12), client_certifi-
cate_url (indicates support for the CertificateURL handshake message used to send
the URL of a certificate instead of a complete certificate), trusted_ca_keys (hashes
or the names of trusted CA public keys and/or certificates), truncated_hmac (use
the first 80 bits of HMAC calculations only), and status_request (requests that a
server invoke OCSP and provide the DER-encoded response in a CertificateStatus
handshake message to check a certificate). Each of these extensions may be pres-
ent in an (extended) ClientHello message and in some circumstances may appear
in the ServerHello message to indicate agreement. Aside from these extensions
and the two handshake messages already mentioned, [RFC6066] also defines
four alert messages: certificate_unobtainable, unrecognized_name, bad_certifi-
cate_status_response, and bad_certificate_hash_value. These are self-explanatory
and are not sent unless the peer has demonstrated understanding of the extended
ClientHello type message.

Several other extensions have been defined or are reserved. The user_map-
ping extension [RFC4681] provides a method for providing context for the user
identifier (e.g., Windows domain). Another expands the cert_type extension to
include not only X.509 certificates but also OpenPGP certificates [RFC6091]. Ellip-
tic curve cipher suites are described by the informational document [RFC4492].
The Secure Remote Password protocol (SRP) can be integrated with TLS according to
the methods defined in the informational document [RFC5054]. A use_srtp exten-
sion designed to produce a version of the Secure Real-Time protocol (SRTP) based on
DTLS (see Section 18.9.2) is given in [RFC5764]. A method to eliminate the state a

ptg999

884 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

server must store to perform session resumption is given by the SessionTicket TLS
extension [RFC5077]. It involves placing the necessary state in an encrypted form
in the client. Finally, an important renegotiation_info extension is used to combat
a renegotiation vulnerability. We shall describe it in more detail next.

18.9.1.4 Renegotiation
TLS supports the ability to renegotiate cryptographic connection parameters while
maintaining the same connection. This can be initiated by either the server or the
client. If the server wishes to renegotiate the connection parameters, it generates a
HelloRequest message, and the client responds with a new ClientHello message,
which begins the renegotiation procedure. The client is also able to generate such
a ClientHello message spontaneously, without prompting from the server.

Support for renegotiation is optional but “highly recommended” and is used,
for example, when sequence numbers are about to wrap. Renegotiation can be
refused by generating a “no_renegotiation” (type 100) warning alert. Although
this type of alert is not required to be terminal, receiving such an alert may, by
local policy, result in connection termination.

In 2009, a successful attack on TLS was demonstrated using the renegotiation
capability. We describe it in more detail in Section 18.12. The vulnerability allows
an attacker to establish a malicious TLS session with a server that can later be
spliced into a subsequent legitimate session by a client using a MITM attack. The
server believes that only a standards-compliant renegotiation has taken place. A
solution to the problem, given in [RFC5746], involves binding any renegotiation
more closely with the existing session using a TLS extension called renegotiation_
info (type 0xff01). When creating a new connection, renegotiation_info is empty.
When client renegotiation takes place, it contains “client_verify_data,” and when
server renegotiation takes place it contains a concatenation of “client_verify_data”
and “server_verify_data.” The client_verify_data is defined to be the same verify_
data used with the Finished message sent by the client on the completion of the
last handshake. This is a 12-byte value in TLS (36 for SSLv3). The server_verify_
data is defined to be the verify_data used with the Finished message sent by the
server on completion of the last handshake.

Some deployed TLS (and SSL) servers abort a connection when unknown
extensions are present. To handle this issue when deploying the (relatively new)
renegotiation_info extension, an alternative is available. The TLS cipher suite
TLS_EMPTY_RENEGOTIATION_INFO_SCSV can be used during connection
establishment to indicate the equivalent of an empty renegotiation_info exten-
sion. This is using a signaling cipher suite value (SCSV) not to encode a real cipher
suite, but instead to indicate a certain set of functions. (A similar trick is used in
DNSSEC for NSEC3 records; see Section 18.10.1.3.)

18.9.1.5 Example
In the example shown in Figure 18-31, we see the messages exchanged during a
connection setup with TLS 1.2 using TCP/IP on the local loopback interface. The
client and server have RSA certificates, which each provides to its peer. The initial

ptg999

Section 18.9 Transport Layer Security (TLS and DTLS) 885

TCP handshake and window update, as well as the 127.0.0.1 source and destina-
tion IPv4 addresses, are not shown. The trace has been annotated with right and
left arrows for additional clarity. The arrows pointing to the right indicate TCP
segments containing at least one TLS message sent by the client headed for the
server. Left-pointing arrows indicate messages from the server to the client. To see
this output, Wireshark was told to decode the trace by first choosing SSL under
the Analyze | Decode As ... menu.

Figure 18-31 A normal TLS 1.2 connection establishment as shown by Wireshark. The server runs
on port 5556. Client messages sent to the server are highlighted by arrows pointing to
the right. Server messages sent to the client are shown with left-pointing arrows. TCP
ACKs are interspersed with the TLS messages. After the Change Cipher Spec mes-
sage (segment 21), other messages are encrypted and authenticated. Segment 13 also
includes the ServerHelloDone message.

In Figure 18-31, after the initial TCP-level handshake, the TLS exchange begins
with a ClientHello message. TCP pure ACKs are seen interspersed with the TLS
messages. After the ChangeCipherSpec message has been processed, the subse-
quent information is encrypted. To see what is happening in more detail, we shall
expand the first few TLS messages. Figure 18-32 shows the detailed contents of the
ClientHello message.

ptg999

886 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Figure 18-32 A ClientHello message in TLS 1.2 contains version information, supported cipher
suites and compression algorithms, random data, and a number of extensions. Here,
the client supports Diffie-Hellman key agreement as well as key exchange using RSA.
It uses AES-256 in CBC mode for encryption and SHA-256 for integrity protection.

ptg999

Section 18.9 Transport Layer Security (TLS and DTLS) 887

The ClientHello message detailed in Figure 18-32 is a Record protocol message
carrying the ClientHello handshake message. It contains a 32-bit UNIX timestamp
counting seconds since midnight, January 1, 1970, plus a random 28-byte value
(ClientHello.random) used in forming keys. As this is a brand-new connection, its
session ID is 0. Six bytes are devoted to carrying the client’s three supported cipher
suites in preference order (most preferred first). Each suite is encoded using a
16-bit value specified by the TLS Cipher Suite Registry in [TLSPARAMS]. Only a
single compression method is supported—the NULL method, which achieves no
compression gain and is typical. Also, 50 bytes are included for extensions. The
cert_type extension indicates that either X.509 or OpenPGP certificates are under-
stood. The server_name extension contains 127.0.0.1, which was the name of the
server provided to the client application. The renegotiation_info is empty, as this
is the first handshake, as is the SessionTicket TLS extension. The signature_algo-
rithms extension indicates that the following combinations can be processed by
the client: sha1-rsa, sha1-dsa, sha256-rsa, sha384-rsa, and sha512-rsa.

In this sample exchange, the server has been configured with only one cipher
suite, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x006b). The server indi-
cates this fact when responding to the ClientHello by using the ServerHello mes-
sage shown in Figure 18-33.

In this figure, the server responds with a ServerHello message to the client’s
ClientHello. The server provides its copy of the current time and its 28-byte ran-
dom value. It also includes a random 32-byte session ID. The server supports only
a single cipher suite (DH key agreement using RSA certificates with AES-256
encryption in CBC mode for encryption and SHA-256 for integrity protection).
Like the client, it does not support any compression methods. It includes an empty
renegotiation_info extension and an empty SessionTicket TLS extension. Follow-
ing this first message, the server continues with a Certificate message, as shown
in Figure 18-34.

The message in Figure 18-34 carries the server’s 841-byte X.509v3 certificate to
the client, which has been signed by a sample certificate authority called Test CA
shown in the Issuer field. The field called SubjectPublickeyInfo contains the server’s
270-byte public RSA key, which the client will use in authenticating the server.
There are six extensions in the certificate: basicConstraints (critical), subjectAltName
(contains a DNS name for the server using the certificate), extKeyUsage (extended
key usage, indicating that the purpose of the key is for authenticating a server),
keyUsage (critical; indicates that the enclosed key may be used for key encipher-
ment or for generating digital signatures), subjectKeyIdentifier (a 20-byte number
identifying the signed public key), and the authorityKeyIdentifier (a 20-byte number
identifying the key used by the certificate authority to produce this certificate).

The ClientKeyExchange message is not detailed as it mostly includes binary
information used in forming the DH exchange. The next message of interest is
segment 13, which is a single TCP segment containing both a CertificateRequest
message and a ServerHelloDone message. Figure 18-35 shows the contents.

ptg999

888 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Figure 18-35 shows a TCP segment containing both a CertificateRequest mes-
sage and a ServerHelloDone message. The CertificateRequest is requesting the
client to provide its certificate and to verify its authenticity using a subsequent
CertificateVerify message. The type of certificate requested should be signed using
either RSA or DSS from the Test CA certificate authority. The signature algorithms
listed are sha1-rsa, sha1-dsa, sha256-rsa, sha384-rsa, and sha512-rsa.

Packet 15 (not detailed) contains the Certificate message that has the certificate
chain for the client and its public key. In this case, the subject field contains “test
client” and the issuer is Test CA. Thus, the client’s and server’s certificates were
signed by the same CA and the chain is a single certificate. For the client to prove
that it possesses the corresponding private key, it generates the CertificateVerify

Figure 18-33 A ServerHello message in TLS 1.2 contains version information, supported cipher
suites and compression algorithms, and a number of extensions. Here, the client sup-
ports Diffie-Hellman key agreement. It uses AES-256 for encryption and SHA-256 for
integrity protection.

ptg999

Section 18.9 Transport Layer Security (TLS and DTLS 889

Figure 18-34 Following the ServerHello, the server generates a Certificate message to carry its cer-
tificate. The client can use the certificate to authenticate the server. The same message
format is used when the server authenticates the client.

ptg999

890 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Figure 18-35 The server’s CertificateRequest and ServerHelloDone messages are contained in the
same TCP segment. The client can use the certificate to authenticate the server. The
same message format is used when the server authenticates the client.

ptg999

Section 18.9 Transport Layer Security (TLS and DTLS) 891

message (packet 19). The CertificateVerify message contains a signature on a hash
of all the session’s handshake messages sent or received so far, signed using the
private key of the client. This proves not only that the client is authentic, but that
it has participated appropriately in the TLS exchanges up to this point and not
lost or reordered any messages. After the CertificateVerify message, the Change
Cipher message begins the subsequent (encrypted) communication.

18.9.2 TLS with Datagrams (DTLS)

The TLS protocol assumes a stream-based underlying transport protocol for deliv-
ering its messages. A datagram version (DTLS) relaxes this assumption but aims
to otherwise achieve the same security goals as TLS using essentially all the same
message formats. It was originally motivated by protocols such as SIP that run on
UDP but do not care to use IPsec [RFC5406]. DTLS has also been adapted for use
with DCCP [RFC5238] and SCTP [RFC6083]. The current version at the time of
writing is DTLS 1.0 [RFC4347], based on TLS 1.1. An update, based on TLS1.2, is in
the works [IDDTLS]. It uses the same protocol layering shown in Figure 18-28 and
most of the same message exchanges.

The main challenge of providing TLS-like service without a reliable trans-
port is that datagrams may get lost, reordered, or duplicated. These problems
can affect encryption and the Handshake protocol, both of which have ordering
dependencies in TLS. To handle them, DTLS adds an explicit sequence number to
each record carried by the record layer (they were implicit with regular TLS) and
a timeout-based retransmission scheme with (different) sequence numbers from
those used by the Handshake protocol.

18.9.2.1 DTLS Record Layer
In TLS, the ordering of records is important because the MAC computation of
one record depends on its predecessor. More specifically, the MAC computation
depends on an implicit 64-bit sequence number for each record that is incorrect
in the presence of datagram reordering or loss. To remedy this problem, DTLS
uses explicit sequence numbers at the record layer. These sequence numbers are
reset to the value 0 after each ChangeCipherSpec message is sent. They are used
in combination with an additional 16-bit epoch number incorporated into each
record’s header. The epoch number is incremented by 1 for each change of cipher
state. This handles the situation where multiple messages containing the same
sequence number, generated as a result of multiple proximate handshakes, might
be in flight simultaneously.

The MAC computation in DTLS is modified from its TLS counterpart to
include the 64-bit concatenation of the two new fields (epoch first, followed by
sequence number). This allows each record to be handled independently. Note
that with TLS, a bad MAC results in connection termination. With DTLS, a full
connection abort is not necessary, and a receiver may choose to simply discard the

ptg999

892 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

record containing the invalid MAC or send an alert message (which, if generated,
must be terminal).

Duplicates are simply dropped or are optionally considered as a replay and
possible attack. Replay detection, if supported, is based on keeping a window of
current sequence numbers at the receiver. The window is required to be at least 32
messages but is suggested to be at least 64. The scheme is similar to that used in
IPsec for AH and ESP. Records arriving with sequence numbers less than the left
window edge are silently discarded as old or duplicative. Those within the win-
dow are checked as possible duplicates. A message within the window carrying
a valid MAC is kept, even if out of order. Those with invalid MACs are discarded.
Those with valid MACs that exceed the right window edge cause the right win-
dow edge to be advanced. Thus, the right window edge represents the validated
message with the highest sequence number.

A single datagram may contain multiple DTLS records, but no single record
may span multiple datagrams. The record layer allows applications to implement
a PMTUD process similar to TCP’s (see Chapter 15) and avoids sending datagrams
it believes are likely to be fragmented. Indeed, applications are supposed to receive
an error indication if they attempt to send application messages that exceed the
PMTU or maximum application datagram size (PMTU minus DTLS overhead).
An exception to this rule is how DTLS handles the Handshake protocol, which can
involve relatively large messages.

18.9.2.2 DTLS Handshake Protocol
Handshake protocol messages can be as large as 224 - 1 bytes but in practice are sev-
eral kilobytes. This can exceed a typical maximum UDP datagram size of 1.5KB.
To handle this situation, a Handshake protocol message may span multiple DTLS
records using a fragmentation procedure. Each fragment is contained in a record,
which is contained in an underlying datagram. To implement fragmentation, each
Handshake message contains a 16-bit Sequence Number field, a 24-bit Fragment Off-
set field, and a 24-bit Fragment Length field.

To perform fragmentation, the original message’s content is divided into mul-
tiple contiguous data ranges. Each range is required to be less than the maxi-
mum fragment size. Each range is placed in a message fragment. Each fragment
contains the same sequence number as the original message. The Fragment Off-
set and Fragment Length fields are expressed in bytes. Senders avoid overlapping
data ranges, but receivers are required to handle this possibility because senders
may be required to adjust their record size over time and retransmissions may be
necessary.

To handle message loss, DTLS implements a simple timeout and retransmis-
sion capability that operates on groups of messages called flights. Figure 18-36
shows both the full (left) and abbreviated (right) establishment exchanges, along
with the DTLS Handshake protocol state machine.

In Figure 18-36, flight numbers are given in the area between the full and
abbreviated exchanges. The full exchange is very similar to the full TLS exchange

ptg999

Section 18.9 Transport Layer Security (TLS and DTLS) 893

shown in Figure 18-30, except for the additional HelloVerifyRequest and second
ClientHello messages (which now contain cookies). The abbreviated exchange is
different, however. In DTLS the server sends the first Finished message, whereas
in TLS the client sends the first Finished message.

The lower right portion of Figure 18-36 depicts the state machine used by
DTLS implementations when performing the Handshake protocol. There are
three primary states: Preparing, Sending, and Waiting. The client starts in the Pre-
paring state as it creates its ClientHello message. The server begins in the Waiting

Figure 18-36 In DTLS, the possibility of lost datagrams must be handled. The initial full exchange
(left) comprises six “flights” of information, each of which can be retransmitted. The
DTLS abbreviated exchange (top right) uses only three and differs slightly from TLS.
DTLS maintains a three-state finite state machine (bottom right) when processing the
protocol.

ptg999

894 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

state with no buffered messages or active retransmission timer. When sending, a
retransmission timer is set and the Waiting state is entered upon completion of
the transmission. Expiration of the retransmission (RTX) timer brings the proto-
col back to the Sending state to perform a retransmission, as does the receipt of
a retransmitted flight from the peer. In this latter case the local system performs
a retransmission of its own flight with the rationale that its previous transmis-
sion must have been partially or completely lost, as indicated by the presence of
peer retransmission. If everything goes well, a flight is received, and the local
system either finishes or returns to the Preparing state to form its next flight for
transmission.

The state machine is driven by a retransmission timer with a recommended
default value of 1s. If no response for a flight has been received within the timeout
duration, the flight is retransmitted using the same Handshake protocol sequence
numbers; record-layer sequence numbers still advance. Subsequent retransmis-
sions without a response result in doubling of the RTX timeout value, up to a value
of at least 60s. This value may be reset after a successful transmission or a long idle
period (ten times the current timer value or more).

18.9.2.3 DTLS DoS Protection
When datagrams are used instead of a reliable byte stream protocol, some addi-
tional security considerations come into play. Of special concern are two potential
DoS attacks. It is relatively simple for an attacker to forge a source IP address when
sending a ClientHello message. Many such messages could cause a DoS attack
at the DTLS server because of exhaustion of processing resources when forming
responses. A variant of this attack involves having multiple attacking machines
include the same forged source (victim) IP address. The responding server(s)
then send(s) responses to the victim’s IP address, causing the victim machine to
undergo a DoS attack.

A stateless cookie validation procedure incorporated into the Hello exchange
helps resist both DoS attacks. When a server receives a ClientHello message, it
generates a new HelloVerifyRequest message containing a 32-bit cookie (which
may be a function of a secret, the client’s IP addresses, and the connection param-
eters). A subsequent ClientHello message must contain a copy of the appropri-
ate cookie. Otherwise, the server refuses the exchange. This allows the server to
quickly dispense with requests that do not provide valid cookies. It does not pro-
tect against coordinated attacks from multiple legitimate IP addresses that can
complete the cookie exchange.

18.10 DNS Security (DNSSEC)

Now that we have discussed popular security protocols at the link, network, and
transport layers, we move to the application layer. Although it is not yet widely
deployed at the time of writing, we shall focus on how to provide enhanced

ptg999

Section 18.10 DNS Security (DNSSEC) 895

security for the Domain Name System (DNS). Security for DNS covers both data
within the DNS (resource records or RRs) as well as security of transactions that
synchronize or update contents of DNS servers. Given its important role in the
operation of the Internet, a major effort has been undertaken to deploy these secu-
rity mechanisms. The mechanisms are called the Domain Name System Security
Extensions (DNSSEC) and are discussed in a family of RFCs [RFC4033][RFC4034]
[RFC4035]. These RFCs are sometimes referred to as DNSSECbis because they
replace an earlier set of specifications for DNSSEC. As we explore DNSSEC in
further detail, it may be worthwhile to review the description of basic DNS (see
Chapter 11).

The extensions provide origin authentication and integrity assurance for DNS
data, along with a (limited) key distribution facility. That is, the extensions provide
a cryptographically secure way to determine what entity has authored a block of
DNS information and that the information has been received unaltered. DNSSEC
also provides authenticated nonexistence. DNS responses indicating the nonexis-
tence of a particular domain name include protection similar to that of responses
for existing domain names. DNSSEC does not provide privacy (confidentiality)
of DNS information, DoS protection, or access control. Transaction security, used
with DNSSEC, is defined separately, and we will mention it briefly after discuss-
ing the core DNSSEC data security capabilities.

DNSSEC accommodates resolvers with varying levels of security “aware-
ness.” A validating security-aware resolver (also called validating resolver) checks
cryptographic signatures to ensure that the DNS data it handles is secure. Other
resolvers, including stub resolvers on hosts and the “resolver side” of recursive
name servers, may be security-aware but may not perform cryptographic valida-
tion. Instead, such resolvers should establish secure associations with validating
resolvers. We shall focus on the validating resolvers, as they are the most sophis-
ticated and interesting. When operating, they are able to ascertain whether DNS
information is secure (valid with all signatures checked), insecure (valid signatures
indicate that something should not be present but is), bogus (proper data appears
to be present but cannot be validated for some reason), or indeterminate (veracity
cannot be determined, usually because of lack of signatures). The indeterminate
case is the default case when no other information is available.

DNSSEC works securely only when a zone is signed by a domain administra-
tor, there is some basis for trust, and both server and resolver software participate.
Validating resolvers check signatures to ensure that DNS information is secure,
and they must be configured with one or more initial trust anchors that are simi-
lar to root certificates in a PKI. Note, however, that DNSSEC is not a PKI; in par-
ticular, it provides only limited signing and key revocation. It does not implement
an analog to certificate revocation lists [RFC5011].

When performing a DNS query with DNSSEC, a security-aware resolver
uses EDNS0 and enables the DO (DNSSEC OK) bit in an OPT meta-RR pres-
ent in the request. This bit indicates the client’s interest in and ability to process
DNSSEC-related information along with its support for EDNS0. The DO bit is

ptg999

896 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

the first (high-order) bit of the second 16-bit field in the “extended RCODE and
flags” portion of the EDNS0 meta-RR (see Section 3 of [RFC3225] and Section 4 of
[RFC2671]). Servers that receive requests in which the DO bit is not set (or pres-
ent) are prohibited from returning most of the RRs discussed in Section 18.10.1
unless such records are explicitly asked for in the request. This helps to improve
DNS performance because it avoids having to carry security-related RRs that are
never processed by security-unaware resolvers. This can be especially beneficial
because DNS typically uses relatively small UDP packets and falls back to using
TCP, which increases latency due to its three-way handshake, for large responses.

When a server processes a request from a DNSSEC-enabled resolver, it checks
the CD (checking disabled) bit in the DNS request (see Chapter 11). If set, this
indicates that the client is willing to accept nonvalidated data in a response. When
preparing a response, a server ordinarily validates the data it is returning crypto-
graphically. Successful validation results in the AD (authentic data) bit being set
in the response [RFC4035]. A security-aware but nonvalidating resolver can in
principle trust this information if it has a secure path to the server. However, the
arguably best case is to use validating stub resolvers that perform cryptographic
validation and consequently set the CD bit on queries. This provides end-to-end
security of the DNS (i.e., an intermediate resolver need not be trusted), and it
reduces the computational load on the intermediate servers that would otherwise
have to perform cryptographic validation.

18.10.1 DNSSEC Resource Records

As specified in [RFC4034], DNSSEC uses four new resource records (RRs) and two
message header bits (CD and AD). It also requires EDNS0 support and uses the
DO bit field we mentioned previously. Two of the four RRs are used to contain sig-
natures for portions of the DNS name space, and the other two are used in helping
to distribute and validate keys. A change in [RFC5155] created two additional new
RRs, intended to replace one of the original four.

18.10.1.1 DNS Security (DNSKEY) Resource Records
We begin by looking at how DNSSEC stores and distributes keys. DNSSEC uses
the DNSKEY resource record to hold public keys. The keys are intended for use
with DNSSEC only; other RRs (e.g., the CERT RR [RFC4398]) may be useful for
holding keys or certificates for other purposes. The format of the RDATA portion
of a DNSKEY RR is shown in Figure 18-37.

The Flags field in Figure 18-37 has 3 bits currently defined. Bit 7 is the Zone Key
bit field. If set, the DNSKEY RR owner’s name must be the name of a zone and the
included key is called either a Zone Signing Key (ZSK) or a Key Signing Key (KSK).
If not set, the record holds some other kind of DNS key that cannot be used for
validating signatures for zones. Bit 15 is called the Secure Entry Point (SEP) bit. It
is a hint that can be used by debugging or signing software to make an informed
guess as to the purpose of the key. Signature validation does not interpret the SEP

ptg999

Section 18.10 DNS Security (DNSSEC) 897

bit, but keys with this bit set are usually KSKs and are used to secure the DNS
hierarchy by validating keys in child zones (via DS records; see Section 18.10.1.2).
Bit 8 is the Revoked bit [RFC5011] if set the key cannot be used for validation.
The Protocol field holds the value 3 for this version of DNSSEC. The Algorithm
field indicates the signing algorithm [DNSSECALG]. Only DSA and RSA with
SHA-1 (values 3 and 5, respectively) are defined for use with DNSKEY RRs accord-
ing to [RFC4034], but additional specifications support other algorithms (e.g., see
[RFC5933] for ECC-GOST (value 12), [RFC5702] for SHA-256 (value 8)). These val-
ues are also used with several of the other DNSSEC RRs. The Public Key field holds
a public key whose format depends on the Algorithm field.

18.10.1.2 Delegation Signer (DS) Resource Records
A delegation signer (DS) resource record is used to refer to a DNSKEY RR, usu-
ally from a parent zone to a descendant zone. These records are used during the
authentication process to verify a public key (see Section 18.10.2). The DS RR for-
mat is shown in Figure 18-38.

Figure 18-37 The RDATA portion of the DNSKEY RR contains a public key used only for DNSSEC.
The Flags field includes a Zone Key indicator (bit 7), a Secure Entry Point indicator (bit
15), and Revoked indicator (bit 8). Generally, the zone key is set for all DNSSEC keys.
If the advisory SEP bit is also set, the key is typically called a key signing key and is
used for validating delegations to child zones. If not, the key is usually a zone sign-
ing key, has a shorter validity period, and is typically used to sign zone contents and
not delegations. The included key is to be used with the algorithm specified in the
Algorithm field.

Figure 18-38 The RDATA portion of the DS RR contains a nonunique reference to a DNSKEY RR in
the Key Tag field. It also contains a message digest of the DNSKEY RR and its owner,
plus indications of the type of digest and algorithm.

ptg999

898 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

The Key Tag field in Figure 18-38 is a reference to a DNSKEY RR. However, it
is not unique. Multiple DNSKEY RRs may have the same tag value, so the field is
used only as a search hint (confirming that validation is still necessary). The value
for this field is computed as the 16-bit unsigned sum of data comprising the refer-
enced DNSKEY RR RDATA area (carries are ignored) as shown in Figure 18-37. The
Algorithm field uses the same values as the DNSKEY RR Algorithm field. The Digest
Type field indicates the type of signature used. Only value 1 (SHA-1) is defined by
[RFC4034], but SHA-256 (value 2) is specified for use by [RFC4509]. The current
list is contained in the DS RR Type Digest Algorithms registry [DSRRTYPES]. The
Digest field contains the digest of the DNSKEY RR being referenced. More specifi-
cally, the digest is computed as follows:

digest = digest_algorithm(DNSKEY owner name | DNSKEY RDATA)

where | is the concatenation operator and the DNSKEY RDATA value is computed
from the referenced DNSKEY RR as follows:

DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key

For the case of SHA-1, the digest is 20 bytes in length. For SHA-256 it is 32
bytes. The DS RR is used to provide a downward link in the authentication chain
across zone boundaries, so the referenced DNSKEY RR must be a zone key (i.e., bit
7 of the Flags field in the DNSKEY RR must be set).

Note

At the time of writing, a variant of the DS RR called DS2 is under consideration
[IDDS2]. It introduces a Canonical Signer Name to the DS RR so that multiple
zones with identical content can be named differently and signed by multiple (dif-
ferent) signers. In addition, there is a DLV RR [RFC4431] that has been used to
provide delegations in cases where a parent zone is not signed or has not pub-
lished DS RRs. The format of a DLV RR is identical to that of a DS RR; only the
interpretation differs.

18.10.1.3 NextSECure (NSEC and NSEC3) Resource Records
Now that we have seen the RRs needed to hold and securely refer to keys, we move
on to the records used to validate the structure of a zone and the resource records
it contains. The NextSECure (NSEC) RR is used to hold the “next” RRset owner’s
domain name in the canonical ordering of names (see Section 18.10.2.1) or a delega-
tion point NS type RRset. (Recall, an RRset is a set of RRs with the same owner,
class, TTL, and type but with different data.) It also holds a list of RR types present
at the NSEC RR owner’s name. This provides authentication and integrity verifica-
tion for the zone structure. The format of an NSEC RR is shown in Figure 18-39.

ptg999

Section 18.10 DNS Security (DNSSEC) 899

The NSEC RR is used to form a chain of names corresponding to RRsets
within a zone. Consequently, an RRset not present in the chain can be shown to
not exist. This provides the authenticated denial of existence feature mentioned
previously. The Next Domain Name field holds the next entry in the canonically
ordered domain name chain for the zone without using the domain name com-
pression technique described in Chapter 11. The value of this field for the last
NSEC record of the chain is the zone apex (the owner name of the zone’s SOA RR).

The Type Bit Maps field of the NSEC RR holds a bitmap of RR types present at
the NSEC RR owner’s domain name. There is a maximum of 64K possible types,
about 100 of which have been defined to date [DNSPARAMS]. Only a fraction of
these are in widespread use. For example, the Internet’s root zone (domain name
“.”), which became operational with DNSSEC on July 15, 2010, contains a Next
Domain Name field of ac (a ccTLD) and a bitmap indicating the presence of records
of the following types: NS, SOA, RRSIG, NSEC, and DNSKEY.

To encode the presence of a type, the whole space of RR types is divided into
256 “window blocks,” numbered 0 through 255. For each block number, the pres-
ence of up to 256 RR types can be encoded using a bit mask. Given a block num-
ber N and bit position P, the corresponding RR type number is (N*256 + P). For
example, in block 1, bit position 2 corresponds to RR type 258 (a type not currently
defined). The field is encoded as follows:

Type Bit Maps = (window block number | bitmap length | bitmap)*

where | is the concatenation operator and * represents Kleene closure (i.e., zero or
more). Each instance of the window block number contains a value in the range
0–255, and the bitmap length contains the length of the corresponding bitmap
in bytes (maximum value 32). The window block number and bitmap length are
each single bytes, and the bitmap can be as long as 32 bytes (256 bits, one for each
possible RR type in the window). Blocks in which no RR type is present are not
included. The encoding is optimized for a sparse presence of types across blocks.
For example, if only RR types 1 (A) and 15 (MX) were present, the encoding for the
field would be as follows: 0x00024001 = (0x00 | 0x02 | 0x4001).

Figure 18-39 The RDATA portion of the NSEC RR contains the name of the next RRset owner for the
zone in canonical order. It also contains an indication of which RR types were present
at the NSEC RR owner’s domain name.

ptg999

900 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

The original structure of NSEC records defined in [RFC4034] creates a situa-
tion in which anyone is able to enumerate the authority records in a zone by walk-
ing the NSEC chain, called zone enumeration. This is an unwanted opportunity
for “leakage” of information for many deployments. As a result, a pair of RRs,
intended to replace NSEC, is defined in [RFC5155]. The first is called NSEC3. It
uses cryptographic hashes of RR owner domain names rather than unencoded
domain names. The format is shown in Figure 18-40.

Figure 18-40 The RDATA portion of the NSEC3 RR contains a hash of the name of the next RRset
owner for the zone in canonical order. The hash function has been applied the number
of times specified in the Iterations field. The variable-length Salt value is appended to
the name prior to applying the hash function to provide dictionary attack resistance.
The Type Bit Maps field uses the same structure as NSEC RRs. NSEC3PARAM records
are similar but contain only the hash parameters (not the Next Hashed Owner or Type
Bit Maps fields).

In the NSEC3 record, the Hash Algorithm field identifies the hash function
applied to the next owner name to produce the Next Hashed Owner field. Only
SHA-1 (value 1) is defined to date [NSEC3PARAMS]. The low-order bit of the Flags
field contains an opt-out flag. If set, it indicates that the NSEC3 record may cover
unsigned delegations. This is used in cases where a delegation (NS RRset) refers
to a child zone that is not required to be or is not desired to be signed. The Itera-
tions field indicates how many times the hash function has been applied. A larger
number of iterations may help to protect against finding the owner names cor-
responding to hash values found in NSEC3 records (dictionary attacks). The Salt
Length field gives the length of the Salt field in bytes. The Salt field contains a value
appended to the original owner name prior to computing the hash function. Its
purpose is to help thwart dictionary attacks.

The second RR specified by [RFC5155] is called the NSEC3PARAM RR (not
shown separately). It uses the same format as the NSEC3 RR, except the Hash

ptg999

Section 18.10 DNS Security (DNSSEC) 901

Length, Next Hashed Owner, and Type Bit Maps fields are not present. It is used by
an authoritative name server when choosing NSEC3 records to use in a negative
response. The NSEC3PARAM RR provides the parameters needed for computing
a hashed owner name.

To obtain the hash value for the Next Hashed Owner field, the following com-
putation is performed:

IH(0) = H(owner name | Salt)

IH(k) = H(IH(k - 1) | Salt) if k > 0

Next Hashed Owner = H(IH(Iterations) | Salt)

where H is the hash function specified in the Hash Algorithm field and the owner
name is in canonical form. The iterations and salt values are taken from the cor-
responding fields of the NSEC3 RR.

To avoid confusion between NSEC and NSEC3 RR types, [RFC5155] allocates
and requires the use of special security algorithm numbers 6 and 7 as aliases
for identifiers 3 (DSA) and 5 (SHA-1) in zones employing NSEC3 RRs. Resolv-
ers unaware of the NSEC3 record type receiving these values treat the resulting
records as insecure. This provides a certain limited form of backward compatibil-
ity (i.e., failing, but doing so without incorrectly interpreting RR data).

18.10.1.4 Resource Record Signature (RRSIG) Resource Records
Moving from the DNS structure to its contents, we require a way to provide ori-
gin authentication and integrity protection for RRs. DNSSEC signs and validates
signatures on RRsets using the Resource Record Signature (RRSIG) RR, and every
authoritative RR in a zone must be signed (glue records and delegation NS records
present in parent zones aren’t). An RRSIG RR contains a digital signature for a
particular RRset, along with information to identify which public key can be used
to validate the signature, as shown in Figure 18-41.

The Type Covered field indicates the type of the RRset to which the signature
applies. The value is taken from the standard set of RR types in [DNSPARAMS].
The Algorithm field indicates the signing algorithm. Only DSA and RSA with
SHA-1 (values 3 and 5, respectively) are defined for use with RRSIG RRs according
to [RFC4034], but [RFC5702] covers SHA-2 algorithms and [RFC5933] covers GOST
algorithms (from the Russian Federation). The Labels field gives the number of
labels in the original owner’s name of the RRSIG RR. The Original TTL field holds
a copy of the TTL from the RRset as it appears in the authoritative zone (caching
name servers may reduce the TTL). The Signature Expiration and Signature Inception
fields indicate the starting and ending validity times for the signature, expressed
in seconds since January 1, 1970, 00:00:00 UTC. The Key Tag field helps to identify
the DNSKEY RR that can be used to obtain the public key necessary to validate the
signature contained in the Signature field, using the format described previously
for the DS RR.

ptg999

902 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

18.10.2 DNSSEC Operation

Now that we have covered all the RRs required by DNSSEC, we can see how to
use DNSSEC to secure zones. We shall first require the definition of a canonical
ordering, mentioned earlier when defining the NSEC and NSEC3 record types. The
purpose of a defined canonical ordering for a zone is to be able to enumerate a
zone’s contents in a reproducible way that can be signed (different orders of the
same contents would produce different values for any good hash function). Once
we are familiar with the ordering, we look at how a zone is signed and how signed
records describing a zone are validated.

18.10.2.1 Canonical Orderings and Forms
There are three canonical orderings of interest to us: the canonical name order
within a zone, the canonical form for a single RR, and the canonical ordering of
an RRset [RFC4034]. Recall from Chapter 11 that each RR has an owner name
(owner’s domain name) consisting of labels. By treating each label in a name as a
left-justified string of bytes and treating uppercase US-ASCII letters as lowercase,
we can form a list of names. We first sort the names by their most significant
(right-most) label, then by the next most significant label, and so on. The absence
of a byte sorts before a zero-value byte. A valid canonical ordering would be com,
company.com, *.company.com, UK.company.COM, usa.company.com. Wild-
cards can be used.

Figure 18-41 The RDATA portion of the RRSIG RR contains a signature for an RRset. The TTL of
the RRset as it appears in the authoritative zone is also included, along with indicators
of the algorithm and signature validity period. The Key Tag field refers to a DNSKEY
RR containing a public key that can be used to validate the signature. The Labels field
indicates how many labels constitute the original owning name of the RR.

ptg999

Section 18.10 DNS Security (DNSSEC) 903

For a particular RR, there is a well-defined canonical form. This form requires
the RR to adhere to the following rules:

1. Every domain name is an FQDN and fully expanded (no compression
labels).

2. All uppercase US-ASCII letters in the owner name are replaced by the cor-
responding lowercase versions.

3. All uppercase US-ASCII letters are replaced by their lowercase versions
for any domain names present in the RDATA portion of records with type
numbers 2–9, 12, 14, 15, 17, 18, 21, 24, 26, 33, 35, 36, 39, and 38.

4. Any wildcards (*) are not substituted.

5. The TTL is set to its original value as it appeared in the originating authori-
tative zone or the Original TTL field of the covering RRSIG RR.

Note

A number of clarifications and important changes are being applied to the base-
line DNSSECbis family of documents. The reader is encouraged to consult the
most recent version of [IDDCIN] for further details.

The canonical order of the RRs within an RRset follows essentially the same
rule as for owner names but applies to an RR’s RDATA contents in canonical form
treated as a left-justified byte string.

18.10.2.2 Signed Zones and Zone Cuts
DNSSEC depends on signed zones. Such zones include RRSIG, DNSKEY, and
NSEC (or NSEC3) RRs and may contain DS RRs if there is a signed delegation
point. Signing makes use of public key cryptography where the public keys are
stored in and distributed by the DNS. Figure 18-42 shows an abstract delegation
point between a parent and child zone.

In the figure, the parent zone contains its own DNSKEY RR, which provides
the public key corresponding to the private key used to sign all authoritative
RRsets in the zone using RRSIG RRs (multiple DNSKEYs are possible). A DS RR
in the parent provides a hash of one of the DNSKEY RRs in the child’s apex. This
establishes a chain of trust from the parent to the child. A validating resolver that
trusts the parent’s DS RR can validate the child’s DNSKEY RR and ultimately the
RRSIGs and signed RRsets within the child zone. This happens only if the valida-
tor has a root of trust that can be connected to the parent’s DNSKEY RR.

18.10.2.3 Resolver Operation Example
Given a chain of signed zones and a security-aware validating resolver, we can
see how the contents of a DNS response can be validated. In the best case, a zone

ptg999

904 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

can be reached through a chain of trust from the root zone. ICANN keeps a list of
which zones have been enabled for DNSSEC by having DS records present in the
root zone and signed DNSKEY RRs [TLD-REPORT].

Assume that we wish to resolve and verify an A RR type for the domain name
www.icann.org. Proceeding from the root downward, we shall at first require
the root’s trust anchor (i.e., DNSKEY RRs), DS records for org. contained in one
of the root name servers, and perhaps RRSIG and NSEC (NSEC3) records. We
then repeat the process using the org. and icann.org. domain names and cor-
responding DNS servers. We begin with the root zone:

Linux% dig @a.root-servers.net. . dnskey +noquestion +nocomments \
+nostats +multiline
;; Truncated, retrying in TCP mode.
; <<>> DiG 9.7.2-P3 <<>> @a.root-servers.net. . dnskey
 +noquestion +nocomments +nostats +multiline
; (1 server found)
;; global options: +cmd
. 86400 IN DNSKEY 257 3 8 (AwEAAagAIKl ...) ; key id = 19036

Figure 18-42 A zone cut for an authenticated delegated zone includes a DS RR in the parent containing a hash
of the DNSKEY RR(s) in the child. All RRsets are signed with corresponding RRSIG RRs except
the delegation NS RRs (and glue records) in the parent. NSEC RRs can be used to verify the
types present in the zone and include an SOA RR type indication at the apex in the child zone.

www.icann.org

ptg999

Section 18.10 DNS Security (DNSSEC) 905

. 86400 IN DNSKEY 256 3 8 (AwEAAb5gVAz ...) ; key id = 21639

. 86400 IN DNSKEY 256 3 8 (AwEAAcAPhPM ...) ; key id = 40288

Here we can see the trust anchor for the root zone, which constitutes the root
of trust for all DNSSEC in the Internet. The first key is a KSK, indicated by the
value 257 (SEP bit is 1), which is the preferred one used in forming trust chains.
The others are marked as ZSKs. Next, we would like to ensure that all the records
we have just seen are supposed to be present and have appropriate signatures. The
root’s RRSIG records of interest can be seen as follows:

Linux% dig @a.root-servers.net. . rrsig +noquestion +nocomments \
+nostats +noauthority +noadditional
;; Truncated, retrying in TCP mode.

; <<>> DiG 9.7.2-P3 <<>> @a.root-servers.net. . rrsig +noquestion
 +nocomments +nostats +noauthority +noadditional
; (1 server found)
;; global options: +cmd
. 86400 IN RRSIG NSEC 8 0 86400 20101228000000 20101220230000
 40288 . RyoGB1dxxX...
. 86400 IN RRSIG DNSKEY 8 0 86400 20110105235959 20101221000000
 19036 . f8bzNvPmHR...

...

The RRSIG covering the DNSKEY record uses key tag 19036, which matches
the KSK contained in the root zone’s DNSKEY RR. The root contains other RRSIG
records (for its SOA and NS records), but we are more concerned with the RRSIGs
for the DNSKEY and NSEC RRs. Just to be extra-sure that the DNSKEY RR should
be present, we can inspect the root’s NSEC RR to verify that its type is present:

Linux% dig @a.root-servers.net. . nsec +noquestion +nocomments \
+nostats +noauthority +noadditional
; <<>> DiG 9.7.2-P3 <<>> @a.root-servers.net. . nsec +noquestion
 +nocomments +nostats +noauthority +noadditional
; (1 server found)
;; global options: +cmd
. 86400 IN NSEC ac. NS SOA RRSIG NSEC DNSKEY

This confirms that the root zone officially contains RRset types NS, SOA,
RRSIG, NSEC, and DNSKEY, so we are in good shape so far. (Note also that ac.
is the first TLD in the canonical ordering of the root zone.) Next we need to check
out the signatures on the delegation from the root to org.. This can be done as
follows:

Linux% dig @a.root-servers.net. org. rrsig +noquestion +nocomments \
+nostats +noadditional +dnssec
; <<>> DiG 9.7.2-P3 <<>> @a.root-servers.net. org. rrsig +noquestion
 +nocomments +nostats +noadditional +dnssec

ptg999

906 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

; (1 server found)
;; global options: +cmd
org. 172800 IN NS d0.org.afilias-nst.org.
org. 172800 IN NS b2.org.afilias-nst.org.
org. 172800 IN NS a0.org.afilias-nst.info.
org. 172800 IN NS b0.org.afilias-nst.org.
org. 172800 IN NS a2.org.afilias-nst.info.
org. 172800 IN NS c0.org.afilias-nst.info.
org. 86400 IN DS 21366 7 2 96EEB2FFD9 ...
org. 86400 IN DS 21366 7 1 E6C1716CFB ...
org. 86400 IN RRSIG DS 8 1 86400 20101228000000 20101220230000
 40288 . jpcJOGclvvlnx9Kvz5 ...

The presence of the DS RRset and its associated RRSIG suggests that indeed
there is a DNSSEC secured delegation. The RRSIG RR contains the key tag 40288,
which refers to the third DNSKEY RR we saw earlier for the root zone (the ZSK).
The NS records provide us with the names of the next servers to use in the next
steps for our query. We can proceed by repeating the queries we made for the root,
but this time using org.. We direct such queries at one of the servers specified in
the NS RR for org. in the root:

Linux% dig @d0.org.afilias-nst.org. org. dnskey +dnssec +nostats \
+noquestion +multiline
; <<>> DiG 9.7.2-P3 <<>> @d0.org.afilias-nst.org. org. dnskey +dnssec
 +nostats +noquestion +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8061
;; flags: qr aa rd; QUERY: 1, ANSWER: 6, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; ANSWER SECTION:
org. 900 IN DNSKEY 256 3 7 (AwEAAZTErUF ...) ; key id = 1743
org. 900 IN DNSKEY 256 3 7 (AwEAAazTpnm ...) ; key id = 43172
org. 900 IN DNSKEY 257 3 7 (AwEAAYpYfj3 ...) ; key id = 21366
org. 900 IN DNSKEY 257 3 7 (AwEAAZTjbIO ...) ; key id = 9795
org. 900 IN RRSIG DNSKEY 7 1 900 20101231154644
 20101217144644 21366 org.
 aIZgEsoJO+Q8ZXM ...
org. 900 IN RRSIG DNSKEY 7 1 900 20101231154644
 20101217144644 43172 org. MWWosWBdEmM8CiM ...

Here we can see that four DNSKEY RRs exist, two of which are KSKs (value
257) and two of which are ZSKs (value 256). The third one listed (21366) corre-
sponds to the DS RR we found located in the root zone. The RRSIG RRs use this
key, plus the ZSK with ID 43172. To verify their presence as legitimate, we can
look for NSEC or NSEC3 records that may be present for org.:

ptg999

Section 18.10 DNS Security (DNSSEC) 907

Linux% dig @d0.org.afilias-nst.org. org. nsec +dnssec +nostats \
+noquestion
; <<>> DiG 9.7.2-P3 <<>> @d0.org.afilias-nst.org. nsec org. +dnssec
 +nostats +noquestion
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61632
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; AUTHORITY SECTION:
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN NSEC3 1 1 1
 D399EAAB
 H9RSFB7FPF2L8HG35CMPC765TDK23RP6
 NS SOA RRSIG DNSKEY NSEC3PARAM
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN RRSIG NSEC3 7 2
 86400 20110105003654
 20101221233654
 43172 org. eBtna4fok ...

Here we see an NSEC3 record with owner name equal to the hashed version
of org.. It indicates the presence of a DNSKEY and RRSIG record, as well as NS
and NSEC3PARAM records. Following the last type, we can determine the NSEC3
information:

Linux% ./dig @a0.org.afilias-nst.info. org. nsec3param +dnssec \
+nostats +noadditional +noauthority +noquestion
; <<>> DiG 9.7.2-P3 <<>> @a0.org.afilias-nst.info. org. nsec3param
 +dnssec +nostats +noadditional +noauthority +noquestion
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38602
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 7, ADDITIONAL: 13
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; ANSWER SECTION:
org. 900 IN NSEC3PARAM 1 0 1 D399EAAB
org. 900 IN RRSIG NSEC3PARAM 7 1 900 20101231154644
 20101217144644 43172 org. fS2kFw53e1Y ...

We can see that this NSEC3PARAM RR matches the NSEC3 RR because of the
match of the value D399EAAB (signature). We can also see that the signature in the
RRSIG RR came from the private key associated with DNSKEY having ID 43172.
If all signatures match, so far we have a valid chain of trust. To complete the chain,
we need information about icann.org.:

ptg999

908 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Linux% dig @a0.org.afilias-nst.info. icann.org. any +dnssec +nostats \
+noadditional
; <<>> DiG 9.7.2-P3 <<>> @a0.org.afilias-nst.info. icann.org. any
 +dnssec +nostats +noadditional
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61234
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 8, ADDITIONAL: 3
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;icann.org. IN ANY

;; AUTHORITY SECTION:
icann.org. 86400 IN NS a.iana-servers.net.
icann.org. 86400 IN NS b.iana-servers.org.
icann.org. 86400 IN NS c.iana-servers.net.
icann.org. 86400 IN NS d.iana-servers.net.
icann.org. 86400 IN NS ns.icann.org.
icann.org. 86400 IN DS 41643 7 1 93358DB ...
icann.org. 86400 IN DS 41643 7 2 B8AB67D ...
icann.org. 86400 IN RRSIG DS 7 2 86400 20101231154644
 20101217144644 43172 org. cZ1Z30w// ...

We can see the DS RR indicating the signed delegation for icann.org. from
org.. The RRSIG for the DS RRset is signed based on the ZSK with ID 43172.
Using one of the servers present in the NS records, we can look at the final server:

Linux% dig @a.iana-servers.net. icann.org. dnskey +dnssec +nostats \
+noquestion +multiline

; <<>> DiG 9.7.2-P3 <<>> @a.iana-servers.net. icann.org. dnskey +dnssec
 +nostats +noquestion +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22065
;; flags: qr aa rd; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; ANSWER SECTION:
icann.org. 3600 IN DNSKEY 256 3 7 (AwEAAbDmrVc ...) ; key id = 41295
icann.org. 3600 IN DNSKEY 256 3 7 (AwEAAbgrYZd ...) ; key id = 55469
icann.org. 3600 IN DNSKEY 257 3 7 (AwEAAZuSdr4 ...) ; key id = 7455
icann.org. 3600 IN DNSKEY 257 3 7 (AwEAAcyguBH ...) ; key id = 41643
icann.org. 3600 IN RRSIG DNSKEY 7 2 3600 20101229153632
 20101222042536 41643 icann.org.
 UxR/5vyOIS ...

ptg999

Section 18.10 DNS Security (DNSSEC) 909

Here we can see that four DNSKEY RRs exist—two KSKs and two ZSKs. The
fourth one listed (41643) corresponds to the DS RR we found located in the org.
zone. The RRSIG RR uses this key. To find the answer to our ultimate query, we
request the A record:

Linux% dig @a.iana-servers.net. www.icann.org. a +dnssec +nostats \
+noquestion +noauthority +noadditional
; <<>> DiG 9.7.2-P3 <<>> @a.iana-servers.net. www.icann.org. a +dnssec
 +nostats +noquestion +noauthority +noadditional
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56258
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 3
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; ANSWER SECTION:
www.icann.org. 600 IN A 192.0.32.7
www.icann.org. 600 IN RRSIG A 7 3 600 20101229143630
 20101222042536 55469 icann.org.
 YRhlL/RA ...

We have finally reached the end of the chase for the A RR for www.icann.
org.. It contains the IP address 192.0.32.7, signed by an RRSIG RR using key
ID 55469. This is the key from the fourth DNSKEY RR we saw at the apex of the
icann.org. zone. So at this point it would appear that all is order. However, we
have not demonstrated that all the signature values are actually correct. To do this
validation, the following command may be executed:

Linux% dig @a.root-servers.net. www.icann.org. a +sigchase +topdown \
+trusted-key=trusted-keys

This command works if the dig program has been compiled with the –DDIG_
SIGCHASE=1 compile-time option and the file trusted-keys contains the root’s
DNSKEY RRset. After many lines of output, we find that it does indicate success.
A simpler method for checking the validity can be achieved using a DNS/DNS-
SEC-checking Web site such as http://dnsviz.net. Output from such a query
is shown in Figure 18-43.

Here we can see a successful validation for the A and AAAA RR types for the
domain name www.icann.org.. Each rectangle represents a zone and contains
its name and the time it was analyzed. Within each zone are ovals representing
elements in the chain of trust, either DNSKEY or DS RRs. Dashed ovals indicate
that the keys are not being used for signatures of interest. Arrows between ovals
indicate RRSIG or DS digests. Two types of algorithms are represented. In the root

www.icann.org
www.icann.org
http://dnsviz.net
www.icann.org

ptg999

910 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Figure 18-43 A visualization of a DNSSEC chain of trust. Rectangles represent zones. Ovals represent chain
nodes, and shaded ovals have the SEP bit set. Arrows indicate valid RRSIG records or DS digests.
The double-circle oval indicates a trust anchor.

ptg999

Section 18.10 DNS Security (DNSSEC) 911

zone, “alg = 8” indicates that RSA/SHA-256 [RFC5702] signatures are in use. In
other zones, “alg = 7” indicates RSA/SHA-1 that permits the use of NSEC3 records
[RFC5155]. For the DS RR in the root zone, “digest algs = 1,2” indicates that SHA-1
[RFC4034] and SHA-256 [RFC4509] are supported.

18.10.3 Transaction Authentication (TSIG, TKEY, and SIG(0))

Some transactions in DNS, such as zone transfers and dynamic updates, could
compromise the DNS structure or contents if improperly used. Consequently,
they require some form of authentication. Even conventional DNS resolution may
require authentication if a resolver expects to depend on validated DNS resolu-
tions but does not implement full DNSSEC processing. With transaction authenti-
cation, the exchange between a particular resolver and server (or between servers)
is protected. Note, however, that transactional security does not directly protect
the contents of the DNS, as does DNSSEC. As a result, DNSSEC and transaction
authentication are complementary and can be deployed together. DNSSEC pro-
vides data origin authentication and integrity of zone data, while transaction
authentication provides integrity and authentication for a particular transaction
between a client and a server without checking the correctness of the content
being exchanged.

 There are two primary methods for authenticating DNS transactions: TSIG
and SIG(0). TSIG uses shared keys and SIG(0) uses public/private key pairs. To
help ease the burden of deployment, a TKEY RR type can be used to help form
keys (e.g., by holding public DH values) for either TSIG or SIG(0). We will begin
by discussing TSIG, the more common of the transaction security mechanisms.

18.10.3.1 TSIG
Secret Key Transaction Authentication for DNS or Transaction Signatures (TSIG)
[RFC2845] adds transactional authentication for DNS exchanges using signatures
based on shared secret keys. TSIG makes use of a TSIG pseudo-RR that is com-
puted on demand and is used only to secure a single transaction. The format of
the RDATA portion of a TSIG pseudo-RR is shown in Figure 18-44.

The figure shows the format of a TSIG pseudo-RR. Such RRs are sent in the
additional data section of a DNS request or response. The original MAC algorithm
specified in [RFC2845] was based on HMAC-MD5, but newer GSS-API (Kerbe-
ros) [RFC3645] and SHA-1- and SHA-256-based algorithms have since been speci-
fied in [RFC4635]; the current list is available at [TSIGALG]. The algorithm names
were envisioned to be encoded as domain names (e.g., HMAC-MD5.SIG-ALG.
REG.INT), but now most use descriptive strings (e.g., hmac-sha1, hmac-sha256).
The 48-bit Signed Time field is in UNIX time format (seconds since January 1, 1970,
UTC) and gives the time the message contents were signed. This field is covered
in the digital signature and is designed to detect and prevent replay attacks. The
consequence of using an absolute time here is that peers using TSIG must agree on
the time to within the number of seconds specified by the Fudge field. The MAC

ptg999

912 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Figure 18-44 The TSIG pseudo-RR RDATA area contains a signature algorithm ID, signature time
and time fudge factor, and a MAC. Originally, only an MD5-based signature was
used, but now SHA-1- and SHA-2-based signatures have been standardized. TSIG
peers must be time-synchronized to within the number of seconds in the Fudge field.
TSIG RRs are carried in the additional data section of a DNS message.

Size field gives the number of bytes required to contain the MAC in the MAC field
and depends on the particular MAC algorithm. The Other Length field gives the
size of the Other Data field in bytes, which is used only in carrying error messages.

To see TSIG in action, we can construct a sample zone called dynzone. and
perform a signed dynamic update. We use the nsupdate program supplied with
BIND9 to perform the update:

Linux% nsupdate
> zone dynzone.
> server 127.0.0.1
> key tsigkey.dynzone. 1234567890abcdef
> update delete two.dynzone.
> send

This series of instructions forms a DNS update message signed using TSIG
that is sent to the server once the send instruction is issued. The request is shown
in Figure 18-45.

In this figure, a dynamic DNS update request has been signed using the
HMAC-MD5 signature algorithm. The signing key’s name is tsigkey. dynzone..
The request is to update the zone dynzone. by removing the entry two. dynzone..
The name of the signature algorithm is HMAC-MD5.SIG-ALG.REG.INT, which is

ptg999

Section 18.10 DNS Security (DNSSEC) 913

the only signature algorithm supported by this particular software package. Note
that the Original ID field (15746 decimal) matches the value of the Transaction ID
field (0x3d82). The response confirms that the update was successful, as shown in
Figure 18-46.

Figure 18-46 show a successful response to a DNS dynamic update request
signed using TSIG. The Flags field indicates that a dynamic update response con-
tains no errors. Once again, the TSIG pseudo-RR is contained in the additional
information area.

Figure 18-45 A DNS dynamic update signed using TSIG. The request is to delete the RR for two.
dynzone.. The request is signed using the key with name tsigkey.dynzone.. The
signature algorithm is HMAC-MD5, which produces a 128-bit (16-byte) signature.

ptg999

914 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

18.10.3.2 SIG(0)
Early versions of DNSSEC included signature (SIG) resource records that corre-
spond to the modern RRSIG RRs discussed previously. However, a particular kind
of SIG RR called SIG(0) [RFC2931] does not cover static records in the DNS but
instead is generated dynamically for transactions. The 0 part of SIG(0) refers to the
length of data within an RR covered by the signature. As a result, SIG(0) records

Figure 18-46 A DNS dynamic update response signed using TSIG. The RRset two.dynzone. has
been successfully removed using dynamic update.

ptg999

Section 18.11 DomainKeys Identified Mail (DKIM) 915

can in principle be used instead of TSIG RRs to achieve the same result. However,
they are implemented in different ways. Most importantly, SIG(0) places its basis
of trust in public keys instead of shared keys. SIG(0) appears to be shrinking in
popularity in favor of TSIG, so we do not discuss it further.

18.10.3.3 TKEY
The TKEY meta-RR type is intended to simplify the deployment of DNS transac-
tion security such as TSIG and SIG(0) [RFC2930]. To do this, TKEY RRs are dynam-
ically created and sent in the additional information section of DNS requests and
responses. They can contain either keys or material used to form keys such as DH
public values. It may be useful in local deployments but is not in widespread use.

18.10.4 DNSSEC with DNS64

In Chapter 11 we described DNS64, which translates IPv6 DNS requests into IPv4
DNS requests and can synthesize AAAA records based on A records found in the
IPv4 DNS. The scheme is useful for allowing IPv6-only hosts to access IPv4 servers
and services. DNS64 works by synthesizing AAAA records. With DNSSEC, how-
ever, DNS RRs need to be signed by the signing authority (typically the domain
name owner or zone administrator). This presents a challenge: How can DNS64
synthesize RRs if it lacks the keys to produce DNSSEC-compatible signatures? The
answer is, essentially, that it does not (see Sections 5.5 and 6.2 in [RFC6147]).

To operate DNS64 in conjunction with DNSSEC, the validation function
is performed either in the host (where DNS64 could be implemented) or by the
DNS64 device, assuming there exists a secure channel between a stub resolver
and the DNS64 acting as a recursive name server. A validating DNS64 is known as
vDNS64. A vDNS64 interprets the CD and DO bits in an incoming query. If neither
is set, the vDNS64 performs synthesis and validation but does not set the AD bit
in the (validated) response. If the DO bit is set and the CD bit is not, the vDNS64
performs validation and synthesis and returns a validated response with the AD
bit set (which the client presumably interprets as meaning that the returned RRs
are authentic). Note that the DNS64 first requests AAAA records on the IPv4 side
and synthesizes A records only when it can validate that no AAAA records with
the same owner exist. If both the DO and CD bits are set, the DNS64 may perform
validation but not synthesis. In this case, it is presumed that the client will per-
form validation. This case represents a potential problem because if the client is
security-aware but translation-oblivious, the returned RRs will probably not be
usable in the IPv6 addressing realm.

18.11 DomainKeys Identified Mail (DKIM)

DomainKeys Identified Mail (DKIM) [RFC5585] is intended to provide an associa-
tion between an entity and a domain name that can be used to help determine
the party responsible for originating a message, especially in the e-mail context.

ptg999

916 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

It provides a method to help authenticate the signer of a message, which is not
necessarily the sender, and this can be used in helping to fight spam at the e-mail
distribution level (i.e., between mail agents). This is accomplished by adding a
DKIM-Signature field to the basic Internet message format [RFC5322]. This field
contains a digital signature of the header and body of the message. DKIM replaces
an earlier standard called DomainKeys, which uses the DomainKey-Signature field.

18.11.1 DKIM Signatures

To produce a digital signature for a message, a Signing Domain Identifier (SDID)
uses RSA/SHA-1 or RSA/SHA-256 and an associated private key. SDIDs are
domain names from the DNS and are used to retrieve public keys stored as TXT
RRs. A DKIM signature is encoded as a message header field using Base64 (such
as PEM) that signs an explicitly listed set of message fields and the message body.
When receiving an e-mail, for example, a mail transfer agent uses the SDID to
perform a DNS query to find the corresponding public key, which it then uses to
verify the signature. This avoids requiring a PKI. The owning domain name is
constructed from the domain itself along with the selector (public key selector). For
example, the public key for the selector key35 in domain example.com would be
a TXT RR owned by key35._domainkey.example.com.

The DKIM-Signature field [RFC6376] is added to a message header and may
contain several subfields (see [DKPARAMS] for the complete list). The operation
of DKIM is conceptually similar to the DNS Sender Policy Framework (SPF; see
Chapter 11) but is stronger because of the cryptographic digital signature. DKIM
and SPF can be used together.

DKIM-enabled domains may elect to participate in Author Domain Signing
Practices (ADSP) [RFC5617]. ADSP involves the creation of a machine-readable
signing practices statement for a domain. Such records are placed in the DNS using
TXT RRs with owner name equal to _adsp._domainkey.domain.. At present
ADSP records are simple and indicate only how the authoring domain uses DKIM
signatures. The values may be unknown, all, or discardable. These are really
hints as to what a receiving agent might do with a received message. The value
unknown indicates no particular statement, all indicates that the author signs
all messages but unsigned ones may still be worthwhile, and discardable indi-
cates that unsigned messages should be considered subject to discarding. dis-
cardable is the most stringent level.

18.11.2 Example

To get an idea of how a DKIM signature appears in an e-mail, we can simply
extract the DKIM-Signature field from an e-mail message generated from a large
e-mail provider such as Google’s Gmail:

DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
 d=gmail.com; s=gamma;

ptg999

Section 18.11 DomainKeys Identified Mail (DKIM) 917

 h=domainkey-signature:mime-version:received:
 sender:received:date
 :x-google-sender-auth:message-id:subject:from:to:content-type;
 bh=PU2XIErWsXvhvt1W96ntPWZ2VImjVZ3vBY2T/A+wA3A=;
 b=WneQe6kpeu/BfMfa2RSlAl1TvYKfIKmoQRXNc
 IQJDIVoE38+fGDaj0uhNm8vXp/8kJ
 I8HqtkV4/P6/QVPMN+/5bS5dsnlhz0S/YoP
 bZx0Lt2bD67G4HPsvm6eLsaIC9rQECUSL
 MdaTBK3BgFhYo3nenq3+8GxTe9I+zBcqWAVPU=

This indicates a version 1 signature and digest algorithm of SHA-256 signed
using RSA. The header and body canonicalization algorithms are both “relaxed,” as
shown by the c= field. Canonicalization algorithms are used to rewrite messages
in a consistent form. The current options are “simple” (the default), which does not
alter the text, and “relaxed,” which can rewrite the input in common ways such
as altering whitespace and wrapping long header lines. The selector (s=) is called
gamma and the domain (d=) is gmail.com. We shall use these later to retrieve
the appropriate public key. The header fields used in computing the signature
(indicated by h=) include domainkey-signature (predecessor to DKIM), ver-
sion of MIME, received, sender date, x-google-sender-auth, message-id,
subject, from, and content-type. The bh= subfield indicates the hash value
on the message body expressed in Base64. The b= value contains the RSA signa-
ture on the hash of the headers listed in the h= subfield.

To retrieve the public key to validate the signature, we can form the following
query:

Linux% dig gamma._domainkey.gmail.com. txt +nostats +noquestion
; <<>> DiG 9.7.2-P3 <<>> gamma._domainkey.gmail.com. txt
 +nostats +noquestion
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17372
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; ANSWER SECTION:
gamma._domainkey.gmail.com. 296 IN TXT "k=rsa\; t=y\; p=MIGfMA0GCS
qGSIb3DQEBAQUAA4GNADCBiQKBgQDIhyR3oItOy22ZOaBrIVe9m/iME3RqOJeasANSpg2YTHTYV
+Xtp4xwf5gTjCmHQEMOs0qYu0FYiNQPQogJ2t0Mfx9zNu06rfRBDjiIU9tpx2T+NGlWZ8qhbiLo
5By8apJavLyqTLavyPSrvsx0B3YzC63T4Age2CDqZYA+OwSMWQIDAQAB"

This result indicates that the key is an RSA public key. The t=y entry denotes
that the domain is testing DKIM, meaning that the results of any DKIM validation
should not ultimately affect the message delivery process. To see an example of an
ADSP, we can execute the following command:

Linux% host –t txt _adsp._domainkey.paypal.com.
_adsp._domainkey.paypal.com descriptive text "dkim=discardable"

ptg999

918 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

Here we can see that Paypal has elected to use the most stringent DKIM sign-
ing policy, suggesting that messages failing DKIM validation should be subject to
being discarded. The use of ADSP statements at present is fairly rare because of
the wide variety of e-mail systems and the ways that various mail agents rewrite
messages.

18.12 Attacks on Security Protocols

Attacks on security protocols are somewhat different from the attacks on protocols
we have seen in other chapters. Attacks discussed in other chapters tend to com-
promise some protocol that was never really designed with security in mind by
taking advantage of some design or implementation flaw. Attacks against security
protocols not only take these forms but may also involve cryptographic attacks
that somehow subvert the mathematical basis upon which the security depends.
Attacks can be successful against poor algorithms, weak or too-short keys, or
poor combinations of various components that render an otherwise secure system
much weaker. (A classic and fascinating example can be seen in the cryptanalysis
of the VENONA system [VENONA].)

To understand some of the types of attacks targeting security protocols, we
will begin from the lowest layer and work our way up. A number of attacks have
been waged against 802.11 and EAP. Early security in 802.11 (e.g., WEP and WPA-
TKIP) has been shown to be easily compromised cryptographically [TWP07]
[OM09], and WPA2-AES is believed to be substantially more resilient, although
use of poorly selected pre-shared keys (PSKs) can represent a significant vulner-
ability to dictionary attacks.

EAP does not have its own authentication method but can inherit vulnera-
bilities of the authentication methods on which it depends. Once again, systems
based on EAP using keys derived from user passwords (e.g., EAP-GSS, EAP-LEAP,
EAP-SIM) are often vulnerable to dictionary attacks. 802.1X/EAP is vulnerable
to MITM attacks involving tunneled authentication protocols as discussed in
[ANN02]. The problem relates to deriving a session key after only one side of a
two-party connection has been authenticated. For example, if a server authenti-
cates to a client and this exchange is used as the basis to form a tunnel secured
by a derived session key where another protocol that authenticates in the reverse
direction operates inside, a MITM attack involving impersonation of the legiti-
mate client becomes possible.

A number of attacks have been published against IPsec, including a class of
attacks that exploit the use of encryption without integrity protection [PY06], a
configuration option supported but discouraged by the IPsec documentation. In
essence, the ability to modify the ciphertext undetected using a bit flipping attack
can cause encrypted datagrams to be decrypted into datagrams that have been
corrupted in predictable ways. For example, a tunnel mode ESP datagram with
its bits flipped appropriately may decrypt to a datagram with an artificially

ptg999

 Section 18.13 Summary 919

increased Internet Header Length (IHL) field that causes the payload to be processed
as (invalid) IP options, ultimately generating an ICMP message that may be of use
to an attacker.

At the transport layer, SSL 2.0 was shown to be vulnerable to a cipher suite
rollback attack, in which a MITM could cause each end of an SSL connection to
conclude that the peer is capable of only weak encryption. Doing so causes the
peers to adopt an insecure cipher suite, which the attacker can exploit. A more
sophisticated attack on SSL/TLS took advantage of the order of operations per-
formed at a receiver: decrypt, remove padding, and check MAC. If the padding
length or MAC is incorrect, an SSL error message is generated. By observing the
timing of these error messages, it was possible to create a padding oracle [CHVV03]
to recover plaintext from OpenSSH. A padding oracle tells whether the plaintext
used to create a ciphertext had a valid amount of padding. As mentioned previ-
ously, a more recent attack (on TLS 1.2) involves a MITM attack whereby a prefix of
arbitrary length is injected into a TLS association, which is then renegotiated (but
continued) when a legitimate client arrives [RD09]. The solution involves binding
the previous channel parameters to the subsequent channel parameters using a
TLS extension. The issue of channel binding and security is covered more broadly
in [RFC5056].

Securing the DNS has been a long time coming, but the importance was
underscored by the Kaminsky cache poisoning attack we described in Chapter 11.
One of the original problems was the enumeration attack made available (actually
required) by the use of NSEC records and countered by the use of NSEC3 records,
if used properly [BM09]. At the end of 2009, Dan Bernstein mentioned a number
of problems with DNSSEC in his keynote talk at a workshop [B09]: it can be used
as a basis for amplification of DoS attacks, it leaks zone data even with NSEC3,
its implementations contain exploitable bugs, signatures cannot be revoked, the
cryptography may be subject to cryptanalysis, and some NS and A records pose
vulnerabilities. At the time of writing, the root zone has been signed only recently,
and few organizations have fully adopted DNSSEC. It is therefore likely that a
variety of improvements and modifications will be implemented in the years to
come.

18.13 Summary

The subject of security is broad and interesting, and we have only scraped the
surface in this chapter. We desire several important properties of communica-
tion security, and typically these consist of some combination of confidentiality,
authentication, integrity, and nonrepudiation. Cryptography is our most impor-
tant tool for achieving these information security properties. It involves a set of
algorithms and keys. The two most important forms are symmetric or “secret
key” cryptography, which has good computational performance but requires keys
to be kept secret, and public key (asymmetric key) cryptography whereby each

ptg999

920 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

principal has a key pair and one key is made public. Public key cryptography
supports both authentication and confidentiality and can be combined with sym-
metric key cryptography for better performance. Other algorithms that involve
mathematics closely related to cryptography include Diffie-Hellman key agree-
ment used to establish symmetric keys, pseudorandom functions for selecting
random components to form keys, and MACs used to check message integrity.
Protocols that use random nonces attempt to ensure freshness and resist replay
attacks by requiring queries and responses to hold a common recently generated
value. Salt (in the cryptographic sense) is used to perturb algorithms or input to
algorithms in order to make dictionary attacks more difficult to mount.

When relying on a public key, we ordinarily want the public key to be signed
or authenticated by some entity or group that we trust. A public key infrastructure
or PKI that involves one or more certificate authorities is commonly used for this
purpose, but web of trust models are also available. The most common format for
holding PKI public keys (and other material) is based on the ITU-T X.509 standard
for PKI and certificates. Certificates are usually signed recursively forming a tree,
culminating at some top-level root of trust or trust anchor. To ensure that the trust
chain is in place, certificates must be validated to ensure that the trust chain is
unbroken and each chain element has not been revoked. Certificate status can be
evaluated using widely distributed certificate revocation lists (CRLs) or using an
online protocol such as OCSP. The entire certificate validation process can also
be delegated to another party using SCVP, a protocol developed for this specific
purpose.

There are a variety of file formats for holding certificates and keys. The DER
or CER format is a binary encoding based on ASN.1. The PEM format expresses
the DER encoding in ASCII, so such files are easily edited and inspected. The
PKCS#12 (successor to Microsoft’s PFX) format can hold both certificates and pri-
vate keys and is ordinarily encrypted for protection of the private key material. A
variety of programs such as openssl are capable of converting between formats.

There are security protocols at every protocol layer, and some between lay-
ers. Working from layer 2 up, some link technologies include their own encryp-
tion and authentication protocols, although these are not ordinarily considered
TCP/IP protocols. In TCP/IP, EAP is used to establish authentication with a wide
variety of mechanisms such as machine certificates, user certificates, smart cards,
passwords, and so on. EAP is most often used in enterprise settings that have a
backend authorization or AAA server. EAP can also be used for authentication in
other protocols such as IPsec.

IPsec is a collection of protocols that provide security at layer 3: IKE, AH,
and ESP. IKE establishes and manages security association between two parties.
Security associations can involve authentication (AH) or encryption (ESP) and can
operate in either transport or tunnel mode. In transport mode, the IP header is
modified for authentication or encryption, while in tunnel mode an IP datagram
in its entirety is placed inside a new IP datagram. ESP is the most popular. All IPsec

ptg999

 Section 18.13 Summary 921

protocols can use different algorithms and parameters (cryptographic suites) for
encryption, integrity protection, DH key agreement, and authentication.

Moving up the stack, transport-layer security (current version TLS 1.2) protects
information moved between applications. It has its own internal layering consist-
ing of a record-layer protocol and three handshaking protocols called the Cipher
Change protocol, Alert protocol, and Handshake protocol. In addition, the Record
protocol supports application data. The record layer is responsible for encrypting
and integrity-protecting data based on parameters supplied by the Handshake
protocol. The Cipher Change protocol is invoked to change from a previously set-
up pending protocol state to an active protocol state. The Alert protocol indicates
errors or connection problems. TLS with TCP/IP is the most widely used security
protocol and supports encrypted Web browser connections (HTTPS). A variant of
TLS called DTLS adapts TLS for use with datagrams and protocols such as UDP
and DCCP.

To help secure host names and the Web better, DNSSEC is targeted at provid-
ing security for the DNS. On July 15, 2010, the Internet’s signed root zone was
put into operation, satisfying a prerequisite for worldwide deployment. DNS-
SEC works by employing several new resource records in the DNS: DNSKEY, DS,
NSEC/NSEC3/NSEC3PARAM, and RRSIG. The first two hold and refer to public
keys used for signing the structure and contents of a zone. The NSEC or NSEC3/
NSEC3PARAM records help provide a canonical ordering of names and list of
types present for a domain name. This allows a query to reliably determine the
nonexistence of a domain name or presence of a particular type for a particular
domain name. RRSIG records hold signatures on other records, and for a zone
to be signed, all authoritative RRs within the zone must have associated RRSIG
RRs. Once set up, security of DNS queries is checked by a validating resolver or
name server that requires a trust anchor. Such systems check to ensure that digi-
tal signatures match the public keys supplied by the DNS. This allows for errors
to be generated when some record is found to be inconsistent, and it is hoped
it can thwart domain name hijacking attacks in which attackers masquerade as
legitimate hosts. In some cases, DNS transactions are also secured. The TSIG and
SIG(0) protocols provide a form of channel authentication, but only in the scope of
DNS transactions. These protocols are used for transactions such as DNS dynamic
updates and zone transfers.

Attacks on security protocols include not only the common exploitation of
implementation bugs and insecure designs but also mathematical compromises
and “side channel” attacks that are used to discover secret information (e.g., bits of
keys). Over the years it has become clear that flexibility is needed in the strength
of the cryptography used to secure communications, so most of the protocols we
have discussed provide for cryptographic suites that can evolve as computational
power improves and additional experience is gained. Many seemingly secure pro-
tocols, even those that have received extensive scrutiny by experts, have fallen
prey to an energetic set of analysts who seek exploitable flaws, especially when
MITM and other active attacks are possible. Extreme care is required in designing
new security protocols and operating existing protocols in a secure fashion.

ptg999

922 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

18.14 References

[802.1X-2010] “IEEE Standard for Port-Based Network Access Control,” IEEE Std
802.1X-2010, Feb. 2010.

[AKNT04] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik, “On the Performance
of Group Key Agreement Protocols,” ACM Transactions on Information and System
Security, 7(3), Aug. 2004.

[ANN02] N. Asokan, V. Niemi, and K. Nyberg, “Man-in-the-Middle in Tunneled
Authentication Protocols (Extended Abstract),” Proc. 11th Security Protocols Work-
shop/LNCS 3364 (Springer, 2003).

[B06] M. Bellare, “New Proofs for NMAC and HMAC: Security without
Collision-Resistance” (preliminary version in CRYPTO 06), June 2006.

[B09] D. Bernstein, “Breaking DNSSEC,” keynote talk at Workshop on Offensive
Technologies (WOOT), Aug. 2009.

[BCK96] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for
Message Authentication” (abridged version in CRYPTO 96/LNCS 1109), June
1996.

[BM09] J. Bau and J. Mitchell, “A Security Evaluation of DNSSEC with NSEC3,”
Network and Distributed System Security Symposium (NDSS), Feb.–Mar. 2010.

[BOPSW09] R. Biddle et al., “Browser Interfaces and Extended Validation SSL
Certificates: An Empirical Study,” Proc. ACM Cloud Security Workshop, Nov. 2009.

[CABF09] CA/Browser Forum, “Guidelines for the Issuance and Management
of Extended Validation Certificates (v1.2),” 2009, http://www.cabforum.org/
Guidelines_v1_2.pdf

[CHP] National Institute of Standards and Technology, Cryptographic Hash
 Project, Computer Security Division—Computer Security Resource Center,
http://csrc.nist.gov/groups/ST/hash

[CHVV03] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, “Password
Interception in a SSL/TLS Channel,” CRYPTO 2003/LNCS 2729.

[DH76] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE
Transactions on Information Theory, IT-22, Nov. 1976.

[DKPARAMS] http://www.iana.org/assignments/dkim-parameters

[DNSSECALG] http://www.iana.org/assignments/dns-sec-alg-numbers

[DOW92] W. Diffie, P. Oorschot, and M. Wiener, “Authentication and uthenti-
cated Key Exchanges,” Designs, Codes and Cryptography, 2, June 1992.

[DSRRTYPES] http://www.iana.org/assignments/ds-rr-types

http://www.cabforum.org/Guidelines_v1_2.pdf
http://www.cabforum.org/Guidelines_v1_2.pdf
http://csrc.nist.gov/groups/ST/hash
http://www.iana.org/assignments/dkim-parameters
http://www.iana.org/assignments/dns-sec-alg-numbers
http://www.iana.org/assignments/ds-rr-types

ptg999

 Section 18.14 References 923

[FIPS186-3] National Institute for Standards and Technology, “Digital Signature
Standard (DSS),” FIPS PUB 186-3, June 2009.

[FIPS197] National Institute for Standards and Technology, “Advanced Encryp-
tion Standard (AES),” FIPS PUB 197, Nov. 2001.

[FIPS198] National Institute for Standards and Technology, “The Keyed-Hash
Message Authentication Code (HMAC),” FIPS PUB 198, Mar. 2002.

[FIPS800-38B] National Institute for Standards and Technology, “Recommenda-
tion for Block Cipher Modes of Operation: The CMAC Mode for Authentication,”
NIST Special Publication 800-38B, May 2005.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali, “How to Construct Random
Functions,” Journal of the ACM, 33(4), Oct. 1986.

[IDDCIN] S. Weiler and D. Blacka, “Clarifications and Implementation Notes for
DNSSECbis,” Internet draft-ietf-dnsext-dnssec-bis-updates, work in progress,
July 2011.

[IDDS2] B. Dickson, “DNSSEC Delegation Signature with Canonical Signer
Name,” Internet draft-dickson-dnsext-ds2 (expired), work in progress, Nov. 2010.

[IDDTLS] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” Internet draft-ietf-tls-rfc4347-bis, work in progress, July 2011.

[IEAP] http://www.iana.org/assignments/eap-numbers

[IK03] T. Iwata and K. Kurosawa, “OMAC: One-Key CBC MAC,” Proc. Fast Soft-
ware Encryption, Mar. 2003.

[IKEPARAMS] http://www.iana.org/assignments/ikev2-parameters

[IPANA] http://www.iana.org/assignments/pana-parameters

[ITUOID] http://www.itu.int/ITU-T/asn1

[IWESP] http://www.iana.org/assignments/wesp-flags

[K87] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation, 48,
1987.

[L01] C. Landwehr, “Computer Security,” Springer-Verlag Online, July 2001.

[M85] V. Miller, “Uses of Elliptic Curves in Cryptography,” Advances in Cryptol-
ogy: CRYPTO ’85, Lecture Notes in Computer Science, Volume 218 (Springer-
Verlag, 1986).

[MSK09] S. McClure, J. Scambray, and G. Kurtz, Hacking Exposed, Sixth Edition
(McGraw-Hill, 2009).

http://www.iana.org/assignments/eap-numbers
http://www.iana.org/assignments/ikev2-parameters
http://www.iana.org/assignments/pana-parameters
http://www.itu.int/ITU-T/asn1
http://www.iana.org/assignments/wesp-flags

ptg999

924 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

[MW99] U. Maurer and S. Wolf, “The Relationship between Breaking the Diffie-
Hellman Protocol and Computing Discrete Logarithms,” Siam Journal on Comput-
ing, 28(5), 1999.

[NAZ00] Network Associates and P. Zimmermann, Introduction to Cryptogra-
phy, Part of PGP 7.0 Documentation, available from http://www.pgpi.org/doc/
guide/7.0/en

[NIST800-38B] National Institute for Standards and Technology, “Recommenda-
tion for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC,” NIST Special Publication 800-38D, Nov. 2005.

[NSEC3PARAMS] http://www.iana.org/assignments/dnssec-nsec3-parameters

[OM09] T. Ohigashi and M. Morii, “A Practical Message Falsification Attack on
WPA,” Joint Workshop on Information Security, Aug. 2009.

[PY06] K. Paterson and A. Yau, “Cryptography in Theory and Practice: The Case
of Encryption in IPsec,” EUROCRYPT 2006/LNCS 4004.

[RD09] M. Ray and S. Dispensa, “Renegotiating TLS,” PhoneFactor Technical
Report, Nov. 2009.

[RFC1321] R. Rivest, “The MD5 Message-Digest Algorithm,” Internet RFC 1321
(informational), Apr. 1992.

[RFC2104] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” Internet RFC 2104 (informational), Feb. 1997.

[RFC2403] C. Madson and R. Glenn, “The Use of HMAC-MD5-96 within ESP and
AH,” Internet RFC 2403, Nov. 1998.

[RFC2404] C. Madson and R. Glenn, “The Use of HMAC-SHA-1-96 within ESP
and AH,” Internet RFC 2404, Nov. 1998.

[RFC2409] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” Internet
RFC 2409 (obsolete), Nov. 1998.

[RFC2410] R. Glenn and S. Kent, “The NULL Encryption Algorithm and Its Use
with IPsec,” Internet RFC 2410, Nov. 1998.

[RFC2451] R. Pereira and R. Adams, “The ESP CBC-Mode Cipher Algorithms,”
Internet RFC 2451, Nov. 1998.

[RFC2560] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X.509
Internet Public Key Infrastructure Online Certificate Status Protocol—OCSP,”
Internet RFC 2560, June 1999.

[RFC2631] E. Rescorla, “Diffie-Hellman Key Agreement Method,” Internet RFC
2631, June 1999.

http://www.pgpi.org/doc/guide/7.0/en
http://www.pgpi.org/doc/guide/7.0/en
http://www.iana.org/assignments/dnssec-nsec3-parameters

ptg999

 Section 18.14 References 925

[RFC2671] P. Vixie, “Extension Mechanisms for DNS (EDNS0),” Internet RFC
2671, Aug. 1999.

[RFC2845] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Wellington, “Secret
Key Transaction Authentication for DNS (TSIG),” Internet RFC 2845, May 2000.

[RFC2865] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote Authenti-
cation Dial In User Service (RADIUS),” Internet RFC 2865, June 2000.

[RFC2930] D. Eastlake 3rd, “Secret Key Establishment for DNS (TKEY RR),”
Internet RFC 2930, Sept. 2000.

[RFC2931] D. Eastlake 3rd, “DNS Request and Transaction Signatures (SIG(0)s),”
Internet RFC 2931, Sept. 2000.

[RFC3162] B. Aboba, G. Zorn, and D. Mitton, “RADIUS and IPv6,” Internet RFC
3162, Aug. 2001.

[RFC3173] A. Shacham, B. Monsour, R. Pereira, and M. Thomas, “IP Payload
Compression Protocol (IPComp),” Internet RFC 3173, Sept. 2001.

[RFC3193] B. Patel, B. Aboba, W. Dixon, G. Zorn, and S. Booth, “Securing L2TP
Using IPsec,” Internet RFC 3193, Nov. 2001.

[RFC3225] D. Conrad, “Indicating Resolver Support of DNSSEC,” Internet RFC
3225, Dec. 2001.

[RFC3447] J. Jonsson and B. Kaliski, “Public-Key Cryptography Standards
(PKCS) #1: RSA Cryptography Specifications Version 2.1,” Internet RFC 3447
(informational), Feb. 2003.

[RFC3526] T. Kivinen and M. Kojo, “More Modular Exponential (MODP) Diffie-
Hellman Groups for Internet Key Exchange (IKE),” Internet RFC 3526, May 2003.

[RFC3547] M. Baugher, B. Weis, T. Hardjono, and H. Harney, “The Group
Domain of Interpretation,” Internet RFC 3547, July 2003.

[RFC3566] S. Frankel and H. Herbert, “The AES-XCBC-MAC-96 Algorithm and
Its Use with IPsec,” Internet RFC 3566, Sept. 2003.

[RFC3588] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “Diam-
eter Base Protocol,” Internet RFC 3588, Sept. 2003.

[RFC3602] S. Frankel, R. Glenn, and S. Kelly, “The AES-CBC Cipher Algorithm
and Its Use with IPsec,” Internet RFC 3602, Sept. 2003.

[RFC3645] S. Kwan, P. Garg, J. Gilroy, L. Esibov, J. Westhead, and R. Hall,
“Generic Security Service Algorithm for Secret Key Transaction Authentication
for DNS (GSS-TSIG),” Internet RFC 3645, Oct. 2003.

ptg999

926 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

[RFC3686] R. Housley, “Using Advanced Encryption Standard (AES) Counter
Mode with IPsec Encapsulating Security Payload (ESP),” Internet RFC 3686, Jan.
2004.

[RFC3713] M. Matsui, J. Nakajima, and S. Moriai, “A Description of the Camellia
Encryption Algorithm,” Internet RFC 3713 (informational), Apr. 2004.

[RFC3715] B. Aboba and W. Dixon, “IPsec-Network Address Translation (NAT)
Compatibility Requirements,” Internet RFC 3715 (informational), Mar. 2001.

[RFC3740] T. Hardjono and B. Weis, “The Multicast Group Security Architec-
ture,” Internet RFC 3740 (informational), Mar. 2004.

[RFC3748] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, ed.,
“Extensible Authentication Protocol (EAP),” June 2004.

[RFC3749] S. Hollenbeck, “Transport Layer Security Protocol Compression
Methods,” Internet RFC 3749, May 2004.

[RFC3947] T. Kivinen, B. Swander, A. Huttunen, and V. Volpe, “Negotiation of
NAT-Traversal in the IKE,” Internet RFC 3947, Jan. 2005.

[RFC3948] A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and M. Stenberg,
“UDP Encapsulation of IPsec ESP Packets,” Internet RFC 3948, Jan. 2005.

[RFC4016] M. Parthasarathy, “Protocol for Carrying Authentication and Network
Access (PANA) Threat Analysis and Security Requirements,” Internet RFC 4016
(informational), Mar. 2005.

[RFC4033] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS Secu-
rity Introduction and Requirements,” Internet RFC 4033, Mar. 2005.

[RFC4034] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Resource
Records for the DNS Security Extensions,” Internet RFC 4034, Mar. 2005.

[RFC4035] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Protocol
Modifications for the DNS Security Extensions,” Internet RFC 4035, Mar. 2005.

[RFC4058] A. Yegin, ed., Y. Ohba, R. Penno, G. Tsirtsis, and C. Wang, “Protocol
for Carrying Authentication for Network Access (PANA) Requirements,” Internet
RFC 4058 (informational), May 2005.

[RFC4086] D. Eastlake 3rd, J. Schiller, and S. Crocker, “Randomness Require-
ments for Security,” Internet RFC 4086/BCP 0106, June 2005.

[RFC4120] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos Net-
work Authentication Service (V5),” Internet RFC 4120, July 2005.

[RFC4251] T. Ylonen and C. Lonvick, ed., “The Secure Shell (SSH) Protocol Archi-
tecture,” Internet RFC 4251, Jan. 2006.

ptg999

 Section 18.14 References 927

[RFC4301] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
Internet RFC 4301, Dec. 2005.

[RFC4302] S. Kent, “IP Authentication Header,” Internet RFC 4302, Dec. 2005.

[RFC4303] S. Kent, “IP Encapsulating Security Payload (ESP),” Internet RFC 4303,
Dec. 2005.

[RFC4307] J. Schiller, “Cryptographic Algorithms for Use in the Internet Key
Exchange Version 2 (IKEv2),” Internet RFC 4307, Dec. 2005.

[RFC4309] R. Housley, “Using Advanced Encryption Standard (AES) CCM Mode
with IPsec Encapsulating Security Payload (ESP),” Internet RFC 4309, Dec. 2005.

[RFC4346] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Proto-
col Version 1.1,” Internet RFC 4346 (obsolete), Apr. 2006.

[RFC4347] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security,”
Internet RFC 4347, Apr. 2006.

[RFC4398] S. Josefsson, “Storing Certificates in the Domain Name System
(DNS),” Internet RFC 4398, Mar. 2006.

[RFC4431] M. Andrews and S. Weiler, “The DNSSEC Lookaside Validation (DLV)
DNS Resource Record,” Internet RFC 4431 (informational), Feb. 2006.

[RFC4434] P. Hoffman, “The AES-XCBC-PRF-128 Algorithm for the Internet Key
Exchange Protocol (IKE),” Internet RFC 4434, Feb. 2006.

[RFC4492] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller, “Ellip-
tic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS),”
Internet RFC 4492 (informational), May 2006.

[RFC4493] JH. Song, R. Poovendran, J. Lee, and T. Iwata, “The AES-CMAC Algo-
rithm,” Internet RFC 4493 (informational), June 2006.

[RFC4509] W. Hardaker, “Use of SHA-256 in DNSSEC Delegation Signer (DS)
Resource Records (RRs),” Internet RFC 4509, May 2006.

[RFC4535] H. Harney, U. Meth, A. Colegrove, and G. Gross, “GSAKMP: Group
Secure Association Key Management Protocol,” Internet RFC 4535, June 2006.

[RFC4555] P. Eronen, “IKEv2 Mobility and Multihoming Protocol (MOBIKE),”
Internet RFC 4555, June 2006.

[RFC4615] J. Song, R. Poovendran, J. Lee, and T. Iwata, “The Advanced Encryp-
tion Standard-Cipher-Based Message Authentication Code-Pseudo-Random
Function-128 (AES-CMAC-PRF-128) Algorithm for the Internet Key Exchange
Protocol (IKE),” Internet RFC 4615, Aug. 2006.

ptg999

928 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

[RFC4635] D. Eastlake 3rd, “HMAC SHA (Hashed Message Authentication Code,
Secure Hash Algorithm) TSIG Algorithm Identifiers,” Internet RFC 4635, Aug.
2006.

[RFC4681] S. Santesson, A. Medvinsky, and J. Ball, “TLS User Mapping Exten-
sion,” Internet RFC 4681, Oct. 2006.

[RFC4739] P. Eronen and J. Korhonen, “Multiple Authentication Exchanges in the
Internet Key Exchange (IKEv2) Protocol,” Internet RFC 4739 (experimental), Nov.
2006.

[RFC4754] D. Fu and J. Solinas, “IKE and IKEv2 Authentication Using the Elliptic
Curve Digital Signature Algorithm (ECDSA),” Internet RFC 4754, Jan. 2007.

[RFC4835] V. Manral, “Cryptographic Algorithm Implementation Requirements
for Encapsulating Security Payload (ESP) and Authentication Header (AH),”
Internet RFC 4835, Apr. 2007.

[RFC4851] N. Cam-Winget, D. McGrew, J. Salowey, and H. Zhou, “The Flexible
Authentication via Secure Tunneling Extensible Authentication Protocol Method
(EAP-FAST),” Internet RFC 4851 (informational), May 2007.

[RFC4877] V. Devarapalli and F. Dupont, “Mobile IPv6 Operation with IKEv2 and
the Revised IPsec Architecture,” Internet RFC 4877, Apr. 2007.

[RFC4880] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “Open-
PGP Message Format,” Internet RFC 4880, Nov. 2007.

[RFC5011] M. StJohns, “Automated Updates of DNS Security (DNSSEC) Trust
Anchors,” Internet RFC 5011, Sep. 2007.

[RFC5054] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin, “Using the
Secure Remote Password (SRP) Protocol for TLS Authentication,” Internet RFC
5054 (informational), Nov. 2007.

[RFC5055] T. Freeman, R. Housley, A. Malpani, D. Cooper, and W. Polk, “Server-
Based Certificate Validation Protocol (SCVP),” Internet RFC 5055, Dec. 2007.

[RFC5056] N. Williams, “On the Use of Channel Bindings to Secure Channels,”
Internet RFC 5056, Nov. 2007.

[RFC5077] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig, “Transport Layer
Security (TLS) Session Resumption without Server-Side State,” Internet RFC 5077,
Jan. 2008.

[RFC5106] H. Tschofenig, D. Kroeselberg, A. Pashalidis, Y. Ohba, and F. Bersani,
“The Extensible Authentication Protocol-Internet Key Exchange Protocol Version
2 (EAP-IKEv2) Method,” Internet RFC 5106 (experimental), Feb. 2008.

[RFC5114] M. Lepinski and S. Kent, “Additional Diffie-Hellman Groups for Use
with IETF Standards,” Internet RFC 5114 (informational), Jan. 2008.

ptg999

 Section 18.14 References 929

[RFC5116] D. McGrew, “An Interface and Algorithms for Authenticated Encryp-
tion,” Internet RFC 5116, Jan. 2008.

[RFC5155] B. Laurie, G. Sisson, R. Arends, and D. Blacka, “DNS Security (DNS-
SEC) Hashed Authenticated Denial of Existence,” Internet RFC 5155, Mar. 2008.

[RFC5191] D. Forsberg, Y. Ohba, ed., B. Patil, H. Tschofenig, and A. Yegin, “Proto-
col for Carrying Authentication for Network Access (PANA),” Internet RFC 5191,
May 2008.

[RFC5193] P. Jayaraman, R. Lopez, Y. Ohba, ed., M. Parthasarathy, and A. Yegin,
“Protocol for Carrying Authentication for Network Access (PANA) Framework,”
Internet RFC 5193 (informational), May 2008.

[RFC5216] D. Simon, B. Aboba, and R. Hurst, “The EAP-TLS Authentication Pro-
tocol,” Internet RFC 5216, Mar. 2008.

[RFC5238] T. Phelan, “Datagram Transport Layer Security (DTLS) over the Data-
gram Congestion Control Protocol (DCCP),” Internet RFC 5238, May 2008.

[RFC5246] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Proto-
col Version 1.2,” Internet RFC 5246, Aug. 2008.

[RFC5247] B. Aboba, D. Simon, and P. Eronen, “Extensible Authentication Proto-
col (EAP) Key Management Framework,” Internet RFC 5247, Aug. 2008.

[RFC5280] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” Internet RFC 5280, May 2008.

[RFC5281] P. Funk and S. Blake-Wilson, “Extensible Authentication Protocol Tun-
neled Transport Layer Security Authenticated Protocol Version 0 (EAP-TTLSv0),”
Internet RFC 5281 (informational), Aug. 2008.

[RFC5295] J. Salowey, L. Dondeti, V. Narayanan, and M. Nakhjiri, “Specification
for the Derivation of Root Keys from an Extended Master Session Key (EMSK),”
Internet RFC 5295, Aug. 2008.

[RFC5296] V. Narayanan and L. Dondeti, “EAP Extensions for EAP Re-authenti-
cation Protocol (ERP),” Internet RFC 5296, Aug. 2008.

[RFC5322] P. Resnick, ed., “Internet Message Format,” Internet RFC 5322, Oct.
2008.

[RFC5374] B. Weis, G. Gross, and D. Ignjatic, “Multicast Extensions to the Secu-
rity Architecture for the Internet Protocol,” Internet RFC 5374, Nov. 2008.

[RFC5386] N. Williams and M. Richardson, “Better-than-Nothing Security: An
Unauthenticated Mode of IPsec,” Internet RFC 5386, Nov. 2008.

ptg999

930 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

[RFC5387] J. Touch, D. Black, and Y. Wang, “Problem and Applicability Statement
for Better-than-Nothing Security (BTNS),” Internet RFC 5387 (informational),
Nov. 2008.

[RFC5406] S. Bellovin, “Guidelines for Specifying the Use of IPsec Version 2,”
Internet RFC 5406/BCP 0146, Feb. 2009.

[RFC5585] T. Hansen, D. Crocker, and P. Hallam-Baker, “DomainKeys Identified
Mail (DKIM) Service Overview,” Internet RFC 5585 (informational), July 2009.

[RFC5617] E. Allman, J. Fenton, M. Delany, and J. Levine, “DomainKeys Identi-
fied Mail (DKIM) Author Domain Signing Practices (ADSP),” Internet RFC 5617,
Aug. 2009.

[RFC5652] R. Housley, “Cryptographic Message Syntax (CMS),” Internet RFC
5652/STD 0070, Sept. 2009.

[RFC5702] J. Jansen, “Use of SHA-2 Algorithms with RSA in DNSKEY and RRSIG
Resource Records for DNSSEC,” Internet RFC 5702, Oct. 2009.

[RFC5723] Y. Sheffer and H. Tschofenig, “Internet Key Exchange Protocol Version
2 (IKEv2) Session Resumption,” Internet RFC 5723, Jan. 2010.

[RFC5739] P. Eronen, J. Laganier, and C. Madson, “IPv6 Configuration in Internet
Key Exchange Protocol Version 2 (IKEv2),” Internet RFC 5739 (experimental),
Feb. 2010.

[RFC5746] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, “Transport Layer Secu-
rity (TLS) Renegotiation Indication Extension,” Internet RFC 5746, Feb. 2010.

[RFC5753] S. Turner and D. Brown, “Use of Elliptic Curve Cryptography (ECC)
Algorithms in Cryptographic Message Syntax (CMS),” Internet RFC 5753 (infor-
mational), Jan. 2010.

[RFC5755] S. Farrell, R. Housley, and S. Turner, “An Internet Attribute Certificate
Profile for Authorization,” Internet RFC 5755, Jan. 2010.

[RFC5764] D. McGrew and E. Rescorla, “Datagram Transport Layer Security
(DTLS) Extension to Establish Keys for the Secure Real-Time Transport Protocol
(SRTP),” Internet RFC 5764, May 2010.

[RFC5840] K. Grewal, G. Montenegro, and M. Bhatia, “Wrapped Encapsulating
Security Payload (ESP) for Traffic Visibility,” Internet RFC 5840, Apr. 2010.

[RFC5857] E. Ertekin, C. Christou, R. Jasani, T. Kivinen, and C. Bormann, “IKEv2
Extensions to Support Robust Header Compression over IPsec,” Internet RFC
5857, May 2010.

[RFC5879] T. Kivinen and D. McDonald, “Heuristics for Detecting ESP-NULL
Packets,” Internet RFC 5879 (informational), May 2010.

ptg999

 Section 18.14 References 931

[RFC5903] D. Fu and J. Solinas, “Elliptic Curve Groups Modulo a Prime (ECP
Groups) for IKE and IKEv2,” Internet RFC 5903 (informational), June 2010.

[RFC5933] V. Dolmatov, ed., A. Chuprina, and I. Ustinov, “Use of GOST Signature
Algorithms in DNSKEY and RRSIG Resource Records for DNSSEC,” Internet
RFC 5933, July 2010.

[RFC5996] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen, “Internet Key
Exchange Protocol Version 2 (IKEv2),” Internet RFC 5996, Sept. 2010.

[RFC5998] P. Eronen, H. Tschofenig, and Y. Sheffer, “An Extension for EAP-Only
Authentication in IKEv2,” Sept. 2010.

[RFC6024] R. Reddy and C. Wallace, “Trust Anchor Management Requirements,”
Internet RFC 6024 (informational), Oct. 2010.

[RFC6040] B. Briscoe, “Tunnelling of Explicit Congestion Notification,” Internet
RFC 6040, Nov. 2010.

[RFC6066] D. Eastlake 3rd, “Transport Layer Security (TLS) Extensions: Exten-
sion Definitions,” Internet RFC 6066, Jan. 2011.

[RFC6071] S. Frankel and S. Krishnan, “IP Security (IPsec) and Internet Key
Exchange (IKE) Document Roadmap,” Internet RFC 6071 (informational), Feb.
2011.

[RFC6083] M. Tuexen, R. Seggelmann, and E. Rescorla, “Datagram Transport
Layer Security (DTLS) for Stream Control Transmission Protocol (SCTP),” Inter-
net RFC 6083, Jan. 2011.

[RFC6091] N. Mavrogiannopoulos and D. Gillmor, “Using OpenPGP Keys for
Transport Layer Security (TLS) Authentication,” Internet RFC 6091 (informa-
tional), Feb. 2011.

[RFC6101] A. Freier, P. Karlton, and P. Kocher, “The Secure Socket Layer (SSL)
Protocol Version 3.0,” Internet RFC 6101, Aug. 2011.

[RFC6147] M. Bagnulo, A. Sullivan, P. Matthews, and I. van Beijnum, “DN64:
DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Serv-
ers,” Internet RFC 6147, Apr. 2011.

[RFC6176] S. Turner and S. Polk, “Prohibiting Secure Sockets Layer (SSL) Version
2.0,” Internet RFC 6176, Mar. 2011.

[RFC6234] D. Eastlake 3rd and T. Hansen, “US Secure Hash Algorithms (SHA
and SHA-based HMAC and HKDF),” Internet RFC 6234 (informational), May
2011.

[RFC6345] P. Duffy, S. Chakrabarti, R. Cragie, Y. Ohba, ed., and A. Yegin, “Pro-
tocol for Carrying authentication for Network Access (PANA) Relay Element,”
Internet RFC 6345, Aug. 2011.

ptg999

932 Security: EAP, IPsec, TLS, DNSSEC, and DKIM

[RFC6376] D. Crocker, ed., T. Hansen, ed., M. Kucherawy, ed., “DomainKeys
Identified Mail (DKIM) Signatures,” Internet RFC 6376, Sep. 2011.

[RSA78] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public Key Cryptosystems,” Communications of the ACM, 21(2),
Feb. 1978.

[TLD-REPORT] http://stats.research.icann.org/dns/tld_report

[TLSEXT] http://www.iana.org/assignments/tls-extensiontype-values

[TLSPARAMS] http://www.iana.org/assignments/tls-parameters

[TNMOC] The National Museum of Computing, http://www.tnmoc.org

[TSIGALG] http://www.iana.org/assignments/tsig-algorithm-names

[TWP07] E. Tews, R. Weinmann, and A. Pyshkin, “Breaking 104 Bit WEP in Less
than 60 Seconds,” Proc. 8th International Workshop on Information Security Applica-
tions (Springer, 2007).

[VENONA] R. L. Benson, National Security Agency Center for Cryptologic His-
tory, “The VENONA Story,” http://www.nsa.gov/public_info/declass/venona

[VK83] V. Voydock and S. Kent, “Security Mechanisms in High-Level Network
Protocols,” ACM Computing Surveys, 15, June 1983.

[WY05] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,”
EUROCRYPT, May 2005.

[X9.62-2005] American National Standards Institute, “Public Key Cryptography
for the Financial Services Industry: The Elliptic Curve Digital Signature Stan-
dard (ECDSA),” ANSI X9.62, 2005.

[Z97] Y. Zheng, “Digital Signcryption or How to Achieve Cost(Signature &
Encryption) << Cost(Signature) + Cost(Encryption),” Proc. CRYPTO, Lecture
Notes in Computer Science, Volume 1294 (Springer-Verlag, 1997).

http://stats.research.icann.org/dns/tld_report
http://www.iana.org/assignments/tls-extensiontype-values
http://www.iana.org/assignments/tls-parameters
http://www.tnmoc.org
http://www.iana.org/assignments/tsig-algorithm-names
http://www.nsa.gov/public_info/declass/venona

ptg999

933

Glossary of Acronyms

3GPP 3rd Generation Partnership Project (cellular SDO responsible for GSM,
W-CDMA, LTE, etc.)

3GPP2 3rd Generation Partnership Project 2 (cellular SDO responsible for
CDMA2000, EV-DO, etc.)

6rd IPv6 Rapid Deployment (an IPv6 transition mechanism in which IPv6 traf-
fic is carried over IPv4 networks, similar to 6to4 but using IPv6 prefix assign-
ments based on unicast address assignments)

6to4 Six to Four (carrying IPv6 traffic in IPv4 tunnels, some operational chal-
lenges have occurred)

A Address (IPv4) (DNS RR carrying an IPv4 address)

AAA Authentication, Authorization and Accounting (management capabilities
associated with certain access protocols such as RADIUS and Diameter)

AAAA Address (IPv6) (DNS RR carrying an IPv6 address)

ABC Appropriate Byte Counting (in TCP congestion control, a method to
account for the number of bytes ACKed instead of a constant factor when per-
forming CWND computations; can mitigate the slow window growth associ-
ated with delayed ACKs)

AC Attribute Certificate (a type of certificate used to carry attributes such as
authorizations, but does not include a public key and therefore differs from a
PKC)

ACCM Asynchronous Control Character Map (in PPP, indicates which bytes
need to be escaped to avoid having unwanted effects)

ACD Automatic Collision Detection (procedure to detect and avoid IP address
assignment collisions)

ACFC Address and Control Field Compression (in PPP, eliminating the address
and control fields to reduce overhead)

ACK Acknowledgment (an indication that data has arrived at a receiver suc-
cessfully; applicable to multiple layers of the protocol stack)

ACL Access Control List (list of filtering rules determining which traffic is
permitted, e.g., through a firewall)

ADSP Author Domain Signing Practices (with DKIM, a policy statement per-
taining to how DKIM is used or deployed within a particular domain)

ptg999

934 Glossary of Acronyms

AEAD Authenticated Encryption with Associated Data (algorithms that per-
form encryption and authentication on one portion of their input and authen-
tication on another portion)

AES Advanced Encryption Standard (current-generation U.S. encryption
standard)

AF Assured Forwarding (a PHB offering priority classes and prioritization
within classes)

AFTR Address Family Transition Router element (in DS-Lite, a SPNAT used to
share a small number of IPv4 addresses with multiple customers)

AH Authentication Header (optional IPsec protocol providing for authentica-
tion of IP traffic, including header information, which is incompatible with
NATs)

AIA Authority Information Access (an X.509 certificate extension indicating
resources useful in validating a certificate)

AIAD Additive Increase Additive Decrease (in TCP, methods that moderate
CWND by adding to its value when congestion appears to be low and sub-
tracting from it when congestion appears to be increasing; not the standard
TCP algorithm)

AIMD Additive Increase Multiplicative Decrease (in TCP, methods that
moderate CWND by adding to its value when congestion appears to be low
and multiplying it by a fraction less than one when congestion appears to be
increasing)

ALG Application Layer Gateway (an agent, usually software, that converts
protocols at the application layer)

A-MPDU Aggregated MPDU (frame containing multiple MPDUs, part of IEEE
802.11n)

A-MSDU Aggregated MSDU (frame containing multiple MSDUs, part of IEEE
802.11n)

ANDSF Access Network Discovery and Selection Function (a portion of MoS
indicating information about networks that may be used to influence handoff
and network selection)

AODV Ad-hoc On-Demand Distance Vector routing protocol (early ad-hoc on-
demand routing protocol using distance vectors)

AP Access Point (802.11 STA usually used to interconnect wireless and wired
network segments)

API Application Programming Interface (functions invoked by applications to
obtain effects such as sending and receiving network traffic)

APIPA Automatic Private IP Addressing (a mechanism whereby a node self-
configures its own IP address from a particular range; usually applies to IPv4
nodes)

ptg999

Glossary of Acronyms 935

APSD Automatic Power Save Delivery (periodic batch processing of 802.11
frames in support of PSM)

AQM Active Queue Management (queue management methods that react to
the traffic dynamics, not including “drop-tail” typical of FCFS/FIFO queue
management)

ARP Address Resolution Protocol (a protocol above the link layer that resolves
IPv4 addresses to MAC layer addresses, uses link layer broadcast addressing)

ARQ Automatic Repeat Request (the retransmission of information; usually
after inferred loss)

AS Authentication Server (with PANA, server where authentication checks are
performed)

AS Autonomous System (a 16- or 32-bit number used in connection with inter-
ISP routing to identify a collection of network prefixes and their owner)

ASM All-Source Multicast (multicast wherein any party can source traffic)

ASN.1 Abstract Syntax Notation One (an ISO standard defining the abstract
syntax for information but not the corresponding encoding format; BER and
DER are encodings for ASN.1 information)

AUS Application Unique String (input string to the DDDS algorithm)

AUTH Authentication (with IKE, payload containing information required to
perform authentication of the sender)

AXFR Zone Transfer (full exchange of DNS zone information; uses TCP)

B4 Bridging Broadband element (in DS-Lite, a router which encapsulates IPv4
traffic in IPv6 tunnels terminated at an AFTR, a B4 does not perform NAT
functions)

BACP Bandwidth Allocation Control Protocol (with PPP, a protocol for config-
uring BoD)

BAP Bandwidth Allocation Protocol (a protocol used to configure links in a
bundle for MPPP)

BCMCS Broadcast and Multicast Service Controller (in cellular networks, man-
ages multicast)

BER Basic Encoding Rules (an ITU standard encoding syntax; a subset of
ASN.1)

BER Bit Error Rate (number of bit errors expected per number of bits in transit)

BGP Border Gateway Protocol (inter-domain routing protocol with policy
support)

BIND9 Berkeley Internet Name Domain (version 9) (a name server software
implementation popular on UNIX-like systems)

BITS Bump In the Stack (option for implementing IPsec in the host)

ptg999

936 Glossary of Acronyms

BITW Bump In the Wire (option for implementing IPsec in the network)

BL Bulk Leasequery (in DHCP, a request/response protocol to convey current
lease information)

BoD Bandwidth on Demand (ability to dynamically adjust available link
bandwidth)

BOOTP Bootstrap Protocol (precursor to DHCP; used to configure hosts)

BPDU Bridge PDU (PDUs used by STP; exchanged by switches and bridges)

BPSK Binary Phase Shift Keying (modulating binary using two signal phases)

BSD Berkeley Software Distribution (UC Berkeley’s version of UNIX, included
the first widely used implementation of TCP/IP)

BSDP Boot Server Discovery Protocol (an extension to DHCP developed by
Apple to discover a boot image server)

BSS Basic Service Set (IEEE 802.11 terminology for an access point and associ-
ated stations)

BTNS Better Than Nothing Security (with IPsec, an option for using certifi-
cates without a full PKI but which is vulnerable to MITM attacks)

BU Binding Update (in MIP, establishes the mapping between a MN’s CoA and
HoA)

CA Certificate Authority (organization responsible for generating and issuing
public/private key pairs and signing and distributing signed public keys and
CRLs)

CALIPSO Common Architecture Label IPv6 Security Option (security labels
for IP packets; not widely used)

CBC Cipher Block Chaining (an encryption mode that uses the XOR opera-
tion to chain encrypted blocks together in an effort to resist re-arrangement
attacks)

CBCP Callback Control Protocol (in PPP, establishes a callback number)

CCA Clear Channel Assessment (802.11 PHY-layer mechanism that detects
channel usage)

CCITT Comité Consultatif International Téléphonique et Télégraphique (now
ITU-T)

CCM Counter mode with CBC Message Authentication Code (an authenticated
encryption mode combining CTR mode encryption with CBC-MAC)

CCMP Counter Mode with CBC-MAC Protocol (encryption used with WPA2;
from IEEE 802.11i; successor to WPA)

CCP Compression Control Protocol (in PPP, established the compression meth-
ods to use)

ptg999

Glossary of Acronyms 937

ccTLD Country Code TLD (a TLD based on the ISO3661-2 country code list)

CDP CRL Distribution Point (a location where a CA’s current CRL may be
obtained)

CERT Certificate (with IKE, payload containing a certificate)

CERT Computer Emergency Response Team (groups that handle computer
security incidents, including the first CERT at Carnegie Mellon University and
U.S. Government’s US-CERT)

CERTREQ Certificate Request (with IKE, payload indicating trust anchor as an
indication of acceptable certificates)

CGA Cryptographically Generated Address (address generated based on a
hash on a public key)

CHAP Challenge-Handshake Authentication Protocol (protocol requiring a
challenge to match a response; vulnerable to MITM attacks)

CIA confidentiality, integrity, and availability (principles of information secu-
rity; the “CIA triad”)

CIDR Classless Inter-Domain Routing (a move to address the ROAD problem
by removing the IP address class boundaries but requiring an associated
CIDR mask to be used with inter-domain routing)

CMAC Cipher-based Message Authentication Code (a particular way of using
encryption algorithms as a MAC)

CN Correspondent Node (an MN’s conversation peer in MIP scenario)

CNAME Canonical Name (DNS RR providing an alias for another domain
name)

CoA Care-of Address (MN’s address assigned while visiting non-home
network)

CoS Class of Service (general term referring to differentiated services based on
different classes of traffic; a concept supported by the Diff Serv architecture)

CoT Care-of Test (in a RR check, message sent to MN via its CoA resulting in
MN obtaining a portion of a key used to secure BUs)

CoTI Care-of Test Init (in a RR check, triggers receiver to send a CoT message)

CP Configuration Payload (with IKE, extensible structure for conveying con-
figuration parameters)

CPS Certification Practice Statement (a CA’s policy statement about how certifi-
cates are issued or managed)

CRC Cyclic Redundancy Check (mathematical functions used to check for bit
errors)

CRL Certificate Revocation List (a list of invalid certificates issued by a CA)

ptg999

938 Glossary of Acronyms

CS Cipher Suite (in TLS, the choice of cryptographic algorithm suite)

CS Class Selector (in IP, a DSCP value designed to be compatible with the bit
values associated with the now-deprecated “Type of Service” and “Traffic
Class” IP header fields)

CSMA/CA Carrier-Sense Multiple Access/Collision Avoidance (WiFi’s MAC
protocol, which involves sending when a link is idle and backing off if it is
not)

CSMA/CD Carrier-Sense Multiple Access/Collision Detection (Ethernet’s clas-
sic MAC protocol, which involves sending when a link is idle and backing off
if collisions are detected)

CSPRNG Cryptographycially Secure Preudo-Random Number Generator (a
PRNG suitable for cryptographic use)

CSRG Computer Systems Research Group (developers of BSD UNIX at UC
Berkeley)

CTCP Compound TCP (a “scalable” TCP variant implemented in modern Win-
dows systems that combines both delay-based and packet-loss based window
adjustments)

CTR Counter (an encryption mode that uses a counter value to impose a
required order on encrypted blocks while permitting parallel execution of
encryption or decryption on multiple blocks)

CTS Clear To Send (message authorizing sender of RTS to send)

CW Contention Window (range of time an 802.11 station will wait before send-
ing under DCF)

CWND Congestion Window (in TCP, a limit placed on the sender’s window
size to avoid or reduce congestion)

CWR Congestion Window Reducing (or Reduced) (in TCP, reduction of the
sender’s usable window size)

CWV Congestion Window Verification (in TCP, a method to check and update
the current value of CWND when deemed necessary)

DAD Duplicate Address Detection (with IPv6 ND and SLAAC, DAD helps
determine whether a candidate IPv6 address is already in use by sending an
NS message for the proposed address)

DCCP Datagram Congestion Control Protocol (a protocol that provides best-
effort datagram service to applications and also controls congestion)

DCF Distributed Coordination Function (CSMA/CA MAC for 802.11 networks)

DDDS Dynamic Delegation Discovery System (methods to support lazy bind-
ing of strings to data; usually used with DNS for discovery of servers for vari-
ous application protocols)

ptg999

Glossary of Acronyms 939

DDoS Distributed DoS (a network-based attack often launched by botnets)

DER Distinguished Encoding Rules (an ITU standard encoding syntax; a sub-
set of BER for ASN.1 that requires a unique representation to be used for each
value)

DES Data Encryption Standard (an older U.S. standard for symmetric data
encryption using 56-bit keys)

DF Don’t Fragment (an IPv4 header bit indicating no fragmentation should be
performed; important for PMTUD)

DH Diffie-Hellman (mathematical protocol to establish a secret value between
two parties even in the presence of an evesdropper)

DHCP Dynamic Host Configuration Protocol (evolved from BOOTP; sets up
systems with configuration information such as leased IP addresses, default
router, and DNS server IP address)

DIFS DCF Inter-Frame Space (time between frames under 802.11 DCF)

DIX Digital, Intel, Xerox (creators and name of early Ethernet standard)

DKIM Domain Keys Identified Mail (a protocol for cryptographically binding
the sending domain of e-mail with the associated originating mail servers)

DLNA Digital Living Network Alliance (an industry group focused on
interoperability and protocols for consumer media devices such as TVs, DVD
players, DVRs, etc.)

DMZ De-Militarized Zone (a network segment outside an organization’s inside
firewall, usually used for hosts providing services to customers or the public)

DNA Detecting Network Attachment (procedures to detect a change in con-
nection state)

DNAME Non-Terminal Name Redirection (DNS RR supporting generation of
multiple CNAME records using a DNS subtree aliasing mechanism)

DNS Domain Name System (maps names to IP addresses and more)

DNS64 DNS IPv4/IPv6 translation (a mechanism for IPv4/IPv6 coexistence to
translate IPv4 DNS information for IPv6 DNS use)

DNSKEY Key for DNS (DNS RR used with DNSSEC to hold a public key)

DNSSEC DNS Security (original authentication and integrity assurance for
DNS data)

DNSSL DNS Search List (used with RAs, indicates list of default domain
extensions)

DOI Digital Object Identifier (a method for naming content objects and associ-
ating them with information records)

DoS Denial of Service (a type of resource exhaustion attack)

ptg999

940 Glossary of Acronyms

DPD Delegated Path Discovery (method for delegating the collection of all
information required to validate a certificate path)

DPV Delegated Path Validation (method for delegating the entire validation
procedure for a certificate)

DS Delegation Signer (in DNS, an RR used with DNSSEC to secure a
delegation)

DS Differentiated Services (in IP traffic management, methods to provide per-
formance differentiation for traffic delivery)

DS Distribution Service (in 802.11 LANs, the network or service used to inter-
connect APs, which is most often a wired 802.3/Ethernet network)

DSA Digital Signature Algorithm (an algorithm for generating digital signa-
tures based on the discrete logarithm problem)

DSACK Duplicate SACK (in TCP, a SACK variant that includes description of
received duplicated segments)

DSCP DS Code Point (field value in packet indicating a particular forwarding
behavior is desired)

DSL Digital Subscriber Line (dedicated broadband data link over POTS line)

DS-Lite Dual Stack Lite (a framework for IPv6-based service providers to pro-
vide access to dual stack or single stack clients using a combination of IPv4-in-
IPv6 tunneling and NAT)

DSRK Domain-Specific Root Key (key derived from an EMSK intended for use
by systems under a single administrative authority)

DSS Digital Signature Standard (a U.S. standard for digital signatures based
on DSA)

DSUSRK Domain-Specific USRK (a key combining the usage policies of a
USRK and DSRK)

DTLS Datagram TLS (variant of TLS used with datagram protocols such as
UDP)

DUID DHCP Unique Identifier (value placed in DHCP request to match
responses)

DUP Duplicate (used in multiple context—e.g., DUP ACKs)

EAP Extensible Authentication Protocol (framework supporting various
authentication methods)

EAP-FAST EAP-Flexible Authentication via Security Tunneling (Cisco’s EAP
method using TLS that replaces its earlier LEAP EAP method)

EAPOL EAP over LAN (e.g., EAP over Ethernet as used in IEEE 802.1X)

EAP-TTLS EAP-Tunneled Transport Layer Security (an EAP method based on
earlier TLS EAP method, but requires only server side to obtain certificate)

ptg999

Glossary of Acronyms 941

EC2N Elliptic Curve groups modulo a power of 2 (groups based on elliptic
curves, in the abstract algebra sense, over the Galois Field GF(2N))

ECC Error Correcting Code (redundant bits added to information bits usable to
correct errors)

ECDSA Elliptic Curve Digital Signature Algorithm (a variant of DSA using
ECC)

ECE ECN Echo (in TCP with ECN, the reflection of ECN information to a TCP
sender)

ECN Explicit Congestion Notification (direct method of indicating conges-
tion—e.g., by routers to hosts)

ECP Elliptic Curve groups modulo a Prime (groups based on elliptic curves, in
the abstract algebra sense, over the Galois Field G(P) for a prime P)

ECT ECN-Capable Transport (a transport protocol capable of interpreting ECN
indicators)

EDCA Enhanced Distributed Channel Access (802.11 coordinating function
supporting QoS, from 802.11e)

EDNS0 Extension mechanisms for DNS (version 0) (a method to extend DNS
RRs, version 0, needed by DNSSEC)

EF Expedited Forwarding (a PHB offering a service class as if no conges-
tion were present, generally implying it is the highest priority and requiring
admission control to avoid oversubscription)

EFO Expanded Flags Option (used with DHCP, indicates presence of additional
options)

EIFS Extended IFS (extended IFS used when receiving unrecognized frame
under 802.11 DCF)

EMSK Extended MSK (a secondary key generated in addition to the MSK by
EAP after key derivation)

ENUM E.164 to URI DDDS Application (a particular DDDS used to map E.164
telephony-style addresses to URIs)

EP Enforcement Point (with PANA, point where access control policies are
enforced)

EQM Equal Modulation (using the same modulation scheme on different data
streams simultaneously)

ERE Eligible Rate Estimate (part of TCP Westwood+; estimate of the amount of
bandwidth that could be used by a connection)

ERP EAP Re-authentication Protocol (an EAP extension to reduce the latency
when re-establishing authentication)

ptg999

942 Glossary of Acronyms

ESN Extended Sequence Number (in IPsec, an extended sequence number of 64
bits used to combat replay attacks; normal sequence numbers are 32 bits)

ESP Encapsulating Security Payload (required IPsec protocol providing for
authentication and/or confidentiality of traffic)

ESSID Extended Service Set Identifier (IEEE 802.11 network name)

EUI Extended Unique Identifier (MAC-layer address prefix format defined by
IEEE, extended from OUI)

EV Extended Validation (a form of certificate with enhanced identity validation
performed prior to issuance)

EV-DO Evolution, Data Optimized (or Only) (3GPP2 wireless broadband stan-
dard; an evolution of CDMA2000)

FACK Forward Acknowledgment (in TCP, one more than the highest sequence
number known to have reached the receiver; determined using SACK)

FCFS First Come, First Served (scheduling discipline with in-order service; no
priority)

FCS Frame Check Sequence (general term for bits used to check for bit errors)

FEC Forward Error Correction (using redundant bits to correct errors in data bits)

FIFO First In, First Out (queue management discipline with in-order service;
no re-arrangements)

FIN Finish (a TCP header bit and last segment type sent on a TCP connection)

FMIP Mobile IP with Fast Handovers (modification to MIPv6 with early
handovers)

FQDN Fully Qualifies Domain Name (a domain name with full domain exten-
sion included)

F-RTO Forward RTO (in TCP, a method to infer whether a retransmission was
spurious and if so facilitate the avoidance of unnecessary retransmissions)

FTP File Transfer Protocol (a TCP-based file transfer protocol using separate
control and data connections)

GCKS Group Controller/Key Server (in IPsec, used with GKM; holds and
issues keys for GSAs)

GCM Galois/Counter Mode (an authenticated encryption mode combining
CTR mode encryption with Galois mode authentication)

GDOI Group Domain of Interpretation (in IPsec, a group key management
protocol based on ISAKMP and IKE)

GENA General Event Notification Architecture (an XML-based notification
framework using HTTP over multicast UDP; used with UPnP)

GI Guard Interval (in communications engineering, minimum time between
transmissions used to avoid inter-symbol interference)

ptg999

Glossary of Acronyms 943

GKM Group Key Management (in IPsec, methods to distribute key material to
a group in order to support group SA formation)

GMAC Galois Message Authentication Code (an authentication-only variant of
GCM)

GMI Group Membership Interval (in IGMP and MLD, the amount of time a
multicast router waits before deciding there is no particular source or no more
group members; set to QRV * QI + QRI)

GMRP Generic Multicast Registration Protocol (replaced by MMRP)

GPAD Group PAD (with IPsec, abstraction of a database containing authentica-
tion data for all GCKS entities)

GRE Generic Routing Encapsulation (generic encapsulation within IP
datagrams)

GSA Group Security Association (in IPsec, an SA established among group
members using a multicast protocol)

GSAKMP Group Secure Association Key Management Protocol (a framework
for creating groups with common cryptographic information, distributing
policy, performing access control, generating group keys, and recovering from
group dynamic changes)

GSPD Group SPD (in IPsec, an SPD capable of holding information for both
SAs and GSAs)

GSS-API Generic Security Services API (an API to access myriad security
services such as authentication, confidentiality, etc.; typically used with the
Kerberos authentication system)

gTLD Generic TLD (a TLD—such as COM, EDU, MIL—not based based on
country code)

GVRP Generic Attribute Registration Protocol (replaced by MRP)

HA Home Agent (system offering MIP helper service to an MN)

HAIO Home Agent Information Option (in ICMPv6, an option supporting
MIPv6 to indicate address of an HA)

HCF Hybrid Coordination Function (coordinating function supporting both
priority and contention-based 802.11 channel access)

HDLC High-level Data Link Control (a popular ISO standard data link proto-
col, the basis for the most popular variant of PPP)

HELD HTTP-Enabled Location Delivery (a protocol for delivering LCI using
HTTP/TCP/IP)

HIP Host Identity Protocol (a research protocol architecture focusing on mobil-
ity and security)

HMAC Hash-based Message Authentication Code (a particular way of using
hashing algorithms as a MAC)

ptg999

944 Glossary of Acronyms

HoA Home Address (in MIP, a MN’s address from its home network)

HOPOPT IPv6 Hop-by-Hop Option (an IPv6 option type applicable to each
hop in a path)

HoT Home Test (in an RR check, message sent to MN via HA resulting in MN
obtaining a portion of a key used to secure BUs)

HoTI Home Test Init (in an RR check, triggers receiver to send a HoT message)

HSPA High-Speed Packet Access (3GPP wireless broadband standard; an evo-
lution of WCDMA)

HSTCP Highspeed TCP (a “scalable” TCP variant in which CWND is adjusted
based in part on its current value; designed to operate more effectively in high
capacity environments)

HT High Throughput (higher speeds associated with the IEEE 802.11n
standard)

HTML Hyper-Text Markup Language (the basic language of the WWW)

HTTP Hyper-Text Transfer Protocol (primary protocol of the WWW; often car-
ries HTML)

HTTPMU HTTP using UDP (a method for carrying HTTP traffic on UDP
using multicast addressing; used to carry SSDP messages in UPnP)

HTTPS HTTP over SSL/TLS (standard for secure WWW exchange)

HWRP Hybrid Wireless Routing Protocol (routing protocol proposed for IEEE
802.11s)

IA Identity Association (in DHCP, a collection of addresses)

IAB Internet Architecture Board (one of IETF’s governing bodies; responsible
for architectural oversight and apppointment of liasons to other SDOs)

IAID IA Identifier (in DHCP, an ID referring to a particular IA)

IANA Internet Assigned Numbers Authority (maintains protocol numbers and
field values)

IBSS Independent Basic Service Set (802.11 ad-hoc network)

ICANN Internet Corporation for Assigned Names and Numbers (non-profit
governing body for domain names and related policy)

ICE Interactive Connectivity Establishment (a framework for performing NAT
traversal, which entails trying direct connections, STUN, and finally TURN to
enable communication in the presence of NATs)

ICMP Internet Control Message Protocol (an information and error reporting
protocol considered part of IP)

ICS Internet Connection Sharing (alternative name for NAT; used with Micro-
soft Windows)

ptg999

Glossary of Acronyms 945

ICV Integrity Check Value (a value used to check the integrity of a message—
e.g., cryptographic hash)

ID Identification (in IKE, payload indicating identity of sender)

IDN Internationalized Domain Name (domain name encoding non-ASCII
characters)

IEEE Institute of Electrical and Electronics Engineers (SDO for link-layer proto-
cols and more)

IESG Internet Engineering Steering Group (IETF’s governing body with RFC
approval authority)

IETF Internet Engineering Task Force (SDO for Internet standards)

IGD, IGDDC Internet Gateway Device/Discovery and Control (a UPnP proto-
col for discovering and configuring gateway devices such as home NATs)

IGMP Internet Group Message Protocol (a protocol to manage IPv4 multicast
groups; used by routers and end hosts)

IHL Internet Header Length (IPv4 header field indicating the header length in
32-bit words)

IID Interface Identifier (numeric identifier usually based on MAC address;
used when choosing IPv6 addresses, but not used for this purpose when pri-
vacy extensions are enabled)

IKE Internet Key Exchange (part of IPsec; a protocol to dynamically establish
security associations including keys and operating parameters)

IMAP Internet Message Access Protocol (used to retrieve e-mail headers and
messages from servers)

IMAPS IMAP over SSL/TLS (a secure protocol for fetching e-mail, supported
by most e-mail programs)

IN Internet (in DNS, the class name indicating Internet information)

IND Inverse Neighbor Discovery (provides RARP-like function for IPv6)

IP Internet Protocol (standard best-effort Internet packet protocol implement-
ing a common abstract datagram on any link layer network)

IPCP IP Control Protocol (in PPP, an NCP used to configure an IPv4 network
link)

IPG Inter-Packet Gap (minimum spacing between frames in a MAC protocol)

IPsec IP Security (a framework for securing IP traffic, including the IKE, AH,
and ESP protocols)

IPV6CP IPv6 Control Protocol (in PPP, an NCP used to configure an IPv6 net-
work link)

ptg999

946 Glossary of Acronyms

IRIS Internet Registry Information Service (database containing information
relating address ranges, associated AS numbers, contact information, and
name servers)

IRTF Internet Research Task Force (research groups affiliated with IETF via the
IAB)

ISAKMP Internet Security Association and Key Management Protocol (in
IPsec, SA establishment protocol pre-dating IKE)

ISATAP Intra-Site Automatic Tunnel Addressing Protocol (an automatic IPv6-
to-IPv4 tunneling technology supported by Microsoft)

ISDN Integrated Services Digital Network (combination circuit/packet
switched data service)

IS-IS Intermediate System to Intermediate System (ISO link-state routing
protocol)

ISL Cisco’s Inter-Switch Protocol (Cisco’s protocol for maintaining VLAN infor-
mation among switches)

ISM Industrial, Scientific, and Medical (licence-free frequency bands in much
of the world, used by Wi-Fi)

ISN Initial Sequence Number (in TCP, the first sequence number for a con-
nection; assigned to the SYN)

ISO International Organization for Standardization (SDO responsible for
defining various protocols and encodings once considered for replacing
TCP/IP)

ISOC Internet Society (Internet standards leadership nonprofit corporation)

ISP Internet Service Provider (an entity, often a business, that allocates
addresses, provides DNS and routing, and works with other ISPs)

ITU International Telecommunications Union (SDO for radio and telephony
standards)

ITU-T ITU Telecommunication Standardization Sector (formerly CCITT; one
of the three “sectors” of ITU responsible for standards or “recommendations”
such as ASN.1, X.25, DSL)

IW Initial Window (in TCP, the initial value of CWND)

IXFR Incremental Zone Transfer (incremental exchange of DNS zone informa-
tion, uses TCP)

KE Key Exchange (with IKE, payload used for establishing keys; generally uses
DH)

KSK Key Signing Key (a key used with DNSSEC for signing other keys; typi-
cally has the SEP bit set)

L2TP Layer 2 Tunneling Protocol (IETF standard link layer tunneling protocol)

ptg999

Glossary of Acronyms 947

LACP Link Aggregation Control Protocol (part of IEEE 802.1AX for managing
link aggregates)

LAG Link Aggregation Group (set of links acting together as one virtual
higher-performance link)

LAN Local Area Network (a network within a small geographic area such as a
single site, office, or home)

LCG Linear Congruential Generator (a deterministic type of popular PRNG,
which is not a CSPRNG)

LCI Location Configuration Information (data representing the location—geo-
graphical or civic—of a system)

LCI Logical Channel Identifier (in circuit switching, identifier for a virtual
channel)

LCN Logical Channel Number (in circuit switching, number of a virtual
channel)

LCP Link Control Protocol (in PPP, used to establish a link)

LDAP Lightweight Directory Access Protocol (a lookup protocol based on the
ISO X.500 DAP protocol)

LDRA Lightweight DHCP Relay Agent (mechanisms to allow layer 2 devices to
act as DHCP relay agents)

LEAP Lightweight Extensible Authentication Protocol (Cisco’s EAP method
using WEP or TKIP keys; now known to have vulnerabilities)

LLA Link Layer Address (in FMIPv6, a mobility header option to indicate link
layer address)

LLC Logical Link Control (sublayer of the MAC layer related to link control)

LLMNR Link Local Multicast Name Resolution (a multicast variant of DNS
designed for on-link use and that runs on a different port number than DNS;
used for local service and node discovery)

LMQI Last Member Query Interval (in IGMP and MLD, the time between
group-specific query messages)

LMQT Last Member Query Time (in IGMP and MLD, the total spent after
sending a last member query and possible transmissions; represents the
“leave latency”)

LNP Local Network Protection (a collection of techniques suggested for use in
IPv6 deployments making NATs unnecessary)

LoST Location-to-Service Translation (a framework for offering services based
on location—e.g., indication of the nearest hospital)

LQR Link Quality Reports (in PPP, reports of link quality measurements
including number of packets received, sent, and rejected due to errors)

ptg999

948 Glossary of Acronyms

LTE Long-Term Evolution (3GPP wireless broadband standard; an evolution of
HSPA)

LW-MLD Lightweight MLD (variant of MLD with simpler join/leave
semantics)

MAC Media Access Control (controls for mediating access to a shared network
medium, usually a portion of the link layer protocol)

MAC Message Authentication Code (a mathematical function used to help
verify the integrity of a message)

MAN Metropolitan Area Network (a network spanning a modest geographical
extent, such as a city or region)

MCS Modulation and Coding Scheme (combination of modulation and coding,
many combinations are available in 802.11n)

MD Message Digest Algorithms (mathematical functions giving a short
numeric “fingerprint” for a larger message)

mDNS Multicast DNS (local variant of name service developed by Apple)

MIH Media-Independent Handoff (mechanisms to support change of network
attachment point between heterogeneous networks; the IEEE 802.21 standard
covers MIH for 802.3, 802.11, 802.15, 802.16, 3GPP, and 3GPP2 network types)

MII Media-Independent Interface (in hardware, the interface between
the MAC implementation and PHY protocol implementation, which is
PHY-independent)

MIME Multipurpose Internet Mail Extensions (method for labeling and encod-
ing various object types in electronic mail)

MIMO Multiple Input, Multiple Output (wireless antenna scheme with mul-
tiple antennas offering performance superior to single-antenna systems but
requiring more sophisticated signal processing)

MIP Mobile IP (IP addressing and routing extensions to support movement of
network attachment point without address change)

MITM Man-in-the-Middle attack (the typical form of an MSM attack, carried
out by an interposer)

MLD Multicast Listener Discovery (used by IPv6 routers to discover multicast
receivers on a link; provides similar capabilities as IGMP for IPv4)

MLPP Multilevel Precedence and Preemption (telephone scheme to prioritize
calls—e.g., for military use)

MMRP Multiple MAC Registration Protocol (part of MRP used for registering
multicast interest)

MN Mobile Node (the moving node in a MIP scenario)

ptg999

Glossary of Acronyms 949

MOBIKE Mobile version of IKE (enhancements to IKE to support mobility and
change of addressing information)

MODP Modulo-P groups (groups based on modular arithmetic, in the abstract
algebraic sense, used with key establishment protocols)

MoS Mobility Services (portion of the IEEE 802.21 standard supporting media-
independent handoff services)

MP Mesh Point (name of a node in IEEE 802.11s operating in a mesh
configuration)

MP, MPPP, MLP, MLPPP Multi-link PPP (using PPP over multiple links
simultaneously)

MPDU MAC Protocol Data Unit (name of the frame used in 802.11 standards)

MPE Manchester Phase Encoding (bit encoding scheme where a voltage transi-
tion indicates one bit)

MPLS Multi-Protocol Label Switching (architecture that switches frames based
on tag values, not IP addresses)

MPPC Microsoft’s Point-to-Point Compression (used with PPP)

MPPE Microsoft’s Point-to-Point Encryption (used with PPP)

MPV Maximum Pad Value (in PPP, maximum number of pad bytes)

MRD Multicast Router Discovery (protocol to discover on-link multicast router
neighbors)

MRP Multiple Registration Protocol (IEEE 802.1ak standard for registering
attributes)

MRRU Multilink Maximum Received Reconstructed Unit (MRU after recon-
struction from parts on multiple MP links)

MRU Maximum Receive Unit (largest packet/message size a receiver will
accept)

MS-CHAP Microsoft’s Challenge-Handshake Authentication Protocol (an
authentication protocol involving a request/replay and validated response,
with two versions: MS-CHAPv1 and MS-CHAPv2)

MSDU MAC Services Data Unit (802.11 frame type available to layers above
MAC)

MSK Master Session Key (a key derived after an EAP session using methods
supporting key derivation)

MSL Maximum Segment Lifetime (in TCP, the maximum time a segment can
exist in the network before being determined invalid)

MSM Message Stream Modification (active modification of messages; usually a
type of attack)

ptg999

950 Glossary of Acronyms

MSS Maximum Segment Size (in TCP, the largest segment a receiver is willing
to receive; usually provided in an option during connection establishment)

MTU Maximum Transmission Unit (maximum frame size a network will
transport)

MVRP Multiple VLAN Registration Protocol (part of MRP used for registering
VLANs)

MX Mail Exchanger (DNS RR indicating a priority order of hosts willing to use
SMTP to exchange mail)

NAC Network Access Control (process employed to determine whether a
device should receive access rights to use a network)

NACK Negative Acknowledgment (an indication of non-receipt or
non-acceptance)

NAP Network Access Protection (Microsoft’s variant of NAC; first available
with Windows Server 2008)

NAPT NAT with Port Translation (NAT with port re-writing, the most com-
mon form of NAT)

NAPTR Name Authority Pointer (DNS RR used with a DNS-based DDDS for
holding re-writing rules)

NAR New Access Router (in FMIPv6, router that is expected to be used soon)

NAT Network Address Translation (mechanism to re-write addresses in
IP datagrams; used primarily to reduce the usage of globally routable IP
addresses; usually used in conjunction with private IP addresses; also sup-
ports a type of firewall capability)

NAT64 IPv6/IPv6 NAT (a NAT that translates between IPv4/ICMPv4 and
IPv6/ICMPv6 and vice versa; proposed for IPv6/IPv4 interoperability and
coexistence)

NAT-PMP NAT Port Mapping Protocol (an alternative to IGD developed by
Apple for configuring some NAT devices; provides the ability to remotely set
up port forwarding)

NAT-PT NAT with Protocol Translation (now-deprecated approach to IPv4/
IPv6 translation)

NAV Network Allocation Vector (time delay before sending due to other sta-
tions’ channel use in 802.11 DCF)

NBMA Non-Broadcast Multiple Access (multi-user networks lacking broad-
casting capability)

NCoA New Care-of Address (in FMIPv6, CoA to be obtained from NAR)

NCP Network Control rotocol (in PPP, used to establish the network-layer
protocol)

ptg999

Glossary of Acronyms 951

ND, NDP Neighbor Discovery (IPv6 method to discovery and obtain MAC
address of on-link neighbors; works like ARP; implemented as part of
ICMPv6)

NEMO Network Mobility (mobility where a router and network changes
attachment point)

NIC Network Interface Card (the device interfacing a computer with a
network)

NONCE number used once (a random value used in many cryptographic pro-
tocols to combat replay attacks)

NPT66 IPv6-to-IPv6 NAPT (NAT with algorithmic address and port
translation)

NRO Number Resource Organization (the Address Supporting Organization
to ICANN)

NS Name Server (DNS RR carrying the name of another name server)

NS Neighbor Solicitation (part of IPv6 ND; similar to an IPv4 ARP request but
uses IPv6 multicast addressing; implemented using ICMPv6)

NSCD Name Services Cache Daemon (process to provide caching for DNS and
other resolutions popular on UNIX systems)

NSEC Next Secure (DNS RR used with DNSSEC to indicate the next RR in an
ordered list; used for authenticated denial of existence)

NSEC3 Next Secure (version 3) (DNS RR like NSEC but including hash func-
tion to resist DNS name enumeration attacks)

NSEC3PARAM NSEC Parameters (DNS RR used with DNSSEC holding
NSEC3 hash function parameters)

NTN Non-Terminal NAPTR (in DNS, a NAPTR pointing to another domain
with records)

NTP Network Time Protocol (a protocol for synchronizing clocks)

NUD Neighbor Unreachability Detection (in IPv6 ND, to determine if a neigh-
bor can still be reached)

OCSP Online Certificate Status Protocol (a protocol for checking the validity of
a certificate; an alternative to obtaining a CRL)

OFDM Orthogonal Frequency Division Multiplexing (a sophisticated modula-
tion scheme in which subcarriers of multiple frequences are simultaneously
modulated in a specified bandwidth to achieve high throughput; used by DSL,
802.11a/g/n, 802.16e, and advanced cellular data standards including LTE)

OID Object Identifier (numeric identifier of a digital object; used in certificate
encodings)

OLSR Optimized Link State Routing (a standard protocol for on-demand rout-
ing in ad-hoc networks)

ptg999

952 Glossary of Acronyms

OOB Out Of Band (information delivered outside a primary communication
channel)

ORO Option Request Option (in DHCP, an option indicating a systems interest
in knowing which options are supported)

OSI Open System Interconnect (an abstract reference model specified by ISO
for open systems that helped form the basis of layered design in protocols)

OUI Organizationally Unique Identifier (original MAC-layer address prefix
format defined by IEEE)

P2P Peer-to-Peer (participating systems are both clients and servers)

PA Provider-Aggregatable (IP address space where a customer’s prefix is given
by their provider)

PAA PANA Authentication Agent (PANA agent performing authentication,
such as an AAA server)

PaC PANA Client (PANA agent requesting authentication)

PAD Peer Authentication Database (with IPsec, abstraction of database contain-
ing authentication information for each peer such as use of IKE or PSK and
associated authentication data)

PANA Protocol for Carrying Authentication for Network Access (UDP/IP car-
rier for EAP)

PAP Password Authentication Protocol (protocol that carries cleartext pass-
word; vulnerable to MITM or eavesdroppers)

PAWS Protection Against Wrapped Sequence Numbers (in TCP, method using
TSOPT values to notice sequence number wrapping)

PCF Point Coordinating Function (combined contention-free and contention-
based MAC protocol for 802.11; not widely used)

PCO Phased Coexistence Operation (method for an 802.11 AP to switch chan-
nel widths for less negative impact on legacy equipment)

PCoA Previous Care-of Address (in FMIPv6, current or previous CoA obtained
from PAR)

PCP Port Control Protocol (current-generation draft IETF protocol for configur-
ing NATs including SPNATs and NAT64)

PDU Protocol Data Unit (describes a message at some protocol layer; some-
times used interchangeably and informally with packet, frame, datagram,
segment, or message)

PEAP Protected Extensible Authentication Protocol (a popular method to
encapsulate EAP in TLS; similar to EAP-TTLS)

PEN Private Enterprise Number (numbers assigned by IANA usable by an
enterprise in forming OIDs)

ptg999

Glossary of Acronyms 953

PFC Protocol Field Compression (in PPP, eliminating the Protocol field to reduce
overhead)

PFS Perfect Forward Secrecy (in public key cryptography, the property by
which compromise of one key leads at most to the compromise of data
encrypted with that key and not other data or keys)

PHB Per-Hop Behavior (abstract behavior at router used to implement DS)

PHY Physical (a layer in the OSI; usually describes connectors, frequencies,
coding, and modulation)

PI Provider-Independent (IP address space owned by a customer; not derived
from an ISP’s address prefix)

PIM Protocol Independent Multicast (non-local multicast routing protocol that
can leverage unicast routing protocols’ data and operations)

PIO Prefix Information Option (in ICMPv6, an option carrying an IP address
prefix)

PKC Public Key Certificate (a digital object including a public key and signa-
ture from a CA, along with various usage policies and parameters)

PKCS Public Key Cryptography Standards (methods to encode and represent
public key and related material)

PKI Public Key Infrastructure (system for managing and distributing public
keys)

PLCP Physical Layer Convergence Procedure (802.11 method for encoding and
determining frame type and radio parameters)

PMTU Path MTU (minimum MTU across links on the path from sender to
receiver)

PMTUD PMTU Discovery (process of determining the PMTU; usually
depends on ICMP PTB messages)

PNAC Port-Based NAC (a version of NAC wherein the physical port of attach-
ment is used in making an authorization decision)

PoE Power over Ethernet (carries device power over Ethernet wiring)

POTS Plain Old Telephone Service (conventional analog telephone service)

PPP Point-to-Point Protocol (a link-layer configuration and data encapsulat-
ing protocol capable of carrying multiple network layer protocols and using
multiple underlying physical links)

PPPoE PPP over Ethernet (methods to establish a PPP association over an Eth-
ernet link)

PPTP Point-to-Point Tunneling Protocol (Microsoft’s link layer tunneling
protocol)

ptg999

954 Glossary of Acronyms

PRF Pseudorandom Function Family (a set of functions that cannot be distin-
guished from truly random functions using a polynomial-time algorithm; also
sometimes used less formally to refer to a single such function)

PRNG, PRG Pseudo-Random Generator (a mathematical function used to com-
pute a series of random-appearing values)

PSK Pre-Shared Key (pre-placing encryption keys; no dynamic key exchange
protocol used)

PSM Power Save Mode (a mode of 802.11 where devices may “sleep” when not
busy and poll to receive their information from an AP at a later time)

PSMP Power-Save Multi-Poll (bi-directional version of APSD, part of 802.11n)

PTB Packet Too Big (a ICMP Destination Unreachable Fragmentation Required
or IPv6 Packet Too Big message indicating a packet is too large for the next-
hop MTU size)

QAM Quadrature Amplitude Modulation (combination of phase and ampli-
tude modulation)

QBSS QoS BSS (an 802.11 BSS enhanced with 802.11e or 802.11n QoS features)

QI Query Interval (in IGMP and MLD, time between general queries)

QoS Quality of Service (general term describing how traffic can be handled
differently, usually with better or worse latency or drop precedence, based on
configuration parameters)

QPSK Quadrature Phase Shift Keying (typically, modulating two bits per sym-
bol typically using four signal phases, although more advanced versions with
more bits per symbol are possible)

QQI Querier’s Query Interval (in IGMP and MLD, time between sending
general query messages; current non-querier multicast routers adopt the most
recently received QQI value as their QI value)

QQIC Querier’s Query Interval Code (in IGMP and MLD messages, encoding
of the QQI value)

QRI Query Response Interval (in IGMP and MLD, the maximum amount of
time a receiver is permitted to send a response to a query)

QRV Querier Robustness Variable (in IGMP and MLD, sets number of
retransmissions)

QS Quick Start (in TCP, an experimental modification for faster startup behav-
ior provided devices on the path agree)

QSTA QoS STA (an 802.11 STA supporting QoS capabilities)

RA Router Advertisement (message indicating presence of an on-link router
neighbor; uses ICMP)

ptg999

Glossary of Acronyms 955

RADIUS Remote Authentication Dial-In User Service protocol (a popular pro-
tocol for carrying AAA data)

RAIO Relay Agent Information Option (in DHCPv6, an option used by relays
to insert various bits of information)

RARP Reverse ARP (protocol providing network layer to MAC layer address
mappings)

RAS Remote Access Server (a server that handles remote users—authentica-
tion, access control, etc.)

RC4 Rivest Cipher #4 (a popular symmetric key encryption scheme designed
by Ron Rivest)

RD Router Discovery (procedure to locate a proximal router; uses ICMP)

RDATA Returned Data (part of the DNS protocol used to hold returned data)

RDNSS Recursive DNS Server (used in RAs; indicates address of DNS server)

RED Random Early Detection (an AQM scheme that marks or drops pack-
ets with increasing probability when persistent congestion appears to be
growing)

RFC Request for Comments (documents published by IETF; some are
standards)

RGMP Router-port Group Management Protocol (Cisco’s protocol to enable
IGMP snooping)

RH Routing Header (an IPv6 extension header that alters traffic delivery path)

RHBP Rate Halving with Bounded Pacing (in TCP, an evolved version of the
FACK algorithm to help spread retransmissions more evenly across an RTT
period after inferred packet loss)

RIP Routing Information Protocol (small organization routing protocol; the
original version does not support subnet masks)

RIR Regional Internet Registry (allocates address space for some region of the
world)

RO Route Optimization (improving routes from indirect “dogleg” paths used
in simple MIP)

ROAD Running Out of Address Space (a problem motivating the creation of
IPv6 and resulting in the creating of CIDR)

ROHC Robust Header Compression (current-generation standards for protocol
header compression)

RP Rendezvous Point (used with multicast routing to exchange group
information)

RPC Remote Procedure Call (a framework supporting a program’s procedure
calls to be handled remotely)

ptg999

956 Glossary of Acronyms

RPF Reverse Path Forwarding (to avoid loops, an RPF check is performed by
multicast routers to ensure a multicast datagram arrives on the same interface
used to reach the sender)

RPSL Routing Policy Specification Language (a language used to express rout-
ing policies such as which network prefix corresponds to which owning AS)

RR Resource Record (a typed information block owned by a domain name and
distributed via DNS)

RRP, RR Return Routability/Procedure (a check used with MIPv6 to ensure a
mobile node is authentic, and includes a HoA check and CoA check)

RRset Resource Record Set (a collection of DNS RRs with same domain name
owner and class)

RRSIG Resource Record Signature (DNS RR used with DNSSEC holding a
signature on an RRset)

RS Router Solicitation (an ICMP message that induces a router to produce a
response)

RSA Rabin, Shamir, Adelman (the most popular public key cryptography
algorithm)

RSN Robust Security Network (improved security in IEEE 802.11i/WPA;
included in 802.11 standard)

RSNA RSN Association (full use/implementation of RSN)

RST Reset (a TCP header bit and segment type that causes a TCP connection
abort)

RSTP Rapid Spanning Tree Protocol (decreased latency version of STP)

RTO Retransmission Timeout (time before retransmitting data thought to be
lost)

RTS Request To Send (message indicating desire to send a subsequent
message)

RTT Round Trip Time (minimum time to expect a response from a communi-
cation peer)

RTTM RTT Measurement (an instantaneous estimate of the RTT)

RTTVAR RTT Variance (in TCP, time-averaged estimate of a connection’s RTT
deviation)

RTX Retransmission (re-sending of data)

RW Restart Window (in TCP, CWND value when TCP restarts sending after an
idle period)

SA Security Association (in IPsec, state pertaining to a unidirectional associa-
tion between peers; includes agreed-upon keys, algorithms, etc.; an SA can be
unicast or multicast)

ptg999

Glossary of Acronyms 957

SACK Selective Acknowledgment (in TCP, an option indicating correctly
received out-of-sequence data)

SAD Security Association Database (in IPsec, abstraction of database contain-
ing information on each active SA; logically indexed by SPI)

SAE Simultaneous Authentication of Equals (form of authentication used with
802.11s)

SAP Session Announcement Protocol (carries experimental multicast session
announcements; see also SDP)

SCSV Signaling Cipher Suite Value (in TLS, a CS value that indicates not a CS
but a particular set of alternative functions or options)

SCTP Stream Control Transport Protocol (a reliable transport protocol alterna-
tive to TCP that does not enforce strict ordering and supports multiple sub-
streams and endpoint address changes)

SCVP Server-Based Certificate Verification Protocol (a protocol supporting
DPD and DPV for certificates)

SDID Signing Domain Identifier (with DKIM, name for the domain of the
signer)

SDLC Synchronous Data Link Control (a precursor to HDLC, the link layer of
SNA)

SDO Standards-Defining Organization (including IEEE, IETF, ISO, ITU, 3GPP,
3GPP2)

SDP Session Description Protocol (a protocol that describes multimedia
sessions)

SEND Secure Neighbor Discovery (a secure variant of ND using CGAs)

SEP Secure Entry Point (in DNSSEC, indicates a DNSKEY RR contains a KSK)

SFD Start Frame Delimiter (bit pattern indicating the starting portion of frame
in a link PDU)

SG Security Gateway (with IPsec, system terminating IPsec protocols, often at
network edge)

SHA Secure Hash Algorithm (one of a set of hashing algorithms suitable for
ensuring message integrity)

SIFS Shorts Inter-Frame Space (smallest amount of time between an 802.11
frame and its ACK)

SIIT Stateless IP/ICMP Translation (a framework for translation between IPv4
and IPv6, including special rules for ICMP translation, NAT64, and DNS64)

SIP Session Initiation Protocol (general signaling protocol; used with VoIP)

SLAAC Stateless Address Autoconfiguration (a mechanism whereby a node
self-configures its own IP address; usually applies to IPv6 nodes)

ptg999

958 Glossary of Acronyms

SLLAO Source Link-Layer Address Option (in ICMPv6, an option carrying the
sender’s link layer address)

SMSS Sender’s MSS (the MSS for a connection as viewed by the sender)

SMTP Simple Mail Transfer Protocol (a protocol to carry e-mail in transit
among mail transfer agents)

SNA Systems Network Architecture (IBM’s network architecture)

SNAP Subnetwork Access Protocol (IEEE terminology for 802.2 encapsulation;
rare for TCP/IP networks)

S-NAPTR Straightforward NAPTR (simplified NAPTR where AUS maps
directly to result without regular expression substitution)

SNMP Simple Network Management Protocol (status reporting and configura-
tion settings for network equipment; usually used with UDP/IP)

SOA Start of Authority (DNS RR indicating meta-data about a zone)

SOAP (formerly) Simple Object Access Protocol (a web services application
protocol using XML, which provides RPC-like capabilities; SOAP is no longer
an acronym)

SPD Security Policy Database (with IPsec, abstraction of database containing
security policies applying to how traffic is handled—e.g., discard, bypass, or
protect)

SPI Security Parameter Index (in IPsec, a logical index into the SAD to indicate
security parameters, either 32 or 64 bits)

SPNAT, CGN, LSN Service-Provider (“large scale”) NAT (a NAT deployment
arrangement where address translation is performed by a service provider
instead of a customer)

SRP Secure Remote Password (a strong key agreement protocol based on pass-
words; being supported by various security protocols such as TLS and EAP)

SRTP Secure Real-Time Protocol (a secure variant of the UDP/IP based real-
time protocol; typically used to carry multimedia information)

SRTT Smoothed RTT (in TCP, time-averaged estimate of a connection’s RTT)

SSDP Simple Service Discovery Protocol (an IETF-specified distributed service
discovery protocol designed for LANs and residential networks used by
UPnP)

SSH Secure Shell Protocol (secure remote login/execution protocol; also sup-
ports tunneling of other protocols)

SSID Service Set Identifier (802.11 network name)

SSL Secure Sockets Layer (encrypted and integrity-protected layer above TCP;
precursor to TLS)

ptg999

Glossary of Acronyms 959

SSM Single-Source Multicast (multicast wherein only a single party can source
traffic to a particular group)

STA Station (IEEE 802.11 terminology for an access point or associated wireless
host)

STP Spanning Tree Protocol (protocol used among bridges and switches to
avoid loops)

STUN Session Traversal Utilities for NAT (a client/server protocol for helping
to fix the address and port number of a traffic flow when passing through a
NAT)

SWS Silly Window Syndrome (in protocols using window-based flow control,
an undesirable situation where small amounts of data are exchanged due to
the use of small window sizes)

SYN Synchronize (a TCP header bit and first segment type sent on a TCP
connection)

TCP Transmission Control Protocol (a connection-oriented reliable stream
protocol lacking message boundaries, which includes flow and congestion
control)

TCP-AO TCP Authentication Option (in TCP, an algorithm-agile mechanism to
combat MSM attacks)

TDES, 3DES Triple DES (encryption using three rounds of DES encipherment,
resulting in an effective key length of 112 bits)

TDM Time Division Multiplexing (sharing by allocation of separate usage time
slots)

TFC Traffic Flow Confidentiality (in IPsec, methods to disguise the traffic flow
even when encrypted, including padding and generation of dummy packets)

TFRC TCP Friendly Rate Control (methods to control the sending rate of a
protocol so as to not compete unfairly with a TCP flow in a similar operating
environment)

TFTP Trivial File Transfer Protocol (UDP/IP-based simple transfer protocol)

TKIP Temporal Key Integrity Protocol (replaced the WEP encryption algorithm
for WPA)

TLD Top-Level Domain (a top-level domain name such as EDU, COM, UK, ZA)

TLS Transport Layer Security (based on the SSL protocol developed by
Netscape)

TLV Type/Length Value (used in protocols; indicates a type, length of variable-
length value, and the value)

ToS Type of Service (older name for the IPv4 header byte indicating type of
service; replaced with DS Field and ECN bits)

ptg999

960 Glossary of Acronyms

TS Traffic Selector (with IKE, specifications for identifying traffic such as IP
address range, port number, etc.)

TSER, TSecr Timestamp Echo Reply (in TCP, portion of TSOPT used to echo
TSV value to peer)

TSF Time Synchronization Function (establishes a common time in an 802.11
BSS)

TSIG Transaction Signatures (signatures used to secure individual DNS trans-
actions, not content from its origin)

TSOPT Timestamps Option (in TCP, an option including the TSV and TSER
values)

TSPEC Traffic Specification (a structure indicating traffic parameters for 802.11
QoS)

TSV Timestamp Value (in TCP, portion of TSOPT used to identify the sender’s
time—used in RTTM and PAWS)

TTL Time-to-Live (IPv4 header field indicating number of remaining router
hops allowed for a datagram)

TURN Traversal Using Relay NAT (a protocol in which a third party relays
information between hosts that are otherwise unable to communicate due to
the presence of one or more NATs)

TWA Time-Wait Assassination (in TCP, an erroneous condition caused by
receiving certain segments during TIME-WAIT state)

TXOP Transmission Opportunity (in 802.11, a form of “credit” allowing a sta-
tion to send one or more frames)

TXT Text (DNS RR carrying descriptive text; used by DKIM)

UBM Unicast Prefix-based Multicast addressing (deriving multicast addresses
based on assigned unicast prefixes)

UDL Unidirectional Link (link providing communication in only one
direction)

UDP User Datagram Protocol (a best-effort message protocol with message
boundaries and lacking congestion or flow control)

UEQM Unequal Modulation (using different modulation schemes on different
data streams simultaneously)

ULA Unique Local IPv6 Unicast Addresses (private addresses used with IPv6,
allocated from the fc00::/7 prefix)

U-NAPTR URI-enabled NAPTR (simplified NAPTR allowing limited regular
expression substitution)

U-NII Unlicensed National Information Infrastructure (unlicensed radio spec-
trum in much of the world)

ptg999

Glossary of Acronyms 961

UNSAF Unilateral Self-Address Fixing (heuristics used in an attempt to deter-
mine how a traffic flow is identified after passing through a NAT; a fragile
process for which techniques like ICE are recommended alternatives)

UP User Priority (802.11 priorities; based on same terminology from 802.1d)

UPnP Universal Plug and Play (a protocol framework for device and service
discovery aimed at the residential user; standardized by the UPnP Forum)

URG Urgent Mechanism (in TCP, a method for marking and indentifying
information as “urgent”; not recommended for use)

URI Universal Resource Identifier (string of characters identifying a name or
resource on the Internet, including URLs and URNs)

URL Uniform Resource Locator (informally, a “WWW address”)

URN Universal Resource Name (a URI using the urn scheme not implying
availability of resource)

USRK Usage-Specific Root Key (key derived from an EMSK intended to be
used for certain purposes)

UTC Coordinated Universal Time (standard time used by NTP and other
protocols; effectively interchangeable with GMT but with some technical
differences)

UTO User Timeout (in TCP, the maximum time a TCP sender will wait
attempting to retransmit before abandoning a connection)

VC Virtual Circuit (a simulated dedicated communication path)

VLAN Virtual LAN (used most often to simulate multiple distinct LANs on
shared wiring)

VLSM Variable-Length Subnet Masks (proximal use of subnet masks of differ-
ing lengths in same environment)

VoIP Voice over IP (the carriage of voice traffic over IP networks, usually
involves SIP signaling)

VPN Virtual Private Network (virtually isolated network; often encrypted)

W3C World Wide Web Consortium (SDO defining web standards such as
XML)

WAN Wide Area Network (a network connecting geographically distributed
sites; usually involving multiple administrative authorities)

WEP Wired Equivalent Privacy (original WiFi encryption; found to be cata-
strophically weak)

WESP Wrapped ESP (in IPsec, a method to prepend ESP with a header to
indicate if the following traffic is encrypted or only authenticated; useful for
inspection by middleboxes)

ptg999

962 Glossary of Acronyms

Wi-Fi Wireless Fidelity (IEEE 802.11 wireless LAN standard)

WiMAX Worldwide Interoperability for Microwave Access (IEEE 802.16 wire-
less broadband standard)

WKP Well-Known Prefix (a checksum neutral IPv6 prefix, 64:ff9b::/96, used in
algorithmic mappings between IPv4 and IPv6 addresses)

WLAN Wireless LAN (a wireless LAN such as WiFi)

WMM Wi-Fi Multimedia (subset of 802.11e QoS functions now available in
802.11n)

WoL Wake on LAN (method to remain in “sleep” mode until a particular
packet is received)

WPA WiFi Protected Access (802.11 encryption method)

WPAD Web Proxy Autodiscovery Protocol (a protocol to discover the presence
of a proximate WWW proxy)

WRED Weighted RED (RED where the mark/drop probablity is a function of
traffic class and weight assignment)

WSCALE, WOPT, WSOPT Window Scale Option (in TCP, an option indicating
a scaling factor is to be applied to the Window Size field)

WWW World Wide Web (networked data environment using the HTTP/TCP/
IP protocol suite)

X.25 ITU-T recommendation X.25 (an ITU-T standard packet switched network
standard covering OSI layers 1-3; the most popular packet switched technol-
ogy until widespread use of TCP/IP)

XML Extensible Markup Language (a set of rules for encoding documents in
machine-readable form; extensively used by web services)

XMPP Extensible Messaging and Presence Protocol (an open, extensible,
HTML-based protocol for the exchange of messages, presence, and contact list
information)

ZSK Zone Signing Key (a key used with DNSSEC for signing zone contents,
usually signed by a KSK)

ptg999

963

Index

Symbols
* (Wildcard)

domain names and, 526
local IP address restrictions in server design,

500–501
.in-addr.arpa

classless delegation, 539
special domain for IPv4, 537–538

.ip6.arpa, 537–538

Numbers
2.4GHz band, Wi-Fi, 124–126
3DES. See Triple-DES
3GPP (3rd Generation Partnership Project), 275, 933
5GHz band, Wi-Fi, 124–126
6rd (IPv6 Rapid Deployment), 339, 933
6to4

definition of, 933
IPv4 to IPv6 transition, 482

A
A (address) records

definition of, 529, 933
overview of, 529–530
querying, 531
translating DNS from IPv4 to IPv6, 569

A-MPDU (aggregated MAC protocol data unit)
definition of, 934
frame aggregation support, 118–119

A-MSDU (aggregated MAC service data unit)
definition of, 934
frame aggregation support, 118

AAA (authentication, authorization, and account-
ing), 833–834, 933

AAAA (address) records
definition of, 933
DNS resource record types, 529–530
translating DNS from IPv4 to IPv6, 569

Abbreviated handshake, TLS, 881
ABC (Appropriate Byte Counting), in TCP, 733, 933
Abortive release, of TCP connections, 627
Abstract Syntax Notation One (ASN.1), 935
Access categories (ACs), in EDCA, 123

Access control
NAC (Network Access Control), 833–837
RADIUS server for, 141

Access control lists. See ACLs (access control lists)
Access Network Discovery and Selection Function

(ANDSF), 275, 934
Access points. See APs (access points)
ACCM (Asynchronous Control Character Map), in

PPP
definition of, 933
escaping characters and, 134–135

ACD (Address Conflict Detection), 176–177, 933
ACFC (Address and Control Field Compression), in

PPP, 132, 933
ACK clock, in TCP, 731
ACK division, attack against TCP, 785
Acknowledge Number field, in GRE tunnels, 150
ACKs (acknowledgement)

clocking congestion via, 730–731
combined with SYN segments (SACK), 607
cumulative in TCP, 586–587
definition of, 933
duplicate ACK threshold in fast retransmit, 667
establishing TCP connections and, 597, 602–603
NAT and TCP and, 307–308
requesting connection to nonexistent TCP port,

626
retransmission and, 580–581
retransmission timeout settings, 584
stretch ACKs in recovery from local congestion,

754–757
TCP header field, 588–589
TCP segments and, 701
in Wi-Fi control frames, 116
window update and, 583

ACLs (access control lists)
definition of, 933
in packet-filtering firewalls, 300
rules in, 335

ACs (access categories), in EDCA, 123
ACs (attribute certificates)

as alternative to public key certificates, 831
definition of, 933

ptg999

964 Index

ACSII characters, escaping in PPP operations,
134–135

Actions, in ACL rules, 335
Active attacks, threats to network communication,

807–809
Active closer, FIN segments and, 597
Active open, in TCP connections, 597
Active opener (client)

RST segments, 631
simultaneous open and, 600
in TCP connections, 596, 599

Active queue management (AQM), 782–785, 935
Ad hoc mode, Wi-Fi, 112
Ad-Hoc On-Demand Distance Vector (AODV)

definition of, 934
Wi-Fi mesh and, 130

Additive increase/additive decrease (AIAD)
congestion control and, 777
definition of, 934

Additive increase/multiplicative decrease (AIMD)
congestion control and, 769
definition of, 934

Address (A) records. See A (address) records
Address (AAAA) records. See AAAA (address)

records
Address (Addr) field, in PPP frames, 132
Address and Control Field Compression (ACFC), in

PPP, 132, 933
Address autoconfiguration. See SLAAC (stateless

address autoconfiguration)
Address behavior, in NAT, 311–313
Address Conflict Detection (ACD), 176–177, 933
Address Family Transition Router (AFTR), in

DS-Lite, 340, 934
Address management, DHCP for, 235
Address pools, DHCP, 235–236
Address realms

IP addresses, 299
proxy firewalls supporting private address

realms, 301
Address Resolution Protocol (ARP), 165
Address selection, in IP host models

destination address selection algorithm, 224–225
overview of, 222–223
source address selection algorithm, 223–224

Address unreachable message, ICMPv6, 364
Admin-scope boundaries, in router configuration, 53
Administrative prohibition, ICMP messages and, 365
Administrative scope, in multicast addresses, 53
ADSP (Author Domain Signing Practices), in DKIM,

916–917, 933
Advanced Encryption Standard. See AES (Advanced

Encryption Standard)

ADVERTISE message, DHCPv6, 262–264
Advertised window. See awnd (advertised window)
Advertisement Interval option, neighbor discovery

in IPv6, 412
Advertisement messages, in MRD, 394–395
AEAD (authenticated encryption with associated

data), 820, 934
AES (Advanced Encryption Standard)

definition of, 934
standardized for Internet use, 819
as symmetric encryption algorithm, 811
in Wi-Fi security, 129

AES-MAC, 819
AF (Assured Forwarding), 190, 934
AFTR (Address Family Transition Router), in

DS-Lite, 340, 934
Aggregated MAC service data unit. See A-MSDU

(aggregated MAC service data unit)
Aggregation

route aggregation, 50
of Wi-Fi frames, 116–119

Agile probing, in TCP, 779
AH (Authentication Header)

authentication and integrity protection with, 856,
858

definition of, 934
fields in, 856
in IPSec, 841
NAT updates and, 866
overview of, 454–455
transport and tunnel modes, 856–857

AIA (Authority Information Access)
certificate extension, 828
definition of, 934

AIAD (additive increase/additive decrease)
congestion control and, 777
definition of, 934

AIMD (additive increase/multiplicative decrease)
congestion control and, 769
definition of, 934

Alert protocol, TLS handshaking, 880
ALGs (application layer gateways). See also

Gateways
definition of, 934
IP routers, 20
IPv4/IPv6 translation, 340–345
NAT Traversal as alternative to, 316
proxy firewalls and, 301

Allocation of IP addresses
multicast addresses, 65
overview of, 62
unicast addresses, 62–65
to users and organizations, 31

ptg999

Index 965

Alternate ports
RSTP, 110
STP, 104–105

Amplification attacks, DNS-related attacks, 571
ANDSF (Access Network Discovery and Selection

Function), 275, 934
Answer, authority, and additional information sec-

tion, of DNS message, 526–527
Any-source multicast (ASM)

definition of, 935
as multicast service model, 54

Anycast addresses, 62
AODV (Ad-Hoc On-Demand Distance Vector)

definition of, 934
Wi-Fi mesh and, 130

APIPA (Automatic Private IP Addressing)
definition of, 934
SLAAC and, 276, 284

APIs (Application Programming Interfaces)
definition of, 934
design and, 22

Application design
APIs in, 22
client/server design pattern, 20–21
peer-to-peer design pattern, 21–22

Application layer
full-duplex TCP service to, 587
of OSI model, 10
TCP and UDP services for, 585

Application-managed keepalives, 794
Application Programming Interfaces. See APIs

(Application Programming Interfaces)
Application protocols, NAT and, 304
Application-unique strings. See AUS (application-

unique strings)
Appropriate Byte Counting (ABC), in TCP, 733, 933
APs (access points)

definition of, 934
ICMP fast handover messages and, 388
Wi-Fi, 112

APSD (automatic power save delivery), 120, 935
AQM (active queue management), 782–785, 935
Architecture, protocol

end-to-end argument, 6
error control and flow control, 7–8
fate sharing, 6–7
packets, connections, and datagrams, 3–6
principles of, 2–3
of protocol suite, 1

ARM (ARPANET Reference Model), 1–2, 13–16
ARP (Address Resolution Protocol)

ACD (Adddress Conflict Detection), 176–177
announcement packets, 176

arp command, 177–178
attacks related to, 178–179
cache, 169–170
cache timeout, 174
definition of, 935
determining MAC addresses, 442
direct delivery and, 167–169
example of use, 166–167
frame format, 170–171
gratuitous ARP, 175–176
interaction between IP fragmentation and

ARP/ND, 496–497
introduction to, 165–166
IPv4 and, 13
operation of, 171–173
Proxy ARP, 174–175
request to nonexistent host, 173–174
setting IPv4 address for embedded device, 178
summary and references, 179–180
TCP connection timeouts and, 604

arp command
ARP cache timeout and, 174
examining ARP cache, 169–170
options, 177–178

ARP hack, 175
ARP poisoning, attacks on ICMP, 429
ARP probe, ACD defining, 176
ARP reply frames, 168
ARP request frames

direct delivery and, 167
Proxy ARP and, 174–175
request to nonexistent host, 173–174

ARPANET Reference Model (ARM), 1–2, 13–16
ARQ (Automatic Repeat Request), 579–581, 935
AS (Authentication Server), in PANA, 935
AS (autonomous system)

definition of, 935
multicast addresses based on, 55

ASM (any-source multicast)
definition of, 935
as multicast service model, 54

ASN.1 (Abstract Syntax Notation One), 935
Assignment of unicast addresses

to devices, 32
multiple providers/multiple networks/multiple

addresses, 68–70
overview of, 65–66
single provider/multiple networks/multiple

addresses, 67–68
single provider/no network/single address, 66–67
single provider/single network/single address, 67

Assignment policies, IA (Identity Association) based
on, 255–256

ptg999

966 Index

Assured Forwarding (AF), 190, 934
Asymmetric (public) key ciphers. See also Public key

cryptography, 809–812
Asynchronous Control Character Map (ACCM)

definition of, 933
escaping characters and, 134–135

Attacks
ARP, 178–179
DNS, 571–572
ICMP, 428–429
Internet architecture, 25–26
IP address, 70–71
IP protocol, 226
link layer, 154–156
on NAT and firewall, 345–346
system configuration, 292
TCP, 640–643
TCP congestion control and, 785–786
TCP keepalive and, 802
TCP timeout/retransmission and, 687
TCP window management and, 723
UDP, 507–508

Attribute certificates (ACs)
as alternative to public key certificates, 831
definition of, 933

Attribution, of datagrams, 26
Auditability, ESP and, 863
Augmented message, CRC, 86
AUS (application-unique strings)

definition of, 935
ENUM records and, 551–552
NAPTR records and, 549

AUTH (authentication packets), in IKE, 935
Authenticated encryption, 814–815
Authenticated encryption with associated data

(AEAD), 820, 934
Authenticated nonexistence, DNSSEC, 895
Authentication

AH (Authentication Header). See AH (Authenti-
cation Header)

basic principles of security, 806–807
DHCP and, 271–273
EAP methods for, 838
PPP and, 140–141
PSKs (preshared keys) for, 129–130
SAE (Simultaneous Authentication of Equals),

130
SHA-1 algorithm in, 268
spoofing attacks and, 226
TCP-AO (Authentication Option), 612

Authentication, authorization, and accounting
(AAA), 833–834, 933

Authentication Header. See AH (Authentication
Header)

Authentication Option (TCP-AO)
definition of, 959
TCP header, 612

Authentication Server (AS), in PANA, 55, 935
Author Domain Signing Practices (ADSP), 916–917, 933
Authorities, in allocation of IP addresses, 62
Authority Information Access (AIA)

certificate extension, 828
definition of, 934

Authority Key Identifier, for identifying public keys,
828, 830

Auto-proxy ARP, 175
Automatic power save delivery (APSD), 120, 935
Automatic Repeat Request (ARQ), 579–581, 935
Autonegotiation, in Ethernet

duplex mismatch and, 96
Autonomous system (AS)

definition of, 935
multicast addresses based on, 55

Autotuning TCP receive windows, 715–716
Availability, in CIA triad, 806
awnd (advertised window) in TCP

overview of, 729–730
slow start algorithm and, 733–734, 736

AXFR (full zone transfer) messages, in DNS,
559–561, 935

B
B4 (Bridging Broadband), 340, 935
Backoff factor, RTO and, in TCP, 655
Backoff time, in MAC, 121–122
Backup ports, STP, 104–105
BACP (Bandwidth Allocation Control Protocol), 139,

935
Bandwidth Allocation Protocol (BAP), 139
Bandwidth (capacity)

allocating in MP, 139
buffer bloat and, 781
connections and, 3

Bandwidth-delay product. See BDP (bandwidth-
delay product)

Bandwidth on demand (BOD), 139, 936
Bandwidth-scalable TCPs, 773
Bank teller’s algorithm, 138
BAP (Bandwidth Allocation Protocol), 139
Baran, Paul, 1
Basic Encoding Rules (BER), 935
Basic service set. See BSS (basic service set)
BCMCS (Broadcast and Multicast Service Control-

ler), 935

ptg999

Index 967

BCP (best current practice) category, RFCs and, 23
BDP (bandwidth-delay product)

congestion control and, 730
high-speed networks and, 770
HSTCP (HighSpeed TCP) and, 772

BER (Basic Encoding Rules), 935
BER (bit error rate)

data frame fragmentation, 117–118
definition of, 935

Berkeley Internet Name Domain v. 9 (BIND9), 935
Berkeley sockets

half-close support, 598
incoming connection queue and, 636, 639–640
popular APIs, 22
restrictions on foreign endpoints, 635
state transitions, 618
TCP ports, 588
TCP_NODELAY option for disabling Nagle

algorithm, 700
Berkeley Software Distribution. See BSD (Berkeley

Software Distribution)
Best current practice (BCP) category, RFCs and, 23
Best-effort delivery, of packets, 7
Better-than-Nothing Security (BTNS), 852, 936
BGP (Border Gateway Protocol), 935
BI (binary increase), 774
BIC (Binary Increase Congestion Control)

BIC-TCP, 773–774
overview of, 772–773

Bidirectional tunneling, in mobile IP, 216–217
Big endian byte ordering, 183
Binary additive increase algorithm, 773–774
Binary exponential backoff, retransmission and, 650
Binary increase (BI), 774
Binary Increase Congestion Control (BIC)

BIC-TCP, 773–774
overview of, 772–773

Binary notation
expressing IP addresses in, 32–33
prefixes, 48
of subnet masks, 39

Binary phase shift keying (BPSK)
definition of, 936
higher throughput (802.11n) support and, 128

Binary search increase algorithm, BIC-TCP and,
773–774

BIND9 (Berkeley Internet Name Domain v. 9), 935
Binding method, in STUN, 321
Binding, MNs (mobile nodes), 216–217
Binding Update (BU), in MIP, 936
Bit error rate (BER)

data frame fragmentation, 117–118
definition of, 935

Bit flipping attack, 918
Bit stuffing, in PPP frames, 132
BITS (Bump in the Stack), in IPsec, 840, 935
BITW (Bump in the Wire), in IPsec, 840, 936
Bitwise AND operation, used with subnet masks, 40
BL (Bulk Leasequery)

DCHP relay agents, 269–270
definition of, 936

Black hats, attacks related to Internet architecture, 26
Black holes, in PMTUD, 613
Blackhole route messages, ICMPv6, 372
Block ciphers, 811
Blocking route messages, ICMPv6, 372
Bloop attacks, 429
BOD (bandwidth on demand), 139, 936
Bombs, ICMP attacks, 428
Bonding, link aggregation and, 92–93
Boot Server Discovery Protocol (BSDP), 246, 936
BOOTP (Internet Bootstrap Protocol)

compatibility with DHCP, 236–238
definition of, 936
DHCP based on, 235
options, 238–239
relay agents, 268

BOOTREQUEST, 239, 242
Border Gateway Protocol (BGP), 209, 935
Bot attacks, 26
Bot herders, 806
Botnets

attacks related to Internet architecture, 26
taking control of computers, 806

BPDUs (Bridge PDUs)
building the spanning tree, 107
definition of, 936
RSTP (Rapid Spanning Tree Protocol), 110–111
STP and, 104
structure of, 105–107
viewing with Wireshark, 109

BPSK (binary phase shift keying)
definition of, 936
higher throughput (802.11n) support and, 128

Bridge PDUs. See BPDUs (Bridge PDUs)
Bridges

layer 2 relay agents, 270
overview of, 98–102
STP. See STP (Spanning Tree Protocol)

Bridging Broadband (B4), in DS-Lite, 340, 935
Broadcast addresses

overview of, 15
setting/finding, 437–439
structure of, 42–43

Broadcast and Multicast Service Controller
(BCMCS), in cellular networks, 239, 935

ptg999

968 Index

Broadcast domain, link-layer broadcast, 167
Broadcasting

introduction to, 435–436
overview of, 436–437
sending broadcast datagrams, 439–441
setting/finding broadcast addresses, 437–439

Brute-force attacks, 816
BSD (Berkeley Software Distribution)

definition of, 936
standards and, 24
Tahoe release, 737

BSDP (Boot Server Discovery Protocol), 246, 936
BSS (basic service set)

definition of, 936
QoS BBS, 122
Wi-Fi, 112

BTNS (Better-than-Nothing Security), in IPsec, 852,
936

BU (Binding Update), in MIP, 936
Buffer bloat, TCP congestion control and, 781–782
Buffer overflow, worms, 805
Buffers

large buffers and auto-tuning, 715–719
packets stored in, 4

Bulk data, in TCP communication, 692
Bulk Leasequery (BL)

DCHP relay agents, 269–270
definition of, 936

Bump in the Stack (BITS), in IPsec, 840, 935
Bump in the Wire (BITW),in IPsec, 840, 936
Bundles, of PPP links, 137, 139
Byte stuffing, in PPP frames, 132

C
Cache

ARP cache, 169–170
ARP cache timeouts, 174

Cache poisoning, DNS-related attacks, 572
Caching servers, DNS, 517–518
CALIPSO (Common architecture Label IPv6 Secu-

rity Option), 199, 936
Callback Control Protocol (CBCP), in PPP

definition of, 936
negotiation of callbacks in LCP, 136

Callback, PPP supporting, 136
CAMELLIA, standardized for Internet use, 819
Candidate sets (CS), in source address selection,

223–224
Candidate transport addresses, in ICE, 333
Canonical name records. See CNAME (canonical

name) records
Canonical ordering, of RRset in DNSSEC, 902–903
Capture, network communication, 808

Capturing portals, link layer attacks, 155
Care-of address (CoA)

definition of, 937
in Mobile IP, 216–217

Care-of Test (CoT)
definition of, 937
mobility messages in RRP, 218–219

Care-of Test Init (CoTI)
definition of, 937
mobility messages in RRP, 218–219

Carrier-grade NAT (CGN), 315
Carrier sense, 120
Carrier sense, multiple access with collision avoid-

ance. See CSMA/CA (carrier sense, multiple
access with collision avoidance)

Carrier sensed, multiple access with collision detec-
tion (CSMA/CD)

definition of, 938
Ethernet interface and, 80–81

CAs (certification authorities). See also Certificates
(public key)

definition of, 936
PKI (Public Key Infrastructure) and, 821–822

Catenet. See also Internetwork, 1
CBC (cipher block chaining)

block ciphers in encryption algorithms, 820
definition of, 936

CBC-MAC (cipher block chaining message authenti-
cation code), 129

CBCP (Callback Control Protocol)
definition of, 936
negotiation of callbacks in LCP, 136

CCA (clear channel assessment), in Wi-Fi
definition of, 936
for physical carrier sense, 121

CCITT (Comité Consultatif International Télé-
graphique), 24, 936

CCM (counter mode)
CCMP algorithm based on, 129
definition of, 936

CCMP (counter mode with CBC Message Authenti-
cation Code)

definition of, 936
in Wi-Fi security, 129–130

CCP (Compression Control Protocol), in PPP,
definition of, 936
MPPE and, 145
overview of, 139–140

ccTLDs (country code TLDs)
definition of, 937
in DNS name space, 512–514

CDN (content delivery networks), 535
CDP (CRL Distribution Point), 828–829, 937

ptg999

Index 969

CE (Congestion Experienced) bit, in IP header,
783–784

CERT (Computer Emergency Response Team), 937
Certificate Policies (CP), 828
Certificate Request (CERTREQ) payload

definition of, 937
in IKE, 869–870

Certificate revocation lists. See CRLs (certificate
revocation lists)

Certificates, ACs (attribute certificates), 831
Certificates option, in ND, 417
Certificates (public key)

CAs and PKIs and, 821–822
extensions, 827–828
for identifying four types of Internet entities, 823
validating, 826
validating and revoking certificates, 828–831
viewing preconfigured, 823–826

Certificates, SEND, 403
Certification authorities. See CAs (certification

authorities)
Certification Path Advertisement message, ICMP

Send messages, 407
Certification Path Solicitation message, ICMP Send

messages, 406–407
Certification Practice Statement (CPS), 937
CERTREQ (Certificate Request) payload

definition of, 937
in IKE, 869–870

CGAs (cryptographically generated addresses)
definition of, 937
Handover Key Request/Reply options, 422–423
neighbor discovery options in IPv6, 414–415
RSA Signature option, 415–416
securing IPv6 Neighbor Discovery, 292
SEND (Secure Neighbor Discovery) and, 403–406
verification of, 405

CGN (carrier-grade NAT), 315
Chaddr (Client Hardware Address) field

DHCP/BOOTP message format, 238
MAC addresses in, 244

Challenge-response protocols, 816
Change Cipher Spec protocol, 878
Channels

in SSM multicast service model, 54
TURN, 327
Wi-Fi, 124

CHAP (Challenge-Handshake Authentication
Protocol)

definition of, 937
for PPP authentication, 140–141

Character stuffing, in PPP frames, 132
Checkpointing, saving work, 10

Checksums
(Generic Routing Encapsulation), 150
applying at application layer, 601
for detecting packet errors, 580
IP header fields, 185
TCP, 586, 590
UDP, 475–478
UDP-Lite, 487–488
verifying message integrity, 817
WKP checksum neutrality, 341

CIA (confidentiality, integrity, and availability)
AH and, 856, 858
definition of, 937
ESP and, 860
overview of, 806

ciaddr (Client IP address) field, 237
CIDR (Classless Inter-Domain Routing)

definition of, 937
developed to alleviate pressure on available IPv4

addresses, 47–48
masks, 47
routing scalability addressed by, 303

Cipher-based MAC (CMAC), 819–820, 937
Cipher block chaining (CBC)

block ciphers in encryption algorithms, 820
definition of, 936

Cipher block chaining message authentication code
(CBC-MAC), 129

Cipher Change protocol, TLS handshaking, 880
Cipher suite rollback attacks, 919
Cipher suites. See CS (cipher suites)
Ciphertext

encrypting cleartext message, 810
TLS, 878–879

Civic location, location information in DHCP, 274
Clark, D., 3
Class of Service (CoS), 937
Class selector code points, 190
Class Selector (CS), 938
Classes, IP address

Class D addresses reserved for IPv4 multicast,
54–55

overview of, 34–36
prefix length and, 47–48

Classic RTO method, 651–652
Classless Inter-Domain Routing. See CIDR (Classless

Inter-Domain Routing)
Classless routes, DHCP and, 246
Classless Static Route (CSR) parameter, 246
Clear channel assessment (CCA)

definition of, 936
for physical carrier sense, 121

Clear to send. See CTS (clear to send)

ptg999

970 Index

Client alive messages, 802
Client Hardware Address (Chaddr) field

DHCP/BOOTP message format, 238
MAC addresses in, 244

Client IP address (Ciaddr) field, in DHCP, 237
Client/server design pattern, 20–21
Client state machine, DHCP, 251–252
ClientHello message, in TLS, 887
Clients

keepalives detecting state of client host, 795
setting keepalive time for Windows client,

797–799
Clock granularity, RTO bounds and, 654
Clock recovery, Ethernet frames, 84
CLOSED state, in TCP,

sharing connection state, 768
simultaneous open and close transitions, 625
TCP state transitions, 618

CLOSE_WAIT state, TCP state transitions, 618
CMAC (cipher-based MAC), 819–820, 937
CNAME (canonical name) records

definition of, 937
DNS resource record types, 534–536
translating DNS from IPv4 to IPv6, 569

CNs (correspondent nodes), in MIP, 216–218, 937
CoA (care-of address)

definition of, 937
in Mobile IP, 216–217

Coding theory, 579
Collision Count field, CGAs, 404–405
Comité Consultatif International Télégraphique

(CCITT), 24, 936
Common architecture Label IPv6 Security Option

(CALIPSO), 199, 936
Communication protocols

ARQ (Automatic Repeat Request), 579–581
congestion control, 583–584
flow control, 583
introduction to, 579
retransmission settings, 584
sliding windows, 582
TCP. See TCP (Transmission Control Protocol)
windows of packets, 581–582

Compound TCP (CTCP) algorithm, 779–781, 938
Compression

ACFC (Address and Control Field Compression),
132

CCP (Compression Control Protocol), 139–140
header compression, 139, 142–143
MPPC (Microsoft Point-to-Point Compression

Protocol), 140
PFC (Protocol Field Compression), 133

VJ (Van Jacobson) compression, 141
Compression Control Protocol. See CCP (Compres-

sion Control Protocol)
Compression labels, DNS names and, 523–524
Compression-optional attributes, STUN, 321
Computer Emergency Response Team (CERT), 937
Computer Systems Research Group (CSRG), 24, 938
Concurrent servers, 21
Confidentiality, in CIA triad, 806
Confidentiality, integrity, and availability. See CIA

(confidentiality, integrity, and availability)
Configuration data delivery, DHCP for, 235
Configuration Payload (CP)

definition of, 937
IKE, 849

Congestion avoidance algorithm
classic algorithms for TCP congestion, 734–736
comparing with slow start, 736–737

Congestion collapse state, 728
Congestion control. See also Flow control

in communication protocols, 583–584
in TCP. See TCP congestion control
in UPD server design, 505

Congestion Experienced (CE) indicator, in IP header,
783–784

Congestion indicator, ECN, 188
Congestion Manager, 768
Congestion window. See cwnd (congestion window)
Congestion Window Reducing. See CWR (Conges-

tion Window Reducing)
Congestion Window Validation (CWV), in TCP,

742–744, 938
Connection completion, TCP congestion control,

766–767
Connection-oriented networks, 5
Connection-oriented protocols, 595
Connection-oriented service, 585
Connection refused error, in TCP and UDP, 626
Connection state, TCP, 595
Connectionless networks, 5, 181
Connectionless protocols, 595
Connections, in protocol architecture, 3–6
Connections, TCP

aborting, 627–628
attacks related to, 640–643
establishing and terminating, 595–598
example of PMTUD with, 613–616
example showing packet-level details, 602–604
FIN_WAIT_2 state, 625
half-close operation, 598–599
half-open connections, 628–630
header options, 605–606

ptg999

Index 971

incoming connection queue, 636–640
introduction to, 595
ISN (initial sequence number), 601–602
MSS (Maximum Segment Size) option, 606–607
PAWS (Protection against Wrapped Sequence

Numbers), 610–611
PMTUD (Path MTU Discovery) and, 612–613
port numbers and, 632–634
quiet time concept, 624
requesting connection to nonexistent port, 626
reset segments, 625–626
restrictions on foreign endpoints, 635–636
restrictions on local IP addresses, 634–635
SACK (selective acknowledgement) option, 607
server operation and, 631–632
simultaneous open and close, 599–601
simultaneous open and close transitions, 625
state transition diagrams, 617–618
summary and references, 643–645
TCP-AO (Authentication Option), 612
timeout settings, 604–605
Timestamps option, 608–610
TIME_WAIT state (2MSL), 618–624
translating addresses and port numbers, 605
TWA (TIME-WAIT Assassination), 630–631
UTO (User Timeout) option, 611–612
WSCALE (Window Scale) option, 608

Conservation of packets, 731
Content delivery networks (CDN), 535
Content filters, web proxies operating as, 302
Contention window (CW)

definition of, 938
in MAC, 122

Control field, in PPP frames, 132
Control frames, Wi-Fi, 115–116
Cooks, C., 814
Coordinated Universal Time (UTC), 961
Correspondent nodes (CNs), in MIP, 216–218, 937
Correspondent registration, in RO, 218
CoS (Class of Service), 937
CoT (Care-of Test)

definition of, 937
mobility messages in RRP, 218–219

CoTI (Care-of Test Init)
definition of, 937
mobility messages in RRP, 218–219

Counter (CTR) mode
definition of, 938
operating modes of encryption algorithms, 820

Counter mode (CCM)
CCMP algorithm based on, 129
definition of, 936

Counter mode with CBC Message Authentication
Code (CCMP)

definition of, 936
in Wi-Fi security, 129–130

Counters, IGMP/MLD, 467–468
Country code TLDs (ccTLDs)

definition of, 937
in DNS name space, 512–514

CP (Certificate Policies), 828
CP (Configuration Payload)

definition of, 937
IKE, 849

CPS (Certification Practice Statement), 937
CRCs (Cyclic Redundancy Checks)

applying at application layer, 601
compared with Internet checksum, 186
definition of, 937
for detecting errors in packets, 580
host address filtering and, 449, 451
integrity checking in Ethernet frames, 86–88
TCP reliability and, 586

CREATE_CHILD_SA exchange, IKE protocol, 852–853
CRL Distribution Point (CDP), 828–829, 937
CRLs (certificate revocation lists)

definition of, 937
distribution point for, 828–829
extensions, 830

Cryptographic suites, 819–821
Cryptographically generated addresses. See CGAs

(cryptographically generated addresses)
Cryptographically strong PRNGs (CSPRNGs), 816,

938
Cryptography. See also Encryption

attacks, 918
cryptographic and cipher suites, 819–821
cryptosystems, 809–812
DH (Diffie-Hellman-Merkle Key Agreement),

813–814
ECC (Elliptic Curve Cryptography), 815
hash functions and message digests, 817–818
message authentication codes, 818–819
message syntax, 823
nonces and salt, 816
overview of, 809
PFS (Perfect Forward Secrecy), 815
pseudorandom numbers, generators, and func-

tion families, 815–816
RSA (Rivest, Shamir, and Adleman) public key

cryptography, 812–813
signcryption, 814–815

CS (candidate sets), in source address selection,
223–224

ptg999

972 Index

CS (cipher suites)
definition of, 938
overview of, 819–821
in TLS, 878

CS (Class Selector), 938
CSMA/CA (carrier sense, multiple access with colli-

sion avoidance)
DCF as form of, 120
definition of, 938
WLANs (wireless LANs), 84

CSMA/CD (carrier sensed, multiple access with col-
lision detection)

definition of, 938
Ethernet interface and, 80–81

CSPRNGs (cryptographically strong PRNGs), 816, 938
CSR (Classless Static Route) parameter, 246
CSRG (Computer Systems Research Group), 24, 938
CTCP (Compound TCP) algorithm, 779–781, 938
CTR (Counter) mode

definition of, 938
operating modes of encryption algorithms, 820

CTS (clear to send)
carrier sense and, 121
definition of, 938
Wi-Fi control frames, 115

CUBIC algorithm, for
TCP congestion control, 775–776

Current-state records, IGMP/MLD group member-
ship reports, 457

CW (contention window)
definition of, 938
in MAC, 122

cwnd (congestion window) in TCP
comparing slow start with congestion avoidance,

736–737
congestion avoidance algorithm and, 734–736
CWV (Congestion Window Validation), 742–744
definition of, 938
Eifel Response Algorithm and, 744–745
FACK (forward acknowledgment) and, 741
overview of, 729–730
SACK congestion control and, 740–741
slow start algorithm and, 732–734
standard TCP algorithm and, 738
Tahoe, Reno, and Fast Recovery and, 737
undoing changes in, 762–766

CWR (Congestion Window Reducing)
CWR bit, 784
definition of, 938
fast retransmit events, 761–762
local congestion events, 764
sender pause and, 753

CWV (Congestion Window Validation), 742–744, 938
Cyclic Redundancy Checks. See CRCs (Cyclic

Redundancy Checks)

D
DAD (duplicate address detection)

definition of, 938
DHCPv6, 259–260
IPv6 addresses and, 277–278
MLD messages and, 457
Neighbor Discovery protocol and, 253
RA and RS messages and, 280–282

Daemen, Joan, 811
Data Encryption Standard. See DES (Data Encryp-

tion Standard)
Data flow, TCP. See TCP data flow
Data frames

fragmentation and aggregation, 94–95
Wi-Fi, 116–119

Data labels, DNS names and, 523
Data-link layer, of OSI model, 9
Data types, resource record categories, 528
Datagram Congestion Control Protocol. See DCCP

(Datagram Congestion Control Protocol)
Datagram TLS. See DTLS (Datagram TLS)
Datagrams

attribution of, 26
fragmenting, 148
important concepts in development of network

architecture, 5–6
in protocol architecture, 3–6
receiving multicast, 447–449
sending multicast, 446–447
spoofing attacks and, 25–26
TLS with. See DTLS (Datagram TLS)

Datagrams, IP
direct delivery of, 167
DNS messages using IPv4 datagrams, 525
fragmentation of, 488
of ICMP messages within, 354–355
IPv4, 182
TCP encapsulation in, 587

Datagrams, UDP
DNS messages using, 525
encapsulation, 474
fragmentation of, 488–492
maximum size, 497–498
translating UDP/IPv4 and UDP/IPv6 datagrams,

505–506
truncation of, 498

Davies, Donald, 1
Day, J., 2

ptg999

Index 973

DCCP (Datagram Congestion Control Protocol)
definition of, 938
NAT and, 309
transport protocols in TCP/IP suite, 16

DCF (distributed coordinating function), in Wi-Fi
collision avoidance/backoff procedure, 121–122
definition of, 938
options for controlling sharing of wireless

medium, 120
DDDS (Dynamic Delegation Discovery System)

definition of, 938
ENUM records and, 551–552
DNS NAPTR records and, 549
URI/URN resolution and, 553

DDNS (Dynamic DNS)
mapping DNS to DHCP addresses, 286
supporting DNS Update, 567

DDoS (distributed DoS)
attacks related to Internet architecture, 26
definition of, 939

Deadlock, Nagle algorithm resulting in, 699
Decimal notation, expressing IP addresses in, 32
Default router, IP forwarding, 208
Deferred authentication, in DHCP, 272
Defragmentation, of data frames. See also Fragmen-

tation, 117
Delay-based congestion control

buffer bloat and, 782
CTCP (Compound TCP) algorithm, 779–781
FAST TCP algorithm, 778–779
overview of, 777
TCPW (TCP Westwood) algorithm, 779
Vegas TCP algorithm, 777–778

Delayed ACKs
interaction with Nagle algorithm, 699
with piggybacking, 692
in TCP data flow, 695–696

Delegated path discovery (DPD)
certificate validation and, 831
definition of, 940

Delegated path validation (DPV)
certificate validation and, 831
definition of, 940

Delegation
classless .in-addr.arpa delegation, 539
DNS zones and, 516

Delegation signer (DS) resource record
definition of, 940
DNSSEC, 897–898

Delivery to multiple locations, broadcasting and
multicasting for, 435

Demilitarized zones. See DMZ (demilitarized zones)

Demultiplexing
identifiers in, 11
implementation and design and, 10–13
TCP/IP suite and, 16–17

Denial-of-service. See DoS (denial-of-service)
DER (Distinguished Encoding Rules), 869, 939
DES (Data Encryption Standard). See also Triple-DES

definition of, 939
dictionary attacks and, 816
as symmetric encryption algorithm, 811

Destination address selection algorithm, in IP host
models, 224–225

Destination cache, 403
Destination (DST) address, in Ethernet frame for-

mat, 85
Destination IP address

host processing of IP datagrams, 220–221
in IP datagrams, 186
in IP forwarding, 209
IPv6 header fields, 196
Routing header fields, 201
selection by hosts, 222–223
Teredo tunneling and, 485

Destination metrics, TCP timeout/retransmission,
685–686

Destination Options, IPv6, 196
Destination unreachable messages, ICMP

overview of, 364
PTB (Packet Too Big), 612
requesting connection to nonexistent ports, 626
UDP datagram and, 480

Detecting Network Attachment (DNA), 241, 939
Detection algorithm, for spurious timeouts and

retransmissions, 677
Detection, of congestion, 728–729
DF (Don’t Fragment), 939
DH (Diffie-Hellman-Merkle Key Agreement),

813–814, 939
DHCP (Dynamic Host Configuration Protocol)

address pools and leases, 235–236
attacks related to, 292
authentication, 271–273
automatic address assignment, 67
BOOTP message format, 236–238
BOOTP options, 238–239
definition of, 939
DHCP/DNS interaction, 285–286
DHCPACK message, 250
DHCPDISCOVER message, 244–247
DHCPNAK message, 243
DHCPOFFER message, 247–248
DHCPREQUEST message, 241–243, 248–249

ptg999

974 Index

DHCP (Dynamic Host Configuration Protocol),
continued

location information, 274–275
manual configuration, 265–266
mobility and handoff information, 275
operation of, 239–241
overview of, 234–235
PPPoE (PPP over Ethernet) and, 286–291
Rapid Commit option, 273–274
reconfigure extension, 273
relays, 267–271
snooping, 276
state machine, 251–252
subnet mask configuration, 39
summary and references, 292–298

DHCP Unique Identifier. See DUID (DHCP Unique
Identifier)

DHCPACK message, 241, 250
DHCPDECLINE message, 241
DHCPDISCOVER message, 240, 244–247
DHCPINFORM message, 241
DHCPLEASEQUERY message, 269
DHCPNAK message, 241, 243
DHCPOFFER message, 240, 247–248
DHCPRELEASE message, 241
DHCPREQUEST message, 239–243, 248–249
DHCPv6

DAD (Neighbor Solicitation), 259–260
DUID (DHCP Unique Identifier), 256–257
IA (Identity Association), 255–256
IPv6 address lifecycle, 252–253
manual configuration, 250–251
message format, 253–255
operation of, 257–258
overview of, 252
prefix delegation, 266–267
REQUEST message, 264–265
router solicitation and advertisement, 260–263

Dictionary attacks
DES and, 816
security protocol-related, 918

Differentiated Services Code Point (DSCP), 188–190,
940

Differentiated Services field. See DS (Differentiated
Services) field

Diffie-Hellman-Merkle Key Agreement (DH),
813–814, 939

DIFS (distributed inter-frame space), in Wi-Fi
carrier sense and, 120–121
definition of, 939

Digest challenge, STUN mechanisms and, 325
Digests, message digests, 817–818

Digital, Intel, Xerox (DIX)
definition of, 939
Ethernet, 82

Digital Living Network Alliance (DLNA), 939
Digital Object Identifier (DOI), 939
Digital Signature Algorithm (DSA), 821, 940
Digital Signature Standard (DSS), 821, 940
Digital signatures

in cipher suites, 821
in public key cryptography, 812
RSA Signature option, 416

Digital subscriber line. See DSL (digital subscriber
line)

Direct delivery
IP forwarding, 210–212
with IPv4, 167–169

Directed broadcast, 43
Direction specification, in firewall rules, 335
Discard Request messages, in LCP operation, 134
Discovery problem, in p2p networks, 22
Discrete log problem, in DH (Diffie-Hellman)

encryption, 814
Distinguished Encoding Rules (DER), 869, 939
Distributed coordinating function. See DCF (distrib-

uted coordinating function)
Distributed DoS (DDoS)

attacks related to Internet architecture, 26
definition of, 939

Distributed inter-frame space (DIFS)
carrier sense and, 120–121
definition of, 939

Distribution service (DS)
definition of, 940
Wi-Fi, 112

Distributions, TCP/IP suite, 24–25
DIX (Digital, Intel, Xerox)

definition of, 939
Ethernet, 82

DKIM (DomainKeys Identified Mail)
definition of, 939
DKIM signatures, 916
example using, 916–918
overview of, 915–916

DLNA (Digital Living Network Alliance), 939
DMZ (demilitarized zones)

definition of, 939
DNS queries and, 565–567
packet-filtering firewalls and, 300
unicast addresses and, 67–68

DNA (Detecting Network Attachment), 241, 939
DNAME resource records, DNS, 536, 939
DNS-0x20, 572

ptg999

Index 975

DNS (Domain Name System)
address and name server records, 529–530
answer, authority, and additional information

section formats, 526–527
attacks related to, 571–572
AXFR (full zone transfer) messages, 559–561
caching and, 517–518
CNAME (canonical name) records, 534–536
definition of, 939
DHCP and, 233, 285–286
DNS notify, 564–565
dynamic updates, 555–558
ENUM records, 551–552
example using resource record types, 530–534
extension format (EDNSO), 524–525
introduction to, 511–512
IXFR (incremental zone transfer) messages,

561–563
LDAP and, 570–571
LLMNR and mDNS, 569–570
mDNS (Multicast DNS), 444–445
message format, 520–524
MX (mail exchanger) records, 544–545
name resolution process, 518–520
name servers and zones, 516–517
name space, 512–514
naming syntax, 514–516
NAPTR (name authority pointer) records, 549–551
open DNS servers and DDNS, 567
OPT (option) pseudo records, 547–548
PTR (pointer) records, 536–541
question (query) and zone section format, 526
resource record types, 527–529
S-NAPTR and U-NAPTR, 554–555
security. See DNSSEC (DNS Security)
SIP records, 552
SOA (start of authority) records, 541–544
sort lists, round-robin, and split DNS, 565–567
SPF (sender policy framework) and TXT records,

545–547
SRV (service) records, 548–549
summary and references, 572–578
TCP/IP suite and, 19
translating DNS from IPv4 to IPv6, 568–569
transparency and extensibility, 567–568
URI/URN resolution, 553–554
well-known ports, 18, 525–526
zone transfers, 558–559

DNS Notify
initiating zone transfers, 525
necessity of zone transfers, 518

DNS proxy, 568
DNS Security. See DNSSEC (DNS Security)

DNS servers
caching, 517–518
gTLD servers, 519–520
primary and secondary, 517
response to DNS queries, 565–567
root servers, 518
zones, 516–517

DNS Update, DDNS support for, 567
DNS64

definition of, 939
DNSSEC with, 915
translating DNS from IPv4 to IPv6, 568–569

DNSKEY resource record
definition of, 939
DNSSEC and, 896–897
signed zones and zone cuts, 903

DNSSEC (DNS Security)
canonical orderings and forms, 902–903
definition of, 939
DNS-related attacks and, 571
DNS64 and, 915
DNSKEY resource record in, 896–897
DS (delegation signer) resource record in,

897–898
NSEC (NextSECure) resource record in, 898–901
operation of, 902
overview of, 894–896
resolver operation example, 903–911
resource records, 896
RRSIG (Resource Record Signature) resource

record in, 901–902
signed zones and zone cuts, 903
transaction authentication, 911–915

DNSSL (DNS Search List) option, in ND, 422–423
DOI (Digital Object Identifier), 939
Domain hacks, 514
Domain Keys Identified Mail. See DKIM (Domain

Keys Identified Mail)
Domain Name System. See DNS (Domain Name

System)
Domain names, DNS Search List option, 422–423
Domain-specific keys (DSRK)

definition of, 940
key derivation in EAP, 838

Domain-specific usage-specific root keys
(DSUSRKs)

definition of, 940
key derivation in EAP, 838

Domains
DNS and, 19
in DNS name space, 512

Done message, ICMP, 388–390
Don’t Fragment (DF), 939

ptg999

976 Index

DoS (denial-of-service)
definition of, 939
DNS attacks, 571
DTLS (Datagram TLS) protection, 894
IGMP or MLD attacks, 469–470
Internet architecture attacks, 26
system configuration attacks, 292
TCP attacks, 640
TCP timeout/retransmission attacks, 686
types of threats to network communication, 808
UDP attacks, 506

Dotted-decimal notation
IP addresses in, 32, 537
of subnet masks, 39

DPD (delegated path discovery)
certificate validation and, 831
definition of, 940

DPV (delegated path validation)
certificate validation and, 831
definition of, 940

Drive-by attacks, 806
Drop precedence, assigned to datagrams, 191
DS (delegation signer) resource record

definition of, 940
DNSSEC, 897–898

DS (Differentiated Services) field
definition of, 940
ICMP Parameter Problem and, 379
in IP header, 183
in IP protocol, 188–192

DS (distribution service)
definition of, 940
Wi-Fi, 112

DS-Lite (Dual-Stack Lite)
definition of, 940
IPv4/IPv6 translation, 339–340

DSA (Digital Signature Algorithm), 821, 940
DSACK (duplicate SACK) extension

definition of, 940
Eifel Detection Algorithm and, 679
Eifel Response Algorithm and, 681
overview of, 677–679

DSCP (Differentiated Services Code Point), 188–190,
940

DSL (digital subscriber line)
buffer bloat and, 781
definition of, 940
overview of, 4
PPPoE and, 286–287

DSRK (domain-specific keys)
definition of, 940
key derivation in EAP, 838

DSS (Digital Signature Standard), 821, 940
DST (Destination) address, in Ethernet frame for-

mat, 85
DSUSRKs (domain-specific usage-specific root keys)

definition of, 940
key derivation in EAP, 838

DTCP (Dynamic Tunnel Configuration Protocol),
154

DTLS (Datagram TLS)
definition of, 940
DoS protection, 894
example of use of, 884–891
handshake protocol, 892–894
overview of, 876–877
record layer, 891–892

Dual-Stack Lite (DS-Lite)
definition of, 940
IPv4/IPv6 translation, 339–340

DUID (DHCP Unique Identifier)
definition of, 940
DHCPDISCOVER message and, 246
types of, 256–257

DupACK spoofing, TCP congestion control attacks,
785–786

Duplex modes
duplex mismatch, 96
overview of, 94–96

Duplicate ACK threshold (dupthresh), in TCP
in fast retransmit, 667
NewReno algorithm and, 739
packet reordering and, 683

Duplicate acknowledgements, congestion control
and, 589

Duplicate address detection. See DAD (duplicate
address detection)

Duplicate SACK. See DSACK (duplicate SACK)
extension

Dupthresh. See Duplicate ACK threshold
(dupthresh)

Duration field, in frame transmission, 121
DWORD value, 518
Dynamic Delegation Discovery System. See DDDS

(Dynamic Delegation Discovery System)
Dynamic DNS (DDNS)

mapping DNS to DHCP addresses, 286
supporting DNS Update, 567

Dynamic Host Configuration Protocol. See DHCP
(Dynamic Host Configuration Protocol)

Dynamic/private ports, 18
Dynamic Tunnel Configuration Protocol (DTCP),

154
Dynamic updates, DNS, 555–558

ptg999

Index 977

E
E-mail, PGP (Pretty Good Privacy) encryption for,

822
EAP (Extensible Authentication Protocol)

attacks related to, 918
definition of, 940
ERP (EAP Re-authentication Protocol), 839
IKE protocol and, 851–852
key derivation, 838
layers of, 836–837
methods, 837–838
network security and, 833–834
packet format, 835
for PPP authentication, 141
request/response messages, 835–836
in Wi-Fi security, 129

EAP-FAST (EAP-Flexible Authentication via Secu-
rity Tunneling), 940

EAP Re-authentication Protocol (ERP), 839, 941
EAP-TTLS (EAP-Tunneled Transport Layer Secu-

rity), 838, 940
EAPoL (EAP over LAN), 833–834, 940
Eavesdropping

link layer attacks, 155
types of threats to network communication, 808

EC2N (Elliptic Curve groups modulo a power 2),
821, 941

ECC (Elliptic Curve Cryptography), 815, 821
ECC (Error Correcting Code), 579, 941
ECDSA (Elliptic Curve Digital Signature Algo-

rithm), 941
ECE (ECN Echo), 589, 941
Echo Request/Reply (ping) messages

example of broadcasting, 438–439
ICMP, 380–383
in LCP operation, 134
Redirect message and, 374
sending from link-local unicast address, 445
translating ICMPv6 to ICMPv4, 426

ECN-Capable Transport (ECT), 783, 941
ECN Echo (ECE), 589, 941
ECN (Explicit Congestion Notification)

delay-based congestion control and, 777
detecting congestion, 728
ECN-Echo bit, 784
ICMP Parameter Problem and, 379
IP header fields, 183, 188–192
TCP congestion control attacks and, 786
TCP header fields, 782–785

ECP (Elliptic Curve groups modulo a Prime), 821, 941
EDCA (enhanced DCF channel access)

definition of, 941

UPs (user priorities), 123
Wi-Fi mesh and, 130

Edge ports, RSTP (Rapid Spanning Tree Protocol),
110

Editors, NAT, 315
EDNS0 (Extension format for DNS)

definition of, 941
DNS (Domain Name System), 524–525
DNSSEC, 895–896

EF (Expedited Forwarding), 191, 941
EFO (Extended Flags option)

definition of, 941
Router Advertisement Flags Extension option,

420–421
Eifel Detection Algorithm, 679–680
Eifel Response Algorithm

handling spurious RTOs in congestion control,
744–745

responding to spurious transmissions, 680–682
EIFS (extended interframe space), in Wi-Fi

carrier sense and, 121
definition of, 941

Eligible rate estimate (ERE)
definition of, 941
in TCPW congestion control, 779

Elliptic Curve Cryptography (ECC), 815, 821
Elliptic Curve Digital Signature Algorithm

(ECDSA), 941
Elliptic Curve groups modulo a power 2 (EC2N),

821, 941
Elliptic Curve groups modulo a Prime (ECP), 821, 941
Elliptic curves, 815
Embedded devices, setting IPv4 addresses for, 178
EMSKs (extended MSKs)

definition of, 941
key derivation in EAP, 838

Encapsulating Security Payload. See ESP (Encapsu-
lating Security Payload)

Encapsulation
definition of, 10
of ICMP messages within IP datagrams, 354–355
IGMP/MLD, 453–454
implementation and design and, 10–13
TCP encapsulation in IP datagrams, 587
TCP/IP suite and, 16–17
tunnel encapsulation limits in IPv6, 198
of UDP datagram, 474

Encryption. See also Cryptography
MPPE (Microsoft Point-to-Point Encryption), 145
spoofing attacks and, 226
TCP-AO (Authentication Option), 612
in Wi-Fi security, 129

ptg999

978 Index

End system, for protocol suites, 12
End-to-end argument, in protocol architecture, 6
End-to-end checksum, in UDP, 473, 475
Endpoint discriminator, LCP options, 138
Endpoints, TCP, 588, 595–596
Enforcement Point (EP), in PANA, 839, 941
Enhanced DCF channel access. See EDCA (enhanced

DCF channel access)
ENUM records

definition of, 941
DNS resource record types, 551–552

Enumeration attacks, 919
EOL (End of List), TCP header options, 605
EP (Enforcement Point), in PANA, 941
Ephemeral port numbers, 18
EQM (equal modulation)

definition of, 941
higher throughput (802.11n) support and, 127

Equation-based rate control, 768
ERE (eligible rate estimate)

definition of, 941
in TCPW congestion control, 779

ERP (EAP Re-authentication Protocol), 839, 941
Error control, in protocol architecture, 7–8
Error Correcting Code (ECC), 579, 941
Error messages, ICMP

destination unreachable, 364–372
extended and multipart messages, 363–364
overview of, 309, 361–363
Parameter Problem message, 379–380
Redirect message, 372–375
time exceeded message, 375–378
translating ICMPv4 to ICMPv6, 424–425
translating ICMPv6 to ICMPv4, 427

ESN (Extended Sequence Number), in IPsec, 856, 942
ESP (Encapsulating Security Payload)

definition of, 942
ESP-NULL, WESP, and traffic visibility, 863–864
in IPSec, 217, 841
overview of, 858
transport and tunnel modes, 858–863

ESP-NULL, 863–864
ESS (extended service set), Wi-Fi, 112
ESSID (extended service set identifiers)

definition of, 942
Wi-Fi, 112

Established connections, TCP, 596
ESTABLISHED state in TCP

half-open connections and, 628
incoming connection queue and, 636
simultaneous open and close transitions, 625
TCP port numbers and, 632–634
TCP state transitions, 618

Ethernet (IEEE 802.3)
autonegotiation in, 95
converting IP multicast addresses to MAC

addresses, 442–444
flow control, 98
frames, 84–86
frames sizes, 88–89
integrity checking on frames, 86–88
LAN/MAN standards, 82–84
MAC addresses, 16
MTU (maximum transmission unit), 506
overview of, 80–82
power saving, 96–97
speeds, 81
supporting broadcasting at link layer, 437

Ethernet interfaces, Promiscuous mode, 155
Ethernet type field, 16
ethtool, Linux program for checking full duplex

support, 94
EUI (extended unique identifier)

definition of, 942
formats of IPv6 addresses, 44–45

EV-DO (Evolution, Data Optimized (or Only)), 942
EV (Extended Validation), 942
Exchange of database records. See Zone transfers
Expedited Forwarding (EF), 191, 941
Experimental category, RFCs and, 23
Experimental Values, neighbor discovery in IPv6,

423
Explicit Congestion Notification. See ECN (Explicit

Congestion Notification)
Explicit sending, in congestion control, 583
Explicit signaling, in congestion control, 728
Exponential backoff

binary, 650
SWS (silly windows syndrome) and, 713
in TCP connection timeout, 604

Extended and multipart messages, ICMP, 363–364
Extended Flags option (EFO)

definition of, 941
Router Advertisement Flags Extension option,

420–421
Extended interframe space (EIFS)

carrier sense and, 121
definition of, 941

Extended MSKs (EMSKs)
definition of, 941
key derivation in EAP, 838

Extended Sequence Number (ESN), in IPsec, 856, 942
Extended service set (ESS), Wi-Fi, 112
Extended service set identifiers (ESSID)

definition of, 942
Wi-Fi, 112

ptg999

Index 979

Extended unique identifier (EUI)
definition of, 942
formats of IPv6 addresses, 44–45

Extended Validation (EV), certificates, 942
Extensibility, DNS, 567–568
Extensible Authentication Protocol. See EAP (Exten-

sible Authentication Protocol)
Extensible Markup Language (XML)

common use with Web pages, 338
definition of, 962

Extensible Messaging and Presence Protocol
(XMPP), 333, 962

Extension data structure, appended to ICMP mes-
sages, 363–364

Extensions
DNS. See EDNS0
identifiers, 44
IP header, 182–183
IPv6 header, 194–196
TLS, 883–884

Extranets, 20

F
F-RTO (Forward-RTO Recovery), in TCP

definition of, 942
for detecting spurious transmissions, 680

FACK (forward acknowledgment), in TCP
definition of, 942
for TCP congestion control, 741–742

Fast Recovery algorithm, 737–738
Fast retransmit

event, 761
example of, 668–671
introduction to, 647
local congestion and, 759–762
overview of, 667–668
SACK recovery and, 757–759

FAST TCP algorithm, 778–779
Fate sharing, in protocol architecture, 6–7
FCFS (first-come-first-served)

definition of, 942
packet processing, 4

FCS (Frame Check Sequence)
definition of, 942
integrity checking in Ethernet frames, 88
verifying message integrity, 817

FEC (forward error correction)
definition of, 942
higher throughput (802.11n) support and, 128

FIFO (first-in-first-out)
definition of, 942
queue management and, 782
scheduling packets, 4

File (Boot File Name) field, DHCP/BOOTP message
format, 238–239

File Transfer Protocol. See FTP (File Transfer
Protocol)

Filter-mode-change records, IGMP/MLD group
membership reports, 457

Filters
host address filtering, 449–451
IGMP/MLD processing and, 456
iptables, 335
NAT, 312–313
packet-filtering firewalls, 300
web proxies operating as content filters, 302

FIN segments, in TCP
active and passive closers and, 597–598
connection completion and, 766
definition of, 942
half-close operation and, 598–599
half-open connections and, 628
sequence numbers in, 603

Fingerprinting, TCP keepalive attacks, 802
Fingerprints, or digest of message, 817–818
FIN_WAIT_1 state, TCP state transitions, 618, 625
FIN_WAIT_2 state, TCP state transitions, 618, 625
Firewalls

attacks related to, 345–346
configuring, 334
direct interaction with, 338–339
IP addresses and, 67
overview of, 300
packet-filtering firewalls, 300–301
proxy firewalls, 301–303
rules for packet-filtering, 335–336
summary and references, 345–346

First-come-first-served (FCFS)
definition of, 942
packet processing, 4

First-in-first-out. See FIFO (first-in-first-out)
Flags

DHCP/BOOTP message format, 236
GRE tunnels and, 150
IPv6 multicast addresses, 57, 58

Flooding attacks, 102, 428
Flow control. See also Congestion control

link layer and, 98
in protocol architecture, 7–8
rate-based and window-based, 583
in UPD server design, 505

Flow control, in TCP
example of dynamic window size adjustment

and flow control, 705–708
large buffers and auto-tuning, 715–719
overview of, 700–701

ptg999

980 Index

Flow control, in TCP, continued
sliding window protocol, 701–704
SWS (silly windows syndrome), 708–715
TCP header and, 590
zero windows and TCP persistent timer, 704–705

FMIP (Mobile IP with Fast Handovers), 388, 942
Foreign IP addresses

TCP port numbers and, 632
TCP server restrictions on foreign endpoints,

635–636
Forgery, message authentication codes protecting

against, 818
Forward acknowledgment (FACK), in TCP

definition of, 942
for TCP congestion control, 741–742

Forward error correction (FEC)
definition of, 942
higher throughput (802.11n) support and, 128

Forward-RTO Recovery (F-RTO)
definition of, 942
for detecting spurious transmissions, 680

Forwarding actions, IP forwarding, 209–210
Forwarding datagrams, 14
Forwarding tables, IP forwarding, 208–209
Four-message exchange operations, of DHCPv6,

265–266
FQDN (fully qualified domain names)

definition of, 942
DHCPv6 and, 260
vs. unqualified domain names, 515

Fraggle attacks, UDP-related attacks, 506
Fragment header, IPv6 protocol, 203–208
Fragment number, data frame fragmentation, 117
Fragment Offset field

in IPv6 Fragment header, 203–205
in UDP fragmentation, 489

Fragmentation
of datagrams, 14
of IGMP packets, 470
of Internet traffic, 506
IP fragmentation. See IP fragmentation
UDP/IPv4, 488–492
of Wi-Fi frames, 116–119

Frame Check Sequence. See FCS (Frame Check
Sequence)

Frame Control Word
in MPDU, 113
PSM (power save mode) and, 119
Retry bit and, 116

Frame Relay, best-effort delivery, 7
Frames, Ethernet

802.3 standard, 84–86
ARP frame format, 170–171

ARP reply frames, 168
ARP request frames, 167, 173–174
integrity checking on, 86–88
link-layer PDUs, 14
payload of, 16
sizes, 88–89

Frames, PPP, 131–132
Frames, Wi-Fi

control frames, 115–116
data frames, 116–119
management frames, 113–115
overview of, 113

FreeBSD
broadcast addresses, 441
incoming connection queue and, 638
standards and, 24

Frequencies, Wi-Fi, 124
Freshness property, authentication protocols and, 816
FTP (File Transfer Protocol)

definition of, 942
NAT and, 304
TCP/IP suite and, 13

Full duplex
support, 94–95
TCP service to application layer, 587

Fully qualified domain names. See FQDN (fully
qualified domain names)

G
Galois/Counter Mode. See GCM (Galois/Counter

Mode)
Galois MAC (GMAC), 819–820, 943
Gateway or Router IP Address (Giaddr) field

DHCP/BOOTP message format, 238
LDRAs and, 271

Gateways
application layer. See ALGs (application layer

gateways)
between packet-switching networks, 1
between protocols, 20
RED (Random Early Detection) gateways, 783–785

GCKSs (group controller/key servers)
definition of, 942
multicast support in IPSec, 864–865

GCM (Galois/Counter Mode)
AES and, 819
definition of, 942
operating modes of encryption algorithms, 820

GDOI (Group Domain of Interpretation), 942
GENA (General Event Notification Architecture),

338, 942
Generator polynomial, CRC and, 86–87
Generic Attribute Registration Protocol (GVRP), 943

ptg999

Index 981

Generic Multicast Registration Protocol (GMRP), 943
Generic Routing Encapsulation. See GRE (Generic

Routing Encapsulation)
Generic Security Services API (GSS-API), 943
Generic top-level domains (gTLD), 512–514, 943
GI (guard interval)

definition of, 942
higher throughput (802.11n) support and, 127

Giaddr (Gateway or Router IP Address) field
DHCP/BOOTP message format, 238
LDRAs and, 271

GKM (group key management)
definition of, 943
multicast support in IPSec, 864

Global Internet. See Internet
Global scope

configuring global addresses with SLAAC, 278
of IPv6 addresses, 43
of multicast addresses, 53

GLOP addressing, IP multicast, 54–56
GMAC (Galois MAC), 819–820, 943
GMRP (Generic Multicast Registration Protocol), 943
GPAD (Group PAD), 864, 943
Granularity, of TCP clock, 654
Gratuitous ARP, 175–176
GRE (Generic Routing Encapsulation)

definition of, 943
establishing tunneling with, 149–153
link layer attacks and, 156
NAT and tunneled packets, 310

Greenfield mode, 802.11n operating modes, 128
Group addresses. See Multicast addresses
Group controller/key servers (GCKSs)

definition of, 942
multicast support in IPSec, 864–865

Group Domain of Interpretation (GDOI), 942
Group key management (GKM)

definition of, 943
multicast support in IPSec, 864

Group members (Group Member Part), IGMP/MLD
processing by, 454–457

Group membership
displaying IP group membership, 446–447
IGMP membership reports, 455

Group PAD (GPAD), 864, 943
Group Secure Association Key Management

(GSAKMP), 943
Group security associations (GSAs)

definition of, 943
multicast support in IPSec, 864

Group SPD (GSPD), 943
GSAKMP (Group Secure Association Key Manage-

ment), 943

GSAs (group security associations)
definition of, 943
multicast support in IPSec, 864

GSPD (Group SPD), 943
GSS-API (Generic Security Services API), 943
gTLD (generic top-level domains), 512–514, 943
Guard interval (GI)

definition of, 942
higher throughput (802.11n) support and, 127

GVRP (Generic Attribute Registration Protocol), 943

H
HAIO (Home Agent Information Option), 943
Hairpinning (HP), 314, 486
Half-close operation, TCP connections, 598–599
Half-open connections, keepalives detecting, 794
Handoff information, DHCP, 275
Handover Key Request/Reply options, in ND,

422–423
Handshaking protocols

DTLS (Datagram TLS), 892–894
three-way handshake in TCP, 597, 640
TLS, 880–883

HAs (home agents)
definition of, 943
Home Agent Information option in ND, 412–413
ICMP Home Agent Discovery Request message,

386
ICMP Mobile Prefix Solicitation message,

387–388
in Mobile IP, 216–217

Hash-based addresses (HBAs), 405
Hash functions

CGAs (cryptographically generated addresses)
and, 404–405

cryptographic, 817–818
initial sequence numbers in TCP and, 601–602
TCP-AO (Authentication Option), 612

HBAs (hash-based addresses), 405
HC (hybrid coordinator), in HCCA, 123
HCCA (HFCA-controlled channel access), 123
HCF (hybrid coordination function)

definition of, 943
options for controlling sharing of wireless

medium, 120
QoS and, 122–123

HDLC (High-Level Data Link Control)
Address and Control fields, 132
definition of, 943
LCP links based on, 131

Header compression, in PPP
CCP (Compression Control Protocol), 139
PPP (Point-to-Point Protocol), 142–143

ptg999

982 Index

Header, ICMP
ICMP Parameter Problem and, 379–380
Redirected Header option in ND, 411

Header, IP
CE (Congestion Experienced) indicator in,

783–784
Checksum field, 186–188
DS and ECN fields, 188–192
extensions, 182–183
header compression, 142–143
IPv6 extensions, 194–196
IPv6 Fragment header, 203–208
IPv6 RH (Router header), 200–203, 955
Mobile IP, 216
overview of, 183–186

Header, TCP
connection options, 605–606
fields in, 588–590
MSS (Maximum Segment Size) option, 606–607
PAWS (Protection against Wrapped Sequence

Numbers), 610–611
SACK (selective acknowledgement) option, 607
TCP-AO (Authentication Option), 612
Timestamps option, 608–610
UTO (User Timeout) option, 611–612
WSCALE (Window Scale) option, 608

Header, UDP, 474–476, 481–482
HELD (HTTP-enabled Location Delivery)

definition of, 943
location information in DHCP, 274

Hexadecimal notation
expressing IP addresses in, 32–33
IPv6 addresses in, 537

HFCA-controlled channel access (HCCA), 123
Hierarchical routing, 48
High-Level Data Link Control. See HDLC (High-

Level Data Link Control)
High-speed environments, congestion control in, 770
High-Speed Packet Access (HSPA), 944
High Throughput (HT), 128, 944
HighSpeed TCP (HSTCP), 770–772, 944
Hijacking attacks

firewalls and NATs and, 345
TCP-related attacks, 641

HIP (Host Identity Protocol)
definition of, 943
Identifier/locator separating protocols, 70

Historic category, RFCs and, 23
HK-LIFETIME, Handover Keys, 422–423
Hlen (HW Len) field, DHCP/BOOTP message

format, 236
HMAC (keyed-hash message authentication code),

818–819, 943

HoA (home address)
definition of, 944
of IPv6 node, 199
in Mobile IP, 216–218

Hole punching, in NAT traversal, 317
Home address. See HoA (home address)
Home Agent Discovery Request message, ICMP, 386
Home Agent Information Option (HAIO), 943
Home Agent Information option, in ND, 412–413
Home agents. See HAs (home agents)
Home Test (HoT)

definition of, 944
mobility messages in RRP, 218–219

Home Test Init (HoTI)
definition of, 944
mobility messages in RRP, 218–219

Hop-by-hop
IP forwarding, 209
protocols, 12

Hop-by-hop options (HOPOPTs)
definition of, 944
IPv6, 196

Hop Limit field
ICMP Time Exceeded message, 375
IPv6, 199
MRD (Multicast Router Discovery) and, 394
ND messages and, 396

HOPOPTs (hop-by-hop options)
definition of, 944
IPv6, 196

Hops field, DHCP/BOOTP message format, 236
Host addresses, 35
Host fields, in IP addresses, 37
Host Identity Protocol (HIP)

definition of, 943
Identifier/locator separating protocols, 70

Host models, IP
address selection, 222–223
destination address selection algorithm, 224–225
overview of, 220–222
source address selection algorithm, 223–224

Host names, 19
Host number, in IP addresses, 35
Host Requirements RFCs, 23
Host unreachable message, ICMP, 364
Hosts

ARP request to nonexistent, 173–174
host address filtering, 449–451
keepalives detecting state of peer host, 795
server host crashes and does not reboot (keepal-

ive scenarios), 796
server host crashes and reboots (keepalive sce-

narios), 797–799

ptg999

Index 983

server host unreachable (keepalive scenarios),
799–800

in small networks, 11–13
HoT (Home Test)

definition of, 944
mobility messages in RRP, 218–219

HoTI (Home Test Init)
definition of, 944
mobility messages in RRP, 218–219

HP (Hairpinning), 314, 486
HSPA (High-Speed Packet Access), 944
HSTCP (HighSpeed TCP), 770–772, 944
HT (High Throughput), 128, 944
HTML (Hyper-Text Markup Language), 944
HTTP-enabled Location Delivery (HELD)

definition of, 943
location information in DHCP, 274

HTTP (Hypertext Transfer Protocol)
definition of, 944
proxy firewalls, 302–303
well-known port for, 18

HTTP over SSL/TLS (HTTPS), 944
HTTP using UDP (HTTPMU), 338, 944
HTTPMU (HTTP using UDP), 338, 944
HTTPS (HTTP over SSL/TLS), 944
Htype (HW Type) field, DHCP/BOOTP message

format, 236
HWRP (Hybrid Wireless Routing Protocol)

definition of, 944
Wi-Fi mesh and, 130

Hybrid coordination function. See HCF (hybrid
coordination function)

Hybrid coordinator (HC), in HCCA, 123
Hybrid cryptosystems, 812
Hybrid Wireless Routing Protocol (HWRP)

definition of, 944
Wi-Fi mesh and, 130

Hyper-Text Markup Language (HTML), 944
Hypertext Transfer Protocol. See HTTP (Hypertext

Transfer Protocol)

I
IA (Identity Association)

definition of, 944
in DHCPv6, 255–256

IAB (Internet Architecture Board), 22, 944
IAID (Identity Association Identifier)

definition of, 944
in DHCP, 246, 255–256

IANA (Internet Assigned Numbers Authority)
allocation of IP addresses and, 62
allocation of IPv6 multicast addresses, 58
definition of, 944

IKE registry of values, 849
OUI (Organizationally Unique Identifier), 442–444
port number assignments, 18, 632
registry for Sec values, 405
registry for SRV values, 548–549
URI, 553

IANA Service Name and Transport Protocol Port
Number (ISPR), 548

IBSS (independent basic service set)
definition of, 944
Wi-Fi, 112

ICANN (Internet Corporation for Assigned Names
and Numbers)

definition of, 944
DNSSEC zones list, 904
TLD management, 512

ICE (Interactive Connectivity Establishment),
332–334, 944

ICMP fix-up, 309
ICMP (Internet Control Message Protocol)

Advertisement Interval option in ND, 412
attacks related to, 428–429
Certificate option in ND, 417
CGA options in ND, 414–415
definition of, 944
destination unreachable, 364–372
DNS Search List option in ND, 422–423
Echo Request/Reply messages, 380–383
encapsulation of messages within IP datagrams,

354–355
error messages, 361–363
Experimental Values in ND, 423
extended and multipart messages, 363–364
Handover Key Request/Reply options in ND,

422–423
Home Agent Discovery Request message, 386
Home Agent Information option in ND, 412–413
ICMPv4 messages, 356–357
ICMPv6 messages, 358–360
IND (Inverse Neighbor Discovery), 401–402
introduction to, 353–354
IP Address/Prefix option in ND, 417–418
Link-Layer Address (LLA) option in ND, 418–419
MIPv6 fast handover messages, 388
MLD extension messages, 390–394
Mobile Prefix Solicitation message, 387–388
MRD (Multicast Router Discovery), 394–395
MTU option in ND, 411–412
NAT and, 309
ND options, 407–409
ND support, 395–396
Nonce option in ND, 416–417
NS (Neighbor Solicitation) message, 398–401

ptg999

984 Index

ICMP (Internet Control Message Protocol), continued
NUD (Neighbor Unreachability Detection),

402–403
Parameter Problem message, 379–380
Prefix Information option in ND, 410–411
processing messages, 360–361
queries/informational messages, 380
Recursive DNS Server option in ND, 420
Redirected Header option in ND, 411
redirection of messages, 372–375
Route Information option in ND, 420
Router Advertisement Flags Extension option in

ND, 420–421
router solicitation and advertisement messages

in ICMPv4, 383–385
router solicitation and advertisement messages

in ICMPv6, 396–398
RSA Signature option in ND, 415–416
SEND (Secure Neighbor Discovery), 403–407
sending broadcast datagrams, 439
Source Link-Layer Address option in ND,

409–410
Source Quench messages, 785
Source/Target Address List options in ND,

413–414
summary and references, 430–434
TCP-related attacks, 641–642
time exceeded message, 375–378
Timestamp option in ND, 416
translating ICMPv4 to ICMPv6, 424–426
translating ICMPv6 to ICMPv4, 426–428
Trust Anchor option in ND, 417
use in layers of TCP/IP suite, 15

ICS (Internet Connection Sharing)
assignment of unicast addresses, 67
definition of, 944
NAT in Windows OS context, 337

ICV (Integrity Check Value), 856, 945
ID (identification payload), in IKE, 945
Id/loc split protocols, 70
Identification field

IP header fields, 185, 203–204
in UDP fragmentation, 489

Identification (ID payload), in IKE, 945
Identification messages, in LCP operation, 134
Identifier/locator separating protocols, 70
Identifiers

in demultiplexing, 11
IP addresses as, 70
in multiplexing, 10

Identity Association (IA)
definition of, 944
in DHCPv6, 255–256

Identity Association Identifier (IAID)
definition of, 944
in DHCP, 246, 255–256

IDN ccTLS (Internationalized ccTLDs), 512
IDNs (internationalized domain names), 512, 945
IEEE (Institute of Electrical and Electronics

Engineers)
definition of, 945
Ethernet. See Ethernet (802.3)
interface standards, 44
LAN/MAN standards (802), 82–84
link aggregation (802.1AX), 92–93
Logical Link Control (802.2), 84
Multiple Registration Protocol (802.1ak), 111
network security (802.1x), 833–834
quality of service (802.1p), 90
standards of, 24
for VLANs (802.1q), 89–92
wireless (802.11). See Wi-Fi (wireless

fidelity-802.11)
IESG (Internet Engineering Steering Group), 22–23,

945
IETF (Internet Engineering Task Force)

definition of, 945
for Internet standards, 22–23
ROAD (ROuting and ADdressing) group, 47
securing IPv6 Neighbor Discovery, 292

ifconfig command, in UNIX and Linux
setting/finding broadcast addresses, 437
viewing active multicast addresses, 66
viewing format of link-local IPv6 address, 45–46

IGD (Internet Gateway Device), in UPnP
definition of, 945
NAT and, 338–339

IGDDC (Internet Gateway Device Discovery and
Control), 337

IGMP (Internet Group Management Protocol)
attacks related to, 469–470
counters and variables, 467–468
definition of, 945
examples, 459–464
lightweight IGMP3, 464–465
MLD as translation of IGMPv3 to IPv6, 390
MRD (Multicast Router Discovery) and, 394
in multicast addressing, 15
overview of, 451–453
processing by group members (Group Member

Part), 454–457
processing by multicast routers (Multicast Router

Part), 457–459
robustness of, 465–467
snooping, 468–469
summary and references, 470–472

ptg999

Index 985

IHL (Internet Header Length), in IPv4
attacks related to, 919
definition of, 945
ICMP Parameter Problem and, 379
IP header and, 183

IIDs (interface identifiers)
as basis for unicast IPv6 addresses, 43–46
definition of, 945
for link-scoped IPv6 addresses, 58

IKE (Internet Key Exchange), in IPsec
algorithm selection and application, 849–850
BTNS (Better-than-Nothing Security), 852
CREATE_CHILD_SA exchange, 852–853
definition of, 945
EAP and, 851–852
example using, 867–876
IKE_AUTH exchange, 850–851
IKE_SA_INIT exchange, 846–847
INFORMATIONAL exchange, 853–854
KE (Key Exchange) and Ni, Nr (Nonce) payloads,

848
message formats, 844–846
MOBIKE (Mobile IKE), 854
N (Notification) and CP (Configuration) pay-

loads, 849
NAT updates and, 866
overview of, 842–843
SA (Security Association) payloads and propos-

als, 847–848
traffic selectors, 851

IKE_AUTH exchange, 850–851, 871–874
IKE_SA_INIT exchange, 846–847, 867–870
IMAP (Interactive Mail Access Protocol)

definition of, 945
SRV record providing IMAP service, 549
well-known port for, 18

IMAPS (IMAP over SSL/TLS), 18, 945
Implementation architecture

design and, 8
layering, 8–10
multiplexing, demultiplexing, and encapsula-

tion, 10–13
Implementations, TCP/IP suite, 24–25
Implicit sending, in congestion control, 583
IN (Internet class name), 945
Incoming connection queue, TCP servers, 636–640
Incremental zone transfer (IXFR) messages, in DNS,

561, 946
IND (Inverse Neighbor Discovery)

definition of, 945
neighbor discovery in IPv6, 401–402
Source/Target Address List options in ND,

413–414

Independent basic service set (IBSS)
definition of, 944
Wi-Fi, 112

Indication transactions, STUN, 320
Indirect delivery, example of IP forwarding, 212–215
Industrial, Scientific, and Medical (ISM), 124
Information disclosure attacks, ICMP and, 428
Information security. See also Security, 806
Information theory, 579
Informational category, RFCs and, 23
INFORMATIONAL exchange, IKE protocol,

853–854, 873, 875
Informational messages, ICMP, 309
Initial sequence number. See ISN (initial sequence

number)
Initial window (IW) value

definition of, 946
in slow start algorithm, 732

Institute of Electrical and Electronics Engineers
(IEEE). See IEEE (Institute of Electrical and
Electronics Engineers)

Integrated Services Digital Network (ISDN), 946
Integrity Check Value (ICV), 856, 945
Integrity, in CIA triad, 806
Integrity protection, AH (Authentication Header),

856, 858
Inter-Packet Gap (IPG), in Ethernet, 89, 945
Inter-Switch Link (ISL)

definition of, 946
VLAN trunking, 90

Interactive communication, TCP data flow, 692–695
Interactive Connectivity Establishment (ICE),

332–334, 944
Interactive data, in TCP communication, 692
Interactive keystrokes, TCP and, 692–693
Interactive Mail Access Protocol. See IMAP (Interac-

tive Mail Access Protocol)
Interface address, IP addresses and, 35
Interface identifiers. See IIDs (interface identifiers)
Interface, in IP forwarding, 209
Intermediate system, for protocol suites, 12
Intermediate System to Intermediate System (IS-IS),

946
International Organization for Standardization

(ISO), 8–9
International Telecommunication Union. See ITU

(International Telecommunication Union)
Internationalized ccTLDs (IDN ccTLS), 512
Internationalized domain names (IDNs), 512, 945
Internet

attacks related to Internet architecture, 25–26
internationalization of, 512
overview of, 19–20

ptg999

986 Index

Internet, continued
TCP/IP suite forming basis of, 2
UDP in, 506–507
WWW compared to, 2–3

Internet Architecture Board (IAB), 22, 944
Internet Assigned Numbers Authority. See IANA

(Internet Assigned Numbers Authority)
Internet checksum

algorithm for computing Internet-related check-
sum, 185

mathematics of, 187–188
overview of, 186–187

Internet class name (IN), 945
Internet Connection Sharing. See ICS (Internet Con-

nection Sharing)
Internet Control Message Protocol. See ICMP (Inter-

net Control Message Protocol)
Internet Corporation for Assigned Names and Num-

bers. See ICANN (Internet Corporation for
Assigned Names and Numbers)

Internet Engineering Steering Group (IESG), 22–23,
945

Internet Engineering Task Force. See IETF (Internet
Engineering Task Force)

Internet Gateway Device Discovery and Control
(IGDDC), 337

Internet Gateway Device (IGD)
definition of, 945
NAT and, 338–339

Internet Group Management Protocol. See IGMP
(Internet Group Management Protocol)

Internet Header Length. See IHL (Internet Header
Length)

Internet Key Exchange. See IKE (Internet Key
Exchange)

Internet Protocol Control Protocol (IPCP)
MPPE and, 145
types of NCPs used on PPP links, 141

Internet Registry Information Service (IRIS), 554, 946
Internet Research Task Force (IRTF), 23, 946
Internet Security Association and Key Management

Protocol (ISAKMP), 867, 946
Internet Service Providers. See ISPs (Internet Service

Providers)
Internet Society (ISOC), 23, 946
Internetwork layer. See Network (internetwork) layer
Intra-Site Automatic Tunnel Addressing Protocol

(ISATAP), 440, 946
Intranets, 20
Inverse Neighbor Discovery. See IND (Inverse

Neighbor Discovery)
IP address pooling behavior, NAT and, 312
IP Address/Prefix option, in ND, 417–418

IP addresses
Address realms, 299
allocation of, 62
allocation of multicast addresses, 65
allocation of unicast addresses, 62–65
anycast addresses, 62
assigning unicast addresses, 65–66
attacks involving, 70–71
broadcast addresses, 42–43
CIDR, 47–48
classful addressing, 34–36
converting IP multicast addresses to MAC

addresses, 442–444
definition of, 14
in DHCP/BOOTP message format, 237–238
expressing, 32–34
foreign IP address restrictions in server design,

502–503
host names and, 19
introduction to, 31–32
IPv4/IPv6 translators, 52–53
IPv4 multicast addresses, 54–57
IPv6 addresses and interface identifiers, 43–46
IPv6 multicast addresses, 57–61
multicast addresses, 53–54
multiple addresses in UDP server design,

501–502
multiple providers/multiple networks/multiple

addresses, 68–70
route aggregation, 48–50
single provider/multiple networks/multiple

addresses, 67–68
single provider/no network/single address,

66–67
single provider/single network/single address, 67
spanning IP address families in server design,

504
special use addresses, 50–52
spoofing attacks and, 226
structure of, 34
subnet addressing, 36–39
subnet masks, 39–41
summary and references, 71–77
TCP/IP suite and, 19
TCP server restrictions on local, 634–635
unicast and broadcast, 15
in UPD server design, 499–501
VSLM (variable-length subnet masks), 41–42

IP datagrams. See also Packets
fragmenting, 184
of ICMP messages within IP datagrams, 354–355
LCP (Link Control Protocol) and, 131–137
PPP and, 130–131

ptg999

Index 987

source and destination IP addresses in, 186
in TCP/IP suite, 14

IP forwarding
direct delivery, 210–212
forwarding actions, 209–210
forwarding table, 208–209
indirect delivery, 212–215
overview of, 208

IP fragmentation
example of UPD/IPv4 fragmentation, 488–492
interaction between IP fragmentation and ARP/

ND, 496–497
of IP datagrams, 184
IP performing, 148
IPv6 Fragment header, 203–208
overview of, 488
reassembly timeout, 492
UDP-related attacks, 506

IP (Internet Protocol)
address selection by hosts, 222–223
attacks, 226
best-effort delivery, 7
bidirectional tunneling in mobile IP, 216–217
destination address selection algorithm, 224–225
discussion of issues in mobile IP, 220
DS field and ECN, 188–192
examples of forwarding, 210–215
forwarding. See IP forwarding
Fragment header, 203–208
header. See Header, IP
host models, 220–222
ICMP addressing limits in, 353
Internet checksum, 186–188
introduction to, 181–183
IPv6 extension headers, 194–196
IPv6 options, 196–199
mobile IP. See MIP (Mobile IP)
options, 192–194
RO (route optimization) in mobile IP, 217–219
Routing header, 200–203
source address selection algorithm, 223–224
summary and references, 226–231

IP masquerading
ipchains command for configuring, 345
NAT in Linux context, 337

IP routers, 20
ipchains command, configuring IP masquerading

in Linux, 345
ipconfig command in Windows

manual management of DHCP information,
250–251

manual management of DHCPv6 information,
265–266

IPCP (Internet Protocol Control Protocol), in PPP
MPPE and, 145
types of NCPs used on PPP links, 141

IPG (Inter-Packet Gap), in Ethernet, 89, 945
IPSec (IP Security)

attacks related to, 918
Authentication Header. See AH (Authentication

Header)
definition of, 945
Encapsulating Security Payload. See ESP (Encap-

sulating Security Payload)
example using IKE, 867–876
GRE tunnels and, 150
Internet Key Exchange protocol. See IKE (Internet

Key Exchange)
L2TP/IPSec, 865
layer 3 security with, 840–842
multicast support, 864
NAT traversal, 865–867

iptables, 335
IPv4 addresses

allocation of multicast addresses, 65
allocation of unicast addresses, 62–65
configuring with SLAAC, 276
example of subnet addressing, 37
examples of subnet masks, 39
expressing, 32–33
foreign IP address restrictions in server design,

502–503
IPv4-converted addresses, 341
IPv4-embedded IPv6 address, 52
IPv4/IPv6 translators, 52–53
IPv4-translatable addresses, 341
local address restrictions in UDP server design,

500–501
multicast addresses, 54–57
multiple addresses in UDP server design,

501–502
multiple servers per port in UPD server design,

503–504
setting for embedded devices, 178
spanning IP address families in UDP server

design, 504
special-use addresses, 50–51
tunneling IPv6 packets over UDP/IPv4 packets,

154
using ARP to map to hardware addresses, 165

IPv4/IPv6 translation
DS-Lite (Dual-Stack Lite), 339–340
IPv4-converted and IPv4 translatable addresses,

341–342
NAT and ALG for, 340–345
overview of, 340–341

ptg999

988 Index

IPv4/IPv6 translation, continued
stateful translation, 344–345
stateless translation, 342–344

IPv4 protocol
ARP and, 13
Checksum field, 186–188
computing Internet checksum, 186–187
direct delivery with, 167–169
DS and ECN fields, 188–192
encapsulation of ICMP messages in, 354–355
header, 182–183
header fields, 183–186
ICMP messages related to, 356–357
ToS (Type of Service) byte in, 188–189
translation to/from IPv6. See IPv4/IPv6

translation
tunneling IPv6 through, 482–487

IPv6 addresses
allocation of multicast addresses, 65
allocation of unicast addresses, 62–65
configuring global addresses with SLAAC, 278
configuring with SLAAC, 276–277
DAD (Duplicate Address Detection), 277–278
examples of subnet masks, 40
expressing, 32–34
interface identifiers and, 43–46
IPv4/IPv6 translators, 52–53
lifecycle of, 252–253
multicast addresses, 57–61
multiple servers per port in UPD server design,

503–504
spanning IP address families in UDP server

design, 504
special-use addresses, 51–52
tunneling IPv6 packets over UDP/IPv4 packets, 154
ULAs (Unique Local IPv6 Unicast Addresses), 225
wildcard address, 632

IPv6 protocol
Checksum field, 186–188
DS and ECN fields, 188–192
encapsulation of ICMP messages in, 354–355
extension headers, 194–196
Fragment header, 203
header, 182–183
header fields, 183–186
ICMP messages related to, 358–360
jumbogram support, 481
NAT and, 310–311
neighbor discovery. See ND (Neighbor Discovery

Protocol)
options, 196–199
Rapid Deployment (6rd), 339, 933
Routing header, 200–203

Traffic Class byte in, 188–189
translating to/from IPv4. See IPv4/IPv6

translation
tunneling through IPv4 networks, 482–487
UDP and, 481–482

IPv6 Remote-ID, DCHP relay agents, 268
IPV6CP (IPv6 Control Protocol), in PPP, 141, 945
IRIS (Internet Registry Information Service), 554, 946
IRTF (Internet Research Task Force), 23, 946
IS-IS (Intermediate System to Intermediate System),

946
ISAKMP (Internet Security Association and Key

Management Protocol), 867, 946
ISATAP (Intra-Site Automatic Tunnel Addressing

Protocol), 440, 946
ISDN (Integrated Services Digital Network), 946
ISL (Inter-Switch Link)

definition of, 946
VLAN trunking, 90

ISM (Industrial, Scientific, and Medical), 124
ISN (initial sequence number)

definition of, 946
SYN segment containing, 597
in TCP connection establishment, 601–602
TCP header and, 589

ISO (International Organization for Standardiza-
tion), 8–9

ISOC (Internet Society), 23, 946
ISPR (IANA Service Name and Transport Protocol

Port Number), 548
ISPs (Internet Service Providers)

ACs (access concentrator), 287
allocation of IP addresses and, 32, 62–63
definition of, 946
MTU (maximum transmission unit), 494

Iterative servers, 21
ITU (International Telecommunication Union)

definition of, 946
standards organizations, 24
X.509 standard. See X.509 standard

IW (initial window) value, in TCP
definition of, 946
in slow start algorithm, 732

iwconfig command, setting Wi-Fi control frame
variables, in UNIX and Linux, 115

IXFR (incremental zone transfer) messages, in DNS,
561–563, 946

J
Jacobson, V., 652–654, 731
Jumbograms

IPv6 options for, 198
IPv6 supporting, 481

ptg999

Index 989

K
Kaminsky attacks, DNS-related, 572
Kamoun, F., 48
Karn’s algorithm, 655
KDF (key derivation function), 815
KE (Key Exchange)

definition of, 946
IKE payloads, 848

Keepalive interval
changing values of, 796
definition of, 795

Keepalive probes
changing values of, 796
definition of, 795
overview of, 793

Keepalive time
changing values of, 796–797
definition of, 795
server host crashes and reboots, 799–800
server host unreachable, 800–802

Keepalive timers, 793
Keepalives, TCP. See TCP keepalive
Key derivation function (KDF), 815
Key Exchange (KE)

definition of, 946
IKE payloads, 848

Key Hash field, RSA Signature option, 416
Key management, in cryptography, 821
Key signing keys. See KSKs (key signing keys)
Keyed-hash message authentication code (HMAC),

818–819, 943
Keys, cryptographic, 810
Kleinrock, Leonard, 1, 48
KSKs (key signing keys)

definition of, 946
DNSSEC, 897, 905

L
L2TP/IPSec, 865
L2TP (Layer 2 Tunneling Protocol)

definition of, 946
establishing tunneling with, 149

LaBrea tarpit, attacks related to window manage-
ment, 723

LACP (Link Aggregation Control Protocol), 92–93,
947

LAGs (link aggregation groups), 93, 947
Land attacks, ICMP attacks, 428
LANs (local area networks)

definition of, 947
Ethernet standards, 82–84
virtual. See VLANs (virtual LANs)

Large-scale NAT (LSN), IPv6 transition, 315

Last Member Query Interval (LMQI), in IGMP/
MLD, 468, 947

Last Member Query Time (LMQT), 466–467, 947
LAST_ACK state

simultaneous open and close transitions, 625
TCP state transitions, 618

Latency, connections and, 4
Layer 2 devices, DCHP relay agents, 270–271
Layer 2 Tunneling Protocol (L2TP)

definition of, 946
establishing tunneling with, 149

Layering
implementation and design and, 8–10
security protocols, 832–833
TCP/IP suite and, 14

Layering violation, transport layer, 476
LCG (Linear Congruential Generator), 816, 947
LCI (Location Configuration Information), 274, 947
LCI (logical channel identifier), 5
LCN (logical channel number), 5, 947
LCP (Link Control Protocol)

definition of, 947
operation of, 133–134
options, 134–137
overview of, 131–134

LDAP (Lightweight Directory Access Protocol)
definition of, 947
DNS and, 570–571
SRV record providing LDAP service, 548–549
well-known port for, 18

LDRAs (lightweight DHCP relay agents), 271, 947
LEAP (Lightweight EAP), 947
Leasequery, DCHP relay agents, 269–270
Leases

in BOOTP, 235
duration of DHCP leases, 235–236

Length field
in Ethernet frame format, 85–86
UDP header, 475, 481–482
Payload Length field, in IPv6 header, 184, 198,

204–205
Total Length field, in IPv4 header, 183–184, 207

Licklider, J.C.R., 2
Lightweight DHCP relay agents (LDRAs), 271, 947
Lightweight Directory Access Protocol. See LDAP

(Lightweight Directory Access Protocol)
Lightweight EAP (LEAP), 947
Lightweight IGMP3, 464–465
Lightweight MLD (LW-MLD), 394, 948
Lightweight MLDv2, 464–465
Limited slow start, 772
Limited transmit approach, to congestion control in

TCP, 742

ptg999

990 Index

Linear Congruential Generator (LCG), 816, 947
Link Address field, in DHCPv6 message format, 254
Link aggregation (802.1AX), 92–93
Link Aggregation Control Protocol (LACP), 92–93, 947
Link aggregation groups (LAGs), 93, 947
Link Control Protocol. See LCP (Link Control

Protocol)
Link discriminator, LCP options, 139
Link layer

address resolution and, 165–166
attacks on, 154–156
autonegotiation in Ethernet interface, 95
bridges and switches, 98–102
broadcasting ARP frames, 167
duplex mismatch, 96
Ethernet (802.3) frames, 84–86
Ethernet frame sizes, 88–89
Ethernet supporting broadcasting at, 437
flow control (802.1X) in Ethernet interface, 98
full duplex Ethernet, 94–95
IEEE 802 LAN/MAN standards for, 82–84
integrity checking on Ethernet frames, 86–88
introduction to, 79
link aggregation (802.1AX), 92–93
MRP (Multiple Registration Protocol), 111
MTU (maximum transmission unit), 148
Point-to-Point Protocol. See PPP (Point-to-Point

Protocol)
standards, 80–82
STP (Spanning Tree Protocol). See STP (Spanning

Tree Protocol)
summary and references, 156–163
tunneling, 149–153
UDLs (unidirectional links), 153–154
VLANs and QoS tagging, 89–92
wireless LANs. See Wi-Fi (wireless

fidelity-802.11)
WoL (Wake-on LAN), power saving, and magic

packets, 96–97
Link-Layer Address. See LLA (Link-Layer Address)
Link Local Multicast Name Resolution (LLMNR),

445, 569–570, 947
Link-local scope

configuring IPv4 addresses with SLAAC, 276
configuring IPv6 addresses with SLAAC,

276–277
of IPv6 addresses, 43
IPv6 multicast addresses, 58–59
multicast addresses, 53
viewing format of link-local IPv6 address, 45

Link Quality Reports (LQRs)
definition of, 947
in PPP operations, 136

Links, unidirectional, 153–154
Linux OSs

autotuning TCP receive windows, 715
ethtool program for checking full duplex sup-

port, 94
IP masquerading, 337
IPSec implementations, 867
quick acknowledgments, 733
rate limiting of ICMP messages, 369–370
RTT estimation, 657–661
standards and, 24
vconfig command for manipulating 802.1p/q

information, 90–91
LISTEN state, in TCP

TCP port numbers and, 632–633
TCP state transitions and, 618

LLA (Link-Layer Address)
definition of, 947
Link-Layer Address (LLA) option in ND, 418–419
Source Link-Layer Address option in ND,

409–410
Source/Target Address List options in ND,

413–414
LLC (Logical Link Control)

802.2 standard defining, 84
definition of, 947
relationship of link layer frames to data frames,

116
LLMNR (Link Local Multicast Name Resolution),

445, 569–570, 947
LMQI (Last Member Query Interval), in IGMP/

MLD, 468, 947
LMQT (Last Member Query Time), 466–467, 947
LNP (Local Network Protection), 310, 947
Local area networks. See LANs (local area networks)
Local congestion, in Linux TCP example,

fast retransmit and, 759–762
sender pause and, 750–754
stretch ACKs and recovery from, 754–757

Local IP addresses
restrictions in UDP server design, 500–501
TCP server restrictions on local, 634–635

Local net (limited) broadcast, 43
Local Network Protection (LNP), 310, 947
Location Configuration Information (LCI), 274, 947
Location-to-Service Translation (LoST), 274–275
Locators, IP addresses as, 70
Logical channel identifier (LCI), 5
Logical channel number (LCN), 5, 947
Logical Internet addresses, translating to physical

hardware addresses, 167
Logical Link Control. See LLC (Logical Link Control)
Long options, DHCP/BOOTP options, 239

ptg999

Index 991

Long-term credential mechanism, STUN, 325–326
Long-Term Evolution (LTE), 948
Longest matching prefix algorithm, 69, 209–210
Lookup, IP addresses form host names, 19
Loopback

hairpinning (NAT loopback), 314, 486
implementing loopback capacity, 145–148
PPP issues and, 134

LoST (Location-to-Service Translation), 274–275
Low-rate DoD attacks, TCP timeout/retransmission

attacks, 686
LQRs (Link Quality Reports), in PPP

definition of, 947
in PPP operations, 136

LSN (large-scale NAT), IPv6 transition, 315
LTE (Long-Term Evolution), 948
LW-MLD (Lightweight MLD), 948

M
MAC layer, sublayer of link layer, 84
MAC (Media Access Control)

addresses in Ethernet frames, 16
chaddr (Client Hardware Address) field, 244
DCF collision avoidance/backoff procedure,

121–122
definition of, 948
HCF (hybrid coordination function), 122–123
multicast addresses, 437
overview of, 120–121
protocols, 81
virtual carrier sense and physical carrier sense, 121

MAC (message authentication codes), 818–820, 948
MAC PDU (MPDU), 113, 949
MAC Services Data Unit (MSDU), in 802.11n, 949
Magnification attacks, UDP-related attacks, 506
Mail exchanger (MX) records, in DNS

definition of, 950
DNS resource record types, 544–545

Mailboxes, port numbers as, 474
Malware (malicious software)

attacks related to Internet architecture, 26
definition of, 805–806

Man-in-the-middle attacks. See MITM (man-in-the-
middle) attacks

Management frames, Wi-Fi, 113–115
Manchester Phase Encoding (MPE)

clock recovery in Ethernet frames, 85
definition of, 949

MANs (metropolitan area networks)
cable TV and DSL, 79
definition of, 948
Ethernet standards, 82–84

Mapping timer, clearing NAT state, 308–309

MAPs (mesh APs), 130
Masks, in IP forwarding, 209
Masquerading attacks

firewalls and NATs and, 345
ICMP attacks and, 429
link layer attacks, 155
types of threats to network communication, 808

Master session keys (MSK), in EAP
definition of, 949
key derivation in EAP, 838

Maximum pad value (MPV), 137, 949
Maximum probing, 774
Maximum received unit (MRU)

definition of, 949
length of LCP packet and, 134

Maximum segment life (MSL). See also TIME_WAIT
state (2MSL)

SYN segments, 610
TIME_WAIT state (2MSL) and, 618

Maximum Segment Size. See MSS (Maximum Seg-
ment Size)

Maximum transmission unit. See MTU (maximum
transmission unit)

MCS (Modulation and coding scheme)
definition of, 948
higher throughput (802.11n) support and, 127

MD (Message Digest Algorithms)
definition of, 948
MD-5 (Message Digest Algorithm 5), 817–818
TLS extensions, 883

mDNS (Multicast DNS), 444–445, 570, 948
Mean deviation, in RTT estimation, 653
Mechanisms

DNS TXT records and DKIM, 546
STUN, 325–326

Media Access Control. See MAC (Media Access
Control)

Media independent handoff (MIH)
definition of, 948
mobility and handoff information in DHCP, 275

Member links, in PPP bundles, 137
Mesh (802.11s), Wi-Fi, 130
Mesh APs (MAPs), 130
Mesh deterministic access, 130
Mesh Point (MP), 949
Mesh points (MPs), 130, 949
Mesh STAs (mesh stations), 130
Message authentication codes (MAC), 818–820, 948
Message boundaries, datagrams and, 5–6
Message digests

Message Digest Algorithms. See MD (Message
Digest Algorithms)

overview of, 817–818

ptg999

992 Index

Message formats
DHCP and BOOTP, 236–238
DHCPv6, 253–255
DNS, 520–524
ESP, 862
IKE protocol, 844–846
STUN, 320

Message stream modification (MSM)
definition of, 949
types of threats to network communication, 808

Meta types, resource record categories, 528
Metcalfe’s Law, 19
Metropolitan area networks. See MANs (metropoli-

tan area networks)
MF (More Fragments) field, in UDP fragmentation,

489
Michael, for message integrity checking, 129
Microsoft CHAP (MS-CHAP), 949
Microsoft Point-to-Point Compression Protocol

(MPPC), 140, 949
Microsoft Point-to-Point Encryption (MPPE), 145, 150
MIH (media independent handoff)

definition of, 948
mobility and handoff information in DHCP, 275

MIME (Multipurpose Internet Mail Extensions), 948
MIMO (multiple input, multiple output)

definition of, 948
higher throughput (802.11n) support, 126–127

MIP (Mobile IP)
bidirectional tunneling, 216–217
definition of, 948
DHCP and, 233
discussion of issues in, 220
handling IP nodes, 199
ICMP fast handover message in MIPv6, 388
ICMP Home Agent Discovery Request message,

386
ICMP Mobile Prefix Solicitation message,

387–388
Mobile IP with Fast Handovers (FMIP), 942
Mobile IPv6, 70
overview of, 215–216
RO (route optimization), 217–219
Routing header and, 200

Misbehaving receivers, TCP congestion control
attacks, 785

MITM (man-in-the-middle) attacks
ICMP attacks and, 428
security protocol-related, 918–919
types of threats to network communication, 808

MLD (Multicast Listener Discovery)
attacks related to, 469–470
counters and variables, 467–468

DAD and, 278
definition of, 948
examples, 459–464
ICMP extension messages, 390–394
lightweight MLDv2, 464–465
overview of, 15, 451–453
processing by group members (Group Member

Part), 454–457
processing by multicast routers (Multicast Router

Part), 457–459
query/report/done messages in ICMP, 388–390
robustness of, 465–467
snooping, 468–469
summary and references, 470–472

MLPP (Multilevel Precedence and Preemption), 189,
948

MMRP (Multiple MAC Registration Protocol), 111, 948
MNs (mobile nodes)

definition of, 948
in Mobile IP, 216–218

MOBIKE (Mobile IKE), 854, 865, 949
Mobile IP. See MIP (Mobile IP)
Mobile nodes (MNs)

definition of, 948
in Mobile IP, 216–218

Mobile Prefix Advertisement messages, ICMP,
410–411

Mobile Prefix Solicitation message, ICMP, 387–388
Mobility header, 216
Mobility messages, in RRP, 218–219
Mobility Services (MoS)

definition of, 949
mobility and handoff information in DHCP, 275

Modifiers, DNS TXT records, 546
MODP (Modulo-P groups), in DH, 821, 949
Modulation and coding scheme (MCS), in 802.11n

definition of, 948
higher throughput (802.11n) support and, 127

Modulo-P groups (MODP), in DH, 821, 949
More Frag field, data frame fragmentation, 117
MoS (Mobility Services)

definition of, 949
mobility and handoff information in DHCP, 275

MP (Multilink PPP)
definition of, 949
overview of, 137–139

MPDU (MAC PDU), 113, 949
MPE (Manchester Phase Encoding)

clock recovery in Ethernet frames, 85
definition of, 949

MPLS (Multi-Protocol Label Switching), 215, 949
MPPC (Microsoft Point-to-Point Compression Proto-

col), 140, 949

ptg999

Index 993

MPPE (Microsoft Point-to-Point Encryption), 145, 150
MPs (mesh points), 130, 949
MPV (maximum pad value), 137, 949
MRD (Multicast Router Discovery)

definition of, 949
designing location of multicast routers, 469
overview of, 394–395

MRP (Multiple Registration Protocol)
802.1ak, 111
definition of, 949

MRRU (multilink maximum received reconstructed
unit), 138, 949

MRU (maximum received unit)
definition of, 949
length of LCP packet and, 134

MS-CHAP (Microsoft CHAP), 949
MSDU (MAC Services Data Unit), in 802.11n, 949
MSK (master session keys)

definition of, 949
key derivation in EAP, 838

MSL (maximum seqment life), in TCP. See also
TIME_WAIT state (2MSL)

SYN segments, 610
TIME_WAIT state (2MSL) and, 618

MSM (message stream modification) attack
definition of, 949
types of threats to network communication, 808

MSS (Maximum Segment Size), in TCP
definition of, 950
SWS (silly windows syndrome) and, 709
TCP header, 590, 605–607

MSTP (Multiple Spanning Tree Protocol), in bridges,
111

MTU (maximum transmission unit)
definition of, 950
for Ethernet, 86, 506
frame formats and, 79
ISPs (Internet Service Providers) and, 494
link layer and, 148
neighbor discovery options in IPv6, 411–412
PPPoE (PPP over Ethernet) and, 614
preventing fragmentation of TCP datagrams,

612–613
PTB messages in ICMPv6, 370–371

Multi-access networks, 9
Multi-Protocol Label Switching (MPLS), 215, 949
Multi6 architecture, 70
Multicast addresses

allocation of, 65
IPv4 multicast addresses, 54–57
IPv6 multicast addresses, 57–61
NAT and, 310
overview of, 53–54

Multicast DNS (mDNS), 444–445, 570, 948
Multicast groups

overview of, 15
RP (rendezvous point), 60

Multicast Listener Discovery. See MLD (Multicast
Listener Discovery)

Multicast Listener Query, Report, and Done mes-
sages, ICMP messages, 388–390

Multicast Router Discovery. See MRD (Multicast
Router Discovery)

Multicast routers
designing location of, 469
IGMP/MLD processing by, 457–459
overview of, 452–454
querier election, 466
query message options, 459

Multicast state, 441
Multicasting

converting IP multicast addresses to MAC
addresses, 442–444

example of, 444–446
host address filtering, 449–451
introduction to, 435–436
IPSec supporting, 864–865
overview of, 441–442
receiving multicast datagrams, 447–449
sending multicast datagrams, 446–447

Multihomed systems
IPv6 and, 70
overview of, 12–13
unicast addresses and, 67–68

Multilevel Precedence and Preemption (MLPP), 189,
948

Multilink maximum received reconstructed unit
(MRRU), 138, 949

Multilink PPP (MP), 137–139, 949
Multiple input, multiple output (MIMO)

definition of, 948
higher throughput (802.11n) support, 126–127

Multiple MAC Registration Protocol (MMRP), 948
Multiple Registration Protocol (MRP)

802.1ak, 111
definition of, 949

Multiple Spanning Tree Protocol (MSTP), 111
Multiple VLAN Registration Protocol (MVRP), 111, 950
Multiplexing

implementation and design and, 10–13
important concepts in development of network

architecture, 4
TCP/IP suite and, 16–17

Multipurpose Internet Mail Extensions (MIME), 948
MVRP (Multiple VLAN Registration Protocol), 111,

950

ptg999

994 Index

MX (mail exchanger) records, in DNS
definition of, 950
DNS resource record types, 544–545

N
N (Notification), IKE payloads, 849, 873
NA (Neighbor Advertisement)

ICMPv6 messages, 277
IND (Inverse Neighbor Discovery), 401
main components of ND, 396
neighbor discovery in IPv6, 398–401

NAC (Network Access Control), 833–837, 950
NACK (Negative ACKs), 111, 950
Nagle algorithm, in TCP

Delayed ACK interaction with, 699
disabling, 699–700
overview of, 696–698
reducing number of packets across WANs, 692

Nagle, John, 696
Name authority pointer records. See NAPTR (name

authority pointer) records
Name resolution. See also DNS (Domain Name

System)
of host names into IP addresses, 511
process of, 518–519

Name server (NS) records
definition of, 951
DNS resource record types, 529–530

Name servers
caching, 517–518
DNS, 516–517

Name Service Caching Daemon (NSCD), 518, 951
Name space, DNS, 512–514
Naming syntax, DNS, 514–516
NAP (Network Access Protection)

definition of, 950
DHCP leases and, 246

NAPT (Network Address Port Translation), 305–306,
950

NAPTR (name authority pointer) records
definition of, 950
DNS resource record types, 549–551
NTN (non-terminal NAPTR), 551–552
S-NAPTR and U-NAPTR, 554–555
URI/URN resolution and, 553–554

NAR (New Access Router), 417, 950
NAT (network address translation)

address and port translation behavior, 311–313
address pools, 312
attacks related to, 345–346
configuring, 334
definition of, 950
direct interaction with, 338–339
DS-Lite (Dual-Stack Lite) and, 339–340

editors, 315
filtering behavior, 312–313
firewall rules, 335–336
hairpinning (NAT loopback), 314, 486
ICE and, 332–334
ICMP and, 309
IPSec NAT traversal, 865–867
IPv4/IPv6 translation, 340–345
IPv6 and, 310–311
mapping, 307
multicast and, 310
NAPT (Network Address Port Translation),

305–306
other transport protocols and, 309
overview of, 303–305
pinholes and hole punching, 317
port forwarding and port mapping and, 314
private addresses and, 51
rules, 337–338
session, 307–308
SPNAT (service provider NAT), 315–316
STUN (Session Traversal Utilities for NAT),

319–326
summary and references, 346–352
TCP and, 306–308
Teredo tunneling and, 485–486
translating TCP and UDP addresses and port

numbers, 605
traversal, 316
tunneled packets and, 310
TURN (Traversal Using Relays around NAT),

326–332
UDP and, 308–309
UNSAF (unilateral self-address fixing), 317–319

NAT-PMP (NAT Port Mapping Protocol)
definition of, 950
direct interaction with NAT and firewalls,

338–339
NAT Port Mapping Protocol (NAT-PMP)

definition of, 950
direct interaction with NAT and firewalls,

338–339
NAT-PT (NAT with Port Translation), 950
NAT Traversal

ICE (Interactive Connectivity Establishment),
332–334

overview of, 316
pinholes and hole punching, 317
STUN (Session Traversal Utilities for NAT),

319–326
TURN (Traversal Using Relays around NAT),

326–332
UNSAF (unilateral self-address fixing), 317–319

NAT with Port Translation (NAT-PT), 950

ptg999

Index 995

NAT64, IPv6/IPv4 translation, 344, 950
NAV (Network Allocation Vector), 121, 950
NBMA (non-broadcast multiple access)

ICMP Redirect message used with, 375
ND and, 396
overview of, 167

NCoA (New Care-of Address), 419, 950
NCPs (Network Control Protocols), 131, 141–142,

950
ND (Neighbor Discovery Protocol)

Advertisement Interval option, 412
Certificate option, 417
CGA options, 414–415
definition of, 951
DNS Search List option, 422–423
Experimental Values in, 423
Handover Key Request/Reply options, 422–423
Home Agent Information option, 412–413
IND (Inverse Neighbor Discovery), 401–402
interaction between IP fragmentation and ARP/

ND, 496–497
IP Address/Prefix option, 417–418
Link-Layer Address (LLA) option, 418–419
MTU option in, 411–412
Nonce option, 416–417
NS (Neighbor Solicitation) message, 398–401
NUD (Neighbor Unreachability Detection),

402–403
options, 407–409
overview of, 395–396
Prefix Information option, 410–411
Recursive DNS Server option, 420
Redirected Header option, 411
Route Information option, 420
Router Advertisement Flags Extension option,

420–421
router solicitation and advertisement messages

in ICMPv6, 396–398
RSA Signature option, 415–416
SEND (Secure Neighbor Discovery), 403–407
Source Link-Layer Address option, 409–410
Source/Target Address List options, 413–414
Teredo tunneling and, 486–487
Timestamp option, 416
Trust Anchor option, 417

NDP. See ND (Neighbor Discovery Protocol)
Negative ACKs (NACK), 133, 950
Negative caching, DNS servers and, 517
Neighbor Advertisement. See NA (Neighbor

Advertisement)
Neighbor Discovery Protocol. See ND (Neighbor

Discovery Protocol)
Neighbor Solicitation messages, ICMPv6, 277

Neighbor Unreachability Detection (NUD)
definition of, 951
neighbor discovery in IPv6, 402–403

NEMO (Network Mobility), 216, 951
Net number, in IP addresses, 35
NetBoot service, from Apple, 246
netsh command, viewing in-use multicast groups

in Windows OSs, 447–448
netstat command

displaying IP group membership, 446–447
restricting local IP addresses, 634
viewing active multicast addresses, 66
viewing forwarding table with, 446–447
viewing IPv4 UDP servers, 500–501

Network Access Control (NAC), 833–837, 950
Network Address Port Translation (NAPT), 305–306,

950
Network address translation. See NAT (network

address translation)
Network Allocation Vector (NAV), in Wi-Fi, 121, 950
Network architecture

APIs, 22
ARM (ARPANET Reference Model), 1–2, 13–16
attacks related to Internet architecture, 25–26
client/server design pattern, 20–21
end-to-end argument, 6
error control and flow control, 7–8
fate sharing, 6–7
implementation and design, 8
implementations and distributions, 24–25
Internet, intranets, extranets, 19–20
layering, 8–10
multiplexing, demultiplexing, and encapsula-

tion, 10–13, 16–17
names, addresses, and DNS, 19
packets, connections, and datagrams, 3–6
peer-to-peer design pattern, 21–22
port numbers, 17–19
principles of, 2–3
standardization of, 22–24
summary and references, 26–30
TCP/IP suite, 13

Network byte order, TCP/IP headers, 183
Network communication, threats to, 807–809
Network Control Protocols (NCPs), 131, 141–142, 950
Network File System (NFS), 478
Network interface cards. See NICs (network inter-

face cards)
Network (internetwork) layer

address resolution and, 165–166
of OSI model, 9
passing datagram to transport layer, 17
TCP and UDP in, 585

ptg999

996 Index

Network Mobility (NEMO), 216, 951
Network Time Protocol. See NTP (Network Time

Protocol)
New Access Router (NAR), 417, 950
New Care-of Address (NCoA), 419, 950
NewReno algorithm, 739–740
Next Header field

ICMP Parameter Problem and, 379–380
IPv6, 194–195
Mobile IP, 216
UDP header, 476
UDP-Lite, 487

Next-hop, in IP forwarding, 209
Next Server IP Address (Siaddr) field, DHCP/

BOOTP message format, 238, 246
NextSECure resource record. See NSEC (NextSECure)

resource record
NFS (Network File System), 478
NICs (network interface cards)

definition of, 951
host address filtering, 449–451
overview of, 92

No Route to Destination, ICMPv6 messages, 365
Node-local scope

of IPv6 addresses, 43
multicast addresses, 53

Node Requirements RFCs, 23
Nominees, in ICE, 333
Non-broadcast multiple access. See NBMA (non-

broadcast multiple access)
Non-HT mode, 802.11n operating modes, 128
Non-terminal NAPTR (NTN), 551, 951
Nonce (number used once)

cryptographic nonces and, 816
definition of, 951
IKE payloads, 848
in ND, 416–417, 486–487

Nonportable addresses, allocation of IP addresses
and, 62

Nonrepudiation, basic principles of security,
806–807

NOP (No Operation), TCP header options, 605
Notification (N), IKE payloads, 849, 873
NPTv6, 310, 951
NRO (Number Resource Organization)

allocation of IP addresses and, 62–63
definition of, 951

NS (name server) records
definition of, 951
DNS resource record types, 529–530

NS (Neighbor Solicitation)
definition of, 951
IND (Inverse Neighbor Discovery), 401–402

main components of ND, 396
neighbor discovery in IPv6, 398–401

NSCD (Name Service Caching Daemon), 518, 951
NSEC (NextSECure) resource record

canonical ordering of, 902
definition of, 951
DNSSEC, 898–901
signed zones and zone cuts, 903

NSEC Parameters (NSEC3PARAM), in DNSSEC,
898, 951

NSEC3PARAM (NSEC Parameters), in DNSSEC,
900, 951

NTN (non-terminal NAPTR), 551, 951
NTP (Network Time Protocol)

definition of, 951
multicast group in, 54
variable-scope IPv6 multicast addresses, 58

NUD (Neighbor Unreachability Detection)
definition of, 951
neighbor discovery in IPv6, 402–403

Nuke class, bombs attacks on ICMP, 428
NULL encryption algorithm, 819
Number Resource Organization (NRO)

allocation of IP addresses and, 62–63
definition of, 951

Number used once. See Nonce (number used once)

O
Object Identifier (OID), 951
OCSP (Online Certification Status Protocol)

definition of, 951
validating and revoking certificates, 829–831

OFDM (Orthogonal frequency division
multiplexing)

definition of, 951
MIMO and, 127

OID (Object Identifier), 951
OLSR (Optimized Link State Routing)

definition of, 951
Wi-Fi mesh and, 130

Online Certification Status Protocol (OCSP)
definition of, 951
validating and revoking certificates, 829–831

OOB (Out of Band), 719, 952
Op field, DHCP/BOOTP message format, 236
Open DNS servers, 567
Open Systems Interconnection (OSI)

definition of, 952
layering and, 8

Open systems, TCP/IP suite as, 2
OpenPGP, 822, 883
OPT (option) pseudo records, DNS resource record

types, 547–548

ptg999

Index 997

Optimal window size, 730
Optimistic ACKing, TCP congestion control attacks,

785–786
Optimistic DAD, 253
Optimistic state, IPv6 addresses, 253
Optimized Link State Routing (OLSR)

definition of, 951
Wi-Fi mesh and, 130

Option overloading, DHCP/BOOTP, 239
Option Request Option (ORO), in DHCP, 952
Orderly release, aborting TCP connections, 627
Organizationally Unique Identifier. See OUI (Orga-

nizationally Unique Identifier)
ORO (Option Request Option), in DHCP, 952
Orthogonal frequency division multiplexing (OFDM)

definition of, 951
MIMO and, 127

OSI (Open Systems Interconnection)
definition of, 952
layering and, 8

OUI (Organizationally Unique Identifier)
definition of, 952
formats of IPv6 addresses, 44–45
IP multicasting and, 442–444

Out of Band (OOB), 719, 952
Overlay networks

p2p and, 22
tunneling allowing formation of, 149

P
P2P (Peer-to-Peer)

definition of, 952
design pattern, 21–22
discovery problem in, 22

PA (provider-aggretable) addresses
allocation of IP addresses and, 62
definition of, 952

PAA (PANA Authentication Agent), 839, 952
PaC (PANA client), 839, 952
Packet duplication, TCP timeout/retransmission,

684–685
Packet-filtering firewalls

overview of, 300–301
rules, 335–336

Packet-filtering, NAT functions, 305
Packet reordering, TCP timeout/retransmission,

682–684
Packet size threshold, in Wi-Fi control frames, 115
Packet sniffing, 26, 156
Packet-switching, 4
Packet-switching networks, 1
Packet Too Big. See PTB (Packet Too Big)

Packetization, TCP reliability and, 586
Packets

AQM (active queue management), 782–783
conservation of, 731
IEEE, 84
in protocol architecture, 3–6
retransmission and, 580–581
sliding window protocol, 582
in TCP/IP suite, 14
windows of packets, 581–582

PACP (port access control protocol), 835
PAD (peer authorization database)

definition of, 952
in IPSec, 841

PAD (PPPoE Activity Discovery) messages, 288
Padded payload, in Ethernet frame format, 86
Padding

block size in PPP, 136–137
IPv6 options for, 197–198

Padding oracle, security protocol-related attacks
and, 919

PANA Authentication Agent (PAA), 839, 952
PANA client (PaC), 839, 952
PANA (Protocol for Carrying Authentication for

Network Access), 839–840, 952
PAP (Password Authentication Protocol)

definition of, 952
for PPP authentication, 140

Parameter Problem messages
ICMP, 379–380
translating ICMPv4 to ICMPv6, 426
translating ICMPv6 to ICMPv4, 426–427

Partial ACKs, in TCP, 739
Passive attacks, types of threats to network commu-

nication, 807–809
Passive closer, FIN segments and, 597
Passive open, in TCP connections, 597
Passive opener (server)

RST segments, 631
in TCP connections, 599

Password Authentication Protocol (PAP)
definition of, 952
for PPP authentication, 140

Path MTU, 148
Path MTU Discovery. See PMTUD (Path MTU

Discovery)
Path MTU (PMTU), 953
Pattern-match-criteria, in ACL rules, 335
PAWS (Protection against Wrapped Sequence

Numbers)
definition of, 952
TCP header, 610–611

ptg999

998 Index

Payloads
of frames, 16, 86
IKE protocol, 847–849
IP header, 184–185, 203–206
jumbogram options, 198
UDP header, 475, 482

PCF (point coordination function), in Wi-Fi
definition of, 952
options for controlling sharing of wireless

medium, 120
PCO (phased coexistence operation)

definition of, 952
higher throughput (802.11n) support and, 128

PCoA (Previous Care-of Address), 419, 952
PCP (Port Control Protocol)

definition of, 952
direct interaction with NAT and firewalls, 339

PD (prefix delegation), 266–267
PDUs (protocol data units)

definition of, 952
encapsulation and, 10
link layer. See Frames, Ethernet

PEAP (Protected EAP), 838, 952
Peer Address field, in DHCPv6 message format, 254
Peer authorization database (PAD)

definition of, 952
in IPSec, 841

Peer-to-Peer (P2P)
definition of, 952
design pattern, 21–22
discovery problem in, 22

PEN (Private Enterprise Number), 257, 952
Per-association (per-connection) basis, for NAT con-

nections, 303–304
Per-flow state, LCI and LCN and, 5
Per-hop behavior (PHB)

definition of, 953
forwarding and, 189

Perfect Forward Secrecy (PFS), 815, 953
PFC (Protocol Field Compression)

definition of, 953
PPP and, 133

PFS (Perfect Forward Secrecy), 815, 953
PGP (Pretty Good Privacy), 822
Phased coexistence operation (PCO)

definition of, 952
higher throughput (802.11n) support and, 128

PHB (per-hop behavior)
definition of, 953
forwarding and, 189

Phishing attacks, 806
PHY (physical) layer, 953

Physical addresses, translating logical addresses to,
167

Physical carrier sense, 121
Physical layer

802.11 standard describing, 123–124
channels and frequencies, 124–126
of OSI model, 9

PI (provider-independent) addresses
allocation of IP addresses and, 63
definition of, 953

Piggybacking, Delayed ACKs and, 692, 695
PIM (Protocol Independent Multicast), 953
ping. See Echo Request/Reply (ping) messages
Ping of death attacks

ICMP attacks, 428
UDP attacks, 506–507

Pinholes, in NAT traversal, 317
PIO (Prefix Information option)

definition of, 953
neighbor discovery options in IPv6, 410–411

PKCs (public key certificates). See also Certificates,
831, 953

PKCS (Public Key Cryptography Standards), 953
PKI (Public Key Infrastructure)

CGAs not requiring, 404
definition of, 953
overview of, 822

Plain old telephone service (POTS)
definition of, 953
DSL and, 287

Plaintext
encrypting cleartext message, 810
TLS, 878

PLCP (Physical Layer Convergence Procedure), 113,
953

PLPMTUD (Packetization Layer Path MTU Discov-
ery), 612–613

Plug and Play, 337–339
PMTU (Path MTU), 148, 953
PMTUD (Path MTU Discovery)

definition of, 953
example of use with TCP, 613–616
example using UDP, 493–496
link layer and, 148
PTB messages in ICMPv6, 370–371
TCP connections and, 612–613
TCP-related attacks, 641–642
using UDP for, 493

PNAC (Port-Based Network Access Control), 833, 953
PoE (power-over-Ethernet)

definition of, 953
higher throughput (802.11n) support and, 128

ptg999

Index 999

Point coordination function (PCF), in Wi-Fi
definition of, 952
options for controlling sharing of wireless

medium, 120
Point-to-Point Protocol. See PPP (Point-to-Point

Protocol)
Point-to-Point Tunneling Protocol. See PPTP (Point-

to-Point Tunneling Protocol)
Pointer (PTR) records, DNS resource record types,

536–541
POP3, SRV record providing POP3 service, 549
Port access control protocol (PACP), 835
Port-Based Network Access Control (PNAC), 833, 953
Port Control Protocol (PCP)

definition of, 952
direct interaction with NAT and firewalls, 339

Port forwarding, in NAT, 314
Port mapping, in NAT, 314
Port numbers

binding options available to TCP server, 635
as mailboxes, 474
TCP/IP suite and, 17–19
TCP servers, 632–634
in UPD server design, 499–500

Port overloading, in NAT, 313
Port parity, in NAT, 313
Port preservation, NAT and TCP and, 307
Port-Preserving Symmetric NAT (PP), 486
Port states, STP, 104–105
Port translation behavior, in NAT, 311–313
Port unreachable message, ICMP, 365–370
Ports

multiple UDP servers per port, 503–504
requesting connection to nonexistent TCP port,

626
in TCP header, 588

POTS (plain old telephone service)
definition of, 953
DSL and, 287

Pouzin, Louis, 1
Power-over-Ethernet (PoE)

definition of, 953
higher throughput (802.11n) support and, 128

Power save mode (PSM), 119–120, 954
Power Save Multi-Poll (PSMP), 120, 954
Power saving, Ethernet (802.3) and, 96–97
PP (Port-Preserving Symmetric NAT), 486
PPP over Ethernet. See PPPoE (PPP over Ethernet)
PPP (Point-to-Point Protocol)

authentication, 140–141
CCP (Compression Control Protocol) and,

139–140

definition of, 953
example of, 143–145
header compression, 142–143
MP (Multilink PPP), 137–139
NCPs (Network Control Protocols), 141–142
overview of, 130–131

PPPMux, 137
PPPMuxCP (PPP Mux Control Protocol), 137
PPPoE Activity Discovery (PAD) messages, 288
PPPoE (PPP over Ethernet)

definition of, 953
Discovery and PPP Session phases, 288
DSL and, 287
example of use of, 289–291
message format, 288–289
MTU (maximum transmission unit) and, 614
overview of, 286

PPTP (Point-to-Point Tunneling Protocol)
definition of, 953
establishing sessions, 151–153
establishing tunneling with, 149–153
NAT editors and, 315

Preamble, of Ethernet frame, 84
Preferred lifetime

IA (Identity Association) and, 255
IPv6 addresses, 252

Prefix delegation (PD), 266–267
Prefixes

in IPv4 and IPv6 address management, 47–48
route aggregation and, 50
subnet mask formats, 39

Presentation layer, of OSI model, 10
Preshared keys. See PSKs (preshared keys)
Pretty Good Privacy (PGP), 822
Previous Care-of Address (PCoA), 419, 952
PRFs (pseudorandom functions), 816, 954
PRGs (pseudorandom generators), 815–816, 954
Primary DNS servers, 517
Priority fields, QoS 802.1p, 90
Private Enterprise Number (PEN), 257, 952
PRNGs (pseudorandom numbers)

definition of, 954
overview of, 815–816

Probing, NAT session, 308
Promiscuous ARP, 175
Promiscuous mode, Ethernet interfaces, 155
Protected EAP (PEAP), 838, 952
Protection against Wrapped Sequence Numbers

(PAWS)
definition of, 952
TCP header, 610–611

Protocol data units. See PDUs (protocol data units)

ptg999

1000 Index

Protocol field
IP header, 185
in PPP frames, 132–133
UDP header, 476

Protocol Field Compression (PFC)
definition of, 953
PPP and, 133

Protocol for Carrying Authentication for Network
Access (PANA), 839–840, 952

Protocol identifiers, in multiplexing, 10
Protocol Independent Multicast (PIM), 953
Protocol multiplexing, 10
Protocol suites

definition of, 1
end and intermediate systems, 12

Protocols, 1
Provider-aggretable (PA) addresses

allocation of IP addresses and, 62
definition of, 952

Provider-independent (PI) addresses
allocation of IP addresses and, 63
definition of, 953

Proxy ARP, 174–175
Proxy firewalls

overview of, 301–303
types of firewalls, 300

Proxy Router Solicitation (RtSolPr), 388
Proxy routers, 388
PrRtAdv (Proxy Router Advertisement), 388
Pseudorandom functions (PRFs), 816, 954
Pseudorandom generators (PRGs), 815–816, 954
Pseudorandom numbers. See PRNGs (pseudoran-

dom numbers)
PSH bit

sender pause and local congestion (event 1), 750
in TCP communication, 694–695

PSKs (preshared keys)
definition of, 954
encryption and, 129–130
vulnerability to dictionary attacks, 918

PSM (power save mode), 119–120, 954
PSMP (Power Save Multi-Poll), 120, 954
PTB (Packet Too Big)

definition of, 954
destination unreachable and, 612
ICMP attacks and, 429
ICMPv6 messages, 364, 370–371
TCP-related attacks, 641

PTR (pointer) records, DNS resource record types,
536–541

Public key certificates. See also Certificates
DNSKEY resource record and, 896
overview of, 822

Public key cryptography
asymmetric (public) key ciphers, 809–812
Handover Key Request/Reply options, 422–423
RSA (Rivest, Shamir, and Adleman), 812–813

Public Key Infrastructure. See PKI (Public Key
Infrastructure)

Pure ACK, TCP header, 590

Q
QAM (quadrature amplitude modulation), 128, 954
QAPs (QoS access points), 122
QBSS (QoS BSS), 122, 954
QI (Query Interval), in IGMP and MLD, 468, 954
QoS access points (QAPs), 122
QoS BSS (QBSS), 122, 954
QoS (quality of service)

802.1p standard, 90
APSD and, 120
definition of, 954
HCF (hybrid coordination function) and, 122–123
tagging, 89–92
in VLANs, 86

QoS stations (QSTAs), 122–123, 954
QPSK (quadrature phase shift keying), 128, 954
QQI (Querier’s Query Interval), in IGMP/MLD, 954
QQIC (Querier’s Query Interval Code)

definition of, 954
in MLD, 390
MLD and, 459

QRI (Query Response Interval), in IGMP/MLD, 468,
954

QRV (querier robustness variable), in IGMP/MLD,
466–467, 954

QS (Quick-Start)
definition of, 954
IPv6 options for, 199

QSTAs (QoS stations), 122–123, 954
Quadrature amplitude modulation (QAM), 128, 954
Quadrature phase shift keying (QPSK), 128, 954
Qualifiers, DNS TXT records, 546
Quality of service. See QoS (quality of service)
Querier election, multiple multicast routers and, 466
Querier robustness variable (QRV), 466–467, 954
Querier Robustness Variable (QVR), 390
Querier’s Query Interval Code. See QQIC (Querier’s

Query Interval Code)
Querier’s Query Interval (QQI), in IGMP/MLD, 954
Queries, DNS, 526
Queries/informational messages, ICMP

Echo Request/Reply messages, 380–383
Home Agent Discovery Request message, 386
MIPv6 fast handover messages, 388
MLD extension messages, 390–394

ptg999

Index 1001

MLD query/report/done messages, 388–390
Mobile Prefix Solicitation message, 387–388
MRD (Multicast Router Discovery), 394–395
overview of, 380
router solicitation and advertisement messages

in ICMPv4, 383–385
Query Interval (QI), in IGMP and MLD, 468, 954
Query message

ICMP, 388–390
IGMP, 457–459

Query/response, in DNS protocol, 518
Query Response Interval (QRI), in IGMP/MLD, 468,

954
Query types, resource record categories, 528
Question (query) and zone section format, 526
Queueing theory, in congestion control, 583
Queues

packets stored in, 4
TCP server incoming connection queue, 636–640

Quick acknowledgments, Linux, 733
Quick-Start (QS)

definition of, 954
IPv6 options for, 199

Quiet time concept, TCP state transitions, 624
QVR (Querier Robustness Variable), 390

R
RA (Router Advertisement)

Advertisement Interval option in ND, 412
definition of, 954
DHCPv6, 260–263
Home Agent Information option in ND, 412–413
ICMP attacks and, 429
ICMP messages, 383–385
ICMPv6 messages, 280–281
link with NA (Neighbor Advertisement), 396
MTU option in ND, 411–412
neighbor discovery in IPv6, 396–398
Prefix Information option, 410–411
Route Information option in ND, 420
Router Advertisement Flags Extension option,

420–421
Trust Anchor option, 417

RADIUS (Remote Authentication Dial-In User
Service)

for access control, 141
definition of, 955

RAIO (Relay Agent Information Option)
definition of, 955
DHCP, 268

Random Early Detection (RED) gateways
AQM (active queue management) and, 783–785
definition of, 955

Random numbers, in ND, 416–417
Rapid Commit option, DHCP/BOOTP message

format, 273–274
Rapid Spanning Tree Protocol (RSTP), 103, 110–111,

956
RARP (reverse ARP), 166, 955
RASs (remote access servers)

control decisions by, 141
definition of, 955

Rate-based flow control, 583
Rate halving, for TCP congestion control, 741–742
Rate-Halving with Bounding Parameters (RHBP)

definition of, 955
for TCP congestion control, 741–742

Rate limiting, of ICMP messages in Linux server,
369–370

RC4 algorithm
definition of, 955
in Wi-Fi security, 129–130

RD (Router Discovery)
definition of, 955
overview of, 383–385

RDATA, in DNS resource record, 527, 955
RDNSS (Recursive DNS Server)

definition of, 955
neighbor discovery in IPv6, 420

Real-Time Protocol (RTP), 313
Reassembly

fragmentation and, 488
of fragmented datagrams, 14, 205
timeout, 492

Rebinding time (T2), for DHCP messages, 240
Receive window structure, sliding window protocol,

701
Reconfigure extension, DHCP, 273
Record layer, in TLS

DTLS (Datagram TLS), 891–892
TLS (Transport Layer Security), 877

Record markers, datagrams and, 5–6
Record protocol, TLS, 878–880
Recovery point, in TCP retransmission, 671
Recur field, GRE tunnels and, 150
Recursive DNS Server (RDNSS)

definition of, 955
neighbor discovery in IPv6, 420

RED (Random Early Detection) gateways
AQM (active queue management) and, 783–785
definition of, 955

Redirect messages, ICMP
ICMP attacks and, 428
overview of, 372–375
Redirected Header option in ND, 411

Reference model, of protocol suite, 1

ptg999

1002 Index

Referenced connections, TCP reset segments and,
625

regedit program in Windows, setting keepalive
time with, 797

Regional Internet registries (RIRs)
allocation of IP addresses and, 62–63
definition of, 955

Registered ports, 18
Reject route message, ICMPv6, 372
Relative fairness, congestion control schemes and,

769
Relay Agent Information Option (RAIO)

definition of, 955
DHCP, 268

Relay agents, DHCP
layer 2 devices, 270–271
leasequery and bulk leasequery, 269–270
overview of, 267
RAIO (Relay Agent Information Option), 268
Remote-ID and IPv6 Remote-ID, 268
Server Identifier Override, 268–269

Relayed transport address, TURN, 326
Reliability, TCP, 586–587
Remote access servers (RASs)

control decisions by, 141
definition of, 955

Remote Authentication Dial-In User Service
(RADIUS)

for access control, 141
definition of, 955

Remote-ID, DCHP relay agents, 268
Remote procedure call (RPC)

definition of, 955
SOAP and, 338

Rendezvous point (RP)
definition of, 955
for multicast groups, 60

Renegotiation, of cryptographic connection param-
eters in TLS, 884

Renewal time (T1), for DHCP messages, 240
Reno algorithm, 737–738
Renumbering, allocation of IP addresses and, 63
Repacketization, in TCP

overview of, 586
TCP timeout/retransmission, 686–687

Replay attacks
Nonce option in ND countering, 416–417
types of threats to network communication, 808

Report message, ICMP, 388–390
REQUEST message, DHCPv6, 264–265, 269
Request/response transactions, in STUN, 320
Request to send. See RTS (request to send)
Reserved addresses, IPv6 multicast, 61

Reserved field, in IPv6 Fragment header, 203–204
Reset (RST) segments, TCP

aborting connections, 627–628
definition of, 956
half-open connections, 628–630
incoming connection queue and, 637
overview of, 625–626
requesting connection to nonexistent port, 626
TWA (TIME-WAIT Assassination), 630–631

Resolver
accessing DNS with, 511
DNSSEC example of operation, 903–911
UDP and, 525–526
validating security aware resolver, 895

Resource Record Set. See RRSet (Resource Record Set)
Resource Record Signature resource record. See

RRSIG (Resource Record Signature) resource
record

Resource records. See RRs (resource records)
Resource utilization attacks

attacks related to IGMP or MLD, 469–470
UDP-related attacks, 506

Response algorithm, for spurious timeouts and
retransmissions, 677

Restart Window (RW), 739, 956
Retransmission

ARQ and, 580
of packets, 7
in TCP. See TCP timeout/retransmission
timeout settings in communication protocols, 584

Retransmission ambiguity problem, 655, 679
Retransmission (RTX), 894, 956
Retransmission timeout. See RTO (retransmission

timeout)
Retry bit, Frame Control Word, 116
Return Routability Procedure (RRP), in MIP

definition of, 956
in RO, 218–219

Reverse ARP (RARP), 166, 955
Reverse DNS queries, 536
Reverse lookup, host names from IP addresses, 19
Reverse Path Forwarding (RPF), 956
RFC (Request for Comments), 23–24, 955
RGMP (Router-port Group Management Protocol),

469, 955
RH (Routing Header)

definition of, 955
in IPv6, 200–203

RHBP (Rate-Halving with Bounding Parameters)
definition of, 955
for TCP congestion control, 741–742

RIID field, IPv6 multicast addresses, 60–61
Rijmen, Vincent, 811

ptg999

Index 1003

Rijndael algorithm. See AES (Advanced Encryption
Standard)

RIP (Router Information Protocol), 955
RIRs (regional Internet registries)

allocation of IP addresses and, 62–63
definition of, 955

Rivest, Shamir, and Adleman. See RSA (Rivest,
Shamir, and Adleman)

rlogin (UNIX), precursor to SSH, 692
RO (route optimization), in MIP

definition of, 955
in mobile IP, 217–219

ROAD (Running Out of Address Space), 955
Robust Header Compression (ROHC), 143, 955
Robust Security Network access (RSNA)

definition of, 956
in Wi-Fi security, 129

Robust Security Network (RSN)
definition of, 956
in Wi-Fi security, 129

Robustness/reliability, of IGMP and MLD, 465–467
ROHC (Robust Header Compression), 143, 955
Roles, STP, 104–105
Root bridge, building the spanning tree in STP, 107
Root certificates, 822
Root ports, STP, 104–105
Rouge RAs, ICMP attacks and, 429
Round-robin, DNS, 565–567
Round-trip time. See RTT (round-trip time)
Round-trip-time

estimation, 584
traceroute measuring, 377

Route aggregation, 48–50
Route Information option, in ND, 420
Route optimization (RO), in MIP

definition of, 955
in mobile IP, 217–219

Route Type identifiers, 201
Router Advertisement. See RA (Router

Advertisement)
Router Alert, IPv6 options for, 198
Router Discovery (RD)

definition of, 955
overview of, 383–385

Routing Header (RH)
definition of, 955
IPv6, 200–203

Router Information Protocol (RIP), 955
Router Requirements RFC, 23
Router Solicitation. See RS (Router Solicitation)
Router solicitation and advertisement messages in

ICMPv4, ICMP, 383–385

Routers
congestion of, 727–728
crashes, 226
default router, 208
IGMP/MLD processing by multicast routers,

457–459
IP routers, 20
multicast routing, 452–454
between packet-switching networks, 1
in small networks, 11–13

Routing Policy Specification Language (RPSL), 65,
956

Routing protocols, 209
Routing tables, 208, 439–441
RP (rendezvous point), in IP Multicast

definition of, 955
for multicast groups, 60

RPC (remote procedure call)
definition of, 955
SOAP and, 338
Reverse Path Forwarding (RPF), 956

RPSL (Routing Policy Specification Language), 65,
956

RRP (Return Routability Procedure), in MIP
definition of, 956
in RO, 218–219

RRs (resource records), in DNS
address and name server records, 529–530
CNAME (canonical name) records, 534–536
definition of, 956
in DNS message format, 520–521
dynamic DNS updates and, 555–557
ENUM records, 551–552
example using resource record types, 530–534
MX (mail exchanger) records, 544–545
NAPTR (name authority pointer) records, 549–551
OPT (option) pseudo records, 547–548
overview of, 527–529
PTR (pointer) records, 536–541
S-NAPTR and U-NAPTR, 554–555
SIP records, 552
SOA (start of authority) records, 541–544
SPF (sender policy framework) and TXT records,

545–547
SRV (service) records, 548–549
translating DNS from IPv4 to IPv6, 569
transparency and, 568
URI/URN resolution, 553–554

RRs (resource records), DNSSEC
DNSKEY resource record, 896–897
DS (delegation signer) resource record, 897–898
NSEC (NextSECure) resource record, 898–901

ptg999

1004 Index

RRs (resource records), DNSSEC, continued
overview of, 896
RRSIG (Resource Record Signature) rescource

record, 901–902
RRset (Resource Record Set)

canonical ordering of, 902–903
definition of, 956
dynamic DNS updates and, 555–557
overview of, 527

RRSIG (Resource Record Signature) resource record
definition of, 956
DNSSEC, 901–902
signed zones and zone cuts, 903

RS (Router Solicitation)
definition of, 956
DHCPv6, 260–263
ICMP attacks and, 429
ICMP messages, 383–385
ICMPv6 messages, 280
link with NS (Neighbor Solicitation), 396
neighbor discovery in IPv6, 396–398

RSA (Rivest, Shamir, and Adleman)
in cipher suites, 821
definition of, 956
ECC as alternative to, 815
overview of, 812–813
TLS extensions, 883

RSA Signature option, in ND, 415–416
RSN (Robust Security Network)

definition of, 956
in Wi-Fi security, 129

RSNA (Robust Security Network access)
definition of, 956
in Wi-Fi security, 129

RST. See Reset (RST) segments, TCP
RSTP (Rapid Spanning Tree Protocol), 103, 110–111,

956
RTO (retransmission timeout), in TCP

classic method, 651–652
clock granularity and RTO bounds, 654
definition of, 956
initial values, 654
introduction to, 647
Linux RTT estimation, 657–661
retransmission ambiguity and Karn’s algorithm,

655
robustness of RTTM to loss and reordering,

662–664
RTT estimation behaviors, 661–662
RTTM (RTT Measurement) with Timestamps

option, 656–657
setting, 651
slow start algorithm and, 732

spurious. See Spurious timeouts and retransmis-
sions, in TCP

standard method, 652–654
TCP connections and, 611

RTP (Real-Time Protocol), 313
RTS (request to send)

carrier sense and, 121
definition of, 956
Wi-Fi control frames, 115

RtSolPr (Proxy Router Solicitation), 388
RTT (round-trip time)

classic method of RTT estimation, 651–652
clock granularity and RTO bounds, 654
definition of, 956
estimation behaviors, 661–662
HSTCP (HighSpeed TCP) and, 773
initial values in RTO, 654
Linux estimation of, 657–661
Nagle algorithm and, 696–697
retransmission timeout settings and, 584–585
RTO based on, 648, 651
standard method of estimating, 652–654
"stop and wait’ protocol and, 581
STUN messages, 320
TCP Timestamp option and, 610

RTTM (RTT Measurement)
robustness to loss and reordering, 662–664
with Timestamps option, 656–657, 956

RTTVAR (RTT Variance), in TCP, 685–686, 956
RTX (Retransmission), 894, 956
RW (Restart Window), in TCP, 739, 956

S
S-NAPTR (straightforward NAPTR)

definition of, 958
DNS resource record types, 554

SACK (selective acknowledgement)
definition of, 957
DSACK (duplicate SACK) extension, 677–679
example of retransmission with, 673–676
fast retransmit and SACK recovery, 757–759
receiver behavior, 672
retransmission with, 647, 671–672
sender behavior, 673
for TCP congestion control, 740–741
in TCP header, 589, 607

SAD (security association database)
definition of, 957
in IPSec, 841–842

SAE (Simultaneous Authentication of Equals)
definition of, 957
Wi-Fi mesh and, 130

Salt, in cryptography, 816

ptg999

Index 1005

SAP (Session Announcement Protocol)
definition of, 957
for multicast sessions, 55

SAs (Security Associations), in IPsec
CREATE_CHILD_SA exchange, 852–853
definition of, 956
GSAs (group security associations), 864
in IPSec, 841
payloads and proposals, 847–848
proposed algorithms, 867–869

Scalability, of DNS, 516
Scope

ICMPv6 error (Beyond Scope of Source Address),
371

of IPv6 addresses, 43
IPv6 multicast addresses, 57–58
of multicast addresses, 53

SCSV (Signaling Cipher Suite Value), 884, 957
SCTP (Stream Control Transmission Protocol)

definition of, 957
NAT and, 309
transport protocols in TCP/IP suite, 16

SCVP (Server-Based Certificate Validation Protocol)
certificate validation and, 831
definition of, 957

SDID (Signing Domain Identifier), 916, 957
SDLC (Synchronous Data Link Control)

based on HDLC, 131
definition of, 957

SDOs (standards-defining organizations), 23, 957
SDP (Session Description Protocol)

definition of, 957
ICE and, 332–333
IP multicast and, 55

Secondary DNS servers, 517
Secret Key Transaction Authentication for DNS

(TSIG), 911–914
Secs field, DHCP/BOOTP message format, 236
Secure Entry Point (SEP) bit, DNSSEC, 896, 905, 957
Secure Hash Algorithm 1. See SHA 1 (Secure Hash

Algorithm 1)
Secure hash function, 404
Secure Neighbor Discovery. See SEND (Secure

Neighbor Discovery)
Secure Real-Time Protocol (SRTP), 883, 958
Secure Remote Password (SRP), 883, 958
Secure Shell. See SSH (Secure Shell)
Secure Sockets Layer (SSL). See also TLS (Transport

Layer Security), 876–877, 958
Security

ACs (attribute certificates), 831
basic principles, 806–807

certificates, CAs, and PKIs, 821–822
cryptographic and cipher suites, 819–821
cryptographic nonces and salt, 816
cryptosystems, 809–812
DH (Diffie-Hellman-Merkle Key Agreement),

813–814
ECC (Elliptic Curve Cryptography), 815
hash functions and message digests, 817–818
introduction to, 805–806
message authentication codes, 818–819
PFS (Perfect Forward Secrecy), 815
protocols. See Security protocols
pseudorandom numbers, generators, and func-

tion families, 815–816
public key certificates, CAs, and X.509, 822–828
RSA (Rivest, Shamir, and Adleman) public key

cryptography, 812–813
signcryption, 814–815
summary and references, 919–932
threats to network communication, 807–809
validating and revoking certificates, 828–831
Wi-Fi, 129–130

Security association database (SAD)
definition of, 957
in IPSec, 841–842

Security Associations. See SAs (Security
Associations)

Security Gateway (SG), in IPsec, 840, 957
Security Parameter Index (SPI), in IPsec

definition of, 958
IKE protocol, 844

Security policy database (SPD), in IPsec
definition of, 958
in IPSec, 841–842

Security protocols
attacks on, 918–919
DKIM (Domain Keys Identified Mail), 915–918
DNS. See DNSSEC (DNS Security)
EAP methods, 837–838
ERP (EAP Re-authentication Protocol), 839
Internet Key Exchange. See IKE (Internet Key

Exchange)
IPSec (IP Security), 840–842
IPSec NAT traversal, 865–867
L2TP/IPSec, 865
layering and, 832–833
NAC (Network Access Control), 833–837
PANA (Protocol for Carrying Authentication for

Network Access), 839–840
transport layer. See TLS (Transport Layer

Security)
Segments Left field, in Routing header, 201–202

ptg999

1006 Index

Segments, TCP, 586
Selective acknowledgement. See SACK (selective

acknowledgement)
Selective retransmission, 673
Self-clocking

ACKs and, 731
Nagle algorithm and, 696

Self-describing padding, 137
Send maximum segment size. See SMSS (send maxi-

mum segment size)
SEND (Secure Neighbor Discovery)

Certificate option, 417
certification path solicitation/advertisement,

406–407
CGAs (cryptographically generated addresses),

403–406
definition of, 957
Handover Key Request/Reply options, 422–423
ICMP attacks and, 429
neighbor discovery options in IPv6, 414–415
Nonce option in ND, 416–417
overview of, 403
RSA Signature option, 415–416
securing IPv6 Neighbor Discovery, 292
Timestamp option, 416
Trust Anchor option, 417
as variant on ND, 396

Send window structure, sliding window protocol,
701

Sender pause and local congestion (event 1), TCP
congestion control, 750–754

Sender policy framework (SPF) records, DNS
resource record types, 545–547

SEP (Secure Entry Point) bit, DNSSEC, 896, 905, 957
Sequence Control field, data frame fragmentation,

117
Sequence numbers

for avoiding duplicate packets, 580
data frame fragmentation and, 117
GRE, 150
PPP, 138
TCP, 587–588
TCP-related attacks, 641
TCP segments, 701
URG, 590

Sequencing header, in MP, 138
Sequential Port-Symmetric NAT (SP), 486
Server alive messages, TCP keepalive attacks, 802
Server-Based Certificate Validation Protocol (SCVP),

831
Server Identifier Override, DCHP relay agents,

268–269

Server Load Reduction (SLR), 486
ServerHello message, in TLS, 887–889
Servers

accessing servers behind NAT, 314
iterative and concurrent, 21
server host crashes and does not reboot (keepal-

ive scenarios), 796
server host crashes and reboots (keepalive sce-

narios), 797–799
server host unreachable (keepalive scenarios),

799–800
Service model, TCP, 585–586
Service provider NAT. See SPNAT (service provider

NAT)
Service set identifiers (SSID)

definition of, 958
Wi-Fi, 112

Service sets, Wi-Fi, 112
Service (SRV) records, DNS resource record types,

548–549
Session Announcement Protocol (SAP)

definition of, 957
for multicast sessions, 55

Session Description Protocol. See SDP (Session
Description Protocol)

Session Initiation Protocol (SIP)
definition of, 957
ENUM records and, 551–552

Session keys, in public key cryptography, 812
Session layer, of OSI model, 10
Session timers, NAT, 307–308
Session Traversal Utilities for NAT. See STUN (Ses-

sion Traversal Utilities for NAT)
SFD (start frame delimiter), in link layer protocols

clock recovery in Ethernet frames, 84
definition of, 957

SG (Security Gateway), in IPsec, 840, 957
SHA 1 (Secure Hash Algorithm 1)

for authentication in DHCP, 268
definition of, 957
overview of, 817–818
TLS extensions, 883

Shannon, Claude, 579
Sharing connection state, 767–768
Shim6 protocol, 70
Short Interframe Space (SIFS), in Wi-Fi

definition of, 957
in MAC, 122

Short sequence number, LCP options, 138
Short-term credential mechanism, STUN, 325
Siaddr (Next Server IP Address) field, DHCP/

BOOTP message format, 238, 246

ptg999

Index 1007

SIFS (Short Interframe Space), in Wi-Fi
definition of, 957
in MAC, 122

Signaling Cipher Suite Value (SCSV), 884, 957
Signature verification, CGAs for, 405–406
Signed zones, DNSSEC, 903
Signing Domain Identifier (SDID), 916, 957
SIIT (Stateless IP/ICMP Translation)

definition of, 957
IPv4/IPv6 translation, 342–344

Silly windows syndrome. See SWS (silly windows
syndrome)

Simple Mail Transfer Protocol. See SMTP (Simple
Mail Transfer Protocol)

Simple Network Management Protocol (SNMP)
definition of, 958
well-known port for, 18

Simple Object Access Protocol (SOAP)
definition of, 958
GENA using, 338

Simple Service Discovery Protocol. See SSDP (Simple
Service Discovery Protocol)

Simple Tunneling of UDP through NATs, 319
Simultaneous Authentication of Equals (SAE)

definition of, 957
Wi-Fi mesh and, 130

Simultaneous close, in TCP connections
overview of, 600–601
state transition, 625

Simultaneous open, in TCP connections
defined, 597
overview of, 599–600
state transition, 625

SIP Outbound mechanism, in ICE, 333
SIP records, DNS resource record types, 552
SIP (Session Initiation Protocol)

definition of, 957
ENUM records and, 551–552

SLAAC (stateless address autoconfiguration)
configuring IPv4 link-local addresses, 276
configuring IPv6 link-local addresses, 276–277
deciding whether to use, 244
definition of, 957
example of, 278–283
IPv6 DAD (Duplicate Address Detection), 277–278
IPv6 global addresses, 278
overview of, 276
stateless DHCP and, 283–284
utility/benefit of, 284–285

Sliding window protocol
movement of windows, 702–704
in packet communication, 582
send and receive structures, 701

TCP as, 589
SLLAO (Source Link-Layer Address Option),

409–410, 958
Slot time, in MAC, 122
Slow start algorithm, in TCP

classic algorithms for TCP congestion, 732–734
comparing with congestion avoidance, 736–737
limited, 772
viewing slow start behavior with Wireshark,

749–750
slow start threshold. See ssthresh (slow start

threshold)
SLR (Server Load Reduction), 486
Smack attacks, ICMP attacks and, 429
Smoothed RTT. See SRTT (smoothed RTT)
SMSS (send maximum segment size)

definition of, 958
SWS (silly windows syndrome) and, 709
TCP connections and, 613

SMTP (Simple Mail Transfer Protocol)
definition of, 958
MX (mail exchanger) records and, 544
SRV record providing SMTP service, 549
well-known port for, 18

Smurf attacks, ICMP, 428
SNA (System Network Architecture)

definition of, 958
SDLC in, 131

Sname (Server Name) field, DHCP/BOOTP message
format, 238–239

SNAP (Subnetwork Access Protocol), 958
Sniffing, 808
SNMP (Simple Network Management Protocol)

definition of, 958
well-known port for, 18

Snooping
DHCP, 276
IGMP/MLD, 468–469

SNS (Symmetric NAT Support), 486
SOA (start of authority) records

definition of, 958
DNS resource record types, 541–544

SOAP (Simple Object Access Protocol)
definition of, 958
GENA using, 338

sock program
creating UDP datagram, 493, 496
generating UDP datagram with, 478–481
restricting local IP addresses, 634

Sockets
popular APIs, 22
in TCP connections, 595–596
TCP ports, 588

ptg999

1008 Index

SOCKS proxy firewalls, 302–303
Soft state

ARP cache timeout and, 174
multicast information and, 441

SOLICIT message, DHCPv6, 260, 269
Solicitation messages, in MRD, 394–395
Solicitation of servers, by clients, 435
Sort lists, DNS, 565–567
Source address selection algorithm, in IP host mod-

els, 223–224
Source IP addresses

address selection by hosts, 222–223
host processing of IP datagrams, 220–221
ICMPv6 errors, 371–372
in IP datagrams, 186

Source Link-Layer Address Option (SLLAO),
409–410, 958

Source Quench messages, TCP congestion control
attacks, 785

Source/Target Address List options, in ND, 413–414
SP (Sequential Port-Symmetric NAT), 486
Spam

DNS resource record for fighting, 545–547
as malware, 806

Spanning tree, building, 107
Spanning Tree Protocol. See STP (Spanning Tree

Protocol)
Spatial multiplexing, power save mode, 120
Spatial streams, higher throughput (802.11n) sup-

port, 126
SPD (security policy database)

definition of, 958
in IPSec, 841–842

Spear phishing attacks, 806
Special-use IP addresses

for IPv4, 50–51
for IPv6, 51–52
local net (limited) broadcast, 43

SPF (sender policy framework) records, DNS
resource record types, 545–547

SPI (Security Parameter Index)
definition of, 958
IKE protocol, 844

Split DNS, 565–567
SPNAT (service provider NAT)

definition of, 958
DS-Lite and, 339
overview of, 315–316

Spoofing attacks
ICMP, 429
Internet architecture, 25
IP addresses, 70, 226
TCP, 640–642
TCP keepalive attacks, 802

Spurious association attacks, 808
Spurious timeouts and retransmissions, in TCP

congestion control and, 744–745
DSACK (duplicate SACK) extension, 677–679
Eifel Detection Algorithm, 679–680
Eifel Response Algorithm, 680–682
F-RTO (Forward-RTO Recovery), 680
overview of, 677

SRC (Source) address, in Ethernet frame format, 85
SRP (Secure Remote Password), 883, 958
SRTP (Secure Real-Time Protocol), 883, 958
SRTT (smoothed RTT)

classic method of RTT estimation, 651–652
definition of, 958
destination metrics and, 685–686

SRV (service) records, DNS resource record types,
548–549

SSDP (Simple Service Discovery Protocol)
definition of, 958
direct interaction with NAT and firewalls, 338
viewing in-use multicast groups in Windows

OSs, 448
SSH (Secure Shell)

for application-managed keepalives, 794
definition of, 958
TCP data flow and, 692
tracing RTT of TCP connection, 697–698
well-known port for, 18
well-known ports for, 632

SSID (service set identifiers)
definition of, 958
Wi-Fi, 112

SSL (Secure Sockets Layer). See also TLS (Transport
Layer Security), 876–877, 958

SSM (source-specific multicast)
attacks related to IGMP or MLD, 470
definition of, 959
IGMP and MLD supporting, 452
MLD supporting, 390
as multicast service model, 54

ssthresh (slow start threshold), in TCP congestion
control

comparing slow start with congestion avoidance,
736

Eifel Response Algorithm and, 744–745
overview of, 733
standard TCP algorithm and, 738

Standard RTO method, in TCP, 652–654
Standard TCP congestion control algorithm, 728–739
Standards

IETF (Internet Engineering Task Force) in, 22–23
link layer, 80–82
other organizations in, 23–24
RFC (Request for Comments) and, 23–24

ptg999

Index 1009

Standards-defining organizations (SDOs), 23, 957
Standards-track category, RFCs and, 23
Start frame delimiter (SFD)

clock recovery in Ethernet frames, 84
definition of, 957

Start of authority (SOA) records, in DNS
definition of, 958
DNS resource record types, 541–544

STAs (stations), in Wi-Fi
definition of, 959
Wi-Fi, 112

State-change records, IGMP/MLD group member-
ship reports, 457

State machine, DHCP, 251–252
State, storing in connection switches, 5
State transitions, TCP

FIN_WAIT_2 state, 625
overview of, 616
quiet time concept, 624
simultaneous open and close transitions, 625
state transition diagrams, 617–618
TIME_WAIT state (2MSL), 618–624

Stateful translation, IPv4/IPv6, 344–345
Stateless address autoconfiguration. See SLAAC

(stateless address autoconfiguration)
Stateless IP/ICMP Translation (SIIT)

definition of, 957
IPv4/IPv6 translation, 342–344

Stateless mode, DHCPv6, 283–284
Static multiplexing, 4
Station-to-Station (STS) protocol, relation to DH

(Diffie-Hellman), 814
Statistical multiplexing, 4
STODER, repacketization and, 686
“Stop and wait” protocol

communication protocols and, 581
Nagle algorithm and, 697
TCP and, 696

STP (Spanning Tree Protocol), in bridges
BPDU structure, 105–107
building the spanning tree, 107
definition of, 959
example of, 107–109
handling topology changes, 107
overview of, 102–104
port states and roles, 104–105
RSTP (Rapid Spanning Tree Protocol), 110–111

Straightforward NAPTR (S-NAPTR)
definition of, 958
DNS resource record types, 554

Stream ciphers, symmetric key ciphers, 811
Stream Control Transmission Protocol. See SCTP

(Stream Control Transmission Protocol)

Stretch ACKs, 754–757
Strong host model, 220
STS (Station-to-Station) protocol, relation to DH

(Diffie-Hellman), 814
STUN (Session Traversal Utilities for NAT)

attributes defined by TURN, 328
binding method, 321
definition of, 959
ICE making use of, 332–334
mechanisms, 325–326
message formats, 320
Teredo servers compared with, 482

Subdomains, in DNS hierarchy, 514
Subnet addressing, 36–39
Subnet broadcast addresses. See Broadcast

addresses
Subnet fields, in IP addresses, 37
Subnet masks

overview of, 39–41
VLSM (variable-length subnet masks), 41–42

Subnetwork Access Protocol (SNAP), 105, 958
Subnetworks, 37
Switches and bridges

attacks on, 155
layer 2 relay agents and, 270
link layer and, 98–102
in small networks, 11–13
VLAN, 90

SWS (silly windows syndrome)
definition of, 959
example of avoiding, 709–715
overview of, 708
rules for avoiding, 708–709

Symmetric key encryption
cryptographic algorithms, 809–811
KDF (key derivation function) in, 815

Symmetric NAT Support (SNS), 486
SYN bit field, TCP header, 589–590
SYN cookies, in TCP

attacks related to window management and, 723
TCP-related attacks, 640–641

SYN floods, TCP-related attacks, 640
SYN segments, in TCP

combined with ACKs (SACK), 607
definition of, 959
establishing TCP connections and, 602–603
MSL (maximum seqment life), 610
NAT and TCP, 307–308
requesting connection to nonexistent TCP port,

626
in TCP connections, 596–597
TCP header and, 589
WSCALE (Window Scale) option and, 608

ptg999

1010 Index

Synchronous Data Link Control (SDLC)
based on HDLC, 131
definition of, 957

SYN_RCVD state, in TCP
incoming connection queue and, 636
simultaneous open and close transitions, 625
TCP state transitions, 618

SYN_SENT state, in TCP
simultaneous open and close transitions, 625
TCP state transitions, 618

System configuration options
attacks related to system configuration, 292
autoconfiguration. See SLAAC (stateless address

autoconfiguration)
DHCP (Dynamic Host Configuration Protocol).

See DHCP (Dynamic Host Configuration
Protocol)

introduction to, 233–234
summary and references, 292–298

System Network Architecture (SNA) from IBM
definition of, 958
SDLC in, 131

T
T1 (Renewal time), for DHCP messages, 240
Tahoe algorithm, TCP congestion control, 737–738
Tarpits, attacks related to window management, 723
Tayor, Bob, 2
tc program, for packet scheduling and traffic con-

trol subsystem in Linux, 752
TC (Topology Change), in BPDU structure, 106
TCA (Topology Change Acknowledgment), 106
TCN (topology change notification), 107
TCP-AO (Authentication Option)

definition of, 959
TCP header, 612

TCP congestion control
active queue management and ECN, 782–785
attacks related to, 785–786
BIC (Binary Increase Congestion Control),

772–774
buffer bloat, 781–782
classic algorithms for, 730–732
comparing slow start with congestion avoidance,

736–737
congestion avoidance algorithm, 734–736
connection completion and, 766–767
CTCP (Compound TCP) algorithm, 779–781
CUBIC, 775–776
CWV (Congestion Window Validation), 742–744
delay-based, 777
example of handling, 745–749

FACK (forward acknowledgment) and rate halv-
ing for, 741–742

fast retransmit and local congestion, 759–762
fast retransmit and SACK recovery, 757–759
FAST TCP algorithm, 778–779
handling spurious RTOs, 744–745
in high-speed environments, 770
HSTCP (HighSpeed TCP), 770–772
introduction to, 727–728
limited transmit approach to, 742
NewReno algorithm for, 739–740
SACK (selective acknowledgement) for, 740–741
sender pause and local congestion (event 1),

750–754
sharing connection state, 767–768
slow start algorithm, 732–734
slow start behavior, 749–750
slowing down TCP senders, 729–730
standard TCP algorithm, 728–739
stretch ACKs and recovery from local conges-

tion, 754–757
summary and references, 786–792
Tahoe, Reno, and Fast Recovery algorithms,

737–738
TCPW (TCP Westwood) algorithm, 779
TFRC (TCP Friendly Rate Control), 768–770
timeouts, retransmissions, and undoing cwnd

changes, 762–766
Vegas TCP algorithm, 777–778

TCP data flow
attacks related to window management, 723
delayed ACK interaction with Nagle algorithm,

699
delayed ACKs, 695–696
disabling Nagle algorithm, 699–700
example of dynamic window size adjustment

and flow control, 705–708
example using urgent mechanism, 720–722
flow control, 700–701
interactive communication, 692–695
introduction to, 691
large buffers and auto-tuning, 715–719
Nagle algorithm, 696–698
sliding window protocol, 701–704
summary and references, 723–725
SWS (silly windows syndrome), 708–715
urgent mechanism, 719–720
zero windows and TCP persistent timer, 704–705

TCP Friendly Rate Control (TFRC), 768–770, 959
TCP/IP suite

ARPANET Reference Model, 13–16
based on ARPANET, 1

ptg999

Index 1011

implementations and distributions, 24–25
layering, 14
multiplexing, demultiplexing, and encapsula-

tion, 16–17
names, addresses, and DNS, 19
OSI model compared with, 8–9
overview of, 13
port numbers, 17–19

TCP keepalive
attacks related to, 802
description of, 795–797
introduction to, 793–794
server host crashes and does not reboot, 797–799
server host crashes and reboots, 799–800
server host unreachable, 800–802
summary and references, 802–803

TCP segments, 15
TCP servers

incoming connection queue, 636–640
overview of, 631–632
port numbers and, 632–634
restrictions on foreign endpoints, 635–636
restrictions on local IP addresses, 634–635

TCP timeout/retransmission
attacks related to, 687
classic RTO method, 651–652
clock granularity and RTO bounds, 654
congestion control and, 762–766
connection establishment and, 604–605
destination metrics, 685–686
DSACK (duplicate SACK) extension, 677–679
Eifel Detection Algorithm, 679–680
Eifel Response Algorithm, 680–682
example of, 648–651
example of fast retransmit, 668–671
example of retransmission with SACK, 673–676
example of timer-based retransmission, 665–667
F-RTO (Forward-RTO Recovery), 680
fast retransmit, 667–668
introduction to, 647–648
Linux RTT estimation, 657–661
packet duplication, 684–685
packet reordering, 682–684
repacketization, 686–687
retransmission ambiguity and Karn’s algorithm,

655
retransmission with SACK, 671–672
robustness of RTTM, 662–664
RTO (retransmission timeout) setting, 651
RTT estimation behaviors, 661–662
RTTM (RTT Measurement) with Timestamps

option, 656–657

SACK receiver behavior, 672
SACK sender behavior, 673
spurious timeouts and retransmissions, 677
standard RTO method, 652–654
summary and references, 688–690
timer-based retransmission, 664–665

TCP (Transmission Control Protocol)
ARQ as basis of, 579
connection management. See Connections, TCP
definition of, 959
encapsulation in IP datagrams, 587
flow control and, 7–8
header fields, 588–590
introduction to, 584–585
NAT and, 306–308
reliability, 586–587
service model, 585–586
STUN and, 320
summary and references, 591–593
transport protocols in TCP/IP suite, 15
well-known ports for, 525–526

TCP Westwood+ (TCPW+) algorithm, 777
TCP Westwood (TCPW) algorithm, 779
tcpdump command

connecting to Web server on host, 171
ICMP destination unreachable messages, 480
not converting IP addresses to machine names,

479
viewing UDP fragmentation, 490–491

TCP_NODELAY option, for disabling Nagle algo-
rithm, 700

tcptrace, connection statistics with, 745–747
TCPW+ (TCP Westwood+) algorithm, 777
TCPW (TCP Westwood) algorithm, 779
TDM (time-division multiplexing), 4, 959
Teardrop attacks

ICMP, 428
UDP, 506

telnet command
connecting to Web server on host, 171
establishing TCP connections, 602

Telnet program
SSH replacing, 692
well-known port for, 18

Temporal Key Integrity Protocol (TKIP), in Wi-Fi,
129–130

Temporary addresses, in DHCPv6, 255–256
Tentative state, IPv6 addresses, 253
Teredo, tunneling IPv6 over IPv4

IPv4/IPv6 translation, 339
relays and servers, 482
tunneling, 154, 482–487

ptg999

1012 Index

Termination messages
in LCP operation, 134
in MRD, 394–395

Termination, of TCP connections, 595–598
TFC (Traffic Flow Confidentiality), 858
TFN (Tribe Flood Network), 429
TFRC (TCP Friendly Rate Control), 768–770, 959
TFTP (Trivial File Transfer Protocol)

definition of, 959
ICMP port unreachable messages and, 366–370

Threats, to network communication, 807–809
Three-way handshake, 597, 640
Throughput (802.11n), Wi-Fi, 126–128
Time-division multiplexing (TDM), 4, 959
Time exceeded message, ICMP, 375–378
Time-Remaining messages, in LCP operation, 134
Time sync function. See TSF (time sync function)
Time-to-live. See TTL (Time-to-live)
TIME-WAIT Assassination (TWA), 630–631, 960
Timed wait (MSL), 618
Timeouts, TCP. See TCP timeout/retransmission
Timer-based retransmission

example of, 665–667
introduction to, 647
overview of, 664–665

Timestamp Echo Reply. See TSER (Timestamp Echo
Reply)

Timestamp Request/Replay message, ICMP attacks
and, 429

Timestamp Value. See TSV (Timestamp Value)
Timestamps option. See also TSOPT (timestamps

option)
neighbor discovery in IPv6, 416
TCP header, 608–610

TIME_WAIT state (2MSL), in TCP
overview of, 618–624
TCP state transitions, 624
TWA (TIME-WAIT Assassination), 630–631

Tinygrams, 696
TKIP (Temporal Key Integrity Protocol), in Wi-Fi,

129–130
TLDs (top-level domains)

definition of, 959
in DNS name space, 512
name servers for, 517

TLS (Transport Layer Security)
with datagrams (DTLS), 884–891
definition of, 959
DTLS DoS protection, 894
DTLS handshake protocol, 892–894
DTLS record layer, 891–892
example of use of, 884–891

extensions, 883–884
handshaking protocols, 880–883
HTTP/HTTPS and, 18
overview of, 876–877
Record protocol, 878–880
renegotiation of cryptographic connection

parameters, 884
TCP with, 320
TLS 1.2, 877–878

TLV (type-length-value) sets
definition of, 959
IPv6 options held as, 196–197

Top-level domains. See TLDs (top-level domains)
Topology Change Acknowledgment (TCA), 106
Topology change notification (TCN), 107
Topology Change (TC), in BPDU structure, 106
Topology changes, STP handling, 107
ToS (Type of Service) byte

definition of, 959
ICMP Parameter Problem and, 379
in IPv4, 183, 188–189
redefined as DSCP/ECN fields, 379

Total Length field
ICMP Parameter Problem and, 379
in IP header, 183–184

TPDU (transport PDU), 10
traceroute, for determining routing path,

376–378
Traffic analysis, types of threats to network com-

munication, 808
Traffic Class byte, in IPv6, 183, 188–189
Traffic Flow Confidentiality (TFC), 858
Traffic selectors (TS)

definition of, 960
IKE, 851, 873

Traffic specification (TSPEC), in Wi-Fi QoS
definition of, 960
in HCCA, 123

traffic visibility, ESP (Encapsulating Security Pay-
load), 863–864

Transacation authentication, in DNS, 911–915
Transaction Signatures (TSIG), in DNS

definition of, 960
transaction authentication in DNSSEC, 911–914

Transient session keys (TSKs), 838
Translating

DNS from IPv4 to IPv6, 568–569
ICMPv4 to ICMPv6, 424–426
ICMPv6 to ICMPv4, 426–428
IPv4 to IPv6, 482
UDP/IPv4 and UDP/IPv6 datagrams, 505–506

Translation behavior, NAT, 312

ptg999

Index 1013

Translation functions, NAT, 305
Translators, TCP connections, 605
Transmission Control Protocol. See TCP (Transmis-

sion Control Protocol)
Transmit opportunities (TXOPs), in Wi-Fi QoS

in DCF, 123
definition of, 960

Transparency, DNS, 567–568
Transport layer

layering violation, 476
of OSI model, 9–10
security. See TLS (Transport Layer Security)
transport protocols in TCP/IP suite, 15–16
UDP checksum, 475–476

Transport Layer Security. See TLS (Transport Layer
Security)

Transport PDU (TPDU), 10
Transport protocols, 309
Traversal, NAT, 316
Traversal Using Relays around NAT. See TURN

(Traversal Using Relays around NAT)
Tribe Flood Network (TFN), 429
Triple-DES (3DES)

definition of, 959
standardized for Internet use, 819
as symmetric encryption algorithm, 811

Trivial File Transfer Protocol (TFTP)
definition of, 959
ICMP port unreachable messages and, 366–370

Trunking, VLAN switches and, 90
Trust anchors

CAs (certification authorities) and, 822
in ND, 417
SEND (Secure Neighbor Discovery), 403

TS (traffic selectors), in IPsec
definition of, 960
IKE, 851, 873

TSER (Timestamp Echo Reply), in TCP
definition of, 960
Eifel Detection Algorithm and, 679
TCP Timestamp option and, 609
timer-based retransmission and, 665–666

TSF (time sync function), in Wi-Fi
in 802.11 specification, 119–120
definition of, 960
Wi-Fi frames and, 114

TSIG (Transaction Signatures), in DNS
definition of, 960
transaction authentication in DNS, 911–914

TSKs (transient session keys), 838
TSOPT (timestamps option), in TCP

definition of, 960

Eifel Detection Algorithm using, 679
Linux RTT estimation and, 657
robustness of RTTM to loss and reordering,

662–664
RTTM (RTT Measurement) with, 656–657
TCP header, 608–610

TSPEC (traffic specification), in Wi-Fi QoS
definition of, 960
in HCCA, 123

TSV (Timestamp Value), in TCP
definition of, 960
Eifel Detection Algorithm and, 679
RTTM with Timestamps option, 656
TCP Timestamp option and, 608–609

TTL (Time-to-live)
definition of, 960
ICMP Time Exceeded message, 375, 378
IP header fields, 184
MRD (Multicast Router Discovery) and, 394
name servers, 517
QS (Quick-Start) TTL, 199
SYN segments, 611

Tunnel endpoint, IPv6 traffic and, 46
Tunneled packets, NAT and, 310
Tunneling

IPv4/IPv6 translation, 339
IPv6 options for, 198
link layer and, 149–153
link layer attacks and, 156

Tunneling proxy servers, 302
TURN (Traversal Using Relays around NAT)

definition of, 960
ICE making use of, 332–334
overview of, 326–332
Teredo relays compared with, 482

TWA (TIME-WAIT Assassination), 630–631, 960
TXOPs (transmit opportunities), in Wi-Fi QoS

in DCF, 123
definition of, 960

TXT records
definition of, 960
DNS resource record types, 545–547

Type field, in Ethernet frame format, 85–86
Type-length-value (TLV) sets

definition of, 959
IPv6 options held as, 196–197

Type of Service byte. See ToS (Type of Service) byte

U
U-NAPTR (URI-enabled NAPTR)

definition of, 960
DNS resource record types, 555

ptg999

1014 Index

U-NII (Unlicensed National Information
Infrastructure)

5GHz band for, 124
definition of, 960

UBM (unicast-prefix-based multicast)
allocation of IPv4 addresses, 56
definition of, 960

UDLs (unidirectional links)
definition of, 960
link layer and, 153–154

UDP-Lite, 487–488
UDP servers

designing, 498–499
flow control and congestion control in server

design, 505
foreign IP address restrictions in server design,

502–503
IP addresses and port numbers in server design,

499–500
local IP address restrictions in server design,

500–501
multiple addresses in server design, 501–502
multiple servers per port, 503–504
spanning IP address families in server design,

504
UDP (User Datagram Protocol)

attacks related to, 507–508
broadcast overhead and, 451
checksum, 475–478
connection refused error, 626
as connectionless protocols, 595
definition of, 960
examples, 478–481
flow control and congestion control in server

design, 505
foreign IP address restrictions in server design,

502–503
header, 474–475
ICE and, 332
interaction between IP fragmentation and ARP/

ND, 496–497
in the Internet, 506–507
introduction to, 473–474
IP addresses and port numbers in server design,

499–500
IP fragmentation and, 488–492
IPv6 and, 481–482
local IP address restrictions in server design,

500–501
maximum UDP datagram size, 497–498
multiple addresses in server design, 501–502
multiple servers per port, 503–504
NAT and, 308–309

PMTUD (Path MTU Discovery) with, 493–496
reassembly timeout, 492
sending broadcast datagrams, 439
server design, 498–499
spanning IP address families in server design, 504
STUN and, 320
summary and references, 508–510
Teredo tunneling and, 482–487
translating UDP/IPv4 and UDP/IPv6 datagrams,

505–506
transport protocols in TCP/IP suite, 15
UDP-Lite, 487–488
well-known ports for, 525–526

UEQM (unequal modulation), in 802.11n
definition of, 960
higher throughput (802.11n) support and, 127

ULAs (Unique Local IPv6 Unicast Addresses)
definition of, 960
NAT and, 310
overview of, 225

Unauthorized access attacks, 26
Unequal modulation (UEQM), in 802.11n

definition of, 960
higher throughput (802.11n) support and, 127

Unicast addresses
allocation of, 62–65
anycast addresses, 62
assigning, 65–66
C class spaces for, 35
definition of, 34
Echo Request message sent from link-local uni-

cast address, 445–446
IIDs as basis for unicast IPv6 addresses, 43–46
multiple providers/multiple networks/multiple

addresses, 68–70
overview of, 15
single provider/multiple networks/multiple

addresses, 67–68
single provider/no network/single address,

66–67
single provider/single network/single address,

67
Unicast-prefix-based IPv6 multicast addresses, 58
Unicast-prefix-based multicast (UBM)

allocation of IPv4 addresses, 56
definition of, 960

Unicode, internationalization of Internet, 512
Unidirectional links (UDLs)

definition of, 960
link layer and, 153–154

Uniform Resource Locator (URL), 961
Unilateral self-address fixing. See UNSAF (unilateral

self-address fixing)

ptg999

Index 1015

Unique Local IPv6 Unicast Addresses. See ULAs
(Unique Local IPv6 Unicast Addresses)

Universal Plug and Play (UPnP) framework
definition of, 961
direct interaction with NAT and firewalls,

337–339
Universal Resource Identifier. See URI (Universal

Resource Identifier)
UNIX

Berkeley version. See BSD (Berkeley Software
Distribution)

rlogin, 692
Unlicensed National Information Infrastructure

(U-NII)
5GHz band for, 124
definition of, 960

Unreachable hosts, keepalives detecting, 795–796
UNSAF (unilateral self-address fixing)

definition of, 961
overview of, 317–319
STUN (Session Traversal Utilities for NAT), 319–326

Updates
DNS Update, 567
dynamic DNS updates, 555–558

UPnP (Universal Plug and Play) framework
definition of, 961
direct interaction with NAT and firewalls, 337–339

Upper layer, TLS (Transport Layer Security), 877
UPs (user priorities), in Wi-Fi QoS, 123, 961
URG (Urgent Mechanism), in TCP

definition of, 961
example working with urgent data, 720–722
overview of, 719–720
TCP header, 590

URI-enabled NAPTR (U-NAPTR)
definition of, 960
DNS resource record types, 555

URI (Universal Resource Identifier)
definition of, 961
ENUM records and, 551–552
NAPTR records and, 549
URI/URN resolution, 553–554

URL (Uniform Resource Locator), 961
URN resolution, 553–554
Usage-specific keys (USRK), in EAP

definition of, 961
key derivation in EAP, 838

User Datagram Protocol. See UDP (User Datagram
Protocol)

User priorities (UPs), in Wi-Fi QoS, 123, 961
User Timeout (UTO) option, in TCP

definition of, 961
TCP header, 611–612

USRK (usage-specific keys)
definition of, 961
key derivation in EAP, 838

UTC (Coordinated Universal Time), 961
UTO (User Timeout) option, in TCP

definition of, 961
TCP header, 611–612

V
Valid lifetime

IA (Identity Association) and, 255
IPv6 addresses, 252

Validating certificates, 828–831
Validating security aware resolver, in DNSSEC,

895
Variable-length subnet masks (VLSM), 41–42, 961
Variable-scope addresses, IPv6 multicast, 58
Variables, IGMP/MLD, 467–468
vconfig command, for manipulating 802.1p/q

information in Linux, 90–91
VCs (virtual circuits)

definition of, 961
multiplexing and, 4

Vegas TCP algorithm, 777–778
Vendor Extension field, DHCP/BOOTP message

format, 238, 246
VENONA system, 918
Virtual carrier sense, 121
Virtual circuits (VCs)

definition of, 961
multiplexing and, 4

Virtual LANs. See VLANs (virtual LANs)
Virtual private networks. See VPNs (virtual private

networks)
Viruses, 806
VJ (Van Jacobson) compression, 141–142
VLAN identifier, 90
VLAN tag, 90
VLANs (virtual LANs)

definition of, 961
multicast routing, 452
overview of, 89–92
QoS tagging and, 145–148

VLSM (variable-length subnet masks), 41–42, 961
VoIP (Voice over IP), 961
VPNs (virtual private networks)

connecting to Internet via, 20
definition of, 961
tunneling, 149

W
W3C (World Wide Web Consortium), 24, 961
Wake-on LAN (WoL), 96–97, 962

ptg999

1016 Index

WANs (wide area networks)
definition of, 961
Internet as, 2
PPPoE and, 286–287

War driving, link layer attacks, 155
Weak host model, 220
Web caches, web proxies operating as, 302
Web of trust, public key certificates and, 822
Web proxies, 302
Web Proxy Auto-Discovery Protocol (WPAD), 302,

962
Web Proxy Autodiscovery Protocol (WRED), 962
Weighted RED (WRED), 783, 962
Well-known ports

overview of, 18
for SSH (Secure Shell), 632
for UDP or TCP, 525–526

Well-Known Prefix (WKP), in algorithmic address
translation, 341, 962

WEP (wired equivalent privacy) in Wi-Fi
attacks related to, 918
definition of, 961
Wi-Fi attacks and, 155
for Wi-Fi security, 129–130

WESP (Wrapped ESP), in IPsec, 863–864, 961
White hats, 26
WHOIS service, 63–64
Wi-Fi Multimedia (WMM), in Wi-Fi QoS, 122, 962
Wi-Fi Protected Access. See WPA (Wi-Fi Protected

Access)
Wi-Fi (wireless fidelity- IEEE 802.11)

attacks, 155
attacks related to, 918
channels and frequencies (802.11b/g), 124–125
control frames, 115–116
CSMA/CA and, 84
data frames, fragmentation, and aggregation,

116–119
definition of, 962
frames, 113–115
higher throughput (802.11n), 126–128
mesh (802.11s), 130
overview of, 111–112
physical layer, 123–124
physical layer channels and frequencies, 124–126
power save mode and time sync function,

119–120
RSTP (Rapid Spanning Tree Protocol), 120–123
security, 129–130
throughput (802.11n), 116, 126–128

Wide area networks. See WANs (wide area
networks)

Wildcard (*)
domain names and, 526
local IP address restrictions in server design,

500–501
Wildcard address, IPv6 addresses, 632
WiMAX (Worldwide Interoperability for Microwave

Access), 79, 82–83, 962
Window advertisement (window update)

in window-based flow control, 583
WSCALE (Window Scale) option in TCP, 608

Window-based flow control, 583
Window management, TCP

example of dynamic window size adjustment
and flow control, 705–708

flow control and, 700–701
large buffers and auto-tuning, 715–719
sliding window protocol, 701–704
SWS (silly windows syndrome), 708–715
zero windows and TCP persistent timer, 704–705

Window probes, in TCP window management, 704
Window Size field

cwnd (congestion window), 729
flow control and, 727
TCP segments, 701

Window update
SWS (silly windows syndrome) and, 711
TCP header and, 590
window management and, 706

Windows of packets, in communication protocols,
581–582

Windows OS (Microsoft)
autotuning TCP receive windows, 715
ICS (Internet Connection Sharing), 337
IPSec implementations, 867

Wired equivalent privacy. See WEP (wired equiva-
lent privacy)

Wireless fidelity. See Wi-Fi (wireless fidelity-802.11)
Wireless LANs (WLANs). See also Wi-Fi (wireless

fidelity-802.11), 962
Wireshark

Flow graph, 749
monitoring TCP keepalives, 797–798
TCP Stream Graph, 707, 747–748
TCP ZeroWindowProbe, 710
viewing BPDUs with, 109

WKP (Well-Known Prefix), 341, 962
WLANs (wireless LANs). See also Wi-Fi (wireless

fidelity-802.11), 962
WMM (Wi-Fi Multimedia), in Wi-Fi QoS, 122, 962
WoL (Wake-on LAN), 96–97, 962
WOPT. See WSOPT (Window Scale Option)
World Wide Web Consortium (W3C), 24, 961

ptg999

Index 1017

World Wide Web (WWW)
definition of, 962
Internet compared to, 2–3

Worldwide Interoperability for Microwave Access
(WiMAX), 79, 82–83, 962

Worms
attacks related to window management, 723
buffer overflow and, 805
types of malware, 806

WPA (Wi-Fi Protected Access)
attacks related to, 918
definition of, 962
Wi-Fi attacks and, 155
for Wi-Fi security, 129–130

WPAD (Web Proxy Auto-Discovery Protocol), 302, 962
Wrapped ESP (WESP), in IPsec, 863–864, 961
WRED (Weighted RED), 783, 962
WSOPT (Window Scale Option)

definition of, 962
TCP header, 608, 610

WWW (World Wide Web)
definition of, 962
Internet compared to, 2–3

X
X.25 protocol

definition of, 962
VCs (virtual circuits) and, 4–5

X.509 standard
certificate extensions, 827–828
file or encoding formats in, 822–823
TLS extensions, 883
validating and revoking certificates, 828–831
viewing preconfigured certificates, 823–826

XML (Extensible Markup Language)
common use with Web pages, 338
definition of, 962

XMPP (Extensible Messaging and Presence Proto-
col), 333, 962

Y
Yiaddr (Your IP address) field, DHCP/BOOTP mes-

sage format, 237, 247
Your IP address (Yiaddr) field, DHCP/BOOTP mes-

sage format, 237, 247

Z
Zero window advertisement

example of dynamic window size adjustment
and flow control, 705–708

large buffers and auto-tuning, 717–719
probes, 710
SWS (silly windows syndrome) and, 711–713
TCP persistent timer and, 704–705

Zombie attacks, 26
Zone cuts, DNS and DNSSEC, 903
Zone enumeration, NSEC chain and, 900
Zone signing key (ZSK)

definition of, 962
DNSSEC, 896, 905

Zone transfers, in DNS
AXFR (full zone transfer) messages, 559–561
DNS notify and, 558–559, 564–565
initiating, 525
IXFR (incremental zone transfer) messages,

561–563
overview of, 517–518

Zones, DNS
dynamic updates, 555–558
overview of, 516–517

Zones, DNSSEC, 903
ZSK (zone signing key)

definition of, 962
DNSSEC, 896, 905

ptg999

IPv4 Header

IPv6 Header

UDP Header

TCP Header

ptg999

IPv4 Header

IPv6 Header

UDP Header

TCP Header

	Contents
	Foreword
	Preface to the Second Edition
	Adapted Preface to the First Edition
	Chapter 1 Introduction
	1.1 Architectural Principles
	1.1.1 Packets, Connections, and Datagrams
	1.1.2 The End-to-End Argument and Fate Sharing
	1.1.3 Error Control and Flow Control

	1.2 Design and Implementation
	1.2.1 Layering
	1.2.2 Multiplexing, Demultiplexing, and Encapsulation in Layered Implementations

	1.3 The Architecture and Protocols of the TCP/IP Suite
	1.3.1 The ARPANET Reference Model
	1.3.2 Multiplexing, Demultiplexing, and Encapsulation in TCP/IP
	1.3.3 Port Numbers
	1.3.4 Names, Addresses, and the DNS

	1.4 Internets, Intranets, and Extranets
	1.5 Designing Applications
	1.5.1 Client/Server
	1.5.2 Peer-to-Peer
	1.5.3 Application Programming Interfaces (APIs)

	1.6 Standardization Process
	1.6.1 Request for Comments (RFC)
	1.6.2 Other Standards

	1.7 Implementations and Software Distributions
	1.8 Attacks Involving the Internet Architecture
	1.9 Summary
	1.10 References

	Chapter 2 The Internet Address Architecture
	2.1 Introduction
	2.2 Expressing IP Addresses
	2.3 Basic IP Address Structure
	2.3.1 Classful Addressing
	2.3.2 Subnet Addressing
	2.3.3 Subnet Masks
	2.3.4 Variable-Length Subnet Masks (VLSM)
	2.3.5 Broadcast Addresses
	2.3.6 IPv6 Addresses and Interface Identifiers

	2.4 CIDR and Aggregation
	2.4.1 Prefixes
	2.4.2 Aggregation

	2.5 Special-Use Addresses
	2.5.1 Addressing IPv4/IPv6 Translators
	2.5.2 Multicast Addresses
	2.5.3 IPv4 Multicast Addresses
	2.5.4 IPv6 Multicast Addresses
	2.5.5 Anycast Addresses

	2.6 Allocation
	2.6.1 Unicast
	2.6.2 Multicast

	2.7 Unicast Address Assignment
	2.7.1 Single Provider/No Network/Single Address
	2.7.2 Single Provider/Single Network/Single Address
	2.7.3 Single Provider/Multiple Networks/Multiple Addresses
	2.7.4 Multiple Providers/Multiple Networks/Multiple Addresses (Multihoming)

	2.8 Attacks Involving IP Addresses
	2.9 Summary
	2.10 References

	Chapter 3 Link Layer
	3.1 Introduction
	3.2 Ethernet and the IEEE 802 LAN/MAN Standards
	3.2.1 The IEEE 802 LAN/MAN Standards
	3.2.2 The Ethernet Frame Format
	3.2.3 802.1p/q: Virtual LANs and QoS Tagging
	3.2.4 802.1AX: Link Aggregation (Formerly 802.3ad)

	3.3 Full Duplex, Power Save, Autonegotiation, and 802.1X Flow Control
	3.3.1 Duplex Mismatch
	3.3.2 Wake-on LAN (WoL), Power Saving, and Magic Packets
	3.3.3 Link-Layer Flow Control

	3.4 Bridges and Switches
	3.4.1 Spanning Tree Protocol (STP)
	3.4.2 802.1ak: Multiple Registration Protocol (MRP)

	3.5 Wireless LANs—IEEE 802.11(Wi-Fi)
	3.5.1 802.11 Frames
	3.5.2 Power Save Mode and the Time Sync Function (TSF)
	3.5.3 802.11 Media Access Control
	3.5.4 Physical-Layer Details: Rates, Channels, and Frequencies
	3.5.5 Wi-Fi Security
	3.5.6 Wi-Fi Mesh (802.11s)

	3.6 Point-to-Point Protocol (PPP)
	3.6.1 Link Control Protocol (LCP)
	3.6.2 Multilink PPP (MP)
	3.6.3 Compression Control Protocol (CCP)
	3.6.4 PPP Authentication
	3.6.5 Network Control Protocols (NCPs)
	3.6.6 Header Compression
	3.6.7 Example

	3.7 Loopback
	3.8 MTU and Path MTU
	3.9 Tunneling Basics
	3.9.1 Unidirectional Links

	3.10 Attacks on the Link Layer
	3.11 Summary
	3.12 References

	Chapter 4 ARP: Address Resolution Protocol
	4.1 Introduction
	4.2 An Example
	4.2.1 Direct Delivery and ARP

	4.3 ARP Cache
	4.4 ARP Frame Format
	4.5 ARP Examples
	4.5.1 Normal Example
	4.5.2 ARP Request to a Nonexistent Host

	4.6 ARP Cache Timeout
	4.7 Proxy ARP
	4.8 Gratuitous ARP and Address Conflict Detection (ACD)
	4.9 The arp Command
	4.10 Using ARP to Set an Embedded Device’s IPv4 Address
	4.11 Attacks Involving ARP
	4.12 Summary
	4.13 References

	Chapter 5 The Internet Protocol (IP)
	5.1 Introduction
	5.2 IPv4 and IPv6 Headers
	5.2.1 IP Header Fields
	5.2.2 The Internet Checksum
	5.2.3 DS Field and ECN (Formerly Called the ToS Byte or IPv6 Traffic Class)
	5.2.4 IP Options

	5.3 IPv6 Extension Headers
	5.3.1 IPv6 Options
	5.3.2 Routing Header
	5.3.3 Fragment Header

	5.4 IP Forwarding
	5.4.1 Forwarding Table
	5.4.2 IP Forwarding Actions
	5.4.3 Examples
	5.4.4 Discussion

	5.5 Mobile IP
	5.5.1 The Basic Model: Bidirectional Tunneling
	5.5.2 Route Optimization (RO)
	5.5.3 Discussion

	5.6 Host Processing of IP Datagrams
	5.6.1 Host Models
	5.6.2 Address Selection

	5.7 Attacks Involving IP
	5.8 Summary
	5.9 References

	Chapter 6 System Configuration: DHCP and Autoconfiguration
	6.1 Introduction
	6.2 Dynamic Host Configuration Protocol (DHCP)
	6.2.1 Address Pools and Leases
	6.2.2 DHCP and BOOTP Message Format
	6.2.3 DHCP and BOOTP Options
	6.2.4 DHCP Protocol Operation
	6.2.5 DHCPv6
	6.2.6 Using DHCP with Relays
	6.2.7 DHCP Authentication
	6.2.8 Reconfigure Extension
	6.2.9 Rapid Commit
	6.2.10 Location Information (LCI and LoST)
	6.2.11 Mobility and Handoff Information (MoS and ANDSF)
	6.2.12 DHCP Snooping

	6.3 Stateless Address Autoconfiguration (SLAAC)
	6.3.1 Dynamic Configuration of IPv4 Link-Local Addresses
	6.3.2 IPv6 SLAAC for Link-Local Addresses

	6.4 DHCP and DNS Interaction
	6.5 PPP over Ethernet (PPPoE)
	6.6 Attacks Involving System Configuration
	6.7 Summary
	6.8 References

	Chapter 7 Firewalls and Network Address Translation (NAT)
	7.1 Introduction
	7.2 Firewalls
	7.2.1 Packet-Filtering Firewalls
	7.2.2 Proxy Firewalls

	7.3 Network Address Translation (NAT)
	7.3.1 Traditional NAT: Basic NAT and NAPT
	7.3.2 Address and Port Translation Behavior
	7.3.3 Filtering Behavior
	7.3.4 Servers behind NATs
	7.3.5 Hairpinning and NAT Loopback
	7.3.6 NAT Editors
	7.3.7 Service Provider NAT (SPNAT) and Service Provider IPv6 Transition

	7.4 NAT Traversal
	7.4.1 Pinholes and Hole Punching
	7.4.2 UNilateral Self-Address Fixing (UNSAF)
	7.4.3 Session Traversal Utilities for NAT (STUN)
	7.4.4 Traversal Using Relays around NAT (TURN)
	7.4.5 Interactive Connectivity Establishment (ICE)

	7.5 Configuring Packet-Filtering Firewalls and NATs
	7.5.1 Firewall Rules
	7.5.2 NAT Rules
	7.5.3 Direct Interaction with NATs and Firewalls: UPnP, NAT-PMP, and PCP

	7.6 NAT for IPv4/IPv6 Coexistence and Transition
	7.6.1 Dual-Stack Lite (DS-Lite)
	7.6.2 IPv4/IPv6 Translation Using NATs and ALGs

	7.7 Attacks Involving Firewalls and NATs
	7.8 Summary
	7.9 References

	Chapter 8 ICMPv4 and ICMPv6: Internet Control Message Protocol
	8.1 Introduction
	8.1.1 Encapsulation in IPv4 and IPv6

	8.2 ICMP Messages
	8.2.1 ICMPv4 Messages
	8.2.2 ICMPv6 Messages
	8.2.3 Processing of ICMP Messages

	8.3 ICMP Error Messages
	8.3.1 Extended ICMP and Multipart Messages
	8.3.2 Destination Unreachable (ICMPv4 Type 3, ICMPv6 Type 1) and Packet Too Big (ICMPv6 Type 2)
	8.3.3 Redirect (ICMPv4 Type 5, ICMPv6 Type 137)
	8.3.4 ICMP Time Exceeded (ICMPv4 Type 11, ICMPv6 Type 3)
	8.3.5 Parameter Problem (ICMPv4 Type 12, ICMPv6 Type 4)

	8.4 ICMP Query/Informational Messages
	8.4.1 Echo Request/Reply (ping) (ICMPv4 Types 0/8, ICMPv6 Types 129/128)
	8.4.2 Router Discovery: Router Solicitation and Advertisement (ICMPv4 Types 9, 10)
	8.4.3 Home Agent Address Discovery Request/Reply (ICMPv6 Types 144/145)
	8.4.4 Mobile Prefix Solicitation/Advertisement (ICMPv6 Types 146/147)
	8.4.5 Mobile IPv6 Fast Handover Messages (ICMPv6 Type 154)
	8.4.6 Multicast Listener Query/Report/Done (ICMPv6 Types 130/131/132)
	8.4.7 Version 2 Multicast Listener Discovery (MLDv2) (ICMPv6 Type 143)
	8.4.8 Multicast Router Discovery (MRD) (IGMP Types 48/49/50, ICMPv6 Types 151/152/153)

	8.5 Neighbor Discovery in IPv6
	8.5.1 ICMPv6 Router Solicitation and Advertisement (ICMPv6 Types 133, 134)
	8.5.2 ICMPv6 Neighbor Solicitation and Advertisement (IMCPv6 Types 135, 136)
	8.5.3 ICMPv6 Inverse Neighbor Discovery Solicitation/Advertisement (ICMPv6 Types 141/142)
	8.5.4 Neighbor Unreachability Detection (NUD)
	8.5.5 Secure Neighbor Discovery (SEND)
	8.5.6 ICMPv6 Neighbor Discovery (ND) Options

	8.6 Translating ICMPv4 and ICMPv6
	8.6.1 Translating ICMPv4 to ICMPv6
	8.6.2 Translating ICMPv6 to ICMPv4

	8.7 Attacks Involving ICMP
	8.8 Summary
	8.9 References

	Chapter 9 Broadcasting and Local Multicasting (IGMP and MLD)
	9.1 Introduction
	9.2 Broadcasting
	9.2.1 Using Broadcast Addresses
	9.2.2 Sending Broadcast Datagrams

	9.3 Multicasting
	9.3.1 Converting IP Multicast Addresses to 802 MAC/Ethernet Addresses
	9.3.2 Examples
	9.3.3 Sending Multicast Datagrams
	9.3.4 Receiving Multicast Datagrams
	9.3.5 Host Address Filtering

	9.4 The Internet Group Management Protocol (IGMP) and Multicast Listener Discovery Protocol (MLD)
	9.4.1 IGMP and MLD Processing by Group Members (“Group Member Part”)
	9.4.2 IGMP and MLD Processing by Multicast Routers (“Multicast Router Part”)
	9.4.3 Examples
	9.4.4 Lightweight IGMPv3 and MLDv2
	9.4.5 IGMP and MLD Robustness
	9.4.6 IGMP and MLD Counters and Variables
	9.4.7 IGMP and MLD Snooping

	9.5 Attacks Involving IGMP and MLD
	9.6 Summary
	9.7 References

	Chapter 10 User Datagram Protocol (UDP) and IP Fragmentation
	10.1 Introduction
	10.2 UDP Header
	10.3 UDP Checksum
	10.4 Examples
	10.5 UDP and IPv6
	10.5.1 Teredo: Tunneling IPv6 through IPv4 Networks

	10.6 UDP-Lite
	10.7 IP Fragmentation
	10.7.1 Example: UDP/IPv4 Fragmentation
	10.7.2 Reassembly Timeout

	10.8 Path MTU Discovery with UDP
	10.8.1 Example

	10.9 Interaction between IP Fragmentation and ARP/ND
	10.10 Maximum UDP Datagram Size
	10.10.1 Implementation Limitations
	10.10.2 Datagram Truncation

	10.11 UDP Server Design
	10.11.1 IP Addresses and UDP Port Numbers
	10.11.2 Restricting Local IP Addresses
	10.11.3 Using Multiple Addresses
	10.11.4 Restricting Foreign IP Address
	10.11.5 Using Multiple Servers per Port
	10.11.6 Spanning Address Families: IPv4 and IPv6
	10.11.7 Lack of Flow and Congestion Control

	10.12 Translating UDP/IPv4 and UDP/IPv6 Datagrams
	10.13 UDP in the Internet
	10.14 Attacks Involving UDP and IP Fragmentation
	10.15 Summary
	10.16 References

	Chapter 11 Name Resolution and the Domain Name System (DNS)
	11.1 Introduction
	11.2 The DNS Name Space
	11.2.1 DNS Naming Syntax

	11.3 Name Servers and Zones
	11.4 Caching
	11.5 The DNS Protocol
	11.5.1 DNS Message Format
	11.5.2 The DNS Extension Format (EDNS0)
	11.5.3 UDP or TCP
	11.5.4 Question (Query) and Zone Section Format
	11.5.5 Answer, Authority, and Additional Information Section Formats
	11.5.6 Resource Record Types
	11.5.7 Dynamic Updates (DNS UPDATE)
	11.5.8 Zone Transfers and DNS NOTIFY

	11.6 Sort Lists, Round-Robin, and Split DNS
	11.7 Open DNS Servers and DynDNS
	11.8 Transparency and Extensibility
	11.9 Translating DNS from IPv4 to IPv6 (DNS64)
	11.10 LLMNR and mDNS
	11.11 LDAP
	11.12 Attacks on the DNS
	11.13 Summary
	11.14 References

	Chapter 12 TCP: The Transmission Control Protocol (Preliminaries)
	12.1 Introduction
	12.1.1 ARQ and Retransmission
	12.1.2 Windows of Packets and Sliding Windows
	12.1.3 Variable Windows: Flow Control and Congestion Control
	12.1.4 Setting the Retransmission Timeout

	12.2 Introduction to TCP
	12.2.1 The TCP Service Model
	12.2.2 Reliability in TCP

	12.3 TCP Header and Encapsulation
	12.4 Summary
	12.5 References

	Chapter 13 TCP Connection Management
	13.1 Introduction
	13.2 TCP Connection Establishment and Termination
	13.2.1 TCP Half-Close
	13.2.2 Simultaneous Open and Close
	13.2.3 Initial Sequence Number (ISN)
	13.2.4 Example
	13.2.5 Timeout of Connection Establishment
	13.2.6 Connections and Translators

	13.3 TCP Options
	13.3.1 Maximum Segment Size (MSS) Option
	13.3.2 Selective Acknowledgment (SACK) Options
	13.3.3 Window Scale (WSCALE or WSOPT) Option
	13.3.4 Timestamps Option and Protection against Wrapped Sequence Numbers (PAWS)
	13.3.5 User Timeout (UTO) Option
	13.3.6 Authentication Option (TCP-AO)

	13.4 Path MTU Discovery with TCP
	13.4.1 Example

	13.5 TCP State Transitions
	13.5.1 TCP State Transition Diagram
	13.5.2 TIME_WAIT (2MSL Wait) State
	13.5.3 Quiet Time Concept
	13.5.4 FIN_WAIT_2 State
	13.5.5 Simultaneous Open and Close Transitions

	13.6 Reset Segments
	13.6.1 Connection Request to Nonexistent Port
	13.6.2 Aborting a Connection
	13.6.3 Half-Open Connections
	13.6.4 TIME-WAIT Assassination (TWA)

	13.7 TCP Server Operation
	13.7.1 TCP Port Numbers
	13.7.2 Restricting Local IP Addresses
	13.7.3 Restricting Foreign Endpoints
	13.7.4 Incoming Connection Queue

	13.8 Attacks Involving TCP Connection Management
	13.9 Summary
	13.10 References

	Chapter 14 TCP Timeout and Retransmission
	14.1 Introduction
	14.2 Simple Timeout and Retransmission Example
	14.3 Setting the Retransmission Timeout (RTO)
	14.3.1 The Classic Method
	14.3.2 The Standard Method
	14.3.3 The Linux Method
	14.3.4 RTT Estimator Behaviors
	14.3.5 RTTM Robustness to Loss and Reordering

	14.4 Timer-Based Retransmission
	14.4.1 Example

	14.5 Fast Retransmit
	14.5.1 Example

	14.6 Retransmission with Selective Acknowledgments
	14.6.1 SACK Receiver Behavior
	14.6.2 SACK Sender Behavior
	14.6.3 Example

	14.7 Spurious Timeouts and Retransmissions
	14.7.1 Duplicate SACK (DSACK) Extension
	14.7.2 The Eifel Detection Algorithm
	14.7.3 Forward-RTO Recovery (F-RTO)
	14.7.4 The Eifel Response Algorithm

	14.8 Packet Reordering and Duplication
	14.8.1 Reordering
	14.8.2 Duplication

	14.9 Destination Metrics
	14.10 Repacketization
	14.11 Attacks Involving TCP Retransmission
	14.12 Summary
	14.13 References

	Chapter 15 TCP Data Flow and Window Management
	15.1 Introduction
	15.2 Interactive Communication
	15.3 Delayed Acknowledgments
	15.4 Nagle Algorithm
	15.4.1 Delayed ACK and Nagle Algorithm Interaction
	15.4.2 Disabling the Nagle Algorithm

	15.5 Flow Control and Window Management
	15.5.1 Sliding Windows
	15.5.2 Zero Windows and the TCP Persist Timer
	15.5.3 Silly Window Syndrome (SWS)
	15.5.4 Large Buffers and Auto-Tuning

	15.6 Urgent Mechanism
	15.6.1 Example

	15.7 Attacks Involving Window Management
	15.8 Summary
	15.9 References

	Chapter 16 TCP Congestion Control
	16.1 Introduction
	16.1.1 Detection of Congestion in TCP
	16.1.2 Slowing Down a TCP Sender

	16.2 The Classic Algorithms
	16.2.1 Slow Start
	16.2.2 Congestion Avoidance
	16.2.3 Selecting between Slow Start and Congestion Avoidance
	16.2.4 Tahoe, Reno, and Fast Recovery
	16.2.5 Standard TCP

	16.3 Evolution of the Standard Algorithms
	16.3.1 NewReno
	16.3.2 TCP Congestion Control with SACK
	16.3.3 Forward Acknowledgment (FACK) and Rate Halving
	16.3.4 Limited Transmit
	16.3.5 Congestion Window Validation (CWV)

	16.4 Handling Spurious RTOs—the Eifel Response Algorithm
	16.5 An Extended Example
	16.5.1 Slow Start Behavior
	16.5.2 Sender Pause and Local Congestion (Event 1)
	16.5.3 Stretch ACKs and Recovery from Local Congestion
	16.5.4 Fast Retransmission and SACK Recovery (Event 2)
	16.5.5 Additional Local Congestion and Fast Retransmit Events
	16.5.6 Timeouts, Retransmissions, and Undoing cwnd Changes
	16.5.7 Connection Completion

	16.6 Sharing Congestion State
	16.7 TCP Friendliness
	16.8 TCP in High-Speed Environments
	16.8.1 HighSpeed TCP (HSTCP) and Limited Slow Start
	16.8.2 Binary Increase Congestion Control (BIC and CUBIC)

	16.9 Delay-Based Congestion Control
	16.9.1 Vegas
	16.9.2 FAST
	16.9.3 TCP Westwood and Westwood+
	16.9.4 Compound TCP

	16.10 Buffer Bloat
	16.11 Active Queue Management and ECN
	16.12 Attacks Involving TCP Congestion Control
	16.13 Summary
	16.14 References

	Chapter 17 TCP Keepalive
	17.1 Introduction
	17.2 Description
	17.2.1 Keepalive Examples

	17.3 Attacks Involving TCP Keepalives
	17.4 Summary
	17.5 References

	Chapter 18 Security: EAP, IPsec, TLS, DNSSEC, and DKIM
	18.1 Introduction
	18.2 Basic Principles of Information Security
	18.3 Threats to Network Communication
	18.4 Basic Cryptography and Security Mechanisms
	18.4.1 Cryptosystems
	18.4.2 Rivest, Shamir, and Adleman (RSA) Public Key Cryptography
	18.4.3 Diffie-Hellman-Merkle Key Agreement (aka Diffie-Hellman or DH)
	18.4.4 Signcryption and Elliptic Curve Cryptography (ECC)
	18.4.5 Key Derivation and Perfect Forward Secrecy (PFS)
	18.4.6 Pseudorandom Numbers, Generators, and Function Families
	18.4.7 Nonces and Salt
	18.4.8 Cryptographic Hash Functions and Message Digests
	18.4.9 Message Authentication Codes (MACs, HMAC, CMAC, and GMAC)
	18.4.10 Cryptographic Suites and Cipher Suites

	18.5 Certificates, Certificate Authorities (CAs), and PKIs
	18.5.1 Public Key Certificates, Certificate Authorities, and X.509
	18.5.2 Validating and Revoking Certificates
	18.5.3 Attribute Certificates

	18.6 TCP/IP Security Protocols and Layering
	18.7 Network Access Control: 802.1X, 802.1AE, EAP, and PANA
	18.7.1 EAP Methods and Key Derivation
	18.7.2 The EAP Re-authentication Protocol (ERP)
	18.7.3 Protocol for Carrying Authentication for Network Access (PANA)

	18.8 Layer 3 IP Security (IPsec)
	18.8.1 Internet Key Exchange (IKEv2) Protocol
	18.8.2 Authentication Header (AH)
	18.8.3 Encapsulating Security Payload (ESP)
	18.8.4 Multicast
	18.8.5 L2TP/IPsec
	18.8.6 IPsec NAT Traversal
	18.8.7 Example

	18.9 Transport Layer Security (TLS and DTLS)
	18.9.1 TLS 1.2
	18.9.2 TLS with Datagrams (DTLS)

	18.10 DNS Security (DNSSEC)
	18.10.1 DNSSEC Resource Records
	18.10.2 DNSSEC Operation
	18.10.3 Transaction Authentication (TSIG, TKEY, and SIG(0))
	18.10.4 DNSSEC with DNS64

	18.11 DomainKeys Identified Mail (DKIM)
	18.11.1 DKIM Signatures
	18.11.2 Example

	18.12 Attacks on Security Protocols
	18.13 Summary
	18.14 References

	Glossary of Acronyms
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

