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Praise for the First Edition of TCP/IP Illustrated, Volume 1: The Protocols

“This is sure to be the bible for TCP/IP developers and users. Within minutes of picking 
up the text, I encountered several scenarios that had tripped up both my colleagues and 
myself in the past. Stevens reveals many of the mysteries once held tightly by the ever-
elusive networking gurus. Having been involved in the implementation of TCP/IP for 
some years now, I consider this by far the finest text to date.”

—Robert A. Ciampa, network engineer, Synernetics, division of 3COM

“While all of Stevens’ books are readable and technically excellent, this new opus is awe-
some. Although many books describe the TCP/IP protocols, Stevens provides a level of 
depth and real-world detail lacking from the competition. He puts the reader inside 
TCP/IP using a visual approach and shows the protocols in action.”

—Steven Baker, networking columnist, Unix Review

“TCP/IP Illustrated, Volume 1, is an excellent reference for developers, network admin-
istrators, or anyone who needs to understand TCP/IP technology. TCP/IP Illustrated is 
comprehensive in its coverage of TCP/IP topics, providing enough details to satisfy the 
experts while giving enough background and commentary for the novice.”

—Bob Williams, vice president, Marketing, NetManage, Inc.

“. . . [T]he difference is that Stevens wants to show as well as tell about the protocols. 
His principal teaching tools are straightforward explanations, exercises at the ends of 
chapters, byte-by-byte diagrams of headers and the like, and listings of actual traffic as 
examples.”

—Walter Zintz, UnixWorld

“Much better than theory only. . . . W. Richard Stevens takes a multihost-based configu-
ration and uses it as a travelogue of TCP/IP examples with illustrations. TCP/IP Illus-
trated, Volume 1, is based on practical examples that reinforce the theory—distinguishing 
this book from others on the subject, and making it both readable and informative.”

—Peter M. Haverlock, consultant, IBM TCP/IP Development

“The diagrams he uses are excellent and his writing style is clear and readable. In sum, 
Stevens has made a complex topic easy to understand. This book merits everyone’s atten-
tion. Please read it and keep it on your bookshelf.”

—Elizabeth Zinkann, sys admin

“W. Richard Stevens has produced a fine text and reference work. It is well organized 
and very clearly written with, as the title suggests, many excellent illustrations expos-
ing the intimate details of the logic and operation of IP, TCP, and the supporting cast of 
protocols and applications.”

—Scott Bradner, consultant, Harvard University OIT/NSD
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Foreword

Rarely does one find a book on a well-known topic that is both historically and 
technically comprehensive and remarkably accurate. One of the things I admire 
about this work is the “warts and all” approach that gives it such credibility. The 
TCP/IP architecture is a product of the time in which it was conceived. That it has 
been able to adapt to growing requirements in many dimensions by factors of a 
million or more, to say nothing of a plethora of applications, is quite remarkable. 
Understanding the scope and limitations of the architecture and its protocols is a 
sound basis from which to think about future evolution and even revolution.

During the early formulation of the Internet architecture, the notion of “enter-
prise” was not really recognized. In consequence, most networks had their own 
IP address space and “announced” their addresses in the routing system directly. 
After the introduction of commercial service, Internet Service Providers emerged 
as intermediaries who “announced” Internet address blocks on behalf of their cus-
tomers. Thus, most of the address space was assigned in a “provider dependent” 
fashion. “Provider independent” addressing was unusual. The net result (no pun 
intended) led to route aggregation and containment of the size of the global rout-
ing table. While this tactic had benefits, it also created the “multi-homing” prob-
lem since users of provider-dependent addresses did not have their own entries 
in the global routing table. The IP address “crunch” also led to Network Address 
Translation, which also did not solve provider dependence and multi-homing 
problems. 

Reading through this book evokes a sense of wonder at the complexity that 
has evolved from a set of relatively simple concepts that worked with a small num-
ber of networks and application circumstances. As the chapters unfold, one can 
see the level of complexity that has evolved to accommodate an increasing number 
of requirements, dictated in part by new deployment conditions and challenges, to 
say nothing of sheer growth in the scale of the system. 

The issues associated with securing “enterprise” users of the Internet also led 
to firewalls that are intended to supply perimeter security. While useful, it has 
become clear that attacks against local Internet infrastructure can come through 
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internal compromises (e.g., an infected computer is put onto an internal network 
or an infected thumb-drive is used to infect an internal computer through its USB 
port). 

It has become apparent that, in addition to a need to expand the Internet 
address space through the introduction of IP version 6, with its 340 trillion tril-
lion trillion addresses, there is also a strong need to introduce various security-
enhancing mechanisms such as the Domain Name System Security Extension 
(DNSSEC) among many others.

What makes this book unique, in my estimation, is the level of detail and atten-
tion to history. It provides background and a sense for the ways in which solutions 
to networking problems have evolved. It is relentless in its effort to achieve preci-
sion and to expose remaining problem areas. For an engineer determined to refine 
and secure Internet operation or to explore alternative solutions to persistent prob-
lems, the insights provided by this book will be invaluable. The authors deserve 
credit for a thorough rendering of the technology of today’s Internet.

Woodhurst Vint Cerf
June 2011
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Preface to the Second Edition

Welcome to the second edition of TCP/IP Illustrated, Volume 1. This book aims 
to provide a detailed, current look at the TCP/IP protocol suite. Instead of just 
describing how the protocols operate, we show the protocols in operation using 
a variety of analysis tools. This helps you better understand the design decisions 
behind the protocols and how they interact with each other, and it simultaneously 
exposes you to implementation details without your having to read through the 
implementation’s software source code or set up an experimental laboratory. Of 
course, reading source code or setting up a laboratory will only help to increase 
your understanding.

Networking has changed dramatically in the past three decades. Originally a 
research project and object of curiosity, the Internet has become a global commu-
nication fabric upon which governments, businesses, and individuals depend. The 
TCP/IP suite defines the underlying methods used to exchange information by 
every device on the Internet. After more than a decade of delay, the Internet and 
TCP/IP itself are now undergoing an evolution, to incorporate IPv6. Throughout 
the text we will discuss both IPv6 and the current IPv4 together, but we high-
light the differences where they are important. Unfortunately, they do not directly 
interoperate, so some care and attention are required to appreciate the impact of 
the evolution.

The book is intended for anyone wishing to better understand the current set 
of TCP/IP protocols and how they operate: network operators and administrators, 
network software developers, students, and users who deal with TCP/IP. We have 
included material that should be of interest to both new readers as well as those 
familiar with the material from the first edition. We hope you will find the cover-
age of the new and older material useful and interesting.

Comments on the First Edition 

Nearly two decades have passed since the publication of the first edition of TCP/IP 
Illustrated, Volume 1. It continues to be a valuable resource for both students and 
pro fessionals in understanding the TCP/IP protocols at a level of detail difficult to 
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obtain in competing texts. Today it remains among the best references for detailed 
information regarding the operation of the TCP/IP protocols. However, even the 
best books con cerned with information and communications technology become 
dated after a time, and the TCP/IP Illustrated series is no exception. In this edition, 
I hope to thoroughly update the pio neering work of Dr. Stevens with coverage of 
new material while maintaining the exceptionally high standard of presentation 
and detail common to his numerous books. 

The first edition covers a broad set of protocols and their operation, ranging 
from the link layer all the way to applications and net work management. Today, 
covering this breadth of material compre hensively in a single volume would 
produce a very lengthy text indeed. For this reason, the second edition focuses 
specifically on the core protocols: those relatively low-level protocols used most 
frequently in providing the basic services of configuration, naming, data delivery, 
and security for the Internet. Detailed discussions of applications, routing, Web 
services, and other important topics are postponed to subsequent volumes.

Considerable progress has been made in improving the robustness and com-
pliance of TCP/IP implementations to their corresponding specifications since the 
publication of the first edition. While many of the examples in the first edition 
highlight implementation bugs or noncompliant behaviors, these problems have 
largely been addressed in cur rently available systems, at least for IPv4. This fact 
is not terribly surprising, given the greatly expanded use of the TCP/IP protocols 
in the last 18 years. Misbe having implementations are a comparative rarity, which 
attests to a certain maturity of the protocol suite as a whole. The problems encoun-
tered in the operation of the core protocols nowadays often relate to intentional 
exploitation of infrequently used protocol features, a form of security concern that 
was not a primary focus in the first edition but one that we spend considerable 
effort to address in the second edition. 

The Internet Milieu of the Twenty-first Century

The usage patterns and importance of the Internet have changed considerably 
since the publication of the first edition. The most obvious watershed event was 
the creation and subsequent intense commercial ization of the World Wide Web 
starting in the early 1990s. This event greatly accelerated the availability of the 
Internet to large numbers of people with various (some times conflicting) motiva-
tions. As such, the protocols and systems originally imple mented in a small-scale 
environment of academic cooperation have been stressed by limited availability of 
addresses and an increase of security concerns.

In response to the security threats, network and security administrators have 
intro duced special control elements into the network. It is now common practice to 
place a firewall at the point of attachment to the Internet, for both large enterprises 
as well as small businesses and homes. As the demand for IP addresses and secu-
rity has increased over the last decade, Network Address Translation (NAT) is now 
supported in virtually all current-gen eration routers and is in widespread use. It 
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has eased the pressure on Internet address availability by allowing sites to obtain 
a comparatively small number of routable Inter net addresses from their service 
providers (one for each simultaneously online user), yet assign a very large num-
ber of addresses to local computers without further coordination. A consequence 
of NAT deployment has been a slowing of the migration to IPv6 (which provides 
for an almost incomprehensi bly large number of addresses) and interoperability 
problems with some older protocols. 

As the users of personal computers began to demand Internet connectivity 
by the mid-1990s, the largest supplier of PC software, Microsoft, abandoned its 
original policy of offering only proprietary alternatives to the Internet and instead 
undertook an effort to embrace TCP/IP compatibility in most of its products. 
Since then, personal computers running their Windows operating system have 
come to dominate the mix of PCs presently connected to the Internet. Over time, 
a significant rise in the number of Linux-based systems means that such systems 
now threaten to displace Microsoft as the fron trunner. Other operating systems, 
including Oracle Solaris and Berkeley’s BSD-based systems, which once repre-
sented the majority of Internet-connected systems, are now a comparatively small 
component of the mix. Apple’s OS X (Mach-based) operating system has risen as 
a new contender and is gaining in popularity, especially among portable com-
puter users. In 2003, portable computer (laptop) sales exceeded desktop sales as 
the majority of personal computer types sold, and their prolifer ation has sparked 
a demand for widely deployed, high-speed Internet access supported by wire-
less infrastructure. It is projected that the most common method for accessing the 
Internet from 2012 and beyond will be smartphones. Tablet computers also repre-
sent an important growing contender. 

Wireless networks are now available at a large number of locations such as 
restaurants, airports, coffeehouses, and other public places. They typically pro-
vide short-range free or pay-for-use (flat-rate) high-speed wireless Internet con-
nections using hardware com patible with commonly used office or home local 
area network installations. A set of alternative “wireless broadband” technolo-
gies based on cellular telephone standards (e.g., LTE, HSPA, UMTS, EV-DO) are 
becoming widely available in developed regions of the world (and some develop-
ing regions of the words that are “leapfrogging” to newer wireless technology), 
offering longer-range operation, often at somewhat reduced bandwidths and with 
volume-based pricing. Both types of infrastructure address the desire of users to 
be mobile while accessing the Internet, using either portable computers or smaller 
devices. In either case, mobile end users accessing the Internet over wireless net-
works pose two significant technical challenges to the TCP/IP protocol archi-
tecture. First, mobility affects the Internet’s routing and addressing structure by 
breaking the assumption that hosts have addresses assigned to them based upon 
the identity of their nearby router. Second, wireless links may experience outages 
and therefore cause data to be lost for reasons other than those typical of wired 
links (which generally do not lose data unless too much traffic is being injected 
into the network). 
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Finally, the Internet has fostered the rise of so-called peer-to- peer applica-
tions forming “overlay” networks. Peer-to-peer applications do not rely on a cen-
tral server to accomplish a task but instead deter mine a set of peer computers with 
which they can communicate and interact to accom plish a task. The peer computers 
are operated by other end users and may come and go rapidly compared to a fixed 
server infrastructure. The “overlay” concept cap tures the fact that such interact-
ing peers themselves form a network, overlaid atop the conventional TCP/IP-based 
network (which, one may observe, is itself an overlay above the underlying physi-
cal links). The development of peer-to-peer applications, while of intense interest 
to those who study traffic flows and electronic commerce, has not had a profound 
impact on the core protocols described in Volume 1 per se, but the concept of overlay 
networks has become an important consideration for networking technology more 
generally. 

Content Changes for the Second Edition 

Regarding content in the text, the most important changes from the first edition 
are a restructuring of the scope of the overall text and the addition of significant 
material on security. Instead of attempting to cover nearly all common protocols 
in use at every layer in the Internet, the present text focuses in detail first on the 
non-security core protocols in widespread use, or that are expected to be in wide-
spread use in the near future: Ethernet (802.3), Wi-Fi (802.11), PPP, ARP, IPv4, IPv6, 
UDP, TCP, DHCP, and DNS. These protocols are likely to be encountered by sys-
tem administrators and users alike. 

In the second edition, security is covered in two ways. First, in each appropriate 
chapter, a section devoted to describing known attacks and their countermeasures 
relating to the protocol described in the chapter is included. These descriptions 
are not presented as a recipe for construct ing attacks but rather as a practical indi-
cation of the kinds of problems that may arise when protocol implementations (or 
specifications, in some cases) are insufficiently robust. In today’s Internet, incom-
plete specification or lax implementation practice can lead to mission-critical sys-
tems being compromised by even relatively unsophisticated attacks. 

The second important discussion of security occurs in Chapter 18, where 
security and cryptography are studied in some detail, including protocols such as 
IPsec, TLS, DNSSEC, and DKIM. These protocols are now understood to be impor-
tant for implementing any service or application expected to maintain integrity 
or secure operation. As the Internet has increased in commercial importance, the 
need for security (and the number of threats to it) has grown proportionally.

Although IPv6 was not included in the first edition, there is now reason to 
believe that the use of IPv6 may increase significantly with the exhaustion of 
unallocated IPv4 address groups in February 2011. IPv6 was conceived largely 
to address the problems of IPv4 address depletion and, and while not nearly as 
common as IPv4 today, is becoming more important as a grow ing number of 
small devices (such as cellular telephones, household devices, and envi ronmental 
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sensors) become attached to the Internet. Events such as the World IPv6 Day (June 
8, 2011) helped to demonstrate that the Internet can continue to work even as the 
underlying protocols are modified and augmented in a significant way.

A second consideration for the structure of the second edition is a deemphasis 
of the protocols that are no longer commonly used and an update of the descrip-
tions of those that have been revised substantially since the publication of the 
first edition. The chapters covering RARP, BOOTP, NFS, SMTP, and SNMP have 
been removed from the book, and the discussion of the SLIP protocol has been 
abandoned in favor of expanded coverage of DHCP and PPP (including PPPoE). 
The function of IP forwarding (described in Chapter 9 in the first edition) has 
been integrated with the overall description of the IPv4 and IPv6 protocols in 
Chapter 5 of this edition. The discussion of dynamic routing protocols (RIP, OSPF, 
and BGP) has been removed, as the latter two protocols alone could each conceiv-
ably merit a book-long discussion. Starting with ICMP, and continuing through IP, 
TCP, and UDP, the impact of operation using IPv4 versus IPv6 is discussed in any 
cases where the difference in operation is significant. There is no specific chapter 
devoted solely to IPv6; instead, its impact relative to each existing core protocol is 
described where appropriate. Chapters 15 and 25–30 of the first edition, which are 
devoted to Internet applications and their supporting protocols, have been largely 
removed; what remains only illustrates the operation of the underlying core pro-
tocols where necessary.

Several chapters covering new material have been added. The first chapter 
begins with a general introduction to networking issues and architecture, followed 
by a more Internet-specific orienta tion. The Internet’s addressing architecture is 
covered in Chapter 2. A new chapter on host configuration and how a system “gets 
on” the network appears as Chapter 6. Chapter 7 describes firewalls and Network 
Address Translation (NAT), including how NATs are used in partitioning address 
space between routable and nonroutable portions. The set of tools used in the first 
edition has been expanded to include Wireshark (a free network traffic monitor 
application with a graphical user interface).

The target readership for the second edition remains identical to that of the 
first edition. No prior knowledge of networking concepts is required for approach-
ing it, although the advanced reader should benefit from the level of detail and 
references. A rich collection of references is included in each chapter for the inter-
ested reader to pursue.

Editorial Changes for the Second Edition 

The general flow of material in the second edition remains similar to that of the 
first edition. After the introductory material (Chapters 1 and 2), the protocols are 
presented in a bottom-up fashion to illustrate how the goal of network communi-
cation presented in the introduction is realized in the Internet architecture. As in 
the first edition, actual packet traces are used to illustrate the operational details 
of the protocols, where appropriate. Since the publication of the first edition, freely 
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available packet cap ture and analysis tools with graphical interfaces have become 
available, extending the capabilities of the tcpdump program used in the first 
edition. In the present text, tcpdump is used when the points to be illustrated 
are easily con veyed by examining the output of a text-based packet capture tool. 
In most other cases, however, screen shots of the Wireshark tool are used. Please 
be aware that some output listings, including snapshots of tcpdump output, are 
wrapped or simplified for clarity.  

The packet traces shown typically illustrate the behavior of one or more parts 
of the network depicted on the inside of the front book cover. It represents a broad-
band-connected “home” environment (typically used for client access or peer-to-
peer net working), a “public” environment (e.g., coffee shop), and an enterprise 
environment. The operating systems used for examples include Linux, Windows, 
FreeBSD, and Mac OS X. Various versions are used, as many different OS versions 
are in use on the Internet today. 

The structure of each chapter has been slightly modified from the first edi-
tion. Each chapter begins with an introduction to the chapter topic, followed in 
some cases by historical notes, the details of the chapter, a summary, and a set of 
references. A section near the end of most chapters describes security concerns 
and attacks. The per-chapter references represent a change for the second edition. 
They should make each chapter more self-contained and require the reader to 
perform fewer “long-distance page jumps” to find a reference. Some of the refer-
ences are now enhanced with WWW URLs for easier access online. In addition, 
the reference format for papers and books has been changed to a some what more 
compact form that includes the first initial of each author’s last name fol lowed by 
the last two digits of the year (e.g., the former [Cerf and Kahn 1974] is now short-
ened to [CK74]). For the numerous RFC references used, the RFC number is used 
instead of the author names. This follows typical RFC conventions and has the 
side benefit of grouping all the RFC references together in the reference lists.

On a final note, the typographical conventions of the TCP/IP Illustrated series 
have been maintained faithfully. However, the present author elected to use an 
editor and typesetting package other than the Troff system used by Dr. Stevens 
and some other authors of the Addison-Wesley Professional Computing Series col-
lection. Thus, the particular task of final copyediting could take advantage of the 
significant expertise of Barbara Wood, the copy editor generously made available 
to me by the publisher. We hope you will be pleased with the results. 

Berkeley, California Kevin R. Fall
September 2011 
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Adapted Preface 
to the First Edition

Introduction

This book describes the TCP/IP protocol suite, but from a different perspective 
than other texts on TCP/IP. Instead of just describing the protocols and what they 
do, we’ll use a popular diagnostic tool to watch the protocols in action. Seeing how 
the protocols operate in varying circumstances provides a greater understanding 
of how they work and why certain design decisions were made. It also provides 
a look into the implementation of the protocols, without having to wade through 
thousands of lines of source code.

When networking protocols were being developed in the 1960s through 
the 1980s, expensive, dedicated hardware was required to see the packets going 
“across the wire.” Extreme familiarity with the protocols was also required to 
comprehend the packets displayed by the hardware. Functionality of the hard-
ware analyzers was limited to that built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous work-
station to monitor a local area network [Mogul 1990]. Just attach a workstation to 
your network, run some publicly available software, and watch what goes by on 
the wire. While many people consider this a tool to be used for diagnosing network 
problems, it is also a powerful tool for understanding how the network protocols 
operate, which is the goal of this book.

This book is intended for anyone wishing to understand how the TCP/IP pro-
tocols operate: programmers writing network applications, system administrators 
responsible for maintaining computer systems and networks utilizing TCP/IP, 
and users who deal with TCP/IP applications on a daily basis.
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Typographical Conventions

When we display interactive input and output we’ll show our typed input in a 
bold font, and the computer output like this. Comments are added in italics.

bsdi % telnet svr4 discard                     connect to the discard server
Trying 140.252.13.34...                        this line and next output by Telnet client
Connected to svr4.

Also, we always include the name of the system as part of the shell prompt (bsdi
in this example) to show on which host the command was run.

Note

Throughout the text we’ll use indented, parenthetical notes such as this to 
describe historical points or implementation details.

We sometimes refer to the complete description of a command on the Unix man-
ual as in ifconfig(8). This notation, the name of the command followed by a 
number in parentheses, is the normal way of referring to Unix commands. The 
number in parentheses is the section number in the Unix manual of the “manual 
page” for the command, where additional information can be located. Unfortu-
nately not all Unix systems organize their manuals the same, with regard to the 
section numbers used for various groupings of commands. We’ll use the BSD-
style section numbers (which is the same for BSD-derived systems such as SunOS 
4.1.3), but your manuals may be organized differently.
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Introduction

Effective communication depends on the use of a common language. This is true 
for humans and other animals as well as for computers. When a set of common 
behaviors is used with a common language, a protocol is being used. The first defi-
nition of a protocol, according to the New Oxford American Dictionary, is

The official procedure or system of rules governing affairs of state or diplomatic 
occasions.

We engage in many protocols every day: asking and responding to questions, 
negotiating business transactions, working collaboratively, and so on. Computers 
also engage in a variety of protocols. A collection of related protocols is called a 
protocol suite. The design that specifies how various protocols of a protocol suite 
relate to each other and divide up tasks to be accomplished is called the architec-
ture or reference model for the protocol suite. TCP/IP is a protocol suite that imple-
ments the Internet architecture and draws its origins from the ARPANET Reference 
Model (ARM) [RFC0871]. The ARM was itself influenced by early work on packet 
switching in the United States by Paul Baran [B64] and Leonard Kleinrock [K64], 
in the U.K. by Donald Davies [DBSW66], and in France by Louis Pouzin [P73]. 
Other protocol architectures have been specified over the years (e.g., the ISO pro-
tocol architecture [Z80], Xerox’s XNS [X85], and IBM’s SNA [I96]), but TCP/IP has 
become the most popular. There are several interesting books that focus on the 
history of computer communications and the development of the Internet, such as 
[P07] and [W02].

It is worth mentioning that the TCP/IP architecture evolved from work that 
addressed a need to provide interconnection of multiple different packet-switched 
computer networks [CK74]. This was accomplished using a set of gateways (later 
called routers) that provided a translation function between each otherwise incom-
patible network. The resulting “concatenated” network or catenet (later called inter-
network) would be much more useful, as many more nodes offering a wide variety 
of services could communicate. The types of uses that a global network might 
offer were envisioned years before the protocol architecture was fully developed. 
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In 1968, for example, J. C. R. Licklider and Bob Taylor foresaw the potential uses 
for a global interconnected communication network to support “supercommuni-
ties” [LT68]: 

Today the on-line communities are separated from one another functionally as 
well as geographically. Each member can look only to the processing, storage and 
software capability of the facility upon which his community is centered. But 
now the move is on to interconnect the separate communities and thereby trans-
form them into, let us call it, a supercommunity. The hope is that interconnection 
will make available to all members of all the communities the programs and data 
resources of the entire supercommunity . . . The whole will constitute a labile net-
work of networks—ever-changing in both content and configuration.

Thus, it is apparent that the global network concept underpinning the ARPA-
NET and later the Internet was designed to support many of the types of uses we 
enjoy today. However, getting to this point was neither simple nor obvious. The 
success resulted from paying careful attention to design and engineering, innova-
tive users and developers, and the availability of sufficient resources to move from 
concept to prototype and, eventually, to commercial networking products.

This chapter provides an overview of the Internet architecture and TCP/IP 
protocol suite, to provide some historical context and to establish an adequate 
background for the remaining chapters. Architectures (both protocol and physi-
cal) really amount to a set of design decisions about what features should be sup-
ported and where such features should be logically implemented. Designing an 
architecture is more art than science, yet we shall discuss some characteristics of 
architectures that have been deemed desirable over time. The subject of network 
architecture has been undertaken more broadly in the text by Day [D08], one of 
few such treatments.

1.1 Architectural Principles

The TCP/IP protocol suite allows computers, smartphones, and embedded devices 
of all sizes, supplied from many different computer vendors and running totally 
different software, to communicate with each other. By the turn of the twenty-first 
century it has become a necessity for modern communication, entertainment, and 
commerce. It is truly an open system in that the definition of the protocol suite and 
many of its implementations are publicly available at little or no charge. It forms 
the basis for what is called the global Internet, or the Internet, a wide area network 
(WAN) of about two billion users that literally spans the globe (as of 2010, about 
30% of the world’s population). Although many people consider the Internet and 
the World Wide Web (WWW) to be interchangeable terms, we ordinarily refer to 
the Internet in terms of its ability to provide basic communication of messages 
between computers. We refer to WWW as an application that uses the Internet for 
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communication. It is perhaps the most important Internet application that brought 
Internet technology to world attention in the early 1990s.

Several goals guided the creation of the Internet architecture. In [C88], Clark 
recounts that the primary goal was to “develop an effective technique for mul-
tiplexed utilization of existing interconnected networks.” The essence of this 
statement is that the Internet architecture should be able to interconnect multiple 
distinct networks and that multiple activities should be able to run simultane-
ously on the resulting interconnected network. Beyond this primary goal, Clark 
provides a list of the following second-level goals:

• Internet communication must continue despite loss of networks or gateways.

• The Internet must support multiple types of communication services.

• The Internet architecture must accommodate a variety of networks.

• The Internet architecture must permit distributed management of its 
resources.

• The Internet architecture must be cost-effective.

• The Internet architecture must permit host attachment with a low level of 
effort.

• The resources used in the Internet architecture must be accountable.

Many of the goals listed could have been supported with somewhat different 
design decisions from those ultimately selected. However, a few design options 
were gaining momentum when these architectural principles were being formu-
lated that influenced the designers in the particular choices they made. We will 
mention some of the more important ones and their consequences.

1.1.1 Packets, Connections, and Datagrams

Up to the 1960s, the concept of a network was based largely on the telephone net-
work. It was developed to connect telephones to each other for the duration of a 
call. A call was normally implemented by establishing a connection from one party 
to another. Establishing a connection meant that a circuit (initially, a physical elec-
trical circuit) was made between one telephone and another for the duration of a 
call. When the call was complete, the connection was cleared, allowing the circuit 
to be used by other users’ calls. The call duration and identification of the connec-
tion endpoints were used to perform billing of the users. When established, the 
connection provided each user a certain amount of bandwidth or capacity to send 
information (usually voice sounds). The telephone network progressed from its 
analog roots to digital, which greatly improved its reliability and performance. 
Data inserted into one end of a circuit follows some preestablished path through 
the network switches and emerges on the other side in a predictable fashion, 
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usually with some upper bound on the time (latency). This gives predictable ser-
vice, as long as a circuit is available when a user needs one. Circuits allocate a 
pathway through the network that is reserved for the duration of a call, even if 
they are not entirely busy. This is a common experience today with the phone 
network—as long as a call is taking place, even if we are not saying anything, we 
are being charged for the time.

One of the important concepts developed in the 1960s (e.g., in [B64]) was the 
idea of packet switching. In packet switching, “chunks” (packets) of digital informa-
tion comprising some number of bytes are carried through the network somewhat 
independently. Chunks coming from different sources or senders can be mixed 
together and pulled apart later, which is called multiplexing. The chunks can be 
moved around from one switch to another on their way to a destination, and 
the path might be subject to change. This has two potential advantages: the net-
work can be more resilient (the designers were worried about the network being 
physically attacked), and there can be better utilization of the network links and 
switches because of statistical multiplexing.

When packets are received at a packet switch, they are ordinarily stored in buf-
fer memory or queue and processed in a first-come-first-served (FCFS) fashion. This 
is the simplest method for scheduling the way packets are processed and is also 
called first-in-first-out (FIFO). FIFO buffer management and on-demand schedul-
ing are easily combined to implement statistical multiplexing, which is the pri-
mary method used to intermix traffic from different sources on the Internet. In 
statistical multiplexing, traffic is mixed together based on the arrival statistics or 
timing pattern of the traffic. Such multiplexing is simple and efficient, because if 
there is any network capacity to be used and traffic to use it, the network will be 
busy (high utilization) at every bottleneck or choke point. The downside of this 
approach is limited predictability—the performance seen by any particular appli-
cation depends on the statistics of other applications that are sharing the network. 
Statistical multiplexing is like a highway where the cars can change lanes and 
ultimately intersperse in such a way that any point of constriction is as busy as it 
can be. 

Alternative techniques, such as time-division multiplexing (TDM) and static mul-
tiplexing, typically reserve a certain amount of time or other resources for data on 
each connection. Although such techniques can lead to more predictability, a fea-
ture useful for supporting constant bit rate telephone calls, they may not fully uti-
lize the network capacity because reserved bandwidth may go unused. Note that 
while circuits are straightforwardly implemented using TDM techniques, virtual 
circuits (VCs) that exhibit many of the behaviors of circuits but do not depend on 
physical circuit switches can be implemented atop connection-oriented packets. 
This is the basis for a protocol known as X.25 that was popular until about the 
early 1990s when it was largely replaced with Frame Relay and ultimately digital 
subscriber line (DSL) technology and cable modems supporting Internet connectiv-
ity (see Chapter 3).
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The VC abstraction and connection-oriented packet networks such as X.25 
required some information or state to be stored in each switch for each connec-
tion. The reason is that each packet carries only a small bit of overhead informa-
tion that provides an index into a state table. For example, in X.25 the 12-bit logical 
channel identifier (LCI) or logical channel number (LCN) serves this purpose. At each 
switch, the LCI or LCN is used in conjunction with the per-flow state in each switch 
to determine the next switch along the path for the packet. The per-flow state is 
established prior to the exchange of data on a VC using a signaling protocol that 
supports connection establishment, clearing, and status information. Such net-
works are consequently called connection-oriented.

Connection-oriented networks, whether built on circuits or packets, were the 
most prevalent form of networking for many years. In the late 1960s, another option 
was developed known as the datagram. Attributed in origin to the CYCLADES 
[P73] system, a datagram is a special type of packet in which all the identify-
ing information of the source and final destination resides inside the packet itself 
(instead of in the packet switches). Although this tends to require larger packets, 
per-connection state at packet switches is no longer required and a connectionless
network could be built, eliminating the need for a (complicated) signaling proto-
col. Datagrams were eagerly embraced by the designers of the early Internet, and 
this decision had profound implications for the rest of the protocol suite.

One other related concept is that of message boundaries or record markers. As 
shown in Figure 1-1, when an application sends more than one chunk of infor-
mation into the network, the fact that more than one chunk was written may or 

Figure 1-1  Applications write messages that are carried in protocols. A message boundary is the position or 
byte offset between one write and another. Protocols that preserve message boundaries indicate 
the position of the sender’s message boundaries at the receiver. Protocols that do not preserve 
message boundaries (e.g., streaming protocols like TCP) ignore this information and do not make 
it available to a receiver. As a result, applications may need to implement their own methods to 
indicate a sender’s message boundaries if this capability is required.
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may not be preserved by the communication protocol. Most datagram protocols 
preserve message boundaries. This is natural because the datagram itself has a 
beginning and an end. However, in a circuit or VC network, it is possible that an 
application may write several chunks of data, all of which are read together as one 
or more different-size chunks by a receiving application. These types of protocols 
do not preserve message boundaries. In cases where an underlying protocol fails 
to preserve message boundaries but they are needed by an application, the appli-
cation must provide its own.

1.1.2 The End-to-End Argument and Fate Sharing

When large systems such as an operating system or protocol suite are being 
designed, a question often arises as to where a particular feature or function 
should be placed. One of the most important principles that influenced the design 
of the TCP/IP suite is called the end-to-end argument [SRC84]:

The function in question can completely and correctly be implemented only with 
the knowledge and help of the application standing at the end points of the com-
munication system. Therefore, providing that questioned function as a feature of 
the communication itself is not possible. (Sometimes an incomplete version of the 
function provided by the communication system may be useful as a performance 
enhancement.)

This argument may seem fairly straightforward upon first reading but can 
have profound implications for communication system design. It argues that cor-
rectness and completeness can be achieved only by involving the application or 
ultimate user of the communication system. Efforts to correctly implement what 
the application is “likely” to need are doomed to incompleteness. In short, this 
principle argues that important functions (e.g., error control, encryption, delivery 
acknowledgment) should usually not be implemented at low levels (or layers; see 
Section 1.2.1) of large systems. However, low levels may provide capabilities that 
make the job of the endpoints somewhat easier and consequently may improve 
performance. A nuanced reading reveals that this argument suggests that low-
level functions should not aim for perfection because a perfect guess at what the 
application may require is unlikely to be possible.

The end-to-end argument tends to support a design with a “dumb” network 
and “smart” systems connected to the network. This is what we see in the TCP/IP 
design, where many functions (e.g., methods to ensure that data is not lost, con-
trolling the rate at which a sender sends) are implemented in the end hosts where 
the applications reside. The selection of which functions are implemented together 
in the same computer or network or software stack is the subject of another related 
principle known as fate sharing [C88].

Fate sharing suggests placing all the necessary state to maintain an active 
communication association (e.g., virtual connection) at the same location with 
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the communicating endpoints. With this reasoning, the only type of failure that 
destroys communication is one that also destroys one or more of the endpoints, 
which obviously destroys the overall communication anyhow. Fate sharing is one 
of the design philosophies that allows virtual connections (e.g., those implemented 
by TCP) to remain active even if connectivity within the network has failed for a 
(modest) period of time. Fate sharing also supports a “dumb network with smart 
end hosts” model, and one of the ongoing tensions in today’s Internet is what 
functions reside in the network and what functions do not.

1.1.3 Error Control and Flow Control

There are some circumstances where data within a network gets damaged or lost. 
This can be for a variety of reasons such as hardware problems, radiation that 
modifies bits while being transmitted, being out of range in a wireless network, 
and other factors. Dealing with such errors is called error control, and it can be 
implemented in the systems constituting the network infrastructure, or in the sys-
tems that attach to the network, or some combination. Naturally, the end-to-end 
argument and fate sharing would suggest that error control be implemented close 
to or within applications.

Usually, if a small number of bit errors are of concern, a number of mathemati-
cal codes can be used to detect and repair the bit errors when data is received or 
while it is in transit [LC04]. This task is routinely performed within the network. 
When more severe damage occurs in a packet network, entire packets are usu-
ally resent or retransmitted. In circuit-switched or VC-switched networks such as 
X.25, retransmission tends to be done inside the network. This may work well for 
applications that require strict in-order, error-free delivery of their data, but some 
applications do not require this capability and do not wish to pay the costs (such 
as connection establishment and potential retransmission delays) to have their 
data reliably delivered. Even a reliable file transfer application does not really care 
in what order the chunks of file data are delivered, provided it is eventually satis-
fied that all chunks are delivered without errors and can be reassembled back into 
the original order.

As an alternative to the overhead of reliable, in-order delivery implemented 
within the network, a different type of service called best-effort delivery was 
adopted by Frame Relay and the Internet Protocol. With best-effort delivery, the 
network does not expend much effort to ensure that data is delivered without 
errors or gaps. Certain types of errors are usually detected using error-detecting 
codes or checksums, such as those that might affect where a datagram is directed, 
but when such errors are detected, the errant datagram is merely discarded with-
out further action.

If best-effort delivery is successful, a fast sender can produce information at 
a rate that exceeds the receiver’s ability to consume it. In best-effort IP networks, 
slowing down a sender is achieved by flow control mechanisms that operate out-
side the network and at higher levels of the communication system. In particular, 
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TCP handles this type of problem, and we shall discuss it in detail in Chapters 15 
and 16. This is consistent with the end-to-end argument: TCP, which resides at the 
end hosts, handles rate control. It is also consistent with fate sharing: the approach 
allows some elements of the network infrastructure to fail without necessarily 
affecting the ability of the devices outside the network to communicate (as long as 
some communication path continues to operate). 

1.2 Design and Implementation

Although a protocol architecture may suggest a certain approach to implemen-
tation, it usually does not include a mandate. Consequently, we make a distinc-
tion between the protocol architecture and the implementation architecture, which 
defines how the concepts in a protocol architecture may be rendered into exis-
tence, usually in the form of software.

Many of the individuals responsible for implementing the protocols for the 
ARPANET were familiar with the software structuring of operating systems, and 
an influential paper describing the “THE” multiprogramming system [D68] advo-
cated the use of a hierarchical structure as a way to deal with verification of the 
logical soundness and correctness of a large software implementation. Ultimately, 
this contributed to a design philosophy for networking protocols involving mul-
tiple layers of implementation (and design). This approach is now called layering
and is the usual approach to implementing protocol suites.

1.2.1 Layering

With layering, each layer is responsible for a different facet of the communica-
tions. Layers are beneficial because a layered design allows developers to evolve 
different portions of the system separately, often by different people with some-
what different areas of expertise. The most frequently mentioned concept of pro-
tocol layering is based on a standard called the Open Systems Interconnection (OSI) 
model [Z80] as defined by the International Organization for Standardization 
(ISO). Figure 1-2 shows the standard OSI layers, including their names, numbers, 
and a few examples. The Internet’s layering model is somewhat simpler, as we 
shall see in Section 1.3.

Although the OSI model suggests that seven logical layers may be desirable 
for modularity of a protocol architecture implementation, the TCP/IP architec-
ture is normally considered to consist of five. There was much debate about the 
relative benefits and deficiencies of the OSI model, and the ARPANET model that 
preceded it, during the early 1970s. Although it may be fair to say that TCP/IP 
ultimately “won,” a number of ideas and even entire protocols from the ISO pro-
tocol suite (protocols standardized by ISO that follow the OSI model) have been 
adopted for use with TCP/IP (e.g., IS-IS [RFC3787]).
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As described briefly in Figure 1-2, each layer has a different responsibility. 
From the bottom up, the physical layer defines methods for moving digital infor-
mation across a communication medium such as a phone line or fiber-optic cable. 
Portions of the Ethernet and Wireless LAN (Wi-Fi) standards are here, although 
we do not delve into this layer very much in this text. The link or data-link layer 
includes those protocols and methods for establishing connectivity to a neighbor 
sharing the same medium. Some link-layer networks (e.g., DSL) connect only two 
neighbors. When more than one neighbor can access the same shared network, the 
network is said to be a multi-access network. Wi-Fi and Ethernet are examples of 
such multi-access link-layer networks, and specific protocols are used to mediate 
which stations have access to the shared medium at any given time. We discuss 
these in Chapter 3.

Moving up the layer stack, the network or internetwork layer is of great interest 
to us. For packet networks such as TCP/IP, it provides an interoperable packet for-
mat that can use different types of link-layer networks for connectivity. The layer 
also includes an addressing scheme for hosts and routing algorithms that choose 
where packets go when sent from one machine to another. Above layer 3 we find 
protocols that are (at least in theory) implemented only by end hosts, including 
the transport layer. Also of great interest to us, it provides a flow of data between 
sessions and can be quite complex, depending on the types of services it provides 

Figure 1-2  The standard seven-layer OSI model as specified by the ISO. Not all protocols are implemented by 
every networked device (at least in theory). The OSI terminology and layer numbers are widely 
used.
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(e.g., reliable delivery on a packet network that might drop data). Sessions rep-
resent ongoing interactions between applications (e.g., when “cookies” are used 
with a Web browser during a Web login session), and session-layer protocols may 
provide capabilities such as connection initiation and restart, plus checkpointing
(saving work that has been accomplished so far). Above the session layer we find 
the presentation layer, which is responsible for format conversions and standard 
encodings for information. As we shall see, the Internet protocols do not include a 
formal session or presentation protocol layer, so these functions are implemented 
by applications if needed.

The top layer is the application layer. Applications usually implement their 
own application-layer protocols, and these are the ones most visible to users. 
There is a wide variety of application-layer protocols, and programmers are con-
stantly inventing new ones. Consequently, the application layer is where there is 
the greatest amount of innovation and where new capabilities are developed and 
deployed.

1.2.2 Multiplexing, Demultiplexing, and Encapsulation in Layered  
Implementations

One of the major benefits of a layered architecture is its natural ability to perform 
protocol multiplexing. This form of multiplexing allows multiple different protocols 
to coexist on the same infrastructure. It also allows multiple instantiations of the 
same protocol object (e.g., connections) to be used simultaneously without being 
confused.

Multiplexing can occur at different layers, and at each layer a different sort of 
identifier is used for determining which protocol or stream of information belongs 
together. For example, at the link layer, most link technologies (such as Ethernet 
and Wi-Fi) include a protocol identifier field value in each packet to indicate which 
protocol is being carried in the link-layer frame (IP is one such protocol). When 
an object (packet, message, etc.), called a protocol data unit (PDU), at one layer is 
carried by a lower layer, it is said to be encapsulated (as opaque data) by the next 
layer down. Thus, multiple objects at layer N can be multiplexed together using 
encapsulation in layer N - 1. Figure 1-3 shows how this works. The identifier at 
layer N - 1 is used to determine the correct receiving protocol or program at layer 
N during demultiplexing.

In Figure 1-3, each layer has its own concept of a message object (a PDU) corre-
sponding to the particular layer responsible for creating it. For example, if a layer 
4 (transport) protocol produces a packet, it would properly be called a layer 4 PDU 
or transport PDU (TPDU). When a layer is provided a PDU from the layer above it, 
it usually “promises” to not look into the contents of the PDU. This is the essence 
of encapsulation—each layer treats the data from above as opaque, uninterpre-
table information. Most commonly a layer prepends the PDU with its own header, 
although trailers are used by some protocols (not TCP/IP). The header is used for 
multiplexing data when sending, and for the receiver to perform demultiplexing, 
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based on a demultiplexing (demux) identifier. In TCP/IP networks such identifiers 
are commonly hardware addresses, IP addresses, and port numbers. The header 
may also include important state information, such as whether a virtual circuit is 
being set up or has already completed setup. The resulting object is another PDU.

One other important feature of layering suggested by Figure 1-2 is that in pure 
layering not all networked devices need to implement all the layers. Figure 1-4 
shows that in some cases a device needs to implement only a few layers if it is 
expected to perform only certain types of processing.

In Figure 1-4, a somewhat idealized small internet includes two end systems, a 
switch, and a router. In this figure, each number corresponds to a type of protocol 
at a particular layer. As we can see, each device implements a different subset of 
the layer stack. The host on the left implements three different link-layer protocols 
(D, E, and F) with corresponding physical layers and three different transport-
layer protocols (A, B, and C) that run on a single type of network-layer protocol. 
End hosts implement all the layers, switches implement up to layer 2 (this switch 
implements D and G), and routers implement up to layer 3. Routers are capable 
of interconnecting different types of link-layer networks and must implement the 
link-layer protocols for each of the network types they interconnect.

Figure 1-3  Encapsulation is usually used in conjunction with layering. Pure encapsulation involves 
taking the PDU of one layer and treating it as opaque (uninterpreted) data at the layer 
below. Encapsulation takes place at each sender, and decapsulation (the reverse opera-
tion) takes place at each receiver. Most protocols use headers during encapsulation; a few 
also use trailers.



ptg999

12 Introduction 

The internet of Figure 1-4 is somewhat idealized because today’s switches and 
routers often implement more than the protocols they are absolutely required to 
implement for forwarding data. This is for a number of reasons, including man-
agement. In such circumstances, devices such as routers and switches must some-
times act as hosts and support services such as remote login. To do this, they 
usually must implement transport and application protocols.

Although we show only two hosts communicating, the link- and physical-
layer networks (labeled as D and G) might have multiple hosts attached. If so, 
then communication is possible between any pair of systems that implement the 
appropriate higher-layer protocols. In Figure 1-4 we can differentiate between an 
end system (the two hosts on either side) and an intermediate system (the router in 
the middle) for a particular protocol suite. Layers above the network layer use end-
to-end protocols. In our picture these layers are needed only on the end systems. 
The network layer, however, provides a hop-by-hop protocol and is used on the two 
end systems and every intermediate system. The switch or bridge is not ordinarily 
considered an intermediate system because it is not addressed using the internet-
working protocol’s addressing format, and it operates in a fashion that is largely 
transparent to the network-layer protocol. From the point of view of the routers 
and end systems, the switch or bridge is essentially invisible.

A router, by definition, has two or more network interfaces (because it con-
nects two or more networks). Any system with multiple interfaces is called multi-
homed. A host can also be multihomed, but unless it specifically forwards packets 
from one interface to another, it is not called a router. Also, routers need not be 

Figure 1-4  Different network devices implement different subsets of the protocol stack. End hosts tend to 
implement all the layers. Routers implement layers below the transport layer, and switches imple-
ment link-layer protocols and below. This idealized structure is often violated because routers and 
switches usually include the ability to act as a host (e.g., to be managed and set up) and therefore 
need an implementation of all of the layers even if they are rarely used.
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special hardware boxes that only move packets around an internet. Most TCP/IP 
implementations, for example, allow a multihomed host to act as a router also, 
if properly configured to do so. In this case we can call the system either a host 
(when an application such as File Transfer Protocol (FTP) [RFC0959] or the Web is 
used) or a router (when it is forwarding packets from one network to another). We 
will use whichever term makes sense given the context. 

One of the goals of an internet is to hide all of the details of the physical lay-
out (the topology) and lower-layer protocol heterogeneity from the applications. 
Although this is not obvious from our two-network internet in Figure 1-4, the 
application layers should not care (and do not care) that even though each host 
is attached to a network using link-layer protocol D (e.g., Ethernet), the hosts are 
separated by a router and switch that use link-layer G. There could be 20 rout-
ers between the hosts, with additional types of physical interconnections, and the 
applications would run without modification (although the performance might be 
somewhat different). Abstracting the details in this way is what makes the con-
cept of an internet so powerful and useful.

1.3 The Architecture and Protocols of the TCP/IP Suite

So far we have discussed architecture, protocols, protocol suites, and implemen-
tation techniques in the abstract. In this section, we discuss the architecture and 
particular protocols that constitute the TCP/IP suite. Although this has become the 
established term for the protocols used on the Internet, there are many protocols 
beyond TCP and IP in the collection or family of protocols used with the Inter-
net. We begin by noting how the ARPANET reference model of layering, which 
ultimately formed the basis for the Internet’s protocol layering, differs somewhat 
from the OSI layering discussed earlier. 

1.3.1 The ARPANET Reference Model

Figure 1-5 depicts the layering inspired by the ARPANET reference model, which 
was ultimately adopted by the TCP/IP suite. The structure is simpler than the OSI 
model, but real implementations include a few specialized protocols that do not fit 
cleanly into the conventional layers.

Starting from the bottom of Figure 1-5 and working our way up the stack, 
the first layer we see is 2.5, an “unofficial” layer. There are several protocols that 
operate here, but one of the oldest and most important is called the Address Reso-
lution Protocol (ARP). It is a specialized protocol used with IPv4 and only with 
multi-access link-layer protocols (such as Ethernet and Wi-Fi) to convert between 
the addresses used by the IP layer and the addresses used by the link layer. We 
examine this protocol in Chapter 4. In IPv6 the address-mapping function is part 
of ICMPv6, which we discuss in Chapter 8.
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At layer number 3 in Figure 1-5 we find IP, the main network-layer protocol 
for the TCP/IP suite. We discuss it in detail in Chapter 5. The PDU that IP sends to 
link-layer protocols is called an IP datagram and may be as large as 64KB (and up 
to 4GB for IPv6). In many cases we shall use the simpler term packet to mean an 
IP datagram when the usage context is clear. Fitting large packets into link-layer 
PDUs (called frames) that may be smaller is handled by a function called fragmenta-
tion that may be performed by IP hosts and some routers when necessary. In frag-
mentation, portions of a larger datagram are sent in multiple smaller datagrams 
called fragments and put back together (called reassembly) when reaching the des-
tination. We discuss fragmentation in Chapter 10.

Throughout the text we shall use the term IP to refer to both IP versions 4 and 
6. We use the term IPv6 to refer to IP version 6, and IPv4 to refer to IP version 4, 
currently the most popular version. When discussing architecture, the details of 
IPv4 versus IPv6 matter little. When we delve into the way particular addressing 
and configuration functions work (Chapter 2 and Chapter 6), for example, these 
details will become more important.

Because IP packets are datagrams, each one contains the address of the layer 
3 sender and recipient. These addresses are called IP addresses and are 32 bits long 
for IPv4 and 128 bits long for IPv6; we discuss them in detail in Chapter 2. This 
difference in IP address size is the characteristic that most differentiates IPv4 from 
IPv6. The destination address of each datagram is used to determine where each 
datagram should be sent, and the process of making this determination and send-
ing the datagram to its next hop is called forwarding. Both routers and hosts per-
form forwarding, although routers tend to do it much more often. There are three 

Figure 1-5  Protocol layering based on the ARM or TCP/IP suite used in the Internet. There are no official ses-
sion or presentation layers. In addition, there are several “adjunct” or helper protocols that do not 
fit well into the standard layers yet perform critical functions for the operation of the other proto-
cols. Some of these protocols are not used with IPv6 (e.g., IGMP and ARP).
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types of IP addresses, and the type affects how forwarding is performed: unicast
(destined for a single host), broadcast (destined for all hosts on a given network), 
and multicast (destined for a set of hosts that belong to a multicast group). Chapter 
2 looks at the types of addresses used with IP in more detail. 

The Internet Control Message Protocol (ICMP) is an adjunct to IP, and we label 
it as a layer 3.5 protocol. It is used by the IP layer to exchange error messages and 
other vital information with the IP layer in another host or router. There are two 
versions of ICMP: ICMPv4, used with IPv4, and ICMPv6, used with IPv6. ICMPv6 
is considerably more complex and includes functions such as address autocon-
figuration and Neighbor Discovery that are handled by other protocols (e.g., ARP) 
on IPv4 networks. Although ICMP is used primarily by IP, it is also possible for 
applications to use it. Indeed, we will see that two popular diagnostic tools, ping
and traceroute, use ICMP. ICMP messages are encapsulated within IP data-
grams in the same way transport layer PDUs are.

The Internet Group Management Protocol (IGMP) is another protocol adjunct to 
IPv4. It is used with multicast addressing and delivery to manage which hosts are 
members of a multicast group (a group of receivers interested in receiving traffic for 
a particular multicast destination address). We describe the general properties of 
broadcasting and multicasting, along with IGMP and the Multicast Listener Discov-
ery protocol (MLD, used with IPv6), in Chapter 9.

At layer 4, the two most common Internet transport protocols are vastly dif-
ferent. The most widely used, the Transmission Control Protocol (TCP), deals with 
problems such as packet loss, duplication, and reordering that are not repaired 
by the IP layer. It operates in a connection-oriented (VC) fashion and does not 
preserve message boundaries. Conversely, the User Datagram Protocol (UDP) pro-
vides little more than the features provided by IP. UDP allows applications to send 
datagrams that preserve message boundaries but imposes no rate control or error 
control.

TCP provides a reliable flow of data between two hosts. It is concerned with 
things such as dividing the data passed to it from the application into appropri-
ately sized chunks for the network layer below, acknowledging received packets, 
and setting timeouts to make certain the other end acknowledges packets that 
are sent, and because this reliable flow of data is provided by the transport layer, 
the application layer can ignore all these details. The PDU that TCP sends to IP is 
called a TCP segment.

UDP, on the other hand, provides a much simpler service to the application 
layer. It allows datagrams to be sent from one host to another, but there is no 
guarantee that the datagrams reach the other end. Any desired reliability must 
be added by the application layer. Indeed, about all that UDP provides is a set 
of port numbers for multiplexing and demultiplexing data, plus a data integrity 
checksum. As we can see, UDP and TCP differ radically even though they are at 
the same layer. There is a use for each type of transport protocol, which we will 
see when we look at the different applications that use TCP and UDP.
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There are two additional transport-layer protocols that are relatively new 
and available on some systems. As they are not yet very widespread, we do not 
devote much discussion to them, but they are worth being aware of. The first is the 
Datagram Congestion Control Protocol (DCCP), specified in [RFC4340]. It provides a 
type of service midway between TCP and UDP: connection-oriented exchange of 
unreliable datagrams but with congestion control. Congestion control comprises 
a number of techniques whereby a sender is limited to a sending rate in order to 
avoid overwhelming the network. We discuss it in detail with respect to TCP in 
Chapter 16.

The other transport protocol available on some systems is called the Stream
Control Transmission Protocol (SCTP), specified in [RFC4960]. SCTP provides reli-
able delivery like TCP but does not require the sequencing of data to be strictly 
maintained. It also allows for multiple streams to logically be carried on the same 
connection and provides a message abstraction, which differs from TCP. SCTP 
was designed for carrying signaling messages on IP networks that resemble those 
used in the telephone network.

Above the transport layer, the application layer handles the details of the par-
ticular application. There are many common applications that almost every imple-
mentation of TCP/IP provides. The application layer is concerned with the details 
of the application and not with the movement of data across the network. The 
lower three layers are the opposite: they know nothing about the application but 
handle all the communication details.

1.3.2 Multiplexing, Demultiplexing, and Encapsulation in TCP/IP

We have already discussed the basics of protocol multiplexing, demultiplexing, 
and encapsulation. At each layer there is an identifier that allows a receiving sys-
tem to determine which protocol or data stream belongs together. Usually there is 
also addressing information at each layer. This information is used to ensure that 
a PDU has been delivered to the right place. Figure 1-6 shows how demultiplexing 
works in a hypothetical Internet host.

Although it is not really part of the TCP/IP suite, we shall begin bottom-up 
and mention how demultiplexing from the link layer is performed, using Ethernet 
as an example. We discuss several link-layer protocols in Chapter 3. An arriving 
Ethernet frame contains a 48-bit destination address (also called a link-layer or 
MAC—Media Access Control—address) and a 16-bit field called the Ethernet type. 
A value of 0x0800 (hexadecimal) indicates that the frame contains an IPv4 data-
gram. Values of 0x0806 and 0x86DD indicate ARP and IPv6, respectively. Assum-
ing that the destination address matches one of the receiving system’s addresses, 
the frame is received and checked for errors, and the Ethernet Type field value is 
used to select which network-layer protocol should process it.

Assuming that the received frame contains an IP datagram, the Ethernet 
header and trailer information is removed, and the remaining bytes (which con-
stitute the frame’s payload) are given to IP for processing. IP checks a number of 
items, including the destination IP address in the datagram. If the destination 
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address matches one of its own and the datagram contains no errors in its header 
(IP does not check its payload), the 8-bit IPv4 Protocol field (called Next Header
in IPv6) is checked to determine which protocol to invoke next. Common values 
include 1 (ICMP), 2 (IGMP), 4 (IPv4), 6 (TCP), and 17 (UDP). The value of 4 (and 
41, which indicates IPv6) is interesting because it indicates the possibility that an 
IP datagram may appear inside the payload area of an IP datagram. This violates 
the original concepts of layering and encapsulation but is the basis for a powerful 
technique known as tunneling, which we discuss more in Chapter 3.

Once the network layer (IPv4 or IPv6) determines that the incoming datagram 
is valid and the correct transport protocol has been determined, the resulting data-
gram (reassembled from fragments if necessary) is passed to the transport layer 
for processing. At the transport layer, most protocols (including TCP and UDP) 
use port numbers for demultiplexing to the appropriate receiving application.

1.3.3 Port Numbers

Port numbers are 16-bit nonnegative integers (i.e., range 0–65535). These numbers 
are abstract and do not refer to anything physical. Instead, each IP address has 
65,536 associated port numbers for each transport protocol that uses port numbers 

Figure 1-6  The TCP/IP stack uses a combination of addressing information and protocol demul-
tiplexing identifiers to determine if a datagram has been received correctly and, if so, 
what entity should process it. Several layers also check numeric values (e.g., checksums) 
to ensure that the contents have not been damaged in transit.
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(most do), and they are used for determining the correct receiving application. For 
client/server applications (see Section 1.5.1), a server first “binds” to a port num-
ber, and subsequently one or more clients establish connections to the port num-
ber using a particular transport protocol on a particular machine. In this sense, 
port numbers act more like telephone number extensions, except they are usually 
assigned by standards.

Standard port numbers are assigned by the Internet Assigned Numbers 
Authority (IANA). The set of numbers is divided into special ranges, including the 
well-known port numbers (0–1023), the registered port numbers (1024–49151), and 
the dynamic/private port numbers (49152–65535). Traditionally, servers wishing to 
bind to (i.e., offer service on) a well-known port require special privileges such as 
administrator or “root” access. 

The range of well-known ports is used for identifying many well-known ser-
vices such as the Secure Shell Protocol (SSH, port 22), FTP (ports 20 and 21), Telnet
remote terminal protocol (port 23), e-mail/Simple Mail Transfer Protocol (SMTP, 
port 25), Domain Name System (DNS, port 53), the Hypertext Transfer Protocol or Web 
(HTTP and HTTPS, ports 80 and 443), Interactive Mail Access Protocol (IMAP and 
IMAPS, ports 143 and 993), Simple Network Management Protocol (SNMP, ports 161 
and 162), Lightweight Directory Access Protocol (LDAP, port 389), and several others. 
Protocols with multiple ports (e.g., HTTP and HTTPS) often have different port 
numbers depending on whether Transport Layer Security (TLS) is being used with 
the base application-layer protocol (see Chapter 18).

Note

If we examine the port numbers for these standard services and other standard 
TCP/IP services (Telnet, FTP, SMTP, etc.), we see that most are odd numbers. 
This is historical, as these port numbers are derived from the NCP port numbers. 
(NCP, the Network Control Protocol, preceded TCP as a transport-layer protocol 
for the ARPANET.) NCP was simplex, not full duplex, so each application required 
two connections, and an even-odd pair of port numbers was reserved for each 
application. When TCP and UDP became the standard transport layers, only a 
single port number was needed per application, yet the odd port numbers from 
NCP were used.

The registered port numbers are available to clients or servers with special 
privileges, but IANA keeps a reserved registry for particular uses, so these port 
numbers should generally be avoided when developing new applications unless 
an IANA allocation has been procured. The dynamic/private port numbers are 
essentially unregulated. As we will see, in some circumstances (e.g., on clients) 
the value of the port number matters little because the port number being used 
is transient. Such port numbers are also called ephemeral port numbers. They are 
considered to be temporary because a client typically needs one only as long as the 
user running the client needs service, and the client does not need to be found by 
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the server in order to establish a connection. Servers, conversely, generally require 
names and port numbers that do not change often in order to be found by clients.

1.3.4 Names, Addresses, and the DNS

With TCP/IP, each link-layer interface on each computer (including routers) has 
at least one IP address. IP addresses are enough to identify a host, but they are 
not very convenient for humans to remember or manipulate (especially the long 
addresses used with IPv6). In the TCP/IP world, the DNS is a distributed database 
that provides the mapping between host names and IP addresses (and vice versa). 
Names are set up in a hierarchy, ending in domains such as .com, .org, .gov, .in, 
.uk, and .edu. Perhaps surprisingly, DNS is an application-layer protocol and 
thus depends on the other protocols in order to operate. Although most of the 
TCP/IP suite does not use or care about names, typical users (e.g., those using Web 
browsers) use names frequently, so if the DNS fails to function properly, normal 
Internet access is effectively disabled. Chapter 11 looks into the DNS in detail.

Applications that manipulate names can call a standard API function (see 
Section 1.5.3) to look up the IP address (or addresses) corresponding to a given 
host’s name. Similarly, a function is provided to do the reverse lookup—given an 
IP address, look up the corresponding host name. Most applications that take a host 
name as input also take an IP address. Web browsers support this capability. For 
example, the Uniform Resource Locators (URLs) http://131.243.2.201/index.
html and http://[2001:400:610:102::c9]/index.html can be typed into a Web 
browser and are both effectively equivalent to http://ee.lbl.gov/index.html (at 
the time of writing; the second example requires IPv6 connectivity to be successful).

1.4 Internets, Intranets, and Extranets

As suggested previously, the Internet has developed as the aggregate network 
resulting from the interconnection of constituent networks over time. The lower-
case internet means multiple networks connected together, using a common proto-
col suite. The uppercase Internet refers to the collection of hosts around the world 
that can communicate with each other using TCP/IP. The Internet is an internet, 
but the reverse is not true.

One of the reasons for the phenomenal growth in networking during the 
1980s was the realization that isolated groups of stand-alone computers made 
little sense. A few stand-alone systems were connected together into a network. 
Although this was a step forward, during the 1990s we realized that separate 
networks that could not interoperate were not as valuable as a bigger network 
that could. This notion is the basis for the so-called Metcalfe’s Law, which states 
roughly that the value of a computer network is proportional to the square of the 
number of connected endpoints (e.g., users or devices). The Internet idea, and its 
supporting protocols, would make possible the interconnection of different net-
works. This deceptively simple concept turns out to be remarkably powerful.

http://ee.lbl.gov/index.html
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The easiest way to build an internet is to connect two or more networks with 
a router. A router is often a special-purpose device for connecting networks. The 
nice thing about routers is that they provide connections to many different types 
of physical networks: Ethernet, Wi-Fi, point-to-point links, DSL, cable Internet ser-
vice, and so on.

Note

These devices are also called IP routers, but we will use the term router. Historically 
these devices were called gateways, and this term is used throughout much of the 
older TCP/IP literature. Today the term gateway is used for an application-layer 
gateway (ALG), a process that connects two different protocol suites (say, TCP/IP 
and IBM’s SNA) for one particular application (often electronic mail or file transfer). 

In recent years, other terms have been adopted for different configurations of 
internets using the TCP/IP protocol suite. An intranet is the term used to describe a 
private internetwork, usually run by a business or other enterprise. Most often, the 
intranet provides access to resources available only to members of the particular 
enterprise. Users may connect to their (e.g., corporate) intranet using a virtual private 
network (VPN). VPNs help to ensure that access to potentially sensitive resources in 
an intranet is made available only to authorized users, usually using the tunneling 
concept we mentioned previously. We discuss VPNs in more detail in Chapter 7.

In many cases an enterprise or business wishes to set up a network containing 
servers accessible to certain partners or other associates using the Internet. Such 
networks, which also often involve the use of a VPN, are known as extranets and 
consist of computers attached outside the serving enterprise’s firewall (see Chap-
ter 7). Technically, there is little difference between an intranet, an extranet, and 
the Internet, but the usage cases and administrative policies are usually different, 
and therefore a number of these more specific terms have evolved. 

1.5 Designing Applications

The network concepts we have touched upon so far provide a fairly simple service 
model [RFC6250]: moving bytes between programs running on different (or, occa-
sionally, the same) computers. To do anything useful with this capability, we need 
networked applications that use the network for providing services or perform-
ing computations. Networked applications are typically structured according to a 
small number of design patterns. The most common of these are client/server and 
peer-to-peer.

1.5.1 Client/Server

Most network applications are designed so that one side is the client and the other 
side is the server. The server provides some type of service to clients, such as 
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access to files on the server host. We can categorize servers into two classes: itera-
tive and concurrent. An iterative server iterates through the following steps:

I1. Wait for a client request to arrive.

I2. Process the client request.

I3. Send the response back to the client that sent the request.

I4. Go back to step I1.

The problem with an iterative server occurs when step I2 takes a long time. 
During this time no other clients are serviced. A concurrent server, on the other 
hand, performs the following steps:

C1. Wait for a client request to arrive.

C2. Start a new server instance to handle this client’s request. This may involve 
creating a new process, task, or thread, depending on what the underly-
ing operating system supports. This new server handles one client’s entire 
request. When the requested task is complete, the new server terminates. 
Meanwhile, the original server instance continues to C3.

C3. Go back to step C1.

The advantage of a concurrent server is that the server just spawns other 
server instances to handle the client requests. Each client has, in essence, its own 
server. Assuming that the operating system allows multiprogramming (essen-
tially all do today), multiple clients are serviced concurrently. The reason we cat-
egorize servers, and not clients, is that a client normally cannot tell whether it is 
talking to an iterative server or a concurrent server. As a general rule, most servers 
are concurrent.

Note that we use the terms client and server to refer to applications and not 
to the particular computer systems on which they run. The very same terms are 
sometimes used to refer to the pieces of hardware that are most often used to exe-
cute either client or server applications. Although the terminology is thus some-
what imprecise, it works well enough in practice. As a result, it is common to find 
a server (in the hardware sense) running more than one server (in the application 
sense).

1.5.2 Peer-to-Peer

Some applications are designed in a more distributed fashion where there is no 
single server. Instead, each application acts both as a client and as a server, some-
times as both at once, and is capable of forwarding requests. Some very popular 
applications (e.g., Skype [SKYPE], BitTorrent [BT]) are of this form. These applica-
tions are called peer-to-peer or p2p applications. A concurrent p2p application may 
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receive an incoming request, determine if it is able to respond to the request, and 
if not forward the request on to some other peer. Thus, the set of p2p applications 
together form a network among applications, also called an overlay network. Such 
overlays are now commonplace and can be extremely powerful. Skype, for exam-
ple, has grown to be the largest carrier of international telephone calls. According 
to some estimates, BitTorrent was responsible for more than half of all Internet 
traffic in 2009 [IPIS].

One of the primary problems in p2p networks is called the discovery problem. 
That is, how does one peer find which other peer(s) can provide the data or service 
it wants in a network where peers may come and go? This is usually handled by 
a bootstrapping procedure whereby each client is initially configured with the 
addresses and port numbers of some peers that are likely to be operating. Once 
connected, the new participant learns of other active peers and, depending on the 
protocol, what services or files they provide.

1.5.3 Application Programming Interfaces (APIs)

Applications, whether p2p or client/server, need to express their desired network 
operations (e.g., make a connection, write or read data). This is usually supported 
by a host operating system using a networking application programming interface
(API). The most popular API is called sockets or Berkeley sockets, indicating where it 
was originally developed [LJFK93].

This text is not a programming text, but occasionally we refer to a feature of 
TCP/IP and whether that feature is provided by the sockets API or not. All of the 
programming details with examples for sockets can be found in [SFR04]. Modi-
fications to sockets intended for use with IPv6 are also described in a number 
of freely available online documents [RFC3493][RFC3542][RFC3678][RFC4584]
[RFC5014].

1.6 Standardization Process

Newcomers to the TCP/IP suite often wonder just who is responsible for specify-
ing and standardizing the various protocols and how they operate. A number 
of organizations represent the answer to this question. The group with which 
we will most often be concerned is the Internet Engineering Task Force (IETF) 
[RFC4677]. This group meets three times each year in various locations around 
the world to develop, discuss, and agree on standards for the Internet’s “core” 
protocols. Exactly what constitutes “core” is subject to some debate, but common 
protocols such as IPv4, IPv6, TCP, UDP, and DNS are clearly in the purview of 
IETF. Attendance at IETF meetings is open to anyone, but it is not free.

IETF is a forum that elects leadership groups called the Internet Architec-
ture Board (IAB) and the Internet Engineering Steering Group (IESG). The IAB is 
chartered to provide architectural guidance to activities in IETF and to perform a 
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number of other tasks such as appointing liaisons to other standards-defining orga-
nizations (SDOs). The IESG has decision-making authority regarding the creation 
and approval of new standards, along with modifications to existing standards. 
The “heavy lifting” or detailed work is generally performed by IETF working 
groups that are coordinated by working group chairs who volunteer for this task.

In addition to the IETF, there are two other important groups that interact 
closely with the IETF. The Internet Research Task Force (IRTF) explores protocols, 
architectures, and procedures that are not deemed mature enough for standard-
ization. The chair of the IRTF is a nonvoting member of IAB. The IAB, in turn, 
works with the Internet Society (ISOC) to help influence and promote worldwide 
policies and education regarding Internet technologies and usage.

1.6.1 Request for Comments (RFC)

Every official standard in the Internet community is published as a Request for 
Comments, or RFC. RFCs can be created in a number of ways, and the publisher of 
RFCs (called the RFC editor) recognizes multiple document streams corresponding 
to the way an RFC has been developed. The current streams (as of 2010) include 
the IETF, IAB, IRTF, and independent submission streams. Prior to being accepted 
and published (permanently) as an RFC, documents exist as temporary Internet 
drafts while they receive comments and progress through the editing and review 
process.

All RFCs are not standards. Only so-called standards-track category RFCs 
are considered to be official standards. Other categories include best current prac-
tice (BCP), informational, experimental, and historic. It is important to realize that 
just because a document is an RFC does not mean that the IETF has endorsed it 
as any form of standard. Indeed, there exist RFCs on which there is significant 
disagreement.

The RFCs range in size from a few pages to several hundred. Each is identi-
fied by a number, such as RFC 1122, with higher numbers for newer RFCs. They 
are all available for free from a number of Web sites, including http://www.rfc- 
editor.org. For historical reasons, RFCs are generally delivered as basic text files, 
although some RFCs have been reformatted or authored using more advanced file 
formats.

A number of RFCs have special significance because they summarize, clarify, 
or interpret particular sets of other standards. For example, [RFC5000] defines 
the set of all other RFCs that are considered official standards as of mid-2008 (the 
most recent such RFC at the time of writing). An updated list is available at the 
current standards Web site [OIPSW]. The Host Requirements RFCs ([RFC1122] and 
[RFC1123]) define requirements for protocol implementations in Internet IPv4 
hosts, and the Router Requirements RFC [RFC1812] does the same for routers. The 
Node Requirements RFC [RFC4294] does both for IPv6 systems.

http://www.rfc-editor.org
http://www.rfc-editor.org
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1.6.2 Other Standards

Although the IETF is responsible for standardizing most of the protocols we dis-
cuss in this text, other SDOs are responsible for defining protocols that merit our 
attention. The most important of these groups include the Institute of Electrical 
and Electronics Engineers (IEEE), the World Wide Web Consortium (W3C), and 
the International Telecommunication Union (ITU). In their activities relevant to 
this text, IEEE is concerned with standards below layer 3 (e.g., Wi-Fi and Ethernet), 
and W3C is concerned with application-layer protocols, specifically those related 
to Web technologies (e.g., HTML-based syntax). ITU, and more specifically ITU-T 
(formerly CCITT), standardizes protocols used within the telephone and cellular 
networks, which is becoming an ever more important component of the Internet.

1.7 Implementations and Software Distributions

The historical de facto standard TCP/IP implementations were from the Computer 
Systems Research Group (CSRG) at the University of California, Berkeley. They 
were distributed with the 4.x BSD (Berkeley Software Distribution) system and 
with the BSD Networking Releases until the mid-1990s. This source code has been 
the starting point for many other implementations. Today, each popular operating 
system has its own implementation. In this text, we tend to draw examples from 
the TCP/IP implementations in Linux, Windows, and sometimes FreeBSD and 
Mac OS (both of which are derived from historical BSD releases). In most cases, 
the particular implementation matters little.

Figure 1-7 shows a chronology of the various BSD releases, indicating the 
important TCP/IP features we cover in later chapters. It also shows the years when 
Linux and Windows began supporting TCP/IP. The BSD Networking Releases 
shown in the second column were freely available public source code releases con-
taining all of the networking code, both the protocols themselves and many of the 
applications and utilities (e.g., the Telnet remote terminal program and FTP file 
transfer program). 

By the mid-1990s, the Internet and TCP/IP were well established. All subse-
quent popular operating systems support TCP/IP natively. Research and devel-
opment of new TCP/IP features, previously found first in BSD releases, are now 
typically found first in Linux releases. Windows has recently implemented a new 
TCP/IP stack (starting with Windows Vista) with many new features and native 
IPv6 capability. Linux, FreeBSD, and Mac OS X also support IPv6 without setting 
any special configuration options.
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1.8 Attacks Involving the Internet Architecture

Throughout the text we shall briefly describe attacks and vulnerabilities that 
have been discovered in the design or implementation of the topic we are dis-
cussing. Few attacks target the Internet architecture as a whole. However, it is 
worth observing that the Internet architecture delivers IP datagrams based on 
destination IP addresses. As a result, malicious users are able to insert whatever 
IP address they choose into the source IP address field of each IP datagram they 
send, an activity called spoofing. The resulting datagrams are delivered to their 

Figure 1-7  The history of software releases supporting TCP/IP up to 1995. The various BSD releases pioneered 
the availability of TCP/IP. In part because of legal uncertainties regarding the BSD releases in the 
early 1990s, Linux was developed as an alternative that was initially tailored for PC users. Micro-
soft began supporting TCP/IP in Windows a couple of years later.
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destinations, but it is difficult to perform attribution. That is, it may be difficult or 
impossible to determine the origin of a datagram received from the Internet.

Spoofing can be combined with a variety of other attacks seen periodically on 
the Internet. Denial-of-service (DoS) attacks usually involve using so much of some 
important resource that legitimate users are denied service. For example, sending 
so many IP datagrams to a server that it spends all of its time just processing the 
incoming packets and performing no other useful work is a type of DoS attack. 
Other DoS attacks may involve clogging the network with so much traffic that 
no other packets can be sent. This is often accomplished by using many sending 
computers, forming a distributed DoS (DDoS) attack.

Unauthorized access attacks involve accessing information or resources in an 
unauthorized fashion. This can be accomplished with a variety of techniques such 
as exploiting protocol implementation bugs to take control of a system (called 
0wning the system and turning it into a zombie or bot). It can also involve vari-
ous forms of masquerading such as an attacker’s agent impersonating a legitimate 
user (e.g., by running with the user’s credentials). Some of the more pernicious 
attacks involve taking control of many remote systems using malicious software 
(malware) and using them in a coordinated, distributed fashion (called botnets). 
Programmers who intentionally develop malware and exploit systems for (illegal) 
profit or other malicious purposes are generally called black hats. So-called white 
hats do the same sorts of technical things but notify vulnerable parties instead of 
exploit them.

One other concern with the Internet architecture is that the original Internet 
protocols did not perform any encryption in support of authentication, integrity, 
or confidentiality. Consequently, malicious users could usually ascertain private 
information by merely observing packets in the network. Those with the ability 
to modify packets in transit could also impersonate users or alter the contents of 
messages. Although these problems have been reduced significantly thanks to 
encryption protocols (see Chapter 18), old or poorly designed protocols are still 
sometimes used that are vulnerable to simple eavesdropping attacks. Given the 
prevalence of wireless networks, where it is relatively easy to “sniff” the packets 
sent by others, such older or insecure protocols should be avoided. Note that while 
encryption may be enabled at one layer (e.g., on a link-layer Wi-Fi network), only 
host-to-host encryption (IP layer or above) protects information across the mul-
tiple network segments an IP datagram is likely to traverse on its way to its final 
destination.

1.9 Summary

This chapter has been a whirlwind tour of concepts in network architecture and 
design in general, plus the TCP/IP protocol suite in particular that we discuss in 
detail in later chapters. The Internet architecture was designed to interconnect 
different existing networks and provide for a wide range of services and protocols 
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operating simultaneously. Packet switching using datagrams was chosen for its 
robustness and efficiency. Security and predictable delivery of data (e.g., bounded 
latency) were secondary concerns. 

Based on their understanding of layered and modular software design in 
operating systems, the early implementers of the Internet protocols adopted a 
layered design that employs encapsulation. The three main layers in the TCP/IP 
protocol suite are the network layer, transport layer, and application layer, and we 
mentioned the different responsibilities of each. We also mentioned the link layer 
because it relates so closely with the TCP/IP suite. We shall discuss each in more 
detail in subsequent chapters.

In TCP/IP, the distinction between the network layer and the transport layer is 
critical: the network layer (IP) provides an unreliable datagram service and must 
be implemented by all systems addressable on the Internet, whereas the transport 
layers (TCP and UDP) provide an end-to-end service to applications running on 
end hosts. The primary transport layers differ radically. TCP provides in-ordered 
reliable stream delivery with flow control and congestion control. UDP provides 
essentially no capabilities beyond IP except port numbers for demultiplexing and 
an error detection mechanism. Unlike TCP, however, it supports multicast delivery.

Addresses and demultiplexing identifiers are used by each layer to avoid con-
fusing protocols or different associations/connections of the same protocol. Link-
layer multi-access networks often use 48-bit addresses; IPv4 uses 32-bit addresses 
and IPv6 uses 128-bit addresses. The TCP and UDP transport protocols use dis-
tinct sets of port numbers. Some port numbers are assigned by standards, and oth-
ers are used temporarily, usually by client applications when communicating with 
servers. Port numbers do not represent anything physical; they are merely used as 
a way for applications that want to communicate to rendezvous.

Although port numbers and IP addresses are usually enough to identify the 
location of a service on the Internet, they are not very convenient for humans to 
remember or use (especially IPv6 addresses). Consequently, the Internet uses 
a hierarchical system of host names that can be converted to IP addresses (and 
back) using DNS, a distributed database application running on the Internet. DNS 
has become an essential component of the Internet infrastructure, and efforts are 
under way to make it more secure (see Chapter 18).

An internet is a collection of networks. The common building block for an 
internet is a router that connects the networks at the IP layer. The “capital-I” Inter-
net is an internet that spans the globe and interconnects nearly two billion users 
(as of 2010). Private internets are called intranets and are usually connected to the 
Internet using special devices (firewalls, discussed in Chapter 10) that attempt to 
prevent unauthorized access. Extranets usually consist of a subset of an institu-
tion’s intranet that is designed to be accessed by partners or affiliates in a limited 
way.

Networked applications are usually designed using a client/server or peer-
to-peer design pattern. Client/server is more popular and traditional, but peer-
to-peer designs have also seen tremendous success. Whatever the design pattern, 
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applications invoke APIs to perform networking tasks. The most common API for 
TCP/IP networks is called sockets. It was provided with BSD UNIX distributions, 
software releases that pioneered the use of TCP/IP. By the late 1990s the TCP/IP 
protocol suite and sockets API were available on every popular operating system.

Security was not a major design goal for the Internet architecture. Determin-
ing where packets originate can be difficult for a receiver, as end hosts can easily 
spoof source IP addresses in unsecured IP datagrams. Distributed DoS attacks 
also remain an ongoing challenge because victim end hosts can be collected 
together to form botnets that can carry out DDoS and other attacks, sometimes 
without the system owners’ knowledge. Finally, early Internet protocols did little 
to ensure privacy of sensitive information, but most of those protocols are now 
deprecated, and modern replacements use encryption to provide confidential and 
authenticated communications between hosts.
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2

The Internet Address 
Architecture

2.1 Introduction

This chapter deals with the structure of network-layer addresses used in the Inter-
net, also known as IP addresses. We discuss how addresses are allocated and 
assigned to devices on the Internet, the way hierarchy in address assignment aids 
routing scalability, and the use of special-purpose addresses, including broadcast, 
multicast, and anycast addresses. We also discuss how the structure and use of 
IPv4 and IPv6 addresses differ.

Every device connected to the Internet has at least one IP address. Devices 
used in private networks based on the TCP/IP protocols also require IP addresses. 
In either case, the forwarding procedures implemented by IP routers (see Chapter 
5) use IP addresses to identify where traffic is going. IP addresses also indicate 
where traffic has come from. IP addresses are similar in some ways to telephone 
numbers, but whereas telephone numbers are often known and used directly by 
end users, IP addresses are often shielded from a user’s view by the Internet’s DNS 
(see Chapter 11), which allows most users to use names instead of numbers. Users 
are confronted with manipulating IP addresses when they are required to set up 
networks themselves or when the DNS has failed for some reason. To understand 
how the Internet identifies hosts and routers and delivers traffic between them, 
we must understand the role of IP addresses. We are therefore interested in their 
administration, structure, and uses.

When devices are attached to the global Internet, they are assigned addresses 
that must be coordinated so as to not duplicate other addresses in use on the net-
work. For private networks, the IP addresses being used must be coordinated to 
avoid similar overlaps within the private networks. Groups of IP addresses are 
allocated to users and organizations. The recipients of the allocated addresses then 
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assign addresses to devices, usually according to some network “numbering plan.” 
For global Internet addresses, a hierarchical system of administrative entities helps 
in allocating addresses to users and service providers. Individual users typically 
receive address allocations from Internet service providers (ISPs) that provide both 
the addresses and the promise of routing traffic in exchange for a fee.

2.2 Expressing IP Addresses

The vast majority of Internet users who are familiar with IP addresses understand 
the most popular type: IPv4 addresses. Such addresses are often represented in 
so-called dotted-quad or dotted-decimal notation, for example, 165.195.130.107. 
The dotted-quad notation consists of four decimal numbers separated by periods. 
Each such number is a nonnegative integer in the range [0, 255] and represents 
one-quarter of the entire IP address. The dotted-quad notation is simply a way of 
writing the whole IPv4 address—a 32-bit nonnegative integer used throughout 
the Internet system—using convenient decimal numbers. In many circumstances 
we will be concerned with the binary structure of the address. A number of Inter-
net sites, such as http://www.subnetmask.info and http://www. subnet-
calculator.com, now contain calculators for converting between formats of 
IP addresses and related information. Table 2-1 gives a few examples of IPv4 
addresses and their corresponding binary representations, to get started.

Table 2-1  Example IPv4 addresses written in dotted-quad and binary notation 

Dotted-Quad Representation Binary Representation

0.0.0.0 00000000 00000000 00000000 00000000

1.2.3.4 00000001 00000010 00000011 00000100

10.0.0.255 00001010 00000000 00000000 11111111

165.195.130.107 10100101 11000011 10000010 01101011

255.255.255.255 11111111 11111111 11111111 11111111

In IPv6, addresses are 128 bits in length, four times larger than IPv4 addresses, 
and generally speaking are less familiar to most users. The conventional notation 
adopted for IPv6 addresses is a series of four hexadecimal (“hex,” or base-16) num-
bers called blocks or fields separated by colons. An example IPv6 address containing 
eight blocks would be written as 5f05:2000:80ad:5800:0058:0800:2023:1d71. Although 
not as familiar to users as decimal numbers, hexadecimal numbers make the task 
of converting to binary somewhat simpler. In addition, a number of agreed-upon 
simplifications have been standardized for expressing IPv6 addresses [RFC4291]:

http://www.subnetmask.info
http://www.subnet-calculator.com
http://www.subnet-calculator.com
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1. Leading zeros of a block need not be written. In the preceding example, the 
address could have been written as 5f05:2000:80ad:5800:58:800:2023:1d71.

2. Blocks of all zeros can be omitted and replaced by the notation ::. For exam-
ple, the IPv6 address 0:0:0:0:0:0:0:1 can be written more compactly as ::1. 
Similarly, the address 2001:0db8:0:0:0:0:0:2 can be written more compactly 
as 2001:db8::2. To avoid ambiguities, the :: notation may be used only once 
in an IPv6 address.

3. Embedded IPv4 addresses represented in the IPv6 format can use a form 
of hybrid notation in which the block immediately preceding the IPv4 por-
tion of the address has the value ffff and the remaining part of the address 
is formatted using dotted-quad. For example, the IPv6 address ::ffff:10.0.0.1 
represents the IPv4 address 10.0.0.1. This is called an IPv4-mapped IPv6 
address.

4. A conventional notation is adopted in which the low-order 32 bits of the 
IPv6 address can be written using dotted-quad notation. The IPv6 address 
::0102:f001 is therefore equivalent to the address ::1.2.240.1. This is called 
an IPv4-compatible IPv6 address. Note that IPv4-compatible addresses are 
not the same as IPv4-mapped addresses; they are compatible only in the 
sense that they can be written down or manipulated by software in a way 
similar to IPv4 addresses. This type of addressing was originally required 
for transition plans between IPv4 and IPv6 but is now no longer required 
[RFC4291].

Table 2-2 presents some examples of IPv6 addresses and their binary representa-
tions.

Table 2-2  Examples of IPv6 addresses and their binary representations

Hex Notation Binary Representation

5f05:2000:80ad:5800:58:800:2023:1d71 0101111100000101 0010000000000000 
1000000010101101 0101100000000000

0000000001011000 0000100000000000

0010000000100011 0001110101110001

::1 0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000001

::1.2.240.1 or ::102:f001 0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000100000010 1111000000000001
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In some circumstances (e.g., when expressing a URL containing an address) 
the colon delimiter in an IPv6 address may be confused with another separator 
such as the colon used between an IP address and a port number. In such circum-
stances, bracket characters, [ and ], are used to surround the IPv6 address. For 
example, the URL

http://[2001:0db8:85a3:08d3:1319:8a2e:0370:7344]:443/

refers to port number 443 on IPv6 host 2001:0db8:85a3:08d3:1319:8a2e:0370:7344 
using the HTTP/TCP/IPv6 protocols.

The flexibility provided by [RFC4291] resulted in unnecessary confusion due 
to the ability to represent the same IPv6 address in multiple ways. To remedy this 
situation, [RFC5952] imposes some rules to narrow the range of options while 
remaining compatible with [RFC4291]. They are as follows:

1. Leading zeros must be suppressed (e.g., 2001:0db8::0022 becomes 
2001:db8::22).

2. The :: construct must be used to its maximum possible effect (most zeros 
suppressed) but not for only 16-bit blocks. If multiple blocks contain equal-
length runs of zeros, the first is replaced with ::.

3. The hexadecimal digits a through f should be represented in lowercase.

In most cases, we too will abide by these rules.

2.3 Basic IP Address Structure

IPv4 has 4,294,967,296 possible addresses in its address space, and IPv6 has 340,282,3
66,920,938,463,463,374,607,431,768,211,456. Because of the large number of addresses 
(especially for IPv6), it is convenient to divide the address space into chunks. IP 
addresses are grouped by type and size. Most of the IPv4 address chunks are even-
tually subdivided down to a single address and used to identify a single network 
interface of a computer attached to the Internet or to some private intranet. These 
addresses are called unicast addresses. Most of the IPv4 address space is unicast 
address space. Most of the IPv6 address space is not currently being used. Beyond 
unicast addresses, other types of addresses include broadcast, multicast, and 
anycast, which may refer to more than one interface, plus some special-purpose 
addresses we will discuss later. Before we begin with the details of the current 
address structure, it is useful to understand the historical evolution of IP addresses.

2.3.1 Classful Addressing

When the Internet’s address structure was originally defined, every unicast IP 
address had a network portion, to identify the network on which the interface using 
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the IP address was to be found, and a host portion, used to identify the particular host 
on the network given in the network portion. Thus, some number of contiguous bits 
in the address became known as the net number, and remaining bits were known as 
the host number. At the time, most hosts had only a single network interface, so the 
terms interface address and host address were used somewhat interchangeably.

With the realization that different networks might have different numbers of 
hosts, and that each host requires a unique IP address, a partitioning was devised 
wherein different-size allocation units of IP address space could be given out to 
different sites, based on their current and projected number of hosts. The parti-
tioning of the address space involved five classes. Each class represented a differ-
ent trade-off in the number of bits of a 32-bit IPv4 address devoted to the network 
number versus the number of bits devoted to the host number. Figure 2-1 shows 
the basic idea.

Figure 2-1  The IPv4 address space was originally divided into five classes. Classes A, B, and C were 
used for assigning addresses to interfaces on the Internet (unicast addresses) and for 
some other special-case uses. The classes are defined by the first few bits in the address: 
0 for class A, 10 for class B, 110 for class C, and so on. Class D addresses are for multicast 
use (see Chapter 9), and class E addresses remain reserved.

Here we see that the five classes are named A, B, C, D, and E. The A, B, and 
C class spaces were used for unicast addresses. If we look more carefully at this 
addressing structure, we can see how the relative sizes of the different classes and 
their corresponding address ranges really work. Table 2-3 gives this class struc-
ture (sometimes called classful addressing structure). 
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Table 2-3  The original (“classful”) IPv4 address space partitioning 

Class Address Range

High-
Order 
Bits Use

Fraction 
of Total 

Number 
of Nets

Number 
of Hosts

A 0.0.0.0–127.255.255.255 0 Unicast/special 1/2 128 16,777,216
B 128.0.0.0–191.255.255.255 10 Unicast/special 1/4 16,384 65,536
C 192.0.0.0–223.255.255.255 110 Unicast/special 1/8 2,097,152 256
D 224.0.0.0–239.255.255.255 1110 Multicast 1/16 N/A N/A
E 240.0.0.0–255.255.255.255 1111 Reserved 1/16 N/A N/A

The table indicates how the classful addressing structure was used primar-
ily to have a way of allocating unicast address blocks of different sizes to users. 
The partitioning into classes induces a trade-off between the number of available 
network numbers of a given size and the number of hosts that can be assigned 
to the given network. For example, a site allocated the class A network number 
18.0.0.0 (MIT) has 224 possible addresses to assign as host addresses (i.e., using 
IPv4 addresses in the range 18.0.0.0–18.255.255.255), but there are only 127 class A 
networks available for the entire Internet. A site allocated a class C network num-
ber, say, 192.125.3.0, would be able to assign only 256 hosts (i.e., those in the range 
192.125.3.0–192.125.3.255), but there are more than two million class C network 
numbers available.

Note

These numbers are not exact. Several addresses are not generally available for 
use as unicast addresses. In particular, the first and last addresses of the range 
are not generally available. In our example, the site assigned address range 
18.0.0.0 would really be able to assign as many as 224 - 2 = 16,777,214 unicast IP 
addresses.

The classful approach to Internet addressing lasted mostly intact for the first 
decade of the Internet’s growth (to about the early 1980s). After that, it began to 
show its first signs of scaling problems—it was becoming too inconvenient to cen-
trally coordinate the allocation of a new class A, B, or C network number every time 
a new network segment was added to the Internet. In addition, assigning class A 
and B network numbers tended to waste too many host numbers, whereas class C 
network numbers could not provide enough host numbers to many new sites.

2.3.2 Subnet Addressing

One of the earliest difficulties encountered when the Internet began to grow was 
the inconvenience of having to allocate a new network number for any new net-
work segment that was to be attached to the Internet. This became especially 
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cumbersome with the development and increasing use of local area networks 
(LANs) in the early 1980s. To address the problem, it was natural to consider a 
way that a site attached to the Internet could be allocated a network number cen-
trally that could then be subdivided locally by site administrators. If this could be 
accomplished without altering the rest of the Internet’s core routing infrastruc-
ture, so much the better.

Implementing this idea would require the ability to alter the line between the 
network portion of an IP address and the host portion, but only for local purposes 
at a site; the rest of the Internet would “see” only the traditional class A, B, and C 
partitions. The approach adopted to support this capability is called subnet address-
ing [RFC0950]. Using subnet addressing, a site is allocated a class A, B, or C net-
work number, leaving some number of remaining host bits to be further allocated 
and assigned within a site. The site may further divide the host portion of its base 
address allocation into a subnetwork (subnet) number and a host number. Essen-
tially, subnet addressing adds one additional field to the IP address structure, but 
without adding any bits to its length. As a result, a site administrator is able to 
trade off the number of subnetworks versus the number of hosts expected to be on 
each subnetwork without having to coordinate with other sites.

In exchange for the additional flexibility provided by subnet addressing, a 
new cost is imposed. Because the definition of the Subnet and Host fields is now 
site-specific (not dictated by the class of the network number), all routers and hosts 
at a site require a new way to determine where the Subnet field of the address and 
the Host field of the address are located within the address. Before subnets, this 
information could be derived directly by knowing whether a network number 
was from class A, B, or C (as indicated by the first few bits in the address). As an 
example, using subnet addressing, an IPv4 address might have the form shown in 
Figure 2-2.

Figure 2-2  An example of a subnetted class B address. Using 8 bits for the subnet ID provides for 
256 subnets with 254 hosts on each of the subnets. This partitioning may be altered by 
the network administrator.
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Figure 2-2 is an example of how a class B address might be “subnetted.” 
Assume that some site in the Internet has been allocated a class B network num-
ber. The first 16 bits of every address the site will use are fixed at some particular 
number because these bits have been allocated by a central authority. The last 16 
bits (which would have been used only to create host numbers in the class B net-
work without subnets) can now be divided by the site network administrator as 
needs may dictate. In this example, 8 bits have been chosen for the subnet number, 
leaving 8 bits for host numbers. This particular configuration allows the site to 
support 256 subnetworks, and each subnetwork may contain up to 254 hosts (now 
the first and last addresses for each subnetwork are not available, as opposed to 
losing only the first and last addresses of the entire allocated range). Recall that 
the subnetwork structure is known only by hosts and routers where the subnet-
ting is taking place. The remainder of the Internet still treats any address associ-
ated with the site just as it did prior to the advent of subnet addressing. Figure 2-3 
shows how this works.

Figure 2-3  A site is allocated the classical class B network number 128.32. The network administra-
tor decides to apply a site-wide subnet mask of 255.255.255.0, giving 256 subnetworks 
where each subnetwork can hold 256 – 2 = 254 hosts. The IPv4 address of each host on 
the same subnet has the subnetwork number in common. All of the IPv4 addresses of 
hosts on the left-hand LAN segment start with 128.32.1, and all of those on the right start 
with 128.32.2.
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This figure shows a hypothetical site attached to the Internet with one border 
router (i.e., one attachment point to the Internet) and two internal local area net-
works. The value of x could be anything in the range [0, 255]. Each of the Ethernet 
networks is an IPv4 subnetwork of the overall network number 128.32, a class B 
address allocation. For other sites on the Internet to reach this site, all traffic with 
destination addresses starting with 128.32 is directed by the Internet routing sys-
tem to the border router (specifically, its interface with IPv4 address 137.164.23.30). 
At this point, the border router must distinguish among different subnetworks 
within the 128.32 network. In particular, it must be able to distinguish and sepa-
rate traffic destined for addresses of the form 128.32.1.x from those destined for 
addresses of the form 128.32.2.x. These represent subnetwork numbers 1 and 2, 
respectively, of the 128.32 class B network number. In order to do this, the router 
must be aware of where the subnet ID is to be found within the addresses. This is 
accomplished by a configuration parameter we will discuss next.

2.3.3 Subnet Masks

The subnet mask is an assignment of bits used by a host or router to determine how 
the network and subnetwork information is partitioned from the host information 
in a corresponding IP address. Subnet masks for IP are the same length as the cor-
responding IP addresses (32 bits for IPv4 and 128 bits for IPv6). They are typically 
configured into a host or router in the same way as IP addresses—either statically 
(typical for routers) or using some dynamic system such as the Dynamic Host Con-
figuration Protocol (DHCP; see Chapter 6). For IPv4, subnet masks may be written 
in the same way an IPv4 address is written (i.e., dotted-decimal). Although not 
originally required to be arranged in this manner, today subnet masks are struc-
tured as some number of 1 bits followed by some number of 0 bits. Because of this 
arrangement, it is possible to use a shorthand format for expressing masks that 
simply gives the number of contiguous 1 bits in the mask (starting from the left). 
This format is now the most common format and is sometimes called the prefix 
length. Table 2-4 presents some examples for IPv4.

Table 2-4  IPv4 subnet mask examples in various formats

Dotted-Decimal 
Representation

Shorthand
(Prefix Length) Binary Representation

128.0.0.0 /1 10000000 00000000 00000000 00000000

255.0.0.0 /8 11111111 00000000 00000000 00000000

255.192.0.0 /10 11111111 11000000 00000000 00000000

255.255.0.0 /16 11111111 11111111 00000000 00000000

255.255.254.0 /23 11111111 11111111 11111110 00000000

255.255.255.192 /27 11111111 11111111 11111111 11100000

255.255.255.255 /32 11111111 11111111 11111111 11111111
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Table 2-5 presents some examples for IPv6.
Masks are used by routers and hosts to determine where the network/sub-

network portion of an IP address ends and the host part begins. A bit set to 1 in 
the subnet mask means the corresponding bit position in an IP address should be 
considered part of a combined network/subnetwork portion of an address, which 
is used as the basis for forwarding datagrams (see Chapter 5). Conversely, a bit 
set to 0 in the subnet mask means the corresponding bit position in an IP address 
should be considered part of the host portion. For example, in Figure 2-4 we can 
see how the IPv4 address 128.32.1.14 is treated when a subnet mask of 255.255.255.0 
is applied to it.

Table 2-5  IPv6 subnet mask examples in various formats

Hex Notation
Shorthand
(Prefix Length) Binary Representation

ffff:ffff:ffff:ffff:: /64 1111111111111111 1111111111111111

1111111111111111 1111111111111111

0000000000000000 0000000000000000

0000000000000000 0000000000000000

ff00:: /8 1111111100000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

Figure 2-4  An IP address can be combined with a subnet mask using a bitwise AND operation in 
order to form the network/subnetwork identifier (prefix) of the address used for routing. 
In this example, applying a mask of length 24 to the IPv4 address 128.32.1.14 gives the 
prefix 128.32.1.0/24.

Here we see how each bit in the address is ANDed with each corresponding 
bit in the subnet mask. Recalling the bitwise AND operation, a result bit is only 
ever a 1 if the corresponding bits in both the mask and the address are 1. In this 
example, we see that the address 128.32.1.14 belongs to the subnet 128.32.1.0/24. 
In Figure 2-3, this is precisely the information required by the border router to 
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determine to which subnetwork a datagram destined for the system with address 
128.32.1.14 should be forwarded. Note again that the rest of the Internet routing 
system does not require knowledge of the subnet mask because routers outside 
the site make routing decisions based only on the network number portion of 
an address and not the combined network/subnetwork or host portions. Conse-
quently, subnet masks are purely a local matter at the site.

2.3.4 Variable-Length Subnet Masks (VLSM)

So far we have discussed how a network number allocated to a site can be sub-
divided into ranges assigned to multiple subnetworks, each of the same size and 
therefore able to support the same number of hosts, based on the operational expec-
tations of the network administrator. We now observe that it is possible to use a 
different-length subnet mask applied to the same network number in different por-
tions of the same site. Although doing this complicates address configuration man-
agement, it adds flexibility to the subnet structure because different subnetworks 
may be set up with different numbers of hosts. Variable-length subnet masks (VLSM) 
are now supported by most hosts, routers, and routing protocols. To understand 
how VLSM works, consider the network topology illustrated in Figure 2-5, which 
extends Figure 2-3 with two additional subnetworks using VLSM.

Figure 2-5  VLSM can be used to partition a network number into subnetworks with a differing 
number of hosts on each subnet. Each router and host is configured with a subnet mask 
in addition to its IP address. Most software supports VLSM, except for some older rout-
ing protocols (e.g., RIP version 1).
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In the more complicated and realistic example shown in Figure 2-5, three dif-
ferent subnet masks are used within the site to subnet the 128.32.0.0/16 network: 
/24, /25, and /26. Doing so provides for a different number of hosts on each sub-
net. Recall that the number of hosts is constrained by the number of bits remain-
ing in the IP address that are not used by the network/subnet number. For IPv4 
and a /24 prefix, this allows for 32 – 24 = 8 bits (256 hosts); for /25, half as many 
(128 hosts); and for /26, half further still (64 hosts). Note that each interface on 
each host and router depicted is now given both an IP address and a subnet mask, 
but the mask differs across the network topology. With an appropriate dynamic 
routing protocol running among the routers (e.g., OSPF, IS-IS, RIPv2), traffic is 
able to flow correctly among hosts at the same site or to/from the outside of the 
site across the Internet.

Although it may not seem obvious, there is a common case where a subnet-
work contains only two hosts. When routers are connected together by a point-
to-point link requiring an IP address to be assigned at each end, it is common 
practice to use a /31 network prefix with IPv4, and it is now also a recommended 
practice to use a /127 prefix for IPv6 [RFC6164].

2.3.5 Broadcast Addresses

In each IPv4 subnetwork, a special address is reserved to be the subnet broadcast 
address. The subnet broadcast address is formed by setting the network/subnet-
work portion of an IPv4 address to the appropriate value and all the bits in the Host
field to 1. Consider the left-most subnet from Figure 2-5. Its prefix is 128.32.1.0/24. 
The subnet broadcast address is constructed by inverting the subnet mask (i.e., 
changing all the 0 bits to 1 and vice versa) and performing a bitwise OR opera-
tion with the address of any of the computers on the subnet (or, equivalently, the 
network/subnetwork prefix). Recall that the result of a bitwise OR operation is 1 
if either input bit is 1. Using the IPv4 address 128.32.1.14, this computation can be 
written as shown in Figure 2-6.

Figure 2-6  The subnet broadcast address is formed by ORing the complement of the subnet mask 
with the IPv4 address. In this case of a /24 subnet mask, all of the remaining 32 – 24 
= 8 bits are set to 1, giving a decimal value of 255 and the subnet broadcast address of 
128.32.1.255.
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As shown in the figure, the subnet broadcast address for the subnet 
128.32.1.0/24 is 128.32.1.255. Historically, a datagram using this type of address as 
its destination has also been known as a directed broadcast. Such a broadcast can, 
at least  theoretically, be routed through the Internet as a single datagram until 
reaching the target subnetwork, at which point it becomes a collection of broad-
cast datagrams that are delivered to all hosts on the subnetwork. Generalizing 
this idea further, we could form a datagram with the destination IPv4 address 
128.32.255.255 and launch it into the Internet attached to the network depicted in 
Figure 2-3 or Figure 2-5. This would address all hosts at the target site.

Note

Directed broadcasts were found to be such a big problem from a security point of 
view that they are effectively disabled on the Internet today. [RFC0919] describes 
the various types of broadcasts for IPv4, and [RFC1812] suggests that support 
for forwarding directed broadcasts by routers should not only be available but 
enabled by default. This policy was reversed by [RFC2644] so that by default 
routers must now disable the forwarding of directed broadcasts and are even free 
to omit support for the capability altogether.

In addition to the subnet broadcast address, the special-use address 
255.255.255.255 is reserved as the local net broadcast (also called limited broadcast), 
which is never forwarded by routers. (See Section 2.5 for more detail on special-
use addresses.) Note that although routers may not forward broadcasts, subnet 
broadcasts and local net broadcasts destined for the same network to which a 
computer is attached should be expected to work unless explicitly disabled by 
end hosts. Such broadcasts do not require action by a router; link-layer broadcast 
mechanisms, if available, are used for supporting them (see Chapter 3). Broadcast 
addresses are typically used with protocols such as UDP/IP (Chapter 10) or ICMP 
(Chapter 8) because these protocols do not involve two-party conversations as in 
TCP/IP. IPv6 lacks any broadcast addresses; for places where broadcast addresses 
might be used in IPv4, IPv6 instead uses exclusively multicast addresses (see 
Chapter 9).

2.3.6 IPv6 Addresses and Interface Identifiers

In addition to being longer than IPv4 addresses by a factor of 4, IPv6 addresses 
also have some additional structure. Special prefixes used with IPv6 addresses 
indicate the scope of an address. The scope of an IPv6 address refers to the portion 
of the network where it can be used. Important examples of scopes include node-
local (the address can be used only for communication on the same computer), 
link-local (used only among nodes on the same network link or IPv6 prefix), or 
global (Internet-wide). In IPv6, most nodes have more than one address in use, 
often on the same network interface. Although this is supported in IPv4 as well, it 
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is not nearly as common. The set of addresses required in an IPv6 node, including 
multicast addresses (see Section 2.5.2), is given in [RFC4291].

Note

Another scope level called site-local using prefix fec0::/10 was originally sup-
ported by IPv6 but was deprecated for use with unicast addressing by [RFC3879]. 
The primary problems include how to handle such addresses given that they may 
be reused in more than one site and a lack of clarity on precisely how to define 
a “site.”

Link-local IPv6 addresses (and some global IPv6 addresses) use interface iden-
tifiers (IIDs) as a basis for unicast IPv6 address assignment. IIDs are used as the 
low-order bits of an IPv6 address in all cases except where the address begins with 
the binary value 000, and as such they must be unique within the same network 
prefix. IIDs are ordinarily 64 bits long and are formed either directly from the 
underlying link-layer MAC address of a network interface using a modified EUI-64 
format [EUI64], or by another process that randomizes the value in hopes of pro-
viding some degree of privacy against address tracking (see Chapter 6).

In IEEE standards, EUI stands for extended unique identifier. EUI-64 identifi-
ers start with a 24-bit Organizationally Unique Identifier (OUI) followed by a 40-bit 
extension identifier assigned by the organization, which is identified by the first 24 
bits. The OUIs are maintained and allocated by the IEEE registration authority 
[IEEERA]. EUIs may be “universally administered” or “locally administered.” In 
the Internet context, such addresses are typically of the universally administered 
variety. 

Many IEEE standards-compliant network interfaces (e.g., Ethernet) have used 
shorter-format addresses (48-bit EUIs) for years. The only significant difference 
between the EUI-48 and EUI-64 formats is their length (see Figure 2-7).

Figure 2-7  The EUI-48 and EUI-64 formats defined by the IEEE. These are used within IPv6 to form 
interface identifiers by inverting the u bit.
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The OUI is 24 bits long and occupies the first 3 bytes of both EUI-48 and EUI-
64 addresses. The low-order 2 bits of the first bytes of these addresses are desig-
nated the u and g bits, respectively. The u bit, when set, indicates that the address 
is locally administered. The g bit, when set, indicates that the address is a group or 
multicast-type address. For the moment, we are concerned only with cases where 
the g bit is not set.

An EUI-64 can be formed from an EUI-48 by copying the 24-bit OUI value from 
the EUI-48 address to the EUI-64 address, placing the 16-bit value 1111111111111110 
(hex FFFE) in the fourth and fifth bytes of the EUI-64 address, and then copying 
the remaining organization-assigned bits. For example, the EUI-48 address 00-11-
22-33-44-55 would become 00-11-22-FF-FE-33-44-55 in EUI-64. This mapping is the 
first step used by IPv6 in constructing its interface identifiers when such under-
lying EUI-48 addresses are available. The modified EUI-64 used to form IIDs for 
IPv6 addresses simply inverts the u bit.

When an IPv6 interface identifier is needed for a type of interface that does not 
have an EUI-48-bit address provided by its manufacturer, but has some other type 
of underlying address (e.g., AppleTalk), the underlying address is left-padded with 
zeros to form the interface identifier. Interface identifiers created for interfaces 
that lack any form of other identifier (e.g., tunnels, serial links) may be derived 
from some other interface on the same node (that is not on the same subnet) or 
from some identifier associated with the node. Lacking any other options, manual 
assignment is a last resort.

2.3.6.1 Examples
Using the Linux ifconfig command, we can investigate the way a link-local IPv6 
address is formed:

Linux% ifconfig eth1
eth1      Link encap:Ethernet  HWaddr 00:30:48:2A:19:89
          inet addr:12.46.129.28  Bcast:12.46.129.127   
          Mask:255.255.255.128
          inet6 addr: fe80::230:48ff:fe2a:1989/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:1359970341 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1472870787 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:4021555658 (3.7 GiB)  TX bytes:3258456176 (3.0 GiB)
          Base address:0x3040 Memory:f8220000-f8240000

Here we can see how the Ethernet’s hardware address 00:30:48:2A:19:89 is 
mapped to an IPv6 address. First, it is converted to EUI-64, forming the address 
00:30:48:ff:fe:2a:19:89. Next, the u bit is inverted, forming the IID value 
02:30:48:ff:fe:2a:19:89. To complete the link-local IPv6 address, we use 
the reserved link-local prefix fe80::/10 (see Section 2.5). Together, these form 
the complete address, fe80::230:48ff:fe2a:1989. The presence of /64 is the 
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standard length used for identifying the subnetwork/host portion of an IPv6 
address derived from an IID as required by [RFC4291].

Another interesting example is from a Windows system with IPv6. In this 
case, we see a special tunnel endpoint, which is used to carry IPv6 traffic through 
networks that otherwise support only IPv4:

c:\> ipconfig /all
...
Tunnel adapter Automatic Tunneling Pseudo-Interface:

  Connection-specific DNS Suffix  . : foo
  Description . . . . . . . . . . . : Automatic Tunneling 
                                      Pseudo-Interface

  Physical Address. . . . . . . . . : 0A-99-8D-87
  Dhcp Enabled. . . . . . . . . . . : No
  IP Address. . . . . . . . . . . . : fe80::5efe:10.153.141.135%2
  Default Gateway . . . . . . . . . :
  DNS Servers . . . . . . . . . . . : fec0:0:0:ffff::1%2
                                      fec0:0:0:ffff::2%2
                                      fec0:0:0:ffff::3%2
  NetBIOS over Tcpip. . . . . . . . : Disabled
...

In this case, we can see a special tunneling interface called ISATAP [RFC5214]. 
The so-called physical address is really the hexadecimal encoding of an IPv4 
address: 0A-99-8D-87 is the same as 10.153.141.135. Here, the OUI used (00-
00-5E) is the one assigned to the IANA [IANA]. It is used in combination with 
the hex value fe, indicating an embedded IPv4 address. This combination is 
then combined with the standard link-local prefix fe80::/10 to give the address 
fe80::5efe:10.153.141.135. The %2 appended to the end of the address is called 
a zone ID in Windows and indicates the interface index number on the computer 
corresponding to the IPv6 address. IPv6 addresses are often created by a process 
of automatic configuration, a process we discuss in more detail in Chapter 6.

2.4 CIDR and Aggregation

In the early 1990s, after the adoption of subnet addressing to ease one form of 
growing pains, the Internet started facing a serious set of scaling problems. Three 
particular issues were considered so important as to require immediate attention:

1. By 1994, over half of all class B addresses had already been allocated. It was 
expected that the class B address space would be exhausted by about 1995.

2. The 32-bit IPv4 address was thought to be inadequate to handle the size of 
the Internet anticipated by the early 2000s.
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3. The number of entries in the global routing table (one per network num-
ber), about 65,000 in 1995, was growing. As more and more class A, B, and 
C routing entries appeared, routing performance would suffer. 

These three issues were attacked by a group in the IETF called ROAD (for 
ROuting and ADdressing), starting in 1992. They considered problems 1 and 3 to 
be of immediate concern, and problem 2 as requiring a long-term solution. The 
short-term solution they proposed was to effectively remove the class breakdown 
of IP addresses and also promote the ability to aggregate hierarchically assigned 
IP addresses. These measures would help problems 1 and 3. IPv6 was envisioned 
to deal with problem 2.

2.4.1 Prefixes

In order to help relieve the pressure on the availability of IPv4 addresses (espe-
cially class B addresses), the classful addressing scheme was generalized using a 
scheme similar to VLSM, and the Internet routing system was extended to support 
Classless Inter-Domain Routing (CIDR) [RFC4632]. This provided a way to conve-
niently allocate contiguous address ranges that contained more than 255 hosts but 
fewer than 65,536. That is, something other than single class B or multiple class 
C network numbers could be allocated to sites. Using CIDR, any address range 
is not predefined as being part of a class but instead requires a mask similar to a 
subnet mask, sometimes called a CIDR mask. CIDR masks are not limited to a site 
but are instead visible to the global routing system. Thus, the core Internet routers 
must be able to interpret and process masks in addition to network numbers. This 
combination of numbers, called a network prefix, is used for both IPv4 and IPv6 
address management.

Eliminating the predefined separation of network and host number within an 
IP address makes finer-grain allocation of IP address ranges possible. As with class-
ful addressing, dividing the address spaces into chunks is most easily achieved by 
grouping numerically contiguous addresses for use as a type or for some particu-
lar special purpose. Such groupings are now commonly expressed using a prefix 
of the address space. An n-bit prefix is a predefined value for the first n bits of an 
address. The value of n (the length of the prefix) is typically expressed as an inte-
ger in the range 0–32 for IPv4 and 0–128 for IPv6. It is generally appended to the 
base IP address following a / character. Table 2-6 gives some examples of prefixes 
and their corresponding IPv4 or IPv6 address ranges. 

In the table, the bits defined and fixed by the prefix are enclosed in a box. 
The remaining bits may be set to any combination of 0s and 1s, thereby cover-
ing the possible address range. Clearly, a smaller prefix length corresponds to a 
larger number of possible addresses. In addition, the earlier classful addressing 
approach is easily generalized by this scheme. For example, the class C network 
number 192.125.3.0 can be written as the prefix 192.125.3.0/24 or 192.125.3/24. 
Classful A and B network numbers can be expressed using /8 and /16 prefix 
lengths, respectively. 
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2.4.2 Aggregation

Removing the classful structure of IP addresses made it possible to allocate IP 
address blocks in a wider variety of sizes. Doing so, however, did not address 
the third concern from the list of problems; it did not help to reduce the number 
of routing table entries. A routing table entry tells a router where to send traffic. 
Essentially, the router inspects the destination IP address in an arriving datagram, 
finds a matching routing table entry, and from the entry extracts the “next hop” 
for the datagram. This is somewhat like driving to a particular address in a car 
and in every intersection along the way finding a sign indicating what direction 
to take to get to the next intersection on the way to the destination. If you consider 
the number of signs that would have to be present at every intersection for every 
possible destination neighborhood, you get some sense of the problem facing the 
Internet in the early 1990s.

At the time, few techniques were known to dramatically reduce the number 
of routing table entries while maintaining shortest-path routes to all destinations 
in the Internet. The best-known approach was published in a study of hierarchical 
routing [KK77] in the late 1970s by Kleinrock and Kamoun. They observed that if 
the network topology were arranged as a tree1 and addresses were assigned in a 
way that was “sensitive” to this topology, very small routing tables could be used 
while still maintaining shortest-path routes to all destinations. Consider Figure 2-8.

In this figure, circles represent routers and lines represent network links 
between them. The left-hand and right-hand sides of the diagram show tree-
shaped networks. The difference between them is the way addresses have been 
assigned to the routers. In the left-hand (a) side, addresses are essentially ran-
dom—there is no direct relationship between the addresses and the location of 

1. In graph theory, a tree is a connected graph with no cycles. For a network of routers and links, this 
means that there is only one simple (nonduplicative) path between any two routers.

Table 2-6  Examples of prefixes and their corresponding IPv4 or IPv6 address range

Prefix Prefix (Binary) Address Range

0.0.0.0/0 00000000 00000000 00000000 00000000 0.0.0.0–255.255.255.255
128.0.0.0/1 10000000 00000000 00000000 00000000 128.0.0.0–255.255.255.255
128.0.0.0/24 10000000 00000000 00000000 00000000 128.0.0.0–128.0.0.255
198.128.128.192/27 11000110 10000000 10000000 11000000 198.128.128.192–198.128.128.223
165.195.130.107/32 10100101 11000011 10000010 01101011 165.195.130.107 
2001:db8::/32 0010000000000001 0000110110111000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000 0000000000000000

2001:db8::–2001:db8:ffff:ffff
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the routers in the tree. On the right-hand (b) side of the diagram, the addresses 
are assigned based upon where the router is located in the tree. If we consider 
the number of entries each top router requires, we see that there is a significant 
difference.

The root (top) of the tree on the left is the router labeled 19.12.4.8. In order to 
know a next hop for every possible destination, it needs an entry for all the routers 
“below” it in the tree: 190.16.11.2, 86.12.0.112, 159.66.2.231, 133.17.97.12, 66.103.2.19, 
18.1.1.1, 19.12.4.9, and 203.44.23.198. For any other destination, it simply routes to the 
cloud labeled “Other Parts of the Network.” This results in a total of nine entries. 
In contrast, the root of the right-hand tree is labeled 19.0.0.1 and requires only three 
entries in its routing table. Note that all of the routers on the left side of the right 
tree begin with the prefix 19.1 and all to the right begin with 19.2. Thus, the table 
in router 19.0.0.1 need only show 19.1.0.1 as the next hop for any destination start-
ing with 19.1, whereas 19.2.0.1 is the next hop for any destination starting with 19.2. 
Any other destination goes to the cloud labeled “Other Parts of the Network.” This 
results in a total of three entries. Note that this behavior is recursive—any router 
in the (b) side of the tree never requires more entries than the number of links it 
has. This is a direct result of the special method used to assign the addresses. Even 

Figure 2-8  In a network with a tree topology, network addresses can be assigned in a special way so as to limit 
the amount of routing information (“state”) that needs to be stored in a router. If addresses are 
not assigned in this way (left side), shortest-path routes cannot be guaranteed without storing an 
amount of state proportional to the number of nodes to be reached. While assigning addresses in 
a way that is sensitive to the tree topology saves state, if the network topology changes, a reassign-
ment of addresses is generally required.
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if more routers are added to the (b)-side tree, this nice property is maintained. 
This is the essence of the hierarchical routing idea from [KK77].

In the Internet context, the hierarchical routing idea can be used in a specific 
way to reduce the number of Internet routing entries that would be required other-
wise. This is accomplished by a procedure known as route aggregation. It works by 
joining multiple numerically adjacent IP prefixes into a single shorter prefix (called 
an aggregate or summary) that covers more address space. Consider Figure 2-9.

Figure 2-9  In this example, the arrows indicate aggregation of two address prefixes to form one; 
the underlined prefixes are additions in each step. In the first step, 190.154.27.0/26 
and 190.154.27.64.0/26 can be aggregated because they are numerically adjacent, but 
190.154.27.192/26 cannot. With the addition of 190.154.27.128/26, they can all be aggre-
gated together in two steps to form 190.154.27.0/24. With the final addition of the adjacent 
190.154.26.0/24, the aggregate 190.154.26.0/23 is produced. 

We start with three address prefixes on the left in Figure 2-9. The first two, 
190.154.27.0/26 and 190.154.27.64/26, are numerically adjacent and can therefore 
be combined (aggregated). The arrows indicate where aggregation takes place. 
The prefix 190.154.27.192/26 cannot be aggregated in the first step because it is not 
numerically adjacent. When a new prefix, 190.154.27.128/26, is added (underlined), 
the 190.154.27.192/26 and 190.154.27.128/26 prefixes may be aggregated, forming 
the 190.154.27.128/25 prefix. This aggregate is now adjacent to the 190.154.27.0/25 
aggregate, so they can be aggregated further to form 190.154.27.0/24. When the 
prefix 190.154.26.0/24 (underlined) is added, the two class C prefixes can be aggre-
gated to form 190.154.26.0/23. In this way, the original three prefixes and the two 
that were added can be aggregated into a single prefix.

2.5 Special-Use Addresses

Both the IPv4 and IPv6 address spaces include a few address ranges that are used 
for special purposes (and are therefore not used in assigning unicast addresses). 
For IPv4, these addresses are given in Table 2-7 [RFC5735].
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In IPv6, a number of address ranges and individual addresses are used for 
specific purposes. They are listed in Table 2-8 [RFC5156].

For both IPv4 and IPv6, address ranges not designated as special, multicast, or 
reserved are available to be assigned for unicast use. Some unicast address space 
(prefixes 10/8, 172.16/12, and 192.168/16 for IPv4 and fc00::/7 for IPv6) is reserved 
for building private networks. Addresses from these ranges can be used by coop-
erating hosts and routers within a site or organization, but not across the global 
Internet. Thus, these addresses are sometimes called nonroutable addresses. That 
is, they will not be routed by the public Internet.

The management of private, nonroutable address space is entirely a local deci-
sion. The IPv4 private addresses are very common in home networks and for the 
internal networks of moderately sized and large enterprises. They are frequently 
used in combination with network address translation (NAT), which rewrites IP 
addresses inside IP datagrams as they enter the Internet. We discuss NAT in detail 
in Chapter 7.

Table 2-7  IPv4 special-use addresses (defined January 2010)

Prefix Special Use Reference

0.0.0.0/8 Hosts on the local network. May be used only as a source IP 
address.

[RFC1122]

10.0.0.0/8 Address for private networks (intranets). Such addresses 
never appear on the public Internet.

[RFC1918]

127.0.0.0/8 Internet host loopback addresses (same computer). Typically 
only 127.0.0.1 is used.

[RFC1122]

169.254.0.0/16 “Link-local” addresses—used only on a single link and 
generally assigned automatically. See Chapter 6.

[RFC3927]

172.16.0.0/12 Address for private networks (intranets). Such addresses 
never appear on the public Internet.

[RFC1918]

192.0.0.0/24 IETF protocol assignments (IANA reserved). [RFC5736]
192.0.2.0/24 TEST-NET-1 addresses approved for use in documentation. 

Such addresses never appear on the public Internet.
[RFC5737]

192.88.99.0/24 Used for 6to4 relays (anycast addresses). [RFC3068]
192.168.0.0/16 Address for private networks (intranets). Such addresses 

never appear on the public Internet.
[RFC1918]

198.18.0.0/15 Used for benchmarks and performance testing. [RFC2544]
198.51.100.0/24 TEST-NET-2. Approved for use in documentation. [RFC5737]
203.0.113.0/24 TEST-NET-3. Approved for use in documentation. [RFC5737]
224.0.0.0/4 IPv4 multicast addresses (formerly class D); used only as 

destination addresses.
[RFC5771]

240.0.0.0/4 Reserved space (formerly class E), except 255.255.255.255. [RFC1112]
255.255.255.255/32 Local network (limited) broadcast address. [RFC0919] 

[RFC0922]



ptg999

52 The Internet Address Architecture 

2.5.1 Addressing IPv4/IPv6 Translators

In some networks, it may be attractive to perform translation between IPv4 and 
IPv6 [RFC6127]. A framework for this has been developed for unicast translations 
[RFC6144], and one is currently under development for multicast translations [IDv-
4v6mc]. One of the basic functions is to provide automated, algorithmic translation 
of addresses. Using the “well-known” IPv6 prefix 64:ff9b::/96 or another assigned 
prefix, [RFC6052] specifies how this is accomplished for unicast addresses.

The scheme makes use of a specialized address format called an IPv4-embed-
ded IPv6 address. This type of address contains an IPv4 address inside an IPv6 
address. It can be encoded using one of six formats, based on the length of the IPv6 
prefix, which is required to be one of the following: 32, 40, 48, 56, 64, or 96. The 
formats available are shown in Figure 2-10.

In the figure, the prefix is either the well-known prefix or a prefix unique to 
the organization deploying translators. Bits 64–71 must be set to 0 to maintain 
compatibility with identifiers specified in [RFC4291]. The suffix bits are reserved 
and should be set to 0. The method to produce an IPv4-embedded IPv6 address 
is then simple: concatenate the IPv6 prefix with the 32-bit IPv4 address, ensur-
ing that the bits 63–71 are set to 0 (inserting if necessary). Append the suffix as 
0 bits until a 128-bit address is produced. IPv4-embedded IPv6 addresses using 

Table 2-8  IPv6 special-use addresses (defined April 2008)

Prefix Special Use Reference

::/0 Default route entry. Not used for addressing. [RFC5156]
::/128 The unspecified address; may be used as a source IP address. [RFC4291]
::1/128 The IPv6 host loopback address; not used in datagrams sent 

outside the local host.
[RFC4291]

::ffff:0:0/96 IPv4-mapped addresses. Such addresses never appear in 
packet headers. For internal host use only.

[RFC4291]

::{ipv4-address}/96 IPv4-compatible addresses. Deprecated; not to be used. [RFC4291]
2001::/32 Teredo addresses. [RFC4380]
2001:10::/28 Overlay Routable Cryptographic Hash Identifiers. Such 

addresses never appear on the public Internet.
[RFC4843]

2001:db8::/32 Address range used for documentation and for examples. 
Such addresses never appear on the public Internet.

[RFC3849]

2002::/16 6to4 addresses of 6to4 tunnel relays. [RFC3056]
3ffe::/16 Used by 6bone experiments. Deprecated; not to be used. [RFC3701]
5f00::/16 Used by 6bone experiments. Deprecated; not to be used. [RFC3701]
fc00::/7 Unique, local unicast addresses; not used on the global 

Internet.
[RFC4193]

fe80::/10 Link-local unicast addresses. [RFC4291]

ff00::/8 IPv6 multicast addresses; used only as destination addresses.  [RFC4291]
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the 96-bit prefix option may be expressed using the convention for IPv6-mapped 
addresses mentioned previously (Section 2.2(3) of [RFC4291]). For example, 
embedding the IPv4 address 198.51.100.16 with the well-known prefix produces 
the address 64:ff9b::198.51.100.16.

2.5.2 Multicast Addresses

Multicast addressing is supported by IPv4 and IPv6. An IP multicast address (also 
called group or group address) identifies a group of host interfaces, rather than a 
single one. Generally speaking, the group could span the entire Internet. The 
portion of the network that a single group covers is known as the group’s scope
[RFC2365]. Common scopes include node-local (same computer), link-local (same 
subnet), site-local (applicable to some site), global (entire Internet), and administra-
tive. Administrative scoped addresses may be used in an area of the network that 
has been manually configured into routers. A site administrator may configure 
routers as admin-scope boundaries, meaning that multicast traffic of the associated 
group is not forwarded past the router. Note that the site-local and administrative 
scopes are available for use only with multicast addressing.

Under software control, the protocol stack in each Internet host is able to join 
or leave a multicast group. When a host sends something to a group, it creates a 
datagram using one of its own (unicast) IP addresses as the source address and 
a multicast IP address as the destination. All hosts in scope that have joined the 

Figure 2-10  IPv4 addresses can be embedded within IPv6 addresses, forming an IPv4-embedded 
IPv6 address. Six different formats are available, depending on the IPv6 prefix length in 
use. The well-known prefix 64:ff9b::/96 can be used for automatic translation between 
IPv4 and IPv6 unicast addresses.



ptg999

54 The Internet Address Architecture 

group should receive any datagrams sent to the group. The sender is not generally 
aware of the hosts receiving the datagram unless they explicitly reply. Indeed, the 
sender does not even know in general how many hosts are receiving its datagrams.

The original multicast service model, described so far, has become known as 
any-source multicast (ASM). In this model, any sender may send to any group; a 
receiver joins the group by specifying only the group address. A newer approach, 
called source-specific multicast (SSM) [RFC3569][RFC4607], uses only a single sender 
per group (also see the errata to [RFC4607]). In this case, when joining a group, 
a host specifies the address of a channel, which comprises both a group address 
and a source IP address. SSM was developed to avoid some of the complexities in 
deploying the ASM model. Although neither form of multicast is widely available 
throughout the Internet, it seems that SSM is now the more likely candidate for 
adoption.

Understanding and implementing wide area multicasting has been an ongo-
ing effort within the Internet community for more than a decade, and a large 
number of protocols have been developed to support it. Full details of how global 
Internet multicasting works are therefore beyond the scope of this text, but the 
interested reader is directed to [IMR02]. Details of how local IP multicast operates 
are given in Chapter 9. For now, we shall discuss the format and meaning of IPv4 
and IPv6 multicast addresses. 

2.5.3 IPv4 Multicast Addresses

For IPv4, the class D space (224.0.0.0–239.255.255.255) has been reserved for 
supporting multicast. With 28 bits free, this provides for the possibility of 228 = 
268,435,456 host groups (each host group is an IP address). This address space is 
divided into major sections based on the way they are allocated and handled with 
respect to routing [IP4MA]. Those major sections are presented in Table 2-9.

The blocks of addresses up to 224.255.255.255 are allocated for the exclusive 
use of certain application protocols or organizations. These are allocated as the 
result of action by the IANA or by the IETF. The local network control block is 
limited to the local network of the sender; datagrams sent to those addresses are 
never forwarded by multicast routers. The All Hosts group (224.0.0.1) is one group 
in this block. The internetwork control block is similar to the local network control 
range but is intended for control traffic that needs to be routed off the local link. 
An example from this block is the Network Time Protocol (NTP) multicast group 
(224.0.1.1) [RFC5905].

The first ad hoc block was constructed to hold addresses that did not fall into 
either the local or internetwork control blocks. Most of the allocations in this range 
are for commercial services, some of which do not (or never will) require global 
address allocations; they may eventually be returned in favor of GLOP2 address-
ing (see the next paragraphs). The SDP/SAP block contains addresses used by 

2. GLOP is not an acronym but instead simply a name for a portion of address space.
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applications such as the session directory tool (SDR) [H96] that send multicast 
session announcements using the Session Announcement Protocol (SAP) [RFC2974]. 
Originally a component of SAP, the newer Session Description Protocol (SDP) 
[RFC4566] is now used not only with IP multicast but also with other mechanisms 
to describe multimedia sessions.

The other major address blocks were created somewhat later in the evolution of 
IP multicast. The SSM block is used by applications employing SSM in combination 
with their own unicast source IP address in forming SSM channels, as described 
previously. In the GLOP block, multicast addresses are based on the autonomous 
system (AS) number of the host on which the application allocating the address 
resides. AS numbers are used by Internet-wide routing protocols among ISPs in 
order to aggregate routes and apply routing policies. Each such AS has a unique 
AS number. Originally, AS numbers were 16 bits but have now been extended to 
32 bits [RFC4893]. GLOP addresses are generated by placing a 16-bit AS number in 
the second and third bytes of the IPv4 multicast address, leaving room for 1 byte to 
represent the possible multicast addresses (i.e., up to 256 addresses). Thus, it is pos-
sible to map back and forth between a 16-bit AS number and the GLOP multicast 
address range associated with an AS number. Although this computation is simple, 
several online calculators have been developed to do it, too.3

3. For example, http://gigapop.uoregon.edu/glop/.

Table 2-9  Major sections of IPv4 class D address space used for supporting multicast

Range (Inclusive) Special Use Reference

224.0.0.0–224.0.0.255 Local network control; not forwarded [RFC5771]
224.0.1.0–224.0.1.255 Internetwork control; forwarded normally [RFC5771]
224.0.2.0–224.0.255.255 Ad hoc block I [RFC5771]
224.1.0.0–224.1.255.255 Reserved [RFC5771]
224.2.0.0–224.2.255.255 SDP/SAP [RFC4566]
224.3.0.0–224.4.255.255 Ad hoc block II [RFC5771]
224.5.0.0–224.255.255.255 Reserved [IP4MA]
225.0.0.0–231.255.255.255 Reserved [IP4MA]
232.0.0.0–232.255.255.255 Source-specific multicast (SSM) [RFC4607]

[RFC4608]
233.0.0.0–233.251.255.255 GLOP [RFC3180]
233.252.0.0–233.255.255.255 Ad hoc block III

(233.252.0.0/24 is reserved for documentation)

[RFC5771]

234.0.0.0–234.255.255.255

235.0.0.0–238.255.255.255

Unicast-prefix-based IPv4 multicast addresses

Reserved

[RFC6034]

[IP4MA]
239.0.0.0–239.255.255.255 Administrative scope [RFC2365]

http://gigapop.uoregon.edu/glop/
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The most recent of the IPv4 multicast address allocation mechanisms associates 
a number of multicast addresses with an IPv4 unicast address prefix. This is called 
unicast-prefix-based multicast addressing (UBM) and is described in [RFC6034]. It is 
based on a similar structure developed earlier for IPv6 that we discuss in Section 
2.5.4. The UBM IPv4 address range is 234.0.0.0 through 234.255.255.255. A unicast 
address allocation with a /24 or shorter prefix may make use of UBM addresses. 
Allocations with fewer addresses (i.e., a /25 or longer prefix) must use some other 
mechanism. UBM addresses are constructed as a concatenation of the 234/8 pre-
fix, the allocated unicast prefix, and the multicast group ID. Figure 2-11 shows the 
format.

Figure 2-11  The IPv4 UBM address format. For unicast address allocations of /24 or shorter, associ-
ated multicast addresses are allocated based on a concatenation of the prefix 234/8, the 
assigned unicast prefix, and the multicast group ID. Allocations with shorter unicast 
prefixes therefore contain more unicast and multicast addresses.

To determine the set of UBM addresses associated with a unicast allocation, 
the allocated prefix is simply prepended with the 234/8 prefix. For example, the 
unicast IPv4 address prefix 192.0.2.0/24 has a single associated UBM address, 
234.192.0.2. It is also possible to determine the owner of a multicast address by 
simply “left-shifting” the multicast address by 8 bit positions. We know that the 
multicast address range 234.128.32.0/24 is allocated to UC Berkeley, for example, 
because the corresponding unicast IPv4 address space 128.32.0.0/16 (the “left-
shifted” version of 234.128.32.0) is owned by UC Berkeley (as can be determined 
using a WHOIS query; see Section 2.6.1.1).

UBM addresses may offer advantages over the other types of multicast 
address allocations. For example, they do not carry the 16-bit restriction for AS 
numbers used by GLOP addressing. In addition, they are allocated as a conse-
quence of already-existing unicast address space allocations. Thus, sites wishing 
to use multicast addresses already know which addresses they can use without 
further coordination. Finally, UBM addresses are allocated at a finer granular-
ity than GLOP addresses, which correspond to AS number allocations. In today’s 
Internet, a single AS number may be associated with multiple sites, frustrating the 
simple mapping between address and owner supported by UBM.

The administratively scoped address block can be used to limit the distribu-
tion of multicast traffic to a particular collection of routers and hosts. These are 
the multicast analogs of private unicast IP addresses. Such addresses should not 
be used for distributing multicast into the Internet, as most of them are blocked at 
enterprise boundaries. Large sites sometimes subdivide administratively scoped 
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multicast addresses to cover specific useful scopes (e.g., work group, division, and 
geographical area).

2.5.4 IPv6 Multicast Addresses

For IPv6, which is considerably more aggressive in its use of multicast, the prefix 
ff00::/8 has been reserved for multicast addresses, and 112 bits are available for 
holding the group number, providing for the possibility of 

2112 = 5,192,296,858,534,827,628,530,496,329,220,096 

groups. Its general format is as shown in Figure 2-12.

Figure 2-12  The base IPv6 multicast address format includes 4 flag bits (0, reserved; R, contains ren-
dezvous point; P, uses unicast prefix; T, is transient). The 4-bit Scope value indicates the 
scope of the multicast (global, local, etc.). The Group ID is encoded in the low-order 112 
bits. If the P or R bit is set, an alternative format is used.

The second byte of the IPv6 multicast address includes a 4-bit Flags field and a 
4-bit Scope ID field in the second nibble. The Scope field is used to indicate a limit 
on the distribution of datagrams addressed to certain multicast addresses. The 
hexadecimal values 0, 3, and f are reserved. The hex values 6, 7, and 9 through d 
are unassigned. The values are given in Table 2-10, which is based on Section 2.7 
of [RFC4291]. 

Table 2-10  Values of the IPv6 Scope field

Value Scope

0 Reserved
1 Interface-/machine-local
2 Link-/subnet-local
3 Reserved
4 Admin
5 Site-local
6–7 Unassigned
8 Organizational-local
9–d Unassigned

e Global
f Reserved
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Many IPv6 multicast addresses allocated by the IANA for permanent use 
intentionally span multiple scopes. Each of these is defined with a certain offset 
relative to every scope (such addresses are called scope-relative or variable-scope
for this reason). For example, the variable-scope multicast address ff0x::101 is 
reserved for NTP servers by [IP6MA]. The x indicates variable scope; Table 2-11 
shows some of the addresses defined by this reservation.

Table 2-11  Example permanent variable-scope IPv6 multicast address reservations for NTP (101)

Address Meaning

ff01::101 All NTP servers on the same machine
ff02::101 All NTP servers on the same link/subnet
ff04::101 All NTP servers within some administratively defined scope
ff05::101 All NTP servers at the same site
ff08::101 All NTP servers at the same organization
ff0e::101 All NTP servers in the Internet

In IPv6, the multicast address format given in Figure 2-12 is used when the 
P and R bit fields are set to 0. When P is set to 1, two alternative methods exist 
for multicast addresses that do not require global agreement on a per-group basis. 
These are described in [RFC3306] and [RFC4489]. In the first, called unicast-prefix-
based IPv6 multicast address assignment, a unicast prefix allocation provided by an 
ISP or address allocation authority also effectively allocates a collection of multicast 
addresses, thereby limiting the amount of global coordination required for avoid-
ing duplicates. With the second method, link-scoped IPv6 multicast, interface identi-
fiers are used, and multicast addresses are based on a host’s IID. To understand 
how these various formats work, we need to first understand the use of the bit 
fields in the IPv6 multicast address in more detail. They are defined in Table 2-12.

Table 2-12  IPv6 multicast address flags

Bit Field
(Flag) Meaning Reference

R Rendezvous point flag (0, regular; 1, RP address included) [RFC3956]
P Prefix flag (0, regular; 1, address based on unicast prefix) [RFC3306]
T Transient flag (0, permanently assigned; 1, transient) [RFC4291]

The T bit field, when set, indicates that the included group address is tempo-
rary or dynamically allocated; it is not one of the standard addresses defined in 
[IP6MA]. When the P bit field is set to 1, the T bit must also be set to 1. When this 
happens, a special format of IPv6 multicast addresses based on unicast address 
prefixes is enabled, as shown in Figure 2-13.
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We can see here how using unicast-prefix-based addressing changes the for-
mat of the multicast address to include space for a unicast prefix and its length, 
plus a smaller (32-bit) group ID. The purpose of this scheme is to provide a way 
of allocating globally unique IPv6 multicast addresses without requiring a new 
global mechanism for doing so. Because IPv6 unicast addresses are already allo-
cated globally in units of prefixes (see Section 2.6), it is possible to use bits of this 
prefix in multicast addresses, thereby leveraging the existing method of unicast 
address allocation for multicast use. For example, an organization receiving a uni-
cast prefix allocation of 3ffe:ffff:1::/48 would also consequently receive a unicast-
based multicast prefix allocation of ff3x:30:3ffe:ffff:1::/96, where x is any valid 
scope. SSM is also supported using this format by setting the prefix length and 
prefix fields to 0, effectively requiring the prefix ff3x::/32 (where x is any valid 
scope value) for use in all such IPv6 SSM multicast addresses.

To create unique multicast addresses of link-local scope, a method based on 
IIDs can be used [RFC4489], which is preferred to unicast-prefix-based allocation 
when only link-local scope is required. In this case, another form of IPv6 multicast 
address structure is used (see Figure 2-14).

Figure 2-13  IPv6 multicast addresses can be created based upon unicast IPv6 address assignments 
[RFC3306]. When this is done, the P bit field is set to 1, and the unicast prefix is carried 
in the address, along with a 32-bit group ID. This form of multicast address allocation 
eases the need for global address allocation agreements.

Figure 2-14  The IPv6 link-scoped multicast address format. Applicable only to link- (or smaller) 
scoped addresses, the multicast address can be formed by combining an IPv6 interface 
ID and a group ID. The mapping is straightforward, and all such addresses use prefixes 
of the form ff3x:0011/32, where x is the scope ID and is less than 3.

The address format shown in Figure 2-14 is very similar to the format in Fig-
ure 2-13, except that the Prefix Length field is set to 255, and instead of a prefix 
being carried in the subsequent field, an IPv6 IID is instead. The advantage of 
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this structure over the previous one is that no prefix need be supplied in forming 
the multicast address. In ad hoc networks where no routers may be available, an 
individual machine can form unique multicast addresses based on its own IID 
without having to engage in a complex agreement protocol. As stated before, this 
format works only for link- or node-local multicast scoping, however. When larger 
scopes are required, either unicast-prefix-based addressing or permanent multi-
cast addresses are used. As an example of this format, a host with IID 02-11-22-33-
44-55-66-77 would use multicast addresses of the form ff3x:0011:0211:2233:4455:66
77:gggg:gggg, where x is a scope value of 2 or less and gggg:gggg is the hexadeci-
mal notation for a 32-bit multicast group ID.

The bit field we have yet to discuss is the R bit field. It is used when unicast-
prefix-based multicast addressing is used (the P bit is set) along with a multicast 
routing protocol that requires knowledge of a rendezvous point.

Note

A rendezvous point (RP) is the IP address of a router set up to handle multicast 
routing for one or more multicast groups. RPs are used by the PIM-SM proto-
col [RFC4601] to help senders and receivers participating in the same multicast 
group to find each other. One of the problems encountered in deploying Internet-
wide multicast has been locating rendezvous points. This scheme overloads the 
IPv6 multicast address to include an RP address. Therefore, it is simple to find an 
RP from a group address by just selecting the appropriate subset of bits.

When the P bit is set, the modified format for a multicast address shown in 
Figure 2-15 is used.

Figure 2-15  The unicast IPv6 address of an RP can be embedded inside an IPv6 multicast address 
[RFC3956]. Doing so makes it straightforward to find an RP associated with an address 
for routing purposes. An RP is used by the multicast routing system in order to coordi-
nate multicast senders with receivers when they are not on the same subnetwork.

The format shown in Figure 2-15 is similar to the one shown in Figure 2-13, 
but SSM is not used (so the prefix length cannot be zero). In addition, a new 4-bit 
field called the RIID is introduced. To form the IPv6 address of an RP based on 
a multicast address of the form in Figure 2-15, the number of bits indicated in 
the Prefix Length field are extracted from the Prefix field and placed as the upper 
bits in a fresh IPv6 address. Then, the contents of the RIID field are used as the 
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low-order 4 bits of the RP address. The rest is filled with zeros. As an example, 
consider a multicast address ff75:940:2001:db8:dead:beef:f00d:face. In this case, 
the scope is 5 (site-local), the RIID field has the value 9, and the prefix length is 
0x40 = 64 bits. The prefix itself is therefore 2001:db8:dead:beef, so the RP address 
is 2001:db8:dead:beef::9. More examples are given in [RFC3956].

As with IPv4, there are a number of reserved IPv6 multicast addresses. These 
addresses are grouped by scope, except for the variable-scope addresses men-
tioned before. Table 2-13 gives a list of the major reservations from the IPv6 multi-
cast space. Consult [IP6MA] for additional information.

Table 2-13  Reserved addresses within the IPv6 multicast address space

Address Scope Special Use Reference

ff01::1 Node All nodes [RFC4291]
ff01::2 Node All routers [RFC4291]
ff01::fb Node mDNSv6 [IDChes]

ff02::1 Link All nodes [RFC4291]
ff02::2 Link All routers [RFC4291]
ff02::4 Link DVMRP routers [RFC1075]
ff02::5 Link OSPFIGP [RFC2328]
ff02::6 Link OSPFIGP designated routers [RFC2328]
ff02::9 Link RIPng routers [RFC2080]
ff02::a Link EIGRP routers [EIGRP]
ff02::d Link PIM routers [RFC5059]
ff02::16 Link MLDv2-capable routers [RFC3810]
ff02::6a Link All snoopers [RFC4286]
ff02::6d Link LL-MANET-routers [RFC5498]
ff02::fb Link mDNSv6 [IDChes]
ff02::1:2 Link All DHCP agents [RFC3315]
ff02::1:3 Link LLMNR [RFC4795]
ff02::1:ffxx:xxxx Link Solicited-node address range [RFC4291]

ff05::2 Site All routers [RFC4291]
ff05::fb Site mDNSv6 [IDChes]
ff05::1:3 Site All DHCP servers [RFC3315]

ff0x:: Variable Reserved [RFC4291]
ff0x::fb Variable mDNSv6 [IDChes]
ff0x::101 Variable NTP [RFC5905]
ff0x::133 Variable Aggregate Server Access Protocol [RFC5352]
ff0x::18c Variable All ACs address (CAPWAP) [RFC5415]

ff3x::/32 (Special) SSM block [RFC4607]



ptg999

62 The Internet Address Architecture 

2.5.5 Anycast Addresses

An anycast address is a unicast IPv4 or IPv6 address that identifies a different host 
depending on where in the network it is used. This is accomplished by configur-
ing Internet routers to advertise the same unicast routes from multiple locations in 
the Internet. Thus, an anycast address refers not to a single host in the Internet, but 
to the “most appropriate” or “closest” single host that is responding to the anycast 
address. Anycast addressing is used most frequently for finding a computer that 
provides a common service [RFC4786]. For example, a datagram sent to an anycast 
address could be used to find a DNS server (see Chapter 11), a 6to4 gateway that 
encapsulates IPv6 traffic in IPv4 tunnels [RFC3068], or RPs for multicast routing 
[RFC4610].

2.6 Allocation

IP address space is allocated, usually in large chunks, by a collection of hierarchi-
cally organized authorities. The authorities are generally organizations that allo-
cate address space to various owners—usually ISPs or other smaller authorities. 
Authorities are most often involved in allocating portions of the global unicast 
address space, but other types of addresses (multicast and special-use) are also 
sometimes allocated. The authorities can make allocations to users for an undeter-
mined amount of time, or for a limited time (e.g., for running experiments). The 
top of the hierarchy is the IANA [IANA], which has wide-ranging responsibil-
ity for allocating IP addresses and other types of numbers used in the Internet 
protocols.

2.6.1 Unicast

For unicast IPv4 and IPv6 address space, the IANA delegates much of its allocation 
authority to a few regional Internet registries (RIRs). The RIRs coordinate with each 
other through an organization formed in 2003 called the Number Resource Orga-
nization (NRO) [NRO]. At the time of writing (mid-2011), the set of RIRs includes 
those shown in Table 2-14, all of which participate in the NRO. Note in addition 
that, as of early 2011, all the remaining unicast IPv4 address space held by IANA 
for allocation had been handed over to these RIRs.

These entities typically deal with relatively large address blocks [IP4AS]
[IP6AS]. They allocate address space to smaller registries operating in countries 
(e.g., Australia and Singapore) and to large ISPs. ISPs, in turn, provide address 
space to their customers and themselves. When users sign up for Internet ser-
vice, they are ordinarily provided a (typically small) fraction or range of their 
ISP’s address space in the form of an address prefix. These address ranges are 
owned and managed by the customer’s ISP and are called provider-aggregatable
(PA) addresses because they consist of one or more prefixes that can be aggregated 
with other prefixes the ISP owns. Such addresses are also sometimes called non-
portable addresses. Switching providers typically requires customers to change the 
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IP prefixes on all computers and routers they have that are attached to the Internet 
(an often unpleasant operation called renumbering).

An alternative type of address space is called provider-independent (PI) address 
space. Addresses allocated from PI space are allocated to the user directly and 
may be used with any ISP. However, because such addresses are owned by the 
customer, they are not numerically adjacent to the ISP’s own addresses and are 
therefore not aggregatable. An ISP being asked to provide routing for a customer’s 
PI addresses may require additional payment for service or simply not agree to 
support such a configuration. In some sense, an ISP that agrees to provide routing 
for a customer’s PI addresses is taking on an extra cost relative to other customers 
by having to increase the size of its routing tables. On the other hand, many sites 
prefer to use PI addresses, and might be willing to pay extra for them, because 
it helps to avoid the need to renumber when switching ISPs (avoiding what has 
become known as provider lock).

2.6.1.1 Examples
It is possible to use the Internet WHOIS service to determine how address space 
has been allocated. For example, we can form a query for information about the 
IPv4 address 72.1.140.203 by accessing the corresponding URL http://whois.
arin.net/rest/ip/72.1.140.203.txt:

NetRange:       72.1.140.192 - 72.1.140.223
CIDR:           72.1.140.192/27
OriginAS:       
NetName:        SPEK-SEA5-PART-1
NetHandle:      NET-72-1-140-192-1
Parent:         NET-72-1-128-0-1
NetType:        Reassigned
RegDate:        2005-06-29
Updated:        2005-06-29
Ref:            http://whois.arin.net/rest/net/NET-72-1-140-192-1

Table 2-14  Regional Internet registries that participate in the NRO

RIR Name Area of Responsibility Reference

AfriNIC—African Network 
Information Center

Africa http://www.afrinic.net

APNIC—Asia Pacific Network 
Information Center

Asia/Pacific Area http://www.apnic.net

ARIN—American Registry for 
Internet Numbers

North America http://www.arin.net

LACNIC—Regional Latin 
America and Caribbean IP 
Address Registry

Latin America and some 
Caribbean islands

http://lacnic.net/en/index.html

RIPE NCC—Réseaux IP 
Européens

Europe, Middle East, 
Central Asia

http://www.ripe.net

http://whois.arin.net/rest/net/NET-72-1-140-192-1
http://www.afrinic.net
http://www.apnic.net
http://www.arin.net
http://lacnic.net/en/index.html
http://www.ripe.net
http://whois.arin.net/rest/ip/72.1.140.203.txt
http://whois.arin.net/rest/ip/72.1.140.203.txt
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Here we see that the address 72.1.140.203 is really part of the network called 
SPEK-SEA5-PART-1, which has been allocated the address range 72.1.140.192/27. 
Furthermore, we can see that SPEK-SEA5-PART-1’s address range is a portion of 
the PA address space called NET-72-1-128-0-1. We can formulate a query for 
information about this network by visiting the URL http://whois.arin.net/
rest/net/NET-72-1-128-0-1.txt:

NetRange:       72.1.128.0 - 72.1.191.255
CIDR:           72.1.128.0/18
OriginAS:       
NetName:        SPEAKEASY-6
NetHandle:      NET-72-1-128-0-1
Parent:         NET-72-0-0-0-0
NetType:        Direct Allocation
RegDate:        2004-09-09
Updated:        2009-05-19
Ref:            http://whois.arin.net/rest/net/NET-72-1-128-0-1

This record indicates that the address range 72.1.128.0/18 (called by the “han-
dle” or name NET-72-1-128-0-1) has been directly allocated out of the address 
range 72.0.0.0/8 managed by ARIN. More details on data formats and the vari-
ous methods ARIN supports for WHOIS queries can be found at [WRWS].

We can look at a different type of result using one of the other RIRs. For exam-
ple, if we search for information regarding the IPv4 address 193.5.93.80 using 
the Web query interface at http://www.ripe.net/whois, we obtain the follow-
ing result:

% This is the RIPE Database query service.
% The objects are in RPSL format.
%
% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db-terms-conditions.pdf
% 
% Note: This output has been filtered.
%       To receive output for a database update, use the "-B" flag.
% Information related to '193.5.88.0 - 193.5.95.255'
inetnum:         193.5.88.0 - 193.5.95.255
netname:         WIPONET
descr:           World Intellectual Property Organization
descr:           UN Specialized Agency
descr:           Geneva
country:         CH
admin-c:         AM4504-RIPE
tech-c:          AM4504-RIPE
status:          ASSIGNED PI
mnt-by:          CH-UNISOURCE-MNT
mnt-by:          DE-COLT-MNT
source:          RIPE # Filtered

http://whois.arin.net/rest/net/NET-72-1-128-0-1.txt:
http://whois.arin.net/rest/net/NET-72-1-128-0-1.txt:
http://whois.arin.net/rest/net/NET-72-1-128-0-1
http://www.ripe.net/whois
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Here, we can see that the address 193.5.93.80 is a portion of the 193.5.88.0/21
block allocated to WIPO. Note that the status of this block is ASSIGNED PI, mean-
ing that this particular block of addresses is of the provider-independent variety. 
The reference to RPSL indicates that the database records are in the Routing Policy 
Specification Language [RFC2622][RFC4012], used by ISPs to express their routing 
policies. Such information allows network operators to configure routers to help 
minimize Internet routing instabilities.

2.6.2 Multicast

In IPv4 and IPv6, multicast addresses (i.e., group addresses) can be described based 
on their scope, the way they are determined (statically, dynamically by agreement, 
or algorithmically), and whether they are used for ASM or SSM. Guidelines have 
been constructed for allocation of these groups ([RFC5771] for IPv4; [RFC3307] for 
IPv6) and the overall architecture is detailed in [RFC6308]. The groups that are 
not of global scope (e.g., administratively scoped addresses and IPv6 link-scoped 
multicast addresses) can be reused in various parts of the Internet and are either 
configured by a network administrator out of an administratively scoped address 
block or selected automatically by end hosts. Globally scoped addresses that are 
statically allocated are generally fixed and may be hard-coded into applications. 
This type of address space is limited, especially in IPv4, so such addresses are 
really intended for uses applicable to any Internet site. Algorithmically deter-
mined globally scoped addresses can be created based on AS numbers, as in 
GLOP, or an associated unicast prefix allocation. Note that SSM can use globally 
scoped addresses (i.e., from the SSM block), administratively scoped addresses, or 
unicast-prefix-based IPv6 addresses where the prefix is effectively zero. 

As we can see from the relatively large number of protocols and the complex-
ity of the various multicast address formats, multicast address management is a 
formidable issue (not to mention global multicast routing [RFC5110]). From a typi-
cal user’s point of view, multicasting is used rarely and may be of limited concern. 
From a programmer’s point of view, it may be worthwhile to support multicast 
in application designs, and some insight has been provided into how to do so 
[RFC3170]. For network administrators faced with implementing multicast, some 
interaction with the service provider is likely necessary. In addition, some guide-
lines for multicast address allocation have been developed by vendors [CGEMA].

2.7 Unicast Address Assignment

Once a site has been allocated a range of unicast IP addresses, typically from its 
ISP, the site or network administrator must determine how to assign addresses in 
the address range to each network interface and how to set up the subnet structure. 
If the site has only a single physical network segment (e.g., most private homes), 
this process is relatively straightforward. For larger enterprises, especially those 
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receiving service from multiple ISPs and that use multiple physical network seg-
ments distributed over a large geographical area, this process can be complicated. 
We shall begin to see how this works by looking at the case where a home user 
uses a private address range and a single IPv4 address provided by an ISP. This is 
a common scenario today. We then move on to provide some introductory guid-
ance for more complicated situations.

2.7.1 Single Provider/No Network/Single Address

The simplest type of Internet service that can be obtained today is to receive a single 
IP address (typically IPv4 only in the United States) from an ISP to be used with a 
single computer. For services such as DSL, the single address might be assigned as 
the end of a point-to-point link and might be temporary. For example, if a user’s 
computer connects to the Internet over DSL, it might be assigned the address 
63.204.134.177 on a particular day. Any running program on the computer may send 
and receive Internet traffic, and any such traffic will carry the source IPv4 address 
63.204.134.177. Even a host this simple has other active IP addresses as well. These 
include the local “loopback” address (127.0.0.1) and some multicast addresses, includ-
ing, at a minimum, the All Hosts multicast address (224.0.0.1). If the host is running 
IPv6, at a minimum it is using the All Nodes IPv6 multicast address (ff02::1), any 
IPv6 addresses it has been assigned by the ISP, the IPv6 loopback address (::1), and a 
link-local address for each network interface configured for IPv6 use.

To see a host’s active multicast addresses (groups) on Linux, we can use the 
ifconfig and netstat commands to see the IP addresses and groups in use:

Linux% ifconfig ppp0
ppp0      Link encap:Point-to-Point Protocol
          inet addr:71.141.244.213  
          P-t-P:71.141.255.254  Mask:255.255.255.255
          UP POINTOPOINT RUNNING NOARP MULTICAST  MTU:1492  Metric:1
          RX packets:33134 errors:0 dropped:0 overruns:0 frame:0
          TX packets:41031 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:3
          RX bytes:17748984 (16.9 MiB)  TX bytes:9272209 (8.8 MiB)

Linux% netstat -gn
IPv6/IPv4 Group Memberships
Interface       RefCnt Group
--------------- ------ ---------------------
lo              1      224.0.0.1
ppp0            1      224.0.0.251
ppp0            1      224.0.0.1
lo              1      ff02::1

Here we see that the point-to-point link associated with the device ppp0
has been assigned the IPv4 address 71.141.244.213; no IPv6 address has been 
assigned. The host system does have IPv6 enabled, however, so when we inspect 
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its group memberships we see that it is subscribed to the IPv6 All Nodes multicast 
group on its local loopback (lo) interface. We can also see that the IPv4 All Hosts 
group is in use, in addition to the mDNS (multicast DNS) service [IDChes]. The 
mDNS protocol uses the static IPv4 multicast address 224.0.0.251.

2.7.2 Single Provider/Single Network/Single Address

Many Internet users who own more than one computer find that having only a 
single computer attached to the Internet is not an ideal situation. As a result, they 
have home LAN or WLAN networks and use either a router or a computer acting 
as a router to provide connectivity to the Internet. Such configurations are very 
similar to the single-computer case, except the router forwards packets from the 
home network to the ISP and also performs NAT (see Chapter 7; also called Inter-
net Connection Sharing (ICS) in Windows) by rewriting the IP addresses in packets 
being exchanged with the customer’s ISP. From the ISP’s point of view, only a 
single IP address has been used. Today, much of this activity is automated, so the 
need for manual address configuration is minimal. The routers provide automatic 
address assignment to the home clients using DHCP. They also handle address 
assignment for the link set up with the ISP if necessary. Details of DHCP operation 
and host configuration are given in Chapter 6.

2.7.3 Single Provider/Multiple Networks/Multiple Addresses

Many organizations find that the allocation of a single unicast address, especially 
if it is only temporarily assigned, is insufficient for their Internet access needs. 
In particular, organizations intending to run Internet servers (such as Web sites) 
generally wish to have an IP address that does not change over time. These sites 
also often have multiple LANs; some of them are internal (separated from the 
Internet by firewalls and NAT devices), and others may be external (providing 
services to the Internet). For such networks, there is typically a site or network 
administrator who must decide how many IP addresses the site requires, how 
to structure subnets at the site, and which subnets should be internal and which 
external. The arrangement shown in Figure 2-16 is typical for small and medium-
size enterprises.

In this figure, a site has been allocated the prefix 128.32.2.64/26, providing 
up to 64 (minus 2) routable IPv4 addresses. The “DMZ” network (“demilitarized 
zone” network, outside the primary firewall; see Chapter 7) is used to attach serv-
ers that can be accessed by users on the Internet. Such computers typically pro-
vide Web access, login servers, and other services. These servers are assigned IP 
addresses from a small subset of the prefix range; many sites have only a few 
public servers. The remaining addresses from the site prefix are given to the NAT 
router as the basis for a “NAT pool” (see Chapter 7). This router can rewrite data-
grams entering and leaving the internal network using any of the addresses in 
its pool. The network setup in Figure 2-16 is convenient for two primary reasons. 
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First, the separation of the internal network from the DMZ helps protect internal 
computers from damage should the DMZ servers be compromised. In addition, 
this setup partitions the IP address assignment. Once the border router, DMZ, and 
internal NAT router have been set up, any address structure can be used inter-
nally, where many (private) IP addresses are available. Of course, this example 
is only one way of setting up small enterprise networks, and other factors such 
as cost might ultimately drive the way routers, networks, and IP addresses are 
deployed for any particular small or medium-size enterprise.

2.7.4 Multiple Providers/Multiple Networks/Multiple Addresses (Multihoming)

Some organizations that depend on Internet access for their continued operations 
attach to the Internet using more than one provider (called multihoming) in order 
to provide for redundancy in case of failure, or for other reasons. Because of CIDR, 

Figure 2-16  A typical small to medium-size enterprise network. The site has been allocated 64 
public (routable) IPv4 addresses in the range 128.32.2.64/26. A “DMZ” network holds 
servers that are visible to the Internet. The internal router provides Internet access for 
computers internal to the enterprise using NAT.
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organizations with a single ISP tend to have PA IP addresses associated with that 
ISP. If they obtain a second ISP, the question arises as to what IP addresses should 
be used in each of the hosts. Some guidance has been developed for operating 
with multiple ISPs, or when transitioning from one to another (which raises some 
similar concerns). For IPv4, [RFC4116] discusses how either PI or PA addresses can 
be used for multihoming. Consider the situation shown in Figure 2-17.

Figure 2-17  Provider-aggregatable and provider-independent IPv4 addresses used in a hypothetical 
multihomed enterprise. Site operators tend to prefer using PI space if it is available. ISPs 
prefer PA space because it promotes prefix aggregation and reduces routing table size.

Here, a (somewhat) fictitious site S has two ISPs, P1 and P2. If it uses PA address 
space from P1’s block (12.46.129.0/25), it advertises this prefix at points C and D to 
P1 and P2, respectively. The prefix can be aggregated by P1 into its 12/8 block in 
advertisements to the rest of the Internet at point A, but P2 is not able to aggregate 
it at point B because it is not numerically adjacent to its own prefix (137.164/16). 
In addition, from the point of view of some host in the other parts of the Internet, 
traffic for 12.46.129.0/25 tends to go through ISP P2 rather than ISP P1 because the 
prefix for site S is longer (“more specific”) than when it goes through P1. This is 
a consequence of the way the longest matching prefix algorithm works for Internet 
routing (see Chapter 5 for more details). In essence, a host in the other parts of the 
Internet could reach the address 12.46.129.1 via either a matching prefix 12.0.0.0/8 
at point A or the prefix 12.46.129.0/25 at point B. Because each prefix matches (i.e., 
contains a common set of prefix bits with the destination address 12.46.129.1), the 
one with the larger or longer mask (larger number of matching bits) is preferred, 
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which in this case is P2. Thus, P2 is in the position of being unable to aggregate the 
prefix from S and also winds up carrying most of S’s traffic.

If site S decides to use PI space instead of PA space, the situation is more symmet-
ric. However, no aggregation is possible. In this case, the PI prefix 198.134.135.0/24 
is advertised to P1 and P2 at points C and D, respectively, but neither ISP is able 
to aggregate it because it is not numerically adjacent to either of the ISPs’ address 
blocks. Thus, both ISPs advertise the identical prefix 198.134.135.0/24 at points A 
and B. In this fashion the “natural” shortest-path computations in Internet rout-
ing can take place, and site S can be reached by whichever ISP is closer to the host 
sending to it. In addition, if site S decides to switch ISPs, it does not have to change 
its assigned addresses. Unfortunately, the inability to aggregate such addresses 
can be a concern for future scalability of the Internet, so PI space is in relatively 
short supply.

Multihoming for IPv6 has been the subject of study within the IETF for 
some time, resulting in the Multi6 architecture [RFC4177] and the Shim6 proto-
col [RFC5533]. Multi6 outlines a number of approaches that have been proposed 
for handling the issue. Broadly, the options mentioned include using a routing 
approach equivalent to IPv4 multihoming mentioned previously, using the capa-
bilities of Mobile IPv6 [RFC6275], and creating a new method that splits the iden-
tification of nodes away from their locators. Today, IP addresses serve as both 
identifiers (essentially a form of name) and locators (an address understood by the 
routing system) for a network interface attached to the Internet. Providing a sepa-
ration would allow the network protocol implementation to function even if the 
underlying IP address changes. Protocols that provide this separation are some-
times called identifier/locator separating or id/loc split protocols.

Shim6 introduces a “shim” network-layer protocol that separates the “upper-
layer protocol identifier” used by the transport protocols from the IP address. 
Multihoming is achieved by selecting which IP address (locator) to use based 
on dynamic network conditions and without requiring PI address allocations. 
Communicating hosts (peers) agree on which locators to use and when to switch 
between them. Separation of identifiers from locators is the subject of several other 
efforts, including the experimental Host Identity Protocol (HIP) [RFC4423], which 
identifies hosts using cryptographic host identifiers. Such identifiers are effec-
tively the public keys of public/private key pairs associated with hosts, so HIP 
traffic can be authenticated as having come from a particular host. Security issues 
are discussed in more detail in Chapter 18.

2.8 Attacks Involving IP Addresses

Given that IP addresses are essentially numbers, few network attacks involve only 
them. Generally, attacks can be carried out when sending “spoofed” datagrams (see 
Chapter 5) or with other related activities. That said, IP addresses are now being 
used to help identify individuals suspected of undesirable activities (e.g., copyright 
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infringement in peer-to-peer networks or distribution of illegal materials). Doing 
this can be misleading for several reasons. For example, in many circumstances 
IP addresses are only temporary and are reassigned to different users at different 
times. Therefore, any errors in accurate timekeeping can easily cause databases 
that map IP addresses to users to be incorrect. Furthermore, access controls are not 
widely and securely deployed; it is often possible to attach to the Internet through 
some public access point or some unintentionally open wireless router in some-
one’s home or office. In such circumstances, the unsuspecting home or business 
owner may be targeted based on IP address even though that person was not the 
originator of traffic on the network. This can also happen when compromised hosts 
are used to form botnets. Such collections of computers (and routers) can now be 
leased on what has effectively become an Internet-based black market for carrying 
out attacks, serving illicit content, and other misdeeds [RFC4948].

2.9 Summary

The IP address is used to identify and locate network interfaces on devices 
throughout the Internet system (unicast addresses). It may also be used for iden-
tifying more than one such interface (multicast, broadcast, or anycast addresses). 
Each interface has a minimum of one 32-bit IPv4 address (when IPv4 is being 
used) and usually has several 128-bit addresses if using IPv6. Unicast addresses 
are allocated in blocks by a hierarchically structured set of administrative entities. 
Prefixes allocated by such entities represent a chunk of unicast IP address space 
typically given to ISPs that in turn provide addresses to their users. Such prefixes 
are usually a subrange of the ISP’s address block (called provider-aggregatable or 
PA addresses) but may instead be owned by the user (called provider-indepen-
dent or PI addresses). Numerically adjacent address prefixes (PA addresses) can 
be aggregated to save routing table space and improve scalability of the Internet. 
This approach arose when the Internet’s “classful” network structure consist-
ing of class A, B, and C network numbers was abandoned in favor of classless 
inter-domain routing (CIDR). CIDR allows for different sizes of address blocks to 
be assigned to organizations with different needs for address space; essentially, 
CIDR enables more efficient allocation of address space. Anycast addresses are 
unicast addresses that refer to different hosts depending on where the sender is 
located; such addresses are often used for discovering network services that may 
be present in multiple locations.

IPv6 unicast addresses differ somewhat from IPv4 addresses. Most important, 
IPv6 addresses have a scope concept, for both unicast and multicast addresses, 
that specifically indicates where an address is valid. Typical scopes include node-
local, link-local, and global. Link-local addresses are often created based on a stan-
dard prefix in combination with an IID that can be based on addresses provided 
by lower-layer protocols (such as hardware/MAC addresses) or random values. 
This approach aids in autoconfiguration of IPv6 addresses. 
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Both IPv4 and IPv6 support addressing formats that refer to more than one 
network interface at a time. Broadcast and multicast addresses are supported in 
IPv4, but only multicast addresses are supported in IPv6. Broadcast allows for one-
to-all communication, whereas multicast allows for one-to-many communication. 
Senders send to multicast groups (IP addresses) that act somewhat like television 
channels; the sender has no direct knowledge of the recipients of its traffic or 
how many receivers there are on a channel. Global multicast in the Internet has 
evolved over more than a decade and involves many protocols—some for routing, 
some for address allocation and coordination, and some for signaling that a host 
wishes to join or leave a group. There are also many types and uses of IP multi-
cast addresses, both in IPv4 and (especially) in IPv6. Variants of the IPv6 multi-
cast address format provide ways for allocating groups based on unicast prefixes, 
embedding routing information (RP addresses) in groups, and creating multicast 
addresses based on IIDs.

The development and deployment of CIDR was arguably the last fundamen-
tal change made to the Internet’s core routing system. CIDR was successful in 
handling the pressure to have more flexibility in allocating address space and 
for promoting routing scalability through aggregation. In addition, IPv6 was pur-
sued at the time (early 1990s) with much energy, based on the belief that a much 
larger number of addresses would be required soon. Unforeseen at the time, the 
widespread use of NAT (see Chapter 7) has since significantly delayed adoption of 
IPv6 by not requiring every host attached to the Internet to have a unique address. 
Instead, large networks using private address space are now commonplace. Ulti-
mately, however, the number of available routable IP addresses will eventually 
dwindle to zero, so some change will be required. In February 2011 the last five /8 
IPv4 address prefixes were allocated from the IANA, one to each of the five RIRs. 
On April 15, 2011, APNIC exhausted all of its allocatable prefixes. The remain-
ing prefixes held by various RIRs are expected to remain unallocated for only a 
few years at most. A current snapshot of IPv4 address utilization can be found at 
[IP4R].
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3

Link Layer

3.1 Introduction 

In Chapter 1, we saw that the purpose of the link layer in the TCP/IP protocol suite 
is to send and receive IP datagrams for the IP module. It is also used to carry a 
few other protocols that help support IP, such as ARP (see Chapter 4). TCP/IP sup-
ports many different link layers, depending on the type of networking hardware 
being used: wired LANs such as Ethernet, metropolitan area networks (MANs) such 
as cable TV and DSL connections available through service providers, and wired 
voice networks such as telephone lines with modems, as well as the more recent 
wireless networks such as Wi-Fi (wireless LAN) and various wireless data ser-
vices based on cellular technlology such as HSPA, EV-DO, LTE, and WiMAX. In 
this chapter we shall look at some of the details involved in using the Ethernet and 
Wi-Fi link layers, how the Point-to-Point Protocol (PPP) is used, and how link-layer 
protocols can be carried inside other (link- or higher-layer) protocols, a technique 
known as tunneling. Covering the details of every link technology available today 
would require a separate text, so we instead focus on some of the most commonly 
used link-layer protocols and how they are used by TCP/IP. 

Most link-layer technologies have an associated protocol format that describes 
how the corresponding PDUs must be constructed in order to be carried by the 
network hardware. When referring to link-layer PDUs, we usually use the term 
frame, so as to distinguish the PDU format from those at higher layers such as 
packets or segments, terms used to describe network- and transport-layer PDUs, 
respectively. Frame formats usually support a variable-length frame size ranging 
from a few bytes to a few kilobytes. The upper bound of the range is called the 
maximum transmission unit (MTU), a characteristic of the link layer that we shall 
encounter numerous times in the remaining chapters. Some network technolo-
gies, such as modems and serial lines, do not impose their own maximum frame 
size, so they can be configured by the user. 
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3.2 Ethernet and the IEEE 802 LAN/MAN Standards 

The term Ethernet generally refers to a set of standards first published in 1980 and 
revised in 1982 by Digital Equipment Corp., Intel Corp., and Xerox Corp. The first 
common form of Ethernet is now sometimes called “10Mb/s Ethernet” or “shared 
Ethernet,” and it was adopted (with minor changes) by the IEEE as standard number 
802.3. Such networks were usually arranged like the network shown in Figure 3-1.

Figure 3-1  A basic shared Ethernet network consists of one or more stations (e.g., workstations, 
supercomputers) attached to a shared cable segment. Link-layer PDUs (frames) can be 
sent from one station to one or more others when the medium is determined to be free. 
If multiple stations send at the same time, possibly because of signal propagation delays, 
a collision occurs. Collisions can be detected, and they cause sending stations to wait a 
random amount of time before retrying. This common scheme is called carrier sense, 
multiple access with collision detection. 

Because multiple stations share the same network, this standard includes a 
distributed algorithm implemented in each Ethernet network interface that con-
trols when a station gets to send data it has. The particular method, known as 
carrier sense, multiple access with collision detection (CSMA/CD), mediates which 
computers can access the shared medium (cable) without any other special agree-
ment or synchronization. This relative simplicity helped to promote the low cost 
and resulting popularity of Ethernet technology.

With CSMA/CD, a station (e.g., computer) first looks for a signal currently 
being sent on the network and sends its own frame when the network is free. 
This is the “carrier sense” portion of the protocol. If some other station happens 
to send at the same time, the resulting overlapping electrical signal is detected as 
a collision. In this case, each station waits a random amount of time before try-
ing again. The amount of time is selected by drawing from a uniform probability 
distribution that doubles in length each time a subsequent collision is detected. 
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Eventually, each station gets its chance to send or times out trying after some 
number of attempts (16 in the case of conventional Ethernet). With CSMA/CD, 
only one frame is traveling on the network at any given time. Access methods such 
as CSMA/CD are more formally called Media Access Control (MAC) protocols. 
There are many types of MAC protocols; some are based on having each station 
try to use the network independently (contention-based protocols like CSMA/
CD), and others are based on prearranged coordination (e.g., by allocating time 
slots for each station to send). 

Since the development of 10Mb/s Ethernet, faster computers and infrastruc-
ture have driven the need for ever-increasing speeds in LANs. Given the popu-
larity of Ethernet, significant innovation and effort have managed to increase its 
speed from 10Mb/s to 100Mb/s to 1000Mb/s to 10Gb/s, and now to even more. 
The 10Gb/s form is becoming popular in larger data centers and large enterprises, 
and speeds as high as 100Gb/s have been demonstrated. The very first (research) 
Ethernet ran at 3Mb/s, but the DIX (Digital, Intel, Xerox) standard ran at 10Mb/s 
over a shared physical cable or set of cable segments interconnected by electri-
cal repeaters. By the early 1990s, the shared cable had largely been replaced by 
twisted-pair wiring (resembling telephone wires and often called “10BASE-T”). 
With the development of 100Mb/s (also called “fast Ethernet,” the most popular 
version of which is known as “100BASE-TX”), contention-based MAC protocols 
have become less popular. Instead, the wiring between each LAN station is often 
not shared but instead provides a dedicated electrical path in a star topology. This 
can be accomplished with Ethernet switches, as shown in Figure 3-2.

Figure 3-2  A switched Ethernet network consists of one or more stations, each of which is attached 
to a switch port using a dedicated wiring path. In most cases where switched Ethernet is 
used, the network operates in a full-duplex fashion and the CSMA/CD algorithm is not 
required. Switches may be cascaded to form larger Ethernet LANs by interconnecting 
switch ports, sometimes called “uplink” ports. 
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At present, switches are commonly used, providing each Ethernet station with 
the ability to send and receive data simultaneously (called “full-duplex Ethernet”). 
Although half-duplex (one direction at a time) operation is still supported even by 
1000Mb/s Ethernet (1000BASE-T), it is rarely used relative to full-duplex Ethernet. 
We shall discuss how switches process PDUs in more detail later. 

One of the most popular technologies used to access the Internet today is 
wireless networking, the most common for wireless local area networks (WLANs) 
being an IEEE standard known as Wireless Fidelity or Wi-Fi, and sometimes 
called “wireless Ethernet” or 802.11. Although this standard is distinct from the 
802 wired Ethernet standards, the frame format and general interface are largely 
borrowed from 802.3, and all are part of the set of IEEE 802 LAN standards. Thus, 
most of the capabilities used by TCP/IP for Ethernet networks are also used for 
Wi-Fi networks. We shall explore each of these in more detail. First, however, it 
is useful to get a bigger picture of all of the IEEE 802 standards that are relevant 
for setting up home and enterprise networks. We also include references to those 
IEEE standards governing MAN standards, including IEEE 802.16 (WiMAX) and 
the standard for media-independent handoffs in cellular networks (IEEE 802.21). 

3.2.1 The IEEE 802 LAN/MAN Standards 

The original Ethernet frame format and operation were described by industry 
agreement, mentioned earlier. This format was known as the DIX format or Eth-
ernet II format. This type of Ethernet network, with slight modification, was later 
standardized by the IEEE as a form of CSMA/CD network, called 802.3. In the 
world of IEEE standards, standards with the prefix 802 define the operations of 
LANs and MANs. The most popular 802 standards today include 802.3 (essen-
tially Ethernet) and 802.11 (WLAN/Wi-Fi). These standards have evolved over 
time and have changed names as freestanding amendments (e.g., 802.11g) are 
ultimately incorporated in revised standards. Table 3-1 shows a fairly complete 
list of the IEEE 802 LAN and MAN standards relevant to supporting the TCP/IP 
protocols, as of mid-2011.

Table 3-1  LAN and MAN IEEE 802 standards relevant to the TCP/IP protocols (2011)

Name Description Official Reference

802.1ak Multiple Registration Protocol (MRP) [802.1AK-2007]
802.1AE MAC Security (MACSec) [802.1AE-2006]
802.1AX Link Aggregation (formerly 802.3ad) [802.1AX-2008]
802.1d MAC Bridges [802.1D-2004] 
802.1p Traffic classes/priority/QoS [802.1D-2004] 
802.1q Virtual Bridged LANs/Corrections to MRP [802.1Q-2005/Cor1-2008] 
802.1s Multiple Spanning Tree Protocol (MSTP) [802.1Q-2005] 
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Name Description Official Reference

802.1w Rapid Spanning Tree Protocol (RSTP) [802.1D-2004]

802.1X Port-Based Network Access Control (PNAC) [802.1X-2010] 

802.2 Logical Link Control (LLC) [802.2-1998]

802.3 Baseline Ethernet and 10Mb/s Ethernet [802.3-2008] (Section One) 

802.3u 100Mb/s Ethernet (“Fast Ethernet”) [802.3-2008] (Section Two) 

802.3x Full-duplex operation and flow control [802.3-2008]
802.3z/802.3ab 1000Mb/s Ethernet (“Gigabit Ethernet”) [802.3-2008] (Section 

Three)
802.3ae 10Gb/s Ethernet (“Ten-Gigabit Ethernet”) [802.3-2008] (Section Four)
802.3ad Link Aggregation [802.1AX-2008]

802.3af Power over Ethernet (PoE) (to 15.4W) [802.3-2008] (Section Two) 

802.3ah Access Ethernet (“Ethernet in the First Mile 
(EFM)”)

[802.3-2008] (Section Five) 

802.3as Frame format extensions (to 2000 bytes) [802.3-2008] 
802.3at Power over Ethernet enhancements (“PoE+”, to 

30W)
[802.3at-2009] 

802.3ba 40/100Gb/s Ethernet [802.3ba-2010]

802.11a 54Mb/s Wireless LAN at 5GHz [802.11-2007] 

802.11b 11Mb/s Wireless LAN at 2.4GHz [802.11-2007] 

802.11e QoS enhancement for 802.11 [802.11-2007] 

802.11g 54Mb/s Wireless LAN at 2.4GHz [802.11-2007] 
802.11h Spectrum/power management extensions [802.11-2007] 

802.11i Security enhancements/replaces WEP [802.11-2007] 
802.11j 4.9–5.0GHz operation in Japan [802.11-2007]

802.11n 6.5–600Mb/s Wireless LAN at 2.4 and 5GHz 
using optional MIMO and 40MHz channels

[802.11n-2009] 

802.11s (draft) Mesh networking, congestion control Under development 

802.11y 54Mb/s wireless LAN at 3.7GHz (licensed) [802.11y-2008] 

802.16 Broadband Wireless Access Systems (WiMAX) [802.16-2009]

802.16d Fixed Wireless MAN Standard (WiMAX) [802.16-2009] 
802.16e Fixed/Mobile Wireless MAN Standard (WiMAX) [802.16-2009] 

802.16h Improved Coexistence Mechanisms [802.16h-2010]

802.16j Multihop Relays in 802.16 [802.16j-2009]

802.16k Bridging of 802.16 [802.16k-2007]
802.21 Media Independent Handovers [802.21-2008]

Table 3-1  LAN and MAN IEEE 802 standards relevant to the TCP/IP protocols (2011) (continued )
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Other than the specific types of LAN networks defined by the 802.3, 802.11, 
and 802.16 standards, there are some related standards that apply across all of 
the IEEE standard LAN technologies. Common to all three of these is the 802.2 
standard that defines the Logical Link Control (LLC) frame header common among 
many of the 802 networks’ frame formats. In IEEE terminology, LLC and MAC 
are “sublayers” of the link layer, where the LLC (mostly frame format) is generally 
common to each type of network and the MAC layer may be somewhat different. 
While the original Ethernet made use of CSMA/CD, for example, WLANs often 
make use of CSMA/CA (CA is “collision avoidance”). 

Note

Unfortunately the combination of 802.2 and 802.3 defined a different frame format 
from Ethernet II until 802.3x finally rectified the situation. It has been incorpo-
rated into [802.3-2008]. In the TCP/IP world, the encapsulation of IP datagrams 
is defined in [RFC0894] and [RFC2464] for Ethernet networks, although the older 
LLC/SNAP encapsulation remains published as [RFC1042]. While this is no lon-
ger much of an issue, it was once a source of concern, and similar issues occa-
sionally arise [RFC4840]. 

The frame format has remained essentially the same until fairly recently. To 
get an understanding of the details of the format and how it has evolved, we now 
turn our focus to these details. 

3.2.2 The Ethernet Frame Format 

All Ethernet (802.3) frames are based on a common format. Since its original speci-
fication, the frame format has evolved to support additional functions. Figure 3-3 
shows the current layout of an Ethernet frame and how it relates to a relatively new 
term introduced by IEEE, the IEEE packet (a somewhat unfortunate term given its 
uses in other standards).

The Ethernet frame begins with a Preamble area used by the receiving inter-
face’s circuitry to determine when a frame is arriving and to determine the amount 
of time between encoded bits (called clock recovery). Because Ethernet is an asyn-
chronous LAN (i.e., precisely synchronized clocks are not maintained in each Eth-
ernet interface card), the space between encoded bits may differ somewhat from 
one interface card to the next. The preamble is a recognizable pattern (0xAA typi-
cally), which the receiver can use to “recover the clock” by the time the start frame 
delimiter (SFD) is found. The SFD has the fixed value 0xAB. 

Note

The original Ethernet encoded bits using a Manchester Phase Encoding (MPE) 
with two voltage levels. With MPE, bits are encoded as voltage transitions rather 
than absolute values. For example, the bit 0 is encoded as a transition from -0.85 
to +0.85V, and a 1 bit is encoded as a +0.85 to -0.85V transition (0V indicates 
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that the shared wire is idle). The 10Mb/s Ethernet specification required network 
hardware to use an oscillator running at 20MHz, because MPE requires two clock 
cycles per bit. The bytes 0xAA (10101010 in binary) present in the Ethernet pre-
amble would be a square wave between +0.85 and -0.85V with a frequency of 
10MHz. Manchester encoding was replaced with different encodings in other Eth-
ernet standards to improve efficiency. 

This basic frame format includes 48-bit (6-byte) Destination (DST) and Source
(SRC) Address fields. These addresses are sometimes known by other names such 
as “MAC address,” “link-layer address,” “802 address,” “hardware address,” or 
“physical address.” The destination address in an Ethernet frame is also allowed 
to address more than one station (called “broadcast” or “multicast”; see Chap-
ter 9). The broadcast capability is used by the ARP protocol (see Chapter 4) and 
multicast capability is used by the ICMPv6 protocol (see Chapter 8) to convert 
between network-layer and link-layer addresses. 

Following the source address is a Type field that doubles as a Length field. Ordi-
narily, it identifies the type of data that follows the header. Popular values used 
with TCP/IP networks include IPv4 (0x0800), IPv6 (0x86DD), and ARP (0x0806). 
The value 0x8100 indicates a Q-tagged frame (i.e., one that can carry a “virtual 
LAN” or VLAN ID according to the 802.1q standard). The size of a basic Ethernet 
frame is 1518 bytes, but the more recent standard extended this size to 2000 bytes. 

Figure 3-3  The Ethernet (IEEE 802.3) frame format contains source and destination addresses, an overloaded 
Length/Type field, a field for data, and a frame check sequence (a CRC32). Additions to the basic 
frame format provide for a tag containing a VLAN ID and priority information (802.1p/q) and 
more recently for an extensible number of tags. The preamble and SFD are used for synchroniz-
ing receivers. When half-duplex operation is used with Ethernet running at 100Mb/s or more, 
additional bits may be appended to short frames as a carrier extension to ensure that the collision 
detection circuitry operates properly. 
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Note

The original IEEE (802.3) specification treats the Length/Type field as a Length
field instead of a Type field. The field is thereby overloaded (used for more than 
one purpose). The trick is to look at the value of the field. Today, if the value in the 
field is greater than or equal to 1536, the field must contain a type value, which 
is assigned by standards to have values exceeding 1536. If the value of the field 
is 1500 or less, the field indicates the length. The full list of types is given by 
[ETHERTYPES].

Following the Destination and Source Address fields, [802.3-2008] provides for 
a variable number of tags that contain various protocol fields defined by other 
IEEE standards. The most common of these are the tags used by 802.1p and 802.1q, 
which provide for virtual LANs and some quality-of-service (QoS) indicators. These 
are discussed in Section 3.2.3. 

Note

The current [802.3-2008] standard incorporates the frame format modifications 
of 802.3 as that provides for a maximum of 482 bytes for holding “tags” to be car-
ried with each Ethernet frame. These larger frames, called envelope frames, may 
be up to 2000 bytes in length. Frames containing 802.1p/q tags, called Q-tagged 
frames, are also envelope frames. However, not all envelope frames are neces-
sarily Q-tagged frames. 

Following the fields discussed so far is the data area or payload portion of the 
frame. This is the area where higher-layer PDUs such as IP datagrams are placed. 
Traditionally, the payload area for Ethernet has always been 1500 bytes, represent-
ing the MTU for Ethernet. Most systems today use the 1500-byte MTU size for 
Ethernet, although it is generally possible to configure a smaller value if this is 
desired. The payload sometimes is padded (appended) with 0 bytes to ensure that 
the overall frame meets the minimum length requirements we discuss in Section 
3.2.2.2.

3.2.2.1 Frame Check Sequence/Cyclic Redundancy Check (CRC) 
The final field of the Ethernet frame format follows the payload area and provides 
an integrity check on the frame. The Cyclic Redundancy Check (CRC) field at the 
end includes 32 bits and is sometimes known as the IEEE/ANSI standard CRC32 
[802.3-2008]. To use an n-bit CRC for detection of data transmission in error, the 
message to be checked is first appended with n 0 bits, forming the augmented mes-
sage. Then, the augmented message is divided (using modulo-2 division) by an (n
+ 1)-bit value called the generator polynomial, which acts as the divisor. The value 
placed in the CRC field of the message is the one’s complement of the remainder of 
this division (the quotient is discarded). Generator polynomials are standardized 
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for a number of different values of n. For Ethernet, which uses n = 32, the CRC32 
generator polynomial is the 33-bit binary number 100000100110000010001110110
110111. To get a feeling for how the remainder is computed using long (mod-2) 
binary division, we can examine a simpler case using CRC4. The ITU has stan-
dardized the value 10011 for the CRC4 generator polynomial in a standard called 
G.704 [G704]. If we wish to send the 16-bit message 1001111000101111, we first 
begin with the long (mod-2) binary division shown in Figure 3-4.

           1000011000000101 

10011  10011110001011110000
       10011

        00001 
        00000 

         00011 
         00000 

          00110 
          00000

           01100
           00000

            11000
            10011 

             10111
             10011

              01000
              00000

               10001 
               10011

                00101
                00000

                 01011
                 00000

                  10111 
                  10011

                   01000
                   00000

                    10000
                    10011

                     01110
                     00000

                      11100
                      10011

                       1111

Quotient (Discarded)

Message

Remainder

Figure 3-4  Long (mod-2) binary division demonstrating the computation of a CRC4
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In this figure, we see that the remainder after division is the 4-bit value 1111. 
Ordinarily, the one’s complement of this value (0000) would be placed in a CRC or 
Frame Check Sequence (FCS) field in the frame. Upon receipt, the receiver performs 
the same division and checks whether the value in the FCS field matches the com-
puted remainder. If the two do not match, the frame was likely damaged in transit 
and is usually discarded. The CRC family of functions can be used to provide a 
strong indicator of corrupted messages because any change in the bit pattern is 
highly likely to cause a change in the remainder term. 

3.2.2.2 Frame Sizes 
There is both a minimum and a maximum size of Ethernet frames. The minimum 
is 64 bytes, requiring a minimum data area (payload) length of 48 bytes (no tags). 
In cases where the payload is smaller, pad bytes (value 0) are appended to the end 
of the payload portion to ensure that the minimum length is enforced. 

Note

The minimum was important for the original 10Mb/s Ethernet using CSMA/CD. 
In order for a transmitting station to know which frame encountered a collision, a 
limit of 2500m (five 500m cable segments with four repeaters) was placed upon 
the length of an Ethernet network. Given that the propagation rate for electrons 
in copper is about .77c or 231M m/s, and given the transmission time of 64 bytes 
to be (64 * 8/10,000,000) = 51.2µs at 10Mb/s, a minimum-size frame could con-
sume about 11,000m of cable. With a maximum of 2500m of cable, the maximum 
round-trip distance from one station to another is 5000m. The designers of Eth-
ernet included a factor of 2 overdesign in fixing the minimum frame size, so in all 
compliant cases (and many noncompliant cases), the last bit of an outgoing frame 
would still be in the process of being transmitted after the time required for its sig-
nal to arrive at a maximally distant receiver and return. If a collision is detected, 
the transmitting station thus knows with certainty which frame collided—the one 
it is currently transmitting. In this case, the station sends a jamming signal (high 
voltage) to alert other stations, which then initiate a random binary exponential 
backoff procedure. 

The maximum frame size of conventional Ethernet is 1518 bytes (including 
the 4-byte CRC and 14-byte header). This value represents a sort of trade-off: if 
a frame contains an error (detected on receipt by an incorrect CRC), only 1.5KB 
need to be retransmitted to repair the problem. On the other hand, the size limits 
the MTU to not more than 1500 bytes. In order to send a larger message, multiple 
frames are required (e.g., 64KB, a common larger size used with TCP/IP networks, 
would require at least 44 frames). 

The unfortunate consequence of requiring multiple Ethernet frames to hold a 
larger upper-layer PDU is that each frame contributes a fixed overhead (14 bytes 
header, 4 bytes CRC). To make matters worse, Ethernet frames cannot be squished 
together on the network without any space between them, in order to allow the 
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Ethernet hardware receiver circuits to properly recover data from the network and 
to provide the opportunity for other stations to interleave their traffic with the 
existing Ethernet traffic. The Ethernet II specification, in addition to specifying a 
7-byte preamble and 1-byte SFD that precedes any Ethernet frame, also specifies 
an inter-packet gap (IPG) of 12 byte times (9.6µs at 10Mb/s, 960ns at 100Mb/s, 96ns 
at 1000Mb/s, and 9.6ns at 10,000Mb/s). Thus, the per-frame efficiency for Ethernet 
II is at most 1500/(12 + 8 + 14 + 1500 + 4) = 0.975293, or about 98%. One way to 
improve efficiency when moving large amounts of data across an Ethernet would 
be to make the frame size larger. This has been accomplished using Ethernet jumbo 
frames [JF], a nonstandard extension to Ethernet (in 1000Mb/s Ethernet switches 
primarily) that typically allows the frame size to be as large as 9000 bytes. Some 
environments make use of so-called super jumbo frames, which are usually under-
stood to carry more than 9000 bytes. Care should be taken when using jumbo 
frames, as these larger frames are not interoperable with the smaller 1518-byte 
frame size used by most legacy Ethernet equipment. 

3.2.3 802.1p/q: Virtual LANs and QoS Tagging  

With the growing use of switched Ethernet, it has become possible to interconnect 
every computer at a site on the same Ethernet LAN. The advantage of doing this 
is that any host can directly communicate with any other host, using IP and other 
network-layer protocols, and requiring little or no administrator configuration. In 
addition, broadcast and multicast traffic (see Chapter 9) is distributed to all hosts 
that may wish to receive it without having to set up special multicast routing proto-
cols. While these represent some of the advantages of placing many stations on the 
same Ethernet, having broadcast traffic go to every computer can create an unde-
sirable amount of network traffic when many hosts use broadcast, and there may 
be some security reasons to disallow complete any-to-any station communication. 

To address some of these problems with running large, multiuse switched 
networks, IEEE extended the 802 LAN standards with a capability called virtual 
LANs (VLANs) in a standard known as 802.1q [802.1Q-2005]. Compliant Ethernet 
switches isolate traffic among hosts to common VLANs. Note that because of this 
isolation, two hosts attached to the same switch but operating on different VLANs 
require a router between them for traffic to flow. Combination switch/router 
devices have been created to address this need, and ultimately the performance of 
routers has been improved to match the performance of VLAN switching. Thus, 
the appeal of VLANs has diminished somewhat, in favor of modern high-perfor-
mance routers. Nonetheless, they are still used, remain popular in some environ-
ments, and are important to understand. 

Several methods are used to specify the station-to-VLAN mapping. Assign-
ing VLANs by port is a simple and common method, whereby the switch port 
to which the station is attached is assigned a particular VLAN, so any station so 
attached becomes a member of the associated VLAN. Other options include MAC-
address-based VLANs that use tables within Ethernet switches to map a station’s 
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MAC address to a corresponding VLAN. This can become difficult to manage if 
stations change their MAC addresses (which they do sometimes, thanks to the 
behavior of some users). IP addresses can also be used as a basis for assigning 
VLANs. 

When stations in different VLANs are attached to the same switch, the switch 
ensures that traffic does not leak from one VLAN to another, irrespective of the 
types of Ethernet interfaces being used by the stations. When multiple VLANs 
must span multiple switches (trunking), it becomes necessary to label Ethernet 
frames with the VLAN to which they belong before they are sent to another 
switch. Support for this capability uses a tag called the VLAN tag (or header), 
which holds 12 bits of VLAN identifier (providing for 4096 VLANs, although VLAN 
0 and VLAN 4095 are reserved). It also contains 3 bits of priority for supporting 
QoS, defined in the 802.1p standard, as indicated in Figure 3-3. In many cases, the 
administrator must configure the ports of the switch to be used to send 802.1p/q 
frames by enabling trunking on the appropriate ports. To make this job somewhat 
easier, some switches support a native VLAN option on trunked ports, meaning 
that untagged frames are by default associated with the native VLAN. Trunking 
ports are used to interconnect VLAN-capable switches, and other ports are typi-
cally used to attach stations. Some switches also support proprietary methods for 
VLAN trunking (e.g., the Cisco Inter-Switch Link (ISL) protocol). 

802.1p specifies a mechanism to express a QoS identifier on each frame. The 
802.1p header includes a 3-bit-wide Priority field indicating a QoS level. This 
standard is an extension of the 802.1q VLAN standard. The two standards work 
together and share bits in the same header. With the 3 available bits, eight classes 
of service are defined. Class 0, the lowest priority, is for conventional, best-effort 
traffic. Class 7 is the highest priority and might be used for critical routing or net-
work management functions. The standards specify how priorities are encoded in 
packets but leave the policy that governs which packets should receive which class, 
and the underlying mechanisms implementing prioritized services, to be defined 
by the implementer. Thus, the way traffic of one priority class is handled relative to 
another is implementation- or vendor-defined. Note that 802.1p can be used inde-
pendently of VLANs if the VLAN ID field in the 802.1p/q header is set to 0. 

The Linux command for manipulating 802.1p/q information is called vcon-
fig. It can be used to add and remove virtual interfaces associating VLAN IDs to 
physical interfaces. It can also be used to set 802.1p priorities, change the way vir-
tual interfaces are identified, and influence the mapping between packets tagged 
with certain VLAN IDs and how they are prioritized during protocol processing 
in the operating system. The following commands add a virtual interface to inter-
face eth1 with VLAN ID 2, remove it, change the way such virtual interfaces are 
named, and add a new interface: 

Linux# vconfig add eth1 2 
Added VLAN with VID == 2 to IF -:eth1:-
Linux# ifconfig eth1.2 
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eth1.2 Link encap:Ethernet HWaddr 00:04:5A:9F:9E:80 
            BROADCAST MULTICAST MTU:1500 Metric:1 
            RX packets:0 errors:0 dropped:0 overruns:0 frame:0 
            TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 
            collisions:0 txqueuelen:0 
            RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) 
Linux# vconfig rem eth1.2 
Removed VLAN -:eth1.2:-
Linux# vconfig set_name_type VLAN_PLUS_VID 
Set name-type for VLAN subsystem. Should be visible in 
            /proc/net/vlan/config 
Linux# vconfig add eth1 2 
Added VLAN with VID == 2 to IF -:eth1:-
Linux# ifconfig vlan0002 
vlan0002 Link encap:Ethernet HWaddr 00:04:5A:9F:9E:80 
            BROADCAST MULTICAST MTU:1500 Metric:1 
            RX packets:0 errors:0 dropped:0 overruns:0 frame:0 
            TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 
            collisions:0 txqueuelen:0  
            RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)  

Here we can see that the default method of naming virtual interfaces in Linux 
is based on concatenating the associated physical interface with the VLAN ID. For 
example, VLAN ID 2 associated with the interface eth1 is called eth1.2. This 
example also shows how an alternative naming method can be used, whereby the 
VLANs are enumerated by the names vlan<n> where <n> is the identifier of the 
VLAN. Once this is set up, frames sent on the VLAN device are tagged with the 
VLAN ID, as expected. We can see this using Wireshark, as shown in Figure 3-5. 

Figure 3-5  Frames tagged with the VLAN ID as shown in Wireshark. The default columns and set-
tings have been changed to display the VLAN ID and raw Ethernet addresses.
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This figure shows an ARP packet (see Chapter 4) carried on VLAN 2. We can 
see that the frame size is 60 bytes (not including CRC). The frame is encapsulated 
using the Ethernet II encapsulation with type 0x8100, indicating a VLAN. Other 
than the VLAN header, which indicates that this frame belongs to VLAN 2 and 
has priority 0, this frame is unremarkable. All the other fields are as we would 
expect with a regular ARP packet. 

3.2.4 802.1AX: Link Aggregation (Formerly 802.3ad)

Some systems equipped with multiple network interfaces are capable of bonding or 
link aggregation. With link aggregation, two or more interfaces are treated as one in 
order to achieve greater reliability through redundancy or greater performance by 
splitting (striping) data across multiple interfaces. The IEEE Amendment 802.1AX 
[802.1AX-2008] defines the most common method for performing link aggregation 
and the Link Aggregation Control Protocol (LACP) to manage such links. LACP uses 
IEEE 802 frames of a particular format (called LACPDUs). 

Using link aggregation on Ethernet switches that support it can be a cost-
effective alternative to investing in switches with high-speed network ports. If 
more than one port can be aggregated to provide adequate bandwidth, higher-
speed ports may not be required. Link aggregation may be supported not only on 
network switches but across multiple network interface cards (NICs) on a host com-
puter. Often, aggregated ports must be of the same type, operating in the same 
mode (i.e., half- or full-duplex). 

Linux has the capability to implement link aggregation (bonding) across dif-
ferent types of devices using the following commands: 

Linux# modprobe bonding 
Linux# ifconfig bond0 10.0.0.111 netmask 255.255.255.128
Linux# ifenslave bond0 eth0 wlan0 

This set of commands first loads the bonding driver, which is a special type 
of device driver supporting link aggregation. The second command creates the 
bond0 interface with the IPv4 address information provided. Although providing 
the IP-related information is not critical for creating an aggregated interface, it is 
typical. Once the ifenslave command executes, the bonding device, bond0, is 
labeled with the MASTER flag, and the eth0 and wlan0 devices are labeled with 
the SLAVE flag: 

bond0 Link encap:Ethernet HWaddr 00:11:A3:00:2C:2A 
           inet addr:10.0.0.111 Bcast:10.0.0.127 Mask:255.255.255.128 
           inet6 addr: fe80::211:a3ff:fe00:2c2a/64 Scope:Link 
           UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1 
           RX packets:2146 errors:0 dropped:0 overruns:0 frame:0 
           TX packets:985 errors:0 dropped:0 overruns:0 carrier:0 
           collisions:18 txqueuelen:0 
           RX bytes:281939 (275.3 KiB) TX bytes:141391 (138.0 KiB) 
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eth0 Link encap:Ethernet HWaddr 00:11:A3:00:2C:2A 
           UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1 
           RX packets:1882 errors:0 dropped:0 overruns:0 frame:0 
           TX packets:961 errors:0 dropped:0 overruns:0 carrier:0 
           collisions:18 txqueuelen:1000 
           RX bytes:244231 (238.5 KiB) TX bytes:136561 (133.3 KiB) 
           Interrupt:20 Base address:0x6c00 
wlan0 Link encap:Ethernet HWaddr 00:11:A3:00:2C:2A 
           UP BROADCAST SLAVE MULTICAST MTU:1500 Metric:1 
           RX packets:269 errors:0 dropped:0 overruns:0 frame:0 
           TX packets:24 errors:0 dropped:0 overruns:0 carrier:0 
           collisions:0 txqueuelen:1000 
           RX bytes:38579 (37.6 KiB) TX bytes:4830 (4.7 KiB) 

In this example, we have bonded together a wired Ethernet interface with 
a Wi-Fi interface. The master device, bond0, is assigned the IPv4 address infor-
mation we would typically assign to either of the individual interfaces, and it 
receives the first slave’s MAC address by default. When IPv4 traffic is sent out of 
the bond0 virtual interface, there are a number of possibilities as to which of the 
slave interfaces will carry it. In Linux, the options are selected using arguments 
provided when the bonding driver is loaded. For example, a mode option deter-
mines whether round-robin delivery is used between the interfaces, one interface 
acts as a backup to the other, the interface is selected based on performing an XOR 
of the MAC source and destination addresses, frames are copied to all interfaces, 
802.3ad standard link aggregation is performed, or more advance load-balancing 
options are used. The second mode is used for high-availability systems that can 
fail over to a redundant network infrastructure if one link has ceased function-
ing (detectable by MII monitoring; see [BOND] for more details). The third mode 
is intended to choose the slave interface based on the traffic flow. With enough 
different destinations, traffic between the two stations is pinned to one interface. 
This can be useful when trying to minimize reordering while also trying to load-
balance traffic across multiple slave interfaces. The fourth mode is for fault toler-
ance. The fifth mode is for use with 802.3ad-capable switches, to enable dynamic 
aggregation over homogeneous links. 

The LACP protocol is designed to make the job of setting up link aggregation 
simpler by avoiding manual configuration. Typically the LACP “actor” (client) and 
“partner” (server) send LACPDUs every second once enabled. LACP automati-
cally determines which member links can be aggregated into a link aggregation 
group (LAG) and aggregates them. This is accomplished by sending a collection of 
information (MAC address, port priority, port number, and key) across the link. A 
receiving station can compare the values it sees from other ports and perform the 
aggregation if they match. Details of LACP are covered in [802.1AX-2008].
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3.3 Full Duplex, Power Save, Autonegotiation, and 802.1X 
Flow Control 

When Ethernet was first developed, it operated only in half-duplex mode using 
a shared cable. That is, data could be sent only one way at one time, so only one 
station was sending a frame at any given point in time. With the development of 
switched Ethernet, the network was no longer a single piece of shared wire, but 
instead many sets of links. As a result, multiple pairs of stations could exchange 
data simultaneously. In addition, Ethernet was modified to operate in full duplex, 
effectively disabling the collision detection circuitry. This also allowed the physi-
cal length of the Ethernet to be extended, because the timing constraints associ-
ated with half-duplex operation and collision detection were removed. 

In Linux, the ethtool program can be used to query whether full duplex is 
supported and whether it is being used. This tool can also display and set many 
other interesting properties of an Ethernet interface: 

Linux# ethtool eth0 
Settings for eth0: 
           Supported ports: [ TP MII ] 
           Supported link modes: 10baseT/Half 10baseT/Full 
           100baseT/Half 100baseT/Full 
           Supports auto-negotiation: Yes 
           Advertised link modes: 10baseT/Half 10baseT/Full 
           100baseT/Half 100baseT/Full 
           Advertised auto-negotiation: Yes 
           Speed: 10Mb/s 
           Duplex: Half 
           Port: MII 
           PHYAD: 24 
           Transceiver: internal 
           Auto-negotiation: on 
           Current message level: 0x00000001 (1) 
           Link detected: yes
Linux# ethtool eth1 
Settings for eth1: 
           Supported ports: [ TP ] 
           Supported link modes: 10baseT/Half 10baseT/Full 
                      100baseT/Half 100baseT/Full 
                      1000baseT/Full 
           Supports auto-negotiation: Yes 
           Advertised link modes: 10baseT/Half 10baseT/Full 
                      100baseT/Half 100baseT/Full 
                      1000baseT/Full 
           Advertised auto-negotiation: Yes 
           Speed: 100Mb/s 
           Duplex: Full 
           Port: Twisted Pair 
           PHYAD: 0 
           Transceiver: internal 
           Auto-negotiation: on 
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           Supports Wake-on: umbg 
           Wake-on: g 
           Current message level: 0x00000007 (7) 
           Link detected: yes 

In this example, the first Ethernet interface (eth0) is attached to a half-duplex 
10Mb/s network. We can see that it is capable of autonegotiation, which is a mecha-
nism originating with 802.3u to enable interfaces to exchange information such 
as speed and capabilities such as half- or full-duplex operation. Autonegotiation 
information is exchanged at the physical layer using signals sent when data is 
not being transmitted or received. We can see that the second Ethernet interface 
(eth1) also supports autonegotiation and has set its rate to 100Mb/s and operation 
mode to full duplex. The other values (Port, PHYAD, Transceiver) identify the 
physical port type, its address, and whether the physical-layer circuitry is internal 
or external to the NIC. The current message-level value is used to configure log 
messages associated with operating modes of the interface; its behavior is spe-
cific to the driver being used. We discuss the wake-on values after the following 
example. 

In Windows, details such as these are available by navigating to Control Panel 
| Network Connections and then right-clicking on the interface of interest, select-
ing Properties, and then clicking the Configure box and selecting the Advanced 
tab. This brings up a menu similar to the one shown in Figure 3-6 (this particular 
example is from an Ethernet interface on a Windows 7 machine).

Figure 3-6  Advanced tab of network interface properties in Windows (7). This control allows the 
user to  supply operating parameters to the network device driver.
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In Figure 3-6, we can see the special features that can be configured using the 
adapter’s device driver. For this particular adapter and driver, 802.1p/q tags can 
be enabled or disabled, as can flow control and wake-up capabilities (see Section 
3.3.2). The speed and duplex can be set by hand, or to the more typical autonego-
tiation option. 

3.3.1 Duplex Mismatch 

Historically, there have been some interoperability problems using autonegotia-
tion, especially when a computer and its associated switch port are configured 
using different duplex configurations or when autonegotiation is disabled at one 
end of the link but not the other. In this case, a so-called duplex mismatch can occur. 
Perhaps surprisingly, when this happens the connection does not completely fail 
but instead may suffer significant performance degradation. When the network 
has moderate to heavy traffic in both directions (e.g., during a large data trans-
fer), a half-duplex interface can detect incoming traffic as a collision, triggering 
the exponential backoff function of the CSMA/CD Ethernet MAC. At the same 
time, the data triggering the collision is lost and may require higher-layer proto-
cols such as TCP to retransmit. Thus, the performance degradation may be noticed 
only when there is sufficient traffic for the half-duplex interface to be receiving 
data at the same time it is sending, a situation that does not generally occur under 
light load. Some researchers have attempted to build analysis tools to detect this 
unfortunate situation [SC05]. 

3.3.2 Wake-on  LAN (WoL), Power Saving, and Magic Packets 

In both the Linux and Windows examples, we saw some indication of power man-
agement capabilities. In Windows the Wake-Up Capabilities and in Linux the Wake-
On options are used to bring the network interface and/or host computer out of 
a lower-power (sleep) state based on the arrival of certain kinds of packets. The 
kinds of packets used to trigger the change to full-power state can be configured. 
In Linux, the Wake-On values are zero or more bits indicating whether receiv-
ing the following types of frames trigger a wake-up from a low-power state: any 
physical-layer (PHY) activity (p), unicast frames destined for the station (u), mul-
ticast frames (m), broadcast frames (b), ARP frames (a), magic packet frames (g), 
and magic packet frames including a password. These can be configured using 
options to ethtool. For example, the following command can be used: 

Linux# ethtool –s eth0 wol umgb 

This command configures the eth0 device to signal a wake-up if any of the 
frames corresponding to the types u, m, g, or b is received. Windows provides a 
similar capability, but the standard user interface allows only magic packet frames 
and a predefined subset of the u, m, b, and a frame types. Magic packets contain 
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a special repeated pattern of the byte value 0xFF. Often, such frames are sent as a 
form of UDP packet (see Chapter 10) encapsulated in a broadcast Ethernet frame. 
Several tools are available to generate them, including wol [WOL]: 

Linux# wol 00:08:74:93:C8:3C
Waking up 00:08:74:93:C8:3C... 

The result of this command is to construct a magic packet, which we can view 
using Wireshark (see Figure 3-7). 

Figure 3-7  A magic packet frame in Wireshark begins with 6 0xFF bytes and then repeats the MAC 
address 16 times.

The packet shown in Figure 3-7 is mostly a conventional UDP packet, although 
the port numbers (1126 and 40000) are arbitrary. The most unusual part of the 
packet is the data area. It contains an initial 6 bytes with the value 0xFF. The rest 
of the data area includes the destination MAC address 00:08:74:93:C8:3C repeated 
16 times. This data payload pattern defines the magic packet. 
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3.3.3 Link-Layer Flow Control 

Operating an extended Ethernet LAN in full-duplex mode and across segments of 
different speeds may require the switches to buffer (store) frames for some period 
of time. This happens, for example, when multiple stations send to the same des-
tination (called output port contention). If the aggregate traffic rate headed for a 
station exceeds the station’s link rate, frames start to be stored in the intermediate 
switches. If this situation persists for a long time, frames may be dropped. 

One way to mitigate this situation is to apply flow control to senders (i.e., slow 
them down). Some Ethernet switches (and interfaces) implement flow control by 
sending special signal frames between switches and NICs. Flow control signals to 
the sender that it must slow down its transmission rate, although the specification 
leaves the details of this to the implementation. Ethernet uses an implementation 
of flow control called PAUSE messages (also called PAUSE frames), specified by 
802.3x [802.3-2008]. 

PAUSE messages are contained in MAC control frames, identified by the 
Ethernet Length/Type field having the value 0x8808 and using the MAC control 
opcode of 0x0001. A receiving station seeing this is advised to slow its rate. PAUSE 
frames are always sent to the MAC address 01:80:C2:00:00:01 and are used only 
on full-duplex links. They include a hold-off time value (specified in quantas equal 
to 512 bit times), indicating how long the sender should pause before continuing 
to transmit. 

The MAC control frame is a frame format using the regular encapsulation 
from Figure 3-3, but with a 2-byte opcode immediately following the Length/Type
field. PAUSE frames are essentially the only type of frames that uses MAC control 
frames. They include a 2-byte quantity encoding the hold-off time. Implementation 
of the “entire” MAC control layer (basically, just 802.3x flow control) is optional. 

Using Ethernet-layer flow control may have a significant negative side effect, 
and for this reason it is typically not used. When multiple stations are sending 
through a switch (see the next section) that is becoming overloaded, the switch 
may naturally send PAUSE frames to all hosts. Unfortunately, the utilization of 
the switch’s memory may not be symmetric with respect to the sending hosts, so 
some may be penalized (flow-controlled) even though they were not responsible 
for much of the traffic passing through the switch. 

3.4 Bridges and Switches 

The IEEE 802.1d standard specifies the operation of bridges, and thus switches, 
which are essentially high-performance bridges. A bridge or switch is used to join 
multiple physical link-layer networks (e.g., a pair of physical Ethernet segments) or 
groups of stations. The most basic setup involves connecting two switches to form 
an extended LAN, as shown in Figure 3-8. 
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Switches A and B in the figure have been interconnected to form an extended 
LAN. In this particular example, client systems are connected to A and servers 
to B, and ports are numbered for reference. Note that every network element, 
including each switch, has its own MAC address. Nonlocal MAC addresses are 
“learned” by each bridge over time so that eventually every switch knows the port 
upon which every station can be reached. These lists are stored in tables (called 
filtering databases) within each switch on a per-port (and possibly per-VLAN) basis. 
As an example, after each switch has learned the location of every station, these 
databases would contain the information shown in Figure 3-9.

Figure 3-8  A simple extended Ethernet LAN with two switches. Each switch port has a number for 
reference, and each station (including each switch) has its own MAC address. 

Station Port 
00:17:f2:a2:10:3d 2 
00:c0:19:33:0a:2e 1 
00:0d:66:4f:02:03 

00:0d:66:4f:02:04 3 
00:30:48:2b:19:82 3 
00:30:48:2b:19:86 3 

Switch A’s Database

Station Port 
00:17:f2:a2:10:3d 9 
00:c0:19:33:0a:2e 9 
00:0d:66:4f:02:03 9 
00:0d:66:4f:02:04  

00:30:48:2b:19:82 10 
00:30:48:2b:19:86 11 

Switch B’s Database

Figure 3-9 Filtering databases on switches A and B from Figure 3-8 are created over time (“learned”) 
by observing the source address on frames seen on switch ports. 

When a switch (bridge) is first turned on, its database is empty, so it does 
not know the location of any stations except itself. Whenever it receives a frame 
destined for a station other than itself, it makes a copy for each of the ports other 
than the one on which the frame arrived and sends a copy of the frame out of each 
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one. If switches (bridges) never learned the location of stations, every frame would 
be delivered across every network segment, leading to unwanted overhead. The 
learning capability reduces overhead significantly and is a standard feature of 
switches and bridges. 

Today, most operating systems support the capability to bridge between net-
work interfaces, meaning that a standard computer with multiple interfaces can 
be used as a bridge. In Windows, for example, interfaces may be bridged together 
by navigating to the Network Connections menu from the Control Panel, high-
lighting the interfaces to bridge, right-clicking the mouse, and selecting Bridge 
Connections. When this is done, a new icon appears that represents the bridging 
function itself. Most of the normal network properties associated with the inter-
faces are gone and instead appear on the bridge device (see Figure 3-10).

Figure 3-10  In Windows, the bridge device is created by highlighting the network interfaces to be 
bridged, right-clicking, and selecting the Bridge Network Interfaces function. Once the 
bridge is established, further modifications are made to the bridge device. 

Figure 3-10 shows the Properties panels for the network bridge virtual device 
on Windows 7. The bridge device’s properties include a list of the underlying 
devices being bridged and the set of services running on the bridge (e.g., the 
Microsoft Networks client, File and Printer Sharing, etc.). Linux works in a similar 
way, using command-line arguments. We use the topology shown in Figure 3-11 
for this example. 
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The simple network in Figure 3-11 uses a Linux-based PC with two Ethernet 
ports as a bridge. Attached to port 2 is a single station, and the rest of the network 
is attached to port 1. The following commands enable the bridge: 

Linux# brctl addbr br0
Linux# brctl addif br0 eth0 
Linux# brctl addif br0 eth1 
Linux# ifconfig eth0 up
Linux# ifconfig eth1 up
Linux# ifconfig br0 up 

This series of commands creates a bridge device br0 and adds the interfaces 
eth0 and eth1 to the bridge. Interfaces can be removed using the brctl delif
command. Once the interfaces are established, the brctl showmacs command 
can be used to inspect the filter databases (called forwarding databases or fdbs in 
Linux terminology): 

Linux# brctl show 
bridge name bridge id         STP enabled interfaces 
br0         8000.0007e914a9c1 no          eth0 eth1

Linux# brctl showmacs br0 
port no mac addr is local? ageing timer 
  1 00:04:5a:9f:9e:80 no 0.79 
  2 00:07:e9:14:a9:c1 yes 0.00 
  1 00:08:74:93:c8:3c yes 0.00 
  2 00:14:22:f4:19:5f no 0.81 
  1 00:17:f2:e7:6d:91 no 2.53 
  1 00:90:f8:00:90:b7 no 17.13 

The output of this command reveals one other detail about bridges. Because 
stations may move around, have their network cards replaced, have their MAC 
address changed, or other things, once the bridge discovers that a MAC address 

Figure 3-11  In this simple topology, a Linux-based PC is configured to operate as a bridge between 
the two Ethernet segments it interconnects. As a learning bridge, it accumulates tables 
of which port should be used to reach the various other systems on the extended LAN. 
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is reachable via a certain port, this information cannot be assumed to be correct 
forever. To deal with this issue, each time an address is learned, a timer is started 
(commonly defaulted to 5 minutes). In Linux, a fixed amount of time associated 
with the bridge is applied to each learned entry. If the address in the entry is not 
seen again within the specified “ageing” time, the entry is removed, as indicated 
here: 

Linux# brctl setageing br0 1 
Linux# brctl showmacs br0
port no mac addr is local? ageing timer 
  1 00:04:5a:9f:9e:80 no 0.76 
  2 00:07:e9:14:a9:c1 yes 0.00 
  1 00:08:74:93:c8:3c yes 0.00 
  2 00:14:22:f4:19:5f no 0.78 
  1 00:17:f2:e7:6d:91 no 0.00 

Here, we have set the ageing value unusually low for demonstration pur-
poses. When an entry is removed because of aging, subsequent frames for the 
removed destination are once again sent out of every port except the receiving one 
(called flooding), and the entry is placed anew into the filtering database. The use 
of filtering databases and learning is really a performance optimization—if the 
tables are empty, the network experiences more overhead but still functions. Next 
we turn our attention to the case where more than two bridges are interconnected 
with redundant links. In this situation, flooding of frames could lead to a sort of 
flooding catastrophe with frames looping forever. Obviously, we require a way of 
dealing with this problem. 

3.4.1 Spanning Tree Protocol (STP) 

Bridges may operate in isolation, or in combination with other bridges. When more 
than two bridges are in use (or in general when switch ports are cross-connected), 
the possibility exists for a cascading, looping set of frames to be formed. Consider 
the network shown in Figure 3-12.

Assume that the switches in Figure 3-12 have just been turned on and their 
filtering databases are empty. When station S sends a frame, switch B replicates 
the frame on ports 7, 8, and 9. So far, the initial frame has been “amplified” three 
times. These frames are received by switches A, D, and C. Switch A produces cop-
ies of the frame on ports 2 and 3. Switches D and C produce more copies on ports 
20, 22 and 13, 14, respectively. The amplification factor has grown to 6, with copies 
of the frames traveling in both directions among switches A, C, and D. Once these 
frames arrive, the forwarding databases begin to oscillate as the bridge attempts to 
figure out which port is really the one through which station S should be reached. 
Obviously, this situation is intolerable. If it were allowed to occur, bridges used in 
such configurations would be useless. Fortunately, there is a protocol that is used 
to avoid this situation called the Spanning Tree Protocol (STP). We describe STP in 
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some detail to explain why some approach to duplicate suppression is needed for 
bridges and switches. In the current standard [802.1D-2004], conventional STP is 
replaced with the Rapid Spanning Tree Protocol (RSTP), which we describe after the 
conventional STP preliminaries.

STP works by disabling certain ports at each bridge so that topological loops 
are avoided (i.e., no duplicate paths between bridges are permitted), yet the topol-
ogy is not partitioned—all stations can be reached. Mathematically, a spanning 
tree is a collection of all of the nodes and some of the edges of a graph such that 
there is a path or route from any node to any other node (spanning the graph), but 
there are no loops (the edge set forms a tree). There can be many spanning trees on 
a graph. STP finds one of them for the graph formed by bridges as nodes and links 
as edges. Figure 3-13 illustrates the idea. 

Figure 3-12  An extended Ethernet network with four switches and multiple redundant links. If 
simple flooding were used in forwarding frames through this network, a catastrophe 
would occur because of excess multiplying traffic (a so-called broadcast storm). This 
type of situation requires the use of the STP. 

Figure 3-13  Using STP, the B-A, A-C, and C-D links have become active on the spanning tree. Ports 
6, 7, 1, 2, 13, 14, and 20 are in the forwarding state; all other ports are blocked (i.e., not 
forwarding). This keeps frames from looping and avoids broadcast storms. If a configu-
ration change occurs or a switch fails, the blocked ports are changed to the forwarding 
state and the bridges compute a new spanning tree. 
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In this figure, the dark lines represent the links in the network selected by STP 
for forwarding frames. None of the other links are used—ports 8, 9, 12, 21, 22, and 
3 are blocked. With STP, the various problems raised earlier do not occur, as frames 
are created only as the result of another frame arriving. There is no amplification. 
Furthermore, looping is avoided because there is only one path between any two 
stations. The spanning tree is formed and maintained by bridges using a distrib-
uted algorithm running in each bridge. 

As with forwarding databases, STP must deal with the situation where bridges 
are turned off and on, interface cards are replaced, or MAC addresses are changed. 
Clearly, such changes could affect the operation of the spanning tree, so the STP 
adapts to these changes. The adaptation is implemented using an exchange of 
special frames called Bridge Protocol Data Units (BPDUs). These frames are used 
for forming and maintaining the spanning tree. The tree is “grown” from a bridge 
elected by the others and known as the “root bridge.” 

As mentioned previously, there are many possible spanning trees for a given 
network. Determining which one might be the best to use for forwarding frames 
depends on a set of costs that can be associated with each link and the location of 
the root bridge. Costs are simply integers that are (recommended to be) inversely 
proportional to the link speeds. For example, a 10Mb/s link has a recommended 
cost of 100, and 100Mb/s and 1000Mb/s links have recommended cost values of 19 
and 4, respectively. STP operates by computing least-cost paths to the root bridge 
using these costs. If multiple links must be traversed, the corresponding cost is 
simply the sum of the link costs. 

3.4.1.1 Port States and Roles 
To understand the basic operation of STP, we need to understand the operation of 
the state machine for each port at each bridge, as well as the contents of BPDUs. 
Each port in each bridge may be in one of five states: blocking, listening, learning, 
forwarding, and disabled. The relationship among them can be seen in the state 
transition diagram shown in Figure 3-14. 

The normal transitions for ports on the spanning tree are indicated in Figure 
3-14 by solid arrows, and the smaller arrows with dashed lines indicate changes 
due to administrative configuration. After initialization, a port enters the blocking 
state. In this state, it does not learn addresses, forward frames, or transmit BPDUs, 
but it does monitor received BPDUs in case it needs to be included in the future on 
a path to the root bridge, in which case the port transitions to the listening state. In 
the listening state, the port is now permitted to send as well as receive BPDUs but 
not learn addresses or forward data. After a typical forwarding delay timeout of 
15s, a port enters the learning state. Here it is permitted to do all procedures except 
forward data. It waits another forwarding delay before entering the forwarding 
state and commencing to forward frames. 

Related to the port state machine, each port is said to have a role. This termi-
nology becomes more important with RSTP (see Section 3.4.1.6). A port may have 
the role of root port, designated port, alternate port, or backup port. Root ports are those 
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ports at the end of an edge on the spanning tree headed toward the root. Desig-
nated ports are ports in the forwarding state acting as the port on the least-cost 
path to the root from the attached segment. Alternate ports are other ports on an 
attached segment that could also reach the root but at higher cost. They are not in 
the forwarding state. A backup port is a port connected to the same segment as a 
designated port on the same bridge. Thus, backup ports could easily take over for 
a failing designated port without disrupting any of the rest of the spanning tree 
topology but do not offer an alternate path to the root should the entire bridge fail. 

3.4.1.2 BPDU Structure 
To determine the links in the spanning tree, STP uses BPDUs that adhere to the 
format shown in Figure 3-15. 

The format shown in Figure 3-15 applies to both the original STP as well as 
the newer RSTP (see Section 3.4.1.6). BPDUs are always sent to the group address 
01:80:C2:00:00:00 (see Chapter 9 for details of link-layer group and Internet multi-
cast addressing) and are not forwarded through a bridge without modification. In 
the figure, the DST, SRC, and L/T (Length/Type) fields are part of the conventional 
Ethernet (802.3) header of the frame carrying the example BPDU. The 3-byte LLC/
SNAP header is defined by 802.1 and for BPDUs is set to the constant 0x424203. 
Not all BPDUs are encapsulated using LLC/SNAP, but this is a common option. 

TOPOLOGY
CHANGE

TOPOLOGY
CHANGE

TOPOLOGY
CHANGE

Figure 3-14  Ports transition among four major states in normal STP operation. In the blocking state, 
frames are not forwarded, but a topology change or timeout may cause a transition to 
the listening state. The forwarding state is the normal state for active switch ports car-
rying data traffic. The state names in parentheses indicate the port states according to 
the RSTP. 
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The Protocol (Prot) field gives the protocol ID number, set to 0. The Version
(Vers) field is set to 0 or 2, depending on whether STP or RSTP is in use. The Type
field is assigned similarly. The Flags field contains Topology Change (TC) and Topol-
ogy Change Acknowledgment (TCA) bits, defined by the original 802.1d standard. 
Additional bits are defined for Proposal (P), Port Role (00, unknown; 01, alternate; 
10, root; 11, designated), Learning (L), Forwarding (F), and Agreement (A). These are 
discussed in the context of RSTP in Section 3.4.1.6. The Root ID field gives the iden-
tifier of the root bridge in the eyes of the sender of the frame, whose MAC address 
is given in the Bridge ID field. Both of these ID fields are encoded in a special way 
that includes a 2-byte Priority field immediately preceding the MAC address. The 
priority values can be manipulated by management software in order to force the 
spanning tree to be rooted at any particular bridge (Cisco, for example, uses a 
default value of 0x8000 in its Catalyst switches). 

The root path cost is the computed cost to reach the bridge specified in the 
Root ID field. The PID field is the port identifier and gives the number of the port 
from which the frame was sent appended to a 1-byte configurable Priority field 
(default 0x80). The Message A (MsgA) field gives the message age (see the next 
paragraph). The Maximum Age (MaxA) field gives the maximum age before time-
out (default: 20s). The Hello Time field gives the time between periodic transmis-
sions of configuration frames. The Forward Delay (Forw Delay) field gives the time 
spent in the learning and listening states. All of the age and time fields are given 
in units of 1/256s. 

Figure 3-15  BPDUs are carried in the payload area of 802 frames and exchanged between bridges to estab-
lish the spanning tree. Important fields include the source, root node, cost to root, and topol-
ogy change indication. With 802.1w and [802.1D-2004] (including Rapid STP or RSTP), additional 
fields indicate the state of the ports. 
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The Message Age field is not a fixed value like the other time-related fields. 
When the root bridge sends a BPDU, it sets this field to 0. Any bridge receiving the 
frame emits frames on its non-root ports with the Message Age field incremented by 
1. In essence, the field acts as a hop count, giving the number of bridges by which 
the BPDU has been processed before being received. When a BPDU is received on 
a port, the information it contains is kept in memory and participates in the STP 
algorithm until it is timed out, which happens at time (MaxA – MsgA). Should 
this time pass on a root port without receipt of another BPDU, the root bridge is 
declared “dead” and the bridge starts the root bridge election process over again. 

3.4.1.3 Building the Spanning Tree 
The first job of STP is to elect the root bridge. The root bridge is discovered as 
the bridge in the network (or VLAN) with the smallest identifier (priority com-
bined with MAC address). When a bridge initializes, it assumes itself to be the 
root bridge and sends configuration BPDUs with the Root ID field matching its 
own bridge ID, but if it detects a bridge with a smaller ID, it ceases sending its own 
frames and instead adopts the frame it received containing the smaller ID to be the 
basis for further BPDUs it sends. The port where the BPDU with the smaller root 
ID was received is then marked as the root port (i.e., the port on the path to the root 
bridge). The remaining ports are placed in either blocked or forwarding states. 

3.4.1.4 Topology Changes 
The next important job of STP is to handle topology changes. Although we could 
conceivably use the basic database aging mechanism described earlier to adapt to 
changing topologies, this is a poor approach because the aging timers can take a 
long time (5 minutes) to delete incorrect entries. Instead, STP incorporates a way 
to detect topology changes and inform the network about them quickly. In STP, a 
topology change occurs when a port has entered the blocking or forwarding states. 
When a bridge detects a connectivity change (e.g., a link goes down), the bridge noti-
fies its parent bridges on the tree to the root by sending topology change notification
(TCN) BPDUs out of its root port. The next bridge on the tree to the root acknowl-
edges the TCN BPDUs to the notifying bridge and also forwards them on toward 
the root. Once informed of the topology change, the root bridge sets the TC bit field 
in subsequent periodic configuration messages. Such messages are relayed by every 
bridge in the network and are received by ports in either the blocking or forwarding 
states. The setting of this bit field allows bridges to reduce their aging time to that of 
the forward delay timer, on the order of seconds instead of the 5 minutes normally 
recommended for the aging time. This allows database entries that may now be 
incorrect to be purged and relearned more quickly, yet it also allows stations that 
are actively communicating to not have their entries deleted erroneously. 

3.4.1.5 Example 
In Linux, the bridge function disables STP by default, on the assumption that 
topologies are relatively simple in most cases where a regular computer is being 
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used as a bridge. To enable STP on the example bridge we are using so far, we can 
do the following: 

   Linux# brctl stp br0 on 

The consequences of executing this command can be inspected as follows:

Linux# brctl showstp br0  

br0 

 bridge id             8000.0007e914a9c1
 designated root       8000.0007e914a9c1
 root port                0                path cost               0
 max age                  19.99            bridge max age         19.99
 hello time                 1.99           bridge hello time       1.99
 forward delay             14.99           bridge forward delay   14.99
 ageing time                0.99        
 hello timer                1.26           tcn timer               0.00
 topology change timer      3.37           gc timer                3.26 

 flags                   TOPOLOGY_CHANGE TOPOLOGY_CHANGE_DETECTED

eth0 (0) 
 port id               0000                    state         forwarding 
 designated root       8000.0007e914a9c1       path cost         100 
 designated bridge     8000.0007e914a9c1       message age timer   0.00 
 designated port       8001                    forward delay timer 0.00 

 designated cost       0                       hold timer          0.26 

 flags 

eth1 (0)     
 port id               0000                    state         forwarding 
 designated root       8000.0007e914a9c1       path cost          19 
 designated bridge     8000.0007e914a9c1       message age timer   0.00 
 designated port       8002                    forward delay timer 0.00 
 designated cost       0                       hold timer          0.26 

 flags 

Here we can see the STP setup for a simple bridged network. The bridge 
device, br0, holds information for the bridge as a whole. This includes the bridge 
ID (8000.0007e914a9c1), derived from the smallest MAC address on the PC-
based bridge (port 1) of Figure 3-11. The major configuration parameters (e.g., hello 
time, topology change timer, etc.) are given in seconds. The flags values indicate 
a recent topology change, which is expected given the fact that the network was 
recently connected. The rest of the output describes per-port information for eth0 
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(bridge port 1) and eth1 (bridge port 2). Note that the path cost for eth0 is about 
ten times greater than the cost of eth1. This is consistent with the observation that 
eth0 is a 10Mb/s Ethernet network and eth1 is a full-duplex 100Mb/s network. 

We can use Wireshark to look at a BPDU. In Figure 3-16 we see the contents 
of a 52-byte BPDU. The length of 52 bytes (less than the Ethernet minimum of 64 
bytes because the Linux capture facility removed the padding) is derived from 
the Length/Type field of the Ethernet header by adding 14, in this case giving the 
length of 52. The destination address is the group address, 01:80:C2:00:00:00, as 
expected. The payload length is 38 bytes, the value contained in the Length field. 
The SNAP/LLC field contains the constant 0x424243, and the encapsulated frame 
is a spanning tree (version 0) frame. The rest of the protocol fields indicate that the 
station 00:07:e9:14:a9:c1 believes it is the root of the spanning tree, using priority 
32768 (a low priority), and the BPDU has been sent from port 2 with priority 0x80. 
It also indicates a maximum age of 20s, a hello time of 2s, and a forwarding delay 
of 15s. 

Figure 3-16  Wireshark showing a BPDU. The Ethernet destination is a group address for bridges 
(01:80:c2:00:00:00).
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3.4.1.6 Rapid Spanning Tree Protocol (RSTP) (Formerly 802.1w) 
One of the perceived problems with conventional STP is that a change in topology 
is detected only by the failure to receive a BPDU in a certain amount of time. If 
the timeout is large, the convergence time (time to reestablish data flow along the 
spanning tree) could be larger than desired. The IEEE 802.1w standard (now part 
of [802.1D-2004]) specifies enhancements to the conventional STP and adopts the 
new name Rapid Spanning Tree Protocol (RSTP). The main improvement in RSTP 
over STP is to monitor the status of each port and upon indication of failure to 
immediately trigger a topology change indication. In addition, RSTP uses all 6 bits 
in the Flag field of the BPDU format to support agreements between bridges that 
avoid some of the need for timers to initiate protocol operations. It reduces the 
normal STP five port states to three (discarding, learning, and forwarding, as 
indicated by the state names in parentheses in Figure 3-14). The discarding state 
in RSTP absorbs the disabled, blocking, and listening states in conventional STP. 
RSTP also creates a new port role called an alternate port, which acts as an immedi-
ate backup should a root port cease to operate. 

RSTP uses only one type of BPDU, so there are no special topology change 
BPDUs, for example. RSTP BPDUs, as they are called, use version and type num-
ber 2 instead of 0. In RSTP, any switch detecting a topology change sends BPDUs 
indicating a topology change, and any switch receiving them clears its filtering 
databases immediately. This change can significantly affect the protocol’s con-
vergence time. Instead of waiting for the topology change to migrate to the root 
bridge and back followed by the forwarding delay wait time, entries are cleared 
immediately. Overall, convergence time can be cut from tens of seconds down to a 
fraction of a second in most cases. 

RSTP makes a distinction between edge ports (those attached only to end sta-
tions) and normal spanning tree ports and also between point-to-point links and 
shared links. Edge ports and ports on point-to-point links do not ordinarily form 
loops, so they are permitted to skip the listening and learning states and move 
directly to the forwarding state. Of course, the assumption of being an edge port 
could be violated if, for example, two ports were cross-connected, but this is han-
dled by reclassifying ports as spanning tree ports if they ever carry any form of 
BPDUs (simple end stations do not normally generate BPDUs). Point-to-point links 
are inferred from the operating mode of the interface; if the interface is running in 
full-duplex mode, the link is classified as a point-to-point link. 

In regular STP, BPDUs are ordinarily relayed from a notifying or root bridge. 
In RSTP, BPDUs are sent periodically by all bridges as “keepalives” to determine 
if connections to neighbors are operating properly. This is what most higher-layer 
routing protocols do also. If a bridge fails to receive an updated BPDU within 
three times the hello interval, the bridge concludes that it has lost its connection 
with its neighbor. Note that in RSTP, topology changes are not induced as a result 
of edge ports being connected or disconnected as they are in regular STP. When 
a topology change is detected, the notifying bridge sends BPDUs with the TC bit 
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field set, not only to the root but also to all other bridges. Doing so allows the 
entire network to be notified of the topology change much faster than with con-
ventional STP. When a bridge receives these messages, it flushes all table entries 
except those associated with edge ports and restarts the learning process. 

Many of RSTP’s features were developed by Cisco Systems and other compa-
nies that had for some time provided proprietary enhancements to regular STP in 
their products. The IEEE committee incorporated many of these enhancements into 
the updated 802.1d standard, which covers both types of STP, so extended LANs 
can run regular STP on some segments and RSTP on others (although the RSTP 
benefits are lost). RSTP has been extended to include VLANs [802.1Q-2005]—a 
protocol called the Multiple Spanning Tree Protocol (MSTP). This protocol retains 
the RSTP (and hence STP) BPDU format, so backward compatibility is possible, 
but it also supports the formation of multiple spanning trees (one for each VLAN).

3.4.2 802.1ak: Multiple Registration Protocol (MRP)  

The Multiple Registration Protocol (MRP) provides a general method for registering 
attributes among stations in a bridged LAN environment. [802.1ak-2007] defines 
two particular “applications” of MRP called MVRP (for registering VLANs) and 
MMRP (for registering group MAC addresses). MRP replaces the earlier GARP 
framework; MVRP and MMRP replace the older GVRP and GMRP protocols, 
respectively. All were originally defined by 802.1q.

With MVRP, once an end station is configured as a member of a VLAN, this 
information is communicated to its attached switch, which in turn propagates 
the fact of the station’s participation in the VLAN to other switches. This allows 
switches to augment their filtering tables based on station VLAN IDs and allows 
changes of VLAN topology without necessarily triggering a recalculation of the 
existing spanning tree via STP. Avoiding STP recalculation was one of the reasons 
for migrating from GVRP to MVRP.

MMRP is a method for stations to register their interest in group MAC 
addresses (multicast addresses). This information may be used by switches to 
establish the ports through which multicast traffic must be delivered. Without 
such a facility, switches would have to broadcast all multicast traffic, potentially 
leading to unwanted overhead. MMRP is a layer 2 protocol with similarities to 
IGMP and MLD, layer 3 protocols, and the “IGMP/MLD snooping” capability sup-
ported in many switches. We discuss IGMP, MLD and snooping in Chapter 9.

3.5 Wireless LANs—IEEE 802.11(Wi-Fi) 

One of the most popular technologies being used to access the Internet today is 
wireless fidelity (Wi-Fi), also known by its IEEE standard name 802.11, effectively 
a wireless version of Ethernet. Wi-Fi has developed to become an inexpensive, 
highly convenient way to provide connectivity and performance levels acceptable 



ptg999

112 Link Layer 

for most applications. Wi-Fi networks are easy to set up, and most portable com-
puters and smartphones now include the necessary hardware to access Wi-Fi 
infrastructure. Many coffee shops, airports, hotels, and other facilities include 
Wi-Fi “hot spots,” and Wi-Fi is even seeing considerable advancement in develop-
ing countries where other infrastructure may be difficult to obtain. The architec-
ture of an IEEE 802.11 network is shown in Figure 3-17.

Figure 3-17  The IEEE 802.11 terminology for a wireless LAN. Access points (APs) can be connected 
using a distribution service (DS, a wireless or wired backbone) to form an extended 
WLAN (called an ESS). Stations include both APs and mobile devices communicating 
together that form a basic service set (BSS). Typically, an ESS has an assigned ESSID that 
functions as a name for the network. 

The network in Figure 3-17 includes a number of stations (STAs). Typically 
stations are organized with a subset operating also as access points (APs). An AP 
and its associated stations are called a basic service set (BSS). The APs are generally 
connected to each other using a wired distribution service (called a DS, basically a 
“backbone”), forming an extended service set (ESS). This setup is commonly termed 
infrastructure mode. The 802.11 standard also provides for an ad hoc mode. In this 
configuration there is no AP or DS; instead, direct station-to-station (peer-to-peer) 
communication takes place. In IEEE terminology, the STAs participating in an 
ad hoc network form an independent basic service set (IBSS). A WLAN formed from 
a collection of BSSs and/or IBSSs is called a service set, identified by a service set 
identifier (SSID). An extended service set identifier (ESSID) is an SSID that names a 
collection of connected BSSs and is essentially a name for the LAN that can be up 
to 32 characters long. Such names are ordinarily assigned to Wi-Fi APs when a 
WLAN is first installed.
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3.5.1 802.11 Frames 

There is one common overall frame format for 802.11 networks but multiple types 
of frames. Not all the fields are present in every type of frame. Figure 3-18 shows 
the format of the common frame and a (maximal-size) data frame. 

Figure 3-18  The 802.11 basic data frame format (as of [802.11n-2009]). The MPDU format resembles that of 
Ethernet but has additional fields depending on the type of DS being used among access points, 
whether the frame is headed to the DS or from it, and if frames are being aggregated. The QoS 
Control field is used for special performance features, and the HT Control field is used for control 
of 802.11n’s “high-throughput” features. 

The frame shown in Figure 3-18 includes a preamble for synchronization, 
which depends on the particular variant of 802.11 being used. Next, the Physical 
Layer Convergence Procedure (PLCP) header provides information about the spe-
cific physical layer in a somewhat PHY-independent way. The PLCP portion of the 
frame is generally transmitted at a lower data rate than the rest of the frame. This 
serves two purposes: to improve the probability of correct delivery (lower speeds 
tend to have better error resistance) and to provide compatibility with and protec-
tion from interference from legacy equipment that may operate in the same area at 
slower rates. The MAC PDU (MPDU) corresponds to a frame similar to Ethernet, 
but with some additional fields. 

At the head of the MPDU is the Frame Control Word, which includes a 2-bit 
Type field identifying the frame type. There are three types of frames: management 
frames, control frames, and data frames. Each of these can have various subtypes, 
depending on the type. The full table of types and subtypes is given in [802.11n-
2009, Table 7-1]. The contents of the remaining fields, if present, are determined by 
the frame type, which we discuss individually. 

3.5.1.1 Management Frames 
Management frames are used for creating, maintaining, and ending associations 
between stations and access points. They are also used to determine whether 
encryption is being used, what the name (SSID or ESSID) of the network is, what 
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transmission rates are supported, and a common time base. These frames are used 
to provide the information necessary when a Wi-Fi interface “scans” for nearby 
access points. 

Scanning is the procedure by which a station discovers available networks 
and related configuration information. This involves switching to each available 
frequency and passively listening for traffic to identify available access points. Sta-
tions may also actively probe for networks by transmitting a particular manage-
ment frame (“probe request”) while scanning. There are some limitations on such 
probe requests to ensure that 802.11 traffic is not transmitted on a frequency that 
is being used for non-802.11 purposes (e.g., medical services). Here is an example 
of initiating a scan by hand on a Linux system: 

Linux# iwlist wlan0 scan
wlan0 Scan completed : 
            Cell 01 - Address: 00:02:6F:20:B5:84 
                     ESSID:"Grizzly-5354-Aries-802.11b/g" 
                     Mode:Master 
                     Channel:4 
                      Frequency:2.427 GHz (Channel 4) 
                     Quality=5/100 Signal level=47/100 
                     Encryption key:on 
                     IE: WPA Version 1 
                        Group Cipher : TKIP 
                        Pairwise Ciphers (2) : CCMP TKIP 
                        Authentication Suites (1) : PSK 
                     Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 
                            6 Mb/s; 12 Mb/s; 24 Mb/s; 36 Mb/s; 9 Mb/s; 
                            18 Mb/s; 48 Mb/s; 54 Mb/s
                     Extra:tsf=0000009d832ff037 

Here we see the result of a hand-initiated scan using wireless interface wlan0. 
An AP with MAC address 00:02:6F:20:B5:84 is acting as a master (i.e., is act-
ing as an AP in infrastructure mode). It is broadcasting the ESSID "Grizzly-
5354-Aries-802.11b/g" on channel 4 (2.427GHz). (See Section 3.5.4 on channels 
and frequencies for more details on channel selection.) The quality and signal 
level give indications of how well the scanning station is receiving a signal from 
the AP, although the meaning of these values varies among manufacturers. WPA 
encryption is being used on this link (see Section 3.5.5), and bit rates from 1Mb/s 
to 54Mb/s are available. The tsf (time sync function) value indicates the AP’s 
notion of time, which is used for synchronizing various features such as power-
saving mode (see Section 3.5.2).

When an AP broadcasts its SSID, any station may attempt to establish an 
association with the AP. When an association is established, most Wi-Fi networks 
today also set up the necessary configuration information to provide Internet 
access to the station (see Chapter 6). However, an AP’s operator may wish to con-
trol which stations make use of the network. Some operators intentionally make 
this more difficult by having the AP not broadcast its SSID, as a security measure. 
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This approach provides little security, as the SSID may be guessed. More robust 
security is provided by link encryption and passwords, which we discuss in Sec-
tion 3.5.5. 

3.5.1.2 Control Frames: RTS/CTS and ACKs 
Control frames are used to handle a form of flow control as well as acknowl-
edgments for frames. Flow control helps ensure that a receiver can slow down a 
sender that is too fast. Acknowledgments help a sender know what frames have 
been received correctly. These concepts also apply to TCP at the transport layer 
(see Chapter 15). 802.11 networks support optional request-to-send (RTS)/clear-to-
send (CTS) moderation of transmission for flow control. When these are enabled, 
prior to sending a data frame a station transmits an RTS frame, and when the 
recipient is willing to receive additional traffic, it responds with a CTS. After the 
RTS/CTS exchange, the station has a window of time (identified in the CTS frame) 
to transmit data frames that are acknowledged when successfully received. Such 
transmission coordination schemes are common in wireless networks and mimic 
the flow control signaling that has been used on wired serial lines for years (some-
times called hardware flow control). 

The RTS/CTS exchange helps to avoid the hidden terminal problem by instruct-
ing each station when it is permitted to transmit, so as to avoid simultaneous 
transmissions from stations that cannot hear each other. Because RTS and CTS 
frames are short, they do not use the channel for long. An AP generally initiates 
an RTS/CTS exchange for a packet if the size of the packet is large enough. Typi-
cally, an AP has a configuration option called the packet size threshold (or similar). 
Frames larger than the threshold cause an RTS to be sent prior to transmission of 
the data. Most vendors use a default setting for this value of approximately 500 
bytes if RTS/CTS exchanges are desired. In Linux, the RTS/CTS threshold can be 
set in the following way: 

Linux# iwconfig wlan0 rts 250
wlan0 IEEE 802.11g ESSID:"Grizzly-5354-Aries-802.11b/g" 
           Mode:Managed
           Frequency:2.427 GH
           Access Point: 00:02:6F:20:B5:84 
           Bit Rate=24 Mb/s Tx-Power=0 dBm 
           Retry min limit:7 RTS thr=250 B Fragment thr=2346 B 
           Encryption key:xxxx- ... -xxxx [3] 
           Link Quality=100/100 Signal level=46/100 
           Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 
           Tx excessive retries:0 Invalid misc:0 Missed beacon:0 

The iwconfig command can be used to set many variables, including the RTS 
and fragmentation thresholds (see Section 3.5.1.3). It can also be used to determine 
statistics such as the number of frame errors due to wrong network ID (ESSID) or 
wrong encryption key. It also gives the number of excessive retries (i.e., the num-
ber of retransmission attempts), a rough indicator of the reliability of the link that 



ptg999

116 Link Layer 

is popular for guiding routing decisions in wireless networks [ETX]. In WLANs 
with limited coverage, where hidden terminal problems are unlikely to occur, it 
may be preferable to disable RTS/CTS by adjusting the stations’ RTS thresholds to 
be a high value (1500 or larger). This avoids the overhead imposed by requiring 
RTS/CTS exchanges for each packet. 

In wired Ethernet networks, the absence of a collision indicates that a frame 
has been received correctly with high probability. In wireless networks, there is 
a wider range of reasons a frame may not be delivered correctly, such as insuffi-
cient signal or interference. To help address this potential problem, 802.11 extends 
the 802.3 retransmission scheme with a retransmission/acknowledgment (ACK) 
scheme. An acknowledgment is expected to be received within a certain amount 
of time for each unicast frame sent (802.11a/b/g) or each group of frames sent 
(802.11n or 802.11e with “block ACKs”). Multicast and broadcast frames do not 
have associated ACKs to avoid “ACK implosion” (see Chapter 9). Failure to receive 
an ACK within the specified time results in retransmission of the frame(s). 

With retransmissions, it is possible to have duplicate frames formed within 
the network. The Retry bit field in the Frame Control Word is set when any frame 
represents a retransmission of a previously transmitted frame. A receiving station 
can use this to help eliminate duplicate frames. Stations are expected to keep a 
small cache of entries indicating addresses and sequence/fragment numbers seen 
recently. When a received frame matches an entry, the frame is discarded. 

The amount of time necessary to send a frame and receive an ACK for it 
relates to the distance of the link and the slot time (a basic unit of time related to 
the 802.11 MAC protocol; see Section 3.5.3). The time to wait for an ACK (as well as 
the slot time) can be configured in most systems, although the method for doing 
so varies. In most cases such as home or office use, the default values are adequate. 
When using Wi-Fi over long distances, these values may require adjusting (see, for 
example, [MWLD]). 

3.5.1.3 Data Frames, Fragmentation, and Aggregation 
Most frames seen on a busy network are data frames, which do what one would 
expect—carry data. Typically, there is a one-to-one relationship between 802.11 
frames and the link-layer (LLC) frames made available to higher-layer proto-
cols such as IP. However, 802.11 supports frame fragmentation, which can divide 
frames into multiple fragments. With the 802.11n specification, it also supports 
frame aggregation, which can be used to send multiple frames together with less 
overhead.

When fragmentation is used, each fragment has its own MAC header and trail-
ing CRC and is handled independently of other fragments. For example, fragments 
to different destinations can be interleaved. Fragmentation can help improve per-
formance when the channel has significant interference. Unless block ACKs are 
used, each fragment is sent individually, producing one ACK per fragment by the 
receiver. Because fragments are smaller than full-size frames, if a retransmission 
needs to be invoked, a smaller amount of data will need to be repaired. 
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Fragmentation is applied only to frames with a unicast (non-broadcast or 
multicast) destination address. To enable this capability, the Sequence Control field 
contains a fragment number (4 bits) and a sequence number (12 bits). If a frame is frag-
mented, all fragments contain a common sequence number value, and each adja-
cent fragment has a fragment number differing by 1. A total of 15 fragments for the 
same frame is possible, given the 4-bit-wide field. The More Frag field in the Frame 
Control Word indicates that further fragments are yet to come. Terminal fragments 
have this bit set to 0. A destination defragments the original frame from fragments 
it receives by assembling the fragments in order based on fragment number order 
within the frame sequence number. Provided that all fragments constituting a 
sequence number have been received and the last fragment has a More Frag field of 
0, the frame is reconstructed and passed to higher-layer protocols for processing. 

Fragmentation is not often used because it does require some tuning. If used 
without tuning, it can worsen performance slightly. When smaller frames are 
used, the chance of having a bit error (see the next paragraph) can be reduced. 
The fragment size can usually be set from 256 bytes to 2KB as a threshold (only 
those frames that exceed the threshold in size are fragmented). Many APs default 
to not using fragmentation by setting the threshold high (such as 2437 bytes on a 
Linksys-brand AP). 

The reason fragmentation can be useful is a fairly simple exercise in prob-
ability. If the bit error rate (BER) is P, the probability of a bit being successfully 
delivered is (1 - P) and the probability that N bits are successfully delivered is 
(1 - P)N. As N grows, this value shrinks. Thus, if we can shorten a frame, we can 
in principle improve its error-free delivery probability. Of course, if we divide a 
frame of size N bits into K fragments, we have to send at least ⎡N/K⎤ fragments. As 
a concrete example, assume that we wish to send a 1500-byte (12,000-bit) frame. 
If we assume P = 10-4 (a relatively high BER), the probability of successful deliv-
ery without fragmentation would be (1 - 10-4)12,000 = .301. So we have only about a 
30% chance of such a frame being delivered without errors the first time, and on 
average we would have to send the frame three or four times for it to be received 
successfully. 

If we use fragmentation for the same example and set the fragmentation thresh-
old to 500, we produce three fragments of about 4000 bits each. The probability of 
one such fragment being delivered without error is about (1 - 10-4)4000 = .670. Thus, 
each fragment has about a 67% chance of being delivered successfully. Of course, 
we have to have three of them delivered successfully to reconstruct the whole 
frame. The probabilities of 3, 2, 1, and 0 fragments being delivered successfully 
are (.67)3 = 0.30, 3(.67)2(.33) = 0.44, 3(0.67)(.33)2 = .22, and (.33)3 = .04, respectively. 
So, although the chances that all three are delivered successfully without retries 
are about the same as for the nonfragmented frame being delivered successfully, 
the chances that two or three fragments are delivered successfully are fairly good. 
If this should happen, at most a single fragment would have to be retransmit-
ted, which would take significantly less time (about a third) than sending the 
original 1500-byte unfragmented frame. Of course, each fragment consumes some 
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overhead, so if the BER is effectively 0, fragmentation only decreases performance 
by creating more frames to handle.

One of the enhancements provided by 802.11n is the support of frame 
aggregation, in two forms. One form, called the aggregated MAC service data unit
(A-MSDU), allows for multiple complete 802.3 (Ethernet) frames to be aggregated 
within an 802.11 frame. The other form, called the aggregated MAC protocol data unit
(A-MPDU), allows multiple MPDUs with the same source, destination, and QoS 
settings to be aggregated by being sent in short succession. The two aggregation 
types are depicted in Figure 3-19.

Figure 3-19  Frame aggregation in 802.11n includes A-MSDU and A-MPDU. A-MSDU aggregates frames using 
a single FCS. A-MPDU aggregation uses a 4-byte delimiter between each aggregated 802.11 frame. 
Each A-MPDU subframe has its own FCS and can be individually acknowledged using block 
ACKs and retransmitted if necessary. 

For a single aggregate, the A-MSDU approach is technically more efficient. 
Each 802.3 header is ordinarily 14 bytes, which is relatively small compared to 
an 802.11 MAC header that could be as long as 36 bytes. Thus, with only a single 
802.11 MAC header for multiple 802.3 frames, a savings of up to 22 bytes per extra 
aggregated frame could be achieved. An A-MSDU may be up to 7935 bytes, which 
can hold over 100 small (e.g., 50-byte) packets, but only a few (5) larger (1500-
byte) data packets. The A-MSDU is covered by a single FCS. This larger size of an 
A-MSDU frame increases the chances it will be delivered with errors, and because 
there is only a single FCS for the entire aggregate, the entire frame would have to 
be retransmitted on error. 



ptg999

Section 3.5 Wireless LANs—IEEE 802.11(Wi-Fi)   119

A-MPDU aggregation is a different form of aggregation whereby multiple (up 
to 64) 802.11 frames, each with its own 802.11 MAC header and FCS and up to 4095 
bytes each, are sent together. A-MPDUs may carry up to 64KB of data—enough 
for more than 1000 small packets and about 40 larger (1.5KB) packets. Because 
each constituent frame (subframe) carries its own FCS, it is possible to selectively 
retransmit only those subframes received with errors. This is made possible by the 
block acknowledgment facility in 802.11n (originating in 802.11e), which is a form of 
extended ACK that provides feedback to a transmitter indicating which particular 
A-MPDU subframes were delivered successfully. This capability is similar in pur-
pose, but not in its details, to the selective acknowledgments we will see in TCP 
(see Chapter 14). So, although the type of aggregation offered by A-MSDUs may 
be more efficient for error-free networks carrying large numbers of small packets, 
in practice it may not perform as well as A-MPDU aggregation [S08].

3.5.2 Power Save Mode and the Time Sync Function (TSF) 

The 802.11 specification provides a way for stations to enter a limited power state, 
called power save mode (PSM). PSM is designed to save power by allowing an STA’s 
radio receive circuitry to be powered down some of the time. Without PSM, the 
receiver circuitry would always be running, draining power. When in PSM, an 
STA’s outgoing frames have a bit set in the Frame Control Word. A cooperative 
AP noticing this bit being set buffers any frames for the station until the station 
requests them. APs ordinarily send out beacon frames (a type of management 
frame) indicating various things like SSID, channel, and authentication informa-
tion. When supporting stations that use PSM, APs can also indicate the presence 
of buffered frames to a station by setting an indication in the Frame Control Word
of frames it sends. When stations enter PSM, they do so until the next AP beacon 
time, when they wake up and determine if there are pending frames stored at the 
AP for them. 

PSM should be used with care and understanding. Although it may extend bat-
tery life, the NIC is not the only module drawing power in most wireless devices. 
Other parts of the system such as the screen and hard drive can be significant con-
sumers of power, so overall battery life may not be extended much. Furthermore, 
using PSM can affect throughput performance significantly as idle periods are 
added between frame transmissions and time is spent switching modes [SHK07]. 

The ability to awaken an STA to check for pending frames at exactly the cor-
rect time (i.e., when an AP is about to send a beacon frame) depends on a common 
sense of time at the AP and the PSM stations it serves. Wi-Fi synchronizes time 
using the time synchronization function (TSF). Each station maintains a 64-bit coun-
ter reference time (in microseconds) that is synchronized with other stations in the 
network. Synchronization is maintained to within 4µs plus the maximum propa-
gation delay of the PHY (for PHYs of rate 1Mb/s or more). This is accomplished 
by having any station that receives a TSF update (basically, a copy of the 64-bit 
counter sent from another station) check to see if the provided value is larger than 
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its own. If so, the receiving station updates its own notion of time to be the larger 
value. This approach ensures that clocks always move forward, but it also raises 
some concern that, given stations with slightly differing clock rates, the slower 
ones will tend to be synced to the fastest one. 

With the incorporation of 802.11e (QoS) features into 802.11, the basic PSM of 
802.11 has been extended to include the ability to schedule periodic batch process-
ing of buffered frames. The frequency is expressed in terms of the number of bea-
con frames. The capability, called automatic power save delivery (APSD), uses some 
of the subfields of the QoS control word. APSD may be especially useful for small 
power-constrained devices, as they need not necessarily awaken at each beacon 
interval as they do in conventional 802.11 PSM. Instead, they may elect to power 
down their radio transceiver circuitry for longer periods of their own choosing. 
802.11n also extends the basic PSM by allowing an STA equipped with multiple 
radio circuits operating together (see MIMO, Section 3.5.4.2) to power down all but 
one of the circuits until a frame is ready. This is called spatial multiplexing power 
save mode. The specification also includes an enhancement to APSD called Power 
Save Multi-Poll (PSMP) that provides a way to schedule transmissions of frames in 
both directions (e.g., to and from AP) at the same time.

3.5.3 802.11 Media Access Control 

In wireless networks, it is much more challenging to detect a “collision” than in 
wired networks such as 802.3 LANs. In essence, the medium is effectively sim-
plex, and multiple simultaneous transmitters must be avoided, by coordinating 
transmissions in either a centralized or a distributed manner. The 802.11 stan-
dard has three approaches to control sharing of the wireless medium, called the 
point coordination function (PCF), the distributed coordinating function (DCF), and 
the hybrid coordination function (HCF). HCF was brought into the 802.11 specifica-
tion [802.11-2007] with the addition of QoS support in 802.11e and is also used by 
802.11n. Implementation of the DCF is mandatory for any type of station or AP, but 
implementation of the PCF is optional and not widespread (so we shall not discuss 
it in detail). HCF is found in relatively new QoS-capable Wi-Fi equipment, such as 
802.11n APs and earlier APs that support 802.11e. We turn our attention to DCF for 
now and describe HCF in the context of QoS next. 

DCF is a form of CSMA/CA for contention-based access to the medium. It is 
used for both infrastructure and ad hoc operation. With CSMA/CA, stations listen 
to see if the medium is free and, if so, may have an opportunity to transmit. If not, 
they avoid sending for a random amount of time before checking again to see if 
the medium is free. This behavior is similar to how a station sensing a collision 
backs off when using CSMA/CD on wired LANs. Channel arbitration in 802.11 is 
based on CSMA/CA with enhancements to provide priority access to certain sta-
tions or frame types.

802.11 carrier sense is performed in both a physical and a virtual way. Gener-
ally, stations wait for a period of time when ready to send (called the distributed 
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inter-frame space or DIFS) to allow higher-priority stations to access the channel. 
If the channel becomes busy during the DIFS period, a station starts the waiting 
period again. When the medium appears idle, a would-be transmitter initiates 
the collision avoidance/backoff procedure described in Section 3.5.3.3. This pro-
cedure is also initiated after a successful (unsuccessful) transmission is indicated 
by the receipt (lack of receipt) of an ACK. In the case of unsuccessful transmission, 
the backoff procedure is initiated with different timing (using the extended inter-
frame space or EIFS). We now discuss the implementation of DCF in more detail, 
including the virtual and physical carrier sense mechanisms.

3.5.3.1 Virtual Carrier Sense,    RTS/CTS, and the Network Allocation Vector (NAV) 
In the 802.11 MAC protocol, a virtual carrier sense mechanism operates by observ-
ing the Duration field present in each MAC frame. This is accomplished by a sta-
tion listening to traffic not destined for it. The Duration field is present in both 
RTS and CTS frames optionally exchanged prior to transmission, as well as con-
ventional data frames, and provides an estimate of how long the medium will be 
busy carrying the frame. 

The transmitter sets the Duration field based on the frame length, transmit 
rate, and PHY characteristics (e.g., rate, etc.). Each station keeps a local counter 
called the Network Allocation Vector (NAV) that estimates how long the medium 
will be busy carrying the current frame, and consequently how long it will need to 
wait before attempting its next transmission. A station overhearing traffic with a 
Duration field greater than its NAV updates its NAV to the new value. Because the 
Duration field is present in both RTS and CTS frames, if used, any station in range 
of either the sender or the receiver is able to ascertain the Duration field value. The 
NAV is maintained in time units and decremented based on a local clock. The 
medium is considered busy when the local NAV is nonzero. It is reset to 0 upon 
receipt of an ACK. 

3.5.3.2 Physical Carrier Sense    (CCA) 
Each 802.11 PHY specification (e.g., for different frequencies and radio technology) 
is required to provide a function for assessing whether the channel is clear based 
upon energy and waveform recognition (usually recognition of a well-formed 
PLCP). This function is called clear channel assessment (CCA) and its implementa-
tion is PHY-dependent. The CCA capability represents the physical carrier sense 
capability for the 802.11 MAC to understand whether the medium is currently 
busy. It is used in conjunction with the NAV to determine when a station must 
defer (wait) prior to transmission. 

3.5.3.3 DCF Collision Avoidance/Backoff Procedure 
Upon determining that the channel is likely to be free (i.e., because the NAV dura-
tion has been met and CCA does not indicate a busy channel), a station defers 
access prior to transmission. Because many stations may have been waiting for 
the channel to become free, each station computes and waits for a backoff time prior 
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to sending. The backoff time is equal to the product of a random number and the 
slot time (unless the station attempting to transmit already has a nonzero backoff 
time, in which case it is not recomputed). The slot time is PHY-dependent but is 
generally a few tens of microseconds. The random number is drawn from a uni-
form distribution over the interval [0, CW], where the contention window (CW) is 
an integer containing a number of time slots to wait, with limits aCWmin ≤ CW 
≤ aCWmax defined by the PHY. The set of CW values increases by powers of 2 
(minus 1) beginning with the PHY-specific constant aCWmin value and continu-
ing up to and including the constant aCWmax value for each successive trans-
mission attempt. This is similar in effect to Ethernet’s backoff procedure initiated 
during a collision detection event. 

In a wireless environment, collision detection is not practical because it is dif-
ficult for a transmitter and receiver to operate simultaneously in the same piece of 
equipment and hear any transmissions other than its own, so collision avoidance
is used instead. In addition, ACKs are generated in response to unicast frames to 
determine whether a frame has been delivered successfully. A station receiving 
a correct frame begins transmitting an ACK after waiting a small period of time 
(called the Short Interframe Space or SIFS), without regard to the busy/idle state of 
the medium. This should not cause a problem because the SIFS value is always 
smaller than DIFS, so in effect stations generating ACKs get priority access to the 
channel to complete their transactions. The source station waits a certain amount 
of time without receiving an ACK frame before concluding that a transmission 
has failed. Upon failure, the backoff procedure discussed previously is initiated 
and the frame is retried. The same procedure is initiated if a CTS is not received in 
response to an earlier RTS within a certain (different) amount of time (a constant 
called CTStimeout). 

3.5.3.4 HCF and 802.11e/n QoS
Clauses 5, 6, 7, and 9 of the 802.11 standard [802.11-2007] are based in part on the 
work of the 802.11e group within IEEE, and the terms 802.11e, Wi-Fi QoS, and 
WMM (for Wi-Fi Multimedia) are often used. They cover the QoS facility—changes 
to the 802.11 MAC-layer and system interfaces in support of multimedia applica-
tions such as voice over IP (VoIP) and streaming video. Whether the QoS facility 
is really necessary or not often depends on the congestion level of the network 
and the types of applications to be supported. If utilization of the network tends 
to be low, the QoS MAC support may be unnecessary, although some of the other 
802.11e capabilities may still be useful (e.g., block ACKs and APSD). In situations 
where utilization and congestion are high and there is a need to support a low-
jitter delivery capability for services such as VoIP, QoS support may be desirable. 
These specifications are relatively new, so QoS-capable Wi-Fi equipment is likely 
to be more expensive and complex than non-QoS equipment. 

The QoS facility introduces new terminology such as QoS stations (QSTAs), 
QoS access points (QAPs), and the QoS BSS (QBSS, a BSS supporting QoS). In gen-
eral, any of the devices supporting QoS capabilities also support conventional 
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non-QoS operation. 802.11n “high-throughput” stations (called HT STAs) are 
also QSTAs. A new form of coordination function, the hybrid coordination function
(HCF), supports both contention-based and controlled channel access, although 
the controlled channel variant is seldom used. Within the HCF, there are two spec-
ified channel access methods that can operate together: HFCA-controlled channel 
access (HCCA) and the more popular enhanced DCF channel access (EDCA), cor-
responding to reservation-based and contention-based access, respectively. There 
is also some support for admission control, which may deny connectivity entirely 
under high load. 

EDCA builds upon the basic DCF access. With EDCA, there are eight user 
priorities (UPs) that are mapped to four access categories (ACs). The user priorities 
use the same structure as 802.1d priority tags and are numbered 1 through 7, with 
7 being the highest priority. (There is also a 0 priority between 2 and 3.) The four 
ACs are nominally intended for background, best-effort, video, and audio traffic. 
Priorities 1 and 2 are intended for the background AC, priorities 0 and 3 are for 
the best-effort AC, 4 and 5 are for the video AC, and 6 and 7 are for the voice AC. 
For each AC, a variant of DCF contends for channel access credits called transmit 
opportunities (TXOPs), using alternative MAC parameters that tend to favor the 
higher-priority traffic. In EDCA, many of the various MAC parameters from DCF 
(e.g., DIFS, aCWmin, aCWmax) become adjustable as configuration parameters. 
These values are communicated to QSTAs using management frames. 

HCCA builds loosely upon PCF and uses polling-controlled channel access. 
It is designed for synchronous-style access control and takes precedence ahead of 
the contention-based access of EDCA. A hybrid coordinator (HC) is located within 
an AP and has priority to allocate channel accesses. Prior to transmission, a station 
can issue a traffic specification (TSPEC) for its traffic and use UP values between 8 
and 15. The HC can allocate reserved TXOPs to such requests to be used during 
short-duration controlled access phases of frame exchange that take place before 
EDCA-based frame transmission. The HC can also deny TXOPs to TSPECs based 
on admission control policies set by the network administrator. The HCF exploits 
the virtual carrier sense mechanism discussed earlier with DCF to keep conten-
tion-based stations from interfering with contention-free access. Note that a single 
network comprising QSTAs and conventional stations can have both HCF and 
DCF running simultaneously by alternating between the two, but ad hoc networks 
do not support the HC and thus do not handle TSPECs and do not perform admis-
sion control. Such networks might still run HCF, but TXOPs are gained through 
EDCA-based contention.

3.5.4 Physical-Layer Details: Rates, Channels, and Frequencies 

The [802.11-2007] standard now includes the following earlier amendments: 
802.11a, 802.11b, 802.11d, 802.11g, 802.11h, 802.11i, 802.11j, and 802.11e. The 802.11n 
standard was adopted as an amendment to 802.11 in 2009 [802.11n-2009]. Most 
of these amendments provide additional modulation, coding, and operating 
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frequencies for 802.11 networks, but 802.11n also adds multiple data streams and 
a method for aggregating multiple frames (see Section 3.5.1.3). We will avoid 
detailed discussion of the physical layer, but to appreciate the breadth of options, 
Table 3-2 includes those parts of the 802.11 standard that describe this layer in 
particular.

Table 3-2  Parts of the 802.11 standard that describe the physical layer

Standard
(Clause) Speeds (Mb/s) Frequency Range; Modulation Channel Set 

802.11a 
(Clause 17) 

6, 9, 12, 18, 24, 36, 
48, 54

5.16–5.35 and 5.725–5.825GHz; 
OFDM 

34–165 (varies by country) 
20MHz/10MHz/5MHz 
channel width options 

802.11b 
(Clause 18) 

1, 2, 5.5, 11 2.401–2.495GHz; DSSS 1–14 (varies by country) 

802.11g 
(Clause 19) 

1, 2, 5.5, 6, 9, 11, 12, 
18, 24, 36, 48, 54 
(plus 22, 33) 

2.401–2.495GHz; OFDM 1–14 (varies by country) 

802.11n 6.5–600 with many 
options (up to 4 
MIMO streams)

2.4 and 5GHz modes with 
20MHz- or 40MHz-wide 
channels; OFDM

1–13 (2.4GHz band); 
36–196 (5GHz band) 
(varies by country)

802.11y (Same as 
802.11-2007)

3.650–3.700GHz (licensed); 
OFDM

1–25, 36–64, 100–161 
(varies by country)

The first column gives the original standard name and its present location in 
[802.11-2007], plus details for the 802.11n and 802.11y amendments. It is important 
to note from this table that 802.11b/g operate in the 2.4GHz Industrial, Scientific, and 
Medical (ISM) band, 802.11a operates only in the higher 5GHz Unlicensed National 
Information Infrastructure (U-NII) band, and 802.11n can operate in both. The 
802.11y amendment provides for licensed use in the 3.65–3.70GHz band within 
the United States. An important practical consequence of the data in this table is 
that 802.11b/g equipment does not interoperate or interfere with 802.11a equip-
ment, but 802.11n equipment may interfere with either if not deployed carefully. 

3.5.4.1 Channels and Frequencies
Regulatory bodies (e.g., the Federal Communications Commission in the United 
States) divide the electromagnetic spectrum into frequency ranges allocated for 
various uses across the world. For each range and use, a license may or may not 
be required, depending on local policy. In 802.11, there are sets of channels that 
may be used in various ways at various power levels depending on the regula-
tory domain or country. Wi-Fi channels are numbered in 5MHz units starting at 
some base center frequency. For example, channel 36 with a base center frequency 
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of 5.00GHz gives the frequency 5000 + 36 * 5 = 5180MHz, the center frequency of 
channel 36. Although channel center frequencies are 5MHz apart from each other, 
channels may be wider than 5MHz (up to 40MHz for 802.11n). Consequently, some 
channels within channel sets of the same band usually overlap. Practically speak-
ing, this means that transmissions on one channel might interfere with transmis-
sions on nearby channels. 

Figure 3-20 presents the channel-to-frequency mapping for the 802.11b/g 
channels in the 2.4GHz ISM band. Each channel is 22MHz wide. Not all channels 
are available for legal use in every country. For example, channel 14 is authorized 
at present for use only in Japan, and channels 12 and 13 are authorized for use in 
Europe, while the United States permits channels 1 through 11 to be used. Other 
countries may be more restrictive (see Annex J of the 802.11 standard and amend-
ments). Note that policies and licensing requirements may change over time. 

Figure 3-20  The 802.11b and 802.11g standards use a frequency band between about 2.4GHz and 2.5GHz. This 
band is divided into fourteen 22MHz-wide overlapping channels, of which some subset is gener-
ally available for legal use depending on the country of operation. It is advisable to assign non-
overlapping channels, such as 1, 6, and 11 in the United States, to multiple base stations operating 
in the same area. Only a single 40MHz 802.11n channel may be used in this band without overlap.

As shown in Figure 3-20, the effect of overlapping channels is now clear. A 
transmitter on channel 1, for example, overlaps with channels 2, 3, 4, and 5 but 
not higher channels. This becomes important when selecting which channels 
to assign for use in environments where multiple access points are to be used 
and even more important when multiple access points serving multiple different 
networks in the same area are to be used. One common approach in the United 
States is to assign up to three APs in an area using nonoverlapping channels 1, 6, 
and 11, as channel 11 is the highest-frequency channel authorized for unlicensed 
use in the United States.  In cases where other WLANs may be operating in the 
same bands, it is worth considering jointly planning channel settings with all the 
affected WLAN administrators. 
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As shown in Figure 3-21, 802.11a/n/y share a somewhat more complicated 
channel set but offer a larger number of nonoverlapping channels to use (i.e., 12 
unlicensed 20MHz channels in the United States). 

Figure 3-21  Many of the approved 802.11 channel numbers and center frequencies for 20MHz chan-
nels. The most common range for unlicensed use involves the U-NII bands, all above 
5GHz. The lower band is approved for use in most countries. The “Europe” band is 
approved for use in most European countries, and the high band is approved for use in 
the United States and China. Channels are typically 20MHz wide for 802.11a/y but may 
be 40MHz wide for 802.11n. Narrower channels and some channels available in Japan 
are also available (not shown). 

In Figure 3-21, the channels are numbered in 5MHz increments, but different 
channel widths are available: 5MHz, 10MHz, 20MHz, and 40MHz. The 40MHz 
channel width is an option with 802.11n (see Section 3.5.4.2), along with several 
proprietary Wi-Fi systems that aggregate two 20MHz channels (called channel 
bonding). 

For typical Wi-Fi networks, an AP has its operating channel assigned during 
installation, and client stations change channels in order to associate with the AP. 
When operating in ad hoc mode, there is no controlling AP, so a station is typically 
hand-configured with the operating channel. The sets of channels available and 
operating power may be constrained by the regulatory environment, the hard-
ware capabilities, and possibly the supporting driver software. 

3.5.4.2 802.11 Higher Throughput/802.11n
In late 2009, the IEEE standardized 802.11n [802.11n-2009] as an amendment to 
[802.11-2007]. It makes a number of important changes to 802.11. To support higher 
throughput, it incorporates support for multiple input, multiple output (MIMO) man-
agement of multiple simultaneously operating data streams carried on multiple 
antennas, called spatial streams. Up to four such spatial streams are supported on a 
given channel. 802.11n channels may be 40MHz wide (using two adjacent 20MHz 
channels), twice as wide as conventional channels in 802.11a/b/g/y. Thus, there 
is an immediate possibility of having up to eight times the maximum data rate of 
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802.11a/g (54Mb/s), for a total of 432Mb/s. However, 802.11n also improves the 
single-stream performance by using a more efficient modulation scheme (802.11n 
uses MIMO- orthogonal frequency division multiplexing (OFDM) with up to 52 
data subcarriers per 20MHz channel and 108 per 40MHz channel, instead of 48 in 
802.11a and 802.11g), plus a more efficient forward error-correcting code (rate 5/6 
instead of 3/4), bringing the per-stream performance to 65Mb/s (20MHz channel) 
or 135Mb/s (40MHz channel). By also reducing the guard interval (GI, a forced 
idle time between symbols) duration to 400ns from the legacy 800ns, the maxi-
mum per-stream performance is raised to about 72.2Mb/s (20MHz channel) and 
150Mb/s (40MHz channel). With four spatial streams operating in concert per-
fectly, this provides a maximum of about 600Mb/s.

Some 77 combinations of modulation and coding options are supported 
by 802.11n, including 8 options for a single stream, 24 using the same or equal 
modulation (EQM) on all streams, and 43 using unequal modulation (UEQM) on 
multiple streams. Table 3-3 gives some of the combinations for modulation and 
coding scheme according to the first 33 values of the modulation and coding scheme
(MCS) value. Higher values (33–76) include combinations for two channels (val-
ues 33–38), three channels (39–52), and four channels (53–76). MCS value 32 is a 
special combination where the signals in the two halves of the 40MHz channel 

Table 3-3  MCS values for 802.11n include combinations of equal and unequal modulation, different 
FEC coding rates, up to four spatial streams using 20MHz- or 40MHz-wide channels, and 
an 800ns or 400ns GI. The 77 combinations provide data rates from 6Mb/s to 600Mb/s.

MCS 
Value Modulation Type

FEC 
Code 
Rate

Spatial 
Streams

Rates (Mb/s) 
(20MHz)
[800/400ns]

Rates (Mb/s)
(40MHz)
[800/400ns]

0 BPSK 1/2 1 6.5/7.2 13.5/15
1 QPSK 1/2 1 13/14.4 27/30
2 QPSK 3/4 1 19.5/21.7 40.5/45
3 16-QAM 1/2 1 26/28.9 54/60
4 16-QAM 3/4 1 39/43.3 81/90
5 64-QAM 2/3 1 52/57.8 108/120
6 64-QAM 3/4 1 58.5/65 121.5/135
7 64-QAM 5/6 1 65/72.2 135/150
8 BPSK 1/2 2 13/14.4 27/30
... ... ... ... ... ...
15 64-QAM 5/6 2 130/144.4 270/300
16 BPSK 1/2 3 19.5/21.7 40.5/45
... ... ... ... ... ...
31 64-QAM 5/6 4 260/288.9 540/600
32 BPSK 1/2 1 N/A 6/6.7
... ... ... ... ... ...
76 64x3/16x1-QAM 3/4 4 214.5/238.3 445.5/495
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contain the same information. Each data rate column gives two values, one using 
the legacy 800ns GI and one giving the greater data rate available using the shorter 
400ns GI. The underlined values, 6Mb/s and 600Mb/s, represent the smallest and 
largest throughput rates, respectively.

Table 3-3 shows the various combinations of coding, including binary phase shift 
keying (BPSK), quadrature phase shift keying (QPSK), and various levels of quadrature 
amplitude modulation (16- and 64-QAM), available with 802.11n. These modulation 
schemes provide an increasing data rate for a given channel bandwidth. However, 
the more high-performance and complex a modulation scheme, the more vulner-
able it tends to be to noise and interference. Forward error correction (FEC) includes 
a set of methods whereby redundant bits are introduced at the sender that can be 
used to detect and repair bit errors introduced during delivery. For FEC, the code 
rate is the ratio of the effective useful data rate to the rate imposed on the under-
lying communication channel. For example, a ½ code rate would deliver 1 useful 
bit for every 2 bits sent.

802.11n may operate in one of three modes. In 802.11n-only environments, 
the optional so-called greenfield mode, the PLCP contains special bit arrangements 
(“training sequences”) known only to 802.11n equipment and does not interoperate 
with legacy equipment. To maintain compatibility, 802.11n has two other interoper-
able modes. However, both of these impose a performance penalty to native 802.11n 
equipment. One mode, called non-HT mode, essentially disables all 802.11n features 
but remains compatible with legacy equipment. This is not a very interesting mode, 
so we shall not discuss it further. However, a required mode called HT-mixed mode
supports both 802.11n and legacy operation, depending on which stations are com-
municating. The information required to convey an AP’s 802.11n capability to HT 
STAs yet protect legacy STAs is provided in the PLCP, which is augmented to con-
tain both HT and legacy information and is transmitted at a slower rate than in 
greenfield mode so that it can be processed by legacy equipment. HT protection also 
requires an HT AP to use self-directed CTS frames (or RTS/CTS frame exchanges) 
at the legacy rate to inform legacy stations when it will use shared channels. Even 
though RTS/CTS frames are short, the requirement to send them at the legacy rate 
(6Mb/s) can significantly reduce an 802.11n WLAN’s performance.

When deploying an 802.11n AP, care should be taken to set up appropri-
ate channel assignments. When using 40MHz channels, 802.11n APs should be 
operated in the U-NII bands above 5GHz as there is simply not enough useful 
spectrum to use these wider channels in the 2.4GHz ISM band. An optional BSS 
feature called phased coexistence operation (PCO) allows an AP to periodically switch 
between 20MHz and 40MHz channel widths, which can provide better coexis-
tence between 802.11n APs operating near legacy equipment at the cost of some 
additional throughput. Finally, it is worth mentioning that 802.11n APs generally 
require more power than conventional APs. This higher power level exceeds the 
basic 15W provided by 802.3af power-over-Ethernet (PoE) system wiring, meaning 
that PoE+ (802.3at, capable of 30W) should be used unless some other form of 
power such as a direct external power supply is available.
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3.5.5 Wi-Fi Security 

There has been considerable evolution in the security model for 802.11 networks. 
In its early days, 802.11 used an encryption method known as wired equivalent
privacy (WEP). WEP was later shown to be so weak that some replacement was 
required. Industry responded with Wi-Fi protected access (WPA), which replaced 
the way keys are used with encrypted blocks (see Chapter 18 for the basics of 
cryptography). In WPA, a scheme called the Temporal Key Integrity Protocol (TKIP) 
ensures, among other things, that each frame is encrypted with a different encryp-
tion key. It also includes a message integrity check, called Michael, that fixed one 
of the major weaknesses in WEP. WPA was created as a placeholder that could be 
used on fielded WEP-capable equipment by way of a firmware upgrade while the 
IEEE 802.11i standards group worked on a stronger standard that was ultimately 
absorbed into Clause 8 of [802.11-2007] and dubbed “WPA2” by industry. Both 
WEP and WPA use the RC4 encryption algorithm [S96]. WPA2 uses the Advanced 
Encryption Standard (AES) algorithm [AES01]. 

The encryption techniques we just discussed are aimed at providing privacy 
between the station and AP, assuming the station has legitimate authorization to 
be accessing the network. In WEP, and small-scale environments that use WPA 
or WPA2, authorization is typically implemented by pre-placing a shared key 
or password in each station as well as in the AP during configuration. A user 
knowing the key is assumed to have legitimate access to the network. These keys 
are also frequently used to initialize the encryption keys used to ensure privacy. 
Using such pre-shared keys (PSKs) has limitations. For example, an administrator 
may have considerable trouble in providing keys only to authorized users. If a 
user becomes de-authorized, the PSK has to be replaced and all legitimate users 
informed. This approach does not scale to environments with many users. As a 
result, WPA and later standards support a port-based network access control standard 
called 802.1X [802.1X-2010]. It provides a way to carry the Extensible Authentication 
Protocol (EAP) [RFC3748] in IEEE 802 LANs (called EAPOL), including 802.3 and 
802.11 [RFC4017]. EAP, in turn, can be used to carry many other standard and non-
standard authentication protocols. It can also be used to establish keys, including 
WEP keys. Details of these protocols are given in Chapter 18, but we shall also see 
the use of EAP when we discuss PPP in Section 3.6. 

With the completion of the IEEE 802.11i group’s work, the RC4/TKIP combina-
tion in WPA was extended with a new algorithm called CCMP as part of WPA2. 
CCMP is based on using the counter mode (CCM [RFC3610]) of the AES for confi-
dentiality with cipher block chaining message authentication code (CBC-MAC; note the 
“other” use of the term MAC here) for authentication and integrity. All AES pro-
cessing is performed using a 128-bit block size and 128-bit keys. CCMP and TKIP 
form the basis for a Wi-Fi security architecture named the Robust Security Network
(RSN), which supports Robust Security Network Access (RSNA). Earlier methods, 
such as WEP, are called pre-RSNA methods. RSNA compliance requires support 
for CCMP (TKIP is optional), and 802.11n does away with TKIP entirely. Table 3-4 
provides a summary of this somewhat complicated situation. 
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In all cases, both pre-shared keys as well as 802.1X can be used for authentica-
tion and initial keying. The major attraction of using 802.1X/EAP is that a managed 
authentication server can be used to provide access control decisions on a per-user 
basis to an AP. For this reason, authentication using 802.1X is sometimes referred to 
as “Enterprise” (e.g., WPA-Enterprise). EAP itself can encapsulate various specific 
authentication protocols, which we discuss in more detail in Chapter 18.

3.5.6 Wi-Fi Mesh (802.11s)

The IEEE is working on the 802.11s standard, which covers Wi-Fi mesh operation. 
With mesh operation, wireless stations can act as data-forwarding agents (like 
APs). The standard is not yet complete as of writing (mid-2011). The draft version 
of 802.11s defines the Hybrid Wireless Routing Protocol (HWRP), based in part on the 
IETF standards for Ad-Hoc On-Demand Distance Vector (AODV) routing [RFC3561] 
and the Optimized Link State Routing (OLSR) protocol [RFC3626]. Mesh stations
(mesh STAs) are a type of QoS STA and may participate in HWRP or other routing 
protocols, but compliant nodes must include an implementation of HWRP and the 
associated airtime link metric. Mesh nodes coordinate using EDCA or may use an 
optional coordinating function called mesh deterministic access. Mesh points (MPs) 
are those nodes that form mesh links with neighbors. Those that also include AP 
functionality are called mesh APs (MAPs). Conventional 802.11 stations can use 
either APs or MAPs to access the rest of the wireless LAN.

The 802.11s draft specifies a new optional form of security for RSNA called 
Simultaneous Authentication of Equals (SAE) authentication [SAE]. This security 
protocol is a bit different from others because it does not require lockstep opera-
tion between a specially designated initiator and responder. Instead, stations 
are treated as equals, and any station that first recognizes another may initiate a 
security exchange (or this may happen simultaneously as two stations initiate an 
association).

3.6 Point-to-Point Protocol (PPP) 

PPP stands for the Point-to-Point Protocol [RFC1661][RFC1662][RFC2153]. It is a pop-
ular method for carrying IP datagrams over serial links—from low-speed dial-up 
modems to high-speed optical links [RFC2615]. It is widely deployed by some DSL 

Table 3-4  Wi-Fi security has evolved from WEP, which was found to be insecure, to WPA, to the 
now-standard WPA2 collection of algorithms. 

Name/Standard Cipher Key Stream Management Authentication 

WEP (pre-RSNA) RC4 (WEP) PSK, (802.1X/EAP) 

WPA RC4 TKIP PSK, 802.1X/EAP 

WPA2/802.11(i) CCMP CCMP, (TKIP) PSK, 802.1X/EAP 
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service providers, which also use it for assigning Internet system parameters (e.g., 
initial IP address and domain name server; see Chapter 6).

PPP should be considered more of a collection of protocols than a single pro-
tocol. It supports a basic method to establish a link, called the Link Control Proto-
col (LCP), as well as a family of NCPs, used to establish network-layer links for 
various kinds of protocols, including IPv4 and IPv6 and possibly non-IP protocols, 
after LCP has established the basic link. A number of related standards cover con-
trol of compression and encryption for PPP, and a number of authentication meth-
ods can be employed when a link is brought up.

3.6.1 Link Control Protocol (LCP) 

The LCP portion of PPP is used to establish and maintain a low-level two-party 
communication path over a point-to-point link. PPP’s operation therefore need 
be concerned only with two ends of a single link; it does not need to handle the 
problem of mediating access to a shared resource like the MAC-layer protocols of 
Ethernet and Wi-Fi.

PPP generally, and LCP more specifically, imposes minimal requirements on 
the underlying point-to-point link. The link must support bidirectional operation 
(LCP uses acknowledgments) and operate either asynchronously or synchro-
nously. Typically, LCP establishes a link using a simple bit-level framing format 
based on the High-Level Data Link Control (HDLC) protocol. HDLC was already 
a well-established framing format by the time PPP was designed [ISO3309]
[ISO4335]. IBM modified it to form Synchronous Data Link Control (SDLC), a pro-
tocol used as the link layer in its proprietary System Network Architecture (SNA) 
protocol suite. HDLC was also used as the basis for the LLC standard in 802.2 and 
ultimately for PPP as well. The format is shown in Figure 3-22.

Figure 3-22  The PPP basic frame format was borrowed from HDLC. It provides a protocol identifier, payload 
area, and 2- or 4-byte FCS. Other fields may or may not be present, depending on compression 
options. 

The PPP frame format, in the common case when HDLC-like framing is used 
as shown in Figure 3-22, is surrounded by two 1-byte Flag fields containing the 
fixed value 0x7E. These fields are used by the two stations on the ends of the 
point-to-point link for finding the beginning and end of the frame. A small prob-
lem arises if the value 0x7E itself occurs inside the frame. This is handled in one of 
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two ways, depending on whether PPP is operating over an asynchronous or a syn-
chronous link. For asynchronous links, PPP uses character stuffing (also called byte 
stuffing). If the flag character appears elsewhere in the frame, it is replaced with 
the 2-byte sequence 0x7D5E (0x7D is known as the “PPP escape character”). If the 
escape character itself appears in the frame, it is replaced with the 2-byte sequence 
0x7D5D. Thus, the receiver replaces 0x7D5E with 0x7E and 0x7D5D with 0x7D 
upon receipt. On synchronous links (e.g., T1 lines, T3 lines), PPP uses bit stuffing. 
Noting that the flag character has the bit pattern 01111110 (a contiguous sequence 
of six 1 bits), bit stuffing arranges for a 0 bit to be inserted after any contiguous 
string of five 1 bits appearing in a place other than the flag character itself. Doing 
so implies that bytes may be sent as more than 8 bits, but this is generally OK, as 
low layers of the serial processing hardware are able to “unstuff” the bit stream, 
restoring it to its prestuffed pattern. 

After the first Flag field, PPP adopts the HDLC Address (Addr) and Control
fields. In HDLC, the Address field would specify which station is being addressed, 
but because PPP is concerned only with a single destination, this field is always 
defined to have the value 0xFF (all stations). The Control field in HDLC is used to 
indicate frame sequencing and retransmission behavior. As these link-layer reli-
ability functions are not ordinarily implemented by PPP, the Control field is set 
to the fixed value 0x03. Because both the Address and Control fields are fixed con-
stants in PPP, they are often omitted during transmission with an option called 
Address and Control Field Compression (ACFC), which essentially eliminates the two 
fields. 

Note

There has been considerable debate over the years as to how much reliability 
link-layer networks should provide, if any. With Ethernet, up to 16 retransmis-
sion attempts are made before giving up. Typically, PPP is configured to do no 
retransmission, although there do exist specifications for adding retransmission 
[RFC1663]. The trade-off can be subtle and is dependent on the types of traffic to 
be carried. A detailed discussion of the considerations is contained in [RFC3366]. 

The Protocol field of the PPP frame indicates the type of data being carried. 
Many different types of protocols can be carried in a PPP frame. The official list 
and the assigned number used in the Protocol field are given by the “Point-to-Point 
Protocol Field Assignments” document [PPPn]. In conforming to the HDLC speci-
fication, any protocol numbers are assigned such that the least significant bit of the 
most significant byte equals 0 and the least significant bit of the least significant 
byte equals 1. Values in the (hexadecimal) range 0x0000–0x3FFF identify network-
layer protocols, and values in the 0x8000–0xBFFF range identify data belonging to 
an associated NCP. Protocol values in the range 0x4000–0x7FFF are used for “low-
volume” protocols with no associated NCP. Protocol values in the range 0xC000–
0XEFFF identify control protocols such as LCP. In some circumstances the Protocol 
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field can be compressed to a single byte, if the Protocol Field Compression (PFC) 
option is negotiated successfully during link establishment. This is applicable to 
protocols with protocol numbers in the range 0x0000–0x00FF, which includes most 
of the popular network-layer protocols. Note, however, that LCP packets always 
use the 2-byte uncompressed format. 

The final portion of the PPP frame contains a 16-bit FCS (a CRC16, with gener-
ator polynomial 10001000000100001) covering the entire frame except the FCS field 
itself and Flag bytes. Note that the FCS value covers the frame before any byte or 
bit stuffing has been performed. With an LCP option (see Section 3.6.1.2), the CRC 
can be extended from 16 to 32 bits. This case uses the same CRC32 polynomial 
mentioned previously for Ethernet. 

3.6.1.1 LCP Operation 
LCP has a simple encapsulation beyond the basic PPP packet. It is illustrated in 
Figure 3-23.

Figure 3-23  The LCP packet is a fairly general format capable of identifying the type of encapsulated data and 
its length. LCP frames are used primarily in establishing a PPP link, but this basic format also 
forms the basis of many of the various network control protocols. 

The PPP Protocol field value for LCP is always 0xC021, which is not eliminated 
using PFC, so as to minimize ambiguity. The Ident field is a sequence number 
provided by the sender of LCP request frames and is incremented for each sub-
sequent message. When forming a reply (ACK, NACK, or REJECT response), this 
field is constructed by copying the value included in the request to the response 
packet. In this fashion, the requesting side can identify replies to the appropriate 
request by matching identifiers. The Code field gives the type of operation being 
either requested or responded to: configure-request (0x01), configure-ACK (0x02), 
configure-NACK (0x03), configure-REJECT (0x04), terminate-request (0x05), ter-
minate-ACK (0x06), code-REJECT (0x07), protocol-REJECT (0x08), echo-request 
(0x09), echo-reply (0x0A), discard-request (0x0B), identification (0x0C), and time- 
remaining (0x0D). Generally, ACK messages indicate acceptance of a set of options, 
and NACK messages indicate a partial rejection with suggested alternatives. A 
REJECT message rejects one or more options entirely. A rejected code indicates 
that one of the field values contained in a previous packet is unknown. The Length
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field gives the length of the LCP packet in bytes and is not permitted to exceed the 
link’s maximum received unit (MRU), a form of maximum advised frame limit we 
shall discuss later. Note that the Length field is part of the LCP protocol; the PPP 
protocol in general does not provide such a field. 

The main job of LCP is to bring up a point-to-point link to a minimal level. 
Configure messages cause each end of the link to start the basic configuration pro-
cedure and establish agreed-upon options. Termination messages are used to clear 
a link when complete. LCP also provides some additional features mentioned pre-
viously. Echo Request/Reply messages may be exchanged anytime a link is active 
by LCP in order to verify operation of the peer. The Discard Request message can 
be used for performance measurement; it instructs the peer to discard the packet 
without responding. The Identification and Time-Remaining messages are used for 
administrative purposes: to know the type of the peer system and to indicate the 
amount of time allowed for the link to remain established (e.g., for administrative 
or security reasons). 

Historically, one common problem with point-to-point links occurs if a remote 
station is in loopback mode or is said to be “looped.” Telephone company wide area 
data circuits are sometimes put into loopback mode for testing—data sent at one 
side is simply returned from the other. Although this may be useful for line test-
ing, it is not at all helpful for data communication, so LCP includes ways to send 
a magic number (an arbitrary number selected by the sender) to see if it is immedi-
ately returned in the same message type. If so, the line is detected as being looped, 
and maintenance is likely required. 

To get a better feeling for how PPP links are established and options are nego-
tiated, Figure 3-24 illustrates a simplified packet exchange timeline as well as a 
simplified state machine (implemented at both ends of the link).

The link is considered to be established once the underlying protocol layer 
has indicated that an association has become active (e.g., carrier detected for 
modems). Link quality testing, which involves an exchange of link quality reports 
and acknowledgments (see Section 3.6.1.2), may also be accomplished during this 
period. If the link requires authentication, which is common, for example, when 
dialing in to an ISP, a number of additional exchanges may be required to estab-
lish the authenticity of one or both parties attached to the link. The link is termi-
nated once the underlying protocol or hardware has indicated that the association 
has stopped (e.g., carrier lost) or after having sent a link termination request and 
received a termination ACK from the peer. 

3.6.1.2 LCP Options 
Several options can be negotiated by LCP as it establishes a link for use by one or 
more NCPs. We shall discuss two of the more common ones. The Asynchronous 
Control Character Map (ACCM) or simply “asyncmap” option defines which control 
characters (i.e., ASCII characters in the range 0x00–0x1F) need to be “escaped” as 
PPP operates. Escaping a character means that the true value of the character is 
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not sent, but instead the PPP escape character (0x7D) is stuffed in front of a value 
formed by XORing the original control character with the value 0x20. For exam-
ple, the XOFF character (0x13) would be sent as (0x7D33). ACCM is used in cases 
where control characters may affect the operation of the underlying hardware. 
For example, if software flow control using XON/XOFF characters is enabled and 
the XOFF character is passed through the link unescaped, the data transfer ceases 
until the hardware observes an XON character. The asyncmap option is generally 
specified as a 32-bit hexadecimal number where a 1 bit in the nth least significant 
bit position indicates that the control character with value n should be escaped. 
Thus, the asyncmap 0xffffffff would escape all control characters, 0x00000000 
would escape none of them, and 0x000A0000 would escape XON (value 0x11) and 
XOFF (value 0x13). Although the value 0xffffffff is the specified default, many 
links today can operate safely with the asyncmap set to 0x00000000. 

Figure 3-24  LCP is used to establish a PPP link and agree upon options by each peer. The typical 
exchange involves a pair of configure requests and ACKs that contain the option list, 
an authentication exchange, data exchange (not pictured), and a termination exchange. 
Because PPP is such a general-purpose protocol with many parts, many other types of 
operations may occur between the establishment of a link and its termination. 
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Because PPP lacks a Length field and serial lines do not typically provide fram-
ing, no immediate hard limit is set on the length of a PPP frame, in theory. In prac-
tice, some maximum frame size is typically given by specifying the MRU. When 
a host specifies an MRU option (type 0x01), the peer is requested to never send 
frames longer than the value provided in the MRU option. The MRU value is the 
length of the data field in bytes; it does not count the various other PPP overhead 
fields (i.e., Protocol, FCS, Flag fields). Typical values are 1500 or 1492 but may be as 
large as 65,535. A minimum of 1280 is required for IPv6 operations. The standard 
requires PPP implementations to accept frames as large as 1500 bytes, so the MRU 
serves more as advice to the peer in choosing the packet size than as a hard limit 
on the size. When small packets are interleaved with larger packets on the same 
PPP link, the larger packets may use most of the bandwidth of a low-bandwidth 
link, to the detriment of the small packets. This can lead to jitter (delay variance), 
negatively affecting interactive applications such as remote login and VoIP. Con-
figuring a smaller MRU (or MTU) can help mitigate this issue at the cost of higher 
overhead. 

PPP supports a mechanism to exchange link quality reporting information. 
During option negotiation, a configuration message including a request for a par-
ticular quality protocol may be included. Sixteen bits of the option are reserved to 
specify the particular protocol, but the most common is a PPP standard involving 
Link Quality Reports (LQRs) [RFC1989], using the value 0xC025 in the PPP Protocol
field. If this is enabled, the peer is asked to provide LQRs at some periodic rate. 
The maximum time between LQRs requested is encoded as a 32-bit number pres-
ent in the configuration option and expressed in 1/100s units. Peers may generate 
LQRs more frequently than requested. LQRs include the following information: 
a magic number, the number of packets and bytes sent and received, the number 
of incoming packets with errors and the number of discarded packets, and the 
total number of LQRs exchanged. A typical implementation allows the user to 
configure how often LQRs are requested from the peer. Some also provide a way 
to terminate the link if the quality history fails to meet some configured threshold. 
LQRs may be requested after the PPP link has reached the Establish state. Each 
LQR is given a sequence number, so it is possible to determine trends over time, 
even in the face of reordering of LQRs. 

Many PPP implementations support a callback capability. In a typical callback 
setup, a PPP dial-up callback client calls in to a PPP callback server, authentica-
tion information is provided, and the server disconnects and calls the client back. 
This may be useful in situations where call toll charges are asymmetric or for 
some level of security. The protocol used to negotiate callback is an LCP option 
with value 0x0D [RFC1570]. If agreed upon, the Callback Control Protocol (CBCP) 
completes the negotiation. 

Some compression and encryption algorithms used with PPP require a cer-
tain minimum number of bytes, called the block size, when operating. When data is 
not otherwise long enough, padding may be added to cause the length to become 
an even multiple of the block size. If present, padding is included beyond the data 



ptg999

Section 3.6 Point-to-Point Protocol (PPP)   137

area and prior to the PPP FCS field. A padding method known as self-describing
padding [RFC1570] alters the value of padding to be nonzero. Instead, each byte 
gets the value of its offset in the pad area. Thus, the first byte of pad would have 
the value 0x01, and the final byte contains the number of pad bytes that were 
added. At most, 255 bytes of padding are supported. The self-describing padding 
option (type 10) indicates to a peer the ability to understand this form of padding 
and includes the maximum pad value (MPV), which is the largest pad value allowed 
for this association. Recall that the basic PPP frame lacks an explicit Length field, 
so a receiver can use self-describing padding to determine how many pad bytes 
should be trimmed from the received data area. 

To lessen the impact of the fixed costs of sending a header on every frame, a 
method has been introduced to multiplex multiple distinct payloads of potentially 
different protocols into the same PPP frame, an approach called PPPMux [RFC3153]. 
The primary PPP header Protocol field is set to multiplexed frame (0x0059), and then 
each payload block is inserted into the frame. This is accomplished by introduc-
ing a 1- to 4-byte subframe header in front of each payload block. It includes 1 bit 
(called PFF) indicating whether a Protocol field is included in the subframe header 
and another 1-bit field (called LXT) indicating whether the following Length field 
is 1 or 2 bytes. Beyond this, if present, is the 1- or 2-byte Protocol ID using the same 
values and same compression approach as with the outer PPP header. A 0 value for 
PFF (meaning no PID field is present) is possible when the subframe matches the 
default PID established when the configuration state is set up using the PPPMux
Control Protocol (PPPMuxCP). 

The PPP frame format in Figure 3-19 indicates that the ordinary PPP/HDLC 
FCS can be either 16 or 32 bits. While the default is 16, 32-bit FCS values can be 
enabled with the 32-bit FCS option. Other LCP options include the use of PFC and 
ACFC, and selection of an authentication algorithm. 

Internationalization [RFC2484] provides a way to convey the language and 
character set to be used. The character set is one of the standard values from the 
“charset registry” [IANA-CHARSET], and the language value is chosen from the 
list in [RFC5646][RFC4647]. 

3.6.2 Multi link PPP (MP) 

A special option to PPP called multilink PPP (MP) [RFC1990] can be used to 
aggregate multiple point-to-point links to act as one. This idea is similar to link 
aggregation, discussed earlier, and has been used for aggregating multiple cir-
cuit-switched channels together (e.g., ISDN B channels). MP includes a special 
LCP option to indicate multilink support as well as a negotiation protocol to frag-
ment and recombine fragmented PPP frames across multiple links. An aggregated 
link, called a bundle, operates as a complete virtual link and can contain its own 
configuration information. The bundle comprises a number of member links. Each 
member link may also have its own set of options. 



ptg999

138 Link Layer 

The obvious method to implement MP would be to simply alternate pack-
ets across the member links. This approach, called the bank teller’s algorithm, may 
lead to reordering of packets, which can have undesirable performance impacts on 
other protocols. (Although TCP/IP, for example, can function properly with reor-
dered packets, it may not function as well as it could without reordering.) Instead, 
MP places a 2- or 4-byte sequencing header in each packet, and the remote MP 
receiver is tasked with reconstructing the proper order. The data frame appears as 
shown in Figure 3-25. 

Figure 3-25  An MP fragment contains a sequencing header that allows the remote end of a multilink bundle 
to reorder fragments. Two formats of this header are supported: a short header (2 bytes) and a 
long header (4 bytes). 

In Figure 3-25 we see an MP fragment with the begin (B) and end (E) fragment 
bit fields and Sequence Number field. Note that there is both a long format, in which 
4 bytes are used for the fragmentation information, and a short format, in which 
only 2 bytes are used. The format being used is selected during option negotiation 
using the LCP short sequence number option (type 18). If a frame is not fragmented 
but is carried in this format, both the B and E bits are set, indicating that the frag-
ment is the first and last (i.e., it is the whole frame). Otherwise, the first fragment 
has the BE bit combination set to 10 and the final fragment has the BE bits set to 
01, and all fragments in between have them set to 00. The sequence number then 
gives the packet number offset relative to the first fragment. 

Use of MP is requested by including an LCP option called the multilink maxi-
mum received reconstructed unit (MRRU, type 18) that can act as a sort of larger MRU 
applying to the bundle. Frames larger than any of the member link MRUs may 
still be permitted across the MP link, up to the limit advertised in this value. 

Because an MP bundle may span multiple member links, a method is needed 
to identify member links as belonging to the same bundle. Member links in the 
same bundle are identified by the LCP endpoint discriminator option (type 19). The 
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endpoint discriminator could be a phone number, a number derived from an IP or 
MAC address, or some administrative string. Other than being common to each 
member link, there are few restrictions on the form of this option. 

The basic method of establishing MP as defined in [RFC1990] expects that 
member links are going to be used symmetrically—about the same number of 
fragments will be allocated to each of a fixed number of links. In order to achieve 
more sophisticated allocations than this, the Bandwidth Allocation Protocol (BAP) 
and Bandwidth Allocation Control Protocol (BACP) are specified in [RFC2125]. BAP 
can be used to dynamically add or remove links from a bundle, and BACP can be 
used to exchange information regarding how links should be added or removed 
using BAP. This capability can be used to help implement bandwidth on demand
(BOD). In networks where some fixed resource needs to be allocated in order to 
meet an application’s need for bandwidth (e.g., by dialing some number of tele-
phone connections), BOD typically involves monitoring traffic and creating new 
connections when usage is high and shutting down connections when usage is 
low. This is useful, for example, in cases where some monetary charge is associ-
ated with the number of connections being used. 

BAP/BACP makes use of a new link discriminator LCP option (LCP option type 
23). This option contains a 16-bit numeric value that is required to be different for 
each member link of a bundle. It is used by BAP to identify which links are to be 
added or removed. BACP is negotiated once per bundle during the network phase 
of a PPP link. Its main purpose is to identify a favored peer. That is, if more than one 
bundle is being set up simultaneously among multiple peers, the favored peer is 
preferentially allocated member links. 

BAP includes three packet types: request, response, and indication. Requests 
are to add a link to a bundle or to request the peer to delete a link from a bundle. 
Indications convey the results of attempted additions back to the original requester 
and are acknowledged. Responses are either ACKs or NACKs for these requests. 
More details can be found in [RFC2125]. 

3.6.3 Compression Control Protocol (CCP) 

Historically, PPP has been the protocol of choice when using relatively slow dial-
up modems. As a consequence, a number of methods have been developed to 
compress data sent over PPP links. This type of compression is distinct both from 
the types of compression supported in modem hardware (e.g., V.42bis, V.44) and 
also from protocol header compression, which we discuss later. Today, several com-
pression options are available. To choose among them for each direction on a PPP 
link, LCP can negotiate an option to enable the Compression Control Protocol (CCP) 
[RFC1962]. CCP acts like an NCP (see Section 3.6.5) but handles the details of con-
figuring compression once the compression option is indicated in the LCP link 
establishment exchange. 

In behaving like an NCP, CCP can be negotiated only once the link has entered 
the Network state. It uses the same packet exchange procedures and formats as 
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LCP, except the Protocol field is set to 0x80FD, there are some special options, and 
in addition to the common Code field values (1–7) two new operations are defined: 
reset-request (0x0e) and reset-ACK (0x0f). If an error is detected in a compressed 
frame, a reset request can be used to cause the peer to reset compression state 
(e.g., dictionaries, state variables, state machines, etc.). After resetting, the peer 
responds with a reset-ACK.

One or more compressed packets may be carried within the information por-
tion of a PPP frame (i.e., the portion including the LCP data and possibly pad 
portions). Compressed frames carry the Protocol field value of 0x00FD, but the 
mechanism used to indicate the presence of multiple compressed datagrams is 
dependent on the particular compression algorithm used (see Section 3.6.6). When 
used in conjunction with MP, CCP may be used either on the bundle or on some 
combination of the member links. If used only on member links, the Protocol field 
is set to 0x00FB (individual link compressed datagram). 

CCP can enable one of about a dozen compression algorithms [PPPn]. Most 
of the algorithms are not official standards-track IETF documents, although they 
may be described in informational RFCs (e.g., [RFC1977] describes the BSD com-
pression scheme, and [RFC2118] describes the Microsoft Point-to-Point Compres-
sion Protocol (MPPC)). If compression is being used, PPP frames are reconstructed 
before further processing, so higher-layer PPP operations are not generally con-
cerned with the details of the compressed frames. 

3.6.4 PPP Authentication 

Before a PPP link becomes operational in the Network state, it is often necessary to 
establish the identity of the peer(s) of the link using some authentication (identity 
verification) mechanism. The basic PPP specification has a default of no authen-
tication, so the authentication exchange of Figure 3-24 would not be used in such 
cases. More often, however, some form of authentication is required, and a num-
ber of protocols have evolved over the years to deal with this situation. In this 
chapter we discuss them only from a high-level point of view and leave the details 
for the chapter on security (Chapter 18). Other than no authentication, the sim-
plest and least secure authentication scheme is called the Password Authentication 
Protocol (PAP). This protocol is very simple—one peer requests the other to send a 
password, and the password is so provided. As the password is sent unencrypted 
over the PPP link, any eavesdropper on the line can simply capture the password 
and use it later. Because of this significant vulnerability, PAP is not recommended 
for authentication. PAP packets are encoded as LCP packets with the Protocol field 
value set to 0xC023. 

A somewhat more secure approach to authentication is provided by the Chal-
lenge-Handshake Authentication Protocol (CHAP) [RFC1994]. Using CHAP, a random 
value is sent from one peer (called the authenticator) to the other. A response is 
formed by using a special one-way (i.e., not easily invertible) function to combine 
the random value with a shared secret key (usually derived from a password) 
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to produce a number that is sent in response. Upon receiving this response, the 
authenticator can determine with a very high degree of confidence that its peer 
possesses the correct secret key. This protocol never sends the key or password 
over the link in a clear (unencrypted) form, so any eavesdropper is unable to learn 
the secret. Because a different random value is used each time, the result of the 
function changes for each challenge/response, so the values an eavesdropper may 
be able to capture cannot be reused (played back) to impersonate the peer. How-
ever, CHAP is vulnerable to a “man in the middle” form of attack (see Chapter 18). 

EAP [RFC3748] is an authentication framework available for many different 
network types. It also supports many (about 40) different authentication methods, 
ranging from simple passwords such as PAP and CHAP to more elaborate types 
of authentication (e.g., smart cards, biometrics). EAP defines a message format 
for carrying a variety of specific types of authentication formats, but additional 
specifications are needed to define how EAP messages are carried over particular 
types of links. 

When EAP is used with PPP, the basic authentication method discussed so 
far is altered. Instead of negotiating a specific authentication method early in the 
link establishment (at LCP link establishment), the authentication operation may 
be postponed until the Auth state (just before the Network state). This allows for 
a greater richness in the types of information that can be used to influence access 
control decisions by remote access servers (RASs). When there is a standard protocol 
for carrying a variety of authentication mechanisms, a network access server may 
not need to process the contents of EAP messages at all but can instead depend on 
some other infrastructure authentication server (e.g., a RADIUS server [RFC2865]) 
to determine access control decisions. This is currently the design of choice for 
enterprise networks and ISPs. 

3.6.5 Network Control Protocols (NCPs) 

Although many different NCPs can be used on a PPP link (even simultaneously), 
we shall focus on the NCPs supporting IPv4 and IPv6. For IPv4, the NCP is called 
the IP Control Protocol (IPCP) [RFC1332]. For IPv6, the NCP is IPV6CP [RFC5072]. 
Once LCP has completed its link establishment and authentication, each end of the 
link is in the Network state and may proceed to negotiate a network-layer associa-
tion using zero or more NCPs (one, such as IPCP, is typical). 

IPCP, the standard NCP for IPv4, can be used to establish IPv4 connectivity over 
a link and configure Van Jacobson header compression (VJ compression) [RFC1144]. 
IPCP packets may be exchanged after the PPP state machine has reached the Net-
work state. IPCP packets use the same packet exchange mechanism and packet 
format as LCP, except the Protocol field is set to 0x8021, and the Code field is limited 
to the range 0–7. These values of the Code field correspond to the message types: 
vendor-specific (see [RFC2153]), configure-request, configure-ACK, configure-
REJECT, terminate-request, terminate-ACK, and code-REJECT. IPCP can negotiate 
a number of options, including an IP compression protocol (2), the IPv4 address 
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(3), and Mobile IPv4 [RFC2290] (4). Other options are available for learning the 
location of primary and secondary domain name servers (see Chapter 11). 

IPV6CP uses the same packet exchange and format as LCP, except it has two 
different options: interface-identifier and IPv6-compression-protocol. The inter-
face identifier option is used to convey a 64-bit IID value (see Chapter 2) used as 
the basis for forming a link-local IPv6 address. Because it is used only on the local 
link, it does not require global uniqueness. This is accomplished using a standard 
link-local prefix for the higher-order bits of the IPv6 address and allowing the 
lower-order bits to be a function of the interface identifier. This mimics IPv6 auto-
configuration (see Chapter 6). 

3.6.6 Header Compression 

PPP dial-up lines have historically been comparatively slow (54,000 bits/s or less), 
and many small packets are often used with TCP/IP (e.g., for TCP’s acknowledg-
ments; see Chapter 15). Most of these packets contain a TCP and IP header that 
changes little from one packet to another on the same TCP connection. Other 
higher-layer protocols behave similarly. Thus, it is useful to have a way of com-
pressing the headers of these higher-layer protocols (or eliminating them) so that 
fewer bytes need to be carried over relatively slow point-to-point links. The meth-
ods employed to compress or eliminate headers have evolved over time. We discuss 
them in chronological order, beginning with VJ compression, mentioned earlier. 

In VJ compression, portions of the higher-layer (TCP and IP) headers are 
replaced with a small, 1-byte connection identifier. [RFC1144] discusses the origin 
of this approach, using an older point-to-point protocol called CSLIP (Compressed 
Serial Line IP). A typical IPv4 header is 20 bytes, and a TCP header without options 
is another 20. Together, a common combined TCP/IPv4 header is thus 40 bytes, 
and many of the fields do not change from packet to packet. Furthermore, many 
of the fields that do change from packet to packet change only slightly or in a 
limited way. When the nonchanging values are sent over a link once (or a small 
number of times) and kept in a table, a small index can be used as a replacement 
for the constants in subsequent packets. The limited changing values are then 
encoded differentially (i.e., only the amount of change is sent). As a result, the 
entire 40-byte header can usually be compressed to an effective 3 or 4 bytes. This 
can significantly improve TCP/IP performance over slow links. 

The next step in the evolution of header compression is simply called IP header 
compression [RFC2507][RFC3544]. It provides a way to compress the headers of 
multiple packets using both TCP or UDP transport-layer protocols and either IPv4 
or IPv6 network-layer protocols. The techniques are a logical extension and gen-
eralization of the VJ compression technique that applies to more protocols, and to 
links other than PPP links. [RFC2507] points out the necessity of some strong error 
detection mechanism in the underlying link layer because erroneous packets can 
be constructed at the egress of a link if compressed header values are damaged in 
transit. This is important to recognize when header compression is used on links 
that may not have as strong an FCS computation as PPP. 
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The most recent step in the evolution of header compression is known as 
Robust Header Compression (ROHC) [RFC5225]. It further generalizes IP header 
compression to cover more transport protocols and allows more than one form 
of header compression to operate simultaneously. Like the IP header compression 
mentioned previously, it can be used over various types of links, including PPP. 

3.6.7 Example 

We now look at the debugging output of a PPP server interacting with a client 
over a dial-in modem. The dialing-in client is an IPv6-capable Microsoft Windows 
Vista machine, and the server is Linux. The Vista machine is configured to negoti-
ate multilink capability even on single links (Properties | Options | PPP Settings), 
for demonstration purposes, and the server is configured to require an encryption 
protocol negotiated using CCP (see MPPE in the following listing): 

data dev=ttyS0, pid=28280, caller='none', conn='38400',    
     name='',cmd='/usr/sbin/pppd', user='/AutoPPP/' 
pppd 2.4.4 started by a_ppp, uid 0 
using channel 54 
Using interface ppp0 
ppp0 <--> /dev/ttyS0 
sent [LCP ConfReq id=0x1 <asyncmap 0x0> <auth eap> 
     <magic 0xa5ccc449><pcomp> <accomp>] 
rcvd [LCP ConfNak id=0x1 <auth chap MS-v2>] 
sent [LCP ConfReq id=0x2 <asyncmap 0x0> <auth chap MS-v2> 
     <magic 0xa5ccc449><pcomp> <accomp>] 
rcvd [LCP ConfAck id=0x2 <asyncmap 0x0> <auth chap MS-v2> 
     <magic 0xa5ccc449><pcomp> <accomp>] 
rcvd [LCP ConfReq id=0x2 <asyncmap 0x0> <magic 0xa531e06> 
     <pcomp> <accomp><callback CBCP> <mrru 1614> 
     <endpoint [local:12.92.67.ef.2f.fe.44.6e.84.f8.
                c9.3f.5f.8c.5c.41.00.00.00.00]>] 
sent [LCP ConfRej id=0x2 <callback CBCP> <mrru 1614>] 
rcvd [LCP ConfReq id=0x3 <asyncmap 0x0> <magic 0xa531e06> 
     <pcomp> <accomp>
     <endpoint [local:12.92.67.ef.2f.fe.44.6e.84.f8.    
                c9.3f.5f.8c.5c.41.00.00.00.00]>] 
sent [LCP ConfAck id=0x3 <asyncmap 0x0> <magic 0xa531e06> 
     <pcomp> <accomp>
     <endpoint [local:12.92.67.ef.2f.fe.44.6e.84.f8.      
                c9.3f.5f.8c.5c.41.00.00.00.00]>] 
sent [CHAP Challenge id=0x1a <4d53c52b8e7dcfe7a9ea438b2b4daf55>, 
      name = "dialer"]
rcvd [LCP Ident id=0x4 magic=0xa531e06 "MSRASV5.20"] 
rcvd [LCP Ident id=0x5 magic=0xa531e06 "MSRAS-0-VISTA"] 
rcvd [CHAP Response id=0x1a
     <4b5dc95ed4e1788b959025de0233d4fc0000000
      00000000033a555d2a77bd1fa692f2a0af707cd 4f0c0072c379c82e0f00>,  
     name = "dialer"] 
sent [CHAP Success id=0x1a 
     "S=7E0B6B513215C87520BEF6725EF8A9945C28E918M=Access granted"] 
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sent [CCP ConfReq id=0x1 <mppe +H -M +S +L -D -C>] 
rcvd [IPV6CP ConfReq id=0x6 <addr fe80::0000:0000:dead:beef>] 
sent [IPV6CP TermAck id=0x6] 
rcvd [CCP ConfReq id=0x7 <mppe -H -M -S -L -D +C>] 
sent [CCP ConfNak id=0x7 <mppe +H -M +S +L -D -C>] 
rcvd [IPCP ConfReq id=0x8 <compress VJ 0f 01> <addr 0.0.0.0> 
      <ms-dns1 0.0.0.0> <ms-wins 0.0.0.0> <ms-dns3 0.0.0.0> 
      <ms-wins 0.0.0.0>] 
sent [IPCP TermAck id=0x8] 
rcvd [CCP ConfNak id=0x1 <mppe -H -M +S -L -D -C>] 
sent [CCP ConfReq id=0x2 <mppe -H -M +S -L -D -C>] 
rcvd [CCP ConfReq id=0x9 <mppe -H -M +S -L -D -C>] 
sent [CCP ConfAck id=0x9 <mppe -H -M +S -L -D -C>] 
rcvd [CCP ConfAck id=0x2 <mppe -H -M +S -L -D -C>] 
MPPE 128-bit stateful compression enabled 
sent [IPCP ConfReq id=0x1 <compress VJ 0f 01> <addr 192.168.0.1>] 
sent [IPV6CP ConfReq id=0x1 <addr fe80::0206:5bff:fedd:c5c3>] 
rcvd [IPCP ConfAck id=0x1 <compress VJ 0f 01> <addr 192.168.0.1>] 
rcvd [IPV6CP ConfAck id=0x1 <addr fe80::0206:5bff:fedd:c5c3>] 
rcvd [IPCP ConfReq id=0xa <compress VJ 0f 01> 
      <addr 0.0.0.0> <ms-dns1 0.0.0.0>     
      <ms-wins 0.0.0.0> <ms-dns3 0.0.0.0> <ms-wins 0.0.0.0>] 
sent [IPCP ConfRej id=0xa <ms-wins 0.0.0.0> <ms-wins 0.0.0.0>] 
rcvd [IPV6CP ConfReq id=0xb <addr fe80::0000:0000:dead:beef>] 
sent [IPV6CP ConfAck id=0xb <addr fe80::0000:0000:dead:beef>] 
rcvd [IPCP ConfAck id=0x1 <compress VJ 0f 01> <addr 192.168.0.1>] 
rcvd [IPV6CP ConfAck id=0x1 <addr fe80::0206:5bff:fedd:c5c3>] 
local LL address fe80::0206:5bff:fedd:c5c3 
remote LL address fe80::0000:0000:dead:beef 
rcvd [IPCP ConfReq id=0xc <compress VJ 0f 01> 
     <addr 0.0.0.0> <ms-dns1 0.0.0.0> <ms-dns3 0.0.0.0>] 
sent [IPCP ConfNak id=0xc <addr 192.168.0.2> <ms-dns1 192.168.0.1> 
      <ms-dns3 192.168.0.1>] 
sent [IPCP ConfAck id=0xd <compress VJ 0f 01> <addr 192.168.0.2> 
      <ms-dns1 192.168.0.1> <ms-dns3 192.168.0.1>] 
local IP address 192.168.0.1 
remote IP address 192.168.0.2 
... data ... 

Here we can see a somewhat involved PPP exchange, as viewed from the 
server. The PPP server process creates a (virtual) network interface called ppp0, 
which is awaiting an incoming connection on the dial-up modem attached to 
serial port ttyS0. Once the incoming connection arrives, the server requests an 
asyncmap of 0x0, EAP authentication, PFC, and ACFC. The client refuses EAP 
authentication and instead suggests MS-CHAP-v2 (ConfNak) [RFC2759]. The 
server then tries again, this time using MS-CHAP-v2, which is then accepted and 
acknowledged (ConfAck). Next, the incoming request includes CBCP; an MRRU 
of 1614 bytes, which is associated with MP support; and an endpoint ID. The server 
rejects the request for CBCP and multilink operation (ConfRej). The endpoint 
discriminator is once again sent by the client, this time without the MRRU, and is 
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accepted and acknowledged. Next, the server sends a CHAP challenge with the 
name dialer. Before a response to the challenge arrives, two incoming identity 
messages arrive, indicating that the peer is identified by the strings MSRASV5.20
and MSRAS-0-VISTA. Finally, the CHAP response arrives and is validated as cor-
rect, and an acknowledgment indicates that access is granted. PPP then moves on 
to the Network state. 

Once in the Network state, the CCP, IPCP, and IPV6CP NCPs are exchanged. 
CCP attempts to negotiate Microsoft Point-to-Point Encryption (MPPE) [RFC3078]. 
MPPE is somewhat of an anomaly, as it is really an encryption protocol, and rather 
than compressing the packet it actually expands it by 4 bytes. It does, however, 
provide a relatively simple means of establishing encryption early in the negotia-
tion process. The options +H -M +S +L -D -C indicate whether MPPE stateless 
operation is desired (H), what cryptographic key strength is available (secure, S; 
medium, M; or low, L), an obsolete D bit, and whether a separate, proprietary com-
pression protocol called MPPC [RFC2118] is desired (C). Eventually the two peers 
agree on stateful mode using strong 128-bit keying (-H, +S). Note that during the 
middle of this negotiation, the client attempts to send an IPCP request, but the 
server responds with an unsolicited TermAck (a message defined within LCP 
that ICPC adopts). This is used to indicate to the peer that the server is “in need of 
renegotiation” [RFC1661]. 

After the successful negotiation of MPPE, the server requests the use of VJ 
header compression and provides its IPv4 and IPv6 addresses, 192.168.0.1 and 
fe80::0206:5bff:fedd:c5c3. This IPv6 address is derived from the server’s 
Ethernet MAC address 00:06:5B:DD:C5:C3. The client initially suggests its IPv4 
address and name servers to be 0.0.0.0 using IPCP, but this is rejected. The client 
then requests to use fe80::0000:0000:dead:beef as its IPv6 address, which 
is accepted and acknowledged. Finally, the client ACKs both the IPv4 and IPv6 
addresses of the server, and the IPv6 addresses have been established. Next, the 
client again requests IPv4 and server addresses of 0.0.0.0, which is rejected in 
favor of 192.168.0.1. These are accepted and acknowledged. 

As we can see from this exchange, the PPP negotiation is both flexible and 
tedious. There are many options that can be attempted, rejected, and renegotiated. 
While this may not be a big problem on a link with low delay, imagine how long 
this exchange could take if each message took a few seconds (or longer) to reach its 
destination, as might occur over a satellite link, for example. Link establishment 
would be a visibly long procedure for the user. 

3.7 Loopback 

Although it may seem surprising, in many cases clients may wish to communicate 
with servers on the same computer using Internet protocols such as TCP/IP. To 
enable this, most implementations support a network-layer loopback capability that 
typically takes the form of a virtual loopback network interface. It acts like a real 
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network interface but is really a special piece of software provided by the operat-
ing system to enable TCP/IP and other communications on the same host com-
puter. IPv4 addresses starting with 127 are reserved for this, as is the IPv6 address 
::1 (see Chapter 2 for IPv4 and IPv6 addressing conventions). Traditionally, UNIX-
like systems including Linux assign the IPv4 address of 127.0.0.1 (::1 for IPv6) to the 
loopback interface and assign it the name localhost. An IP datagram sent to the 
loopback interface must not appear on any network. Although we could imagine 
the transport layer detecting that the other end is a loopback address and short-
circuiting some of the transport-layer logic and all of the network-layer logic, most 
implementations perform complete processing of the data in the transport layer 
and network layer and loop the IP datagram back up in the network stack only 
when the datagram leaves the bottom of the network layer. This can be useful for 
performance measurement, for example, because the amount of time required to 
execute the stack software can be measured without any hardware overheads. In 
Linux, the loopback interface is called lo.

Linux% ifconfig lo 
lo Link encap:Local Loopback 
           inet addr:127.0.0.1 Mask:255.0.0.0 
           inet6 addr: ::1/128 Scope:Host 
           UP LOOPBACK RUNNING MTU:16436 Metric:1 
           RX packets:458511 errors:0 dropped:0 overruns:0 frame:0 
           TX packets:458511 errors:0 dropped:0 overruns:0 carrier:0 
           collisions:0 txqueuelen:0 
           RX bytes:266049199 (253.7 MiB) 
           TX bytes:266049199 (253.7 MiB) 

Here we see that the local loopback interface has the IPv4 address 127.0.0.1
and a subnet mask of 255.0.0.0 (corresponding to class A network number 127 
in classful addressing). The IPv6 address ::1 has a 128-bit-long prefix, so it repre-
sents only a single address. The interface has an MTU of 16KB (this can be config-
ured to a much larger size, up to 2GB). A significant amount of traffic, nearly half a 
million packets, has passed through the interface without error since the machine 
was initialized two months earlier. We would not expect to see errors on the local 
loopback device, given that it never really sends packets on any network.

In Windows, the Microsoft Loopback Adapter is not installed by default, even 
though IP loopback is still supported. This adapter can be used for testing various 
network configurations even when a physical network interface is not available. 
To install it under Windows XP, select Start | Control Panel | Add Hardware | 
Select Network Adapters from list | Select Microsoft as manufacturer | Select 
Microsoft Loopback Adapter. For Windows Vista or Windows 7, run the program 
hdwwiz from the command prompt and add the Microsoft Loopback Adapter 
manually.  Once this is performed, the ipconfig command reveals the following 
(this example is from Windows Vista): 
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C:\> ipconfig /all 
... 
Ethernet adapter Local Area Connection 2: 
   Connection-specific DNS Suffix . : 
   Description . . . . . . . . . . . : Microsoft Loopback Adapter 
   Physical Address. . . . . . . . . : 02-00-4C-4F-4F-50 
   DHCP Enabled. . . . . . . . . . . : Yes 
   Autoconfiguration Enabled . . . . : Yes 
   Link-local IPv6 Address . . . . . : 
           fe80::9c0d:77a:52b8:39f0%18(Preferred) 
   Autoconfiguration IPv4 Address. . : 169.254.57.240(Preferred) 
   Subnet Mask . . . . . . . . . . . : 255.255.0.0 
   Default Gateway . . . . . . . . . : 
   DHCPv6 IAID . . . . . . . . . . . : 302121036 
   DNS Servers . . . . . . . . . . . : fec0:0:0:ffff::1%1 
           fec0:0:0:ffff::2%1 
           fec0:0:0:ffff::3%1 
   NetBIOS over Tcpip. . . . . . . . : Enabled 

Here we can see that the interface has been created, has been assigned both 
IPv4 and IPv6 addresses, and appears as a sort of virtual Ethernet device. Now the 
machine has several loopback addresses: 

C:\> ping 127.1.2.3 
Pinging 127.1.2.3 with 32 bytes of data: 
Reply from 127.1.2.3: bytes=32 time<1ms TTL=128
Reply from 127.1.2.3: bytes=32 time<1ms TTL=128 
Reply from 127.1.2.3: bytes=32 time<1ms TTL=128 
Reply from 127.1.2.3: bytes=32 time<1ms TTL=128 
Ping statistics for 127.1.2.3: 
       Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
       Minimum = 0ms, Maximum = 0ms, Average = 0ms 

C:\> ping ::1 
Pinging ::1 from ::1 with 32 bytes of data: 
Reply from ::1: time<1ms 
Reply from ::1: time<1ms 
Reply from ::1: time<1ms 
Reply from ::1: time<1ms 
Ping statistics for ::1: 
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 

      Minimum = 0ms, Maximum = 0ms, Average = 0ms 

C:\> ping 169.254.57.240 
Pinging 169.254.57.240127.1.2.3 with 32 bytes of data: 
Reply from 169.254.57.240: bytes=32 time<1ms TTL=128 
Reply from 169.254.57.240: bytes=32 time<1ms TTL=128 
Reply from 169.254.57.240: bytes=32 time<1ms TTL=128 
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Reply from 169.254.57.240: bytes=32 time<1ms TTL=128 
Ping statistics for 169.254.57.240: 
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
      Minimum = 0ms, Maximum = 0ms, Average = 0ms 

Here we can see that in IPv4, any destination address starting with 127 is 
looped back. For IPv6, however, only the single address ::1 is defined for loopback 
operation. We can also see how the loopback adapter with address 169.254.57.240
returned data immediately. One subtlety to which we will return in Chapter 9 is 
whether multicast or broadcast datagrams should be copied back to the sending 
computer (over the loopback interface). This choice can be made by each indi-
vidual application. 

3.8 MTU and Path MTU 

As we can see from Figure 3-3, there is a limit on the size of the frame available for 
carrying the PDUs of higher-layer protocols in many link-layer networks such as 
Ethernet. This usually limits the number of payload bytes to about 1500 for Eth-
ernet and often the same amount for PPP in order to maintain compatibility with 
Ethernet. This characteristic of the link layer is called the maximum transmission 
unit (MTU). Most packet networks (like Ethernet) have a fixed upper limit. Most 
stream-type networks (serial links) have a configurable limit that is then used by 
framing protocols such as PPP. If IP has a datagram to send, and the datagram is 
larger than the link layer’s MTU, IP performs fragmentation, breaking the data-
gram up into smaller pieces (fragments), so that each fragment is smaller than the 
MTU. We discuss IP fragmentation in Chapters 5 and 10.

When two hosts on the same network are communicating with each other, it is 
the MTU of the local link interconnecting them that has a direct effect on the size 
of datagrams that are used during the conversation. When two hosts communi-
cate across multiple networks, each link can have a different MTU. The minimum 
MTU across the network path comprising all of the links is called the path MTU. 

The path MTU between any two hosts need not be constant over time. It 
depends on the path being used at any time, which can change if the routers or 
links in the network fail. Also, paths are often not symmetric (i.e., the path from 
host A to B may not be the reverse of the path from B to A); hence the path MTU 
need not be the same in the two directions. 

[RFC1191] specifies the path MTU discovery (PMTUD) mechanism for IPv4, 
and [RFC1981] describes it for IPv6. A complementary approach that avoids some 
of the issues with these mechanisms is described in [RFC4821]. PMTU discovery is 
used to determine the path MTU at a point in time and is required of IPv6 imple-
mentations. In later chapters we shall see how this mechanism operates after we 
have described ICMP and IP fragmentation. We shall also see what effect it can 
have on transport performance when we discuss TCP and UDP. 
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3.9 Tunneling Basics 

In some cases it is useful to establish a virtual link between one computer and 
another across the Internet or other network. VPNs, for example, offer this type of 
service. The method most commonly used to implement these types of services is 
called tunneling. Tunneling, generally speaking, is the idea of carrying lower-layer 
traffic in higher-layer (or equal-layer) packets. For example, IPv4 can be carried in 
an IPv4 or IPv6 packet; Ethernet can be carried in a UDP or IPv4 or IPv6 packet, 
and so on. Tunneling turns the idea of strict layering of protocols on its head and 
allows for the formation of overlay networks (i.e., networks where the “links” are 
really virtual links implemented in some other protocol instead of physical con-
nections). It is a very powerful and useful technique. Here we discuss the basics 
of some of the tunneling options. 

There is a great variety of methods for tunneling packets of one protocol 
and/or layer over another. Three of the more common protocols used to establish 
tunnels include Generic Routing Encapsulation (GRE) [RFC2784], the Microsoft pro-
prietary Point-to-Point Tunneling Protocol (PPTP) [RFC2637], and the Layer 2 Tun-
neling Protocol (L2TP) [RFC3931]. Others include the earlier nonstandard IP-in-IP 
tunneling protocol [RFC1853]. GRE and LT2P were developed to standardize and 
replace IP-in-IP and PPTP, respectively, but all of these approaches are still in use. 
We shall focus on GRE and PPTP, with more emphasis on PPTP, as it is more visible 
to individual users even though it is not an IETF standard. L2TP is often used with 
security at the IP layer (IPsec; see Chapter 18) because L2TP by itself does not pro-
vide security. Because GRE and PPTP are closely related, we now look at the GRE 
header in Figure 3-26, in both its original standard and revised standard forms. 

Figure 3-26  The basic GRE header is only 4 bytes but includes the option of a 16-bit checksum (of a type com-
mon to many Internet protocols). The header was later extended to include an identifier (Key field) 
common to multiple packets in a flow, and a Sequence Number, to help in resequencing packets that 
get out of order. 
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As can be seen from the headers in Figure 3-26, the baseline GRE specification 
[RFC2784] is rather simple and provides only a minimal encapsulation for other 
packets. The first bit field (C) indicates whether a checksum is present. If it is, 
the Checksum field contains the same type of checksum found in many Internet-
related protocols (see Section 5.2.2). If the Checksum field is present, the Reserved1
field is also present and is set to 0. [RFC2890] extends the basic format to include 
optional Key and Sequence Number fields, present if the K and S bit fields from 
Figure 3-26 are set to 1, respectively. If present, the Key field is arranged to be a 
common value in multiple packets, indicating that they belong to the same flow 
of packets. The Sequence Number field is used in order to reorder packets if they 
should become out of sequence (e.g., by going through different links). 

Although GRE forms the basis for and is used by PPTP, the two protocols serve 
somewhat different purposes. GRE tunnels are typically used within the network 
infrastructure to carry traffic between ISPs or within an enterprise intranet to 
serve branch offices and are not necessarily encrypted, although GRE tunnels can 
be combined with IPsec. PPTP, conversely, is most often used between users and 
their ISPs or corporate intranets and is encrypted (e.g., using MPPE). PPTP essen-
tially combines GRE with PPP, so GRE can provide the virtual point-to-point link 
upon which PPP operates. GRE carries its traffic using IPv4 or IPv6 and as such 
is a layer 3 tunneling technology. PPTP is more often used to carry layer 2 frames 
(such as Ethernet) so as to emulate a direct LAN (link-layer) connection. This can 
be used for remote access to corporate networks, for example. PPTP uses a non-
standard variation on the standard GRE header (see Figure 3-27).

Figure 3-27  The PPTP header is based on an older, nonstandard GRE header. It includes a sequence number, 
a cumulative packet acknowledgment number, and some identification information. Most of the 
fields in the first word are set to 0. 

We can see a number of differences in Figure 3-27 from the standard GRE 
header, including the extra R, s, and A bit fields, additional Flags field, and Recur
field. Most of these are simply set to 0 and not used (their assignment is based on 
an older, nonstandard version of GRE). The K, S, and A bit fields indicate that the 
Key, Sequence Number, and Acknowledgment Number fields are present. If present, 
the value of the Sequence Number field holds the largest packet number seen by the 
peer. 
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We now turn to the establishment of a PPTP session. We shall conclude later 
with a brief discussion of some of PPTP’s other capabilities. The following example 
is similar to the PPP link establishment example given earlier, except now instead 
of using a dial-up link, PPTP is providing the “raw” link to PPP. Once again, the 
client is Windows Vista, and the server is Linux. This output comes from the 
/var/log/messages file when the debug option is enabled: 

pptpd: MGR: Manager process started 
pptpd: MGR: Maximum of 100 connections available 
pptpd: MGR: Launching /usr/sbin/pptpctrl to handle client 
pptpd: CTRL: local address = 192.168.0.1 
pptpd: CTRL: remote address = 192.168.1.1 
pptpd: CTRL: pppd options file = /etc/ppp/options.pptpd 
pptpd: CTRL: Client 71.141.227.30 control connection started 
pptpd: CTRL: Received PPTP Control Message (type: 1) 
pptpd: CTRL: Made a START CTRL CONN RPLY packet 
pptpd: CTRL: I wrote 156 bytes to the client. 
pptpd: CTRL: Sent packet to client 
pptpd: CTRL: Received PPTP Control Message (type: 7) 

pptpd: CTRL: Set parameters to 100000000 maxbps, 64 window size 
pptpd: CTRL: Made a OUT CALL RPLY packet 
pptpd: CTRL: Starting call (launching pppd, opening GRE) 
pptpd: CTRL: pty_fd = 6 
pptpd: CTRL: tty_fd = 7 
pptpd: CTRL (PPPD Launcher): program binary = /usr/sbin/pppd 
pptpd: CTRL (PPPD Launcher): local address = 192.168.0.1 
pptpd: CTRL (PPPD Launcher): remote address = 192.168.1.1 
pppd: pppd 2.4.4 started by root, uid 0 
pppd: using channel 60 
pptpd: CTRL: I wrote 32 bytes to the client. 
pptpd: CTRL: Sent packet to client 
pppd: Using interface ppp0 
pppd: Connect: ppp0 <--> /dev/pts/1 
pppd: sent [LCP ConfReq id=0x1 <asyncmap 0x0> <auth chap MS-v2> 
            <magic 0x4e2ca200> <pcomp> <accomp>] 
pptpd: CTRL: Received PPTP Control Message (type: 15) 
pptpd: CTRL: Got a SET LINK INFO packet with standard ACCMs 
pptpd: GRE: accepting packet #0 
pppd: rcvd [LCP ConfReq id=0x0 <mru 1400> <magic 0x5e565505> 
            <pcomp> <accomp>] 
pppd: sent [LCP ConfAck id=0x0 <mru 1400> <magic 0x5e565505> 
            <pcomp> <accomp>] 
pppd: sent [LCP ConfReq id=0x1 <asyncmap 0x0> <auth chap MS-v2> 
            <magic 0x4e2ca200> <pcomp> <accomp>] 
pptpd: GRE: accepting packet #1 
pppd: rcvd [LCP ConfAck id=0x1 <asyncmap 0x0> <auth chap MS-v2> 
            <magic 0x4e2ca200> <pcomp> <accomp>] 
pppd: sent [CHAP Challenge id=0x3 
            <eb88bfff67d1c239ef73e98ca32646a5>, name = "dialer"] 
pptpd: CTRL: Received PPTP Control Message (type: 15) 
pptpd: CTRL: Ignored a SET LINK INFO packet with real ACCMs! 
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pptpd: GRE: accepting packet #2 
pppd: rcvd [CHAP Response id=0x3<276f3678f0f03fa57f64b3c367529565000000
            00000000000fa2b2ae0ad8db9d986f8e222a0217a620638a24  
            3179160900>, name = "dialer"] 
pppd: sent [CHAP Success id=0x3  
            "S=C551119E0E1AAB68E86DED09A32D0346D7002E05 
            M=Accessgranted"] 
pppd: sent [CCP ConfReq id=0x1 <mppe +H -M +S +L -D -C>] 
pptpd: GRE: accepting packet #3 
pppd: rcvd [IPV6CP ConfReq id=0x1 <addr fe80::1cfc:fddd:8e2c:e118>] 
pppd: sent [IPV6CP TermAck id=0x1] 
pptpd: GRE: accepting packet #4 
pppd: rcvd [CCP ConfReq id=0x2 <mppe +H -M -S -L -D -C>] 
pppd: sent [CCP ConfNak id=0x2 <mppe +H -M +S +L -D -C>] 
pptpd: GRE: accepting packet #5 
pptpd: GRE: accepting packet #6 
pppd: rcvd [IPCP ConfReq id=0x3 <addr 0.0.0.0> <ms-dns1 0.0.0.0> 
            <ms-wins 0.0.0.0> <ms-dns3 0.0.0.0> <ms-wins 0.0.0.0>] 
pptpd: GRE: accepting packet #7 
pppd: sent [IPCP TermAck id=0x3] 
pppd: rcvd [CCP ConfNak id=0x1 <mppe +H -M +S -L -D -C>] 
pppd: sent [CCP ConfReq id=0x2 <mppe +H -M +S -L -D -C>] 
pppd: rcvd [CCP ConfReq id=0x4 <mppe +H -M +S -L -D -C>] 
pppd: sent [CCP ConfAck id=0x4 <mppe +H -M +S -L -D -C>] 
pptpd: GRE: accepting packet #8 
pppd: rcvd [CCP ConfAck id=0x2 <mppe +H -M +S -L -D -C>] 
pppd: MPPE 128-bit stateless compression enabled 
pppd: sent [IPCP ConfReq id=0x1 <addr 192.168.0.1>] 
pppd: sent [IPV6CP ConfReq id=0x1 <addr fe80::0206:5bff:fedd:c5c3>] 
pptpd: GRE: accepting packet #9 
pppd: rcvd [IPCP ConfAck id=0x1 <addr 192.168.0.1>] 
pptpd: GRE: accepting packet #10 
pppd: rcvd [IPV6CP ConfAck id=0x1 <addr fe80::0206:5bff:fedd:c5c3>]
pptpd: GRE: accepting packet #11 
pppd: rcvd [IPCP ConfReq id=0x5 <addr 0.0.0.0> 
            <ms-dns1 0.0.0.0> <ms-wins 0.0.0.0>
            <ms-dns3 0.0.0.0> <ms-wins 0.0.0.0>] 
pppd: sent [IPCP ConfRej id=0x5 <ms-wins 0.0.0.0> <ms-wins 0.0.0.0>] 
pptpd: GRE: accepting packet #12 
pppd: rcvd [IPV6CP ConfReq id=0x6 <addr fe80::1cfc:fddd:8e2c:e118>] 
pppd: sent [IPV6CP ConfAck id=0x6 <addr fe80::1cfc:fddd:8e2c:e118>] 
pppd: local LL address fe80::0206:5bff:fedd:c5c3 
pppd: remote LL address fe80::1cfc:fddd:8e2c:e118 
pptpd: GRE: accepting packet #13 
pppd: rcvd [IPCP ConfReq id=0x7 <addr 0.0.0.0> 
            <ms-dns1 0.0.0.0> <ms-dns3 0.0.0.0>] 
pppd: sent [IPCP ConfNak id=0x7 <addr 192.168.1.1> 
            <ms-dns1 192.168.0.1> <ms-dns3 192.168.0.1>] 
pptpd: GRE: accepting packet #14 
pppd: rcvd [IPCP ConfReq id=0x8 <addr 192.168.1.1> 
            <ms-dns1 192.168.0.1> <ms-dns3 192.168.0.1>] 
pppd: sent [IPCP ConfAck id=0x8 <addr 192.168.1.1> 
            <ms-dns1 192.168.0.1> <ms-dns3 192.168.0.1>] 
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pppd: local IP address 192.168.0.1 
pppd: remote IP address 192.168.1.1 
pptpd: GRE: accepting packet #15 
pptpd: CTRL: Sending ECHO REQ id 1 
pptpd: CTRL: Made a ECHO REQ packet 
pptpd: CTRL: I wrote 16 bytes to the client. 
pptpd: CTRL: Sent packet to client 

This output looks similar to the PPP example we examined earlier, except this 
one has output from both the pppd process as well as a pptpd process. These 
processes work together to establish PPTP sessions at the server. The setup begins 
with pptpd receiving a type 1 control message, indicating that the client wishes 
to establish a control connection. PPTP uses a separate control and data stream, 
so first the control stream is set up. After responding to this request, the server 
receives a type 7 control message indicating an outgoing call request from the peer. 
The maximum speed (in bits per second) is set to a large value of 100,000,000, which 
effectively means it is unbounded. The window is set to 64, a concept we typically 
encounter in transport protocols such as TCP (see Chapter 15). Here the window 
is used for flow control. That is, PPTP uses its sequence numbers and acknowledg-
ment numbers to determine how many frames reach the destination successfully. If 
too few frames are successfully delivered, the sender slows down. To determine the 
amount of time to wait for an acknowledgment for frames it sends, PPTP uses an 
adaptive timeout mechanism based on estimating the round-trip time of the link. 
We shall see this type of calculation again when we study TCP.

Soon after the window is set, the pppd application begins to run and process 
the PPP data as we saw before in the dial-up example. The only real difference 
between the two is that pptpd relays packets to the pppd process as they arrive 
and depart, and a few special PPTP messages (such as set link info and echo 
request) are processed by pptpd itself. This example illustrates how the PPTP 
protocol really acts as a GRE tunneling agent for PPP packets. This is convenient 
because an existing PPP implementation (here, pppd) can be used as is to process 
the encapsulated PPP packets. Note that while GRE is itself ordinarily encapsu-
lated in IPv4 packets, similar functionality is available using IPv6 to tunnel pack-
ets [RFC2473]. 

3.9.1 Unidirectional Links 

An interesting issue arises when the link to be used operates in only one direc-
tion. Such links are called unidirectional links (UDLs), and many of the protocols 
described so far do not operate properly in such circumstances because they 
require exchanges of information (e.g., PPP’s configuration messages). To deal 
with this situation, a standard has been created whereby tunneling over a sec-
ond Internet interface can be combined with operation of the UDL [RFC3077]. The 
typical situation where this arises is an Internet connection that uses a satellite for 
downstream traffic (headed to the user) and a dial-up modem link for upstream 
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traffic. This setup can be useful in cases where the satellite-connected user’s usage 
is dominated by downloading as opposed to uploading and was commonly used 
in early satellite Internet installations. It operates by encapsulating link-layer 
upstream traffic in IP packets using a GRE encapsulation. 

To establish and maintain tunnels automatically at the receiver, [RFC3077] 
specifies a Dynamic Tunnel Configuration Protocol (DTCP). DTCP involves send-
ing multicast Hello messages on the downlink so that any interested receiver can 
learn about the existence of the UDL and its MAC and IP addresses. In addition, 
Hello messages indicate a list of tunnel endpoints within the network that can be 
reached by the user’s secondary interface. After the user selects which tunnel end-
point to use, DTCP arranges for return traffic to be encapsulated with the same 
MAC type as the UDL in GRE tunnels. The service provider arranges to receive 
these GRE-encapsulated layer 2 frames (frequently Ethernet), extract them from 
the tunnel, and forward them appropriately. Thus, although the upstream side of 
the UDLs (provider’s side) requires manual tunnel configuration, the downstream 
side, which includes many more users, has automatically configured tunnels. 
Note that this approach to handling UDLs essentially “hides” the link asymme-
try from the upper-layer protocols. As a consequence, the performance (latency, 
bandwidth) of the “two” directions of the link may be highly asymmetric and may 
adversely affect higher-layer protocols [RFC3449]. 

As the satellite example helps to illustrate, one significant issue with tunnels 
is the amount of effort required to configure them, which has traditionally been 
done by hand. Typically, tunnel configuration involves selecting the endpoints of 
a tunnel and configuring the devices located at the tunnel endpoints with an IP 
address of the peer, and perhaps also providing protocol selection and authentica-
tion information. A number of techniques have arisen to help in configuring or 
using tunnels automatically. One such approach specified for transitioning from 
IPv4 to IPv6 is called 6to4 [RFC3056]. In 6to4, IPv6 packets are tunneled over an 
IPv4 network using the encapsulation specified in [RFC3056]. A problem with this 
approach occurs when corresponding hosts are located behind network address 
translators (see Chapter 7). This is common today, especially for home users. Deal-
ing with the IPv6 transition using automatically configured tunnels is specified in 
an approach called Teredo [RFC4380]. Teredo tunnels IPv6 packets over UDP/IPv4 
packets. Because this approach requires some background in IPv4 and IPv6, as 
well as UDP, we postpone any detailed discussion of such tunnel autoconfigura-
tion options to Chapter 10. 

3.10 Attacks on the Link Layer 

Attacking layers below TCP/IP in order to affect the operations of TCP/IP net-
works has been a popular approach because much of the link-layer information is 
not shared by the higher layers and can therefore be somewhat difficult to detect 
and mitigate. Nevertheless, many such attacks are now well understood, and we 
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mention a few of them here to better understand how problems at the link layer 
can affect higher-layer operations. 

In conventional wired Ethernet, interfaces can be placed in promiscuous mode, 
which allows them to receive traffic even if it is not destined for them. In the early 
days of Ethernet, when the medium was literally a shared cable, this capability 
allowed anyone with a computer attached to the Ethernet cable to “sniff” anybody 
else’s frames and inspect their contents. As many higher-layer protocols at the time 
included sensitive information such as passwords, it was nearly trivial to intercept 
a person’s password by merely looking at the ASCII decode of a packet trace. Two 
factors have affected this approach substantially: the deployment of switches and 
the deployment of encryption in higher-layer protocols. With switches, the only 
traffic that is provided on a switch port to which an end station is attached is traf-
fic destined for the station itself (or others for which it is bridging) and broadcast/
multicast traffic. As this type of traffic rarely contains information such as pass-
words, the attack is largely thwarted. Much more effective, however, is simply the 
use of encryption at higher layers, which is now common. In this case, sniffing 
packets leads to little benefit as the contents are essentially impossible to read. 

Another type of attack targets the operation of switches. Recall that switches 
hold tables of stations on a per-port basis. If these tables are able to be filled quickly 
(e.g., by quickly masquerading as a large number of stations), it is conceivable that 
the switch might be forced into discarding legitimate entries, leading to service 
interruption for legitimate stations. A related but probably worse attack can be 
mounted using the STP. In this case, an attacking station can masquerade as a 
switch with a low-cost path to the root bridge and cause traffic to be directed 
toward it. 

With Wi-Fi networks, some of the eavesdropping and masquerading issues 
present in wired Ethernet networks are exacerbated, as any station can enter a 
monitoring mode and sniff packets from the air (although placing an 802.11 inter-
face into monitoring mode tends to be more challenging than placing an Ethernet 
interface into promiscuous mode, as doing so depends on an appropriate device 
driver). Some of the earliest “attacks” (which may not really have been attacks, 
depending on the relevant legal framework) involved simply roaming about while 
scanning, looking for access points providing Internet connectivity (i.e., war driv-
ing). Although many access points use encryption to limit access to authorized 
users, others are either open or use so-called capturing portals that direct a would-
be user to a registration Web page and then filter access based on MAC address. 
Capturing portal systems have been subverted by observing a station as it regis-
ters and “hijacking” the connection as it is formed by impersonating the legiti-
mate registering user. 

A more sophisticated set of attacks on Wi-Fi involves attacking the crypto-
graphic protection, especially the WEP encryption used on many early access 
points. Attacks on WEP [BHL06] were sufficiently devastating so as to prod the 
IEEE into revising the standard. The more recent WPA2 encryption framework 
(and WPA, to a lesser extent) is known to be significantly stronger, and WEP is no 
longer recommended for use.
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PPP links can be attacked in a number of ways if the attacker can gain access 
to the channel between the two peers. For very simple authentication mechanisms 
(e.g., PAP), sniffing can be used to capture the password in order to facilitate ille-
gitimate subsequent use. Depending on the type of higher-layer traffic being car-
ried over the PPP link (e.g., routing traffic), additional unwanted behaviors can be 
induced. 

In terms of attacks, tunneling can play the role of both target and tool. In 
terms of a target, tunnels pass through a network (often the Internet) and thus are 
subject to being intercepted and analyzed. The configured tunnel endpoints can 
also be attacked, either by attempting to establish more tunnels than the endpoint 
can support (a DoS attack) or by attacking the configuration itself. If the configura-
tion is compromised, it may be possible to open an unauthorized tunnel to an end-
point. At this point the tunnel becomes a tool rather than a target, and protocols 
such as L2TP can provide a convenient protocol-independent method of gaining 
access to private internal networks at the link layer. In one GRE-related attack, for 
example, traffic is simply inserted in a nonencrypted tunnel, where it appears at 
the tunnel endpoint and is injected to the attached “private” network as though it 
were sent locally. 

3.11 Summary 

In this chapter we examined the lowest layer in the Internet protocol suite with 
which we are concerned—the link layer. We looked at the evolution of Ethernet, 
in terms of both its increases in speed from 10Mb/s to 10Gb/s and beyond, as well 
as its evolution of capabilities, including VLANs, priorities, link aggregation, and 
frame formats. We saw how switches provide improved performance over bridges 
by implementing a direct electrical path between multiple independent sets of sta-
tions, and how full-duplex operation has largely replaced the earlier half-duplex 
operation. We also looked at the IEEE 802.11 wireless LAN “Wi-Fi” standard in 
some detail, noting its similarities and differences with respect to Ethernet. It has 
become one of the most popular IEEE standards and provides license-free net-
work access across the two primary bands of 2.4GHz and 5GHz. We also looked 
at the evolution of the security methods for Wi-Fi, with the evolution from the 
relatively weak WEP to the more formidable WPA and WPA2 frameworks. Mov-
ing beyond IEEE standards, we discussed point-to-point links and the PPP pro-
tocol. PPP can encapsulate essentially any kind of packets used for TCP/IP and 
non-TCP/IP networks using an HDLC-like frame format, and it is used on links 
ranging from low-speed dial-up modems to high-speed fiber-optic lines. It is a 
whole suite of protocols itself, including methods for compression, encryption, 
authentication, and link aggregation. Because it supports only two parties, it does 
not have to deal with controlling access to a shared medium like the MAC proto-
cols of Ethernet or Wi-Fi. 
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The loopback interface is provided by most implementations. Access to this 
interface is either through the special loopback address, normally 127.0.0.1 (::1 for 
IPv6), or by sending IP datagrams to one of a host’s own IP addresses. Loopback 
data has been completely processed by the transport layer and by IP when it loops 
around to go up the protocol stack. We described an important feature of many 
link layers, the MTU, and the related concept of a path MTU. 

We also discussed the use of tunneling, which involves carrying lower-layer 
protocols in higher-layer (or equal-layer) packets. This technique allows for the 
formation of overlay networks, using tunnels over the Internet as links in another 
level of network infrastructure. This technique has become very popular, both for 
experimentation with new capabilities (e.g., running an IPv6 network overlay on 
an IPv4 internet) and for operational use (e.g., with VPNs). 

We concluded the chapter with a brief discussion of the types of attacks 
involving the link layer—as either target or tool. Many attacks simply involve 
intercepting traffic for analysis (e.g., looking for passwords), but more sophisti-
cated attacks involve masquerading as endpoints or modifying traffic in transit. 
Other attacks involve compromising control information such as tunnel endpoints 
or the STP to direct traffic to otherwise unintended locations. Access to the link 
layer also provides an attacker with a general way to perform DoS attacks. Perhaps 
the best-known variant of this is jamming communication signals, an endeavor 
undertaken by certain parties since nearly the advent of radio. 

This chapter has covered only some of the common link technologies used 
with TCP/IP today. One reason for the success of TCP/IP is its ability to work on 
top of almost any link technology. In essence, IP requires only that there exists 
some path between sender and receiver(s) across a cascade of intermediate links. 
Although this is a relatively modest requirement, some research is aimed at 
stretching this even farther—to cases where there may never be an end-to-end 
path between sender and receiver(s) at any single point in time [RFC4838]. 
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4

ARP: Address Resolution 
Protocol

4.1 Introduction

We have seen that the IP protocol is designed to provide interoperability of packet 
switching across a large variety of physical network types. Doing so requires, 
among other things, converting between the addresses used by the network-layer 
software and those interpreted by the underlying network hardware. Generally, 
network interface hardware has one primary hardware address (e.g., a 48-bit value 
for an Ethernet or 802.11 wireless interface). Frames exchanged by the hardware 
must be addressed to the correct interface using the correct hardware addresses; 
otherwise, no data can be transferred. But a conventional IPv4 network works 
with its own addresses: 32-bit IPv4 addresses. Knowing a host’s IP address is 
insufficient for the system to send a frame to that host efficiently on networks 
where hardware addresses are used. The operating system software (i.e., the Eth-
ernet driver) must know the destination’s hardware address to send data directly. 
For TCP/IP networks, the Address Resolution Protocol (ARP) [RFC0826] provides a 
dynamic mapping between IPv4 addresses and the hardware addresses used by 
various network technologies. ARP is used with IPv4 only; IPv6 uses the Neigh-
bor Discovery Protocol, which is incorporated into ICMPv6 (see Chapter 8).

It is important to note here that the network-layer and link-layer addresses 
are assigned by different authorities. For network hardware, the primary address 
is defined by the manufacturer of the device and is stored in permanent mem-
ory within the device, so it does not change. Thus, any protocol suite designed to 
operate with that particular hardware technology must make use of its particular 
types of addresses. This allows network-layer protocols of different protocol suites 
to operate at the same time. On the other hand, the IP address assigned to a network 
interface is installed by the user or network administrator and selected by that 
person to meet his or her needs. The IP addresses assigned to a portable device 
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may, for example, be changed when it is moved. IP addresses are typically derived 
from a pool of addresses maintained near the network attachment point and are 
installed when systems are turned on or configured (see Chapter 6). When an Eth-
ernet frame containing an IP datagram is sent from one host on a LAN to another, 
it is the 48-bit Ethernet address that determines to which interface(s) the frame is 
destined.

Address resolution is the process of discovering the mapping from one address 
to another. For the TCP/IP protocol suite using IPv4, this is accomplished by run-
ning the ARP. ARP is a generic protocol, in the sense that it is designed to sup-
port mapping between a wide variety of address types. In practice, however, it 
is almost always used to map between 32-bit IPv4 addresses and Ethernet-style 
48-bit MAC addresses. This case, the one specified in [RFC0826], is also the one of 
interest to us. For this chapter, we shall use the terms Ethernet address and MAC 
address interchangeably.

ARP provides a dynamic mapping from a network-layer address to a corre-
sponding hardware address. We use the term dynamic because it happens auto-
matically and adapts to changes over time without requiring reconfiguration 
by a system administrator. That is, if a host were to have its network interface 
card changed, thereby changing its hardware address (but retaining its assigned 
IP address), ARP would continue to operate properly after some delay. ARP 
operation is normally not a concern of either the application user or the system 
administrator.

Note

A related protocol that provides the reverse mapping from ARP, called RARP, was 
used by systems lacking a disk drive (normally diskless workstations or X termi-
nals). It is rarely used today and requires manual configuration by the system 
administrator. See [RFC0903] for details.

4.2 An Example

Whenever we use Internet services, such as opening a Web page with a browser, 
our local computer must determine how to contact the server in which we are 
interested. The most basic decision it makes is whether that service is local (part 
of the same IP subnetwork) or remote. If it is remote, a router is required to reach 
the destination. ARP operates only when reaching those systems on the same IP 
subnet. For this example, then, let us assume that we use a Web browser to contact 
the following URL:

http://10.0.0.1

Note that this URL contains an IPv4 address rather than the more common 
domain or host name. The reason for using the address here is to underscore the 
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fact that our demonstration of ARP is most relevant to systems sharing the same 
IPv4 prefix (see Chapter 2). Here, we use a URL containing an address identifying 
a local Web server and explore how direct delivery operates. Such local servers are 
becoming more common as embedded devices such as printers and VoIP adapters 
include built-in Web servers for configuration.

4.2.1 Direct Delivery and ARP

In this section, we enumerate the steps taken in direct delivery, focusing on the 
operation of ARP. Direct delivery takes place when an IP datagram is sent to an 
IP address with the same IP prefix as the sender’s. It plays an important role in 
the general method of forwarding of IP datagrams (see Chapter 5). The following 
list captures the basic operation of direct delivery with IPv4, using the previous 
example:

1. The application, in this case a Web browser, calls a special function to parse 
the URL to see if it contains a host name. Here it does not, so the application 
uses the 32-bit IPv4 address 10.0.0.1.

2. The application asks the TCP protocol to establish a connection with 10.0.0.1.

3. TCP attempts to send a connection request segment to the remote host by 
sending an IPv4 datagram to 10.0.0.1. (We shall see the details of how this is 
done in Chapter 15.)

4. Because we are assuming that the address 10.0.0.1 is using the same net-
work prefix as our sending host, the datagram can be sent directly to that 
address without going through a router.

5. Assuming that Ethernet-compatible addressing is being used on the IPv4 
subnet, the sending host must convert the 32-bit IPv4 destination address 
into a 48-bit Ethernet-style address. Using the terminology from [RFC0826], 
a translation is required from the logical Internet address to its correspond-
ing physical hardware address. This is the function of ARP. ARP works in 
its normal form only for broadcast networks, where the link layer is able to 
deliver a single message to all attached network devices. This is an impor-
tant requirement imposed by the operation of ARP. On non-broadcast net-
works (sometimes called NBMA for non-broadcast multiple access), other, 
more complex mapping protocols may be required [RFC2332].

6. ARP sends an Ethernet frame called an ARP request to every host on the 
shared link-layer segment. This is called a link-layer broadcast. We show the 
broadcast domain in Figure 4-1 with a crosshatched box. The ARP request 
contains the IPv4 address of the destination host (10.0.0.1) and seeks an 
answer to the following question: “If you are configured with IPv4 address 
10.0.0.1 as one of your own, please respond to me with your MAC address.”
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7. With ARP, all systems in the same broadcast domain receive ARP requests. 
This includes systems that may not be running the IPv4 or IPv6 protocols at 
all but does not include systems on different VLANs, if they are supported 
(see Chapter 3 for details on VLANs). Provided there exists an attached sys-
tem using the IPv4 address specified in the request, it alone responds with 
an ARP reply. This reply contains the IPv4 address (for matching with the 
request) and the corresponding MAC address. The reply does not ordinar-
ily use broadcast but is directed only to the sender. The host receiving the 
ARP request also learns of the sender’s IPv4-to-MAC address mapping at 
this time and records it in memory for later use (see Section 4.3).

8. The ARP reply is then received by the original sender of the request, and 
the datagram that forced the ARP request/reply to be exchanged can now 
be sent.

Figure 4-1  Ethernet hosts in the same broadcast domain. ARP queries are sent using link-layer 
broadcast frames that are received by all hosts. The single host with the assigned 
address responds directly to the requesting host. Non-IP hosts must actively discard 
ARP queries.
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9. The sender now sends the datagram directly to the destination host by 
encapsulating it in an Ethernet frame and using the Ethernet address 
learned by the ARP exchange as the destination Ethernet address. Because 
the Ethernet address refers only to the correct destination host, no other 
hosts or routers receive the datagram. Thus, when only direct delivery is 
used, no router is required.

ARP is used in multi-access link-layer networks running IPv4, where each 
host has its own primary hardware address. Point-to-point links such as PPP (see 
Chapter 3) do not use ARP. When these links are established (normally by action 
of the user or a system boot), the system is told of the addresses in use at each 
end of the link. Because hardware addresses are not involved, there is no need for 
address resolution or ARP.

4.3 ARP Cache

Essential to the efficient operation of ARP is the maintenance of an ARP cache
(or table) on each host and router. This cache maintains the recent mappings 
from network-layer addresses to hardware addresses for each interface that uses 
address resolution. When IPv4 addresses are mapped to hardware addresses, the 
normal expiration time of an entry in the cache is 20 minutes from the time the 
entry was created, as described in [RFC1122].

We can examine the ARP cache with the arp command on Linux or in Win-
dows. The -a option displays all entries in the cache for either system. Running 
arp on Linux yields the following type of output:

Linux% arp
Address             HWtype  HWaddress           Flags Mask Iface         
gw.home             ether   00:0D:66:4F:60:00   C          eth1
printer.home        ether   00:0A:95:87:38:6A   C          eth1

Linux% arp -a
printer.home (10.0.0.4) at     00:0A:95:87:38:6A [ether] on eth1
gw.home (10.0.0.1) at 00:0D:66:4F:60:00 [ether] on eth1

Running arp on Windows provides output similar to the following:

c:\> arp -a

Interface: 10.0.0.56 --- 0x2
  Internet Address      Physical Address      Type
  10.0.0.1            00-0d-66-4f-60-00     dynamic   
  10.0.0.4            00-0a-95-87-38-6a     dynamic

Here we see the IPv4-to-hardware addressing cache. In the first (Linux) case, 
each mapping is given by a five-element entry: the host name (corresponding to 
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an IP address), hardware address type, hardware address, flags, and local net-
work interface for which this mapping is active. The Flags column contains a 
symbol: C, M, or P. C-type entries have been learned dynamically by the ARP pro-
tocol. M-type entries are entered by hand (by arp -s; see Section 4.9), and P-type 
entries mean “publish.” That is, for any P entry, the host responds to incoming 
ARP requests with an ARP response. This option is used for configuring proxy 
ARP (see Section 4.7). The second Linux example displays similar information 
using the “BSD style.” Here, both the host’s name and address are given, along 
with the address type (here, [ether] indicates an Ethernet type of address) and 
on which interface the mappings are active. 

The Windows arp program displays the IPv4 address of the interface, and its 
interface number in hexadecimal (0x2 here). The Windows version also indicates 
whether the address was entered by hand or learned by ARP. In this example, both 
entries are dynamic, meaning they were learned by ARP (they would say static
if entered by hand). Note that the 48-bit MAC addresses are displayed as six hexa-
decimal numbers separated by colons in Linux and dashes in Windows. Tradi-
tionally, UNIX systems have always used colons, whereas the IEEE standards and 
other operating systems tend to use dashes. We discuss additional features and 
other options of the arp command in Section 4.9.

4.4 ARP Frame Format

Figure 4-2 shows the common format of an ARP request and reply packet, when 
used on an Ethernet network to resolve an IPv4 address. (As mentioned previ-
ously, ARP is general enough to be used with addresses other than IPv4 addresses, 
although this is very rare.) The first 14 bytes constitute the standard Ethernet 
header, assuming no 802.1p/q or other tags, and the remaining portion is defined 
by the ARP protocol. The first 8 bytes of the ARP frame are generic, and the remain-
ing portion in this example applies specifically when mapping IPv4 addresses to 
48-bit Ethernet-style addresses.

Figure 4-2  ARP frame format as used when mapping IPv4 addresses to 48-bit MAC (Ethernet) addresses 
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In the Ethernet header of the ARP frame shown in Figure 4-2, the first two 
fields contain the destination and source Ethernet addresses. For ARP requests, the 
special Ethernet destination address of ff:ff:ff:ff:ff:ff (all 1 bits) means the broad-
cast address—all Ethernet interfaces in the same broadcast domain receive these 
frames. The 2-byte Ethernet frame Length or Type field is required to be 0x0806 for 
ARP (requests or replies).

The first four fields following the Length/Type field specify the types and sizes 
of the final four fields. The values are maintained by the IANA [RFC5494]. The 
adjectives hardware and protocol are used to describe the fields in the ARP packets. 
For example, an ARP request asks for the hardware address (an Ethernet address 
in this case) corresponding to a protocol address (an IPv4 address in this case). 
These adjectives are rarely used outside the ARP context. Rather, the more com-
mon terminology for the hardware address is MAC, physical, or link-layer address 
(or Ethernet address when the network in use is based on the IEEE 802.3/Ether-
net series of specifications). The Hard Type field specifies the type of hardware 
address. Its value is 1 for Ethernet. The Prot Type field specifies the type of protocol 
address being mapped. Its value is 0x0800 for IPv4 addresses. This is purposely 
the same value as the Type field of an Ethernet frame containing an IPv4 datagram. 
The next two 1-byte fields, Hard Size and Prot Size, specify the sizes, in bytes, of the 
hardware addresses and the protocol addresses. For an ARP request or reply for 
an IPv4 address on an Ethernet they are 6 and 4, respectively. The Op field speci-
fies whether the operation is an ARP request (a value of 1), ARP reply (2), RARP 
request (3), or RARP reply (4). This field is required because the Length/Type field 
is the same for an ARP request and an ARP reply.

The next four fields that follow are the Sender’s Hardware Address (an Ethernet 
MAC address in this example), the Sender’s Protocol Address (an IPv4 address), the 
Target Hardware (MAC/Ethernet) Address, and the Target Protocol (IPv4) Address. 
Notice that there is some duplication of information: the sender’s hardware 
address is available both in the Ethernet header and in the ARP message. For an 
ARP request, all the fields are filled in except the Target Hardware Address (which is 
set to 0). When a system receives an ARP request directed to it, it fills in its hard-
ware address, swaps the two sender addresses with the two target addresses, sets 
the Op field to 2, and sends the reply.

4.5 ARP Examples

In this section we will use the tcpdump command to see what really happens 
with ARP when we execute normal TCP/IP utilities such as Telnet. Telnet is a 
simple application that can establish a TCP/IP connection between two systems. 

4.5.1 Normal Example

To see the operation of ARP, we will execute the telnet command, connecting to 
a Web server on host 10.0.0.3 using TCP port 80 (called www).
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C:\> arp -a                   Verify that the ARP cache is empty
No ARP Entries Found
C:\> telnet 10.0.0.3 www      Connect to the Web server [port 80]
Connecting to 10.0.0.3...
Escape character is ’^]’.

Type Control + right bracket to get the Telnet client prompt.

Welcome to Microsoft Telnet Client
Escape Character is 'CTRL+]' 
Microsoft Telnet> quit

The quit directive exits the program.
While this is happening, we run the tcpdump command on another system 

that can observe the traffic exchanged. We use the -e option, which displays the 
MAC addresses (which in our examples are 48-bit Ethernet addresses).

The following listing contains the output from tcpdump. We have deleted 
the final four lines of the output that correspond to the termination of the connec-
tion (we cover such details in Chapter 13); they are not relevant to the discussion 
here. Note that different versions of tcpdump on different systems may provide 
slightly different output details.

 Linux#  tcpdump -e
 1       0.0 0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
         arp who-has 10.0.0.3 tell 10.0.0.56
 2       0.002174 (0.0022)0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 arp 60:
         arp reply 10.0.0.3 is-at 0:0:c0:c2:9b:26

 3       0.002831 (0.0007)0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
         10.0.0.56.1030 > 10.0.0.3.www: S 596459521:596459521(0)
         win 4096 <mss 1024> [tos 0x10]
 4       0.007834 (0.0050)0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 ip 60:
         10.0.0.3.www > 10.0.0.56.1030: S 3562228225:3562228225(0)
         ack 596459522 win 4096 <mss 1024>
 5       0.009615 (0.0018)0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
         10.0.0.56.1030 > 10.0.0.3.discard: . ack 1 win 4096 [tos 0x10]

In packet 1 the hardware address of the source is 0:0:c0:6f:2d:40. The des-
tination hardware address is ff:ff:ff:ff:ff:ff, which is the Ethernet broadcast 
address. All Ethernet interfaces in the same broadcast domain (all those on the 
same LAN or VLAN, whether or not they are running TCP/IP) receive the frame 
and process it, as shown in Figure 4-1. The next output field in packet 1, arp, 
means that the Frame Type field is 0x0806, specifying either an ARP request or an 
ARP reply. The value 60 printed after the words arp and ip in each of the five 
packets is the length of the Ethernet frame. The size of an ARP request or ARP 
reply is always 42 bytes (28 bytes for the ARP message, 14 bytes for the Ethernet 
header). Each frame has been padded to the Ethernet minimum: 60 bytes of data 
plus a 4-byte CRC (see Chapter 3).
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The next part of packet 1, arp who-has, identifies the frame as an ARP request 
with the IPv4 address of 10.0.0.3 as the target address and the IPv4 address of 
10.0.0.56 as the sender’s address. tcpdump prints the host names corresponding 
to the IP addresses by default, but here they are not displayed (because no reverse 
DNS mappings for them are set up; Chapter 11 explains details of DNS). We will 
use the -n option later to see the IP addresses in the ARP request, whether or not 
DNS mappings are available.

From packet 2 we see that while the ARP request is broadcast, the destination 
address of the ARP reply is the (unicast) MAC address 0:0:c0:6f:2d:40. The 
ARP reply is thus sent directly to the requesting host; it is not ordinarily broad-
cast (see Section 4.8 for some cases where this rule is altered). tcpdump prints 
the ARP reply for this frame, along with the IPv4 address and hardware address 
of the responder. Line 3 is the first TCP segment requesting that a connection be 
established. Its destination hardware address is the destination host (10.0.0.3). 
We shall cover the details of this segment in Chapter 13.

For each packet, the number printed after the packet number is the relative 
time (in seconds) when the packet was received by tcpdump. Each packet other 
than the first also contains the time difference (in seconds) from the previous time, 
in parentheses. We can see in the output that the time between sending the ARP 
request and receiving the ARP reply is about 2.2ms. The first TCP segment is sent 
0.7ms after this. The overhead involved in using ARP for dynamic address resolu-
tion in this example is less than 3ms. Note that if the ARP entry for host 10.0.0.3
was valid in the ARP cache at 10.0.0.56, the initial ARP exchange would not have 
occurred, and the initial TCP segment could have been sent immediately using the 
destination’s Ethernet address.

A subtle point about the tcpdump output is that we do not see an ARP request 
from 10.0.0.3 before it sends its first TCP segment to 10.0.0.56 (line 4). While it 
is possible that 10.0.0.3 already has an entry for 10.0.0.56 in its ARP cache, nor-
mally when a system receives an ARP request addressed to it, in addition to send-
ing the ARP reply, it also saves the requestor’s hardware address and IPv4 address 
in its own ARP cache. This is an optimization based on the logical assumption that 
if the requestor is about to send it a datagram, the receiver of the datagram will 
probably send a reply. 

4.5.2 ARP Request to a Nonexistent Host

What happens if the host specified in an ARP request is down or nonexistent? To 
see this, we attempt to access a nonexistent local IPv4 address—the prefix corre-
sponds to that of the local subnet, but there is no host with the specified address. 
We will use the IPv4 address 10.0.0.99 in this example.

Linux% date ; telnet 10.0.0.99 ; date
Fri Jan 29 14:46:33 PST 2010
Trying 10.0.0.99...
telnet: connect to address 10.0.0.99: No route to host
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Fri Jan 29 14:46:36 PST 2010            3s after previous date

Linux% arp -a
? (10.0.0.99) at <incomplete> on eth0

Here is the output from tcpdump:

Linux# tcpdump –n arp
1 21:12:07.440845 arp who-has 10.0.0.99 tell 10.0.0.56
2 21:12:08.436842 arp who-has 10.0.0.99 tell 10.0.0.56
3 21:12:09.436836 arp who-has 10.0.0.99 tell 10.0.0.56

This time we did not specify the -e option because we already know that 
the ARP requests are sent using broadcast addressing. The frequency of the ARP 
request is very close to one per second, the maximum suggested by [RFC1122]. 
Testing on a Windows system (not illustrated) reveals a different behavior. Rather 
than three requests spaced 1s apart, the spacing varies based on the application 
and the other protocols being used. For ICMP and UDP (see Chapters 8 and 10, 
respectively), a spacing of approximately 5s is used, whereas for TCP 10s is used. 
For TCP, the 10s interval allows two ARP requests to be sent without responses 
before TCP gives up trying to establish a connection.

4.6 ARP Cache Timeout

A timeout is normally associated with each entry in the ARP cache. (Later we 
shall see that the arp command enables the administrator to place an entry into 
the cache that will never time out.) Most implementations have a timeout of 20 
minutes for a completed entry and 3 minutes for an incomplete entry. (We saw an 
incomplete entry in our previous example where we forced an ARP to a nonexis-
tent host.) These implementations normally restart the 20-minute timeout for an 
entry each time the entry is used. [RFC1122], the Host Requirements RFC, says 
that this timeout should occur even if the entry is in use, but many implementa-
tions do not do this—they restart the timeout each time the entry is referenced.

Note that this is one of our first examples of soft state. Soft state is information 
that is discarded if not refreshed before some timeout is reached. Many Internet 
protocols use soft state because it helps to initiate automatic reconfiguration if net-
work conditions change. The cost of soft state is that some protocol must refresh the 
state to avoid expiration. “Soft state refreshes” are often incorporated in a protocol 
design to keep the soft state active.

4.7 Proxy ARP

Proxy ARP [RFC1027] lets a system (generally a specially configured router) 
answer ARP requests for a different host. This fools the sender of the ARP request 
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into thinking that the responding system is the destination host, when in fact the 
destination host may be elsewhere (or may not exist). Proxy ARP is not commonly 
used and is generally to be avoided if possible. 

Proxy ARP has also been called promiscuous ARP or the ARP hack. These 
names are from a historical use of proxy ARP: to hide two physical networks from 
each other. In this case both physical networks can use the same IP prefix as long 
as a router in the middle is configured as a proxy ARP agent to respond to ARP 
requests on one network for a host on the other network. This technique can be 
used to “hide” one group of hosts from another. In the past, there were two com-
mon reasons for doing this: some systems were unable to handle subnetting, and 
some used an older broadcast address (a host ID of all 0 bits, instead of the current 
standard of a host ID with all 1 bits).

Linux supports a feature called auto-proxy ARP. It can be enabled by writing 
the character 1 into the file /proc/sys/net/ipv4/conf/*/proxy_arp, or by 
using the sysctl command. This supports the ability of using proxy ARP with-
out having to manually enter ARP entries for every possible IPv4 address that is 
being proxied. Doing so allows a range of addresses, instead of each individual 
address, to be automatically proxied. 

4.8 Gratuitous ARP and Address Conflict Detection (ACD)

Another feature of ARP is called gratuitous ARP. It occurs when a host sends an 
ARP request looking for its own address. This is usually done when the interface 
is configured “up” at bootstrap time. Here is an example trace taken on a Linux 
machine showing our Windows host booting up:

Linux#        tcpdump -e -n arp
1             0.0 0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
                  arp who-has 10.0.0.56 tell 10.0.0.56

(We specified the -n flag for tcpdump to always print numeric dotted-deci-
mal addresses instead of host names.) In terms of the fields in the ARP request, the 
Sender’s Protocol Address and the Target Protocol Address are identical: 10.0.0.56. 
Also, the Source Address field in the Ethernet header, 0:0:c0:6f:2d:40 as shown 
by tcpdump, equals the sender’s hardware address. Gratuitous ARP achieves two 
goals:

1. It lets a host determine if another host is already configured with the same 
IPv4 address. The host sending the gratuitous ARP is not expecting a reply 
to its request. If a reply is received, however, the error message “Duplicate 
IP address sent from Ethernet address . . .” is usually displayed. This is a 
warning to the system administrator and user that one of the systems in the 
same broadcast domain (e.g., LAN or VLAN) is misconfigured.
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2. If the host sending the gratuitous ARP has just changed its hardware 
address (perhaps the host was shut down, the interface card was replaced, 
and then the host was rebooted), this frame causes any other host receiving 
the broadcast that has an entry in its cache for the old hardware address 
to update its ARP cache entry accordingly. As mentioned before, if a host 
receives an ARP request from an IPv4 address that is already in the receiv-
er’s cache, that cache entry is updated with the sender’s hardware address 
from the ARP request. This is done for any ARP request received by the 
host; gratuitous ARP happens to take advantage of this behavior.

Although gratuitous ARP provides some indication that multiple stations may 
be attempting to use the same IPv4 address, it really provides no mechanism to 
react to the situation (other than by printing a message that is ideally acted upon by 
a system administrator). To deal with this issue, [RFC5227] describes IPv4 Address 
Conflict Detection (ACD). ACD defines ARP probe and ARP announcement pack-
ets. An ARP probe is an ARP request packet in which the Sender’s Protocol (IPv4) 
Address field is set to 0. Probes are used to see if a candidate IPv4 address is being 
used by any other systems in the broadcast domain. Setting the Sender’s Protocol 
Address field to 0 avoids cache pollution should the candidate IPv4 address already 
be in use by another host, a difference from the way gratuitous ARP works. An 
ARP announcement is identical to an ARP probe, except both the Sender’s Protocol 
Address and the Target Protocol Address fields are filled in with the candidate IPv4 
address. It is used to announce the sender’s intention to use the candidate IPv4 
address as its own.

To perform ACD, a host sends an ARP probe when an interface is brought up 
or out of sleep, or when a new link is established (e.g., when an association with 
a new wireless network is made). It first waits a random amount of time (in the 
range 0–1s, distributed uniformly) before sending up to three probe packets. The 
delay is used to avoid power-on congestion when multiple systems powered on 
simultaneously would otherwise attempt to perform ACD at once, leading to a 
network traffic spike. The probes are spaced randomly, with between 1 and 2s of 
delay (distributed uniformly) placed between.

While sending its probes, a requesting station may receive ARP requests or 
replies. A reply to its probe indicates that a different station is already using the 
candidate IP address. A request containing the same candidate IPv4 address in the 
Target Protocol Address field sent from a different system indicates that the other 
system is simultaneously attempting to acquire the candidate IPv4 address. In 
either case, the system should indicate an address conflict message and pursue 
some alternative address. For example, this is the recommended behavior when 
being assigned an address using DHCP (see Chapter 6). [RFC5227] places a limit of 
ten conflicts when trying to acquire an address before the requesting host enters a 
rate-limiting phase when it is permitted to perform ACD only once every 60s until 
successful.
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If a requesting host does not discover a conflict according to the procedure 
just described, it sends two ARP announcements spaced 2s apart to indicate to sys-
tems in the broadcast domain the IPv4 address it is now using. In the announce-
ments, both the Sender’s Protocol Address and the Target Protocol Address fields are 
set to the address being claimed. The purpose of sending these announcements is 
to ensure that any preexisting cached address mappings are updated to reflect the 
sender’s current use of the address.

ACD is considered to be an ongoing process, and in this way it differs from 
gratuitous ARP. Once a host has announced an address it is using, it continues 
inspecting incoming ARP traffic (requests and replies) to see if its address appears 
in the Sender’s Protocol Address field. If so, some other system believes it is rightfully 
using the same address. In this case, [RFC5227] provides three possible resolution 
mechanisms: cease using the address, keep the address but send a “defensive” 
ARP announcement and cease using it if the conflict continues, or continue to 
use the address despite the conflict. The last option is recommended only for sys-
tems that truly require a fixed, stable address (e.g., an embedded device such as a 
printer or router).

[RFC5227] also suggests the potential benefit of having some ARP replies be 
sent using link-layer broadcast. Although this has not traditionally been the way 
ARP works, there can be some benefit in doing so, at the expense of requiring all 
stations on the same segment to process all ARP traffic. Broadcast replies allow 
ACD to occur more quickly because all stations will notice the reply and invali-
date their caches during a conflict.

4.9 The arp Command

We have used the arp command with the -a flag on Windows and Linux to dis-
play all the entries in the ARP cache (on Linux we get similar information without 
using -a). The superuser or administrator can specify the -d option to delete an 
entry from the ARP cache. (This was used before running a few of the examples, 
to force an ARP exchange to be performed.)

Entries can also be added using the -s option. It requires an IPv4 address (or 
host name that can be converted to an IPv4 address using DNS) and an Ethernet 
address. The IPv4 address and the Ethernet address are added to the cache as an 
entry. This entry is made semipermanent (i.e., it does not time out from the cache, 
but it disappears when the system is rebooted).

The Linux version of arp provides a few more features than the Windows 
version. When the temp keyword is supplied at the end of the command line 
when adding an entry using -s, the entry is considered to be temporary and times 
out in the same way that other ARP entries do. The keyword pub at the end of a 
command line, also used with the -s option, causes the system to act as an ARP 
responder for that entry. The system answers ARP requests for the IPv4 address, 
replying with the specified Ethernet address. If the advertised address is one of 
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the system’s own, the system is acting as a proxy ARP agent (see Section 4.7) for 
the specified IPv4 address. If arp -s is used to enable proxy ARP, Linux responds 
for the address specified even if the file /proc/sys/net/ipv4/conf/*/proxy_
arp contains 0.

4.10 Using ARP to Set an Embedded Device’s IPv4 Address

As more embedded devices are made compatible with Ethernet and the TCP/IP 
protocols, it is increasingly common to find network-attached devices that have 
no direct way to enter their network configuration information (e.g., they have no 
keyboard, so entering an IP address for them to use is not possible). These devices 
are typically configured in one of two ways. First, DHCP can be used to automati-
cally assign an address and other information (see Chapter 6). Another way is to 
use ARP to set an IPv4 address, although this method is less common.

Using ARP to configure an embedded device’s IPv4 address was not the origi-
nal intent of the protocol, so it is not entirely automatic. The basic idea is to manu-
ally establish an ARP mapping for the device (using the arp -s command), then 
send an IP packet to the address. Because the ARP entry is already present, no 
ARP request/reply is generated. Instead, the hardware address can be used imme-
diately. Of course, the Ethernet (MAC) address of the device must be known. It is 
typically printed on the device itself and sometimes doubles as the manufacturer’s 
device serial number. When the device receives a packet destined for its hardware 
address, whatever destination address is contained in the datagram is used to 
assign its initial IPv4 address. After that, the device can be fully configured using 
other means (e.g., by an embedded Web server).

4.11 Attacks Involving ARP

There have been a series of attacks involving ARP. The most straightforward is 
to use the proxy ARP facility to masquerade as some host, responding to ARP 
requests for it. If the victim host is not present, this is straightforward and may not 
be detected. It is considerably more difficult if the host is still running, as more 
than one response may be generated per ARP request, which is easily detected.

A more subtle attack has been launched against ARP that involves cases where 
a machine is attached to more than one network, and ARP entries from one inter-
face “leak” over into the ARP table of the other, because of a bug in the ARP soft-
ware. This can be exploited to improperly direct traffic onto the wrong network 
segment. Linux provides a way to affect this behavior directly, by modifying the 
file /proc/sys/net/ipv4/conf/*/arp_filter. If the value 1 is written into 
this file, then when an incoming ARP request arrives over an interface, an IP for-
warding check is made. The IP address of the requestor is looked up to determine 
which interface would be used to send IP datagrams back to it. If the interface 
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used by the arriving ARP request is different from the interface that would be 
used to return an IP datagram to the requestor, the ARP response is suppressed 
(and the triggering ARP request is dropped).

A somewhat more damaging attack on ARP involves the handling of static 
entries. As discussed previously, static entries may be used to avoid the ARP 
request/reply when seeking the Ethernet (MAC) address corresponding to a par-
ticular IP address. Such static entries have been used in an attempt to enhance 
security. The idea is that static entries placed in the ARP cache for important hosts 
would soon detect any hosts masquerading with that IP address. Unfortunately, 
most implementations of ARP have traditionally replaced even static cache entries 
with entries provided by ARP replies. The consequence of this is that a machine 
receiving an ARP reply (even if did not send an ARP request) would be coaxed 
into replacing its static entries with those provided by an attacker.

4.12 Summary

ARP is a basic protocol in almost every TCP/IP implementation, but it normally 
does its work without the application or user being aware of it. ARP is used to 
determine the hardware addresses corresponding to the IPv4 addresses in use on 
the locally reachable IPv4 subnet. It is invoked when forwarding datagrams des-
tined for the same subnet as the sending host’s and is also used to reach a router 
when the destination of a datagram is not on the subnet (the details of this are 
explained in Chapter 5). The ARP cache is fundamental to its operation, and we 
have used the arp command to examine and manipulate the cache. Each entry 
in the cache has a timer that is used to remove both incomplete and completed 
entries. The arp command displays and modifies entries in the ARP cache.

We followed through the normal operation of ARP along with specialized 
versions: proxy ARP (when a router answers ARP requests for hosts accessible on 
another of the router’s interfaces) and gratuitous ARP (sending an ARP request for 
your own IP address, normally when bootstrapping). We also discussed address 
conflict detection for IPv4, which uses a continually operating gratuitous ARP-like 
exchange to avoid address duplication within the same broadcast domain. Finally, 
we discussed a number of attacks that involve ARP. Most of these involve imper-
sonating hosts by fabricating ARP responses for them. This can lead to problems 
with higher-layer protocols if they do not implement strong security (see Chapter 
18).
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5

The Internet Protocol (IP)

5.1 Introduction

IP is the workhorse protocol of the TCP/IP protocol suite. All TCP, UDP, ICMP, and 
IGMP data gets transmitted as IP datagrams. IP provides a best-effort, connection-
less datagram delivery service. By “best-effort” we mean there are no guarantees 
that an IP datagram gets to its destination successfully. Although IP does not sim-
ply drop all traffic unnecessarily, it provides no guarantees as to the fate of the 
packets it attempts to deliver. When something goes wrong, such as a router tem-
porarily running out of buffers, IP has a simple error-handling algorithm: throw 
away some data (usually the last datagram that arrived). Any required reliability 
must be provided by the upper layers (e.g., TCP). IPv4 and IPv6 both use this basic 
best-effort delivery model.

The term connectionless means that IP does not maintain any connection state 
information about related datagrams within the network elements (i.e., within the 
routers); each datagram is handled independently from all other others. This also 
means that IP datagrams can be delivered out of order. If a source sends two con-
secutive datagrams (first A, then B) to the same destination, each is routed inde-
pendently and can take different paths, and B may arrive before A. Other things 
can happen to IP datagrams as well: they may be duplicated in transit, and they 
may have their data altered as the result of errors. Again, some protocol above IP 
(usually TCP) has to handle all of these potential problems in order to provide an 
error-free delivery abstraction for applications.

In this chapter we take a look at the fields in the IPv4 (see Figure 5-1) and 
IPv6 (see Figure 5-2) headers and describe how IP forwarding works. The official 
specification for IPv4 is given in [RFC0791]. A series of RFCs describe IPv6, start-
ing with [RFC2460].
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Figure 5-1  The IPv4 datagram. The header is of variable size, limited to fifteen 32-bit words (60 
bytes) by the 4-bit IHL field. A typical IPv4 header contains 20 bytes (no options). The 
source and destination addresses are 32 bits long. Most of the second 32-bit word is used 
for the IPv4 fragmentation function. A header checksum helps ensure that the fields in 
the header are delivered correctly to the proper destination but does not protect the data.

Figure 5-2  The IPv6 header is of fixed size (40 bytes) and contains 128-bit source and destination 
addresses. The Next Header field is used to indicate the presence and types of additional 
extension headers that follow the IPv6 header, forming a daisy chain of headers that may 
include special extensions or processing directives. Application data follows the header 
chain, usually immediately following a transport-layer header.
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5.2 IPv4 and IPv6 Headers

Figure 5-1 shows the format of an IPv4 datagram. The normal size of the IPv4 
header is 20 bytes, unless options are present (which is rare). The IPv6 header is 
twice as large but never has any options. It may have extension headers, which pro-
vide similar capabilities, as we shall see later. In our pictures of headers and data-
grams, the most significant bit is numbered 0 at the left, and the least significant 
bit of a 32-bit value is numbered 31 on the right.

The 4 bytes in a 32-bit value are transmitted in the following order: bits 0–7 
first, then bits 8–15, then 16–23, and bits 24–31 last. This is called big endian byte 
ordering, which is the byte ordering required for all binary integers in the TCP/IP 
headers as they traverse a network. It is also called network byte order. Computer 
CPUs that store binary integers in other formats, such as the little endian format 
used by most PCs, must convert the header values into network byte order for 
transmission and back again for reception.

5.2.1 IP Header Fields

The first field (only 4 bits or one nibble wide) is the Version field. It contains the 
version number of the IP datagram: 4 for IPv4 and 6 for IPv6. The headers for both 
IPv4 and IPv6 share the location of the Version field but no others. Thus, the two 
protocols are not directly interoperable—a host or router must handle either IPv4 
or IPv6 (or both, called dual stack) separately. Although other versions of IP have 
been proposed and developed, only versions 4 and 6 have any significant amount 
of use. The IANA keeps an official registry of these version numbers [IV]. 

The Internet Header Length (IHL) field is the number of 32-bit words in the IPv4 
header, including any options. Because this is also a 4-bit field, the IPv4 header is 
limited to a maximum of fifteen 32-bit words or 60 bytes. Later we shall see how 
this limitation makes some of the options, such as the Record Route option, nearly 
useless today. The normal value of this field (when no options are present) is 5. 
There is no such field in IPv6 because the header length is fixed at 40 bytes.

Following the header length, the original specification of IPv4 [RFC0791] 
specified a Type of Service (ToS) byte, and IPv6 [RFC2460] specified the equivalent 
Traffic Class byte. Use of these never became widespread, so eventually this 8-bit 
field was split into two smaller parts and redefined by a set of RFCs ([RFC3260]
[RFC3168][RFC2474] and others). The first 6 bits are now called the Differentiated 
Services Field (DS Field), and the last 2 bits are the Explicit Congestion Notification 
(ECN) field or indicator bits. These RFCs now apply to both IPv4 and IPv6. These 
fields are used for special processing of the datagram when it is forwarded. We 
discuss them in more detail in Section 5.2.3.

The Total Length field is the total length of the IPv4 datagram in bytes. Using 
this field and the IHL field, we know where the data portion of the datagram 
starts, and its length. Because this is a 16-bit field, the maximum size of an IPv4 
datagram (including header) is 65,535 bytes. The Total Length field is required in 
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the header because some lower-layer protocols that carry IPv4 datagrams do not 
(accurately) convey the size of encapsulated datagrams on their own. Ethernet, 
for example, pads small frames to be a minimum length (64 bytes). Even though 
the minimum Ethernet payload size is 46 bytes (see Chapter 3), an IPv4 datagram 
can be smaller (as few as 20 bytes). If the Total Length field were not provided, the 
IPv4 implementation would not know how much of a 46-byte Ethernet frame was 
really an IP datagram, as opposed to padding, leading to possible confusion.

Although it is possible to send a 65,535-byte IP datagram, most link layers 
(such as Ethernet) are not able to carry one this large without fragmenting it 
(chopping it up) into smaller pieces. Furthermore, a host is not required to be able 
to receive an IPv4 datagram larger than 576 bytes. (In IPv6 a host must be able to 
process a datagram at least as large as the MTU of the link to which it is attached, 
and the minimum link MTU is 1280 bytes.) Many applications that use the UDP 
protocol (see Chapter 10) for data transport (e.g., DNS, DHCP, etc.) use a limited 
data size of 512 bytes to avoid the 576-byte IPv4 limit. TCP chooses its own data-
gram size based on additional information (see Chapter 15).

When an IPv4 datagram is fragmented into multiple smaller fragments, each of 
which itself is an independent IP datagram, the Total Length field reflects the length 
of the particular fragment. Fragmentation is described in detail along with UDP in 
Chapter 10. In IPv6, fragmentation is not supported by the header, and the length 
is instead given by the Payload Length field. This field measures the length of the 
IPv6 datagram not including the length of the header; extension headers, however, 
are included in the Payload Length field. As with IPv4, the 16-bit size of the field 
limits its maximum value to 65,535. With IPv6, however, it is the payload length that 
is limited to 64KB, not the entire datagram. In addition, IPv6 supports a jumbogram
option (see Section 5.3.1.2) that provides for the possibility, at least theoretically, of 
single packets with payloads as large as 4GB (4,294,967,295 bytes)!

The Identification field helps indentify each datagram sent by an IPv4 host. To 
ensure that the fragments of one datagram are not confused with those of another, 
the sending host normally increments an internal counter by 1 each time a datagram 
is sent (from one of its IP addresses) and copies the value of the counter into the IPv4 
Identification field. This field is most important for implementing fragmentation, so 
we explore it further in Chapter 10, where we also discuss the Flags and Fragment 
Offset fields. In IPv6, this field shows up in the Fragmentation extension header, as 
we discuss in Section 5.3.3.

The Time-to-Live field, or TTL, sets an upper limit on the number of routers 
through which a datagram can pass. It is initialized by the sender to some value 
(64 is recommended [RFC1122], although 128 or 255 is not uncommon) and decre-
mented by 1 by every router that forwards the datagram. When this field reaches 
0, the datagram is thrown away, and the sender is notified with an ICMP message 
(see Chapter 8). This prevents packets from getting caught in the network forever 
should an unwanted routing loop occur.
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Note

The TTL field was originally specified to be the maximum lifetime of an IP data-
gram in seconds, but routers were also always required to decrement the value by 
at least 1. Because virtually no routers today hold on to a datagram longer than 1s 
under normal operation, the earlier rule is now ignored or forgotten, and in IPv6 
the field has been renamed to its de facto use: Hop Limit.

The Protocol field in the IPv4 header contains a number indicating the type of 
data found in the payload portion of the datagram. The most common values are 
17 (for UDP) and 6 (for TCP). This provides a demultiplexing feature so that the IP 
protocol can be used to carry payloads of more than one protocol type. Although 
this field originally specified the transport-layer protocol the datagram is encap-
sulating, it is now understood to identify the encapsulated protocol, which may or 
not be a transport protocol. For example, other encapsulations are possible, such 
as IPv4-in-IPv4 (value 4). The official list of the possible values of the Protocol field 
is given in the assigned numbers page [AN]. The Next Header field in the IPv6 
header generalizes the Protocol field from IPv4. It is used to indicate the type of 
header following the IPv6 header. This field may contain any values defined for 
the IPv4 Protocol field, or any of the values associated with the IPv6 extension 
headers described in Section 5.3.

The Header Checksum field is calculated over the IPv4 header only. This is impor-
tant to understand because it means that the payload of the IPv4 datagram (e.g., 
TCP or UDP data) is not checked for correctness by the IP protocol. To help ensure 
that the payload portion of an IP datagram has been correctly delivered, other 
protocols must cover any important data that follows the header with their own 
data-integrity-checking mechanisms. We shall see that almost all protocols encap-
sulated in IP (ICMP, IGMP, UDP, and TCP) have a checksum in their own headers 
to cover their header and data and also to cover certain parts of the IP header they 
deem important (a form of “layering violation”). Perhaps surprisingly, the IPv6 
header does not have any checksum field.

Note

Omitting the checksum field from the IPv6 header was a somewhat controversial 
decision. The reasoning behind this action is roughly as follows: Higher-layer pro-
tocols requiring correctness in the IP header are required to compute their own 
checksums over the data they believe to be important. A consequence of errors 
in the IP header is that the data is delivered to the wrong destination, is indicated 
to have come from the wrong source, or is otherwise mangled during delivery. 
Because bit errors are relatively rare (thanks to fiber-optic delivery of Internet 
traffic) and stronger mechanisms are available to ensure correctness of the other 
fields (higher-layer checksums or other checks), it was decided to eliminate the 
field from the IPv6 header.



ptg999

186 The Internet Protocol (IP) 

The algorithm used in computing a checksum is also used by most of the 
other Internet-related protocols that use checksums and is sometimes known as 
the Internet checksum. Note that when an IPv4 datagram passes through a router, 
its header checksum must change as a result of decrementing the TTL field. We 
discuss the methods for computing the checksum in more detail in Section 5.2.2.

Every IP datagram contains the Source IP Address of the sender of the datagram 
and the Destination IP Address of where the datagram is destined. These are 32-bit 
values for IPv4 and 128-bit values for IPv6, and they usually identify a single inter-
face on a computer, although multicast and broadcast addresses (see Chapter 2) 
violate this rule. While a 32-bit address can accommodate a seemingly large num-
ber of Internet entities (4.5 billion), there is widespread agreement that this num-
ber is inadequate, a primary motivation for moving to IPv6. The 128-bit address 
of IPv6 can accommodate a huge number of Internet entities. As was restated in 
[H05], IPv6 has 3.4 × 1038 (340 undecillion) addresses. Quoting from [H05] and oth-
ers: “The optimistic estimate would allow for 3,911,873,538,269,506,102 addresses 
per square meter of the surface of the planet Earth.” It certainly seems as if this 
should last a very, very long time indeed.

5.2.2 The Internet Checksum

The Internet checksum is a 16-bit mathematical sum used to determine, with 
reasonably high probability, whether a received message or portion of a message 
matches the one sent. Note that the Internet checksum algorithm is not the same as 
the common cyclic redundancy check (CRC) [PB61], which offers stronger protection.

To compute the IPv4 header checksum for an outgoing datagram, the value 
of the datagram’s Checksum field is first set to 0. Then, the 16-bit one’s comple-
ment sum of the header is calculated (the entire header is considered a sequence 
of 16-bit words). The 16-bit one’s complement of this sum is then stored in the 
Checksum field to make the datagram ready for transmission. One’s complement 
addition can be implemented by “end-round-carry addition”: when a carry bit 
is produced using conventional (two’s complement) addition, the carry is added 
back in as a 1 value. Figure 5-3 presents an example, where the message contents 
are represented in hexadecimal.

When an IPv4 datagram is received, a checksum is computed across the whole 
header, including the value of the Checksum field itself. Assuming there are no 
errors, the computed checksum value is always 0 (a one’s complement of the value 
FFFF). Note that for any nontrivial packet or header, the value of the Checksum
field in the packet can never be FFFF. If it were, the sum (prior to the final one’s 
complement operation at the sender) would have to have been 0. No sum can ever 
be 0 using one’s complement addition unless all the bytes are 0—something that 
never happens with any legitimate IPv4 header. When the header is found to be 
bad (the computed checksum is nonzero), the IPv4 implementation discards the 
received datagram. No error message is generated. It is up to the higher layers to 
somehow detect the missing datagram and retransmit if necessary.
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5.2.2.1 Mathematics of the Internet Checksum
For the mathematically inclined, the set of 16-bit hexadecimal values V = {0001, 
. . . , FFFF} and the one’s complement sum operation + together form an Abelian 
group. For the combination of a set and an operator to be a group, several proper-
ties need to be obeyed: closure, associativity, existence of an identity element, and 
existence of inverses. To be an Abelian (commutative) group, commutativity must 
also be obeyed. If we look closely, we see that all of these properties are indeed 
obeyed:

• For any X,Y in V, (X + Y) is in V [closure]

• For any X,Y,Z in V, X + (Y + Z) = (X + Y) + Z [associativity]

• For any X in V, e + X = X + e = X where e = FFFF [identity]

• For any X in V, there is an X′ in V such that X + X′ = e [inverse]

• For any X,Y in V, (X + Y) = (Y + X) [commutativity]

What is interesting about the set V and the group <V,+> is that we have deleted 
the number 0000 from consideration. If we put the number 0000 in the set V, then 
<V,+> is not a group any longer. To see this, we first observe that 0000 and FFFF 
appear to perform the role of zero (additive identity) using the + operation. For 
example, AB12 + 0000 = AB12 = AB12 + FFFF. However, in a group there can be 
only one identity element. If we have some element 12AB, and assume the identity 

Sending
Message: E3 4F 23 96 44 27 99 F3 [00 00]       Checksum Field = 0000
Two’s Complement Sum: 1E4FF
One’s Complement Sum: E4FF+1 = E500
One’s Complement: ~(E500) = ~(1110 0101 0000 0000) =  0001 1010 1111 1111 = 

   1AFF (the checksum)

Receiving
Message + Checksum =  E34F + 2396 + 4427 + 99F3 + 1AFF = E500 + 1AFF = FFFF 

   ~(Message + Checksum) = 0000

Figure 5-3  The Internet checksum is the one’s complement of a one’s complement 16-bit sum of the 
data being checksummed (zero padding is used if the number of bytes being summed is 
odd). If the data being summed includes a Checksum field, the field is first set to 0 prior 
to the checksum operation and then filled in with the computed checksum. To check 
whether an incoming block of data that contains a Checksum field (header, payload, etc.) 
is valid, the same type of checksum is computed over the whole block (including the 
Checksum field). Because the Checksum field is essentially the inverse of the checksum of 
the rest of the data, computing the checksum on correctly received data should produce 
a value of 0.
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element is 0000, then we need some inverse X′ so that (12AB + X′) = 0000, but we 
see that no such value of X′ exists in V that satisfies the criteria. Therefore, we need 
to exclude 0000 from consideration as the identity element in <V,+> by removing it 
from the set V to make this structure a true group. For an introduction to abstract 
algebra, the reader may wish to consult a detailed text on the subject, such as the 
popular book by Pinter [P90].

5.2.3 DS Field and ECN (Formerly Called the ToS Byte or IPv6 Traffic Class)

The third and fourth fields of the IPv4 header (second and third fields of the IPv6 
header) are the Differentiated Services (called DS Field) and ECN fields. Differenti-
ated Services (called DiffServ) is a framework and set of standards aimed at sup-
porting differentiated classes of service (i.e., beyond just best-effort) on the Internet 
[RFC2474][RFC2475][RFC3260]. IP datagrams that are marked in certain ways (by 
having some of these bits set according to predefined patterns) may be forwarded 
differently (e.g., with higher priority) than other datagrams. Doing so can lead 
to increased or decreased queuing delay in the network and other special effects 
(possibly with associated special fees imposed by an ISP). A number is placed in 
the DS Field termed the Differentiated Services Code Point (DSCP). A “code point” 
refers to a particular predefined arrangement of bits with agreed-upon meaning. 
Typically, datagrams have a DSCP assigned to them when they are given to the 
network infrastructure that remains unmodified during delivery. However, poli-
cies (such as how many high-priority packets are allowed to be sent in a period of 
time) may cause a DSCP in a datagram to be changed during delivery.

The pair of ECN bits in the header is used for marking a datagram with a 
congestion indicator when passing through a router that has a significant amount of 
internally queued traffic. Both bits are set by persistently congested ECN-aware 
routers when forwarding packets. The use case envisioned for this function is 
that when a marked packet is received at the destination, some protocol (such as 
TCP) will notice that the packet is marked and indicate this fact back to the sender, 
which would then slow down, thereby easing congestion before a router is forced 
to drop traffic because of overload. This mechanism is one of several aimed at 
avoiding or dealing with network congestion, which we explore in more detail in 
Chapter 16. Although the DS Field and ECN field are not obviously closely related, 
the space for them was carved out of the previously defined IPv4 Type of Service
and IPv6 Traffic Class fields. For this reason, they are often discussed together, and 
the terms “ToS byte” and “Traffic Class byte” are still in widespread use.

Although the original uses for the ToS and Traffic Class bytes are not widely 
supported, the structure of the DS Field has been arranged to provide some back-
ward compatibility with them. To get a clear understanding of how this has been 
accomplished, we first review the original structure of the Type of Service field 
[RFC0791] as shown in Figure 5-4.
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The D, T, and R subfields are for indicating that the datagram should receive 
good treatment with respect to delay, throughput, and reliability. A value of 1 indi-
cates better treatment (low delay, high throughput, high reliability, respectively). 
The precedence values range from 000 (routine) to 111 (network control) with 
increasing priority (see Table 5-1). They are based on a call preemption scheme 
called Multilevel Precedence and Preemption (MLPP) dating back to the U.S. Depart-
ment of Defense’s AUTOVON telephone system [A92], in which lower-precedence 
calls could be preempted by higher-precedence calls. These terms are still in use 
and are being incorporated into VoIP systems.

Figure 5-4  The original IPv4 Type of Service and IPv6 Traffic Class field structures. The Precedence
subfield was used to indicate which packets should receive higher priority (larger values 
mean higher priority). The D, T, and R subfields refer to delay, throughput, and reliabil-
ity. A value of 1 in these fields corresponds to a desire for low delay, high throughput, 
and high reliability, respectively.

Table 5-1  The original IPv4 Type of Service and IPv6 Traffic Class precedence subfield values

Value Precedence Name

000 Routine
001 Priority
010 Immediate
011 Flash
100 Flash Override
101 Critical
110 Internetwork Control
111 Network Control

In defining the DS Field, the precedence values have been taken into account 
[RFC2474] so as to provide a limited form of backward compatibility. Referring to 
Figure 5-5, the 6-bit DS Field holds the DSCP, providing support for 64 distinct 
code points. The particular value of the DSCP tells a router the forwarding treat-
ment or special handling the datagram should receive. The various forwarding 
treatments are expressed as per-hop behavior (PHB), so the DSCP value effectively 
tells a router which PHB to apply to the datagram. The default value for the DSCP 
is generally 0, which corresponds to routine, best-effort Internet traffic. The 64 
possible DSCP values are broadly divided into a set of pools for various uses, as 
given in [DSCPREG] and shown in Table 5-2.
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The arrangement provides for some experimentation and local use by 
researchers and operators. DSCPs ending in 0 are subject to standardized use, 
and those ending in 1 are for experimental/local use (EXP/LU). Those ending in 
01 are intended initially for experimentation or local use but with eventual intent 
toward standardization.

Referring to Figure 5-5, the class portion of the DS Field contains the first 3 bits 
and is based on the earlier definition of the Precedence subfield of the Type of Service 
field. Generally, a router is to first segregate traffic into different classes. Traffic 
within a common class may have different drop probabilities, allowing the router 
to decide what traffic to drop first if it is forced to discard traffic. The 3-bit class 
selector provides for eight defined code points (called the class selector code points) 
that correspond to PHBs with a specified minimum set of features providing simi-
lar functionality to the earlier IP precedence capability. These are called class selec-
tor compliant PHBs. They are intended to support partial backward compatibility 
with the original definition given for the IP Precedence subfield given in [RFC0791]. 
Code points of the form xxx000 always map to such PHBs, although other values 
may also map to the same PHBs.

Table 5-3 indicates the class selector DSCP values with their corresponding 
terms for the IP Precedence field from [RFC0791]. The Assured Forwarding (AF) 
group provides forwarding of IP packets in a fixed number of independent AF 

Figure 5-5  The DS Field contains the DSCP in 6 bits (5 bits are currently standardized to indicate 
the forwarding treatment the datagram should receive when forwarded by a compliant 
router). The following 2 bits are used for ECN and may be turned on in the datagram 
when it passes through a persistently congested router. When such datagrams arrive 
at their destinations, the congestion indication is sent back to the source in a later data-
gram to inform the source that its datagrams are passing through one or more congested 
routers.

Table 5-2  The DSCP values are divided into three pools: standardized, experimental/local use 
(EXP/LU), and experimental/local use that is eventually intended for standardization (*).

Pool Code Point Prefix Policy

1 xxxxx0 Standards
2 xxxx11 EXP/LU
3 xxxx01 EXP/LU(*)
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classes, effectively generalizing the precedence concept. Traffic from one class 
is forwarded separately from other classes. Within a traffic class, a datagram is 
assigned a drop precedence. Datagrams of higher drop precedence in a class are 
handled preferentially (i.e., are forwarded with higher priority) over those with 
lower drop precedence in the same class. Combining the traffic class and drop 
precedence, the name AFij corresponds to assured forwarding class i with drop 
precedence j. For example, a datagram marked with AF32 is in traffic class 3 with 
drop precedence 2.

Table 5-3  The DS Field values are designed to be somewhat compatible with the IP Precedence
subfield specified for the Type of Service and IPv6 Traffic Class field. AF and EF provide 
enhanced services beyond simple best-effort.

Name Value Reference Description

CS0 000000 [RFC2474] Class selector (best-effort/routine)
CS1 001000 [RFC2474] Class selector (priority)
CS2 010000 [RFC2474] Class selector (immediate)
CS3 011000 [RFC2474] Class selector (flash)
CS4 100000 [RFC2474] Class selector (flash override)
CS5 101000 [RFC2474] Class selector (CRITIC/ECP)
CS6 110000 [RFC2474] Class selector (internetwork control)
CS7 111000 [RFC2474] Class selector (control)
AF11 001010 [RFC2597] Assured Forwarding (class 1,dp 1)
AF12 001100 [RFC2597] Assured Forwarding (1,2)
AF13 001110 [RFC2597] Assured Forwarding (1,3)
AF21 010010 [RFC2597] Assured Forwarding (2,1)
AF22 010100 [RFC2597] Assured Forwarding (2,2)
AF23 010110 [RFC2597] Assured Forwarding (2,3)
AF31 011010 [RFC2597] Assured Forwarding (3,1)
AF32 011100 [RFC2597] Assured Forwarding (3,2)
AF33 011110 [RFC2597] Assured Forwarding (3,3)
AF41 100010 [RFC2597] Assured Forwarding (4,1)
AF42 100100 [RFC2597] Assured Forwarding (4,2)
AF43 100110 [RFC2597] Assured Forwarding (4,3)
EF PHB 101110 [RFC3246] Expedited Forwarding
VOICE-ADMIT 101100 [RFC5865] Capacity-Admitted Traffic

The Expedited Forwarding (EF) service provides the appearance of an uncon-
gested network—that is, EF traffic should receive relatively low delay, jitter, and 
loss. Intuitively, this requires the rate of EF traffic going out of a router to be at 
least as large as the rate coming in. Consequently, EF traffic will only ever have to 
wait in a router queue behind other EF traffic.
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Delivering differentiated services in the Internet has been an ongoing effort 
for over a decade. Although much of the standardization effort in terms of mecha-
nisms took place in the late 1990s, only in the twenty-first century are some of its 
capabilities being realized and implemented. Some guidance on how to configure 
systems to take advantage of these capabilities is given in [RFC4594]. The com-
plexity of differentiated services is due, in part, to the linkage between differenti-
ated services and the presumed differentiated pricing structure and consequent 
issues of fairness that would go along with it. Such economic relationships can be 
complex and are outside the scope of the present discussion. For more information 
on this and related topics, please see [MB97] and [W03].

5.2.4 IP Options

IP supports a number of options that may be selected on a per-datagram basis. 
Most of these options were introduced in [RFC0791] at the time IPv4 was being 
designed, when the Internet was considerably smaller and when threats from 
malicious users were less of a concern. As a consequence, many of the options are 
no longer practical or desirable because of the limited size of the IPv4 header or 
concerns regarding security. With IPv6, most of the options have been removed 
or altered and are not an integral part of the basic IPv6 header. Instead, they are 
placed after the IPv6 header in one or more extension headers. An IP router that 
receives a datagram containing options is usually supposed to perform special 
processing on the datagram. In some cases IPv6 routers process extension headers, 
but many headers are designed to be processed only by end hosts. In some routers, 
datagrams with options or extensions are not forwarded as fast as ordinary data-
grams. We briefly discuss the IPv4 options as background and then look at how 
IPv6 implements extension headers and options. Table 5-4 shows most of the IPv4 
options that have been standardized over the years.

Table 5-4 gives the reserved IPv4 options for which descriptive RFCs can be 
found. The complete list is periodically updated and is available online [IPPA-
RAM]. The options area always ends on a 32-bit boundary. Pad bytes with a value 
of 0 are added if necessary. This ensures that the IPv4 header is always a multiple 
of 32 bits (as required by the IHL field). The “Number” column in Table 5-4 is the 
number of the option. The “Value” column indicates the number placed inside the 
option Type field to indicate the presence of the option. These values from the two 
columns are not necessarily the same because the Type field has additional struc-
ture. In particular, the first (high-order) bit indicates whether the option should 
be copied into fragments if the associated datagram is fragmented. The next 2 bits 
indicate the option’s class. Currently, all options in Table 5-4 use option class 0 
(control) except Timestamp and Traceroute, which are both class 2 (debugging and 
measurement). Classes 1 and 3 are reserved.

Most of the standardized options are rarely or never used in the Internet today. 
Options such as Source and Record Route, for example, require IPv4 addresses to 
be placed inside the IPv4 header. Because there is only limited space in the header 
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Table 5-4  Options, if present, are carried in IPv4 packets immediately after the basic IPv4 header. Options 
are identified by an 8-bit option Type field. This field is subdivided into three subfields: Copy (1 bit), 
Class (2 bits), and Number (5 bits). Options 0 and 1 are a single byte long, and most others are variable 
in length. Variable options consist of 1 byte of type identifier, 1 byte of length, and the option itself.

Name Number Value Length Description Reference Comments

End of List 0 0 1 Indicates no more 
options.

[RFC0791] If required

No Op 1 1 1 Indicates no operation 
to perform (used for 
padding).

[RFC0791] If required

Source
Routing

3

9

131

137

Variable Sender lists router “way-
points” for packet to tra-
verse when forwarded. 
Loose means other 
routers can be included 
between waypoints 
(3,131). Strict means all 
waypoints have to be tra-
versed exactly in order 
(9,137).

[RFC0791] Rare, often 
filtered

Security and 
Handling 
Labels

2

5

130

133

11 Specifies how to include 
security labels and 
handling restrictions 
with IP datagrams in U.S. 
military environments.

[RFC1108] Historic

Record 
Route

7 7 Variable Records the route taken 
by a packet in its header.

[RFC0791] Rare

Timestamp 4 68 Variable Records the time of day 
at a packet’s source and 
destination.

[RFC0791] Rare

Stream ID 8 136 4 Carries the 16-bit 
SATNET stream 
identifier.

[RFC0791] Historic

EIP 17 145 Variable Extended Internet 
Protocol (an experiment 
in the early 1990s)

[RFC1385] Historic

Traceroute 18 82 Variable Adds a route-tracing 
option and ICMP 
message (an experiment 
in the early 1990s).

[RFC1393] Historic

Router Alert 20 148 4 Indicates that a router 
needs to interpret the 
contents of the datagram.

[RFC2113] 
[RFC5350]

Occasional

Quick-Start 25 25 8 Indicates fast transport 
protocol start 
(experimental).

[RFC4782] Rare
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(60 bytes total, of which 20 are devoted to the basic IPv4 header), these options are 
not very useful in today’s IPv4 Internet where the number of router hops in an 
average Internet path is about 15 [LFS07]. In addition, the options are primarily 
for diagnostic purposes and make the construction of firewalls more cumbersome 
and risky. Thus, IPv4 options are typically disallowed or stripped at the perimeter 
of enterprise networks by firewalls (see Chapter 7).

Within enterprise networks, where the average path length is smaller and pro-
tection from malicious users may be less of a concern, options can still be useful. 
In addition, the Router Alert option represents somewhat of an exception to the 
problems with the other options for use on the Internet. Because it is designed 
primarily as a performance optimization and does not change fundamental router 
behavior, it is permitted more often than the other options. As suggested previ-
ously, some router implementations have a highly optimized internal pathway for 
forwarding IP traffic containing no options. The Router Alert option informs rout-
ers that a packet requires processing beyond the conventional forwarding algo-
rithms. The experimental Quick-Start option at the end of the table is applicable to 
both IPv4 and IPv6, and we describe it in the next section when discussing IPv6 
extension headers and options.

5.3 IPv6 Extension Headers

In IPv6, special functions such as those provided by options in IPv4 can be enabled 
by adding extension headers that follow the IPv6 header. The routing and time-
stamp functions from IPv4 are supported this way, as well as some other functions 
such as fragmentation and extra-large packets that were deemed to be rarely used 
for most IPv6 traffic (but still desired) and thereby did not justify allocating bits 
in the IPv6 header to support them. With this arrangement, the IPv6 header is 
fixed at 40 bytes, and extension headers are added only when needed. In choosing 
the IPv6 header to be of a fixed size, and requiring that extension headers be pro-
cessed only by end hosts (with one exception), the designers of IPv6 have made the 
design and construction of high-performance routers easier because the demands 
on packet processing at routers can be simpler than with IPv4. In practice, packet-
processing performance is governed by many factors, including the complexity 
of the protocol, the capabilities of the hardware and software in the router, and 
traffic load.

Extension headers, along with headers of higher-layer protocols such as TCP 
or UDP, are chained together with the IPv6 header to form a cascade of headers 
(see Figure 5-6). The Next Header field in each header indicates the type of the 
subsequent header, which could be an IPv6 extension header or some other type. 
The value of 59 indicates the end of the header chain. The possible values for the 
Next Header field are available at [IP6PARAM], and most are provided in Table 5-5.

As we can see from Table 5-5, the IPv6 extension header mechanism distin-
guishes some functions (e.g., routing and fragmentation) from options. The order 
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Figure 5-6  IPv6 headers form a chain using the Next Header field. Headers in the chain 
may be IPv6 extension headers or transport headers. The IPv6 header appears 
at the beginning of the datagram and is always 40 bytes long.

Table 5-5  The values for the IPv6 Next Header field may indicate extensions or headers for other protocols. The 
same values are used with the IPv4 Protocol field, where appropriate.

Header Type Order Value References

IPv6 header 1 41 [RFC2460][RFC2473]
Hop-by-Hop
Options (HOPOPT)

2 0 [RFC2460]; must immediately follow 
IPv6 header

Destination Options 3,8 60 [RFC2460]
Routing 4 43 [RFC2460][RFC5095]
Fragment 5 44 [RFC2460]
Encapsulating Security Payload (ESP) 7 50 (See Chapter 18)
Authentication (AH) 6 51 (See Chapter 18)
Mobility (MIPv6) 9 135 [RFC6275]
(None—no next header) Last 59 [RFC2460]
ICMPv6 Last 58 (See Chapter 8)
UDP Last 17 (See Chapter 10)
TCP Last 6 (See Chapters 13–17)
Various other upper-layer protocols Last — See [AN] for complete list
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of the extension headers is given as a recommendation, except for the location of 
the Hop-by-Hop Options, which is mandatory, so an IPv6 implementation must 
be prepared to process extension headers in the order in which they are received. 
Only the Destination Options header can be used twice—the first time for options 
pertaining to the destination IPv6 address contained in the IPv6 header and the 
second time (position 8) for options pertaining to the final destination of the data-
gram. In some cases (e.g., when the Routing header is used), the Destination IP 
Address field in the IPv6 header changes as the datagram is forwarded to its ulti-
mate destination.

5.3.1 IPv6 Options

As we have seen, IPv6 provides a more flexible and extensible way of incorporat-
ing extensions and options as compared to IPv4. Those options from IPv4 that 
ceased to be useful because of space limitations in the IPv4 header appear in IPv6 
as variable-length extension headers or options encoded in special extension 
headers that can accommodate today’s much larger Internet. Options, if present, 
are grouped into either Hop-by-Hop Options (those relevant to every router along a 
datagram’s path) or Destination Options (those relevant only to the recipient). Hop-
by-Hop Options (called HOPOPTs) are the only ones that need to be processed 
by every router a packet encounters. The format for encoding options within the 
Hop-by-Hop and Destination Options extension headers is common.

The Hop-by-Hop and Destination Options headers are capable of holding 
more than one option. Each of these options is encoded as type-length-value (TLV) 
sets, according to the format shown in Figure 5-7.

Figure 5-7  Hop-by-hop and Destination Options are encoded as TLV sets. The first byte gives 
the option type, including subfields indicating how an IPv6 node should behave if the 
option is not recognized, and whether the option data might change as the datagram is 
forwarded. The Opt Data Len field gives the size of the option data in bytes.

The TLV structure shown in Figure 5-7 includes 2 bytes followed by a variable-
length number of data bytes. The first byte indicates the type of the option and 
includes three subfields. The first subfield gives the action to be taken by an IPv6 
node attempting to process the option that does not recognize the 5-bit option Type
subfield. Its possible values are presented in Table 5-6.
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If an unknown option were included in a datagram destined for a multicast 
destination, a large number of nodes could conceivably generate traffic back to the 
source. This can be avoided by use of the 11-bit pattern for the Action subfield. The 
flexibility of the Action subfield is useful in the development of new options. A 
newly specified option can be carried in datagrams and simply ignored by those 
routers that do not understand it, helping to promote incremental deployment of 
new options. The Change bit field (Chg in Figure 5-7) is set to 1 when the option data 
may be modified as the datagram is forwarded. The options shown in Table 5-7 
have been defined for IPv6.

Table 5-6  The 2 high-order bits in an IPv6 TLV option type indicate whether an IPv6 node should 
forward or drop the datagram if the option is not recognized, and whether a message 
indicating the datagram’s fate should be sent back to the sender.

Value Action

00 Skip option, continue processing
01 Discard the datagram (silently)
10 Discard the datagram and send an ICMPv6 Parameter Problem message to 

the source address
11 Same as 10, but send the ICMPv6 message only if the offending packet’s 

destination was not multicast

Table 5-7  Options in IPv6 are carried in either Hop-by-Hop (H) or Destination (D) Options exten-
sion headers. The option Type field contains the value from the “Type” column with the 
Action and Change subfields denoted in binary. The “Length” column contains the value 
of the Opt Data Len byte from Figure 5-7. The Pad1 option is the only one lacking this byte.

Option Name Header Action Change Type Length References

Pad1 HD 00 0 0 N/A [RFC2460]
PadN HD 00 0 1 var [RFC2460]
Jumbo Payload H 11 0 194 4 [RFC2675]
Tunnel Encapsulation 
Limit

D 00 0 4 4 [RFC2473]

Router Alert H 00 0 5 4 [RFC2711]
Quick-Start H 00 1 6 8 [RFC4782]
CALIPSO H 00 0 7 8+ [RFC5570]
Home Address D 11 0 201 16 [RFC6275]

5.3.1.1 Pad1 and PadN
IPv6 options are aligned to 8-byte offsets, so options that are naturally smaller are 
padded with 0 bytes to round out their lengths to the nearest 8 bytes. Two padding 
options are available to support this, called Pad1 and PadN. The Pad1 option (type 0) 
is the only option that lacks Length and Value fields. It is simply 1 byte long and 
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contains the value 0. The PadN option (type 1) inserts 2 or more bytes of padding 
into the options area of the header using the format of Figure 5-7. For n bytes of 
padding, the Opt Data Len field contains the value (n - 2).

5.3.1.2 IPv6 Jumbo Payload
In some TCP/IP networks, such as those used to interconnect supercomputers, 
the normal 64KB limit on the IP datagram size can lead to unwanted overhead 
when moving large amounts of data. The IPv6 Jumbo Payload option specifies an 
IPv6 datagram with payload size larger than 65,535 bytes, called a jumbogram. This 
option need not be implemented by nodes attached to links with MTU sizes below 
64KB. The Jumbo Payload option provides a 32-bit field for holding the payload 
size for datagrams with payloads of sizes between 65,535 and 4,294,967,295 bytes.

When a jumbogram is formed for transmission, its normal Payload Length field 
is set to 0. As we shall see later, the TCP protocol makes use of the Payload Length
field in order to compute its checksum using the Internet checksum algorithm 
described previously. When the Jumbo Payload option is used, TCP must be care-
ful to use the length value from the option instead of the regular Length field in 
the base header. Although this procedure is not difficult, larger payloads can lead 
to an increased chance of undetected error [RFC2675].

5.3.1.3 Tunnel Encapsulation Limit
Tunneling refers to the encapsulation of one protocol in another that does not con-
form to traditional layering (see Chapters 1 and 3). For example, IP datagrams may 
be encapsulated inside the payload portion of another IP datagram. Tunneling can 
be used to form virtual overlay networks, in which one network (e.g., the Internet) 
acts as a well-connected link layer for another layer of IP [TWEF03]. Tunnels can 
be nested in the sense that datagrams that are in a tunnel may themselves be 
placed in a tunnel, in a recursive fashion. 

When sending an IP datagram, a sender does not ordinarily have much con-
trol over how many tunnel levels are ultimately used for encapsulation. Using this 
option, however, a sender can specify this limit. A router intending to encapsulate 
an IPv6 datagram into a tunnel first checks for the presence and value of the Tun-
nel Encapsulation Limit option. If the limit value is 0, the datagram is discarded 
and an ICMPv6 Parameter Problem message (see Chapter 8) is sent to the source 
of the datagram (i.e., the previous tunnel entry point). If the limit is nonzero, the 
tunnel encapsulation is permitted, but the newly formed (encapsulating) IPv6 
datagram must include a Tunnel Encapsulation Limit option whose value is 1 less 
than the option value in the arriving datagram. In effect, the encapsulation limit 
acts like the IPv4 TTL or IPv6 Hop Limit field, but for levels of tunnel encapsulation 
instead of forwarding hops.

5.3.1.4 Router Alert
The Router Alert option indicates that the datagram contains information that 
needs to be processed by a router. It is used for the same purpose as the IPv4 
Router Alert option. [RTAOPTS] gives the current set of values for the option. 
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5.3.1.5 Quick-Start
The Quick-Start (QS) option is used in conjunction with the experimental Quick-
Start procedure for TCP/IP specified in [RFC4782]. It is applicable to both IPv4 and 
IPv6 but at present is suggested only for private networks and not the global Inter-
net. The option includes a value encoding the sender’s desired transmission rate in 
bits per second, a QS TTL value, and some additional information. Routers along 
the path may agree that supporting the desired rate is acceptable, in which case 
they decrement the QS TTL and leave the rate request unchanged when forward-
ing the containing datagram. When they disagree (i.e., wish to support a lower 
rate), they can reduce the number to an acceptable rate. Routers that do not recog-
nize the QS option do not decrement the QS TTL. A receiver provides feedback to 
the sender, including the difference between the received datagram’s IPv4 TTL or 
IPv6 Hop Limit field and its QS TTL, along with the resulting rate that may have 
been adjusted by the routers along the forward path. This information is used by 
the sender to determine its sending rate (which, for example, may exceed the rate 
TCP it would otherwise use). Comparison of the TTL values is used to ensure that 
every router along the path participates in the QS negotiation; if any routers are 
found to be decrementing the IPv4 TTL (or IPv6 Hop Limit) field and not modify-
ing the QS TTL value, QS is not enabled.

5.3.1.6 CALIPSO
This option is used for supporting the Common Architecture Label IPv6 Security 
Option (CALIPSO) [RFC5570] in certain private networks. It provides a method to 
label datagrams with a security-level indicator, along with some additional infor-
mation. In particular, it is intended for use in multilevel secure networking envi-
ronments (e.g., government, military, and banking) where the security level of all 
data must be indicated by some form of label. 

5.3.1.7 Home Address
This option holds the “home” address of the IPv6 node sending the datagram 
when IPv6 mobility options are in use. Mobile IP (see Section 5.5) specifies a set of 
procedures for handling IP nodes that may change their point of network attach-
ment without losing their higher-layer network connections. It has a concept of 
a node’s “home,” which is derived from the address prefix of its typical location. 
When roaming away from home, the node is generally assigned a different IP 
address. This option allows the node to provide its normal home address in addi-
tion to its (presumably temporarily assigned) new address while traveling. The 
home address can be used by other IPv6 nodes when communicating with the 
mobile node. If the Home Address option is present, the Destination Options 
header containing it must appear after a Routing header and before the Fragment, 
Authentication, and ESP headers (see Chapter 18), if any of them is also present. 
We discuss this option in more detail in the context of Mobile IP.
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5.3.2 Routing Header

The IPv6 Routing header provides a mechanism for the sender of an IPv6 data-
gram to control, at least in part, the path the datagram takes through the network. 
At present, two different versions of the routing extension header have been speci-
fied, called type 0 (RH0) and type 2 (RH2), respectively. RH0 has been deprecated 
because of security concerns [RFC5095], and RH2 is defined in conjunction with 
Mobile IP. To best understand the Routing header, we begin by discussing RH0 
and then investigate why it has been deprecated and how it differs from RH2. RH0 
specifies one or more IPv6 nodes to be “visited” as the datagram is forwarded. The 
header is shown in Figure 5-8.

Figure 5-8  The now-deprecated Routing header type 0 (RH0) generalizes the IPv4 loose and strict 
Source Route and Record Route options. It is constructed by the sender to include IPv6 
node addresses that act as waypoints when the datagram is forwarded. Each address can 
be specified as a loose or strict address. A strict address must be reached by a single IPv6 
hop, whereas a loose address may contain one or more other hops in between. The IPv6 
Destination IP Address field in the base header is modified to contain the next waypoint 
address as the datagram is forwarded.

The IPv6 Routing header shown in Figure 5-8 generalizes the loose Source 
and Record Route options from IPv4. It also supports the possibility of routing on 
identifiers other than IPv6 addresses, although this feature is not standardized 
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and is not discussed further here. For standardized routing on IPv6 addresses, 
RH0 allows the sender to specify a vector of IPv6 addresses for nodes to be visited.

The header contains an 8-bit Routing Type identifier and an 8-bit Segments 
Left field. The type identifier for IPv6 addresses is 0 for RH0 and 2 for RH2. The 
Segments Left field indicates how many route segments remain to be processed—
that is, the number of explicitly listed intermediate nodes still to be visited before 
reaching the final destination. The block of addresses starts with a 32-bit reserved 
field set by the sender to 0 and ignored by receivers. The addresses are nonmulti-
cast IPv6 addresses to be visited as the datagram is forwarded.

A Routing header is not processed until it reaches the node whose address is 
contained in the Destination IP Address field of the IPv6 header. At this time, the 
Segments Left field is used to determine the next hop address from the address vec-
tor, and this address is swapped with the Destination IP Address field in the IPv6 
header. Thus, as the datagram is forwarded, the Segments Left field grows smaller, 
and the list of addresses in the header reflects the node addresses that forwarded 
the datagram. The forwarding procedure is better understood with an example 
(see Figure 5-9).

Figure 5-9  Using an IPv6 Routing header (RH0), the sender (S) is able to direct the datagram 
through the intermediate nodes R2 and R3. The other nodes traversed are determined by 
the normal IPv6 routing. Note that the destination address in the IPv6 header is updated 
at each hop specified in the Routing header.

In Figure 5-9 we can see how the Routing header is processed by intermedi-
ate nodes. The sender (S) constructs the datagram with destination address R1 
and a Routing header (type 0) containing the addresses R2, R3, and D. The final 
destination of the datagram is the last address in the list (D). The Segments Left 
field (labeled “Left” in Figure 5-9) starts at 3. The datagram is forwarded toward 
R1 automatically by S and R0. Because R0’s address is not present in the datagram, 
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no modifications of the Routing header or addresses are performed by R0. Upon 
reaching R1, the destination address from the base header is swapped with the first 
address listed in the Routing header and the Segments Left field is decremented.

As the datagram is forwarded, the process of swapping the destination 
address with the next address from the address list in the Routing header repeats 
until the last destination listed in the Routing header is reached. 

We can arrange to include a Routing header with a simple command-line 
option to the ping6 command in Windows XP (Windows Vista and later include 
only the ping command, which incorporates IPv6 support):

C:\> ping6 -r -s 2001:db8::100 2001:db8::1

This command arranges to use the source address 2001:db8::100 when sending a 
ping request to 2001:db8::1. The -r option arranges for a Routing header (RH0) 
to be included. We can see the outgoing request using Wireshark (see Figure 5-10). 

Figure 5-10  The ping request appears as an ICMPv6 Echo Request in Wireshark. The IPv6 header 
includes a Next Header field indicating that the packet contains a type 0 Routing header, 
followed by an ICMPv6 header. The number of segments in the RH0 left to be processed 
is one (2001:db8::100).

The ping message appears as an ICMPv6 Echo Request packet (see Chapter 
8). By following the Next Header field values, we can see that the base header is 
followed by a Routing header. In the Routing header, we can see that the type is 
0 (indicating an RH0), and there is one segment (hop) left to process. The hop is 
specified by the first slot in the address list (number 0): 2001:db8::100.
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As mentioned previously, RH0 has been deprecated by [RFC5095] because of 
a security concern that allows RH0 to be used to increase the effectiveness of DoS 
attacks. The problem is that RH0 allows the same address to be specified in mul-
tiple locations within the Routing header. This can lead to traffic being forwarded 
many times between two or more hosts or routers along a particular path. The 
potentially high traffic loads that can be created along particular paths in the net-
work can cause disruption to other traffic flows competing for bandwidth across 
the same path. Consequently, RH0 has been deprecated and only RH2 remains as 
the sole Routing header supported by IPv6. RH2 is equivalent to RH0 except it has 
room for only a single address and uses a different value in the Routing Type field.

5.3.3 Fragment Header

The Fragment header is used by an IPv6 source when sending a datagram larger 
than the path MTU of the datagram’s intended destination. Path MTU and how 
it is determined are discussed in more detail in Chapter 13, but 1280 bytes is a 
network-wide link-layer minimum MTU for IPv6 (see section 5 of [RFC2460]). In 
IPv4, any host or router can fragment a datagram if it is too large for the MTU on 
the next hop, and fields within the second 32-bit word of the IPv4 header indicate 
the fragmentation information. In IPv6, only the sender of the datagram is permit-
ted to perform fragmentation, and in such cases a Fragment header is added. 

The Fragment header includes the same information as is found in the IPv4 
header, but the Identification field is 32 bits instead of the 16 that are used for IPv4. 
The larger field provides the ability for more fragmented packets to be outstand-
ing in the network simultaneously. The Fragment header uses the format shown 
in Figure 5-11.

Figure 5-11  The IPv6 Fragment header contains a 32-bit Identification field (twice as large as the Iden-
tification field in IPv4). The M bit field indicates whether the fragment is the last of an 
original datagram. As with IPv4, the Fragment Offset field gives the offset of the payload 
into the original datagram in 8-byte units.

Referring to Figure 5-11, the Reserved field and 2-bit Res field are both zero 
and ignored by receivers. The Fragment Offset field indicates where the data that 
follows the Fragment header is located, as a positive offset in 8-byte units, relative 
to the “fragmentable part” (see the next paragraph) of the original IPv6 datagram. 
The M bit field, if set to 1, indicates that more fragments are contained in the 
datagram. A value of 0 indicates that the fragment contains the last bytes of the 
original datagram.
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The datagram serving as input to the fragmentation process is called the 
“original packet” and consists of two parts: the “unfragmentable part” and the 
“fragmentable part.” The unfragmentable part includes the IPv6 header and any 
included extension headers required to be processed by intermediate nodes to the 
destination (i.e., all headers up to and including the Routing header, otherwise 
the Hop-by-Hop Options extension header if only it is present). The fragmentable 
part constitutes the remainder of the datagram (i.e., Destination Options header, 
upper-layer headers, and payload data).

When the original packet is fragmented, multiple fragment packets are pro-
duced, each of which contains a copy of the unfragmentable part of the origi-
nal packet, but for which each IPv6 header has the Payload Length field altered to 
reflect the size of the fragment packet it describes. Following the unfragmentable 
part, each new fragment packet contains a Fragment header with an appropriately 
assigned Fragment Offset field (e.g., the first fragment contains offset 0) and a copy 
of the original packet’s Identification field. The last fragment has its M (More Frag-
ments) bit field set to 0.

The following example illustrates the way an IPv6 source might fragment a 
datagram. In the example shown in Figure 5-12, a payload of 3960 bytes is frag-
mented such that no fragment’s total packet size exceeds 1500 bytes (a typical MTU 
for Ethernet), yet the fragment data sizes still are arranged to be multiples of 8 bytes.

Figure 5-12  An example of IPv6 fragmentation where a 3960-byte payload is split into three frag-
ment packets of size 1448 bytes or less. Each fragment contains a Fragment header with 
the identical Identification field. All but the last fragment have the More Fragments field 
(M) set to 1. The offset is given in 8-byte units—the last fragment, for example, con-
tains data beginning at offset (362 * 8) = 2896 bytes from the beginning of the original 
packet’s data. The scheme is similar to fragmentation in IPv4.
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In Figure 5-12 we see how the larger original packet has been fragmented 
into three smaller packets, each containing a Fragment header. The IPv6 header’s 
Payload Length field is modified to reflect the size of the data and newly formed 
Fragment header. The Fragment header in each fragment contains a common Iden-
tification field , and the sender ensures that no distinct original packets are assigned 
the same field value within the expected lifetime of a datagram on the network.

The Offset field in the Fragment header is given in 8-byte units, so fragmenta-
tion is performed at 8-byte boundaries, which is why the first and second fragments 
contain 1448 data bytes instead of 1452. Thus, all but the last fragment (possibly) is a 
multiple of 8 bytes. The receiver must ensure that all fragments of an original data-
gram have been received before performing reassembly. The reassembly procedure 
aggregates the fragments, forming the original datagram. As with fragmentation in 
IPv4 (see Chapter 10), fragments may arrive out of order at the receiver but are reas-
sembled in order to form a datagram that is given to other protocols for processing.

We can see the construction of an IPv6 fragment using this command on Win-
dows 7:

C:\> ping -l 3952 ff01::2

Figure 5-13 shows the Wireshark output of the activity on the network as it runs.

Figure 5-13  The ping program generates ICMPv6 packets (see Chapter 8) containing 3960 IPv6 
payload bytes in this example. These packets are fragmented to produce three packet 
fragments, each of which is small enough to fit in the Ethernet MTU size of 1500 bytes.
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Figure 5-14  The second fragment of an ICMPv6 Echo Request contains 1448 IPv6 payload bytes 
including the 8-byte Fragment header. The presence of the Fragment header indicates 
that the overall datagram was fragmented at the source, and the Offset field of 181 indi-
cates that this fragment contains data starting at byte offset 1448. The More Fragments
bit field being set indicates that other fragments are needed to reassemble the datagram. 
All fragments from the same original datagram contain the same Identification field (2 
in this case).

In Figure 5-13 we see the fragments constituting four ICMPv6 Echo Request 
messages sent to the IPv6 multicast address ff01::2. Each request requires frag-
mentation because the -l 3952 option indicates that 3952 data bytes are to be car-
ried in the data area of each ICMPv6 message (leading to an IPv6 payload length 
of 3960 bytes due to the 8-byte ICMPv6 header). The IPv6 source address is link-
local. To determine the target’s link-layer multicast address, a mapping procedure 
specific to IPv6 is performed, described in Chapter 9. The ICMPv6 Echo Request   
(generated by the ping program) spans several fragments, which Wireshark reas-
sembles to display once it has processed all the constituent fragments. Figure 5-14 
shows the second fragment in more detail. 

In Figure 5-14 we see the IPv6 header, with payload length 1448 bytes, as 
expected. The Next Header field contains the value 44 (0x2c) we saw in Table 5-5, 
indicating that a Fragment header follows the IPv6 header. The Fragment header 
indicates that the following header is for ICMPv6, meaning there are no more 
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extension headers. Also, the Offset field is 181, meaning this fragment contains 
data at byte offset 1448 in the original datagram. We know it is not the last frag-
ment because the More Fragments field is set (displayed as Yes by Wireshark). Fig-
ure 5-15 shows the final fragment of the initial ICMPv6 Echo Request datagram. 

Figure 5-15  The last fragment of the first ICMPv6 Echo Request datagram has an offset of 362 * 8 
= 2896 and payload length of 1072 bytes (1064 bytes of the original datagram’s payload 
plus 8 bytes of Fragment header). The More Fragments bit field being set to 0 indicates 
that this is the last fragment, and the original datagram’s total payload length is 2896 
+ 1064 = 3960 bytes (3956 bytes of ICMP data plus 8 bytes for the ICMPv6 header; see 
Chapter 8).

In Figure 5-15 we see that the Offset field has the value 362, but this is in 8-byte 
units, meaning that the byte offset relative to the original datagram is 362 * 8 = 
2896. The Total Length field has the value 1072, which includes 8 bytes for the Frag-
ment header. Wireshark computes the fragmentation pattern for us, indicating 
that the first and second fragments contained the first and second sets of 1448 
bytes, and the final fragment contained 1064. All in all, the fragmentation process 
added 40*2 + 8*3 = 104 bytes to be carried by the network layer (two additional 
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IPv6 headers plus an 8-byte Fragment header for each fragment). If we add link-
layer overhead, the total comes to 104 + (2*18) = 140 bytes. (Each new Ethernet 
frame includes a 14-byte header and a 4-byte CRC.)

5.4 IP Forwarding

Conceptually, IP forwarding is simple, especially for a host. If the destination is 
directly connected to the host (e.g., a point-to-point link) or on a shared network 
(e.g., Ethernet), the IP datagram is sent directly to the destination—a router is not 
required or used. Otherwise, the host sends the datagram to a single router (called 
the default router) and lets the router deliver the datagram to its destination. This 
simple scheme handles most host configurations.

In this section we investigate the details of this simple situation and also how 
IP forwarding works when the situation is not as simple. We begin by noting that 
most hosts today can be configured to be routers as well as hosts, and many home 
networks use an Internet-connected PC to act as a router (and also a firewall, as 
we discuss in Chapter 7). What differentiates a host from a router to IP is how IP 
datagrams are handled: a host never forwards datagrams it does not originate, 
whereas routers do.

In our general scheme, the IP protocol can receive a datagram either from 
another protocol on the same machine (TCP, UDP, etc.) or from a network inter-
face. The IP layer has some information in memory, usually called a routing table or 
forwarding table, which it searches each time it receives a datagram to send. When a 
datagram is received from a network interface, IP first checks if the destination IP 
address is one of its own IP addresses (i.e., one of the IP addresses associated with 
one of its network interfaces) or some other address for which it should receive 
traffic such as an IP broadcast or multicast address. If so, the datagram is delivered 
to the protocol module specified by the Protocol field in the IPv4 header or Next 
Header field in the IPv6 header. If the datagram is not destined for one of the IP 
addresses being used locally by the IP module, then (1) if the IP layer was config-
ured to act as a router, the datagram is forwarded (that is, handled as an outgoing 
datagram as described in Section 5.4.2); or (2) the datagram is silently discarded. 
Under some circumstances (e.g., no route is known in case 1), an ICMP message 
may be sent back to the source indicating an error condition.

5.4.1 Forwarding Table

The IP protocol standards do not dictate the precise data required to be in a for-
warding table, as this choice is left up to the implementer of the IP protocol. Nev-
ertheless, several key pieces of information are generally required to implement 
the forwarding table for IP, and we shall discuss these now. Each entry in the 
routing or forwarding table contains the following information fields, at least 
conceptually:
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• Destination: This contains a 32-bit field (or 128-bit field for IPv6) used for 
matching the result of a masking operation (see the next bulleted item). 
The destination can be as simple as zero, for a “default route” covering all 
destinations, or as long as the full length of an IP address, in the case of a 
“host route” that describes only a single destination.

• Mask: This contains a 32-bit field (128-bit field for IPv6) applied as a bitwise 
AND mask to the destination IP address of a datagram being looked up in 
the forwarding table. The masked result is compared with the set of desti-
nations in the forwarding table entries.

• Next-hop: This contains the 32-bit IPv4 address or 128-bit IPv6 address of 
the next IP entity (router or host) to which the datagram should be sent. The 
next-hop entity is typically on a network shared with the system perform-
ing the forwarding lookup, meaning the two share the same network prefix 
(see Chapter 2). 

• Interface: This contains an identifier used by the IP layer to reference the 
network interface that should be used to send the datagram to its next hop. 
For example, it could refer to a host’s 802.11 wireless interface, a wired Eth-
ernet interface, or a PPP interface associated with a serial port. If the for-
warding system is also the sender of the IP datagram, this field is used in 
selecting which source IP address to use on the outgoing datagram (see 
Section 5.6.2.1).

IP forwarding is performed on a hop-by-hop basis. As we can see from this 
forwarding table information, the routers and hosts do not contain the complete 
forwarding path to any destination (except, of course, those destinations that are 
directly connected to the host or router). IP forwarding provides the IP address of 
only the next-hop entity to which the datagram is sent. It is assumed that the next 
hop is really “closer” to the destination than the forwarding system is, and that 
the next-hop router is directly connected to (i.e., shares a common network pre-
fix with) the forwarding system. It is also generally assumed that no “loops” are 
constructed between the next hops so that a datagram does not circulate around 
the network until its TTL or hop limit expires. The job of ensuring correctness of 
the routing table is given to one or more routing protocols. Many different routing 
protocols are available to do this job, including RIP, OSPF, BGP, and IS-IS, to name a 
few (see, for example, [DC05] for more detail on routing protocols).

5.4.2 IP Forwarding Actions

When the IP layer in a host or router needs to send an IP datagram to a next-hop 
router or host, it first examines the destination IP address (D) in the datagram. 
Using the value D, the following longest prefix match algorithm is executed on the 
forwarding table:
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1. Search the table for all entries for which the following property holds: 
(D ^ mj) = dj, where mj is the value of the mask field associated with the for-
warding entry ej having index j, and dj is the value of the destination field 
associated with ej. This means that the destination IP address D is bitwise 
ANDed with the mask in each forwarding table entry (mj), and the result is 
compared against the destination in the same forwarding table entry (dj). 
If the property holds, the entry (ej here) is a “match” for the destination IP 
address. When a match happens, the algorithm notes the entry index (j 
here) and how many bits in the mask mj were set to 1. The more bits set to 
1, the “better” the match.

2. The best matching entry ek (i.e., the one with the largest number of 1 bits in 
its mask mk) is selected, and its next-hop field nk is used as the next-hop IP 
address in forwarding the datagram.

If no matches in the forwarding table are found, the datagram is undeliverable. 
If the undeliverable datagram was generated locally (on this host), a “host unreach-
able” error is normally returned to the application that generated the datagram. On 
a router, an ICMP message is normally sent back to the host that sent the datagram.

In some circumstances, more than one entry may match an equal number of 1 
bits. This can happen, for example, when more than one default route is available 
(e.g., when attached to more than one ISP, called multihoming). The end-system 
behavior in such cases is not set by standards and is instead specific to the operat-
ing system’s protocol implementation. A common behavior is for the system to sim-
ply choose the first match. More sophisticated systems may attempt to load-balance
or split traffic across the multiple routes. Studies suggest that multihoming can be 
beneficial not only for large enterprises, but also for residential users [THL06].

5.4.3 Examples

To get a solid understanding of how IP forwarding works both in the simple local 
environment (e.g., same LAN) and in the somewhat more complicated multihop 
(global Internet) environment, we look at two cases. The first case, where all sys-
tems are using the same network prefix, is called direct delivery, and the other case 
is called indirect delivery (see Figure 5-16).

5.4.3.1 Direct Delivery
First consider a simple example. Our Windows XP host (with IPv4 address S and 
MAC address S), which we will just call S, has an IP datagram to send to our Linux 
host (IPv4 address D, MAC address D), which we will call D. These systems are 
interconnected using a switch. Both hosts are on the same Ethernet (see inside 
front cover). Figure 5-16 (top) shows the delivery of the datagram. When the IP 
layer in S receives a datagram to send from one of the upper layers such as TCP or 
UDP, it searches its forwarding table. We would expect the forwarding table on S 
to contain the information shown in Table 5-8.
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In Table 5-8, the destination IPv4 address D (10.0.0.9) matches both the first 
and second forwarding table entries. Because it matches the second entry bet-
ter (25 bits instead of none), the “gateway” or next-hop address is 10.0.0.100, the 
address S. Thus, the gateway portion of the entry contains the address of the send-
ing host’s own network interface (no router is referenced), indicating that direct 
delivery is to be used to send the datagram.

Figure 5-16  Direct delivery does not require the presence of a router—IP datagrams are encapsu-
lated in a link-layer frame that directly identifies the source and destination. Indirect 
delivery involves a router—data is forwarded to the router using the router’s link-layer 
address as the destination link-layer address. The router’s IP address does not appear 
in the IP datagram (unless the router itself is the source or destination, or when source 
routing is used).

Table 5-8  The (unicast) IPv4 forwarding table at host S contains only two entries. Host S is config-
ured with IPv4 address and subnet mask 10.0.0.100/25. Datagrams destined for addresses 
in the range 10.0.0.1 through 10.0.0.126 use the second forwarding table entry and are sent 
using direct delivery. All other datagrams use the first entry and are given to router R 
with IPv4 address 10.0.0.1.

Destination Mask Gateway (Next Hop) Interface

0.0.0.0 0.0.0.0 10.0.0.1 10.0.0.100
10.0.0.0 255.255.255.128 10.0.0.100 10.0.0.100
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The datagram is encapsulated in a lower-layer frame destined for the target 
host D. If the lower-layer address of the target host is unknown, the ARP protocol 
(for IPv4; see Chapter 4) or Neighbor Solicitation (for IPv6; see Chapter 8) opera-
tion may be invoked at this point to determine the correct lower-layer address, D. 
Once known, the destination address in the datagram is D’s IPv4 address (10.0.0.9), 
and D is placed in the Destination IP Address field in the lower-layer header. The 
switch delivers the frame to D based solely on the link-layer address D; it pays no 
attention to the IP addresses.

5.4.3.2 Indirect Delivery
Now consider another example. Our Windows host has an IP datagram to send 
to the host ftp.uu.net, whose IPv4 address is 192.48.96.9. Figure 5-16 (bottom) 
shows the conceptual path of the datagram through four routers. First, the Win-
dows machine searches its forwarding table but does not find a matching prefix 
on the local network. It uses its default route entry (which matches every destina-
tion, but with no 1 bits at all). The default entry indicates that the appropriate next-
hop gateway is 10.0.0.1 (the “a side” of the router R1). This is a typical scenario for 
a home network.

Recall that in the direct delivery case, the source and destination IP addresses 
correspond to those associated with the source and destination hosts. The same 
is true for the lower-layer (e.g., Ethernet) addresses. In indirect delivery, the 
IP addresses correspond to the source and destination hosts as before, but the 
lower-layer addresses do not. Instead, the lower-layer addresses determine which 
machines receive the frame containing the datagram on a per-hop basis. In this 
example, the lower-layer address needed is the Ethernet address of the next-hop 
router R1’s a-side interface, the lower-layer address corresponding to IPv4 address 
10.0.0.1. This is accomplished by ARP (or a Neighbor Solicitation request if this 
example were using IPv6) on the network interconnecting S and R1. Once R1 
responds with its a-side lower-layer address, S sends the datagram to R1. Delivery 
from S to R1 takes place based on processing only the lower-layer headers (more 
specifically, the lower-layer destination address). Upon receipt of the datagram, R1 
checks its forwarding table. The information in Table 5-9 would be typical.

Table 5-9  The forwarding table at R1 indicates that address translation should be performed for 
traffic. The router has a private address on one side (10.0.0.1) and a public address on the 
other (70.231.132.85). Address translation is used to make datagrams originating on the 
10.0.0.0/25 network appear to the Internet as though they had been sent from 70.231.132.85.

Destination Mask Gateway (Next Hop) Interface Note

0.0.0.0 0.0.0.0 70.231.159.254 70.231.132.85 NAT
10.0.0.0 255.255.255.128 10.0.0.100 10.0.0.1 NAT
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When R1 receives the datagram, it realizes that the datagram’s destination IP 
address is not one of its own, so it forwards the datagram. Its forwarding table is 
searched and the default entry is used. The default entry in this case has a next 
hop within the ISP servicing the network, 70.231.159.254 (this is R2’s a-side inter-
face). This address happens to be within SBC’s DSL network called by the some-
what cumbersome name adsl-70-231-159-254.dsl.snfc21.sbcglobal.net. 
Because this router is in the global Internet and the Windows machine’s source 
address is the private address 10.0.0.100, R1 performs Network Address Translation
(NAT) on the datagram to make it routable on the Internet. The NAT operation 
results in the datagram having the new source address 70.231.132.85, which cor-
responds to R1’s b-side interface. Networks that do not use private addressing (e.g., 
ISPs and larger enterprises) avoid the last step and the original source address 
remains unchanged. NAT is described in more detail in Chapter 7.

When router R2 (inside the ISP) receives the datagram, it goes through the 
same steps that the local router R1 did (except for the NAT operation). If the data-
gram is not destined for one of its own IP addresses, the datagram is forwarded. 
In this case, the router usually has not only a default route but several others, 
depending on its connectivity to the rest of the Internet and its own local policies.

Note that IPv6 forwarding varies only slightly from conventional IPv4 for-
warding. Aside from the larger addresses, IPv6 uses a slightly different mecha-
nism (Neighbor Solicitation messages) to ascertain the lower-layer address of its 
next hop. It is described in more detail in Chapter 8, as it is part of ICMPv6. In 
addition, IPv6 has both link-local addresses and global addresses (see Chapter 2). 
While global addresses behave like regular IP addresses, link-local addresses can 
be used only on the same link. In addition, because all the link-local addresses 
share the same IPv6 prefix (fe80::/10), a multihomed host may require user input 
to determine which interface to use when sending a datagram destined for a link-
local destination.

To illustrate the use of link-local addresses, we start with our Windows XP 
machine, assuming IPv6 is enabled and operational:

C:\> ping6 fe80::204:5aff:fe9f:9e80

Pinging fe80::204:5aff:fe9f:9e80 with 32 bytes of data:

No route to destination.
  Specify correct scope-id or use -s to specify source address.
  ...

C:\> ping6 fe80::204:5aff:fe9f:9e80%6

Pinging fe80::204:5aff:fe9f:9e80%6
from fe80::205:4eff:fe4a:24bb%6 with 32 bytes of data:

Reply from fe80::204:5aff:fe9f:9e80%6: bytes=32 time=1ms
Reply from fe80::204:5aff:fe9f:9e80%6: bytes=32 time=1ms
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Reply from fe80::204:5aff:fe9f:9e80%6: bytes=32 time=1ms
Reply from fe80::204:5aff:fe9f:9e80%6: bytes=32 time=1ms

Ping statistics for fe80::204:5aff:fe9f:9e80%6:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 1ms, Average = 1ms

Here we see that failing to specify which interface to use for outbound link-
local traffic results in an error. In Windows XP, we can specify either a scope ID or 
a source address. In this example we specify the scope ID as an interface number 
using the %6 extension to the destination address. This informs the system to use 
interface number 6 as the correct interface when sending the ping traffic.

To see the path taken to an IP destination, we can use the traceroute pro-
gram (called tracert on Windows, which has a slightly different set of options) 
with the -n option to not convert IP addresses to names:

Linux% traceroute -n ftp.uu.net
traceroute to ftp.uu.net (192.48.96.9), 30 hops max, 38 byte packets
 1  70.231.159.254  9.285 ms  8.404 ms  8.887 ms
 2  206.171.134.131  8.412 ms  8.764 ms  8.661 ms
 3  216.102.176.226  8.502 ms  8.995 ms  8.644 ms
 4  151.164.190.185  8.705 ms  8.673 ms  9.014 ms
 5  151.164.92.181  9.149 ms  9.057 ms  9.537 ms
 6  151.164.240.134  9.680 ms  10.389 ms  11.003 ms
 7  151.164.41.10  11.605 ms  37.699 ms  11.374 ms
 8  12.122.79.97  13.449 ms  12.804 ms  13.126 ms
 9  12.122.85.134  15.114 ms  15.020 ms  13.654 ms
     MPLS Label=32307 CoS=5 TTL=1 S=0
10  12.123.12.18  16.011 ms  13.555 ms  13.167 ms
11  192.205.33.198  15.594 ms  15.497 ms  16.093 ms
12  152.63.57.102  15.103 ms  14.769 ms  15.128 ms
13  152.63.34.133  77.501 ms  77.593 ms  76.974 ms
14  152.63.38.1  77.906 ms  78.101 ms  78.398 ms
15  207.18.173.162  81.146 ms  81.281 ms  80.918 ms
16  198.5.240.36  77.988 ms  78.007 ms  77.947 ms
17  198.5.241.101  81.912 ms  82.231 ms  83.115 ms

This program lists each of the IP hops traversed while sending a series of data-
grams to the destination ftp.uu.net (192.48.96.9). The traceroute program 
uses a combination of UDP datagrams (with increasing TTL over time) and ICMP 
messages (used to detect each hop when the UDP datagrams expire) to accomplish 
its task. Three UDP packets are sent at each TTL value, providing three round-
trip-time measurements to each hop. Traditionally, traceroute has carried only 
IP information, but here we also see the following line:

MPLS Label=32307 CoS=5 TTL=1 S=0
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This indicates that Multiprotocol Label Switching (MPLS) [RFC3031] is being used 
on the path, and the label ID is 32307, class of service is 5, TTL is 1, and the message 
is not the bottom of the MPLS label stack (S = 0; see [RFC4950]). MPLS is a form 
of link-layer network capable of carrying multiple network-layer protocols. Its 
interaction with ICMP is described in [RFC4950], and its handling of IPv4 packets 
containing options is described in [RFC6178]. Many network operators use it for 
traffic engineering purposes (i.e., controlling where network traffic flows through 
their networks).

5.4.4 Discussion

In the examples we have just seen there are a few key points that should be kept in 
mind regarding the operation of IP unicast forwarding:

1. Most of the hosts and routers in this example used a default route consist-
ing of a single forwarding table entry of this form: mask 0, destination 0, 
next hop <some IP address>. Indeed, most hosts and most routers at the 
edge of the Internet can use a default route for everything other than desti-
nations on local networks because there is only one interface available that 
provides connectivity to the rest of the Internet.

2. The source and destination IP addresses in the datagram never change 
once in the regular Internet. This is always the case unless either source 
routing is used, or when other functions (such as NAT, as in the example) 
are encountered along the data path. Forwarding decisions at the IP layer 
are based on the destination address.

3. A different lower-layer header is used on each link that uses addressing, 
and the lower-layer destination address (if present) always contains the 
lower-layer address of the next hop. Therefore, lower-layer headers rou-
tinely change as the datagram is moved along each hop toward its des-
tination. In our example, both Ethernet LANs encapsulated a link-layer 
header containing the next hop’s Ethernet address, but the DSL link did 
not. Lower-layer addresses are normally obtained using ARP (see Chapter 
4) for IPv4 and ICMPv6 Neighbor Discovery for IPv6 (see Chapter 8).

5.5 Mobile IP

So far we have discussed the conventional ways that IP datagrams are forwarded 
through the Internet, as well as private networks that use IP. One assumption of the 
model is that a host’s IP address shares a prefix with its nearby hosts and routers. If 
such a host should move its point of network attachment, yet remain connected to 
the network at the link layer, all of its upper-layer (e.g., TCP) connections would fail 
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because either its IP address would have to be changed or routing would not deliver 
packets to the (moved) host properly. A multiyear (actually, multi decade!) effort 
known as Mobile IP addresses this issue. (Other protocols have also been suggested; 
see [RFC6301].) Although there are versions of Mobile IP for both IPv4 [RFC5944] 
(MIPv4) and IPv6 [RFC6275], we focus on Mobile IPv6 (called MIPv6) because it is 
more flexible and somewhat easier to explain. Also, it currently appears more likely 
to be deployed in the quickly growing smartphone market. Note that we do not 
discuss MIPv6 comprehensively; it is sufficiently complex to merit a book on its own 
(e.g., [RC05]). Nonetheless, we will cover its basic concepts and principles.

Mobile IP is based on the idea that a host has a “home” network but may visit 
other networks from time to time. While at home, ordinary forwarding is per-
formed, according to the algorithms discussed in this chapter. When away from 
home, the host keeps the IP address it would ordinarily use at home, but some 
special routing and forwarding tricks are used to make the host appear to the 
network, and to the other systems with which it communicates, as though it is 
attached to its home network. The scheme depends on a special type of router 
called a “home agent” that helps provide routing for mobile nodes. 

Most of the complexity in MIPv6 involves signaling messages and how they 
are secured. These messages use various forms of the Mobility extension header 
(Next Header field value 135 in Table 5-5, often just called the mobility header), so 
Mobile IP is, in effect, a special protocol of its own. The IANA maintains a registry 
of the various header types (17 are reserved currently), along with many other 
parameters associated with MIPv6 [MP]. We shall focus on the basic messages 
specified in [RFC6275]. Other messages are used to implement “fast handovers” 
[RFC5568], changing of the home agent [RFC5142], and experiments [RFC5096]. 
To understand MIPv6, we begin by introducing the basic model for IP mobility 
and the associated terminology.

5.5.1 The Basic Model: Bidirectional Tunneling

Figure 5-17 shows the entities involved in making MIPv6 work. Much of the termi-
nology also applies to MIPv4 [RFC5944]. A host that might move is called a mobile 
node (MN), and the hosts with which it is communicating are called correspon-
dent nodes (CNs). The MN is given an IP address chosen from the network prefix 
used in its home network. This address is known as its home address (HoA). When 
it travels to a visited network, it is given an additional address, called its care-of 
address (CoA). In the basic model, whenever a CN communicates with an MN, 
the traffic is routed through the MN’s home agent (HA). HAs are a special type of 
router deployed in the network infrastructure like other important systems (e.g., 
routers and Web servers). The association between an MN’s HoA and its CoA is 
called a binding for the MN.

The basic model (see Figure 5-17) works in cases where an MN’s CNs do not 
engage in the MIPv6 protocol. This model is also used for network mobility (called 
“NEMO” [RFC3963]), when an entire network is mobile. When the MN (or mobile 



ptg999

Section 5.5 Mobile IP   217

network router) attaches to a new point in the network, it receives its CoA and 
sends a binding update message to its HA. The HA responds with a binding acknowl-
edgment. Assuming that all goes well, traffic between the MN and CNs is thereaf-
ter routed through the MN’s HA using a two-way form of IPv6 packet tunneling 
[RFC2473] called bidirectional tunneling. These messages are ordinarily protected 
using IPsec with the Encapsulating Security Payload (ESP) (see Chapter 18). Doing so 
ensures that an HA is not fooled into accepting a binding update from a fake MN. 

5.5.2 Route Optimization (RO)

Bidirectional tunneling makes MIPv6 work in a relatively simple way, and with 
CNs that are not Mobile-IP-aware, but the routing can be extremely inefficient, 
especially if the MN and CNs are near each other but far away from the MN’s HA. 
To improve upon the inefficient routing that may occur in basic MIPv6, a process 
called route optimization (RO) can be used, provided it is supported by the various 
nodes involved. As we shall see, the methods used to ensure that RO is secure and 
useful are somewhat complicated. We shall sketch only its basic operations. For a 
more detailed discussion, see [RFC6275] and [RFC4866]. For a discussion of the 
design rationale behind RO security, see [RFC4225].

Figure 5-17  Mobile IP supports the ability of nodes to change their point of network attachment and keep 
network connections operating. The mobile node’s home agent helps to forward traffic for mobiles 
it serves and also plays a role in route optimization, which can substantially improve routing per-
formance by allowing mobile and correspondent nodes to communicate directly.
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When used, RO involves a correspondent registration whereby an MN notifies 
its CNs of its current CoA to allow routing to take place without help from the HA. 
RO operates in two parts: one part involves establishing and maintaining the reg-
istration bindings; another involves the method used to exchange datagrams once 
all bindings are in place. To establish a binding with its CNs, an MN must prove 
to each CN that it is the proper MN. This is accomplished by a Return Routability 
Procedure (RRP). The messages that support RRP are not protected using IPsec as 
are the messages between an MN and its HA. Expecting IPsec to work between 
an MN and any CN was believed to be too unreliable (IPv6 requires IPsec sup-
port but does not require its use). Although the RRP is not as strong as IPsec, it 
is simpler and covers most of the security threats of concern to the designers of 
Mobile IP.

The RRP uses the following mobility messages, all of which are subtypes of the 
IPv6 Mobility extension header: Home Test Init (HoTI), Home Test (HoT), Care-of 
Test Init (CoTI), Care-of Test (CoT). These messages verify to a CN that a particu-
lar MN is reachable both at its home address (HoTI and HoT messages) and at its 
care-of addresses (CoTI and CoT messages). The protocol is shown in Figure 5-18.

Figure 5-18  The return routability check procedure used in sending binding updates from an MN 
to a CN in order to enable route optimization. The check aims to demonstrate to a CN 
that an MN is reachable at both its home address and its care-of address. In this figure, 
messages routed indirectly are indicated with dashed arrows. The numbers indicate 
the ordering of messages, although the HoTI and CoTI messages can be sent by an MN 
in parallel.
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To understand the RRP, we take the simplest case of a single MN, its HA, and 
a CN as shown in Figure 5-18. The MN begins by sending both a HoTI and CoTI 
message to the CN. The HoTI message is forwarded through the HA on its way 
to the CN. The CN receives both messages in some order and responds with a 
HoT and CoT message to each, respectively. The HoT message is sent to the MN 
via the HA. Inside these messages are random bit strings called tokens, which the 
MN uses to form a cryptographic key (see Chapter 18 for a discussion of the basics 
of cryptography and keys). The key is then used to form authenticated binding 
updates that are sent to the CN. If successful, the route can be optimized and data 
can flow directly between an MN and a CN, as shown in Figure 5-19.

Figure 5-19  Once a binding is established between an MN and a CN, data flows directly between 
them. The direction from MN to CN uses an IPv6 Home Address Destination option. 
The reverse direction uses a type 2 Routing header (RH2).

Once a binding has been established successfully, data may flow directly 
between an MN and its CNs without the inefficiency of bidirectional tunneling. 
This is accomplished using an IPv6 Destination option for traffic moving from 
the MN to a CN and a type 2 Routing header (RH2) for traffic headed in the 
reverse direction, as detailed in Figure 5-19. The packets from MN to CN include 
a Source IP Address field of the MN’s CoA, which avoids problems associated with 
ingress filtering [RFC2827] that might cause packets containing the MN’s HoA in 
the Source IP Address field to be dropped. The MN’s HoA, contained in the Home 
Address option, is not processed by routers, so it passes through to the CN with-
out modification. On the return path, packets are destined for the MN’s CoA. After 
successfully receiving a returning packet, the MN processes the extension headers 
and replaces the destination IP address with the HoA contained in the RH2. The 
resulting packet is delivered to the rest of the MN’s protocol stack, so applications 
“believe” they are using the MN’s HoA instead of its CoA for establishing connec-
tions and other actions.
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5.5.3 Discussion

There are a number of issues with Mobile IP. It is designed to address a certain 
type of mobility in which a node’s IP address may change while the underlying 
link layer remains more or less connected. This type of usage is not common for 
portable computers, which tend to shut down or be put to sleep when being moved 
from place to place. The usage model requiring Mobile IP (and MIPv6 in particu-
lar) is more likely to be a large number of smartphones that use IP. Such devices 
may be running real-time applications (e.g., VoIP) that have latency requirements. 
Consequently, several approaches are being explored to reduce the amount of time 
required to execute binding updates. These include fast handovers [RFC5568], a 
modification to MIPv6 called Hierarchical MIPv6 (HMIPv6) [RFC5380], and a 
modification in which the mobile signaling ordinarily required of an MN is per-
formed by a proxy (called proxy MIPv6 or PMIPv6 [RFC5213]).

5.6 Host Processing of IP Datagrams

Although routers do not ordinarily have to consider which IP addresses to place 
in the Source IP Address and Destination IP Address fields of the packets they for-
ward, hosts must consider both. Applications such as Web browsers may attempt 
to make connections to a named host or server that can have multiple addresses. 
The client system making such connections may also have multiple addresses. 
Thus, there is some question as to which address (and version of IP) should be 
used when sending a datagram. A more subtle point we shall explore is whether 
to accept traffic destined for a local IP address if it arrives on the wrong interface 
(i.e., one that is not configured with the destination address present in a received 
datagram). 

5.6.1 Host Models

Although it may appear to be a straightforward decision to determine whether a 
received unicast datagram matches one of a host’s IP addresses and should be pro-
cessed, this decision depends on the host model of the receiving system [RFC1122] 
and is most relevant for multihomed hosts. There are two host models, the strong 
host model and the weak host model. In the strong host model, a datagram is accepted 
for delivery to the local protocol stack only if the IP address contained in the Desti-
nation IP Address field matches one of those configured on the interface upon which 
the datagram arrived. In systems implementing the weak host model, the oppo-
site is true—a datagram carrying a destination address matching any of the local 
addresses may arrive on any interface and is processed by the receiving protocol 
stack, irrespective of the network interface upon which it arrived. Host models also 
apply to sending behavior. That is, a host using the strong host model sends data-
grams from a particular interface only if one of the interface’s configured addresses 
matches the Source IP Address field in the datagram being sent.
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Figure 5-20 illustrates a case where the host model becomes important. In 
this example, two hosts (A and B) are connected through the global Internet but 
also through a local network. If host A is set up to conform to the strong host 
model, packets it receives destined for 203.0.113.1 from the Internet or destined for 
192.0.2.1 from the local network are dropped. This situation can arise, for example, 
if host B is configured to obey the weak host model. It may choose to send pack-
ets to 192.0.2.1 using the local network (e.g., because doing so may be cheaper or 
faster). This situation seems unfortunate, as A receives what appear to be perfectly 
legitimate packets, yet drops them merely because it is operating according to the 
strong host model. So a reasonable question would be: Why is it ever a good idea 
to use the strong host model?

Figure 5-20  Hosts may be connected by more than one interface. In such cases, they must decide 
which addresses to use for the Source IP Address and Destination IP Address fields of the 
packets they exchange. The addresses used result from a combination of each host’s for-
warding table, application of an address selection algorithm [RFC 3484], and whether 
hosts are operating using a weak or strong host model.

The attraction of using the strong host model relates to a security concern. 
Referring to Figure 5-20, consider a malicious user on the Internet who injects a 
packet destined for the address 203.0.113.2. This packet could also include a forged 
(“spoofed”) source IP address (e.g., 203.0.113.1). If the Internet cooperates in rout-
ing such a packet to B, applications running on B may be tricked into believing 
they have received local traffic originating from A. This can have significant nega-
tive consequences if such applications make access control decisions based on the 
source IP address.

The host model, for both sending and receiving behavior, can be configured 
in some operating systems. In Windows (Vista and later), strong host behavior is 
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the default for sending and receiving for IPv4 and IPv6. In Linux, the IP behavior 
defaults to the weak host model. BSD (including Mac OS X) uses the strong host 
model. In Windows, the following commands can be used to configure weak host 
receive and send behavior, respectively:

C:\> netsh interface ipvX set interface <ifname> weakhostreceive=Yabled

C:\> netsh interface ipvX set interface <ifname> weakhostsend=Yabled

For these commands, <ifname> is replaced with the appropriate interface name; 
X is replaced with either 4 or 6, depending on which version of IP is being con-
figured; and Y is replaced with either en or dis, depending on whether weak 
behavior is to be enabled or disabled, respectively.

5.6.2 Address Selection

When a host sends an IP datagram, it must decide which of its IP addresses to 
place in the Source IP Address field of the outgoing datagram, and which destina-
tion address to use for a particular destination host if multiple addresses for it are 
known. In some cases the source address is already known because it is provided 
by an application or because the packet is being sent in response to a previously 
received packet on the same connection (see, for example, Chapter 13 for how 
addresses are managed with TCP).

In modern IP implementations, the IP addresses used in the Source IP Address
and Destination IP Address fields of the datagram are selected using a set of pro-
cedures called source address selection and destination address selection. Historically, 
most Internet hosts had only one IP address for external communication, so select-
ing the addresses was not terribly difficult. With the advent of multiple addresses 
per interface and the use of IPv6 in which simultaneous use of addresses with 
multiple scopes is normal, some procedure must be used. The situation is further 
complicated when communication is to take place between two hosts that imple-
ment both IPv4 and IPv6 (“dual-stack” hosts; see [RFC4213]). Failure to select the 
correct addresses can lead to asymmetric routing, unwanted filtering, or discard-
ing of packets. Fixing such problems can be a challenge.

[RFC3484] gives the rules for selecting IPv6 default addresses; IPv4-only hosts 
do not ordinarily have such complex issues. In general, applications can invoke 
special API operations to override the default behavior, as suggested previously. 
Even then, tricky deployment situations may still arise [RFC5220]. The default 
rules in [RFC3484] are to prefer source/destination address pairs where the 
addresses are of the same scope, to prefer smaller over larger scopes, to avoid the 
use of temporary addresses when other addresses are available, and to otherwise 
prefer pairs with the longest common prefix. Global addresses are preferred over 
temporary addresses when available. The specification also includes a method of 



ptg999

Section 5.6 Host Processing of IP Datagrams   223

providing “administrative override” to the default rules, but this is deployment-
specific and we do not discuss it further.

The selection of default addresses is controlled by a policy table, present (at 
least conceptually) in each host. It is a longest-matching-prefix lookup table, simi-
lar to a forwarding table used with IP routing. For an address A, a lookup in this 
table produces a precedence value for A, P(A), and a label for A, L(A). A higher pre-
cedence value indicates greater preference. The labels are used for grouping of 
similar address types. For example if L(S) = L(D), the algorithm prefers to use the 
pair (S,D) as a source/destination pair. If no other policy is specified, [RFC3484] 
suggests that the policy values from Table 5-10 be used.

Table 5-10   The default host policy table, according to [RFC3484]. Higher precedence values indicate 
a greater preference.

Prefix Precedence P() Label L()

::1/128 50 0

::/0 40 1

2002::/16 30 2

::/96 20 3

::ffff:0:0/96 10 4

This table, or one configured at a site based upon administrative configura-
tion parameters, is used to drive the address selection algorithm. The function 
CPL(A,B) or “common prefix length” is the length, in bits, of the longest com-
mon prefix between IPv6 addresses A and B, starting from the left-most signifi-
cant bit. The function S(A) is the scope of IPv6 address A mapped to a numeric 
value with larger scopes mapping to larger values. If A is link-scoped and B is 
global scope, then S(A) < S(B). The function M(A) maps an IPv4 address A to an 
IPv4-mapped IPv6 address. Because the scope properties of IPv4 addresses are 
based on the value of the address itself, the following relations need to be defined: 
S(M(169.254.x.x)) = S(M(127.x.x.x)) < S(M(private address space)) < S(M(any other 
address)). The notation Λ(A) is the lifecycle of the address (see Chapter 6). Λ (A) < 
Λ (B) if A is a deprecated address (i.e., one whose use is discouraged) and B is a pre-
ferred address (i.e., an address preferred for active use). Finally, H(A) is true if A is 
a home address and C(A) is true if A is a care-of address. These last two terms are 
used only in the context of Mobile IP.

5.6.2.1 The Source Address Selection Algorithm
The source address selection algorithm defines a candidate set CS(D) of potential 
source addresses based on a particular destination address D. There is a restriction 
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that anycast, multicast, and the unspecified address are never in CS(D) for any D. 
We shall use the notation R(A) to indicate the rank of address A in the set CS(D). 
A higher rank (i.e., greater value of R(A)) for A versus B in CS(D), denoted R(A) > 
R(B), means that A is preferred to B for use as a source address for reaching the 
machine with address D. The notation R(A) *> R(B) means to assign A a higher 
rank than B in CS(D). The notation I(D) indicates the interface selected (i.e., by 
the forwarding longest matching prefix algorithm described previously) to reach 
destination D. The notation @(i) is the set of addresses assigned to interface i. The 
notation T(A) is the Boolean true if A is a temporary address (see Chapter 6) and 
false otherwise.

The following rules are applied to establish a partial ordering between 
addresses A and B in CS(D) for destination D:

1. Prefer same address: if A = D, R(A) *> R(B); if B = D, R(B) *> R(A).

2. Prefer appropriate scope: if S(A) < S(B) and S(A) < S(D), R(B) *> R(A) else 
R(A) *> R(B); if S(B) < S(A) and S(B) < S(D), R(A) *> R(B) else R(B) *> R(A).

3. Avoid deprecated addresses: if S(A) = S(B), { if Λ(A) < Λ(B), R(B) *> R(A) else 
R(A) *> R(B) }.

4. Prefer home address: if H(A) and C(A) and ¬(C(B) and H(B)), R(A) *> R(B); 
if H(B) and C(B) and ¬(C(A) and H(A)), R(B) *> R(A); if (H(A) and ¬C(A)) 
and (¬H(B) and C(B)), R(A) *> R(B); if (H(B) and ¬C(B)) and (¬H(A) and 
C(A)), R(B) *> R(A).

5. Prefer outgoing interface: if A ∈ @(I(D)) and B ∈ @(I(D)), R(A) *> R(B); if B 
∈@(I(D)) and A ∈ @(I(D)), R(B) *> R(A).

6. Prefer matching label: if L(A) = L(D) and L(B) ≠ L(D), R(A) *> R(B); if L(B) = 
L(D) and L(A) ≠ L(D), R(B) *> R(A).

7. Prefer nontemporary addresses: if T(B) and ¬T(A), R(A) *> R(B); if T(A) and 
¬T(B), R(B) *> R(A).

8. Use longest matching prefix: if CPL(A,D) > CPL(B,D), R(A) *> R(B); if 
CPL(B,D) > CPL(A,D), R(B) *> R(A).

The partial ordering rules can be used to form a total ordering of all the can-
didate addresses in CS(D). The one with the largest rank is the selected source 
address for destination D, denoted Q(D), and is used by the destination address 
selection algorithm. If Q(D) = Ø (null), no source could be determined for destina-
tion D.

5.6.2.2 The Destination Address Selection Algorithm
We now turn to the problem of default destination address selection. It is specified 
in a way similar to source address selection. Recall that Q(D) is the source address 
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selected in the preceding example to reach the destination D. Let U(B) be the Bool-
ean true if destination B is not reachable and E(A) indicate that destination A is 
reached using some “encapsulating transport” (e.g., tunneled routing). Using the 
same structure as before on pairwise elements A and B of the set SD(S), we have 
the following rules:

1. Avoid unusable destinations: if U(B) or Q(B) = Ø, R(A) *> R(B); if U(A) or 
Q(A) = Ø, R(B) *> R(A).

2. Prefer matching scope: if S(A) = S(Q(A)) and S(B) ≠ S(Q(B)), R(A) *> R(B); if 
S(B) = S(Q(B)) and S(A) ≠ S(Q(A)), R(B)*>R(A).

3. Avoid deprecated addresses: if Λ (Q(A)) < Λ (Q(B)), R(B) *> R(A); if Λ (Q(B)) 
< Λ (Q(A)), R(A) *> R(B).

4. Prefer home address: if H(Q(A)) and C(Q(A)) and ¬(C(Q(B)) and H(Q(B))), 
R(A) *> R(B); if (Q(B)) and C(Q(B)) and ¬(C(Q(A)) and H(Q(A))), R(B) *> 
R(A); if (H(Q(A)) and ¬C(Q(A))) and (¬H(Q(B)) and C(Q(B))), R(A) *> R(B); 
if (H(Q(B)) and ¬C(Q(B))) and (¬H(Q(A)) and C(Q(A))), R(B) *> R(A).

5. Prefer matching label: if L(Q(A)) = L(A) and L(Q(B)) ≠ L(B), R(A) *> R(B); if 
L(Q(A)) ≠ L(A) and L(Q(B)) = L(B), R(B) *> R(A).

6. Prefer higher precedence: if P(A) > P(B), R(A) *> R(B); if P(A) < P(B), R(B) *> 
R(A).

7. Prefer native transport: if E(A) and ¬E(B), R(B) *> R(A); if E(B) and ¬E(A), 
R(A) *> R(B).

8. Prefer smaller scope: if S(A) < S(B), R(A) *> R(B) else R(B) *> R(A).

9. Use longest matching prefix: if CPL(A, Q(A)) > CPL(B, Q(B)), R(A) *> R(B); 
if CPL(A, Q(A)) < CPL (B, Q(B)), R(B) *> R(A).

10. Otherwise, leave rank order unchanged.

As with source address selection, these rules form a partial ordering between 
two elements of the set of possible destinations in the set of destinations SD(S) for 
source S. The highest-rank address gives the output for the destination address 
selection algorithm. As mentioned previously, some issues have been raised 
regarding operation of this algorithm (e.g., step 9 of the destination address selec-
tion can lead to problems with DNS round-robin; see Chapter 11). As a result, 
an update to [RFC3484] is being considered [RFC3484-revise]. Importantly, this 
revision addresses how so-called Unique Local IPv6 Unicast Addresses (ULAs) 
[RFC4193] are treated by the address selection algorithms. ULAs are globally 
scoped IPv6 addresses that are constrained to be used only within a common 
(private) network. 
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5.7 Attacks Involving IP

There have been a number of attacks on the IP protocol over the years, based pri-
marily on the operation of options, or by exploiting bugs in specialized code (such 
as fragment reassembly). Simple attacks involve trying to get a router to crash or 
perform poorly because one or more of the IP header fields is not valid (e.g., bad 
header length or version number). Typically, routers in the Internet today ignore 
or strip IP options, and the bugs in basic packet processing have been fixed. Thus, 
these types of simple attacks are not a big concern. Attacks involving fragmenta-
tion can be addressed using other means [RFC1858][RFC3128].

Without authentication or encryption (or when it is disabled for IPv6), IP 
spoofing attacks are possible. Some of the earliest attacks involved fabricating 
the source IP address. Because early access control mechanisms depended on the 
source IP address, many such systems were circumvented. Spoofing would some-
times be combined with various combinations of source routing options. Under 
some circumstances, a remote attacker’s computer would appear to be a host on 
the local network (or even the same computer) requesting some sort of service. 
Although the spoofing of IP addresses is still a concern today, there are several 
approaches to limit its damage, including ingress filtering [RFC2827][RFC3704], 
whereby an ISP checks the source addresses of its customers’ traffic to ensure that 
datagrams contain source addresses from an assigned IP prefix.

As IPv6 and Mobile IP are relatively new, at least compared to IPv4, all of 
their vulnerabilities have undoubtedly not yet been discovered. With the newer 
and more flexible types of options headers, an attacker could have considerable 
influence on the processing of an IPv6 packet. For example, the Routing header 
(type 0) was discovered to have such severe security problems that its use has 
been deprecated entirely. Other possibilities include spoofing the source address 
and/or Routing header entries to make packets appear as if they have come from 
other places. These attacks are avoided by configuring packet-filtering firewalls to 
take into account the contents of Routing headers. It is worth noting that simply 
filtering out all packets containing extension headers and options in IPv6 would 
severely restrict its use. In particular, disabling extension headers would prevent 
Mobile IPv6 from functioning.

5.8 Summary

In this chapter we started with a description of the IPv4 and IPv6 headers, discuss-
ing some of the related functions such as the Internet checksum and fragmenta-
tion. We saw how IPv6 increases the size of addresses, improves upon IP’s method 
of including options in packets by use of the extension headers, and removes sev-
eral of the noncritical fields from the IPv4 header. With the addition of this func-
tionality, the IP header increases in size by only a factor of 2 even though the 
size of the addresses has increased fourfold. The IPv4 and IPv6 headers are not 
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directly compatible and share only the 4-bit Version field in common. Because of 
this, some level of translation is required to interconnect IPv4 and IPv6 nodes. 
Dual-stack hosts implement both IPv4 and IPv6 but must choose which protocol 
to use and when.

Since its inception, IP has included a header field to indicate a type of traffic 
or service class associated with each datagram. This mechanism has been rede-
fined over the years in hopes of providing mechanisms to support differentiated 
services on the Internet. If it is widely implemented, the Internet could potentially 
offer improved performance for some traffic or users versus others in a standard 
way. To what extent this happens will be based in part on working out the busi-
ness models surrounding the differentiated services capability.

IP forwarding describes the way IP datagrams are transported through single 
and multihop networks. IP forwarding is performed on a hop-by-hop basis unless 
special processing takes place. The destination IP address never changes as the 
datagram proceeds through all the hops, but the link-layer encapsulation and des-
tination link-layer address change on each hop. Forwarding tables and the longest 
prefix match algorithm are used by hosts and routers to determine the best match-
ing forwarding entry and determine the next hops along a forwarding path. In 
many circumstances, very simple tables consisting of only a default route, which 
matches all possible destinations equally, are adequate.

Using a special set of protocols for security and signaling, Mobile IP estab-
lishes secure bindings between a mobile node’s home address and care-of address. 
These bindings may be used to communicate with a mobile node even when it is 
not at home. The basic function involves tunneling traffic through a cooperating 
home agent, but this may lead to very inefficient routing. A number of additional 
features support a route optimization feature that allows a mobile node to talk 
directly with other remote nodes and vice versa. This requires a mobile node’s 
correspondent hosts to support MIPv6 as well as route optimization, which is an 
optional feature. Ongoing work aims at reducing the latency involved in the route 
optimization binding update procedure.

We also looked at how the host model, strong or weak, affects how IP data-
grams are processed. In the strong model, each interface is permitted to receive 
or send only datagrams that use addresses associated with the interface, whereas 
the weak model is less restrictive. The weak host model permits communication 
in some cases where it would not otherwise be possible but may be more vulner-
able to certain kinds of attacks. The host model also relates to how a host chooses 
which addresses to use when communicating. Early on, most hosts had only one 
IP address so the decision was fairly straightforward. With IPv6, in which a host 
may have several addresses, and for multihomed hosts using several network 
interfaces, the decision is less straightforward yet nonetheless may have an impor-
tant impact on routing. A set of address selection algorithms, for both source and 
destination addresses, was presented. These algorithms tend to prefer limited-
scope, permanent addresses.
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We discussed some of the attacks targeted against the IP protocol. Such 
attacks have often involved spoofing addresses, including options to alter rout-
ing behavior, and attempts to exploit bugs in the implementation of IP, especially 
with respect to fragmentation. The protocol implementation bugs have been fixed 
in modern operating systems, and in most cases options are disabled at the edge 
routers of enterprises. Although spoofing remains somewhat of a concern, proce-
dures such as ingress filtering help to eliminate this problem as well.
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6

System Configuration: DHCP 
and Autoconfiguration 

6.1 Introduction

To make use of the TCP/IP protocol suite, each host and router requires a certain 
amount of configuration information. Configuration information is used to assign 
local names to systems, and identifiers (such as IP addresses) to interfaces. It is 
also used to either provide or make use of various network services, such as the 
Domain Name System (DNS) and Mobile IP home agents. Over the years there have 
been many ways of providing and obtaining this information, but fundamen-
tally there are three approaches: type in the information by hand, have a system 
obtain it using a network service, or use some sort of algorithm to automatically 
determine it. We shall explore each of these options and see how they are used 
with both IPv4 and IPv6. Understanding how configuration works is important, 
because it is one of the issues that every system administrator and nearly every 
end user must deal with to some extent.

Recall from Chapter 2 that every interface to be used with TCP/IP networking 
requires an IP address, subnet mask, and broadcast address (for IPv4). The broad-
cast address can ordinarily be determined using the address and mask. With this 
minimal information, it is generally possible to carry out communication with 
other systems on the same subnetwork. To engage in communication beyond the 
local subnet, called indirect delivery in Chapter 5, a system requires a routing or 
forwarding table that indicates what router(s) are to be used for reaching vari-
ous destinations. To be able to use services such as the Web and e-mail, the DNS 
(see Chapter 11) is used to map user-friendly domain names to the IP addresses 
required by the lower-protocol layers. Because the DNS is a distributed service, 
any system making use of it must know how to reach at least one DNS server. 
All in all, having an IP address, subnet mask, and the IP address of a DNS server 
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and router are the “bare essentials” to get a system running on the Internet that 
is capable of using or providing popular services such as Web and e-mail. To use 
Mobile IP, a system also needs to know how to find a home agent.

In this chapter we will focus primarily on the protocols and procedures used 
to establish the bare essentials in Internet client hosts: the Dynamic Host Configu-
ration Protocol (DHCP) and stateless address autoconfiguration in IPv4 and IPv6. We 
will also discuss how some ISPs use PPP with Ethernet for configuration of client 
systems. Servers and routers are more often configured by hand, usually by typ-
ing the relevant configuration information into a file or graphical user interface. 
There are several reasons for this distinction. First, client hosts are moved around 
more often than servers and routers, meaning they should have mechanisms for 
flexibly reassigning their configuration information. Second, server hosts and 
routers are expected to be “always available” and relatively autonomous. As such, 
having their configuration information not depend on other network services can 
lead to greater confidence in their reliability. Third, there are often far more clients 
in an organization than servers or routers, so it is simpler and less error-prone to 
use a centralized service to dynamically assign configuration information to cli-
ent hosts. Fourth, the operators of clients often have less system administration 
experience than server and router administrators, so it is once again less error-
prone to have most clients configured by a centralized service administered by an 
experienced staff.

Beyond the bare essentials, there are numerous other bits of configuration 
information a host or router may require, depending on the types of services it 
uses or provides. These may include the locations of home agents, multicast rout-
ers, VPN gateways, and Session Initiation Protocol (SIP)/VoIP gateways. Some of 
these services have standardized mechanisms and supporting protocols to obtain 
the relevant configuration information; others do not and instead require the user 
to type in the necessary information.

6.2 Dynamic Host Configuration Protocol (DHCP)

DHCP [RFC2131] is a popular client/server protocol used to assign configuration 
information to hosts (and, less frequently, to routers). DHCP is very widely used, 
in both enterprises and home networks. Even the most basic home router devices 
support embedded DHCP servers. DHCP clients are incorporated into all common 
client operating systems and a large number of embedded devices such as net-
work printers and VoIP phones. Such devices usually use DHCP to acquire their IP 
address, subnet mask, router IP address, and DNS server IP address. Information 
pertaining to other services (e.g., SIP servers used with VoIP) may also be conveyed 
using DHCP. DHCP was originally conceived for use with IPv4, so references to 
it or its relationship with IP in this chapter will refer to IPv4 unless otherwise 
specified. IPv6 can also use a version of DHCP called DHCPv6 [RFC3315], which 
we discuss in Section 6.2.5, but IPv6 also supports its own automatic processes to 
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determine configuration information. In a hybrid configuration, IPv6 automatic 
configuration can be combined with the use of DHCPv6.

The design of DHCP is based on an earlier protocol called the Internet Boot-
strap Protocol (BOOTP) [RFC0951][RFC1542], which is now effectively obsolete. 
BOOTP provides limited configuration information to clients and does not have 
a mechanism to support changing that information after it has been provided. 
DHCP extends the BOOTP model with the concept of leases [GC89] and can pro-
vide all information required for a host to operate. Leases allow clients to use 
the configuration information for an agreed-upon amount of time. A client may 
request to renew the lease and continue operations, subject to agreement from 
the DHCP server. BOOTP and DHCP are backward-compatible in the sense that 
BOOTP-only clients can make use of DHCP servers and DHCP clients can make 
use of BOOTP-only servers. BOOTP, and therefore DHCP as well, is carried using 
UDP/IP (see Chapter 10). Clients use port 68 and servers use port 67.

DHCP comprises two major parts: address management and delivery of 
configuration data. Address management handles the dynamic allocation of IP 
addresses and provides address leases to clients. Configuration data delivery 
includes the DHCP protocol’s message formats and state machines. A DHCP 
server can be configured to provide three levels of address allocation: automatic 
allocation, dynamic allocation, and manual allocation. The differences among the 
three have to do with whether the addresses assigned are based on the identity of 
the client and whether such addresses are subject to being revoked or changed. 
The most commonly used method is dynamic allocation, whereby a client is given 
a revocable IP address from a pool (usually a predefined range) of addresses con-
figured at the server. In automatic allocation, the same method is used but the 
address is never revoked. In manual allocation, the DHCP protocol is used to con-
vey the address, but the address is fixed for the requesting client (i.e., it is not part 
of an allocatable pool maintained by the server). In this last mode, DHCP acts like 
BOOTP. We shall focus on dynamic allocation, as it is the most interesting and 
common case.

6.2.1 Address Pools and Leases

In dynamic allocation, a DHCP client requests the allocation of an IP address. 
The server responds with one address selected from a pool of available addresses. 
Typically, the pool is a contiguous range of IP addresses allocated specifically for 
DHCP’s use. The address given to the client is allocated for only a specific amount 
of time, called the lease duration. The client is permitted to use the IP address until 
the lease expires, although it may request extension of the lease as required. In 
most situations, clients are able to renew leases they wish to extend.

The lease duration is an important configuration parameter of a DHCP server. 
Lease durations can range from a few minutes to days or more (“infinite” is pos-
sible but not recommended for anything but simple networks). Determining the 
best value to use for leases is a trade-off between the number of expected clients, 
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the size of the address pool, and the desire for the stability of addresses. Longer 
lease durations tend to deplete the available address pool faster but provide greater 
stability in addresses and somewhat reduced network overhead (because there 
are fewer requests to renew leases). Shorter leases tend to keep the pool available 
for other clients, with a consequent potential decrease in stability and increase in 
network traffic load. Common defaults include 12 to 24 hours, depending on the 
particular DHCP server being used. Microsoft, for example, recommends 8 days 
for small networks and 16 to 24 days for larger networks. Clients begin trying to 
renew leases after half of the lease duration has passed.

When making a DHCP request, a client is able to provide information to the 
server. This information can include the name of the client, its requested lease 
duration, a copy of the address it is already using or last used, and other parame-
ters. When the server receives such a request, it can make use of whatever informa-
tion the client has provided (including the requesting MAC address) in addition 
to other exogenous information (e.g., the time of day, the interface on which the 
request was received) to determine what address and configuration information 
to provide in response. In providing a lease to a client, a server stores the lease 
information in persistent memory, typically in nonvolatile memory or on disk. If 
the DHCP server restarts and all goes well, leases are maintained intact. 

6.2.2 DHCP and BOOTP Message Format

DHCP extends BOOTP, DHCP’s predecessor. Compatibility is maintained between 
the protocols by defining the DHCP message format as an extension to BOOTP’s 
in such a way that BOOTP clients can be served by DHCP servers, and BOOTP 
relay agents (see Section 6.2.6) can be used to support DHCP use, even on networks 
where DHCP servers do not reside. The message format includes a fixed-length 
initial portion and a variable-length tail portion (see Figure 6-1).

The message format of Figure 6-1 is defined by BOOTP and DHCP in several 
RFCs ([RFC0951][RFC1542][RFC2131]). The Op (Operation) field identifies the mes-
sage as either a request (1) or a reply (2). The HW Type (htype) field is assigned 
based on values used with ARP (see Chapter 4) and defined in the corresponding 
IANA ARP parameters page [IARP], with the value 1 (Ethernet) being very com-
mon. The HW Len (hlen) field gives the number of bytes used to hold the hardware 
(MAC) address and is commonly 6 for Ethernet-like networks. The Hops field is 
used to store the number of relays through which the message has traveled. The 
sender of the message sets this value to 0, and it is incremented at each relay. 
The Transaction ID is a (random) number chosen by the client and copied into 
responses by the server. It is used to match replies with requests.

The Secs field is set by the client with the number of seconds that have elapsed 
since the first attempt to establish or renew an address. The Flags field currently 
contains only a single defined bit called the broadcast flag. Clients may set this bit 
in requests if they are unable or unwilling to process incoming unicast IP data-
grams but can process incoming broadcast datagrams (e.g., because they do not 
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yet have an IP address). Setting the bit informs the server and relays that broad-
cast addressing should be used for replies.

Note

There has been some difficulty in Windows environments regarding the use of 
the broadcast flag. Windows XP and Windows 7 DHCP clients do not set the 
flag, but Windows Vista clients do. Some DHCP servers in use do not process 
the flag properly, leading to apparent difficulties in supporting Vista clients, even 
though the Vista implementation is RFC-compliant. See [MKB928233] for more 
information.

The next four fields are various IP addresses. The Client IP Address (ciaddr) 
field includes a current IP address of the requestor, if known, and is 0 otherwise. 
The “Your” IP Address (yiaddr) field is filled in by a server when providing an 

Figure 6-1  The BOOTP message format, including field names from [RFC0951], [RFC1542], and [RFC2131]. 
The BOOTP message format is used to hold DHCP messages by appropriate assignment of options. 
In this way, BOOTP relay agents can process DHCP messages, and BOOTP clients can use DHCP 
servers. The Server Name and Boot File Name fields can be used to carry DHCP options if necessary.
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address to a requesting client. The Next Server IP Address (siaddr) field gives the IP 
address of the next server to use for the client’s bootstrap process (e.g., if the client 
needs to download an operating system image that may be accomplished from a 
server other than the DHCP server). The Gateway (or Relay) IP Address (giaddr) field 
is filled in by a DHCP or BOOTP relay with its address when forwarding DHCP 
(BOOTP) messages. The Client Hardware Address (chaddr) field holds a unique 
identifier of the client and can be used in various ways by the server, including 
arranging for the same IP address to be given each time a particular client makes 
an address request. This field has traditionally held the client’s MAC address, 
which has been used as an identifier. Nowadays, the Client Identifier, an option 
described in Sections 6.2.3 and 6.2.4, is preferred for this use.

The remaining fields include the Server Name (sname) and Boot File Name ( file) 
fields. These fields are not always filled in, but if they are, they contain 64 or 128 
bytes, respectively, of ASCII characters indicating the name of the server or path to 
the boot file. Such strings are null-terminated, as in the C programming language. 
They can also be used instead to hold DHCP options if space is tight (see Section 
6.2.3). The final field, originally known as the Vendor Extensions field in BOOTP 
and fixed in length, is now known as the Options field and is variable in length. As 
we shall see, options are used extensively with DHCP and are required to distin-
guish DHCP messages from legacy BOOTP messages.

6.2.3 DHCP and BOOTP Options

Given that DHCP extends BOOTP, any fields needed by DHCP that were not pres-
ent when BOOTP was designed are carried as options. Options take a standard 
format beginning with an 8-bit tag indicating the option type. For some options, 
a fixed number of bytes following the tag contain the option value. All others 
consist of the tag followed by 1 byte containing the length of the option value (not 
including the tag or length), followed by a variable number of bytes containing the 
option value itself. 

A large number of options are available with DHCP, some of which are also 
supported by BOOTP. The current list is given by the BOOTP/DHCP parameters 
page [IBDP]. The first 77 options, including the most common ones, are speci-
fied in [RFC2132]. Common options include Pad (0), Subnet Mask (1), Router 
Address (3), Domain Name Server (6), Domain Name (15), Requested IP Address 
(50), Address Lease Time (51), DHCP Message Type (53), Server Identifier (54), 
Parameter Request List (55), DHCP Error Message (56), Lease Renewal Time (58), 
Lease Rebinding Time (59), Client Identifier (61), Domain Search List (119), and 
End (255).

The DHCP Message Type option (53) is a 1-byte-long option that is always used 
with DHCP messages and has the following possible values: DHCPDISCOVER 
(1), DHCPOFFER (2), DHCPREQUEST (3), DHCPDECLINE (4), DHCPACK (5), 
DHCPNAK (6), DHCPRELEASE (7), DHCPINFORM (8),  DHCPFORCERENEW 
(9) [RFC3203], DHCPLEASEQUERY (10), DHCPLEASEUNASSIGNED (11), 
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DHCPLEASEUNKNOWN (12), and DHCPLEASEACTIVE (13). The last four val-
ues are defined by [RFC4388].

Options may be carried in the Options field of a DHCP message, as well as in 
the Server Name and Boot File Name fields mentioned previously. When options are 
carried in either of these latter two places, called option overloading, a special Over-
load option (52) is included to indicate which fields have been appropriated for 
holding options. For options whose lengths exceed 255 bytes, a special long options
mechanism has been defined [RFC3396]. In essence, if the same option is repeated 
multiple times in the same message, the contents are concatenated in the order in 
which they appear in the message, and the result is processed as a single option. If 
a long option also uses option overloading, the order of processing is last to first: 
Options field, Boot File Name field, and then Server Name field.

Options tend to either provide relatively simple configuration information or 
be used in supporting some other agreement protocol. For example, [RFC2132] 
specifies options for most of the traditional configuration information a TCP/IP 
node requires (addressing information, server addresses, Boolean assignments of 
configuration information such as enabling IP forwarding, initial TTL values). 
Subsequent specifications describe simple configuration information for NetWare 
[RFC2241][RFC2242], user classes [RFC3004], FQDN [RFC4702], Internet Storage 
Name Service server (iSNS, used in storage networks) [RFC4174], Broadcast and 
Multicast Service controller (BCMCS, used with 3G cellular networks) [RFC4280], 
time zone [RFC4833], autoconfiguration [RFC2563], subnet selection [RFC3011], 
name service selection (see Chapter 11) [RFC2937], and servers for the Protocol 
for Carrying Authentication for Network Access (PANA) (see Chapter 18) [RFC5192]. 
Those options defined for use in support of other protocols and functions are 
described later, starting with Section 6.2.7.

6.2.4 DHCP Protocol Operation

DHCP messages are essentially BOOTP messages with a special set of options. 
When a new client attaches to a network, it first discovers what DHCP servers are 
available and what addresses they are offering. It then decides which server to 
use and which address it desires and requests it from the offering server (while 
informing all the servers of its choice). Unless the server has given away the 
address in the meantime, it responds by acknowledging the address allocation 
to the requesting client. The time sequence of events between a typical client and 
server is depicted in Figure 6-2.

Requesting clients set the BOOTP Op field to BOOTREQUEST and the first 
4 bytes of the Options field to the decimal values 99, 130, 83, and 99, respectively 
(the magic cookie value from [RFC2132]). Messages from client to server are sent as 
UDP/IP datagrams containing a BOOTP BOOTREQUEST operation and an appro-
priate DHCP message type (usually DHCPDISCOVER or DHCPREQUEST). Such 
messages are sent from address 0.0.0.0 (port 68) to the limited broadcast address 
255.255.255.255 (port 67). Messages traveling in the other direction (from server to 
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client) are sent from the IP address of the server and port 67 to the IP local broad-
cast address and port 68 (see Chapter 10 for details on UDP).

In a typical exchange, a client first broadcasts a DHCPDISCOVER message. Each 
server receiving the request, either directly or through a relay, may respond with a 
DHCPOFFER message, including an offered IP address in the “Your” IP Address
field. Other configuration options (e.g., IP address of DNS server, subnet mask) are 
often included. The offer message includes the lease time (T), which provides the 
upper bound on the amount of time the address can be used if it is not renewed. The 
message also contains the renewal time (T1), which is the amount of time before the 
client should attempt to renew its lease with the server from which it acquired its 
lease, and the rebinding time (T2), which bounds the time in which it should attempt 
to renew its address with any DHCP server. By default, T1 = (T/2) and T2 = (7T/8).

After receiving one or more DHCPOFFER messages from one or more servers, 
the client determines which offer it will accept and broadcasts a DHCPREQUEST 
message including the Server Identifier option. The Requested IP Address option is 
set to the address received in the selected DHCPOFFER message. Multiple servers 
may receive the broadcast DHCPREQUEST message, but only the server identified 
within the DHCPREQUEST message acts by committing the address binding to 

Figure 6-2  A typical DHCP exchange. A client discovers a set of servers and addresses they are 
offering using broadcast messages, requests the address it desires, and receives an 
acknowledgment from the selected server. The transaction ID (xid) allows requests and 
responses to be matched up, and the server ID (an option) indicates which server is pro-
viding and committing the provided address binding with the client. If the client already 
knows the address it desires, the protocol can be simplified to include use of only the 
REQUEST and ACK messages.
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persistent storage; the others clear any state regarding the request. After handling 
the binding, the selected server responds with a DHCPACK message, indicating to 
the client that the address binding can now be used. In the case where the server 
cannot allocate the address contained in the DHCPREQUEST message (e.g., it has 
been allocated in some other way or is not available), the server responds with a 
DHCPNAK message.

Once the client receives the DHCPACK message and other associated configu-
ration information, it may probe the network to ensure that the address provided 
is not in use (e.g., by sending an ARP request for the address to perform ACD, 
described in Chapter 4). Should the client determine that the address is already in 
use, the client ceases using the address and sends a DHCPDECLINE message to 
the server to indicate that the address cannot be used. After a recommended 10s 
delay, the client is able to retry. If a client elects to relinquish its address before its 
lease expires, it sends a DHCPRELEASE message.

In circumstances where a client already has an IP address and wishes only 
to renew its lease, the initial DHCPDISCOVER/DHCPOFFER messages can be 
skipped. Instead, the protocol begins with the client requesting the address it 
is currently using with a DHCPREQUEST message. At this point, the protocol 
works as already described: the server will likely grant the request (with a DHC-
PACK) or deny the request by issuing a DHCPNAK. Another circumstance arises 
when a client already has an address, does not need to renew it, but requires other 
(non-address) configuration information. In this case, it can use a DHCPINFORM 
message in place of a DHCPREQUEST message to indicate its use of an existing 
address and desire to obtain additional information. Such messages elicit a DHC-
PACK message from the server, which includes the requested additional configu-
ration information.

6.2.4.1 Example
To see DHCP in action, we now inspect the packets exchanged when a Microsoft 
Vista laptop attaches to a wireless LAN supported by a Linux-based DHCP server 
(Windows 7 systems are nearly identical). The client was recently associated with a 
different wireless network, using a different IP prefix, and is now being connected 
to the new network. Because it remembers the address it had from the previous net-
work, the client first tries to continue using that address using a  DHCPREQUEST 
message (see Figure 6-3).

Note

There is now an agreed-upon procedure for detecting network attachment (DNA), 
specified in [RFC4436] for IPv4 and [RFC6059] for IPv6. These specifications do 
not contain new protocols but instead suggest how unicast ARP (for IPv4) and 
a combination of unicast and multicast Neighbor Solicitation/Router Discovery 
messages (for IPv6; see Chapter 8) can be used to reduce the latency of acquir-
ing configuration information when a host switches network links. As these speci-
fications are relatively new (especially for IPv6), not all systems implement them.
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In Figure 6-3 we can see a DHCP request sent in a link-layer broadcast frame 
(destination ff:ff:ff:ff:ff:ff) using the unspecified source IP address 0.0.0.0 and the 
limited broadcast destination address 255.255.255.255. Because the client does not 
yet know if the address it is requesting will be successfully allocated and does 
not know the network prefix used on the network to which it is attaching, it has 
little alternative to using these addresses. The message is a UDP/IP datagram sent 
from the BOOTP client port 68 (bootpc) to the server port 67 (bootps). As DHCP 
is really part of BOOTP, the protocol is the Bootstrap Protocol and the message 
type is a BOOTREQUEST (1), with hardware type set to 1 (Ethernet) and address 
length of 6 bytes. The transaction ID is 0xdb23147d, a random number chosen by 
the client. The BOOTP broadcast flag is set in this message, meaning responses 
should be sent using broadcast addressing. The requested address of 172.16.1.34 
is contained in one of several options. We shall have a closer look at the types of 
options that appear in DHCP messages beginning in Section 6.2.9.

Figure 6-3  A client has switched networks and attempts to request its old address, 172.16.1.34, from 
a DHCP server on the new network using a DHCPREQUEST message.
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The nearby DHCP server receives the client’s DHCPREQUEST message 
including the requested IP address of 172.16.1.34. However, the server is unable to 
allocate the address because 172.16.1.34 is not in use on the current network. Con-
sequently, the server refuses the client’s request by sending a DHCPNAK message 
(see Figure 6-4).

Figure 6-4  A DHCPNAK message is sent by the DHCP server, indicating that the client should not 
attempt to use IP address 172.16.1.34. The transaction ID allows the client to know that 
the message corresponds to its address request.

The DHCPNAK message shown in Figure 6-4 is sent as a broadcast BOOTP 
reply from the server. It includes the message type of DHCPNAK, a transaction ID 
matching the client’s request, a Server Identifier option containing 10.0.0.1, a copy 
of the client’s identifier (MAC address in this case), and a textual string indicating 
the form of error, "wrong address". At this point the client ceases trying to use 
its old address of 172.16.1.34 and instead starts over, looking for whatever servers 
and addresses it can find, using a DHCPDISCOVER message (see Figure 6-5).
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The DHCPDISCOVER message sent by the client and shown in Figure 6-5 
is similar to the DHCPREQUEST message, including the requested IP address it 
used before (it does not have any other address to request), but it contains a richer 
list of options and a new transaction ID (0x3a681b0b). Most of the rest of the pri-
mary BOOTP fields are left empty and set to 0, except the client MAC address, 
which appears in the Client Hardware Address (chaddr) field. Note that this address 
matches the Ethernet frame source MAC address, as expected, because the packet 
was not forwarded through a BOOTP relay agent. The rest of the DISCOVER mes-
sage contains eight options, most of which are expanded in the screen shot in 
Figure 6-6 so that the various option subtypes can be seen.

Figure 6-6 details the options included in the BOOTP request message. The first 
option indicates that the message is a DHCPDISCOVER message. The second option 
indicates a client’s desire to know whether to use address autoconfiguration [RFC2563] 
(described in Section 6.3). If it is unable to obtain an address using DHCP, it is per-
mitted to determine one itself if allowed to do so by the DHCP server.

Figure 6-5  The DHCPDISCOVER message indicates that the client is retrying its attempt to obtain 
an address after the previous failure of its DHCPREQUEST message.
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The next option indicates that the Client Identifier (ID) option is set to 
0100130220B918 (not shown). The DHCP server can use the client ID to determine 
if there is any special configuration information to be given to the particular 
requesting client. Most operating systems now allow the user to specify the client 
ID for the DHCP client to use when obtaining an address. Generally, however, it is 
better to allow the client ID to be chosen automatically, as the use of the same cli-
ent ID by multiple clients can lead to DHCP problems. The automatically selected 
client ID is generally based on the MAC address of the client. In the case of Win-
dows, it is the MAC address with a 1-byte hardware type identifier prepended to 
it (in this case, the value of the byte is 1, indicating Ethernet). 

Note

There has been a move to use client identifiers that are not based on MAC 
addresses. This is motivated by the desire to have a persistent identifier for a cli-
ent for use with IPv4 or IPv6 that remains consistent even if the system’s network 
interface hardware changes (which usually causes its MAC address to change). 
[RFC4361] specifies node-specific identifiers for IPv4, using a scheme originally 

Figure 6-6  The DHCPDISCOVER message may contain a rich list of parameter requests, indicating 
what configuration information the client seeks.
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defined for IPv6. It involves using a DHCP Unique Identifier (DUID) in combination 
with an Identity Association Identifier (IAID) as specified for DHCPv6 [RFC3315] 
(also see Sections 6.2.5.3 and 6.2.5.4), but with conventional DHCPv4. It also 
deprecates the use of the Client Hardware Address (chaddr) field in DHCP mes-
sages. However, it is not yet widely deployed.

The next (Requested IP Address) option indicates that the client is requesting 
IP address 172.16.1.34. This is the IP address it was using when associated with the 
previous wireless network. As mentioned before, this address is not available on 
the new network because a different network prefix is being used.

Other options indicate a configured host name of “vista,” a vendor class ID 
of “MSFT 5.0” (for Microsoft Windows 2000 and later systems), and a  parameter 
request list. The Parameter Request List option provides an indication to the DHCP 
server of what sort of configuration information the client is requesting. It con-
sists of a string of bytes in which each byte indicates a particular option number. 
Here we can see that it includes conventional Internet information (subnet mask, 
domain name, DNS server, default router) but also a number of other options com-
mon to Microsoft systems (i.e., NetBIOS options). It also includes an indication 
that the client is interested in knowing whether to perform ICMP Router Discov-
ery (see Chapter 8) and whether any static forwarding table entries should be 
placed in the client’s forwarding table when starting up (see Chapter 5).

Note

The reason there are three different types of static route parameters listed is 
a consequence of the history of addressing. Before the full adoption of subnet 
masks and network prefixes, the network portion of an address was known by 
inspection of the address alone (“classful addressing”), and this is the form of 
route used with the Static Route (33) parameter. With the adoption of classless 
routes, DHCP was updated to hold a mask that could be applied, resulting in the 
so-called Classless Static Route (CSR) parameter (121) defined in [RFC3442]. 
Microsoft’s variant (using code 249) is similar.

The last parameter request (43) is for vendor-specific information. It is ordi-
narily used in conjunction with the Vendor-Class Identifier option (60), to allow 
clients to receive nonstandard information, although another proposal combines 
the vendor’s identity with the vendor-specific information [RFC3925], providing 
a method to determine the vendor given any vendor-specific information, even 
for a single client. In the case of Microsoft systems, vendor-specific information 
is used for selecting the use of NetBIOS, indicating whether a DHCP lease should 
be released on shutdown, and how the metric (preference) of a default route in the 
forwarding table should be processed. It is also used by Microsoft’s Network Access 
Protection (NAP) system [MS-DHCPN]. Mac OS systems use vendor-specific infor-
mation in supporting Apple’s NetBoot service and Boot Server Discovery Protocol
(BSDP) [F07].
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Upon receipt of the DHCPDISCOVER message, a DHCP server responds with 
an offer of an IP address, lease, and additional configuration information con-
tained in a DHCPOFFER message. In the example shown in Figure 6-7, there is 
only one DHCP server (which is also a router and DNS server).

Figure 6-7  The DHCPOFFER sent from the DHCP server at 10.0.0.1 is offering IP address 10.0.0.57 
for up to 12 hours. Additional information includes the address of a DNS server, domain 
name, default router IP address, subnet mask, and broadcast address. In this example, 
the system with IP address 10.0.0.1 is the default router, DHCP server, and DNS server.

In the DHCPOFFER message shown in Figure 6-7 we again see that the message 
format includes a BOOTP portion as well as a set of options that relate to its DHCP 
address handling. The BOOTP message type is BOOTREPLY. The client IP address 
provided by the server is 10.0.0.57, located in the “Your” [client] IP Address field. Note 
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that this address does not match the requested value of 172.16.1.34 contained in the 
DHCPDISCOVER message, as the 172.16/12 prefix is not in use on the local network.

Additional information contained in the set of options includes the server’s 
IP address (10.0.0.1), the lease time of the offered IP address (12 hours), and the T1 
(renewal) and T2 (rebinding) timeouts of 6 and 10.5 hours, respectively. In addition, 
the server provides the subnet mask for the client to use (255.255.255.128), the proper 
broadcast address (10.0.0.127), the default router and DNS server (all 10.0.0.1, the same 
as the DHCP server in this case), and a default domain name of "home". The domain 
name home is not standardized in any way and would not be used outside of a private 
network. This example is a home network, so by the author’s convention the names 
of machines used on it have the form <name>.home. Once the client has collected a 
DHCPOFFER message and decided to attempt leasing the IP address 10.0.0.57 it has 
been offered, it continues with a second DHCPREQUEST message (see Figure 6-8).

Figure 6-8 The second DHCPREQUEST indicates that the client wishes to be assigned the IP address 
10.0.0.57. The message is sent to the broadcast address and includes the address 10.0.0.1 
in the Server ID option. This allows any other servers that may receive the broadcast to 
know which DHCP server and address the client has selected.
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The second DHCPREQUEST message, shown in Figure 6-8, is similar to the 
DHCPDISCOVER message, except the requested IP address is now set to 10.0.0.57, 
the DHCP message type is set to DHCPREQUEST, the DHCP autoconfiguration 
option is not present, and the Server Identifier option is now filled in with the 
address of the server (10.0.0.1). Note that this message, like the DHCPDISCOVER 
message, is sent using broadcast, so any server or client present on the local net-
work receives it. The Server Identifier option field is used to keep unselected 
servers from committing the address binding. When the selected server receives 
the DHCPREQUEST and commits the binding, it ordinarily responds with a 
DHCPACK message, as we see in Figure 6-9.

Figure 6-9  The DHCPACK message verifies to the client (and other servers) the allocation of address 
10.0.0.57 for up to 12 hours.
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The DHCPACK message shown in Figure 6-9 is very similar to the DHCPOFFER 
message we have seen before. However, now the client’s FQDN option is included 
as well. In this case (not shown), it is set to vista.home. At this point, the client 
is free to use the address 10.0.0.57, as far as the DHCP server is concerned. It is still 
advised to use techniques such as ACD, described in Chapter 4, to ensure that its 
address is not used by some other host.

The DHCP messages exchanged in this example are typical of a system when 
it boots or is attached to a new network. It is also possible to induce a system to 
perform the release or acquisition of DHCP configuration information by hand. 
For example, in Windows the following command will release the data acquired 
using DHCP:

C:\> ipconfig /release

and the following command will acquire it:

C:\> ipconfig /renew

In Linux, the following commands can be used to achieve the same results:

Linux# dhclient -r

to release a DHCP lease, and

Linux# dhclient

to renew one.
The type of information acquired by DHCP and assigned to the local system 

can be ascertained with a variant of the ipconfig command on Windows. Here 
is an excerpt from its output:

C:\> ipconfig /all
...
Wireless LAN adapter Wireless Network Connection:

   Connection-specific DNS Suffix  . : home
   Description . . . . . . . . . . . : Intel(R) PRO/Wireless 3945ABG 
                                       Network Connection
   Physical Address. . . . . . . . . : 00-13-02-20-B9-18
   DHCP Enabled. . . . . . . . . . . : Yes
   Autoconfiguration Enabled . . . . : Yes
   IPv4 Address. . . . . . . . . . . : 10.0.0.57(Preferred)
   Subnet Mask . . . . . . . . . . . : 255.255.255.128
   Lease Obtained. . . . . . . . . . : Sunday, December 21, 2008 
                                       11:31:48 PM
   Lease Expires . . . . . . . . . . : Monday, December 22, 2008 
                                       11:31:40 AM
   Default Gateway . . . . . . . . . : 10.0.0.1
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   DHCP Server . . . . . . . . . . . : 10.0.0.1
   DNS Servers . . . . . . . . . . . : 10.0.0.1
   NetBIOS over Tcpip. . . . . . . . : Enabled
   Connection-specific DNS Suffix Search List :home

This command is very useful to see what configuration information has been 
assigned to a host using DHCP or other means. 

6.2.4.2 The DHCP State Machine
The DHCP protocol operates a state machine at the clients and servers. The states 
dictate which types of messages the protocol is expecting to process next. The cli-
ent state machine is illustrated in Figure 6-10. Transitions between states (arrows) 
occur because of messages that are received and sent or when timers expire.

Figure 6-10  The DHCP client state machine. The boldface states and transitions are typical for a 
client first acquiring a leased address. The dashed line and INIT state are where the 
protocol begins.

As shown in Figure 6-10, a client begins in the INIT state when it has no infor-
mation and broadcasts the DHCPDISCOVER message. In the Selecting state, it col-
lects DHCPOFFER messages until it decides which address and server it wishes 
to use. Once its selection has been made, it responds with a DHCPREQUEST mes-
sage and enters the Requesting state. At this point it may receive ACKs for other 
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addresses it does not want. If it finds no address it wants, it sends a  DHCPDECLINE 
and reverts to the INIT state. More likely, however, it receives a DHCPACK mes-
sage for an address it wants, accepts it, obtains the timeout values T1 and T2, 
and enters the Bound state, where it is able to use the address until expiration. 
Upon the first timer expiration (timer T1), the client enters the Renewing state and 
attempts to reestablish its lease. This succeeds if a fresh DHCPACK is received 
(returning the client to the Bound state). If not, T2 ultimately expires, causing the 
client to attempt to reacquire an address from any server. If the lease time finally 
expires, the client must give up the leased address and becomes disconnected if it 
has no alternative address or network connection to use.

6.2.5 DHCPv6

Although the IPv4 and IPv6 DHCP protocols achieve conceptually similar 
goals, their respective protocol designs and deployment options differ. DHCPv6 
[RFC3315] can be used in either a “stateful” mode, in which it works much like 
DHCPv4, or in a “stateless” mode in conjunction with stateless address autocon-
figuration (see Section 6.3). In the stateless mode, IPv6 clients are assumed to self-
configure their IPv6 addresses but require additional information (e.g., DNS server 
address) obtained using DHCPv6. Another option exists for deriving the location 
of a DNS server using ICMPv6 Router Advertisement messages (see Chapters 8 
and 11 and [RFC6106]).

6.2.5.1 IPv6 Address Lifecycle
IPv6 hosts usually operate with multiple addresses per interface, and each address 
has a set of timers indicating how long and for what purposes the corresponding 
address can be used. In IPv6, addresses are assigned with a preferred lifetime and 
valid lifetime. These lifetimes are used to form timeouts that move an address 
from one state to another in an address’s state machine (see Figure 6-11).

Figure 6-11  The lifecycle of an IPv6 address. Tentative addresses are used only for DAD until veri-
fied as unique. After that, they become preferred and can be used without restriction 
until an associated timeout changes their state to deprecated. Deprecated addresses are 
not to be used for initiating new connections and may not be used at all after the associ-
ated valid timeout expires.
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Figure 6-11 shows the lifecycle of an IPv6 address. An address is in the pre-
ferred state when it is available for general use and is available as either a source 
or destination IPv6 address. A preferred address becomes deprecated when its 
preferred timeout occurs. When it becomes deprecated, it may still be used for 
existing transport (e.g., TCP) connections but is not to be used for initiating new 
connections.

When an address is first selected for use, it enters a tentative or optimistic state. 
When in the tentative state, it may be used only for the IPv6 Neighbor Discovery
protocol (see Chapter 8). It is not used as a source or destination address for any 
other purposes. While in this state the address is being checked for duplication, 
to see if any other nodes on the same network are already using the address. The 
procedure for doing this is called duplicate address detection (DAD) and is described 
in more detail in Section 6.3.2.1. An alternative to conventional DAD is called opti-
mistic DAD [RFC4429], whereby a selected address is used for a limited set of 
purposes until DAD completes. Because an optimistic use of an address is really 
just a special set of rules for DAD, it is not a truly complete state itself. Optimistic 
addresses are treated as deprecated for most purposes. In particular, an address 
may be both optimistic and deprecated simultaneously, depending on the pre-
ferred and valid lifetimes.

6.2.5.2 DHCPv6 Message Format
DHCPv6 messages are encapsulated as UDP/IPv6 datagrams, with client port 546 
and server port 547 (see Chapter 10). Messages are sent using a host’s link-scoped 
source address to either relay agents or servers. There are two message formats, 
one used directly between a client and a server, and another when a relay is used 
(see Figure 6-12).

Figure 6-12  The basic DHCPv6 message format (left) and relay agent message format (right). Most interesting 
information in DHCPv6 is carried in options.
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The primary DHCPv6 message format is given in Figure 6-12 on the left and 
an extended version, which includes the Link Address and Peer Address fields, is 
given on the right. The format on the right is used between a DHCPv6 relay agent 
and a DHCPv6 server. The Link Address field gives the global IPv6 address used 
by the server to identify the link on which the client is located. The Peer Address
field contains the address of the relay agent or client from which the message to be 
relayed was received. Note that relaying may be chained, so a relay may be relay-
ing a message received from another relay. Relaying, for DHCPv4 and DHCPv6, is 
described in Section 6.2.6.

The message type for messages in the format on the left include typical DHCP-
style messages (REQUEST, REPLY, etc.), whereas the message types for messages 
in the format on the right include RELAY-FORW and RELAY-REPL, to indicate a 
message forwarded from a relay or destined to a relay, respectively. The Options
field for the format on the right always includes a Relay Message option, which 
includes the complete message being forwarded by the relay. Other options may 
also be included. 

One of the differences between DHCPv4 and DHCPv6 is how DHCPv6 uses 
IPv6 multicast addressing. Clients send requests to the All DHCP Relay Agents and 
Servers multicast address (ff02::1:2). Source addresses are of link-local scope. In 
IPv6, there is no legacy BOOTP message format. The message semantics, however, 
are similar. Table 6-1 gives the types of DHCPv6 messages, their values, defining 
RFCs, and the roughly equivalent message and defining RFC for DHCPv4. 

 Table 6-1  DHCPv6 message types, values, and defining standards. The approximately equivalent message 
types for DHCPv4 are given to the right.

DHCPv6 Message
DHCPv6 
Value Reference DHCPv4 Message Reference

SOLICIT 1 [RFC3315] DISCOVER [RFC2132]

ADVERTISE 2 [RFC3315] OFFER [RFC2132]

REQUEST 3 [RFC3315] REQUEST [RFC2132]

CONFIRM 4 [RFC3315] REQUEST [RFC2132]

RENEW 5 [RFC3315] REQUEST [RFC2132]

REBIND 6 [RFC3315] DISCOVER [RFC2132]

REPLY 7 [RFC3315] ACK/NAK [RFC2132]

RELEASE 8 [RFC3315] RELEASE [RFC2132]

DECLINE 9 [RFC3315] DECLINE [RFC2132]
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In DHCPv6, most interesting information, including addresses, lease times, 
location of services, and client and server identifiers, is carried in options. Two of 
the more important concepts used with these options are called the Identity Asso-
ciation (IA) and the DHCP Unique Identifier (DUID). We discuss them next.

6.2.5.3 Identity Association (IA)
An Identity Association (IA) is an identifier used between a DHCP client and server 
to refer to a collection of addresses. Each IA comprises an IA identifier (IAID) 
and associated configuration information. Each client interface that requests a 
DHCPv6-assigned address requires at least one IA. Each IA can be associated with 
only a single interface. The client chooses the IAID to uniquely identify each IA, 
and this value is then shared with the server.

The configuration information associated with an IA includes one or more 
addresses and associated lease information (T1, T2, and total lease duration val-
ues). Each address in an IA has both a preferred and a valid lifetime [RFC4862], 
which define the address’s lifecycle. The types of addresses requested may be 
regular addresses or temporary addresses [RFC4941]. Temporary addresses are 
derived in part from random numbers to help improve privacy by frustrating the 
tracking of IPv6 hosts based on IPv6 addresses. Temporary addresses are ordinar-
ily assigned at the same time nontemporary addresses are assigned but are regen-
erated using a different random number more frequently.

When responding to a request, a server assigns one or more addresses to a 
client’s IA based on a set of address assignment policies determined by the server’s 
administrator. Generally, such policies depend on the link on which the request 

 Table 6-1  DHCPv6 message types, values, and defining standards. The approximately equivalent message 
types for DHCPv4 are given to the right (continued ).

DHCPv6 Message
DHCPv6 
Value Reference DHCPv4 Message Reference

RECONFIGURE 10 [RFC3315] FORCERENEW [RFC3203]

INFORMATION-REQUEST 11 [RFC3315] INFORM [RFC2132]

RELAY-FORW 12 [RFC3315] N/A

RELAY-REPL 13 [RFC3315] N/A

LEASEQUERY 14 [RFC5007] LEASEQUERY [RFC4388]

LEASEQUERY-REPLY 15 [RFC5007] LEASE{UNASSIGNED, 
UNKNOWN,ACTIVE}

[RFC4388]

LEASEQUERY-DONE 16 [RFC5460] LEASEQUERYDONE [ID4LQ]
LEASEQUERY-DATA 17 [RFC5460] N/A N/A
N/A N/A N/A BULKLEASEQUERY [ID4LQ]
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arrived, standard information about the client (see DUID in Section 6.2.5.4), and 
other information supplied by the client in DHCP options. The formats of the IA 
option for nontemporary and temporary addresses are as shown in Figure 6-13.

Figure 6-13  The format for a DHCPv6 IA for nontemporary addresses (left) and temporary addresses (right). 
Each option may include additional options describing particular IPv6 addresses and corre-
sponding leases.

The main difference between a nontemporary and a temporary address IA 
option, as shown in Figure 6-13, is the inclusion of the T1 and T2 values in the 
nontemporary case. These values are expected, as they are also the values used in 
DHCPv4. For temporary addresses, the lack of T1 and T2 is made possible because 
the lifetimes are generally determined based upon the T1 and T2 values assigned 
to a nontemporary address that has been acquired previously. Details of tempo-
rary addresses are given in [RFC4941]. 

6.2.5.4 DHCP Unique Identifier (DUID)
A DHCP Unique Identifier (DUID) identifies a single DHCPv6 client or server and 
is designed to be persistent over time. It is used by servers to identify clients for 
the selection of addresses (as part of IAs) and configuration information, and 
by clients to identify the server in which they are interested. DUIDs are variable 
in length and are treated as opaque values by both clients and servers for most 
purposes.

DUIDs are supposed to be globally unique yet easy to generate. To satisfy 
these concerns simultaneously, [RFC3315] defines three different types of possible 
DUIDs but also mentions that these are not the only three types that might ever be 
created. The three types of DUIDs are as follows:

l. DUID-LLT: a DUID based on link-layer address plus time

2. DUID-EN: a DUID based on enterprise number and vendor assignment

3. DUID-LL: a DUID based on link-layer address only
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The standard format for encoding a DUID begins with a 2-byte identifier indi-
cating which type of DUID is being expressed. The current list is maintained by 
the IANA [ID6PARAM]. This is followed by a 16-bit hardware type derived from 
[RFC0826] in the cases of DUID-LLT and DUID-LL, and a 32-bit Private Enterprise 
Number in the case of DUID-EN.

Note

A Private Enterprise Number (PEN) is a 32-bit value given out by the IANA to an 
enterprise. It is usually used in conjunction with the SNMP protocol for network 
management purposes. About 38,000 of them have been assigned as of mid-
2011. The current list is available from the IANA [IEPARAM].

The first form of DUID, DUID-LLT, is the recommended form. Following 
the hardware type, it includes a 32-bit timestamp containing the number of sec-
onds since midnight (UTC), January 1, 2000 (mod 232). This rolls over (returns 
to zero) in the year 2136. The last portion is a variable-length link-layer address. 
The link-layer address can be selected from any of the host’s interfaces, and the 
same DUID should be used, once selected, for traffic on any interface. This form of 
DUID is required to be stable even if the network interface from which the DUID 
was derived is removed. Thus, it requires the host system to maintain stable stor-
age. The DUID-LL form is very similar but is recommended for systems lacking 
stable storage (but having a stable link-layer address). The RFC says that a DUID-
LL must not be used by clients or servers that cannot determine if the link-layer 
address they are using is associated with a removable interface.

6.2.5.5 Protocol Operation
The DHCPv6 protocol operates much like its DHCPv4 counterpart. Whether or 
not a client initiates the use of DHCP is dependent on configuration options car-
ried in an ICMPv6 Router Advertisement message the host receives (see Chapter 
8). Router advertisements include two important bit fields. The M field is the Man-
aged Address Configuration flag and indicates that IPv6 addresses can be obtained 
using DHCPv6. The O field is the Other Configuration flag and indicates that infor-
mation other than IPv6 addresses is available using DHCPv6. Both fields, along 
with several others, are specified in [RFC5175]. Any combination of the M and O
bit fields is possible, although having M on and O off is probably the least useful 
combination. If both are off, DHCPv6 is not used, and address assignment takes 
place using stateless address autoconfiguration, described in Section 6.3. Having 
M off and O on indicates that clients should use stateless DHCPv6 and obtain their 
addresses using stateless address autoconfiguration. The DHCPv6 protocol oper-
ates using the messages defined in Table 6-1 and illustrated in Figure 6-14.

Typically, a client starting out first determines what link-local address to use 
and performs an ICMPv6 Router Discovery operation (see Chapter 8) to determine 
if there is a router on the attached network. A router advertisement includes the M
and O bit fields mentioned previously. If DHCPv6 is in use, at least the M bit field 
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is set and the client multicasts (see Chapter 9) the DHCPSOLICIT message to find 
DHCPv6 servers. A response comes in the form of one or more DHCPADVERTISE 
messages, indicating the presence of at least one DHCPv6 server. These messages 
constitute two of the so-called four-message exchange operations of DHCPv6.

In cases where the location of a DHCPv6 server is already known or an address 
need not be allocated (e.g., stateless DHCPv6 or the Rapid Commit option is being 
used—see Section 6.2.9), the four-message exchange can be shortened to become 
a two-message exchange, in which case only the REQUEST and REPLY messages 
are used. A DHCPv6 server commits a binding formed from the combination of 
a DUID, IA type (temporary, nontemporary, or prefix—see Section 6.2.5.3), and 
IAID. The IAID is a 32-bit number chosen by the client. Each binding can have 
one or more leases, and one or more bindings can be manipulated using a single 
DHCPv6 transaction.

6.2.5.6 Extended Example
Figure 6-15 shows an example of a Windows Vista (Service Pack 1) machine attach-
ing to a wireless network. Its IPv4 stack has been disabled. It begins by assigning 
its link-local address and checking to see if that address is already being used.

Figure 6-14  Basic operation of DHCPv6. A client determines whether or not to use DHCPv6 from 
information carried in ICMPv6 router advertisements. If used, DHCPv6 operations are 
similar to those in DHCPv4 but differ significantly in the details.
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Figure 6-15  DAD for the client system’s link-local address is a Neighbor Solicitation for its own IPv6 address.
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In Figure 6-15 we see the ICMPv6 Neighbor Solicitation (DAD) for the client’s 
optimistic address fe80::fd26:de93:5ab7:405a. (DAD is described in more detail 
when we discuss stateless address autoconfiguration in Section 6.3.2.1.) The packet 
is sent to the corresponding solicited-node address ff02::1:ffb7:405a. It optimisti-
cally assumes that this address is not otherwise in use on the link, so it continues 
on immediately with a Router Solicitation (RS) (see Figure 6-16).

The RS shown in Figure 6-16 is sent to the All Routers multicast address ff02::2. 
It induces each router on the network to respond with a Router Advertisement 
(RA), which carries the important M and O bits the client requires to determine 
what to do next.

Note

This example shows a router solicitation being sent from an optimistic address 
including a source link-layer address option (SLLAO), in violation of [RFC4429]. 
The problem here is potential pollution of neighbor caches in any listening IPv6 
routers. They will process the option and establish a mapping in their neighbor 
caches between the tentative address and the link-layer address that may be a 
duplicate. However, this is very unlikely and is probably not of significant concern. 
Nonetheless, a pending “optimistic” option [IDDN], if standardized, will allow a 
router solicitation to include an SLLAO that avoids this issue.

The RA in Figure 6-17 indicates the presence of a router, including its SLLAO 
of 00:04:5a:9f:9e:80, which will be useful to the client for encapsulating subsequent 
link-layer frames destined for the router. The Flags field indicates that the M and 
O bit fields are both enabled (set to 1), so the client should proceed with DHCPv6, 
both for obtaining its addresses as well as for obtaining other configuration infor-
mation. This is accomplished by soliciting a DHCPv6 server (see Figure 6-18).

The DHCPv6 SOLICIT message shown in Figure 6-18 includes a transaction 
ID (as in DHCPv4), an elapsed time (0, not shown), and the DUID consisting of a 
time and 6-byte MAC address. In this example, the MAC address 00:14:22:f4:19:5f 
is the MAC address of the wired Ethernet interface on this client, which is not the 
interface being used to send the SOLICIT message. Recall that for DUID-LL and 
DUID-TLL types of DUIDs the link-layer information should be the same across 
interfaces. The IA is for a nontemporary address, and the client has selected the 
IAID 09001302. The time values are left at 0 in the request, meaning that the client 
is not expressing a particular desire; they will be determined by the server.

The next option is the FQDN option specified by [RFC4704]. It is used to carry 
the FQDN of the client but also to affect how DHCPv6 and DNS interact (see Sec-
tion 6.4 on DHCP and DNS interaction). This option is used to enable dynamic 
updates to FQDN-to-IPv6 address mapping by client or server. (The reverse is 
generally handled by the server.) The first portion of this option contains three 
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Figure 6-16  The Router Solicitation induces a nearby router to provide a Router Advertisement. The solicitation message is sent to the All Routers address 
(ff02::2).
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bit fields: N (server should not perform update), O (client request overridden by 
server), and S (server should perform update). The second portion of the option 
contains a domain name, which may be fully qualified or not.

Note

The Wireshark tool indicates that the FQDN name record in Figure 6-18 is mal-
formed and speculates that the packet may have been generated by a MS Vista 
client, which indeed it was. The reason the field is malformed is because the origi-
nal specification for this option allowed a simple domain name encoding using 
ASCII characters. This method has been deprecated by [RFC4704], and the two 
encodings are not directly compatible. Microsoft provides a “hotfix” to address 
this issue for Vista systems. Microsoft Windows 7 systems exhibit behavior com-
pliant with [RFC4704]. 

Other information in the solicitation message includes the identification of the 
vendor class and requested option list. In this case, the vendor class data includes 
the string "MSFT 5.0", which can be used by a DHCPv6 server to determine what 
types of processing the client is capable of doing. In response to the client’s solici-
tation, the server responds with an ADVERTISE message (see Figure 6-19).

Figure 6-17  A Router Advertisement indicates that addresses are managed (available by assignment using 
DHCPv6) and that other information (e.g., DNS server) is also available using DHCPv6. This net-
work uses stateful DHCPv6. IPv6 Router Advertisement messages use ICMPv6 (see Chapter 8).
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The ADVERTISE message shown in Figure 6-19 provides a wealth of infor-
mation to the client. The Client Identifier option echoes the client’s configuration 
information. The Server Identifier option gives the time plus a link-layer address 
of 10:00:00:00:09:20 to identify the server. The IA has the value IAID 09001302 
(provided by the client) and includes the global address 2001:db8:0:f101::10fd with 
preferred lifetime and valid lifetime of 130 and 200s, respectively (fairly short 
timeouts). The status code of 0 indicates success. Also provided with the DHCPv6 

Figure 6-18  The DHCPv6 SOLICIT message requests the location of one or more DHCPv6 servers and includes 
information identifying the client and the options in which it is interested.
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advertisement is the DNS Recursive Name Server option [RFC3646] indicating a 
server address of 2001:db8:0:f101::1 and a Domain Search List option containing 
the string home. Note that the server does not include an FQDN option, as it does 
not implement that option.

The next two packets are a conventional Neighbor Solicitation and Neighbor 
Advertisement messages between the client and the router, which we do not detail 
further. That exchange is followed by the client’s request for a commitment of the 
global nontemporary address 2001:db8:0:f101::10fd (see Figure 6-20).

The REQUEST message shown in Figure 6-20 is very similar to the SOLICIT 
message but includes the information carried in the ADVERTISE message from 
the server (address, T1, and T2 values). The transaction ID remains the same for 
all of the DHCPv6 messages we have seen. The exchange is completed with the 
REPLY message, which is identical to the ADVERTISE message except for the dif-
ferent message type and therefore is not detailed.

Figure 6-19  The DHCPv6 ADVERTISE message includes an address and lease, plus DNS server IPv6 address 
and domain search list.
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The DHCPv6 messages exchanged in this example are typical of a system 
when it boots or is attached to a new network. As with DHCPv4, it is possible to 
induce a system to perform the release or acquisition of this information by hand. 
For example, in Windows the following command will release the data acquired 
using DHCPv6:

C:\> ipconfig /release6

and the following command will acquire it:

C:\> ipconfig /renew6

The type of information acquired by DHCP and assigned to the local inter-
face can be ascertained with another variant of this command that we have seen 
before. Here is an excerpt of its output:

C:\> ipconfig /all
...
Wireless LAN adapter Wireless Network Connection:

   Connection-specific DNS Suffix  . : home
   Description . . . . . . . . . . . : Intel(R) PRO/Wireless 3945ABG 
                                       Network Connection
   Physical Address. . . . . . . . . : 00-13-02-20-B9-18
   DHCP Enabled. . . . . . . . . . . : Yes

Figure 6-20  The DHCPv6 REQUEST message is similar to a SOLICIT message but includes information 
learned from the server’s ADVERTISE message.
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   Autoconfiguration Enabled . . . . : Yes
   IPv6 Address. . . . . . . . . . . : 2001:db8:0:f101::12cd(Preferred)
   Lease Obtained. . . . . . . . . . : Sunday, December 21, 2008 
                                       11:30:45 PM
   Lease Expires . . . . . . . . . . : Sunday, December 21, 2008 
                                       11:37:04 PM
   Link-local IPv6 Address . . . . . : 
                                 fe80::fd26:de93:5ab7:405a%9(Preferred)
   Default Gateway . . . . . . . . . : fe80::204:5aff:fe9f:9e80%9
   DHCPv6 IAID . . . . . . . . . . . : 150999810
   DHCPv6 Client DUID. . . . . . . . : 
                        00-01-00-01-0D-D1-4B-2E-00-14-22-F4-19-5F
   DNS Servers . . . . . . . . . . . : 2001:db8:0:f101::1
   NetBIOS over Tcpip. . . . . . . . : Disabled
   Connection-specific DNS Suffix Search List :
                                       home

Here we can see the link-layer address of the system (00:13:02:20:b9:18). 
Note how this address was never used as a basis for forming the IPv6 addresses 
in this example. 

6.2.5.7 DHCPv6 Prefix Delegation (DHCPv6-PD and 6rd)
Although the discussion so far has revolved around configuring hosts, DHCPv6 
can also be used to configure routers. This works by having one router delegate a 
range of address space to another router. The range of addresses is described by 
an IPv6 address prefix. The prefix is carried in a DHCP Prefix option, defined by 
[RFC3633]. This is used in situations where the delegating router, which now acts 
as a DHCPv6 server as well, does not require detailed topology information about 
the network to which the prefix is being delegated. Such a situation can arise, for 
example, when an ISP gives out a range of IP addresses to be used and potentially 
reassigned by a customer. In such a circumstance, the ISP may choose to delegate 
a prefix to the customer’s premises equipment using DHCPv6-PD.

With prefix delegation, a new form of IA called an IA_PD is defined. Each 
IA_PD consists of an IAID and associated configuration information and is simi-
lar to an IA for addresses, as discussed previously. DHCPv6-PD is useful not only 
for prefix delegation for fixed routers, but is also suggested to be used when rout-
ers (and their attached subnets) can be mobile [RFC6276].

A special form of PD (6rd, described in [RFC5569]) has been created for support-
ing IPv6 rapid deployment by service providers. The OPTION_6RD (212) option 
[RFC5969] holds the IPv6 6rd prefix that is used in assigning IPv6 addresses at a 
customer’s site based on the customer’s assigned IPv4 address. IPv6 addresses are 
algorithmically assigned by taking the service provider’s provisioned 6rd prefix as 
the first n bits, with n being recommended as less than 32. A customer’s assigned 
unicast IPv4 address is then appended as the next 32 (or fewer) bits, resulting in an 
IPv6 6rd delegated prefix that is handled identically to DHCPv6-PD and is recom-
mended to be 64 bits or shorter in length to allow automatic address configuration 
(see Section 6.4) to operate without problems.
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The OPTION_6RD option is variable in length and includes the follow-
ing values: the IPv4 mask length, 6rd prefix length, 6rd prefix, and a list of 6rd 
relay addresses (IPv4 addresses of relays that provide 6rd). The IPv4 mask length 
gives the number of bits from the IPv4 address to use in assigning IPv6 addresses 
(counted from the left). 

6.2.6 Using DHCP with Relays

In most simple networks, a single DHCP server is made available directly to cli-
ents on the same LAN. However, in more complicated enterprises it may be neces-
sary or convenient to relay DHCP traffic through one or more DHCP relay agents, 
as illustrated in Figure 6-21.

Figure 6-21  A DHCP relay agent extends the operation of DHCP beyond a single network segment. 
Information carried only between relays and DHCPv4 servers can be carried in the 
Relay Agent Information option. Relaying in DHCPv6 works in a similar fashion but 
with a different set of options.

A relay agent is used to extend the operation of DHCP across multiple network 
segments. In Figure 6-21 the relay between network segments A and B forwards 
DHCP messages and may annotate the messages with additional information 
using options or by filling in empty fields. Note that in ordinary circumstances, 
a relay does not participate in all DHCP traffic exchanged between a client and 
a server. Rather, it relays only those messages that are broadcast (or multicast in 
IPv6). Such messages are usually exchanged when a client is obtaining its address 
for the first time. Once a client has acquired an IP address and the server’s IP 
address using the Server Identification option, it can carry out a unicast conversa-
tion with the server that does not involve the relay. Note that relay agents have tra-
ditionally been layer 3 devices and tend to incorporate routing capabilities. After 
discussing the basics of layer 3 relays, we will look briefly at alternatives that oper-
ate (mostly) at layer 2.
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6.2.6.1 Relay Agent Information Option
In the original concept of a BOOTP or DHCP relay [RFC2131], a relay agent served 
the purpose only of relaying a message from one subnet to another that would 
otherwise not be passed on by a router. This allowed systems that could not 
yet perform indirect delivery to acquire an address from a centralized location. 
This is sensible for a network operating in an enterprise under one administra-
tive authority, but in cases where DHCP is used at a subscriber’s premises and 
the DHCP infrastructure is provided elsewhere (e.g., an ISP), more information 
may be required. There are a number of possible reasons. For example, the ISP 
may not trust the subscriber completely, or billing and logging may be associated 
with other information not available in the basic DHCP protocol. It has therefore 
become useful to include extra information in the messages that pass between the 
relay and the server. The Relay Agent Information option (for DHCPv4, abbrevi-
ated RAIO) [RFC3046] provides ways to include such information for IPv4 net-
works. IPv6 works somewhat differently, and we cover it in the following section.

The RAIO for DHCPv4 specified in [RFC3046] is really a meta-option, in 
the sense that it specifies a framework in which a number of suboptions can be 
defined. Many such suboptions have been defined, including several that are used 
by ISPs to identify from which user, circuit, or network a request is coming. In 
many cases we shall see that a suboption of the DHCPv4 information option has a 
corresponding IPv6 option. 

Because some of the information conveyed between a relay and a server may 
be important to secure, the DHCP Authentication suboption of the RAIO has been 
defined in [RFC4030]. It provides a method to ensure data integrity of the mes-
sages exchanged between relay and server. The approach is very similar to the 
DHCP deferred authentication method (see Section 6.2.7), except the SHA-1 algo-
rithm is used instead of the MD5 algorithm (see Chapter 18).

6.2.6.2 Relay Agent Remote-ID Suboption and IPv6 Remote-ID Option
One common requirement placed upon a relay is to identify the client making a 
DHCP request with information beyond what the client itself provides. A sub-
option of the Relay Agent Information option, called the Remote-ID suboption, 
provides a way to identify the requesting DHCP client using a number of nam-
ing approaches that are locally interpreted (e.g., caller ID, user name, modem ID, 
remote IP address of a point-to-point link). The DHCPv6 Relay Agent Remote-ID 
option [RFC4649] provides the same capability but also includes an extra field, 
the enterprise number, which indicates the vendor associated with the identify-
ing information. This format of the Remote-ID information is then specified in a 
vendor-specific way based on the enterprise number. A common method is to use 
a DUID for the remote ID.

6.2.6.3 Server Identifier Override
In some cases a relay may wish to interpose itself for processing between a 
DHCP client and server. This can be accomplished with a special Server Identifier 
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Override suboption [RFC5107]. The suboption is a variant of the RAIO mentioned 
previously.

Ordinarily, a relay forwards SOLICIT messages and may append options to 
these messages as they pass from client to server. Relays are necessary in this cir-
cumstance because the client is likely to not yet have an acceptable IP address and 
only sends its messages to the local subnet using broadcast or multicast address-
ing. Once a client receives and selects its address, it can talk directly to the DHCP 
server based upon the server’s identity carried in the Server Identifier option. In 
effect, this cuts the relay out of subsequent transactions between client and server.

It is often useful to allow the relay to include a variety of options (e.g., RAIO 
carrying a circuit ID) for other types of messages, such as REQUEST, in addition 
to SOLICIT. This option includes a 4-byte value specifying the IPv4 address to use 
in the Server Identifier option present in DHCPREPLY messages formed by serv-
ers. The Server Identifier Override option is supposed to be used in conjunction 
with the Relay Agents Flag suboption [RFC5010]. This suboption of the RAIO is a 
set of flags that carry information from relay to server. So far, only one such flag 
is defined: whether the destination address on the initial message from the client 
used broadcast or unicast addressing. The server may make different address allo-
cation decisions based upon the setting of this flag.

6.2.6.4 Lease Query and Bulk Lease Query
In some environments it is useful to allow a third-party system (such as a relay 
or access concentrator) to learn the address bindings for a particular DHCP client. 
This facility is provided by DHCP leasequery ([RFC4388][RFC6148] for DHCPv4 
and [RFC5007] for DHCPv6). In the case of DHCPv6, it can also provide lease 
information for delegated prefixes. In Figure 6-21, the relay agent may “glean” 
information from DHCP packets that pass through it in order to influence what 
information is provided to the DHCP server. Such information may be kept by the 
relay but may be lost upon relay failure. The DHCPLEASEQUERY message allows 
such an agent to reacquire this type of information on demand, usually when 
relaying traffic for which it has lost a binding. The DHCPLEASEQUERY message 
supports four types of queries for DHCPv4: IPv4 address, MAC address, Client 
Identifier, and Remote ID. For DHCPv6, it supports two: IPv6 address and Client 
Identifier (DUID).

DHCPv4 servers may respond to lease queries with one of the follow-
ing types of messages: DHCPLEASEUNASSIGNED, DHCPLEASEACTIVE, or 
DHCPLEASEUNKNOWN. The first message indicates that the responding server 
is authoritative for the queried value but no current associated lease is assigned. 
The second form indicates that a lease is active, and the lease parameters (includ-
ing T1 and T2) are provided. There is no particular presumed use for this infor-
mation; it is made available to the requestor for whatever purposes it desires. 
DHCPv6 servers respond with a LEASEQUERY-REPLY message that contains 
a Client Data option. This option, in turn, includes a collection of the following 
options: Client ID, IPv6 Address, IPv6 Prefix, and Client Last Transaction Time. 
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The last value is the time (in seconds) since the server last communicated with 
the client in question. A LEASEQUERY-REPLY message may also contain the fol-
lowing two options: Relay Data and Client Link. The first includes the data last 
sent from a relay about the associated query, and the second indicates the link on 
which the subject client has one or more address bindings. Once again, this infor-
mation is used for whatever purposes the requestor desires.

An extension to lease query called Bulk Leasequery (BL) [RFC5460][ID4LQ] 
allows multiple bindings to be queried simultaneously, uses TCP/IP rather than 
UDP/IP, and supports a wider range of query types. BL is designed as a special 
service for obtaining binding information and is not really part of conventional 
DHCP. Thus, clients wishing to obtain conventional configuration information do 
not use BL. One particular use of BL is when DHCP is being used for prefix del-
egation. In this case, it is common for a router to be acting as a DHCP-PD client. It 
obtains a prefix and then provides an address from the address range represented 
by the prefix as an assignment to conventional DHCP clients. However, if such a 
router fails or reboots, it may lose the prefix information and have a difficult time 
recovering because the conventional lease query mechanism requires an identifier 
for the binding in order to form the query. BL helps this situation, and others, by 
generalizing the set of possible query types.

BL provides several extensions to basic lease query. First, it uses TCP/IP (port 
547 for IPv6 and port 67 for IPv4) instead of UDP/IP. This change allows for large 
amounts of query information to be returned for a single query, as may be neces-
sary when retrieving a large number of delegated prefixes. BL also provides a Relay 
Identifier option to allow queries to identify the querier more easily. A BL query 
can then be based on relay identifier, link address (network segment), or relay ID.

The Relay ID DHCPv6 option and Relay ID DHCPv4 suboption [ID4RI] may 
include a DUID that identifies the relay agent. Relays can insert this option in mes-
sages they forward, and the server can use it to associate bindings it receives with 
the particular relay providing them. BL supports queries by address and DUID 
specified in [RFC5007] and [RFC4388] but also queries by relay ID, link address, 
and remote ID. These newer queries are supported only on TCP/IP-based servers 
that support BL. Conversely, BL servers support only LEASEQUERY messages, not 
the full set of ordinary DHCP messages.

BL extends the basic lease query mechanism with the LEASEQUERY-DATA 
and LEASEQUERY-DONE messages. When responding successfully to a query, a 
server first includes a LEASEQUERY-REPLY message. If additional information is 
available, it includes a set of LEASEQUERY-DATA messages, one per binding, and 
completes the set with a LEASEQUERY-DONE message. All messages pertaining 
to the same group of bindings share a common transaction ID, the same one pro-
vided in the initial LEASEQUERY-REQUEST message.

6.2.6.5 Layer 2 Relay Agents
In some network environments, there are layer 2 devices (e.g., switches, bridges) 
that are located near end systems that relay and process DHCP requests. These 
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layer 2 devices do not have a full TCP/IP implementation stack and are not address-
able using IP. As a result, they cannot act as conventional relay agents. To deal with 
this issue, [IDL2RA] and [RFC6221] specify how layer 2 “lightweight” DHCP relay 
agents (LDRAs) should behave, for IPv4 and IPv6, respectively. When referring to 
relay behaviors, interfaces are labeled as client-facing or network-facing, and as 
either trusted or untrusted. Network-facing interfaces are topologically closer to 
DHCP servers, and trusted interfaces are those where it is assumed that arriving 
packets are not spoofed.

The primary issue for IPv4 LDRAs is how to handle the DHCP giaddr field and 
insert a RAIO when the LDRA itself has no IP layer information. The approach 
recommended by [IDL2RA] is to have LDRAs insert the RAIO into DHCP requests 
received from clients but not fill in the giaddr field. The resulting DHCP message 
is sent in a broadcast fashion to one or more DHCP servers, as well as any other 
receiving LDRAs. Such messages are flooded (i.e., sent on all interfaces except 
the one upon which the message was received) unless received on an untrusted 
interface. LDRAs receiving such a message already including a RAIO do not add 
another such option but perform flooding. Responses (e.g., DHCPOFFER mes-
sages) sent using broadcast may be intercepted by the LDRA, which in turn strips 
the RAIO and uses its information to forward the response to the original request-
ing client. Many LDRAs also intercept unicast DHCP traffic. In these cases, the 
RAIO is also created or stripped as necessary. Note that compatible DHCP serv-
ers must support the ability to process and return DHCP messages containing 
RAIOs without a valid giaddr field, whether such messages are sent using unicast 
or broadcast.

IPv6 LDRAs process DHCPv6 traffic by creating RELAY-FORW and RELAY-
REPL messages. ADVERTISE, REPLY, RECONFIGURE, and RELAY-REPL mes-
sages received on client-facing interfaces are discarded. In addition, RELAY-FORW 
messages received on untrusted client-facing interfaces are also discarded as a 
security precaution. RELAY-FORW messages are built containing options that 
identify the client-facing interface (i.e., Link-Address field, Peer-Address field, and 
Interface-ID option). The Link-Address field is set to 0, the Peer-Address field is set 
to the client’s IP address, and the Interface-ID option is set to a value configured 
in the LDRA. When receiving a RELAY-REPL message containing a Link-Address 
field with value 0, the LDRA decapsulates the included message and sends it to 
toward the client on the interface specified in the received Interface-ID option 
(provided by the server). RELAY-FORW messages received on client-facing inter-
faces are modified by incrementing the hop count. Messages other than RELAY-
REPL messages received on network-facing interfaces are dropped.

6.2.7 DHCP Authentication

While we ordinarily discuss various security vulnerabilities at the end of each 
chapter (as we do in this one), for DHCP it is worth mentioning them here. It 
should be apparent that if the smooth operation of DHCP is interfered with, hosts 
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are likely to be configured with erroneous information and significant disruption 
could result. Unfortunately, as we have discussed so far, DHCP has no provision 
for security, so it is possible for unauthorized DHCP clients or servers to be set 
up, either intentionally or accidentally, that could cause havoc with an otherwise 
functioning network.

In an attempt to mitigate these problems, a method to authenticate DHCP 
messages is specified in [RFC3118]. It defines a DHCP option, the Authentication 
option, with the format shown in Figure 6-22.

Figure 6-22  The DHCP Authentication option includes replay detection and can use various meth-
ods for authentication. Specified back in 2001, this option is not widely used today.

The purpose of the Authentication option is to help determine whether a 
DHCP message has come from an authorized sender. The Code field is set to 90, 
and the Length field gives the number of bytes in the option (not including the 
Code or Length fields). If the Protocol and Algorithm fields have the value 0, the 
Authentication Information field holds a simple shared configuration token. As long as 
the configuration token matches at the client and server, the message is accepted. 
This could be used, for example, to hold a password or similar text string, but such 
traffic could be intercepted by an attacker, so this method is not very secure. It 
might help to fend off accidental DHCP problems, however.

A somewhat more secure method involves so-called deferred authentication, 
indicated if the Protocol and Algorithm fields are set to 1. In this case, the client’s 
DHCPDISCOVER or DHCPINFORM message includes an Authentication option, 
and the server responds with authentication information included in its DHCPOF-
FER or DHCPACK message. The authentication information includes a message 
authentication code (MAC; see Chapter 18), which provides authentication of the 
sender and an integrity check on the message contents. Assuming that the server 
and client have a shared secret, the MAC can be used to ensure that the client is 
trusted by the server and vice versa. It can also be used to ensure that the DHCP 
messages exchanged between them have not been modified or replayed from an 
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earlier DHCP exchange. The replay detection method (RDM) is determined by 
the value of the RDM field. For RDM set to 0, the Replay Detection field contains a 
monotonically increasing value (e.g., timestamp). Received messages are checked 
to ensure that this value always increases. If the value does not increase, it is 
likely that an earlier DHCP message is simply being replayed (captured, stored, 
and played back later). It is conceivable that the value in the Replay Detection field 
could fail to advance in a situation where packets are reordered, but this is highly 
unlikely in a LAN (where DHCP is most prevalent) because only a single routing 
path is ordinarily used between the DHCP client and server.

There are (at least) two reasons why DHCP authentication has not seen wide-
spread use. First, the approach requires shared keys to be distributed between a 
DHCP server and each client requiring authentication. Second, the Authentication 
option was specified after DHCP was already in relatively widespread use. None-
theless, [RFC4030] builds upon this specification to help secure DHCP messages 
passed through relay agents (see Section 6.2.6).

6.2.8 Reconfigure Extension

In ordinary operation, a DHCP client initiates the renewal of address bindings. 
[RFC3203] defines the reconfigure extension and associated DHCPFORCERENEW 
message. This extension allows a server to cause a single client to change to the 
Renewing state and attempt to renew its lease by an otherwise ordinary opera-
tion (i.e., DHCPREQUEST). A server that does not wish to renew the lease for the 
requested address may respond with a DHCPNAK, causing the client to restart 
in the INIT state. The client would then begin again using a DHCPDISCOVER 
message.

The purpose of this extension is to cause the client to reestablish an address or 
to cause it to lose its address as the result of some significant change of state within 
the network. This could happen, for example, if the network is being adminis-
tratively taken down or renumbered. Because this message is such an obvious 
candidate for a DoS attack, it must be authenticated using DHCP authentication. 
Because DHCP authentication is not in widespread use, neither is the reconfigure 
extension.

6.2.9 Rapid Commit

The DHCP Rapid Commit option [RFC4039] allows a DHCP server to respond 
to the DHCPDISCOVER message with a DHCPACK, effectively skipping the 
DHCPREQUEST message and ultimately using a two-message exchange instead 
of a four-message exchange. The motivation for this option is to quickly configure 
hosts that may change their point of network attachment frequently (i.e., mobile 
hosts). When only a single DHCP server is available and addresses are plentiful, 
this option should be of no significant concern.
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To use rapid commit, a client includes the option in a DHCPDISCOVER mes-
sage; it is not permitted to include it in any other message. Similarly, a server uses 
this option only in DHCPACK messages. When a server responds with this option, 
the receiving client knows that the returned address may be used immediately. If 
it should determine later that the address is already in use by another system (e.g., 
via ARP), the client sends a DHCPDECLINE message and abandons the address. It 
may also voluntarily relinquish the address it has received using a DHCPRELEASE 
message.

6.2.10 Location Information (LCI and LoST)

In some cases, it is useful for a host being configured to become aware of its loca-
tion in the world. Such information may be encoded using, for example, latitude, 
longitude, and altitude. An IETF effort known as Geoconf (“Geographic configu-
ration”) resulted in [RFC6225], which specifies how to provide such geospatial 
Location Configuration Information (LCI) to clients using the GeoConf (123) and 
GeoLoc (144) DHCP options. Geospatial LCI includes not only the value of the lati-
tude, longitude, and altitude coordinates, but also resolution indicators for each. 
LCI can be used for a number of purposes, including emergency services. If a 
caller using an IP phone requests emergency assistance, LCI can be used to indi-
cate where the emergency is taking place.

Although the physical location information just mentioned is useful to locate 
a particular individual or system, sometimes it is important to know the civic 
location of an entity. The civic location expresses location in terms of geopoliti-
cal institutions such as country, city, district, street, and other such parameters. 
Civic location information can be provided using DHCP in the same way a phys-
ical location can, using the same LCI structure as is used with geospatial LCI. 
[RFC4776] defines the GEOCONF_CIVIC (99) option for carrying civic location 
LCI. This form of LCI is trickier than the geospatial information because the geo-
political method for naming locations varies by country. An additional complexity 
arises because such names may also require languages and character sets beyond 
the English and ASCII language and characters ordinarily used with DHCP. There 
is also a concern regarding the privacy of location in general, not just with respect 
to DHCP. The IETF is undertaking this issue in a framework called “Geopriv.” See, 
for example, [RFC3693] for more information.

An alternative high-layer protocol known as the HTTP-Enabled Location Deliv-
ery (HELD) protocol [RFC5985] may also be used to provide location information. 
Instead of encoding the LCI directly in DHCP messages, DHCP options OPTION_
V4_ACCESS_DOMAIN (213) and OPTION_V6_ACCESS_DOMAIN (57) provide 
the FQDN of a HELD server for IPv4 and IPv6, respectively [RFC5986].

Once a host knows its location, it may need to contact services associated with 
the location (e.g., the location of the nearest hospital). The IETF Location-to- Service 
Translation (LoST) framework [RFC5222] accomplishes this using an application-
layer protocol accessed using a location-dependent URI. The DHCP options 
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OPTION_V4_LOST (137) and OPTION_V6_LOST (51) provide for variable-length 
encodings of an FQDN specifying the name of a LoST server for DHCPv4 and 
DHCPv6, respectively [RFC5223]. The encoding is in the same format used by 
DNS for encoding domain names (see Chapter 11).

6.2.11 Mobility and Handoff Information (MoS and ANDSF)

In response to the increased use of mobile computers and smartphones accessing 
the Internet with cellular technology, frameworks and related DHCP options have 
been specified to convey information about the cellular configuration and hand-
overs between different wireless networks. At present, there are two sets of DHCP 
options relating to this information: IEEE 802.21 Mobility Services (MoS) Discovery 
and Access Network Discovery and Selection Function (ANDSF). The latter framework 
is being standardized by the 3rd Generation Partnership Project (3GPP), one of the 
organizations responsible for creating cellular data communications standards. 

The IEEE 802.21 standard [802.21-2008] specifies a framework for media- 
independent handoff (MIH) services between various network types, including 
those defined by IEEE (802.3, 802.11, 802.16), those defined by 3GPP, and those 
defined by 3GPP2. A design of such a framework in the IETF context is provided 
in [RFC5677]. MoS provides three types of services known as information ser-
vices, command services, and event services. Roughly speaking, these services 
provide information about available networks, functions for controlling link 
parameters, and notification of link status changes. The MoS Discovery DHCP 
options [RFC5678] provide a means for a mobile node to acquire the addresses or 
domain names of servers providing each of these services using either DHCPv4 
or DHCPv6. For IPv4, the OPTION-IPv4_Address-MoS option (139) contains a 
vector of suboptions containing IP addresses for servers providing each of the 
services. A suboption of the OPTION-IPv4_FQDN-MoS option (140) provides a 
vector of FQDNs for servers for each of the services. Similar options, OPTION-
IPv6_Address-MoS (54) and OPTION-IPv6_FQDN (55), provide equivalent capa-
bilities for IPv6.

Based upon 3GPP’s ANDSF specification, [RFC6153] defines DHCPv4 and 
DHCPv6 options for carrying ANDSF information. In particular, it defines options 
for mobile devices to discover the address of an ANDSF server. ANDSF servers 
are configured by cellular infrastructure operators and may hold information 
such as the availability and access policies of multiple transport networks (e.g., 
simultaneous use of 3G and Wi-Fi).

The ANDSF IPv4 Address Option (142) contains a vector of IPv4 addresses for 
ANDSF servers. The addresses are provided in preference order (first is most pre-
ferred). The ANDSF IPv6 Address Option (143) contains a vector of IPv6 addresses 
for ANDSF servers. To request ANDSF information using DHCPv4, the mobile node 
includes an ANDSF IPv4 Address option in the Parameter Request List. To request 
ANDSF information using DHCPv6, the client includes an ANDSF IPv6 Address 
option in the Option Request Option (ORO) (see Section 22.7 of [RFC3315]).
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6.2.12 DHCP Snooping

DHCP “snooping” is a capability that some switch vendors offer in their prod-
ucts that inspects the contents of DHCP messages and ensures that only those 
addresses listed on an access control list are able to exchange DHCP traffic. This 
can help to protect against two potential problems. First, a “rogue” DHCP server is 
limited in the damage it can do because other hosts are not able to hear its DHCP 
address offers. Also, the technique can limit the allocation of addresses to a partic-
ular set of MAC addresses. While this provides some protection, MAC addresses 
can be changed in a system fairly easily using operating system commands, so 
this technique offers only limited protection.

6.3 Stateless Address Autoconfiguration (SLAAC)

While most routers have their addresses configured manually, hosts can be 
assigned addresses manually, using an assignment protocol like DHCP, or auto-
matically using some sort of algorithm. There are two forms of automatic assign-
ment, depending on what type of address is being formed. For addresses that are 
to be used only on a single link (link-local addresses), a host need only find some 
appropriate address not already in use on the link. For addresses that are to be 
used for global connectivity, however, some portion of the address must generally 
be managed. There are mechanisms in both IPv4 and IPv6 for link-local address 
autoconfiguration, whereby a host determines its address(es) largely without help. 
This is called stateless address autoconfiguration (SLAAC).

6.3.1 Dynamic Configuration of IPv4 Link-Local Addresses

In cases where a host without a manually configured address attaches to a network 
lacking a DHCP server, IP-based communication is unable to take place unless 
the host somehow generates an IP address to use. [RFC3927] describes a mecha-
nism whereby a host can automatically generate its own IPv4 address from the 
link-local range 169.254.1.1 through 169.254.254.254 using the 16-bit subnet mask 
255.255.0.0 (see [RFC5735]). This method is known as dynamic link-local address 
configuration or Automatic Private IP Addressing (APIPA). In essence, a host selects 
a random address in the range to use and checks to see if that address is already 
in use by some other system on the subnetwork. This check is implemented using 
IPv4 ACD (see Chapter 4).

6.3.2 IPv6 SLAAC for Link-Local Addresses

The goal of IPv6 SLAAC is to allow nodes to automatically (and autonomously) 
self-assign link-local IPv6 addresses. IPv6 SLAAC is described in [RFC4862]. It 
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involves three major steps: obtaining a link-local address, obtaining a global 
address using stateless autoconfiguration, and detecting whether the link-local 
address is already in use on the link. Stateless autoconfiguration can be used with-
out routers, in which case only link-local addresses are assigned. When routers are 
present, a global address is formed using a combination of the prefix advertised 
by a router and locally generated information. SLAAC can also be used in con-
junction with DHCPv6 (or manual address assignment) to allow a host to obtain 
information in addition to its address (called “stateless” DHCPv6). Hosts that per-
form SLAAC can be used on the same network as those configured using stateful 
or stateless DHCPv6. Generally, stateful DHCPv6 is used when finer control is 
required in assigning address to hosts, but it is expected that stateless DHCPv6 in 
combination with SLAAC will be the most common deployment option.

In IPv6, tentative (or optimistic) link-local addresses are selected using proce-
dures specified in [RFC4291] and [RFC4941]. They apply only to multicast-capable 
networks and are assigned infinite preferred and valid lifetimes once established. 
To form the numeric address, a unique number is appended to the well-known 
link-local prefix fe80::0 (of appropriate length). This is accomplished by setting 
the right-most N bits of the address to be equal to the (N-bit-long) number, the 
left-most bits equal to the 10-bit link-local prefix 1111111010, and the rest to 0. The 
resulting address is placed into the tentative (or optimistic) state and checked for 
duplicates (see the next section).

6.3.2.1 IPv6 Duplicate Address Detection (DAD)
IPv6 DAD uses ICMPv6 Neighbor Solicitation and Neighbor Advertisement mes-
sages (see Chapter 8) to determine if a particular (tentative or optimistic) IPv6 
address is already in use on the attached link. For purposes of this discussion, 
we refer only to tentative addresses, but it is understood that DAD applies to opti-
mistic addresses as well. DAD is specified in [RFC4862] and is recommended to 
be used every time an IPv6 address is assigned to an interface manually, using 
autoconfiguration, or using DHCPv6. If a duplicate address is discovered, the pro-
cedure causes the tentative address to not be used. If DAD succeeds, the tentative 
address transitions to the preferred state and can be used without restriction.

DAD is performed as follows: A node first joins the All Nodes multicast address 
and the Solicited-Node multicast address of the tentative address (see Chapter 9). 
To check for use of an address duplicate, a node sends one or more ICMPv6 Neigh-
bor Solicitation messages. The source and destination IPv6 addresses of these mes-
sages are the unspecified address and Solicited-Node address of the target address 
being checked, respectively. The Target Address field is set to the address being 
checked (the tentative address). If a Neighbor Advertisement message is received 
in response, DAD has failed, and the address being checked is abandoned.
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Note

As a consequence of joining multicast groups, MLD messages are sent (see 
Chapter 9), but their transmission is delayed by a random interval according to 
[RFC4862] to avoid congesting the network when many nodes simultaneously 
join the All Hosts group (e.g., after a restoration of power). For DAD, these MLD 
messages are used to inform MLD-snooping switches to forward multicast traffic 
as necessary.

When an address has not yet successfully completed DAD, any received 
neighbor solicitations for it are treated in a special way, as this is indicative of 
some other host’s intention to use the same address. If such messages are received, 
they are dropped, the current tentative address is abandoned, and DAD fails.

If DAD fails, by receiving a similar neighbor solicitation from another node 
or a neighbor advertisement for the target address, the address is not assigned to 
an interface and does not become a preferred address. If the address is a link-local 
address being configured based on an interface identifier derived from a local 
MAC address, it is unlikely that the same procedure will ultimately produce a 
nonconflicting address, so the use of this address is abandoned and administrator 
input is required. If the address is based on a different form of interface identi-
fier, IPv6 operations may be retried using another address based on an alternative 
tentative address.

6.3.2.2 IPv6 SLAAC for Global Addresses
Once a node has acquired a link-local address, it is likely to require one or more 
global addresses as well. Global addresses are formed using a process similar to 
that for link-local SLAAC but using a prefix provided by a router. Such prefixes 
are carried in the Prefix option of a router advertisement (see Chapter 8), and a 
flag indicates whether the prefix should be used in forming global addresses with 
SLAAC. If so, the prefix is combined with an interface identifier (e.g., the same one 
used in forming a link-local address if the privacy extension is not being used) to 
form a global address. The preferred and valid lifetimes of such addresses are also 
determined by information present in the Prefix option.

6.3.2.3 Example
The trace in Figure 6-23 shows the series of events an IPv6 (Windows Vista/SP1) 
host uses when allocating its addresses with SLAAC. The system first selects a 
link-local address based on the link-local prefix of fe80::/64 and a random number. 
This method is designed to enhance the privacy of a user by making the address of 
the host system change over time [RFC4941]. The other common method involves 
using the bits of the MAC address in forming the link-local address. It performs 
DAD on this address (fe80::fd26:de93:5ab7:405a) to look for conflicts. 
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Figure 6-23  During SLAAC, a host begins by performing DAD on the tentative link-local address it wishes to use by sending an ICMPv6 Neighbor Solicita-
tion message for this address from the unspecified address.



ptg999

280 System Configuration: DHCP and Autoconfiguration  

Figure 6-23 shows the operation of DAD, which involves the host sending an 
NS to see if its selected link-local address is in use. It then quickly performs an RS 
to determine how to proceed (see Figure 6-24).

Figure 6-24  The ICMPv6 RS message induces a nearby router to supply configuration information such as the 
global network prefix in use on the attached network.

The Router Solicitation message shown in Figure 6-24 is sent to the All Rout-
ers multicast address (ff02::2) using the autoconfigured link-local IPv6 address as 
a source address. The response is given in an RA sent to the All Systems multicast 
address (ff02::1), so that all attached systems can see (see Figure 6-25).

The RA shown in Figure 6-25 is sent from fe80::204:5aff:fe9f:9e80, the link-
local address of the router, to the All Systems multicast address ff02::1. The Flags
field in the RA, which may contain several configuration options and extensions 
[RFC5175], is set to 0, indicating that addresses are not “managed” on this link 
by DHCPv6. The Prefix option indicates that the global prefix 2001:db8::/64 is 
in use on the link. The prefix length of 64 is not carried but is instead defined 
according to [RFC4291]. The Flags field value of 0xc0 associated with the Pre-
fix option indicates that the prefix is on-link (can be use in conjunction with a 
router) and the auto flag is set, meaning that the prefix can be used by the host 
to configure other addresses automatically. It also includes the Recursive DNS 
Server (RDNSS) option [RFC6106], which indicates that a DNS server is available 
at the address 2001::db8::1. The SLLAO indicates that the router’s MAC address is 
00:04:5a:9f:9e:80. This information is made available for any node to populate its 
neighbor cache (the IPv6 equivalent of the IPv4 ARP cache; Neighbor Discovery is 
discussed in Chapter 8).
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After an exchange of Neighbor Solicitation and Neighbor Advertisement mes-
sages between the client and the router, the client performs another DAD opera-
tion on the new (global) address it selects (see Figure 6-26).

The address 2001:db8::fd26:de93:5ab7:405a has been chosen by the client 
based on the prefix 2001::db8 carried in the router advertisement it received ear-
lier. The low-order bits of this address are based on the same random number as 
was used to configure its link-local address. As such, the Solicited-Node multicast 
address ff02::1:ffb7:405a is the same for DAD for both addresses. After this address 
has been tested for duplication, the client allocates another address and applies 
DAD to it (see Figure 6-27).

Figure 6-25  An ICMPv6 RA message provides the location and availability of a default router plus the global 
address prefix in use on the network. It also includes the location of a DNS server and indicates 
whether the router sending the advertisement can also act as a Mobile IPv6 home agent (no in this 
case). The client may use some or all of this information in configuring its operation.
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The DAD operation in Figure 6-27 is for the address 2001:db8::9cf4:f812:816d:
5c97. This address is a temporary IPv6 address, generated using a different ran-
dom number for its lower-order bits for privacy reasons. The difference between 

Figure 6-26  DAD for the global address derived from the prefix 2001:db8::/64 is sent to the same 
Solicited-Node multicast address as the first packet.

Figure 6-27 DAD for the address 2001:db8::9cf4:f812:816d:5c97.
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the two global addresses here is that the temporary address has a shorter lifetime. 
Lifetimes are computed as the lower (smaller) of the following two values: the life-
times included in the Prefix Information option received in the RA and a local pair 
of defaults. In the case of Windows Vista, the default valid lifetime is one week and 
the default preferred lifetime is one day. Once this message has completed, the cli-
ent has performed SLAAC for its link-local address, plus two global addresses. 
This is enough addressing information to perform local or global communication. 
The temporary address will change periodically to help enhance privacy. In cases 
where privacy protection is not desired, the following command can be employed 
to disable this feature in Windows:

C:\> netsh interface ipv6 set privacy state=disabled

In Linux, temporary addresses can be enabled using this set of commands:

Linux# sysctl –w net.ipv6.conf.all.use_tempaddr=2

Linux# sysctl –w net.ipv6.conf.default.use_tempaddr=2

and disabled using these commands:

Linux# sysctl –w net.ipv6.conf.all.use_tempaddr=0

Linux# sysctl –w net.ipv6.conf.default.use_tempaddr=0

6.3.2.4 Stateless DHCP
We have mentioned that DHCPv6 can be used in a “stateless” mode where the 
DHCPv6 server does not assign addresses (or keep any per-client state) but 
does provide other configuration information. Stateless DHCPv6 is specified in 
[RFC3736] and combines SLAAC with DHCPv6. It is believed that this combi-
nation is an attractive deployment option because network administrators need 
not be directly concerned with address pools as they have been when deploying 
DHCPv4.

In a stateless DHCPv6 deployment, nodes are assumed to have obtained their 
addresses using some method other than DHCPv6. Thus, the DHCPv6 server does 
not need to handle any of the address management messages specified in Table 
6-1. In addition, it does not need to handle any of the options required for estab-
lishing IA bindings. This simplifies the server software and server configuration 
considerably. The operation of relay agents is unchanged.

Stateless DHCPv6 clients use the DHCPv6 INFORMATION-REQUEST mes-
sage to request information that is provided in REPLY messages from servers. The 
INFORMATION-REQUEST message includes an Option Request option listing 
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the options about which the client wishes to know more. The INFORMATION-
REQUEST may include a Client Identifier option, which allows answers to be cus-
tomized for particular clients.

To be a compliant stateless DHCPv6 server, a system must implement the fol-
lowing messages: INFORMATION-REQUEST, REPLY, RELAY-FORW, and RELAY-
REPL. It also must implement the following options: Option Request, Status Code, 
Server Identifier, Client Message, Server Message, Interface-ID. The last three 
are used when relay agents are involved. To be a useful stateless DHCPv6 server, 
several other options will likely be necessary: DNS Server, DNS Search List, and 
possibly SIP Servers. Other potentially useful, but not required, options include 
Preference, Elapsed Time, User Class, Vendor Class, Vendor-Specific Information, 
Client Identifier, and Authentication.

6.3.2.5 The Utility of Address Autoconfiguration
The utility of address autoconfiguration for IP is typically limited because routers 
that may be on the same network as the client are configured with particular IP 
address ranges in use that differ from the addresses a client is likely to autoconfig-
ure. This is especially true for the IPv4 (APIPA) case, as the private link-local prefix 
169.254/16 is very unlikely to be used by a router. Therefore, the consequence of 
self-assigning an IP address is that local subnet access may work, but Internet 
routing and name services (DNS) are likely to fail. When DNS fails, much of the 
common Internet “experience” fails with it. Thus, it is often more useful to have a 
client fail to get an IP address (which is relatively easily detected) than to allow it 
to obtain one that cannot really be used effectively.

Note

There are name services other than conventional DNS that may be of use for 
link-local addressing, including Bonjour/ZeroConf (Apple), LLMNR, and NetBIOS 
(Microsoft). Because these have evolved over time from different vendors, and 
are not established IETF standards, the exact behavior involved when mapping 
names to addresses in the local environment varies considerably. See Chapter 11 
for more details on local alternatives to DNS.

The use of APIPA can be disabled, which prevents a system from self-assign-
ing an IP address. In Windows, this is accomplished by creating the following 
registry key (the key is a single line but is wrapped here for illustration):

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
IPAutoconfigurationEnabled

This REG_DWORD value may be set to 0 to disable APIPA for all network inter-
faces. In Linux, the file /etc/sysconfig/network can be modified to include 
the following directive:

NOZEROCONF=yes
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This disables the use of APIPA for all network interfaces. It is also possible to 
disable APIPA for specific interfaces by modifying the per-interface configura-
tion files (e.g., /etc/sysconfig/network-scripts/ifcfg-eth0 for the first 
Ethernet device).

In the case of IPv6 SLAAC, it is relatively easy to obtain a global IPv6 address, 
but the relationship between a name and its address is not secured, leading to a 
potential set of unpleasant consequences (see Chapters 11 and 18). Thus, it may 
still be desirable to avoid SLAAC in deployments for the time being. To disable 
SLAAC for IPv6 global addresses, there are two methods. First, the Router Adver-
tisement messages provided by the local router can be arranged to turn off the 
“auto” flag in the Prefix option (or configure it to not provide a Prefix option, as 
illustrated in the preceding example). In addition, a local configuration setting 
causes a client to avoid autoconfiguration of global addresses.

To disable SLAAC in a Linux client, the following command may be given:

Linux# sysctl –w net.ipv6.conf.all.autoconf=0

To do so on a Mac OS or FreeBSD system, at least for link-local addresses, the fol-
lowing command should be used:

FreeBSD# sysctl –w net.inet6.ip6.auto_linklocal=0

And, finally, for Windows:

C:\> netsh 
netsh> interface ipv6 
netsh interface ipv6> set interface {ifname} managedaddress=disabled  

where {ifname} should be replaced with the appropriate interface name (in this 
example, “Wireless Network Connection”). Note that the behavior of these 
configuration commands sometimes changes over time. Please check the operat-
ing system documentation for the current method if these changes do not perform 
as expected.

6.4 DHCP and DNS Interaction

One of the important parts of the configuration information a DHCP client typi-
cally receives when obtaining an IP address is the IP address of a DNS server. This 
allows the client system to convert DNS names to the IPv4 and/or IPv6 addresses 
required by the protocol implementation to make transport-layer connections. 
Without a DNS server or other way to map names to addresses, most users would 
find the system nearly useless for accessing the Internet. If the local DNS is work-
ing properly, it should be able to provide address mappings for the Internet as a 
whole, but also for local private networks (like .home mentioned earlier), if prop-
erly configured.
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Because DNS mappings for local private networks are cumbersome to manage 
by hand, it is convenient to couple the act of providing a DHCP-assigned address 
with a method for updating the DNS mappings corresponding to that address. 
This can be done either using a combined DHCP/DNS server or with dynamic DNS
(see Chapter 11).

A combined DNS/DHCP server (such as the Linux dnsmasq package) is a 
server program that can be configured to give out IP address leases and other 
information but that also reads the Client Identifier or Domain Name present in a 
DHCPREQUEST and updates an internal DNS database with the name-to-address 
binding before responding with the DHCPACK. In doing so, any subsequent DNS 
requests initiated either by the DHCP client or by other systems interacting with 
the same DNS server are able to convert between the name of the client and its 
freshly assigned IP address.

6.5 PPP over Ethernet (PPPoE)

For most LANs and some WAN connections, DHCP provides the most com-
mon method for configuring client systems. For WAN connections such as DSL, 
another method based on PPP is often used instead. This method involves carry-
ing PPP on Ethernet and is called PPP over Ethernet (PPPoE). PPPoE is used in cases 
where the WAN connection device (e.g., DSL modem) acts as a switch or bridge 
instead of a router. PPP is preferred as a basis for establishing connectivity by 
some ISPs because it may provide finer-grain configuration control and audit logs 
than other configuration options such as DHCP. To provide Internet connectivity, 
some device such as a user’s PC must implement the IP routing and addressing 
functions. Figure 6-28 shows the typical use case.

Figure 6-28  A simplified view of DSL service using PPPoE as provided to a customer. The home PC 
implements the PPPoE protocol and authenticates the subscriber with the ISP. It may 
also act as a router, DHCP server, DNS server, and/or NAT device for the home LAN. 
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The figure shows an ISP providing services to many customers using DSL. 
DSL provides a point-to-point digital link that can operate simultaneously with a 
conventional analog telephone line (called plain old telephone service or POTS). This 
simultaneous use of the customer’s physical phone wires is accomplished using 
frequency division multiplexing—the DSL information is carried on higher fre-
quencies than POTS. A filter is required when attaching conventional telephone 
handsets to avoid interference from the higher DSL frequencies. The DSL modem 
effectively provides a bridged service to a PPP port on the ISP’s access concentrator
(AC), which interconnects the customer’s modem line and the ISP’s networking 
equipment. The modem and AC also support the PPPoE protocol, which the user 
has elected in this example to configure on a home PC attached to the DSL modem 
using a point-to-point Ethernet network (i.e., an Ethernet LAN using only a single 
cable).

Once the DSL modem has successfully established a low-layer link with the 
ISP, the PC can begin the PPPoE exchange, as defined in the informational docu-
ment [RFC2516] and shown in Figure 6-29.

Figure 6-29  The PPPoE message exchange starts in a Discovery stage and establishes a PPP Session 
stage. Each message is a PAD message. PADI requests responses from PPPoE servers. 
PADO offers connectivity. PADR expresses the client’s selection among multiple pos-
sible servers. PADS provides an acknowledgment to the client from the selected server. 
After the PAD exchanges, a PPP session begins. The PPP session can be terminated by 
either side sending a PADT message or when the underlying link fails or is shut down.
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The protocol includes a Discovery phase and a PPP Session phase. The Discov-
ery phase involves the exchange of several PPPoE Active Discovery (PAD) messages: 
PADI (Initiation), PADO (Offer), PADR (Request), PADS (Session Confirmation). 
Once the exchange is complete, an Ethernet-encapsulated PPP session proceeds 
and ultimately concludes with either side sending a PADT (Termination) message. 
The session also concludes if the underlying connection is broken. PPPoE mes-
sages use the format shown in Figure 6-30 and are encapsulated in the Ethernet 
payload area.

Figure 6-30  PPPoE messages are carried in the payload area of Ethernet frames. The Ethernet Type
field is set to 0x8863 during the Discovery phase and 0x8864 when carrying PPP session 
data. For PAD messages, a TLV scheme is used for carrying configuration information, 
similar to DHCP options. The PPPoE Session ID is chosen by the server and conveyed 
in the PADS message.

In Figure 6-30, the PPPoE Ver and Type fields are both 4 bits long and contain 
the value 0x1 for the current version of PPPoE. The Code field contains an indica-
tion of the PPPoE message type, as shown in the lower right part of Figure 6-30. 
The Session ID field contains the value 0x0000 for PADI, PADO, and PADR mes-
sages and contains a unique 16-bit number in subsequent messages. The same 
value is maintained during the PPP Session phase. PAD messages contain one 
or more tags, which are TLVs arranged as a 16-bit TAG_TYPE field followed by a 
16-bit TAG_LENGTH field and a variable amount of tag value data. The values and 
meanings of the TAG_TYPE field are given in Table 6-2.
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To see PPPoE in action, we can monitor the exchange between a home system 
such as the home PC from Figure 6-28 and an access concentrator. The Discovery 
phase and first PPP session packet are shown in Figure 6-31.

Figure 6-31 shows the expected exchange of PADI, PADO, PADR, and PADS 
messages. Each contains the Host-Uniq tag with value 9c3a0000. Messages coming 
from the concentrator also include the value 90084090400368-rback37.snfcca in the 
AC-Name tag. The PADS message can be seen in more detail in Figure 6-32.

In Figure 6-32, the PADS message indicates the establishment of a PPP ses-
sion for the client and the use of the session ID 0xecbd. The AC-Name tag is also 
maintained to indicate the originating AC. The Discovery phase is now complete, 
and a regular PPP session (see Chapter 3) can commence. Figure 6-33 shows the 
first PPP session packet.

The figure indicates the beginning of the PPP Session phase within the PPPoE 
exchange. The PPP session begins with link configuration (PPP LCP) by the client 
sending a Configuration Request (see Chapter 3). It indicates that the client wishes 
to use the Password Authentication Protocol, a relatively insecure method, for 
authenticating itself to the AC. Once the authentication exchange is complete and 
various link parameters are exchanged (e.g., MRU), IPCP is used to obtain and 
configure the assigned IP address. Note that additional configuration information 
(e.g., IP addresses of the ISP’s DNS servers) may need to be obtained separately 
and, depending on the ISP’s configuration, configured by hand.

Table 6-2  PPPoE TAG_TYPE values, name, and purpose. PAD messages may contain one or more 
tags.

Value Name Purpose

0x0000 End-of-List Indicates that no further tags are present. TAG_
LENGTH must be 0.

0x0101 Service-Name Contains a UTF-8-encoded service name (for ISP use).
0x0102 AC-Name Contains a UTF-8-encoded string identifying the 

access concentrator.
0x0103 Host-Uniq Binary data used by client to match messages; not 

interpreted by AC.
0x0104 AC-Cookie Binary data used by AC for DoS protection; echoed 

by client.
0x0105 Vendor-Specific Not recommended; see [RFC2516] for details.
0x0110 Relay-Session-ID May be added by a relay relaying PAD traffic.
0x0201 Service-Name-Error The requested Service-Name tag cannot be honored 

by AC.
0x0202 AC-System-Error The AC experienced an error in performing a 

requested action.
0x0203 Generic-Error Contains a UTF-8 string describing an 

unrecoverable error.
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Figure 6-31  The PPPoE exchange begins with a PADI message sent to the Ethernet broadcast address. Subsequent messages use unicast addressing. In this 
exchange, only the Host-Uniq and AC-Name tags are used. The PPP session begins with the fifth packet, which begins a PPP link configuration 
exchange that ultimately assigns the system’s IPv4 address using the IPCP (see Chapter 3).
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Figure 6-32  The PPPoE PADS message confirms the association between the client and the access concentrator. 
This message also defines the session ID as 0xecbd, which is used in subsequent PPP session packets.

Figure 6-33  The first PPP message of the PPPoE session is a Configuration Request. The Ethernet type has changed 
to 0x8864 to indicate an active PPP session, and the Session ID is set to 0xecbd. In this case, the PPP 
client wishes to authenticate using the (relatively insecure) Password Authentication Protocol.
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6.6 Attacks Involving System Configuration

A wide variety of attacks can be mounted relating to system and network configu-
ration. They range from deploying unauthorized clients or unauthorized servers 
that interfere with DHCP to various forms of DoS attacks that involve resource 
exhaustion, such as requesting all possible IP addresses a server may have to give 
out. Many of these problems are widespread because the older IPv4-based proto-
cols used for address configuration were designed for networks where trust was 
assumed, and the newer ones have seen little deployment to date. (Secured deploy-
ments are even rarer.) Therefore, none of these attacks are directly addressed by 
typical DHCP deployments, although link-layer authentication (e.g., WPA2 as 
used with Wi-Fi networks) helps to limit the number of unauthorized clients that 
are able to attach to a particular network.

An effort is under way within the IETF to provide security for IPv6 Neighbor 
Discovery, which, when or if it is deployed, would directly impact the security 
of operating networks using SLAAC. The trust and threat assumptions are out-
lined in [RFC3756] from 2004, and the Secure Neighbor Discovery (SEND) protocol 
is defined in [RFC3971]. SEND applies IPsec (see Chapter 18) to Neighbor Discov-
ery packets, in combination with cryptographically generated addresses (CGAs) 
[RFC3972]. Such addresses are derived from a keyed hash function, so they can be 
generated only by a system holding the appropriate key material.

6.7 Summary

A basic set of configuration information is required for a host or router to operate 
on the Internet or on a private network using Internet protocols. At a minimum, 
routers typically require the assignment of addressing information, whereas hosts 
require addresses, a next-hop router, and the location of a DNS server. DHCP is 
available for both IPv4 as well as IPv6, but the two are not directly interoperable. 
DHCP allows appropriately configured servers to lease one or more addresses to 
requesting clients for a defined period of time. Clients renew their leases if they 
require ongoing use. DHCP can also be used by the client to acquire additional 
information, such as the subnet mask, default routers, vendor-specific configura-
tion information, DNS server, home agents, and default domain name. DHCP can 
be used through relay agents when a client and server are located on different net-
works. Several extensions to DHCP allow for additional information to be carried 
between a relay agent and server when this is used. DHCPv6 can also be used to 
delegate a range of IPv6 address space to a router.

With IPv6, a host typically uses multiple addresses. An IPv6 client is able to 
generate its link-local address autonomously by combining a special link-local 
IPv6 prefix with other local information such as bits derived from one of its 
MAC addresses or from a random number to help promote privacy. To obtain 
a global address, it can obtain a global address prefix from either ICMP Router 
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Advertisement messages or from a DHCPv6 server. DHCPv6 servers may operate 
in a “stateful” mode, in which they lease IPv6 addresses to requesting clients, or a 
“stateless” mode, in which they provide configuration information other than the 
addresses.

PPPoE carries PPP messages over Ethernet to establish Internet connectiv-
ity with ISPs, especially those ISPs that provide service using DSL. When using 
PPPoE, a user usually has a DSL modem with an Ethernet port acting as a bridge 
or switch. PPPoE first exchanges a set of Discovery messages to determine the 
identity of an access controller and establish a PPP session. After the Discovery 
phase is successfully completed, PPP traffic, which can be encapsulated in Eth-
ernet and carry various protocols such as IP, may continue until the PPPoE asso-
ciation is terminated, either intentionally or as a result of disconnection of the 
underlying link. When PPPoE is used, the PPP protocol’s configuration capabili-
ties such as IPCP (discussed in Chapter 3) are ultimately responsible for assigning 
the IP address to the client system.

DHCP and the ICMPv6 router advertisements used with IPv6 stateless auto-
configuration are ordinarily deployed without security mechanisms being applied 
to them. Because of this, they are susceptible to a number of attacks, including net-
work access by unauthorized clients, operation of rogue DHCP servers that give 
out bogus addresses and cause various forms of denial of service, and resource 
exhaustion attacks in which a client may request more addresses than are avail-
able. Most of these attacks can be mitigated by security mechanisms that have 
been added to DHCP such as DHCP authentication and the relatively recent SEND 
protocol. However, these are not commonly found in operation today.
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7

Firewalls and Network Address 
Translation (NAT) 

7.1 Introduction

During the early years of the Internet and its protocols, most network designers 
and developers were from universities or other entities engaged in research. These 
researchers were generally friendly and cooperative, and the Internet system was 
not especially resilient to attack, but not many people were interested in attack-
ing it, either. By the late 1980s and especially the early to mid-1990s the Internet 
had gained the interest of the mass population and ultimately people interested 
in compromising its security. Successful attacks became commonplace, and many 
problems were caused by bugs or unplanned protocol operations in the software 
implementations of Internet hosts. Because some sites had a large number of end 
systems with various versions of operating system software, it became very dif-
ficult for system administrators to ensure that all the various bugs in these end 
systems had been fixed. Furthermore, for obsolete systems, this task was all but 
impossible. Fixing the problem would have required a way to control the Internet 
traffic to which the end hosts were exposed. Today, this is provided by a firewall—
a type of router that restricts the types of traffic it forwards.

As firewalls were being deployed to protect enterprises, another problem 
was becoming important: the number of available IPv4 addresses was dimin-
ishing, with a threat of exhaustion. Something would have to be done with the 
way addresses were allocated and used. One of the most important mechanisms 
developed to deal with this, aside from IPv6, is called Network Address Translation
(NAT). With NAT, Internet addresses need not be globally unique, and as a conse-
quence they can be reused in different parts of the Internet, called address realms. 
Allowing the same addresses to be reused in multiple realms greatly eased the 
problem of address exhaustion. As we shall see, NAT can also be synergistically 
combined with firewalls to produce combination devices that have become the 
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most popular types of routers used to connect end users, including home net-
works and small enterprises, to the Internet. We shall now explore both firewalls 
and NATs in further detail.

7.2 Firewalls

Given the enormous management problems associated with trying to keep end 
system software up-to-date and bug-free, the focus of resisting attacks expanded 
from securing end systems to restricting the Internet traffic allowed to flow to end 
systems by filtering out some traffic using firewalls. Today, firewalls are common, 
and several different types have evolved.

The two major types of firewalls commonly used include proxy firewalls and 
packet-filtering firewalls. The main difference between them is the layer in the pro-
tocol stack at which they operate, and consequently the way IP addresses and port 
numbers are used. The packet-filtering firewall is an Internet router that drops 
datagrams that (fail to) meet specific criteria. The proxy firewall operates as a 
multihomed server host from the viewpoint of an Internet client. That is, it is the 
endpoint of TCP and UDP transport associations; it does not typically route IP 
datagrams at the IP protocol layer.

7.2.1 Packet-Filtering Firewalls

Packet-filtering firewalls act as Internet routers and filter (drop) some traffic. They 
can generally be configured to discard or forward packets whose headers meet 
(or fail to meet) certain criteria, called filters. Simple filters include range compari-
sons on various parts of the network-layer or transport-layer headers. The most 
popular filters involve undesired IP addresses or options, types of ICMP mes-
sages, and various UDP or TCP services, based on the port numbers contained in 
each packet. As we shall see, the simplest packet-filtering firewalls are stateless, 
whereas the more sophisticated ones are stateful. Stateless packet-filtering fire-
walls treat each datagram individually, whereas stateful firewalls are able associ-
ate packets with either previously observed packets or packets that arrive in the 
future to make inferences about datagrams or streams—either those belonging to 
a single transport association or those IP fragments that constitute an IP datagram 
(see Chapter 10). IP fragmentation can significantly complicate a firewall’s job, and 
stateless packet-filtering firewalls are easily confused by fragments.

A typical packet-filtering firewall is shown in Figure 7-1. Here, the firewall is 
an Internet router with three network interfaces: an “inside,” an “outside,” and a 
third “DMZ” interface. The DMZ subnet provides access to an extranet or DMZ 
where servers are deployed for Internet users to access. Network administrators 
install filters or access control lists (ACLs, basically policy lists indicating what 
types of packets to discard or forward) in the firewall. Typically, these filters con-
servatively block traffic from the outside that may be harmful and liberally allow 
traffic to travel from inside to outside.
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7.2.2 Proxy Firewalls

Packet-filtering firewalls act as routers that selectively drop packets. Other types 
of firewalls, called proxy firewalls, are not really Internet routers in the true sense. 
Instead, they are essentially hosts running one or more application-layer gateways
(ALGs)—hosts with more than one network interface that relay traffic of certain 
types between one connection/association and another at the application layer. 
They do not typically perform IP forwarding as routers do, although more sophis-
ticated proxy firewalls are now available that combine various functions.

Figure 7-2 illustrates a proxy firewall. For this type of firewall, clients on the 
inside of the firewall are usually configured in a special way to associate (or con-
nect) with the proxy instead of the actual end host providing the desired service. 
(Applications capable of operating with proxy firewalls this way include con-
figuration options for it.) These firewalls act as multihomed hosts, and their IP 
forwarding capability, if present, is typically disabled. As with packet-filtering 
firewalls, a common configuration is to have an “outside” interface assigned a 
globally routable IP address and for its “inner” interface to be configured with a 
private IP address. Thus, proxy firewalls support the use of private address realms.

Figure 7-1  A typical packet-filtering firewall configuration. The firewall acts as an IP router between 
an “inside” and an “outside” network, and sometimes a third “DMZ” or extranet net-
work, allowing only certain traffic to pass through it. A common configuration allows 
all traffic to pass from inside to outside but only a small subset of traffic to pass in 
the reverse direction. When a DMZ is used, only certain services are permitted to be 
accessed from the Internet.



ptg999

302 Firewalls and Network Address Translation (NAT)  

While this type of firewall can be quite secure (some people believe this type 
is fundamentally more secure than packet-filtering firewalls), this security comes 
at a cost of brittleness and lack of flexibility. In particular, because this style of 
firewall must contain a proxy for each transport-layer service, any new services 
to be used must have a corresponding proxy installed and operated for connec-
tivity to take place through the proxy. In addition, each client must typically be 
configured to find the proxy (e.g., using the Web Proxy Auto-Discovery Protocol, 
or WPAD [XIDAD], although there are some alternatives—so-called capturing 
proxies that catch all traffic of a certain type regardless of destination address). 
With respect to deployment, these firewalls work well in environments where all 
types of network services being accessed are known with certainty in advance, 
but they may require significant intervention from network operators to support 
additional services.

The two most common forms of proxy firewalls are HTTP proxy firewalls
[RFC2616] and SOCKS firewalls [RFC1928]. The first type, also called Web proxies, 
work only for the HTTP and HTTPS (Web) protocols, but because these protocols 
are so popular, such proxies are commonly used. These proxies act as Web serv-
ers for internal clients and as Web clients when accessing external Web sites. Such 
proxies often also operate as Web caches. These caches save copies of Web pages so 
that subsequent accesses can be served directly from the cache instead of from the 
originating Internet Web server. Doing so can reduce latency to display Web pages 
and improve the experience of users accessing the Web. Some Web proxies are 
also used as content filters, which attempt to block access to certain Web sites based 
on a “blacklist” of prohibited sites. Conversely, a number of so-called tunneling 
proxy servers are available on the Internet. These servers (e.g., psiphon, CGIProxy) 
essentially perform the opposite function—to allow users to avoid being blocked 
by content filters.

Figure 7-2  The proxy firewall acts as a multihomed Internet host, terminating TCP connections and 
UDP associations at the application layer. It does not act as a conventional IP router but 
rather as an ALG. Individual applications or proxies for each service supported must be 
enabled for communication to take place through the proxy firewall.
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The SOCKS protocol is more generic than HTTP for proxy access and is appli-
cable to more services than just the Web. Two versions of SOCKS are currently 
in use: version 4 and version 5. Version 4 provides the basic support for proxy 
traversal, and version 5 adds strong authentication, UDP traversal, and IPv6 
addressing. To use a SOCKS proxy, an application must be written to use SOCKS 
(it must be “socksified”) and configured to know about the location of the proxy 
and which version of SOCKS to use. Once this is accomplished, the client uses the 
SOCKS protocol to request the proxy to perform network connections and, option-
ally, DNS lookups.

7.3 Network Address Translation (NAT)

NAT is essentially a mechanism for allowing the same sets of IP addresses to be 
reused in different parts of the Internet. The primary motivation for the creation 
of NAT was the limited and diminishing availability of IP address space. The most 
common use case for a NAT is when a site with a single Internet connection is 
assigned a small range of IP addresses (perhaps only a single address), but there 
are multiple computers requiring Internet access. When all incoming and outgo-
ing traffic passes through a single NAT device that partitions the inside (private) 
address realm from the global Internet address realm, all the internal systems 
can be provided Internet connectivity as clients using locally assigned, private IP 
addresses. Allowing privately addressed systems to offer services on the Internet, 
however, is somewhat more complicated. We discuss this case in Section 7.3.4.

NAT was introduced to solve two problems: address depletion and con-
cerns regarding the scalability of routing. At the time of its introduction (early 
1990s), NAT was suggested as a stopgap, temporary measure to be used until the 
deployment of some protocol with a larger number of addresses (ultimately, IPv6) 
became widespread. Routing scalability was being tackled with the development 
of Classless Inter-Domain Routing (CIDR; see Chapter 2). NAT is popular because 
it reduces the need for globally routable Internet addresses but also because it 
offers some degree of natural firewall capability and requires little configuration. 
Perhaps ironically, the development and eventual widespread use of NAT has con-
tributed to significantly slow the adoption of IPv6. Among its other benefits, IPv6 
was intended to make NAT unnecessary [RFC4864]. 

Despite its popularity, NAT has several drawbacks. The most obvious is that 
offering Internet-accessible services from the private side of a NAT requires spe-
cial configuration because privately addressed systems are not directly reach-
able from the Internet. In addition, for a NAT to work properly, every packet in 
both directions of a connection or association must pass through the same NAT. 
This is because the NAT must actively rewrite the addressing information in each 
packet in order for communication between a privately addressed system and a 
conventionally addressed Internet host to work. In many ways, NATs run counter 
to a fundamental tenet of the Internet protocols: the “smart edge” and “dumb 
middle.” To do their job, NATs require connection state on a per-association (or 
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per-connection) basis and must operate across multiple protocol layers, unlike con-
ventional routers. Modifying an address at the IP layer also requires modifying 
checksums at the transport layer (see Chapters 10 and 13 regarding the pseudo-
header checksum to see why). 

NAT poses problems for some application protocols, especially those that 
send IP addressing information inside the application-layer payload. The File 
Transfer Protocol (FTP) [RFC0959] and SIP [RFC5411] are among the best-known 
protocols of this type. They require a special application-layer gateway function 
that rewrites the application content in order to work unmodified with NAT or 
other NAT traversal methods that allow the applications to determine how to 
work with the specific NAT they are using. A more complete list of considerations 
regarding NAT appears in [RFC3027]. Despite their numerous problems, NATs 
are very widely used, and most network routers (including essentially all low-end 
home routers) support it. Today, NATs are so prevalent that application designers 
are encouraged to make their applications “NAT-friendly” [RFC3235]. It is worth 
mentioning that despite its shortcomings, NAT supports the basic protocols (e.g., 
e-mail, Web browsing) that are needed by millions of client systems accessing the 
Internet every day.

A NAT works by rewriting the identifying information in packets transit-
ing through a router. Most commonly this happens for two directions of a data 
transfer. In its most basic form, NAT involves rewriting the source IP address of 
packets as they are forwarded in one direction and the destination IP addresses of 
packets traveling in the reverse direction (see Figure 7-3). This allows the source 
IP address in outgoing packets to become one of the NAT router’s Internet-facing 
interfaces instead of the originating host’s. Thus, to a host on the Internet, packets 
coming from any of the hosts on the privately addressed side of the NAT appear 
to be coming from a globally routable IP address of the NAT router.

Figure 7-3  A NAT isolates private addresses and the systems using them from the Internet. Packets 
with private addresses are not routed by the Internet directly but instead must be trans-
lated as they enter and leave the private network through the NAT router. Internet hosts 
see traffic as coming from a public IP address of the NAT.
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Most NATs perform both translation and packet filtering, and the packet-filtering 
criteria depend on the dynamics of the NAT state. The choice of packet-filtering 
policy may have a different granularity—for example, the treatment of unsolic-
ited packets (those not associated with packets originating from behind the NAT) 
received by the NAT may depend on source and destination IP address and/or 
source and destination port number. The behavior may vary between NATs or in 
some cases vary over time through the same NAT. This presents challenges for 
applications that must operate behind a wide variety of NATs.

7.3.1 Traditional NAT: Basic NAT and NAPT

The precise behavior of a NAT remained unspecified for many years. Nonetheless, 
a taxonomy of NAT types has emerged, based largely on observing how different 
implementations of the NAT idea behave. The so-called traditional NAT includes 
both basic NAT and Network Address Port Translation (NAPT) [RFC3022]. Basic NAT 
performs rewriting of IP addresses only. In essence, a private address is rewritten 
to be a public address, often from a pool or range of public addresses supplied 
by an ISP. This type of NAT is not the most popular because it does not help to 
dramatically reduce the need for IP addresses—the number of globally routable 
addresses must equal or exceed the number of internal hosts that wish to access 
the Internet simultaneously. A much more popular approach, NAPT involves 
using the transport-layer identifiers (i.e., ports for TCP and UDP, query identifiers 
for ICMP) to differentiate which host on the private side of the NAT is associated 
with a particular packet (see Figure 7-4). This allows a large number of internal 
hosts (i.e., multiple thousands) to access the Internet simultaneously using a lim-
ited number of public addresses, often only a single one. We shall ordinarily use 
the term NAT to include both traditional NAT and NAPT unless the distinction is 
important in a particular context.

Figure 7-4  A basic IPv4 NAT (left) rewrites IP addresses from a pool of addresses and leaves port numbers 
unchanged. NAPT (right), also known as IP masquerading, usually rewrites address to a single 
address. NAPT must sometimes rewrite port numbers in order to avoid collisions. In this case, the 
second instance of port number 23479 was rewritten to use port number 3000 so that returning 
traffic for 192.168.1.2 could be distinguished from the traffic returning to 192.168.1.35.
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The addresses used in a private addressing realm “behind” or “inside” a NAT 
are not enforced by anyone other than the local network administrator. Thus, it is 
possible for a private realm to make use of global address space. In principle, this 
is acceptable. However, when such global addresses are owned and being used 
by another entity on the Internet, local systems in the private realm would most 
likely be unable to reach the public systems using the same addresses because the 
close proximity of the local systems would effectively “mask” the visibility of the 
farther-away systems using the same addresses. To avoid this undesirable situa-
tion, there are three IPv4 address ranges reserved for use with private address-
ing realms [RFC1918]: 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16. These address 
ranges are often used as default values for address pools in embedded DHCP 
servers (see Chapter 6).

As suggested earlier, a NAT provides some degree of security similar to that 
of a firewall. By default, all systems on the private side of the NAT cannot be 
reached from the Internet. In most NAT deployments, the internal systems use 
private addresses. Consequently, communications between hosts in the private 
addressing realm and those in the public realm can be facilitated only with partic-
ipation from the NAT, according to its usage policies and behavior. While a large 
variety of policies may be used in practice, a common policy allows almost all 
outgoing and returning traffic (associated with outgoing traffic) to pass through 
the NAT but blocks almost all incoming new connection requests. This behav-
ior inhibits “probing” attacks that attempt to ascertain which IP addresses have 
active hosts available to exploit. In addition, a NAT (especially a NAPT) “hides” 
the number and configuration of internal addresses from the outside. Some users 
feel this topology information is proprietary and should remain confidential. NAT 
helps by providing so-called topology hiding.

As we shall now explore, NATs are tailored to the protocols and applications 
that they need to support, so it is difficult to discuss NAT behavior without also 
mentioning the particular protocol(s) it is being asked to handle. Thus, we now 
turn to how NAT behaves with each major transport protocol and how it may be 
used in mixed IPv4/IPv6 environments. Many of the behavioral specifics for NATs 
have been the subject of the IETF Behavior Engineering for Hindrance Avoidance 
(BEHAVE) working group. BEHAVE has produced a number of documents, start-
ing in 2007, that clarify consistent behaviors for NATs. These documents are useful 
for application writers and NAT developers so that a consistent expectation can be 
established as to how NATs should operate.

7.3.1.1 NAT and TCP
Recall from Chapter 1 that the primary transport-layer protocol for the Internet, 
TCP, uses an IP address and port number to identify each end of a connection. A 
connection is identified by the combination of two ends; each unique TCP con-
nection is identified by two IP addresses and two port numbers. When a TCP 
connection starts, an “active opener” or client usually sends a synchronization 
(SYN) packet to a “passive opener” or server. The server responds with its own 
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SYN packet, which also includes an acknowledgment (ACK) of the client’s SYN. 
The client then responds with an ACK to the server. This “three-way handshake” 
establishes the connection. A similar exchange with finish (FIN) packets is used 
to gracefully close a connection. The connection can also be forcefully closed right 
away using a reset (RST) packet. (See Chapter 13 for more detail on TCP connec-
tions.) The behavioral requirements for traditional NAT with TCP are defined in 
[RFC5382] and relate primarily to the TCP three-way handshake. 

Referring to the example home network in Figure 7-3, consider a TCP con-
nection initiated by the wireless client at 10.0.0.126 destined for the Web server 
on the host www.isoc.org (IPv4 address 212.110.167.157). Using the following 
notation to indicate IPv4 addresses and port numbers—(source IP:source port; 
destination IP:destination port)—the packet initiating the connection on the pri-
vate segment might be addressed as (10.0.0.126:9200; 212.110.167.157:80). The NAT/
firewall device, acting as the default router for the client, receives the first packet. 
The NAT notices that the incoming packet is a new connection (because the SYN 
bit in the TCP header is turned on; see Chapter 13). If policy permits (which it 
typically does because this is an outgoing connection), the source IP address 
is modified in the packet to reflect the routable IP address of the NAT router’s 
external interface. Thus, when the NAT forwards this packet, the addressing is 
(63.204.134.177:9200; 212.110.167.157:80). In addition to forwarding the packet, the 
NAT creates internal state to remember the fact that a new connection is being 
handled by the NAT (called a NAT session). At a minimum, this state includes an 
entry (called a NAT mapping) containing the source port number and IP address 
of the client. This becomes useful when the Internet server replies. The server 
replies to the endpoint (63.204.134.177:9200), the external NAT address, using the 
port number chosen initially by the client. This behavior is called port preservation. 
By matching the destination port number on the received datagram against the 
appropriate NAT mapping, the NAT is able to ascertain the internal IP address of 
the client that made the initial request. In our example, this address is 10.0.0.126, so 
the NAT rewrites the response packet from (212.110.167.157:80; 63.204.134.177:9200) 
to (212.110.167.157:80; 10.0.0.126:9200) and forwards it. The client then receives a 
response to its request and for most purposes is now connected to the server.

This example conveys how a basic NAT session is established in the nor-
mal case, but not how the session is cleared. Session state is removed if FINs 
are exchanged, but not all TCP connections are cleared gracefully. Sometimes a 
computer is simply turned off, which can leave stale NAT mappings in the NAT’s 
memory. Thus, a NAT must also remove mappings thought to have “gone dead” 
because of a lack of traffic (or if an RST segment indicates some other form of 
problem).

Most NATs include a simplified version of the TCP connection establishment 
procedures and can distinguish between connection success and failure. In par-
ticular, when an outgoing SYN segment is observed, a connection timer is acti-
vated, and if no ACK is seen before the timer expires, the session state is cleared. 
If an ACK does arrive, the timer is canceled and a session timer is created, with a 

www.isoc.org
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considerably longer timeout (e.g., hours instead of minutes). When this happens, 
the NAT may send an additional packet to the internal endpoint, just to double-
check if the session is indeed dead (called probing). If it receives an ACK, the NAT 
realizes that the connection is still active, resets the session timer, and does not 
delete the session. If it receives either no response (after a close timer has expired) 
or an RST segment, the connection has gone dead, and the state is cleared.

[RFC5382], a product of the BEHAVE working group, notes that a TCP con-
nection can be configured to send “keepalive” packets (see Chapter 17), and the 
default rate is one packet every 2 hours, if enabled. Otherwise, a TCP connection 
can remain established indefinitely. While a connection is being set up or cleared, 
however, the maximum idle time is 4 minutes. Consequently, [RFC5382] requires 
(REQ-5) that a NAT wait at least 2 hours and 4 minutes before concluding that 
an established connection is dead and at least 4 minutes before concluding that a 
partially opened or closed connection is dead.

One of the tricky problems for a TCP NAT is handling peer-to-peer applica-
tions operating on hosts residing on the private sides of multiple NATs [RFC5128]. 
Some of these applications use a simultaneous open whereby each end of the con-
nection acts as a client and sends SYN packets more or less simultaneously. TCP is 
able to handle this case by responding with SYN + ACK packets that complete the 
connection faster than with the three-way handshake, but many existing NATs do 
not handle it properly. [RFC5382] addresses this by requiring (REQ-2) that a NAT 
handle all valid TCP packet exchanges, and simultaneous opens in particular. 
Some peer-to-peer applications (e.g., network games) use this behavior. In addi-
tion, [RFC5382] specifies that an inbound SYN for a connection about which the 
NAT knows nothing should be silently discarded. This can occur when a simulta-
neous open is attempted but the external host’s SYN arrives at the NAT before the 
internal host’s SYN. Although this may seem unlikely, it can happen as a result 
of clock skew, for example. If the incoming external SYN is dropped, the internal 
SYN has time to establish a NAT mapping for the same connection represented by 
the external SYN. If no internal SYN is forthcoming in 6s, the NAT may signal an 
error to the external host.

7.3.1.2 NAT and UDP
The NAT behavioral requirements for unicast UDP are defined in [RFC4787]. 
Most of the same issues arise when performing NAT on a collection of UDP data-
grams as arise when performing NAT on TCP. UDP is somewhat different, how-
ever, because there are no connection establishment and clearing procedures as 
there are in TCP. More specifically, there are no indicators such as the SYN, FIN, 
and RST bits to indicate that a session is being created or destroyed. Furthermore, 
the participants in an association may not be completely clear. UDP does not use 
a 4-tuple to identify a connection like TCP; instead, it can rely on only the two 
endpoint address/port number combinations. To handle these issues, UDP NATs 
use a mapping timer to clear NAT state if a binding has not been used “recently.” 
There is considerable variation in the values used for this timer to determine what 
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“recently” means, but [RFC4787] requires the timer to be at least 2 minutes and rec-
ommends that it be 5 minutes. A related consideration is when the timer should be 
considered refreshed. Timers can be refreshed when packets travel from the inside 
to the outside of the NAT (NAT outbound refresh behavior) or vice versa (NAT 
inbound refresh behavior). [RFC4787] requires NAT outbound refresh behavior to 
be true. Inbound behavior may or may not be true.

As we discussed in Chapter 5 (and will see again in Chapter 10), UDP and IP 
packets can be fragmented. Fragmentation allows for a single IP packet to span 
multiple chunks (fragments), each of which is treated as an independent data-
gram. However, because of the layering of UDP above IP, an IP fragment other 
than the first one does not contain the port number information needed by NAPT 
to operate properly. This also applies to TCP and ICMP. Thus, in general, frag-
ments cannot be handled properly by simple NATs or NAPTs.

7.3.1.3 NAT and Other Transport Protocols (DCCP, SCTP)
Although TCP and UDP are by far the most widely used Internet transport pro-
tocols, there are two other protocols for which NAT behaviors have been defined 
or are being defined. The Datagram Congestion Control Protocol (DCCP) [RFC4340] 
provides a congestion-controlled datagram service. [RFC5597] gives NAT behav-
ioral requirements with respect to DCCP, and [RFC5596] gives a modification to 
DCCP to support a TCP-like simultaneous open procedure for use with DCCP. The 
Stream Control Transmission Protocol (SCTP) [RFC4960] provides a reliable messag-
ing service that can accommodate hosts with multiple addresses. Considerations 
for NAT with SCTP are given in [HBA09] and [IDSNAT].

7.3.1.4 NAT and ICMP
ICMP, the Internet Control Message Protocol, is detailed in Chapter 8. It provides 
status information about IP packets and can also be used for making certain mea-
surements and gathering information about the state of the network. The NAT 
behavioral requirements for ICMP are defined in [RFC5508]. There are two issues 
involved when NAT is used for ICMP. ICMP has two categories of messages: infor-
mational and error. Error messages generally contain a (partial or full) copy of the 
IP packet that induced the error condition. They are sent from the point where 
an error was detected, often in the middle of the network, to the original sender. 
Ordinarily, this presents no difficulty, but when an ICMP error message passes 
through a NAT, the IP addresses in the included “offending datagram” need to 
be rewritten by the NAT in order for them to make sense to the end client (called 
ICMP fix-up). For informational messages, the same issues arise, but in this case 
most message types are of a query/response or client/server nature and include 
a Query ID field that is handled much like port numbers for TCP or UDP. Thus, 
a NAT handling these types of messages can recognize outgoing informational 
requests and set a timer in anticipation of a returning response. 
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7.3.1.5 NAT and Tunneled Packets
In some cases, tunneled packets (see Chapter 3) are to be sent through a NAT. 
When this happens, not only must a NAT rewrite the IP header, but it may also 
have to rewrite the headers or payloads of other packets that are encapsulated in 
them. One example of this is the Generic Routing Encapsulation (GRE) header 
used with the Point-to-Point Tunneling Protocol (PPTP; see Chapter 3). When 
the GRE header is passed through a NAT, its Call-ID field could conflict with the 
NAT’s (or with other hosts’ tunneled connections). If the NAT fails to handle this 
mapping appropriately, communication is not possible. As we might imagine, 
additional levels of encapsulation serve only to complicate a NAT’s job further.

7.3.1.6 NAT and Multicast
So far we have discussed only unicast IP traffic with NATs. NATs can be config-
ured to support multicast traffic (see Chapter 9), although this is rare. [RFC5135] 
gives the requirements for handling multicast traffic through NATs. In effect, to 
support multicast traffic a NAT is augmented with an IGMP proxy (see [RFC4605] 
and Chapter 9). In addition, the destination IP addresses and port numbers of 
packets traveling from a host on the outside to the inside of NAT are not modified. 
For traffic flowing from inside to outside, the source addresses and port numbers 
may be modified according to the same behaviors as with unicast UDP.

7.3.1.7 NAT and IPv6
Given the tremendous popularity of NAT for IPv4, it is natural to wonder whether 
NAT will be used with IPv6. At present, this is a contentious issue [RFC5902]. 
To many protocol designers, NAT arose as a necessary but undesirable “wart” 
that has added a tremendous amount of complexity to the design of every other 
protocol. Consequently, there is staunch resistance to supporting the use of NAT 
with IPv6 based on the idea that saving address space is unnecessary with IPv6 
and that other desirable NAT features (e.g., firewall-like functionality, topology 
hiding, and privacy) can be better achieved using Local Network Protection (LNP) 
[RFC4864]. LNP represents a collection of techniques with IPv6 that match or 
exceed the properties of NATs.

Aside from its packet-filtering properties, NAT supports the coexistence of 
multiple address realms and thereby helps to avoid the problem of a site having 
to change its IP addresses when it switches ISPs. For example, [RFC4193] defines 
Unique Local IPv6 Unicast Addresses (ULAs) that could conceivably be used with an 
experimental version of IPv6-to-IPv6 prefix translation called NPTv6 [RFC6296]. It 
uses an algorithm instead of a table to translate IPv6 addresses to (different) IPv6 
addresses (e.g., in different realms) based on their prefix and as a result does not 
require keeping per-connection state as with conventional NAT. In addition, the 
algorithm modifies addresses in such a way that the resulting checksum compu-
tation for common transport protocols (TCP, UDP) remains the same. This sig-
nificantly reduces the complexity of NAT because it does not have to modify the 
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data in a packet beyond the network layer and does not require access to trans-
port layer port numbers in order to operate properly. However, applications that 
require access to a NAT’s external address must still use a NAT traversal method 
or depend on an ALG. In addition, NPTv6 does not by itself offer the packet-fil-
tering capabilities of a firewall, so additional deployment considerations must be 
made.

7.3.2 Address and Port Translation Behavior

There has been considerable variation in the way NATs operate. Most of the details 
relate to the specifics of the address and port mappings. One of the primary goals 
of the BEHAVE working group in IETF was to clarify the common behaviors and 
set guidelines as to which are the most appropriate. To better understand the 
issues involved, we begin with a generic NAT mapping example (see Figure 7-5).

Figure 7-5  A NAT’s address and port behavior is characterized by what its mappings depend on. 
The inside host uses IP address:port X:x to contact Y1:y1 and then Y2:y2. The address and 
port used by the NAT for these associations are X1′:x1′ and X2′:x2′, respectively. If X1′:x1′
equals X2′:x2′ for any Y1:y1 or Y2:y2, the NAT has endpoint-independent mappings. If 
X1′:x1′ equals X2′:x2′ if and only if Y1 equals Y2, the NAT has address-dependent map-
pings. If X1′:x1′ equals X2′:x2′ if and only if Y1:y1 equals Y2:y2, the NAT has address- 
and port-dependent mappings. A NAT with multiple external addresses (i.e., where X1′
may not equal X2′) has an address pooling behavior of arbitrary if the outside address is 
chosen without regard to inside or outside address. Alternatively, it may have a pooling 
behavior of paired, in which case the same X1 is used for any association with Y1.

In Figure 7-5, we use the notation X:x to indicate that a host in the private 
addressing realm (inside host) uses IP address X with port number x (for ICMP, 
the query ID is used instead of the port number). The IP address X is ordinarily 
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chosen from the private IPv4 address space defined in [RFC1918]. To reach the 
remote address/port combination Y:y, the NAT establishes a mapping using an 
external (usually a public, globally routable) address X1′ and port number x1′. 
Assuming that the internal host contacts Y1:y1 followed by Y2:y2, the NAT estab-
lishes mappings X1′:x1′ and X2′:x2′, respectively. In most cases, X1′ equals X2′
because most sites use only a single globally routable IP address. The mapping is 
said to be reused if x1′ equals x2′. If x1′ and x2′ equal x, the NAT implements port 
preservation, mentioned earlier. In some cases, port preservation is not possible, 
so the NAT must deal with port collisions as suggested by Figure 7-4.

Table 7-1 and Figure 7-5 summarize the various NAT port and address behav-
iors based on definitions from [RFC4787]. Table 7-1 also gives filtering behaviors 
that use similar terminology and that we discuss in Section 7.3.3. For all common 
transports, including TCP and UDP, the required NAT address- and port-handling 
behavior is endpoint-independent (a similar behavior is recommended for ICMP). 
The purpose of this requirement is to help applications that attempt to determine 
the external addresses used for their traffic to work more reliably. We discuss this 
in more detail in Section 7.4 when we discuss NAT traversal.

Table 7-1  A NAT’s overall behavior is defined by both its translation and filtering behaviors. Each of these 
may be independent of host address, dependent on address, or dependent on both address and port 
number.

Behavior Name Translation Behavior Filtering Behavior

Endpoint-
independent

X1′:x1′ = X2′:x2′ for all 
Y2:y2 (required)

Allows any packets for X1:x1 as long as any X1′:x1′
exists (recommended for greatest transparency)

Address-
dependent

X1′:x1′ = X2′:x2′ iff 
Y1 = Y2

Allows packets for X1:x1 from Y1:y1 as long as X1
has previously contacted Y1 (recommended for 
more stringent filtering)

Address- and 
port-dependent

X1′:x1′ = X2′:x2′ iff 
Y1:y1 = Y2:y2

Allows packets for X1:x1 from Y1:y1 as long as X1
has previously contacted Y1:y1

As stated previously, a NAT may have several external addresses available to 
use. The set of addresses is typically called the NAT pool or NAT address pool. Most 
moderate to large-scale NATs use address pools. Note that NAT address pools are 
distinct from the DHCP address pools discussed in Chapter 6, although a single 
device may need to handle both NAT and DHCP address pools. One question 
in such environments is that when a single host behind the NAT opens multiple 
simultaneous connections, is each assigned the same external IP address (called 
address pairing) or not? A NAT’s IP address pooling behavior is said to be arbitrary
if there is no restriction on which external address is used for any association. It 
is said to be paired if it implements address pairing. Pairing is the recommended 
NAT behavior for all transports. If pairing is not used, the communication peer 
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of an internal host may erroneously conclude that it is communicating with dif-
ferent hosts. For NATs with only a single external address, this is obviously not a 
problem.

A very brittle type of NAT overloads not only addresses but also ports (called 
port overloading). In this case, the traffic of multiple internal hosts may be rewrit-
ten to the same external IP address and port number. This is a dangerous prospect 
because if multiple hosts associate with a service on the same external host, it is 
no longer possible to determine the appropriate destination for traffic returning 
from the external host. For TCP, this is a consequence of all four elements of the 
connection identifier (source and destination address and port numbers) being 
identical in the external network among the various connections. Such behavior 
is now disallowed.

Some NATs implement a special feature called port parity. Such NATs attempt 
to preserve the “parity” (evenness or oddness) of port numbers. Thus, if x1 is even, 
x1′ is even and vice versa. Although not as strong as port preservation, such behav-
ior is sometimes useful for specific application protocols that use special port 
numberings (e.g., the Real-Time Protocol, abbreviated RTP, has traditionally used 
multiple ports, but there are proposed methods for avoiding this issue [RFC5761]). 
Port parity preservation is a recommended NAT feature but not a requirement. It 
is also expected to become less important over time as more sophisticated NAT 
traversal methods become widespread.

7.3.3 Filtering Behavior

When a NAT creates a binding for a TCP connection, UDP association, or vari-
ous forms of ICMP traffic, not only does it establish the address and port map-
pings, but it must also determine its filtering behavior for the returning traffic if 
it acts as a firewall, which is the common case. The type of filtering a NAT per-
forms, although logically distinct from its address- and port-handling behavior, is 
often related. In particular, the same terminology is used: endpoint-independent, 
address-dependent, and address- and port-dependent.

A NAT’s filtering behavior is usually related to whether it has established an 
address mapping. Clearly, a NAT lacking any form of address mapping is unable 
to forward any traffic it receives from the outside to the inside because it would 
not know which internal destination to use. For the most common case of outgo-
ing traffic, when a binding is established, filtering is disabled for relevant return 
traffic. For NATs with endpoint-independent behavior, as soon as any mapping 
is established for an internal host, any incoming traffic is permitted, regardless 
of source. For address-dependent filtering behavior, traffic destined for X1:x1
is permitted from Y1:y1 only if Y1 had been previously contacted by X1:x1. For 
those NATs with address- and port-dependent filtering behavior, traffic destined 
for X1:x1 is permitted from Y1:y1 only if Y1:y1 had been previously contacted 
by X1:x1. The difference between the last two is that the last form takes the port 
number y1 into account.
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7.3.4 Servers behind NATs

One of the most obvious problems with NATs is that a system wishing to provide 
a service from behind a NAT is not directly reachable from the outside. Consider 
the example in Figure 7-3 once again. If the host with address 10.0.0.3 is to pro-
vide a service to the Internet, it cannot be reached without participation from the 
NAT, for at least two reasons. First, the NAT is acting as the Internet router, so it 
must agree to forward the incoming traffic destined for 10.0.0.3. Second, and more 
important, the IP address 10.0.0.3 is not routable through the Internet and cannot 
be used to identify the server by hosts in the Internet. Instead, the external address 
of the NAT must be used to find the server, and the NAT must arrange to properly 
rewrite and forward the appropriate traffic to the server so that it can operate. This 
process is most often called port forwarding or port mapping.

With port forwarding, incoming traffic to a NAT is forwarded to a specific 
configured destination behind the NAT. By employing NAT with port forward-
ing, it is possible to allow servers to provide services to the Internet even though 
they may be assigned private, nonroutable addresses. Port forwarding typically 
requires static configuration of the NAT with the address of the server and the 
associated port number whose traffic should be forwarded. The port forwarding 
directive acts like an always-present static NAT mapping. If the server’s IP address 
is changed, the NAT must be updated with the new addressing information. Port 
forwarding also has the limitation that it has only one set of port numbers for each 
of its (IP address, transport protocol) combinations. Thus, if the NAT has only a 
single external IP address, it can forward only a single port of the same transport 
protocol to at most one internal machine (e.g., it could not support two indepen-
dent Web servers on the inside being remotely accessible using TCP port 80 from 
the outside).

7.3.5 Hairpinning and NAT Loopback

An interesting issue arises when a client wishes to reach a server and both reside on 
the same, private side of the same NAT. NATs that support this scenario implement 
so-called hairpinning or NAT loopback. Referring to Figure 7-6, assume that host X1
attempts to establish a connection to host X2. If X1 knows the private address-
ing information, X2:x2, there is no problem because the connection can be made 
directly. However, in some cases X1 knows only the public address information, 
X2′:x2′. In these cases, X1 attempts to contact X2 using the NAT with destination 
X2′:x2′. The hairpinning process takes place when the NAT notices the existence of 
the mapping between X2′:x2′ and X2:x2 and forwards the packet to X2:x2 residing 
on the private side of the NAT. At this point a question arises as to which source 
address is contained in the packet heading to X2:x2—X1:x1 or X1′:x1′?

If the NAT presents the hairpinned packet to X2 with source addressing 
information X1′:x1′, the NAT is said to have “external source IP address and port” 
hairpinning behavior. This behavior is required for TCP NAT [RFC5382]. The 
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justification for requiring this behavior is for applications that identify their peers 
using globally routable addresses. In our example, X2 may be expecting an incom-
ing connection from X1′ (e.g., because of coordination from a third-party system).

7.3.6 NAT Editors

Together, packets using the UDP and TCP transport protocols account for most 
of the IP traffic carried on the Internet. These transport protocols, by themselves, 
can be supported by NAT without additional complexity because their formats are 
well understood. When application-layer protocols used in conjunction with them 
carry transport-layer or lower-layer information such as IP addresses, the NAT 
problem becomes considerably more complicated. The most common example is 
FTP [RFC0959]. In normal operation, it communicates transport- and network-layer 
endpoint information (an IP address and port number) so that additional connec-
tions can be made when bulk data is to be transferred. This requires a NAT to 
rewrite not only the IP addresses and port numbers in the IP and TCP portions of a 
datagram, but also some of the application payload itself. NATs with this capability 
are sometimes called NAT editors. If a NAT changes the size of a packet’s appli-
cation payload, considerable work may be required. For example, TCP numbers 
every byte in the data transfer using sequence numbers (see Chapter 15), so if the 
size of a packet is changed, the sequence numbers also require modification. PPTP 
[RFC2637] also requires a NAT editor for transparent operation (see Chapter 3).

7.3.7 Service Provider NAT (SPNAT) and Service Provider IPv6 Transition

A relatively recent development involves the idea of moving NATs from the 
customer premises into the ISP. This is sometimes called service provider NAT
(SPNAT), carrier-grade NAT (CGN), or large-scale NAT (LSN) and is intended to 
further mitigate the IPv4 address depletion problem. With SPNAT, it is conceivable 

Figure 7-6  A NAT that implements hairpinning or NAT loopback allows a client to reach a server on 
the same side of the NAT using the server’s external IP address and port numbers. That 
is, X1 can reach X2:x2 using the addressing information X2′:x2′.
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that many ISP customers could share a single global IPv4 address. In effect, this 
moves the point of aggregation from the edge of the customer to the edge of the 
ISP. In its basic form, there is no functional difference between conventional NAT 
and SPNAT; the difference is really in the proposed domain of use. However, mov-
ing the NAT function from customer to ISP raises security concerns and brings 
into question whether individual end users are able to deploy Internet servers 
and control firewall policy [MBCB08]. A study from 2009 found that a significant 
number of users accept incoming connections, largely because of peer-to-peer 
programs [ANM09]. 

SPNAT can help with the IPv4 address depletion problem, but IPv6 is viewed 
as the ultimate solution. For a number of reasons already discussed, however, IPv6 
deployment has lagged expectations. Originally, a scheme known as dual-stack 
(see [RFC4213]), whereby each system uses both IPv6 and IPv4 addresses, was 
intended to support transition to IPv6, but this approach was anticipated to be 
temporary and rendered unnecessary long before the depletion of IPv4 addresses. 
An arguably more pragmatic approach is now being undertaken that combines 
tunneling, address translation, and dual-stack systems in various configurations. 
We’ll discuss some of these in Section 7.6 after exploring the methods that have 
been developed for dealing with existing NATs.

7.4 NAT Traversal 

As an alternative to the complexity of placing ALGs and NAT editors in NAT 
devices, an application may attempt to perform its own NAT traversal. Usually 
this involves the application trying to ascertain the external IP address and port 
numbers that will be used when its traffic passes through a NAT and modifying 
its protocol operations accordingly. If an application is distributed across the net-
work (e.g., has multiple clients and servers, some of which are not behind NATs), 
the servers can be used to shuttle (copy) data between the clients that connect 
from behind NATs or enable such clients to discover each other’s NAT bindings 
and possibly facilitate direct communication. Using a server to copy data between 
clients is usually a last-resort option because of the overheads involved and poten-
tial for abuse. Consequently, most approaches attempt to provide for some method 
that allows direct communication.

Direct methods have been popular for peer-to-peer file sharing, games, and 
communication applications. However, such techniques are often confined to a 
particular application, meaning that each new distributed application requiring 
NAT traversal tends to implement its own method(s). This can lead to redundancy 
and interoperability problems, ultimately increasing users’ frustration and cost. 
To combat this situation, a standard approach for handling NAT traversal has 
been established, and it depends on a collection of several distinct, subordinate 
protocols that we discuss in the following sections. For now, we begin with one of 
the more robust yet nonstandard approaches used by distributed applications. We 
then move on to standardized frameworks for NAT traversal.
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7.4.1 Pinholes and Hole Punching

As discussed previously, a NAT typically includes both traffic rewriting and fil-
tering capabilities. When a NAT mapping is established, traffic for a particular 
application is usually permitted to traverse the NAT in both directions. Such map-
pings are narrow; they usually apply only to a single application for its duration of 
execution. These types of mappings are called pinholes, because they are designed 
to permit only a certain temporary traffic flow (e.g., a pair of IP address and port 
number combinations). Pinholes are usually established and removed dynami-
cally as a consequence of communication between programs.

A method that attempts to allow two or more systems, each behind a NAT, 
to communicate directly using pinholes is called hole punching. It is described for 
UDP in Section 3.3 of [RFC5128] and for TCP in Section 3.4. To punch a hole, a 
client contacts a known server using an outgoing connection that establishes a 
mapping in its local NAT. When another client contacts the same server, the server 
has connections to each of the clients and knows their external addressing infor-
mation. It then exchanges the client external addressing information between the 
clients. Once this information is known, a client can attempt a direct connection to 
the other client(s). The popular Skype peer-to-peer application uses this approach 
(and some others).

Referring to Figure 7-7, assume client A contacts server S1 followed by client B. 
S1 will have learned A’s and B’s external addressing information: IPv4 addresses 
192.0.2.201 and 203.0.113.100, respectively. By sending B’s information to A and vice 
versa, A can attempt to contact B directly at its external address (and vice versa). 
Whether this will work depends on the type of NATs that have been deployed. 
NAT state for the (A,S1) connection lives in N1 and NAT state for (B,S1) lives in 
both N2 and N3. If all NATs are endpoint-independent, this is sufficient for direct 
connections to be possible. Any other type of NAT will not accept traffic from 
other than S1 and will thus prohibit direct communication. Said another way, this 
approach fails if both hosts are behind NATs with address-dependent or address- 
and port-dependent mapping behavior.

7.4.2 UNilateral Self-Address Fixing (UNSAF)

Applications employ a number of methods to determine the addresses their 
traffic will use when passed through a NAT. This is called fixing (learning and 
maintaining) the addressing information. There are indirect and direct methods 
for address fixing. The indirect methods involve inferring a NATs behavior by 
exchanging traffic through the NAT. The direct methods involve a direct conver-
sation between the application and the NAT itself using one or more special pro-
tocols (that are not currently IETF standards). Considerable effort within IETF has 
gone into development of the indirect methods, and they are widely supported in 
certain applications, with VoIP applications being the most popular. Some of the 
direct methods are now supported by some NATs. These methods also provide for 



ptg999

318 Firewalls and Network Address Translation (NAT)  

basic configuration of NATs, so we discuss them later in the context of NAT setup 
and configuration. 

An application attempting to fix its address without help from the NAT per-
forms the address fixing in a so-called unilateral fashion. Applications that do 
so are said to perform UNilateral Self-Address Fixing (UNSAF) [RFC3424]. As the 
name suggests, such methods are considered to be undesirable in the long run 
but a necessary evil for the time being. UNSAF involves a set of heuristics and 
is not guaranteed to work in all cases, especially because NAT behaviors vary 
significantly based on vendor and particular circumstance. The BEHAVE docu-
ments mentioned earlier are aimed at specifying more consistent NAT behavior. If 
widely adopted, UNSAF methods will work more reliably.

In most cases of interest, UNSAF methods operate in a client/server fashion 
similar to hole punching, but with added generality. Figure 7-7 illustrates some 
of the hazards that can arise in this situation. One issue is the lack of a single 
“outside” address realm for every NAT. In this example, there are two levels of 
NAT between client B and server S1. This situation can cause complications. For 
example, if an application on B wishes to obtain its “outside” address by using 
UNSAF with a server, it receives different answers depending on whether it con-
tacts server S1 or S2. Finally, because UNSAF uses servers that are distinct from 

Figure 7-7  Applications running on clients behind a NAT may require help from a server to engage 
in direct communication. In hole punching, a server, often specialized for a specific 
application, provides rendezvous information among clients that first establish NAT 
state and then perform direct communication, if possible. Some applications attempt to 
“fix” (determine and maintain) the addresses (and port numbers) their traffic will be 
assigned when passing through a NAT using standard generic protocols. These methods 
may encounter troubles in certain situations such as environments with multiple levels 
of NAT. In this example, client A’s external address visible at S1 is 192.0.2.201 and client 
B’s is 203.0.113.100. At S2, however, B’s external address is 10.0.1.1. 
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the NATs, there is always the possibility that the NAT behavior reported will 
change over time or become inconsistent with what the UNSAF approach reports.

Given the various problems with NATs and UNSAF, the IAB, an elected group 
of architectural advisers within the IETF, has indicated that UNSAF protocol pro-
posals must include responses to the concerns in their specifications:

1. Define a limited-scope problem that the “short-term” UNSAF proposal 
addresses.

2. Define an exit strategy/transition plan.

3. Discuss what design decisions make the approach “brittle.”

4. Identify requirements for longer-term, sound technical solutions.

5. Discuss any noted practical issues or experiences known.

This is an unusual list of requirements imposed on a protocol specification, 
but it results from long-standing interoperability problems between different 
NATs and NAT traversal techniques. Despite all the aforementioned problems, 
UNSAF methods are commonly used, partly because a wide range of NATs are 
found in operation today with little consistent behavior. We now look at how these 
methods are used as building blocks to form robust, general-purpose NAT tra-
versal techniques to maximize the chances that communication among systems 
behind NATs, even between systems across multiple NATs such as the one illus-
trated in Figure 7-7, will be possible.

7.4.3 Session Traversal Utilities for NAT (STUN)

One of the primary workhorses for UNSAF and NAT traversal is called Session 
Traversal Utilities for NAT (STUN) [RFC5389]. STUN has evolved from a previ-
ous version called Simple Tunneling of UDP through NATs, now known as “classic 
STUN.” Classic STUN has been used with VoIP/SIP applications for some time 
but has been revised to be a tool that can be used by other protocols for perform-
ing NAT traversal. Applications requiring a complete solution for NAT traversal 
are recommended to begin with other mechanisms we discuss in Section 7.4.5 
(e.g., ICE and SIP-Outbound). These frameworks may make use of STUN in one 
or more particular ways called STUN usages. Usages may extend the set of basic 
STUN operations, message types, or error codes defined in [RFC5389].

STUN is a relatively simple client/server protocol that is able to ascertain 
the external IP address and port numbers being used on a NAT in most circum-
stances. It can also keep NAT bindings current by using keepalive messages. It 
requires a cooperating server on the “other” side of a NAT to be effective, and sev-
eral public STUN servers are configured with globally reachable IP addresses and 
are available for use on the Internet. The main job of a STUN server is to echo back 
STUN requests sent to it in a way that allows the client addressing information to 
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be fixed. As with UNSAF methods in general, the approach is not foolproof. How-
ever, the attraction of STUN is that it does not require modification of network 
routers, application protocols, or servers. It requires only that clients implement 
the STUN request protocol, and that at least one STUN server be available in an 
appropriate location. STUN was envisioned as a “temporary” measure (as were 
many standard protocols now in widespread use a decade or more after their cre-
ation) until a more sophisticated direct protocol was developed and implemented, 
or NATs became obsolete because of the adoption of IPv6.

STUN operates using UDP, TCP, or TCP with Transport Layer Security (TLS; see 
Chapter 18). STUN usage specifications define which transport protocols are sup-
ported for the particular usage. It uses port 3478 for UDP and TCP, and 3479 for 
TCP/TLS. The STUN base protocol has two types of transactions: request/response 
transactions and indication transactions. Indications do not require a response and 
can be generated by either the client or the server. All messages include a type, 
length, magic cookie with value 0x2112A442, and a random 96-bit transaction ID 
used for matching requests with responses or for debugging. Each message begins 
with two 0 bits and may contain zero or more attributes. STUN message types are 
defined in the context of methods that support a particular STUN usage. The vari-
ous STUN parameters, including method and attribute numbers, are maintained 
by the IANA [ISP]. Attributes have their own types and can vary in length. The 
basic STUN header, most often located immediately following a UDP transport 
header in an IP packet, is shown in Figure 7-8.

The basic STUN header is 20 bytes in length (see Figure 7-8), and the Mes-
sage Length field provides for an entire STUN message length of 216 - 1 bytes (the 
20-byte header length is not included in the Message Length field), although mes-
sages are always padded to a multiple of 4 bytes so this field always has its 2 
low-order bits set to 0. STUN messages sent over UDP/IP are supposed to form IP 
datagrams less than the path MTU, if known, to avoid fragmentation (see Chapter 
10). If not known, the entire datagram length (including IP and UDP headers and 
any options) should be less than 576 bytes (IPv4) or 1280 bytes (IPv6). STUN has 
no provision for cases where a response might exceed the path MTU in the reverse 
direction, so servers should arrange to use messages of appropriate size.

STUN messages carried over UDP/IP are not reliable, so STUN applications 
are required to implement their own reliability. This is accomplished by resend-
ing messages thought to be lost. The retransmission interval is based on the esti-
mated time to send and receive a message from the peer called the round-trip time
(RTT). RTT computation and setting retransmission timers will be a major con-
sideration when we discuss TCP (see Chapter 14). STUN uses a similar approach, 
but with minor modifications to the standard TCP values. See [RFC5389] for more 
details. Reliability issues for STUN over TCP/IP or TCP-with-TLS/IP are handled 
by TCP. Multiple pending STUN transactions can be supported over TCP-based 
connections.

STUN attributes are encoded in a TLV arrangement, a technique used by sev-
eral other Internet protocols. The type and length portions of a TLV are each 16 
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bits, and the value portion is variable-length (up to 64KB, if supported), but pad-
ded to the next multiple of 4 bytes (padding bits may be any value). The same 
attribute type may appear more than once in the same STUN message, although 
only the first is necessarily processed by a receiver. Attributes with type numbers 
below 0x8000 are called comprehension-required attributes, and the others are called 
comprehension-optional attributes. If a STUN agent receives a message containing 
comprehension-required attributes it does not know how to process, it generates 
an error. Most of the attributes defined to date are comprehension-required [ISP].

[RFC5389] defines a single STUN method called binding, which can be used in 
either request/response or indication transactions for address fixing and keeping 
NAT bindings current. It also defines 11 attributes, given in Table 7-2.

STUN 
Methods

(see [RFC5766])

Figure 7-8  STUN messages always begin with two 0 bits and are usually encapsulated in UDP, although 
TCP is also allowed. The Message Type field gives both the method (e.g., binding) as well as class 
(request, response, error, or success). The Transaction ID is a random 96-bit number used to match 
requests with responses, or for debugging in the case of indications. Each STUN message can hold 
zero or more attributes, depending on the particular usage of STUN.
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Referring to Figure 7-5, a STUN client with addressing information X:x is 
often interested in determining X1′:x1′, called the reflexive transport address or
mapped address. A STUN server at Y1:y1 includes the reflexive transport address 
in a MAPPED-ADDRESS attribute in a STUN message returned to the client. The 
MAPPED-ADDRESS attribute holds an 8-bit Address Family field, a 16-bit Port 
Number field, and either a 32-bit or 128-bit Address field, depending on whether 
IPv4 or IPv6 is indicated by the Address Family field (0x01 for IPv4; 0x02 for IPv6). 
This attribute is included to remain backward-compatible with classic STUN. The 
more important attribute is the XOR-MAPPED-ADDRESS attribute, which holds 
exactly the same value as the MAPPED-ADDRESS attribute, but XORed with the 
magic cookie value (for IPv4) or a concatenation with the magic cookie and trans-
action ID values (for IPv6). The reason for using XORed values in this way is to 
detect and bypass generic ALGs that look through packets and rewrite whatever 
IP addresses they find. Such ALGs are very brittle because they may rewrite infor-
mation that protocols such as STUN require. Experience has shown that XORing 
IP addresses in the packet payload is usually sufficient to bypass such ALGs.

Table 7-2  STUN, defined in [RFC5389] and sometimes called STUN2, replaces classic STUN. These 11 attri-
butes may be used by a STUN2-compliant client or server. 

Name Value Purpose/Use

MAPPED-ADDRESS 0x0001 Contains an address family indicator and the 
reflexive transport address (IPv4 or IPv6)

USERNAME 0x0006 User name and password; used for message 
integrity checks (up to 513 bytes)

MESSAGE-INTEGRITY 0x0008 Message authentication code value on the STUN 
message (see Chapter 18 and [RFC5389])

ERROR-CODE 0x0009 Contains 3-bit error class, 8-bit error code value, 
and variable-length textual description of error

UNKNOWN-ATTRIBUTES 0x000A Used with error messages to indicate the unknown 
attributes (one 16-bit value per attribute)

REALM 0x0014 Indicates the authentication “realm” name for long-
term credentials

NONCE 0x0015 Nonrepeated value optionally carried in requests 
and responses (see Chapter 18) to prevent replay 
attacks

XOR-MAPPED-ADDRESS 0x0020 XORed version of MAPPED-ADDRESS
SOFTWARE 0x8022 Textual description of the software that sent the 

message (e.g., manufacturer and version number)
ALTERNATE-SERVER 0x8023 Provides an alternate IP address for a client to use; 

encoded as with MAPPED-ADDRESS
FINGERPRINT 0x8028 CRC-32 of message XORed with 0x5354554E; must 

be last attribute if used (optional)
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A STUN client, including most VoIP devices and “softphone” applications such 
as pjsua [PJSUA], is initially configured with the IP address(es) or names of one or 
more STUN servers. It is desirable to use STUN servers that are likely to “see” the 
same IP addresses as the peer to which the application ultimately wishes to talk, 
although that may be difficult to determine. Using STUN servers located on the 
public Internet (e.g., stun.ekiga.net, stun.xten.com, numb.viagenie.ca) 
is usually adequate. Some servers may be discovered using DNS Service (SRV) 
records (see Chapter 11). An example STUN binding request is given in Figure 7-9.

Figure 7-9  A STUN binding request. The request contains a 96-bit transaction ID and the SOFT-
WARE attribute that identifies the client making the request. The attribute contains 10 
characters, but this value is rounded up to the next multiple of 4, giving an attribute 
value of 12. The message length of 16 also includes the 4 bytes used to include the attri-
bute’s type and length (the STUN header is not included).

The sample STUN binding request in Figure 7-9 is initiated from a client. 
The transaction ID has been selected randomly, and the request is sent to numb
.viagenie.ca (with IPv4 addresses 216.146.46.55 and 216.146.46.59), which is 
both a STUN and a TURN server (see Section 7.4.4). The request contains the 
SOFTWARE attribute that identifies the client application. In this case, the request 
was initiated by pjnath-1.6. This is the “PJSIP NAT helper” application included 
with pjsua. The message length includes 4 bytes for the attribute type and length, 
plus 12 bytes used to hold the attribute. The length of pjnath-1.6 is only 10 bytes, 
but attribute lengths are always rounded up to the nearest 4-byte multiple. After 
passing through a NAT, the response is given as shown in Figure 7-10. 
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Figure 7-10  A STUN binding response containing four attributes. The MAPPED-ADDRESS and XOR-
MAPPED-ADDRESS attributes contain the server-reflexive addressing information. The other 
attributes are used with an experimental NAT behavior discovery mechanism [RFC5780].
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The binding response shown in Figure 7-10 gives useful information to the client, 
encoded as a collection of attributes. The MAPPED-ADDRESS and XOR-MAPPED 
address attributes indicate that the STUN server determined the server-reflexive 
address of 71.134.182.214:33294. The RESPONSE-ORIGIN and OTHER-ADDRESS 
attributes are used by an experimental facility for discovering NAT behavior 
[RFC5780]. The first gives the communication endpoint used to send the STUN 
message (216.146.46.55:3478, which matches the sending IPv4 address and UDP 
port number). The second attribute indicates which source IPv4 address and port 
number (216.146.45.59:3479) would have been used if the client requested “change 
address” or “change port” behavior. This latter attribute is equivalent to the now-
deprecated CHANGED-ADDRESS attribute in classic STUN. If a change address or 
port is specified in a request, a cooperating STUN server attempts to use a different 
address when responding to the client, if possible. 

STUN can be used to perform address fixing as well as a number of other 
functions called mechanisms, including DNS discovery, a method to redirect to an 
alternate server, and message integrity exchanges. Mechanisms are selected in 
the context of a particular STUN usage, so in general they are considered optional 
STUN features. One of the more important mechanisms provides authentication 
and message integrity. It has two forms: the short-term credential mechanism and the 
long-term credential mechanism. 

Short-term credentials are intended to last for a single session; the particular 
duration is defined by the STUN usage. Long-term credentials last across sessions; 
they correspond to a login ID or account. Short-term credentials are often used 
in particular message exchanges, and long-term credentials are used when some 
particular resource is to be allocated (e.g., with TURN; see Section 7.4.4). Pass-
words are never sent in the clear where they could be intercepted.

The short-term credential mechanism uses the USERNAME and MESSAGE-
INTEGRITY attributes. Both are required on any request. The USERNAME gives 
an indication of which credentials are required and allows the message sender to 
use the appropriate shared password in forming an integrity check on the mes-
sage (a MAC computed on the message contents; see Chapter 18). When using 
short-term credentials, it is assumed that some form of credential information 
(e.g., user name and password) has been exchanged earlier. The credential is used 
for forming an integrity check on STUN messages that is encoded in the MES-
SAGE-INTEGRITY attribute. The ability to form a valid MESSAGE-INTEGRITY 
attribute value is an indication that the sender holds a current (“fresh”) copy of the 
appropriate credential.

The long-term credential mechanism ensures freshness in a different way, 
using a digest challenge. When using this mechanism, a client initially makes a 
request without any authentication material. The server rejects the request but pro-
vides a REALM attribute in response. This can be used by the client to determine 
which credential is needed to provide adequate authentication, as the client may 
have credentials for various services (e.g., multiple VoIP accounts). Along with the 
REALM, the server provides a never-reused NONCE value, which the client uses in 
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forming a subsequent request. This mechanism also uses a MESSAGE-INTEGRITY 
attribute, but its integrity function is computed by including the NONCE value. 
Thus, it is difficult for an eavesdropper that overheard a previous long-term creden-
tial exchange to simply replay a validated request (i.e., because the NONCE value 
is different). The use of NONCE values in authentication and related concerns are 
discussed in more detail in Chapter 18. The long-term credential mechanism can-
not be used to protect STUN indications, as these transactions do not operate as 
request/response pairs.

7.4.4 Traversal Using Relays around NAT (TURN)

Traversal Using Relays around NAT (TURN) [RFC5766] provides a way for two or 
more systems to communicate even if they are located behind relatively uncoop-
erative NATs. As a last-resort method to support communication in such circum-
stances, it involves a relay server that shuttles data between systems that could 
otherwise not communicate. Using extensions to STUN and some TURN-specific 
messages, it supports communication even when most other approaches have 
failed, provided a common server that is not behind a NAT can be reached by each 
client. If all NATs were compliant with the BEHAVE specifications, TURN would 
not be necessary. Direct communication methods (i.e., that do not use TURN) are 
almost always preferable to using TURN servers.

Referring to Figure 7-11, a TURN client behind a NAT contacts a TURN server, 
usually on the public Internet, and indicates the other systems (called peers) with 
which it wishes to communicate. Finding the server’s address and the appropriate 
protocol to use for communication is accomplished using a special DNS NAPTR 
record (see Chapter 11 and [RFC5928]) or by manual configuration. The client 
obtains address and port information, called the relayed transport address, from the 
server, which are the address and port number used by the TURN server to com-
municate with the peers. The client also obtains its own server-reflexive transport 
address. Peers also have server-reflexive transport addresses that represent their 
external addresses. These addresses are needed by the client and server to perform 
the “plumbing” necessary to interconnect the client and its peers. The method 
used to exchange this addressing information is not defined within the scope of 
TURN. Instead, this information must be exchanged using some other mechanism 
(e.g., ICE; see Section 7.4.5) in order for TURN servers to be used effectively.

The client uses TURN commands to create and maintain allocations on the 
server. An allocation resembles a multiway NAT binding and includes the (unique) 
relayed transport address that each peer can use to reach the client. Server/peer 
data is sent using straightforward TURN messages traditionally carried in UDP/
IPv4. Enhancements support TCP [RFC6062] and IPv6 (and also relaying between 
IPv4 and IPv6) [RFC6156]. Server/client data is encapsulated with an indication 
of corresponding peer(s) that sent or should receive the associated data. The cli-
ent/server connection has been specified for UDP/IPv4, TCP/IPv4, and TCP/IPv4 
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with TLS. Establishing an allocation requires the client to be authenticated, usu-
ally using the STUN long-term credential mechanism.

TURN supports two methods for copying data between a client and its peers. 
The first encodes data using STUN methods called Send and Data, defined in 
[RFC5766], which are STUN indicators and therefore not authenticated. The other 
uses a TURN-specific concept called channels. Channels are communication paths 
between a client and a peer that have less overhead than the Send and Data meth-
ods. Messages carried over channels use a smaller, 4-byte header that is incompat-
ible with the larger STUN-formatted messages ordinarily used by TURN. Up to 
16K channels can be associated with an allocation. Channels were developed to 
help some applications such as VoIP that prefer to use relatively small packets to 
reduce latency and overhead. 

In operation, the client makes a request to obtain an allocation using a TURN-
defined STUN Allocate method. If successful, the server responds with a success 
indicator and the allocated relayed transport address. A request might be denied 
if the client fails to provide adequate authentication to the server. The client must 
now send refresh messages to keep the allocation alive. Allocations expire in 10 
minutes if not refreshed, unless the client included an alternate lifetime value, 
encoded as a STUN LIFETIME attribute, in the allocation request. Allocations 
may be deleted by requesting an allocation with zero lifetime. When an allocation 
expires, so do all of its associated channels. 

Figure 7-11  Based on [RFC5766], a TURN server helps clients behind “bad” NATs to communicate by relay-
ing traffic. Traffic flowing between client and server may use TCP, UDP, or TCP with TLS. Traffic 
between the server and one or more peers uses UDP. Relaying is a last-resort measure for com-
munication; direct methods are preferred if available.
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Allocations are represented using a “5-tuple.” At the client, the 5-tuple includes 
the client’s host transport address and port number, server transport address and 
port number, and the transport protocol used to communicate with the server. At 
the server, the same 5-tuple is used, except the client’s host transport address and 
port are replaced with its server-reflexive address and port. An allocation may 
have zero or more associated permissions, to limit the patterns of connectivity that 
are permitted through the TURN server. Each permission includes an IP address 
restriction such that only packets with the matching source address received at 
the TURN server have their data payloads forwarded to the corresponding client. 
Permissions are deleted if not refreshed within 5 minutes.

TURN enhances STUN with six methods, nine attributes, and six error response 
codes. These can be partitioned roughly into support for establishing and maintain-
ing allocations, authentication, and manipulating channels. The six methods and 
their method numbers are as follows: Allocate (3), Refresh (4), Send (6), Data (7), 
CreatePermission (8), and ChannelBind (9). The first two establish and keep allo-
cations alive. Send and Data use STUN messages to encapsulate data from client 
to server and vice versa, respectively. CreatePermission establishes or refreshes a 
permission, and ChannelBind associates a particular peer with a 16-bit channel 
number. The error messages indicate problems with TURN features such as authen-
tication failure or running out of resources (e.g., channel numbers). The nine STUN 
attribute names, values, and purposes defined by TURN are given in Table 7-3.

Table 7-3  STUN attributes defined by TURN

Name Value Purpose/Use

CHANNEL-NUMBER 0x000C Indicates what channel associated data belongs to
LIFETIME 0x000D Requested allocation timeout (seconds)
XOR-PEER-ADDRESS 0x0012 A peer’s address and port, using XORed encoding
DATA 0x0013 Holds data for a Send or Data indication
XOR-RELAYED-ADDRESS 0x0016 Server’s address and port allocated for a client
EVEN-PORT 0x0018 Requests that the relayed transport addressing 

information use an even port; optionally requests 
allocation of the next port in sequence

REQUESTED-TRANSPORT 0x0019 Used in a client to request that a specific transport 
be used in forming the transport address; values are 
drawn from the IPv4 Protocol or IPv6 Next Hop header 
field values

DONT-FRAGMENT 0x001A Requests that the server set the “don’t fragment” bit in 
the IPv4 header in packets sent to peers

RESERVATION-TOKEN 0x0022 Unique identifier for a relayed transport address held 
by the server; the value is provided to the client as a 
reference
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A TURN request takes the form of a STUN message whose message type is 
an allocation request. Figure 7-12 shows an example. According to the STUN long-
term credential mechanism, the initial allocation request shown in Figure 7-12 did 
not include authentication information, so it is rejected by the server. The rejection 
is indicated by an allocation error response, shown in Figure 7-13.

The error message in Figure 7-13 provides the REALM attribute (viagenie.
ca) and the NONCE value the client requires to form its next request. The mes-
sage also includes the MESSAGE-INTEGRITY attribute so the client can check that 
the message has not been modified and the requested REALM and NONCE are 
correct. A subsequent request includes the USERNAME, NONCE, and MESSAGE-
INTEGRITY attributes. See Figure 7-14.

After receiving the request including long-term credentials, as shown in Fig-
ure 7-14, the server computes its own version of the message integrity value and 
compares the result against the MESSAGE-INTEGRITY attribute value. If they 
match, this is sufficient information for the TURN server to conclude that the cli-
ent must hold the appropriate password. It then permits the allocation and indi-
cates the result to the client (see Figure 7-15).

Figure 7-12  A TURN allocation request is a STUN message using message type 0x0003. This request 
also includes the REQUESTED-TRANSPORT and SOFTWARE attributes. It does not 
include authentication information. According to STUN long-term credentials, this 
request will fail. 
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The allocation request is successful, as shown in Figure 7-15, and the relayed 
transport address is 216.146.46.55:49261 (note that Wireshark performs the XOR 
operation to display the decoded address). At this point, the client can proceed 
to use the TURN server for relaying to peers. Once this is finished, the allocation 
can be removed. About 4s later, packets 5 and 6 in Figure 7-15 indicate the client’s 
request to remove the allocation. The request is expressed as a refresh with life-
time set to 0. The server responds with a success indicator and removes the alloca-
tion. Note that the BANDWIDTH attribute has been included in the allocation and 
refresh success indicators. This attribute, defined by a draft version of [RFC5766] 
but ultimately deprecated, was intended to hold the peak bandwidth, in kilobytes 
per second, permitted on the allocation. This attribute may be redefined in the 
future.

Figure 7-13  A TURN allocation error response includes the ERROR-CODE attribute with value 
401 (Unauthorized). The message is integrity-protected and includes the REALM and 
NONCE attributes required by the client in forming another, authenticated allocation 
request.
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As suggested previously, TURN has the disadvantage that traffic must be 
relayed through the TURN server, and this can lead to inefficient routing (i.e., 
the TURN server may be far away from a client and peer that are proximal). In 
addition, certain other traffic contents are not passed through from peer to client 
using TURN. This includes ICMP values (see Chapter 8), TTL (Hop Limit) field 
values, and IP DS Field values. Also, a requesting TURN client must implement the 
STUN long-term credential mechanism and have some form of login credential or 
account assigned by the TURN server operator. This helps to avoid uncontrolled 
use of open TURN servers but creates somewhat greater configuration complexity.

Figure 7-14  A second TURN allocation request includes the USERNAME, REALM, NONCE, and 
MESSAGE-INTEGRITY attributes. These are used by the server to verify integrity of the 
message and the identity of the client. If successful, the server authenticates the request 
and performs the allocation.
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7.4.5 Interactive Connectivity Establishment (ICE)

Given the large variety of NATs deployed and the various mechanisms that may 
be necessary to traverse them, a generic facility called Interactive Connectivity 
Establishment (ICE) [RFC5245] has been developed to help UDP-based applications 
hosted behind a NAT establish connectivity. ICE is a set of heuristics by which an 
application can perform UNSAF in a relatively predictable fashion. In its oper-
ation, ICE makes use of other protocols such as TURN and STUN. A proposal 
extends the use of ICE to TCP-based applications [IDTI]. 

ICE works with and extends “offer/answer” protocols, such as the Session 
Description Protocol (SDP) used with unicast SIP connection establishment 
[RFC3264]. These protocols involve an offer of service with an accompanying set 
of service parameters followed by an answer that also includes a set of selected 
options. It is increasingly common to find ICE clients incorporated into VoIP 
applications that use SDP/SIP for establishing communications. However, in 
such circumstances, ICE is used for establishing NAT traversal for media streams 
(such as the audio or video portion of a call carried using RTP [RFC3550] or SRTP 

Figure 7-15  A TURN allocation success response. The message is integrity-protected and includes 
the XOR-RELAYED-ADDRESS attribute, identifying the port and address allocated by 
the TURN server. The allocation is deleted if not refreshed.
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[RFC3711]), while another mechanism, called SIP Outbound [RFC5626], handles 
the SIP signaling information such as who is being called. Although in practice 
ICE has been used primarily with SIP/SDP-based applications, it can also be used 
as a generic NAT traversal mechanism for other applications. One such example 
is the use of ICE (over UDP) with Jingle [XEP-0176], defined as an extension to the 
core Extensible Messaging and Presence Protocol (XMPP) [RFC6120]. 

Ordinarily, ICE works to establish communication between two SDP entities 
(called agents) by first determining a set of candidate transport addresses that each 
agent might use for communicating with the other. Referring to Figure 7-11, these 
addresses could be host transport, server-reflexive, or relayed addresses. ICE 
may make use of both STUN and TURN to determine the candidate transport 
addresses. ICE then orders these addresses according to a priority assignment 
algorithm. The algorithm arranges for addresses that provide direct connectivity 
to receive greater priority than those that require data relaying. ICE then provides 
the set of prioritized addresses to its peer agent, which engages in a similar behav-
ior. Ultimately, two agents agree on the best set of usable address pairs and indicate 
the selected results to the other peer. Determination of which candidate transport 
addresses are available is accomplished using a sequence of checks encoded as 
STUN messages. ICE has several optimizations to decrease the latency of agreeing 
on the selected candidate, which are beyond the scope of this discussion.

ICE begins by attempting to discover all available candidate addresses. 
Addresses may be locally assigned transport addresses (multiple if the agent is 
multihomed), server-reflexive addresses, or relayed addresses determined by 
TURN. After assigning each address a priority, an agent sends the prioritized list 
to its peer using SDP. The peer performs the same operation, resulting in each 
agent having two prioritized lists. Each agent then forms an identical set of priori-
tized candidate pairs by pairing up the two lists. A set of checks are performed on 
the candidate pairs in a particular order to determine which addresses will ulti-
mately be selected. Generally, the priority ordering prefers candidate pairs with 
fewer NATs or relays. The candidate pair ultimately selected is determined by a 
controlling agent assigned by ICE. The controlling agent nominates which valid can-
didate pairs are to be used, according to its order of preference. The controlling 
agent may try all pairs and subsequently make its choice (called regular nomina-
tion) or may use the first viable pair (called aggressive nomination). A nomination 
is expressed as a flag in a STUN message referring to a particular pair; aggressive 
nomination is performed by setting the nominate flag in every request.

Checks are sent as STUN binding request messages exchanged between the 
two agents using the addressing information being checked. Checks are initiated 
by timer, or scheduled as a result of an incoming check from a peer (called a trig-
gered check). Responses arrive in the form of STUN binding responses that contain 
addressing information. In some circumstances this may reveal a new server-
reflexive address to the agent (e.g., because a different NAT is used between agents 
from the one that was used when the candidate addresses were first determined 
using STUN or TURN servers). Should this happen, the agent gains a new address 
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called a peer-reflexive candidate, which ICE adds to the set of candidate addresses. 
ICE checks are integrity-checked using STUN’s short-term credential mechanism 
and use the STUN FINGERPRINT attribute. When TURN is used, the ICE cli-
ent uses TURN permissions to limit the TURN binding to the remote candidate 
address of interest.

ICE incorporates the concept of different implementations. Lite implementa-
tions are designed for deployment in systems that do not employ NAT. They do 
not ever act as a controlling agent unless interacting with another Lite implemen-
tation. They also do not perform the checks mentioned earlier as do full implemen-
tations. The type of an ICE implementation is indicated in the STUN messages 
it sends. All ICE implementations must comply with STUN [RFC5389], but Lite 
implementations will only ever act as STUN servers. ICE extends STUN with the 
attributes described in Table 7-4.

Table 7-4  STUN attributes defined by ICE

Name Value Purpose/Use

PRIORITY 0x0024 Computed priority of associated candidate address
USE-CANDIDATE 0x0025 Indicates selection of candidate by controlling agent
ICE-CONTROLLED 0x8029 Indicates sender of message is controlled agent
ICE-CONTROLLING 0x802A Indicates sender of message is controlling agent

A check is a STUN binding request containing the PRIORITY attribute. The 
value is equal to the value assigned by the algorithm described in Section 4.1.2 
of [RFC5245]. The ICE-CONTROLLING and ICE-CONTROLLED attributes are 
included in STUN requests when the sender is the controlling or controlled agent, 
respectively. A controlling agent may also include a USE-CANDIDATE attribute. 
If present, this attribute indicates which candidate the controlling agent wishes to 
select for subsequent use.

7.5 Configuring Packet-Filtering Firewalls and NATs

Although NATs frequently require little configuration (unless port forwarding is 
being used), firewalls usually do, and sometimes they require extensive configu-
ration. In most home networks the same device is providing NAT, IP routing, and 
firewall capabilities and may require some configuration. Although the configu-
ration is logically separate for each of these, they are sometimes merged, either in 
configuration files, command-line interfaces, Web page controls, or other network 
management tools.
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7.5.1 Firewall Rules

A packet-filtering firewall must be given a set of instructions indicating criteria 
for selecting traffic to be dropped or forwarded. Nowadays when configuring a 
router, the network administrator usually configures a set of one or more ACLs. 
Each ACL consists of a list of rules, and each rule typically contains pattern-match-
ing criteria and an action. The matching criteria generally allow the rule to express 
the values of packet fields at either the network or transport layer (e.g., source 
and destination IP addresses, port numbers, ICMP type field, etc.) and a direction 
specification. The direction pattern matches traffic in a direction-dependent man-
ner and allows for a different set of rules to apply for incoming versus outgoing 
traffic. Many firewalls also allow the rules to be applied at a certain point in the 
order of processing within the firewall. Examples of this include the ability to 
specify an ACL to be checked prior to or after the IP routing decision process. In 
some circumstances (especially when more than one interface is used), this flex-
ibility becomes important.

When a packet arrives, the matching criteria in the appropriate ACL are con-
sulted in order. For most firewalls, the first matching rule is acted upon. Typical 
actions include a specification to block or forward the traffic and may also adjust 
a counter or write a log entry. Some firewalls may include additional features as 
well, such as having some packets directed to applications or other hosts. Each 
firewall vendor usually has its own method for specifying rules, although Cisco 
Systems’ ACL format has emerged as a popular format supported by many ven-
dors of enterprise-class routers. ACLs for home users are typically configured 
using a simple Web interface.

One of the popular systems for building firewalls is included with modern 
versions of Linux and is called iptables, built using a network filtering capa-
bility called NetFilter [NFWEB]. It is the evolution of an earlier facility called 
ipchains and provides stateless and stateful packet-filtering support as well as 
NAT and NAPT. We shall examine how it works to get a better understanding of 
the types of capabilities a firewall and modern NAT provide.

iptables includes the concepts of filter tables and filter chains. A table con-
tains several predefined chains and may contain zero or more user-defined 
chains. Three predefined tables are named as follows: filter, nat, and mangle. 
The default filter table is for basic packet filtering and contains the predefined 
chains INPUT, FORWARD, and OUTPUT. These actions correspond to packets 
destined for programs running on the firewall router itself, those passing through 
it while being routed, and those originating at the firewall machine. The nat table 
contains the chains PREROUTING, OUTPUT, and POSTROUTING. The mangle
table has all five chains. It is used for arbitrary rewriting of packets.

Each filter chain is a list of rules, and each rule has matching criteria and an 
action. The action (called a target) may be to execute a special user-defined chain 
or to perform one of the following predefined actions: ACCEPT, DROP, QUEUE, 
and RETURN. A packet matching a rule with one of these targets is immediately 
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acted on. ACCEPT (DROP) means the packet is forwarded (dropped). QUEUE 
means the packet is delivered to a user program for arbitrary processing, and 
RETURN means that processing continues in a previously invoked chain, which 
forms a sort of packet filter chain subroutine call.

The design of a complete firewall configuration can be fairly complex and is 
specific to the needs of particular users and the types of services they require, so 
we will not attempt to give one here. Instead, the following examples illustrate 
only a small number of the possible uses for iptables. The following gives an 
example Linux firewall configuration file. It is invoked by a shell such as bash:

EXTIF="ext0"
INTIF="eth0"
LOOPBACK_INTERFACE="lo"
ALL="0.0.0.0/0"                # matches all

# set default filter table policies to drop
iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

# all local traffic OK
iptables -A INPUT -i $LOOPBACK_INTERFACE -j ACCEPT
iptables -A OUTPUT -i $LOOPBACK_INTERFACE -j ACCEPT 

# accept incoming DHCP requests on internal interface
iptables -A INPUT -i $INTIF -p udp -s 0.0.0.0 \
      --sport 67 -d 255.255.255.255 --dport 68 -j ACCEPT 

# drop unusual/suspect TCP traffic with no flags set
iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP

This example illustrates some of the flexibility one can employ in setting up a 
filter criteria list. Initially, the chains are given a default policy (-P option), which 
affects packets that fail to match any rules. Next, traffic to or from the local com-
puter (which is delivered using the pseudo interface lo) is given to the ACCEPT 
target (i.e., it is allowed) for the INPUT and OUTPUT chains in the default  filter
table. The –j option indicates “jump” to a particular processing target. Next, 
incoming UDP broadcast traffic originating from IPv4 address 0.0.0.0 and des-
tined for local/subnet broadcast using the DHCP port numbers (67, 68) is allowed 
in via the internal interface. Next, the Flags fields of incoming TCP segments (see 
Chapter 13) is ANDed with all 1s (ALL) and compared against zero (NONE). A 
match occurs only if all the Flags fields are 0, which is not a very useful TCP seg-
ment (ordinarily all TCP segments after the first one contain a valid ACK bit, and 
the first one contains a SYN). 

While syntax illustrated by this example is specific to the iptables facility, 
its capabilities are not. Most filtering firewalls are capable of performing similar 
types of checks and actions.
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7.5.2 NAT Rules

In most simple routers, NAT can be configured in conjunction with firewall rules. 
In basic Windows systems, NAT is called Internet Connection Sharing (ICS), and in 
Linux it is called IP masquerading. On Windows XP, for example, ICS has a number 
of special characteristics. It assigns the “internal” IPv4 address as 192.168.0.1 to the 
machine running ICS and starts a DHCP server and DNS server. Other computers 
are assigned addresses in the 192.168.0/24 subnet, with the ICS machine as DNS 
server. Therefore, ICS should not be enabled on networks where these services are 
already being provided by another computer or router, or where the addresses 
might conflict. A registry setting can be used to change the default address range.

Enabling ICS for an Internet connection on Windows XP can be accomplished 
by using the Network Setup Wizard, or by changing the Advanced properties on 
an already-operating Internet connection (under Settings | Network Connections). 
At this point, the user may also decide to allow other users to control or disable the 
shared Internet connection. This facility, known as Internet Gateway Device Discov-
ery and Control (IGDDC), uses the Universal Plug and Play framework, described 
in Section 7.5.3, for controlling a local Internet gateway from a client. The functions 
supported include connect and disconnect, along with reading various status mes-
sages. The Windows firewall facility, which works in conjunction with ICS, sup-
ports the creation of service definitions. Service definitions are equivalent to port 
forwarding, as defined previously. To enable it, the Advanced property tab on the 
Internet connection is selected and a new service may be added (or an existing 
one edited). The user is then given the opportunity to fill in the appropriate TCP 
and UDP port numbers, both at the external interface and at the internal server 
machine. It thus works as a way to configure NAPT for incoming connections.

As with Windows, Linux combines the masquerade capability with its fire-
wall implementation. The following script configures masquerading in a simple 
manner. Note that this script is only for illustration and is not recommended for 
production use.

EXTIF=”ext0”
echo "Default FORWARD policy: DROP"
iptables -P FORWARD DROP

echo "Enabling NAT on $EXTIF for hosts 192.168.0.0/24"
iptables -t nat -A POSTROUTING -o $EXTIF -s 192.168.0.0/24 \
      -j MASQUERADE

echo "FORWARD policy: DROP unknown traffic"
iptables -A INPUT -i $EXTIF -m state --state NEW,INVALID -j DROP
iptables -A FORWARD -i $EXTIF -m state --state NEW,INVALID -j DROP

Here, the default policy for the FORWARDING chain in the filter table is 
set to DROP. The next item arranges for hosts with IPv4 addresses assigned from 
the 192.168.0.0/24 subnet to have their addresses rewritten for any IPv4 traffic (via 
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NAT, implemented by the nat table and -t nat options) after routing has deter-
mined the external interface to be the appropriate one. Because of the stateful way 
that NAT works, it is now possible to adjust the filter table’s rules to allow only 
traffic associated with a connection known to NAT. The last two lines adjust the 
INPUT and FORWARD chains so that any incoming traffic that is either invalid or 
unknown (NEW) is dropped. The special operators NEW and INVALID are defined 
within the iptables command. 

7.5.3 Direct Interaction with NATs and Firewalls: UPnP, NAT-PMP, and PCP

In many cases, a client system wishes to or needs to interact directly with its fire-
wall. For example, a firewall may need to be configured or reconfigured for dif-
ferent services by allowing traffic destined for a particular port to not be dropped 
(establishing a “pinhole”). In cases where a proxy firewall is in use, each client 
must be informed of the proxy’s identity. Otherwise, communication beyond the 
firewall is not possible. A number of protocols have been developed for support-
ing communication between clients and firewalls. The two most prevalent ones 
are called Universal Plug and Play (UPnP) and the NAT Port Mapping Protocol (NAT-
PMP). The standards for UPnP are developed by an industry group called the 
UPnP Forum [UPNP]. NAT-PMP is currently an expired draft document within 
the IETF [XIDPMP]. NAT-PMP is supported by most Mac OS X systems. UPnP 
has native support on Windows systems and can be added to Mac OS and Linux 
systems. UPnP is also used in support of consumer electronics device discovery 
protocols for home networks being developed by the Digital Living Network Alli-
ance (DLNA) [DLNA].

With UPnP, controlled devices are configured with IP addresses based first 
upon DHCP and using dynamic link-local address configuration (see Chapter 6) 
if DHCP is not available. Next, the Simple Service Discovery Protocol (SSDP) [XIDS] 
announces the presence of the device to control points (e.g., client computers) and 
allows the control points to query the devices for additional information. SSDP 
uses two variants of HTTP with UDP instead of the more standard TCP. They are 
called HTTPU and HTTPMU [XIDMU], and the latter uses multicast addressing 
(IPv4 address 239.255.255.250, port 1900). For SSDP carried on IPv6, the following 
addresses are used: ff01::c (node-local), ff02::c (link-local), ff05::c (site-local), ff08::c 
(organization-local), and ff0e::c (global). 

Subsequent control and event notification (“eventing”) is controlled by the 
General Event Notification Architecture (GENA), which uses the Simple Object Access 
Protocol (SOAP). SOAP supports a client/server remote procedure call (RPC) mecha-
nism and uses messages encoded in the Extensible Markup Language (XML), which is 
commonly used for Web pages. UPnP is used for a wide variety of consumer elec-
tronic devices, including audio and video playback and storage devices. NAT/fire-
wall devices are controlled using the Internet Gateway Device (IGD) protocol [IGD]. 
IGD supports a variety of capabilities, including the ability to learn NAT mappings 
and configure port forwarding. The interested reader may obtain a simple IGD 
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client useful for experimentation from the MiniUPnP Project HomePage [UPNPC]. 
A second version of UPnP IGD [IGD2] adds general IPv6 support to UPnP.

While UPnP is a broad framework that includes NAT control and several other 
unrelated specifications, NAT-PMP provides an alternative specifically targeted at 
programmatic communications with NAT devices. NAT-PMP is part of Apple’s set 
of Bonjour specifications for zero configuration networking. NAT-PMP does not 
use a discovery process, as the device being managed is usually a system’s default 
gateway as learned by DHCP. NAT-PMP uses UDP port 5351. NAT-PMP supports 
a simple request/response protocol for learning a NAT’s outside address and con-
figuring port mappings. It also supports a basic eventing mechanism that notifies 
listeners when a NAT outside address changes. This is accomplished using a UDP 
multicast message sent to address 224.0.0.1 (the All Hosts address) when the out-
side address changes. NAT-PMP uses UDP port 5350 for client/server interactions 
and 5351 for multicast event notification. The idea of NAT-PMP can be extended 
for use with SPNAT, as proposed by the Port Control Protocol (PCP) [IDPCP].

7.6 NAT for IPv4/IPv6 Coexistence and Transition

With the depletion of the last top-level unicast IPv4 address prefixes in early in 
2011, the embracing of IPv6 is beginning to accelerate. It was thought that hosts 
could be equipped with dual-stack functionality (i.e., each implements a complete 
IPv4 and IPv6 stack) [RFC4213] and network services would transition over to 
IPv6-only operation. It is now understood that IPv4 and IPv6 are likely to coex-
ist for an extended period of time, perhaps indefinitely, and that for various eco-
nomic reasons network infrastructure may operate using either IPv4 or IPv6 or 
both. Assuming that this is true, there will be an ongoing need to support com-
munications between IPv4 and IPv6 systems, whether they are dual-stack or not. 
The two major approaches that have been used to support combinations of IPv4 
and IPv6 are tunneling and translation. The tunneling approaches include Teredo 
(see Chapter 10), Dual-Stack Lite (DS-Lite), and IPv6 Rapid Deployment (6rd). 
Although DS-Lite involves SPNAT as part of its architecture, a purer translation 
approach is given by the framework described in [RFC6144], which uses the IPv4-
embedded IPv6 addresses we saw in Chapter 2. We will discuss both DS-Lite and 
the translation framework in more detail in this section.

7.6.1 Dual-Stack Lite (DS-Lite)

DS-Lite [RFC6333] is an approach to make transition to IPv6 (and support for 
legacy IPv4 users) easier for service providers that wish to run IPv6 internally. In 
essence, it allows providers to focus on deploying an operational IPv6 core net-
work yet provide IPv4 and IPv6 connectivity to their customers using a small num-
ber of IPv4 addresses. The approach combines IPv4-in-IPv6 “softwire” tunneling 
[RFC5571] with SPNAT. Figure 7-16 shows the type of deployment envisioned.
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In Figure 7-16, each customer network operates with any combination of IPv4 
and IPv6. The service provider’s network is assumed to be managed using only 
IPv6. Customer access to the IPv6 Internet is provided using conventional IPv6 
routing. For IPv4 access, each customer uses a special “before” gateway (labeled 
“B4” in Figure 7-16). A B4 element provides basic IPv4 services (e.g., DHCP service, 
a DNS proxy, etc.) but also encapsulates the customer’s IPv4 traffic in multi-point-
to-point tunnels terminated at the “after” element (labeled “AFTR” in Figure 7-16). 
The AFTR element performs decapsulation of traffic headed to the IPv4 Internet 
and encapsulation in the reverse direction. AFTR also performs NAT and acts as a 
form of SPNAT. More specifically, the AFTR may use the identity of the customer’s 
tunnel endpoint for disambiguating traffic returning to the AFTR from the IPv4 
Internet. This allows multiple customers to use the same IPv4 address space. A B4 
element can learn the name of its corresponding AFTR element using a DHCPv6 
option called AFTR-Name [RFC6334].

It is instructive to recall the discussion of IPv6 rapid deployment (6rd) from 
Chapter 6. Whereas DS-Lite provides IPv4 access to customers over a service pro-
vider’s IPv6 network, 6rd aims to provide IPv6 access to customers over a service 
provider’s IPv4 network. In essence, they take opposite approaches with similar 
architectural components. However, with 6rd, mapping from an IPv6 address to 
the address of the corresponding IPv4 tunnel endpoint (and vice versa) is com-
puted in a stateless fashion using an address-mapping algorithm. Stateless address 
translation is also used in the framework for full protocol translation between 
IPv4 and IPv6, which we discuss next.

7.6.2 IPv4/IPv6 Translation Using NATs and ALGs

The biggest disadvantage of using tunneling techniques for supporting IPv4/IPv6 
coexistence is that network services running on hosts using one address family 

Figure 7-16  DS-Lite allows service providers to support IPv4 and IPv6 customer networks using 
an IPv6-only infrastructure. IPv4 address usage is minimized by using SPNAT at the 
provider’s edge.
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cannot be reached directly by the hosts using the other. Thus, an IPv6-only host 
can communicate only with other IPv6-capable systems. This is an undesirable sit-
uation because many valuable services offered on the legacy IPv4 Internet would 
remain unavailable to new systems that may support only IPv6. To address this 
concern, a significant effort was undertaken between 2008 and 2010 to develop a 
framework to provide direct translation between IPv4 and IPv6. This effort was 
informed by poor experiences with NAT-PT [RFC2766], which was ultimately 
determined to be too brittle and unscalable for ongoing use and was deprecated 
[RFC4966].

The IPv4/IPv6 translation framework is given in [RFC6144]. The basic transla-
tion architecture involves both stateful and stateless methods to convert between 
IPv4 and IPv6 addresses, translations for DNS (see Chapter 11), and the definition 
of any additional behaviors or ALGs in cases where they are necessary (including 
for ICMP and FTP). In this section, we will discuss the basics of the stateless and 
stateful address translation for IP based on [RFC6145], [RFC6146], and the address-
ing from [RFC6052] we discussed in Chapter 2. Other protocol-specific translation 
issues will be covered in subsequent chapters.

7.6.2.1 IPv4-Converted and IPv4-Translatable Addresses
In Chapter 2, we discussed the structure of IPv4-embedded IPv6 addresses. Such 
addresses are IPv6 addresses that can be used as input to a function that produces 
a corresponding IPv4 address. The function is also easily inverted. There are two 
important types of IPv4-embedded IPv6 addresses, called IPv4-converted addresses
and IPv4-translatable addresses. Each type of address mentioned is a subset of 
the other types. That is, if we treat each address category as a set, then (IPv4-
translatable) ⊂ (IPv4-converted) ⊂ (IPv4-embedded) ⊂ (IPv6). IPv4-translatable 
addresses are IPv6 addresses for which an IPv4 address can be determined in a 
stateless fashion (see Section 7.6.2.2).

Algorithmic translation between IPv4 and IPv6 addresses involves the use of 
a prefix, as described in Chapter 2. The prefix may be either the Well-Known Pre-
fix (WKP) 64:ff9b::/96 or another Network-Specific Prefix that is ordinarily owned 
by a service provider and used specifically with its translators. The WKP is used 
only in representing ordinary globally routable IPv4 addresses; private addresses 
[RFC1918] are not to be used with the WKP. In addition, the WKP is not to be 
used for creating IPv4-translatable addresses. Such addresses are intended to be 
defined within the scope of a provider’s network, so it is not appropriate to use 
them at a global scope.

The WKP is interesting because it is checksum-neutral with respect to the Inter-
net checksum. Recall the Internet checksum calculation from Chapter 5. If we treat 
the prefix 64:ff9b::/96 as being composed of the hexadecimal values 0064, ff9b, 
0000, 0000, 0000, 0000, 0000, 0000, the sum of these values is ffff, which is equal 
to 0 in one’s complement. Consequently, when an IPv4 address has the WKP pre-
pended, the associated Internet checksums in packets created as a result of trans-
lation (e.g., in the IPv4 header, TCP, or UDP checksum) are unaffected. Naturally, 
an appropriately chosen Network-Specific Prefix can also be checksum-neutral.
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In the following two subsections, we will use the notation To4(A6, P) to rep-
resent the IPv4 address derived from IPv6 address A6 in conjunction with prefix 
P. P is either the WKP or some Network-Specific Prefix. We will use the notation 
To6(A4, P) to represent the IPv6 address derived from IPv4 address A4 in conjunc-
tion with prefix P. Note that, with a few special exceptions, A6 = To6(To4(A6,P),P) 
and A4 = To4(To6(A4,P),P). 

7.6.2.2 Stateless Translation
Stateless IP/ICMP Translation (SIIT) refers to a method of translating between IPv4 
and IPv6 packets without using state tables [RFC6145]. The translation is per-
formed without table lookups and uses IPv4-translatable addresses along with 
a defined scheme to translate IP headers. For the most part, IPv4 options are not 
translated (they are ignored), nor are IPv6 extension headers (except the Frag-
ment header). The exception is an unexpired IPv4 Source Route option. If such an 
option is present, the packet is dropped and a corresponding ICMP error message 
(Destination Unreachable, Source Route Failed; see Chapter 8) is generated. Table 
7-5 describes how the IPv6 header fields are assigned when translating an IPv4 
datagram to IPv6. 

Table 7-5  Methods for creating an IPv6 header when translating IPv4 to IPv6

IPv6 Field Assignment Method

Version Set to 6.
DS Field/ECN Copied from same values in IPv4 header
Flow Label Set to 0.
Payload Length Set to IPv4 Total Length minus length of the IPv4 header (including 

options).
Next Header Set to IPv4 Protocol field (or 58 if the Protocol field had value 1). 

Set to value 44 to indicate a Fragment header if the IPv6 datagram 
being created is a fragment or DF bit not set.

Hop Limit Set to the IPv4 TTL field minus 1 (if this value is 0, the packet is 
discarded and an ICMP Time Exceeded message is generated; see 
Chapter 8).

Source IP Address Set to To6(IPv4 Source IP Address, P).
Destination IP 
Address

Set to To6(IPv4 Destination IP Address, P).

During the translation process, the IPv4 header is stripped and replaced with 
an IPv6 header.  If the arriving IPv4 datagram is too large to fit in the MTU for the 
next link and the DF bit field in its header is not set, multiple IPv6 fragment packets 
may be produced, each containing a Fragment header. This also occurs when the 
arriving IPv4 datagram is a fragment. [RFC6145] recommends a Fragment header 
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be included in the resulting IPv6 datagram whenever the arriving IPv4 datagram’s 
DF bit field has value zero, whether or not the translator needs to perform frag-
mentation or the arriving datagram is a fragment. This allows the IPv6 receiver to 
know that the IPv4 sender was likely not using PMTUD. When a Fragment header 
is included, its fields are set according to the methods listed in Table 7-6.

Table 7-6  Methods for assigning fields of the Fragment header, if used, during IPv4-to-IPv6 
translation

Fragment Header Field Assignment Method

Next Header Set to the IPv4 Protocol field.
Fragment Offset Copied from the IPv4 Fragment Offset field.
More Fragments Bit Copied from the IPv4 More Fragments (M) bit field.
Identification The low-order 16 bits are set from the IPv4 Identification field. 

The high-order 16 bits are set to 0.

The reverse direction (IPv6-to-IPv4 translation) involves creating an IPv4 
datagram with header field values based on fields in the arriving IPv6 header. 
Obviously the much larger IPv6 address space does not allow an IPv4-only host to 
access every host on the IPv6 Internet. Table 7-7 gives the methods used to assign 
the fields in the outgoing IPv4 datagram’s header when an unfragmented IPv6 
datagram arrives.

Table 7-7  Methods for creating an IPv4 header when translating unfragmented IPv6 to IPv4

IPv4 Header Field Assignment Method

Version Set to 4.
IHL Set to 5 (no IPv4 options).
DS Field/ECN Copied from same values in  IPv6 header.
Total Length The value of the IPv6 Payload Length field plus 20.
Identification Set to 0 (with option to set to some other predetermined value).
Flags More Fragments (M) is set to 0. Don’t Fragment (DF) is set to 1.
Fragment Offset Set to 0.
TTL The value of the IPv6 Hop Limit field minus 1 (must be at least 1).
Protocol Copied from the first IPv6 Next Header field that does not refer 

to a Fragment header, HOPOPT, IPv6-Route, or IPv6-Opts. 
Value 58 is changed to 1 to support ICMP (see Chapter 8).

Header Checksum Computed for the newly created IPv4 header.
Source IP Address To4(IPv6 Source IP Address, P).
Destination IP Address To4(IPv6 Destination IP Address, P).
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If the arriving IPv6 datagram includes a Fragment header, the outgoing IPv4 
datagram uses field values based on assignment methods modified from those in 
Table 7-7. Table 7-8 gives this case.

Table 7-8  Methods for creating an IPv4 header when translating fragmented IPv6 to IPv4

IPv4 Header Field Assignment Method

Total Length The value of the IPv6 Payload Length field minus 8 plus 20.
Identification Copied from the low-order 16 bits in the Identification field of the 

IPv6 Fragment header.
Flags More Fragments (M) copied from the M bit field in the IPv6 

Fragment header. Don’t Fragment (DF) is set to 0 to allow 
fragmentation in the IPv4 network.

Fragment Offset Copied from the Fragment Offset field of the IPv6 Fragment header.

In the case of fragmented IPv6 datagrams, the translator produces fragmented 
IPv4 datagrams. Note that in IPv6 the Identification field is larger, so there is a pos-
sibility that certain fragments could fail to be reassembled properly if multiple 
distinct IPv6 datagrams from the same host are fragmented in such a way that the 
Identification field values they use share a common lower-order 16 bits. However, 
this situation is no more risky than having the conventional IPv4 Identification
field wrap. Furthermore, integrity checks at higher layers make this issue nothing 
much to worry about.

7.6.2.3 Stateful Translation
In stateful translation, NAT64 [RFC6146] is used to support IPv6-only clients com-
municating with IPv4 servers. This is expected to be important during the period 
when many important services continue to be offered using only IPv4. The trans-
lation method for headers is nearly identical to the methods described for stateless 
translation in Section 7.6.2.2. As a NAT, NAT64 complies with BEHAVE specifica-
tions and supports only endpoint-independent mappings, along with both end-
point-independent and address-dependent filtering. Thus, it is compatible with 
the NAT traversal techniques (e.g., ICE, STUN, TURN) we discussed previously. 
Lacking these additional protocols, NAT64 supports dynamic translation only for 
IPv6 hosts initiating communications with IPv4 hosts.

NAT64 works much like conventional NAT (NAPT) across address families, 
except translations in the IPv4-to-IPv6 direction are simpler than in the reverse 
direction. A NAT64 device is assigned an IPv6 prefix, which can be used to form a 
valid IPv6 address directly from an IPv4 address using the mechanism described 
in Chapter 2 and [RFC6052]. Because of the comparative scarcity of the IPv4 
address space, translations in the IPv6-to-IPv4 direction make use of a pool of 
IPv4 addresses that are ordinarily managed dynamically. This requires NAT64 to 
support NAPT functionality, whereby multiple distinct IPv6 addresses may map 
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to the same IPv4 address. NAT64 currently defines methods for translation of TCP, 
UDP, and ICMP messages initiated by IPv6 nodes. (In the case of ICMP queries 
and responses, the ICMP Identifier field is used instead of the transport-layer port 
number; see Chapter 8.)

NAT64 handles fragments differently from its stateful counterpart. For arriv-
ing TCP or UDP fragments where the transport checksum is nonzero (see Chapter 
10), the NAT64 may either queue the fragments and translate them together or 
translate them individually. A NAT64 must handle fragments, even those arriving 
out of order. A NAT64 may be configured with a time limit (at least 2s) bounding 
the time during which fragments will be cached. Otherwise, the NAT could be 
subject to a DoS attack resulting from the exhaustion of packet buffers holding 
fragments.

7.7 Attacks Involving Firewalls and NATs

Given that the primary purpose of deploying firewalls is to reduce the exposure 
to attacks, it is not surprising that firewalls have fewer obvious shortcomings than 
end hosts or routers. That said, they are not without their faults. The most com-
mon types of firewall problems result from incomplete or incorrect configuration. 
Configuring firewalls is not a trivial task, especially for large enterprises where 
many services may be employed on a daily basis. Other forms of attacks exploit 
the weaknesses of some firewalls, including the inability of many of them (espe-
cially older ones) to deal with IP fragments.

One type of problem arises when a NAT/firewall can be hijacked from outside 
to provide a masquerading capability for an attacker. If the firewall is configured 
with NAT enabled, traffic arriving at its external interface may be rewritten so as 
to appear to have come from the NAT device, thereby hiding an attacker’s actual 
address. What is worse, this is “normal” behavior from the NAT’s point of view; 
it just happens to be getting its input packets from outside rather than inside. 
This has been a particular problem with ipchains-based NAT/firewall rules on 
Linux. The simplest configuration for setting up masquerading:

Linux# ipchains -P FORWARD MASQUERADE

allows this attack to take place and is therefore not recommended. As we can see, 
it sets the default forwarding policy to masquerade, which potentially applies to 
any IP forwarding.

Another type of problem that can arise with firewall and NAT rules is that 
they may be stale. In particular, they may contain port forwarding entries or other 
so-called holes that allow traffic through for services that are no longer used. A 
related problem is that some routers keep more than one copy of the firewall rules 
in memory, and the router must be specifically instructed when to enable which 
rules. Finally, another common configuration problem is that many routers merge 
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new firewall rules with the existing set when new ones are added. This can poten-
tially lead to undesired results if the operator is unaware of this behavior.

The problem with fragments is related to how IP fragments are constructed. 
When an IP datagram is fragmented (see Chapter 10), the transport header, which 
contains the port numbers, appears only in the first fragment and in none of the 
others. This is a direct result of the layering and encapsulation of the TCP/IP pro-
tocol architecture. Unfortunately for a firewall, receiving a fragment other than 
the first provides little information about the transport layer or service to which 
the packet relates. The only obvious way to make this association is to find the 
first fragment (if there ever was one), and this obviously requires a stateful fire-
wall capability, which might be subject to resources exhaustion attacks. Even 
stateful firewalls could fall short: if the first fragment arrives after subsequent 
fragments, the firewall may not be smart enough to perform reassembly prior to 
its filtering operation. In some cases, the firewall simply drops fragments it cannot 
fully identify, which could pose problems for legitimate traffic that happens to use 
large datagrams.

7.8 Summary

Firewalls provide a mechanism for network administrators to restrict the flow 
of information that may be harmful to end systems. The two major types of fire-
walls are packet-filtering firewalls and proxy firewalls. Packet-filtering firewalls 
may be further separated into the stateful and stateless varieties, and they usually 
act as IP routers. The stateful variety is more sophisticated and supports success-
ful operation of a wider variety of application-layer protocols (and might do more 
sophisticated logging or filtering across multiple packets in a packet stream). Proxy 
firewalls usually act as a form of application-layer gateway. For these firewalls, 
each application-layer service must have its own proxy handler on the firewall, 
but this does allow handlers to make modifications even to the data portion of the 
transiting traffic. Protocols such as SOCKS support proxy firewalls in a standard-
ized way.

Network Address Translation (NAT) is a mechanism whereby a relatively 
large number of end hosts can share one or more globally routable IP address(es). 
NAT is used extensively for this purpose but can also be used in conjunction with 
firewall rules to form a NAT/firewall combination. In this popular configuration, 
computers “behind” the NAT are allowed to send traffic out to the global Internet, 
but only traffic returning in response to the outgoing traffic is ordinarily admit-
ted back. This presents a small problem for implementing services behind a NAT 
that is handled by port forwarding, which allows the NAT to pass on incoming 
traffic for a service to end hosts inside the NAT. NAT is also being proposed for 
helping the transition from IPv4 to IPv6 by translating addresses between the two 
realms. In addition, NAT is being considered for use within ISPs to further allay 
IPv4 address depletion concerns. If this happens on a large scale, it may become 
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(even more) difficult for ordinary users to offer Internet services from their home 
networks.

Some applications use a set of heuristics in order to determine what addresses 
are used on the outside of the NATs they are behind. Many of these operate uni-
laterally, without direct help from the NAT. Such applications are said to use 
UNSAF (pronounced “unsafe”) methods and may not be completely reliable. A 
set of documents (developed by the IETF BEHAVE working group) specifies the 
proper behavior of NATs for different protocols, but not all NATs implement these 
specifications. Consequently, NAT traversal techniques may need to be employed 
to ensure that connectivity can take place.

NAT traversal involves determining a set of addresses and port numbers that 
can be used to support communications even when one or more NATs must be 
used. STUN is the primary workhorse protocol for determining addresses. TURN 
is a particular STUN usage that relays traffic through a specially configured 
TURN server, usually located in the Internet. Deciding which addresses or relays 
to use can be accomplished using a complete NAT traversal protocol such as ICE. 
ICE determines all possible addresses that can be used between a pair of com-
municating endpoints using local information, plus addresses determined using 
STUN and TURN. It then selects the “best” addresses for subsequent communi-
cation. Mechanisms such as ICE have received the most attention for supporting 
VoIP services that use the SIP protocol for signaling.

Firewalls and NATs may require configuration. The basic settings are ade-
quate for many home users, but firewalls may require modifications to allow 
certain services to work. In addition, if a user behind a NAT wishes to offer an 
Internet service, port forwarding will likely have to be configured on the NAT 
device. Some applications support configuration by performing direct communi-
cation with a NAT using protocols such as UPnP and NAT-PMP. When supported 
and enabled, these allow a NAT to have its port forwarding and binding data 
accessed and modified by the application automatically, without user interven-
tion. For a home user to run a Web server behind a dynamically provisioned NAT 
(i.e., one with an Internet-facing IP address that changes), additional services such 
as dynamic DNS (see Chapter 11) may also be important.
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8

ICMPv4 and ICMPv6: Internet 
Control Message Protocol

8.1 Introduction

The IP protocol alone provides no direct way for an end system to learn the fate 
of IP packets that fail to make it to their destinations. In addition, IP provides no 
direct way of obtaining diagnostic information (e.g., which routers are used along 
a path or a method to estimate the round-trip time). To address these deficiencies, 
a special protocol called the Internet Control Message Protocol (ICMP) [RFC0792]
[RFC4443] is used in conjunction with IP to provide diagnostics and control infor-
mation related to the configuration of the IP protocol layer and the disposition of 
IP packets. ICMP is often considered part of the IP layer itself, and it is required 
to be present with any IP implementation. It uses the IP protocol for transport. 
So, precisely, it is neither a network nor a transport protocol but lies somewhere 
between the two.

ICMP provides for the delivery of error and control messages that may require 
attention. ICMP messages are usually acted on by the IP layer itself, by higher-
layer transport protocols (e.g., TCP or UDP), and in some cases by user applica-
tions. Note that ICMP does not provide reliability for IP. Rather, it indicates certain 
classes of failures and configuration information. The most common cause of 
packet drops (buffer overrun at a router) does not elicit any ICMP information. 
Other protocols, such as TCP, handle such situations.

Because of the ability of ICMP to affect the operation of important system 
functions and obtain configuration information, hackers have used ICMP mes-
sages in a large number of attacks. As a result of concerns about such attacks, 
network administrators often arrange to block ICMP messages with firewalls, 
especially at border routers. If ICMP is blocked, however, a number of common 
diagnostic utilities (e.g., ping, traceroute) do not work properly [RFC4890].
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When discussing ICMP, we shall use the term ICMP to refer to ICMP in gen-
eral, and the terms ICMPv4 and ICMPv6 to refer specifically to the versions of 
ICMP used with IPv4 and IPv6, respectively. As we shall see, ICMPv6 plays a far 
more important role in the operation of IPv6 than ICMPv4 does for IPv4.

[RFC0792] contains the official base specification of ICMPv4, which is refined 
and clarified in [RFC1122] and [RFC1812]. [RFC4443] provides the base specifica-
tion for ICMPv6. [RFC4884] provides a method to add extension objects to cer-
tain ICMP messages. This facility is used for holding Multiprotocol Label Switching
(MPLS) information [RFC4950] and for indicating which interface and next hop 
a router would use in forwarding a particular datagram [RFC5837]. [RFC5508] 
gives standard behavioral characteristics of ICMP through NATs (also discussed 
in Chapter 7). In IPv6, ICMPv6 is used for several purposes beyond simple error 
reporting and signaling. It is used for Neighbor Discovery (ND) [RFC4861], which 
plays the same role as ARP does for IPv4 (see Chapter 4). It also includes the 
Router Discovery function used for configuring hosts (see Chapter 6) and multicast 
address management (see Chapter 9). Finally, it is also used to help manage hand-
offs in Mobile IPv6.

8.1.1 Encapsulation in IPv4 and IPv6

ICMP messages are encapsulated for transmission within IP datagrams, as shown 
in Figure 8-1. 

Figure 8-1  Encapsulation of ICMP messages in IPv4 and IPv6. The ICMP header contains a check-
sum covering the ICMP data area. In ICMPv6, the checksum also covers the Source and 
Destination IPv6 Address, Length, and Next Header fields in the IPv6 header.
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In IPv4, a Protocol field value of 1 indicates that the datagram caries ICMPv4. 
In IPv6, the ICMPv6 message may begin after zero or more extension headers. The 
last extension header before the ICMPv6 header includes a Next Header field with 
value 58. ICMP messages may be fragmented like other IP datagrams (see Chapter 
10), although this is not common.

Figure 8-2 shows the format of both ICMPv4 and ICMPv6 messages. The first 
4 bytes have the same format for all messages, but the remainder differ from one 
message to the next. 

Figure 8-2  All ICMP messages begin with 8-bit Type and Code fields, followed by a 16-bit Checksum
that covers the entire message. The type and code values are different for ICMPv4 and 
ICMPv6. 

In ICMPv4, 42 different values are reserved for the Type field [ICMPTYPES], 
which identify the particular message. Only about 8 of these are in regular 
use, however. We will show the exact format of each commonly used message 
throughout the chapter. Many types of ICMP messages also use different values 
of the Code field to further specify the meaning of the message. The Checksum
field covers the entire ICMPv4 message; in ICMPv6 it also covers a pseudo-header
derived from portions of the IPv6 header (see Section 8.1 of [RFC2460]). The algo-
rithm used for computing the checksum is the same as that used for the IP header 
checksum defined in Chapter 5. Note that this is our first example of an end-to-end 
checksum. It is carried all the way from the sender of the ICMP message to the 
final recipient. In contrast, the IPv4 header checksum discussed in Chapter 5 is 
changed at every router hop. If an ICMP implementation receives an ICMP mes-
sage with a bad checksum, the message is discarded; there is no ICMP message 
to indicate a bad checksum in a received ICMP message. Recall that the IP layer 
has no protection on the payload portion of the datagram. If ICMP did not include 
a checksum, the contents of the ICMP message might not be correct, leading to 
incorrect system behavior.

8.2 ICMP Messages

We now look at ICMP messages in general and the most commonly used ones 
in more detail. ICMP messages are grouped into two major categories: those 
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messages relating to problems with delivering IP datagrams (called error mes-
sages), and those related to information gathering and configuration (called query
or informational messages).

8.2.1 ICMPv4 Messages

For ICMPv4, the informational messages include Echo Request and Echo Reply 
(types 8 and 0, respectively), and Router Advertisement and Router Solicitation 
(types 9 and 10, respectively, together called Router Discovery). The most common 
error message types are Destination Unreachable (type 3), Redirect (type 5), Time 
Exceeded (type 11), and Parameter Problem (type 12). Table 8-1 lists the message 
types defined for standard ICMPv4 messages.

Table 8-1  The standard ICMPv4 message types, as determined by the Type field* 

Type Official Name Reference E/I Use/Comment

0 (*) Echo Reply [RFC0792] I Echo (ping) reply; returns data
3 (*)(+) Destination Unreachable [RFC0792] E Unreachable host/protocol
4 Source Quench [RFC0792] E Indicates congestion (deprecated)
5 (*) Redirect [RFC0792] E Indicates alternate router should be used
8 (*) Echo [RFC0792] I Echo (ping) request (data optional)
9 Router Advertisement [RFC1256] I Indicates router addresses/preferences
10 Router Solicitation [RFC1256] I Requests Router Advertisement
11 (*)(+) Time Exceeded [RFC0792] E Resource exhausted (e.g., IPv4 TTL)
12 (*)(+) Parameter Problem [RFC0792] E Malformed packet or header

*Types marked with asterisks (*) are the most common. Those marked with a plus (+) may contain [RFC4884] 
extension objects. In the fourth column, E is for error messages and I indicates query/informational messages. 

For the commonly used messages (those with the asterisks next to the type 
number in Table 8-1), the code numbers shown in Table 8-2 are used. Some mes-
sages are capable of carrying extended information [RFC4884] (those marked in 
Table 8-1 with the plus sign).

The official list of message types is maintained by IANA [ICMPTYPES]. 
Many of these message types were defined by the original ICMPv4 specifica-
tion [RFC0792] in 1981, prior to any significant experience using them. Additional 
experience and the development of other protocols (e.g., DHCP) have resulted in 
many of the messages defined then to cease being used. When IPv6 (and ICMPv6) 
was designed, this fact was understood, so a somewhat more rational arrange-
ment of types and codes has been defined for ICMPv6.
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Table 8-2  Common ICMPv4 message types that use code numbers in addition to 0. Although all of these mes-
sage types are relatively common, only a few of the codes are commonly used. 

Type Code Official Name Use/Comment

3 0 Net Unreachable No route (at all) to destination
3 (*) 1 Host Unreachable Known but unreachable host
3 2 Protocol Unreachable Unknown (transport) protocol
3 (*) 3 Port Unreachable Unknown/unused (transport) port
3 (*) 4 Fragmentation Needed and Don’t 

Fragment Was Set (PTB message)
Needed fragmentation prohibited by DF
bit; used by PMTUD [RFC1191] 

3 5 Source Route Failed Intermediary hop not reachable
3 6 Destination Network Unknown Deprecated [RFC1812]
3 7 Destination Host Unknown Destination does not exist
3 8 Source Host Isolated Deprecated [RFC1812]
3 9 Communication with Destination 

Network Administratively 
Prohibited

Deprecated [RFC1812]

3 10 Communication with Destination 
Host Administratively Prohibited

Deprecated [RFC1812]

3 11 Destination Network Unreachable 
for Type of Service

Type of service not available (net)

3 12 Destination Host Unreachable for 
Type of Service

Type of service not available (host)

3 13 Communication Administratively 
Prohibited

Communication prohibited by filtering 
policy

3 14 Host Precedence Violation Precedence disallowed for src/dest/port
3 15 Precedence Cutoff in Effect Below minimum ToS [RFC1812]
5 0 Redirect Datagram for the Network 

(or Subnet)
Indicates alternate router

5 (*) 1 Redirect Datagram for the Host Indicates alternate router (host)
5 2 Redirect Datagram for the Type of 

Service and Network
Indicates alternate router (ToS/net)

5 3 Redirect Datagram for the Type of 
Service and Host

Indicates alternate router (ToS/host)

9 0 Normal Router Advertisement Router’s address and configuration 
information

9 16 Does Not Route Common Traffic With Mobile IP [RFC5944], router does not 
route ordinary packets

11 (*) 0 Time to Live Exceeded in Transit Hop limit/TTL exceeded
11 1 Fragment Reassembly Time 

Exceeded
Not all fragments of datagram arrived 
before reassembly timer expired

12 (*) 0 Pointer Indicates the Error Byte offset (pointer) indicates first problem 
field

12 1 Missing a Required Option Deprecated/historic
12 2 Bad Length Packet had invalid Total Length field
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8.2.2 ICMPv6 Messages

Table 8-3 shows the message types defined for ICMPv6. Note that ICMPv6 is 
responsible not only for error and informational messages but also for a great deal 
of IPv6 router and host configuration.

Table 8-3  In ICMPv6, error messages have message types from 0 to 127. Informational messages have message 
types from 128 to 255. The plus (+) notation indicates that the message may contain an extension 
structure. Reserved, unassigned, experimental, and deprecated values are not shown.

Type Official Name Reference Description

1 (+) Destination Unreachable [RFC4443] Unreachable host, port, protocol
2 Packet Too Big (PTB) [RFC4443] Fragmentation required
3 (+) Time Exceeded [RFC4443] Hop limit exhausted or 

reassembly timed out
4 Parameter Problem [RFC4443] Malformed packet or header
100,101 Reserved for private experimentation [RFC4443] Reserved for experiments
127 Reserved for expansion of ICMPv6 

error messages
[RFC4443] Hold for more error messages

128 Echo Request [RFC4443] ping request; may contain data
129 Echo Reply [RFC4443] ping response; returns data
130 Multicast Listener Query [RFC2710] Queries multicast subscribers 

(v1)
131 Multicast Listener Report [RFC2710] Multicast subscriber report (v1)
132 Multicast Listener Done [RFC2710] Multicast unsubscribe 

message (v1)
133 Router Solicitation (RS) [RFC4861] IPv6 RS with Mobile IPv6 

options
134 Router Advertisement (RA) [RFC4861] IPv6 RA with Mobile IPv6 

options
135 Neighbor Solicitation (NS) [RFC4861] IPv6 Neighbor Discovery 

(Solicit)
136 Neighbor Advertisement (NA) [RFC4861] IPv6 Neighbor Discovery 

(Advertisement)
137 Redirect Message [RFC4861] Use alternative next-hop router
141 Inverse Neighbor Discovery 

Solicitation Message
[RFC3122] Inverse Neighbor Discovery 

request: requests IPv6 addresses 
given link-layer address

142 Inverse Neighbor Discovery 
Advertisement Message

[RFC3122] Inverse Neighbor Discovery 
response: reports IPv6 addresses 
given link-layer address

143 Version 2 Multicast Listener Report [RFC3810] Multicast subscriber report (v2)
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Immediately apparent in this list is the separation between the first set of mes-
sage types and the second set (i.e., those messages with types below 128 and those 
at or above). In ICMPv6, as in ICMPv4, messages are grouped into the informa-
tional and error classes. In ICMPv6, however, all the error messages have a 0 in the 
high-order bit of the Type field. Thus, ICMPv6 types 0 through 127 are all errors, 
and types 128 through 255 are all informational. Many of the informational mes-
sages are request/reply pairs.

In comparing the common ICMPv4 messages with the ICMPv6 standard mes-
sages, we conclude that some of the effort in designing ICMPv6 was to eliminate 
the unused messages from the original specification while retaining the useful 
ones. Following this approach, ICMPv6 also makes use of the Code field, primarily 
to refine the meanings of certain error messages. In Table 8-4 we list those stan-
dard ICMPv6 message types (i.e., Destination Unreachable, Time Exceeded, and 
Parameter Problem) for which more than the code value 0 has been defined. 

Table 8-3  In ICMPv6, error messages have message types from 0 to 127. Informational messages have message 
types from 128 to 255. The plus (+) notation indicates that the message may contain an extension 
structure. Reserved, unassigned, experimental, and deprecated values are not shown. (continued )

Type Official Name Reference Description

144 Home Agent Address Discovery 
Request Message

[RFC6275] Requests Mobile IPv6 HA 
address; send by mobile node

145 Home Agent Address Discovery Reply 
Message

[RFC6275] Contains MIPv6 HA address; 
sent by eligible HA on home 
network

146 Mobile Prefix Solicitation [RFC6275] Request home prefix while away
147 Mobile Prefix Advertisement [RFC6275] Provides prefix from HA to 

mobile
148 Certification Path Solicitation Message [RFC3971] Secure Neighbor Discovery 

(SEND) request for a 
certification path

149 Certification Path Advertisement 
Message

[RFC3971] SEND response to certification 
path request

151 Multicast Router Advertisement [RFC4286] Provides address of multicast 
router

152 Multicast Router Solicitation [RFC4286] Requests address of multicast 
router

153 Multicast Router Termination [RFC4286] Done using multicast router
154 FMIPv6 Messages [RFC5568] MIPv6 fast handover messages
200,201 Reserved for private experimentation [RFC4443] Reserved for experiments
255 Reserved for expansion of ICMPv6 

informational messages
[RFC4443] Hold for more informational 

messages
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In addition to the Type and Code fields that define basic functions in ICMPv6, a 
large number of standard options are also supported, some of which are required. 
This distinguishes ICMPv6 from ICMPv4 (ICMPv4 does not have options). Cur-
rently, standard ICMPv6 options are defined for use only with the ICMPv6 ND 
messages (types 135 and 136) using the Option Format field discussed in [RFC4861]. 
We discuss these options when exploring ND in more detail in Section 8.5. 

8.2.3 Processing of ICMP Messages

In ICMP, the processing of incoming messages varies from system to system. Gen-
erally speaking, the incoming informational requests are handled automatically 
by the operating system, and the error messages are delivered to user processes 
or to a transport protocol such as TCP [RFC5461]. The processes may choose to 
act on them or ignore them. Exceptions to this general rule include the Redirect 
message and the Destination Unreachable—Fragmentation Required messages. 
The former results in an automatic update to the host’s routing table, whereas the 
latter is used in the path MTU discovery (PMTUD) mechanism, which is generally 
implemented by the transport-layer protocols such as TCP. In ICMPv6 the han-
dling of messages has been tightened somewhat. The following rules are applied 
when processing incoming ICMPv6 messages [RFC4443]:

1. Unknown ICMPv6 error messages must be passed to the upper-layer pro-
cess that produced the datagram causing the error (if possible).

2. Unknown ICMPv6 informational messages are dropped. 

Table 8-4   ICMPv6 standard message types with codes in addition to 0 assigned

Type Code Name Use/Comment

1 0 No Route to Destination Route not present
1 1 Administratively Prohibited Policy (e.g., firewall) prohibited
1 2 Beyond Scope of Source Address Destination scope exceeds source’s
1 3 Address Unreachable Used if codes 0–2 are not appropriate
1 4 Port Unreachable No transport entity listening on port
1 5 Source Address Failed Policy Ingress/egress policy violation

1 6 Reject Route to Destination Specific reject route to destination
3 0 Hop Limit Exceeded in Transit Hop Limit field decremented to 0
3 1 Reassembly Time Exceeded Unable to reassemble in limited time
4 0 Erroneous Header Field Found General header processing error
4 1 Unrecognized Next Header Unknown Next Header field value
4 2 Unrecognized IPv6 Option Unknown Hop-by-Hop or Destination option
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3. ICMPv6 error messages include as much of the original (“offending”) IPv6 
datagram that caused the error as will fit without making the error mes-
sage datagram exceed the minimum IPv6 MTU (1280 bytes).

4. When processing ICMPv6 error messages, the upper-layer protocol type is 
extracted from the original or “offending” packet (contained in the body of 
the ICMPv6 error message) and used to select the appropriate upper-layer 
process. If this is not possible, the error message is silently dropped after 
any IPv6-layer processing.

5. There are special rules for handling errors (see Section 8.3).

6. An IPv6 node must limit the rate of ICMPv6 error messages it sends. There 
are a variety of ways of implementing the rate-limiting function, including 
the token bucket approach mentioned in Section 8.3.

8.3 ICMP Error Messages

The distinction between the error and informational classes of ICMP messages men-
tioned in the previous section is important because certain restrictions are placed 
on the generation of ICMPv4 error messages by [RFC1812] and on the generation 
of ICMPv6 error messages by [RFC4443] that do not apply to queries. In particular, 
an ICMP error message is not to be sent in response to any of the following mes-
sages: another ICMP error message, datagrams with bad headers (e.g., bad check-
sum), IP-layer broadcast/multicast datagrams, datagrams encapsulated in link-layer 
broadcast or multicast frames, datagrams with an invalid or network zero source 
address, or any fragment other than the first. The reason for imposing these restric-
tions on the generation of ICMP errors is to limit the creation of so-called broadcast 
storms, a scenario in which the generation of a small number of messages creates an 
unwanted traffic cascade (e.g., by generating error responses in response to error 
responses, indefinitely). These rules can be summarized as follows:

An ICMPv4 error message is never generated in response to

• An ICMPv4 error message. (An ICMPv4 error message may, however, be 
generated in response to an ICMPv4 query message.)

• A datagram destined for an IPv4 broadcast address or an IPv4 multicast 
address (formerly known as a class D address).

• A datagram sent as a link-layer broadcast.

• A fragment other than the first.

• A datagram whose source address does not define a single host. This means 
that the source address cannot be a zero address, a loopback address, a 
broadcast address, or a multicast address.
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ICMPv6 is similar. An ICMPv6 error message is never generated in response to

• An ICMPv6 error message

• An ICMPv6 Redirect message

• A packet destined for an IPv6 multicast address, with two exceptions:

– The Packet Too Big (PTB) message

– The Parameter Problem message (code 2)

• A packet sent as a link-layer multicast (with the exceptions noted previously)

• A packet sent as a link-layer broadcast (with the exceptions noted previously)

• A packet whose source address does not uniquely identify a single node. 
This means that the source address cannot be an unspecified address, an 
IPv6 multicast address, or any address known by the sender to be an any-
cast address.

In addition to the rules governing the conditions under which ICMP messages 
are generated, there is also a rule that limits the overall ICMP traffic level from a 
single sender. In [RFC4443], a recommendation for rate-limiting ICMP messages 
is to use a token bucket. With a token bucket, a “bucket” holds a maximum number 
(B) of “tokens,” each of which allows a certain number of messages to be sent. 
The bucket is periodically filled with new tokens (at rate N) and drained by 1 for 
each message sent. Thus, a token bucket (or token bucket filter, as it is often called) 
is characterized by the parameters (B, N). For small or midsize devices, [RFC4443] 
provides an example token bucket using the parameters (10, 10). Token buckets 
are a common mechanism used in protocol implementations to limit bandwidth 
utilization, and in many cases B and N are in byte units rather than message units.

When an ICMP error message is sent, it contains a copy of the full IP header 
from the “offending” or “original” datagram (i.e., the IP header of the datagram 
that caused the error to be generated, including any IP options), plus any other 
data from the original datagram’s IP payload area such that the generated IP/
ICMP datagram’s size does not exceed a specific value. For IPv4 this value is 576 
bytes, and for IPv6 it is the IPv6 minimum MTU, which is at least 1280 bytes. 
Including a portion of the payload from the original IP datagram lets the receiv-
ing ICMP module associate the message with one particular protocol (e.g., TCP 
or UDP) from the Protocol or Next Header field in the IP header and one particular 
user process (from the TCP or UDP port numbers that are in the TCP or UDP 
header contained in the first 8 bytes of the IP datagram payload area).

Before the publication of [RFC1812], the ICMP specification required only the 
first 8 bytes of the offending IP datagram to be included (because this is enough 
to determine the port number for UDP and TCP; see Chapters 10 and 12), but as 
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more complex protocol layerings have become popular (such as IP being encap-
sulated in IP), additional information is now needed for the effective diagnosis of 
problems. In addition, several error messages may include extensions. We begin 
by briefly discussing the extension method, and then we discuss each of the more 
important ICMP error messages.

8.3.1 Extended ICMP and Multipart Messages

[RFC4884] specifies a method for extending the utility of ICMP messages by allow-
ing an extension data structure to be appended to them. The extension structure 
includes an extension header and extension objects that may contain a variable 
amount of data, as illustrated in Figure 8-3.

Figure 8-3  Extended ICMPv4 and ICMPv6 messages include a 32-bit extension header and zero or more 
associated objects. Each object includes a fixed-size header and a variable-length data area. For 
compatibility, the primary ICMP payload area is at least 128 bytes.
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The Length field is repurposed from the sixth byte of the ICMPv4 header and 
the fifth byte of the ICMPv6 header. (These bytes had previously been reserved 
with value 0.) In ICMPv4, it indicates the offending datagram size in 32-bit word 
units. For ICMPv6, it is in 64-bit units. These datagram portions are padded with 
zeros as necessary to be 32-bit- and 64-bit-aligned, respectively. When extensions 
are used, the ICMP payload area containing the original datagram must be at least 
128 bytes long.

The extension structure may be used with ICMPv4 Destination Unreachable, 
Time Exceeded, and Parameter Problem messages as well as ICMPv6 Destination 
Unreachable and Time Exceeded messages. We will look at each of these in some 
detail in the following sections.

8.3.2 Destination Unreachable (ICMPv4 Type 3, ICMPv6 Type 1) and Packet Too Big 
(ICMPv6 Type 2)

We now look more closely at one of the more common ICMP message types, Des-
tination Unreachable. Messages of this type are used to indicate that a datagram 
could not be delivered all the way to its destination because of either a problem in 
transit or the lack of a receiver interested in receiving it. Although 16 different codes 
are defined for this message in ICMPv4, only 4 are commonly used. These include 
Host Unreachable (code 1), Port Unreachable (code 3), Fragmentation Required/
Don’t-Fragment Specified (code 4), and Communication Administratively Pro-
hibited (code 13). In ICMPv6, the Destination Unreachable message is type 1 with 
seven possible code values. In ICMPv6, as compared with IPv4, the Fragmentation 
Required message has been replaced by an entirely different type (type 2), but the 
usage is very similar to the corresponding ICMP Destination Unreachable message, 
so we discuss it here. In ICMPv6 this is called the Packet Too Big (PTB) message. We 
will use the simpler ICMPv6 PTB terminology from here onward to refer to either 
the ICMPv4 (type 3, code 4) message or the ICMPv6 (type 2, code 0) message.

The formats for all of the Destination Unreachable messages specified for 
ICMPv4 and ICMPv6 are shown in Figure 8-4. For Destination Unreachable mes-
sages, the Type field is 3 for ICMPv4 and 1 for ICMPv6. The Code field indicates the 
particular item or reason for the reachability failure. We now look at each of these 
messages in detail.

8.3.2.1  ICMPv4 Host Unreachable (Code 1) and ICMPv6 Address Unreachable 
(Code 3)

This form of the Destination Unreachable message is generated by a router or 
host when it is required to send an IP datagram to a host using direct delivery
(see Chapter 5) but for some reason cannot reach the destination. This situation 
may arise, for example, because the last-hop router is attempting to send an ARP 
request to a host that is either missing or down. This situation is explored in Chap-
ter 4, which describes ARP. For ICMPv6, which uses a somewhat different mecha-
nism for detecting unresponsive hosts, this message can be the result of a failure 
in the ND process (see Section 8.5).
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8.3.2.2 ICMPv6 No Route to Destination (Code 0)
This message refines the Host Unreachable message from ICMPv4 to differenti-
ate those hosts not reachable because of failure of direct delivery and those that 
cannot be reached because no route is present. This message is generated only in 
cases where an arriving datagram must be forwarded without using direct deliv-
ery, but where no route entry exists to indicate what router to use as a next hop. As 
we have seen, IP routers must contain a valid next-hop forwarding entry for the 
destination in any packets they receive if they are going to successfully perform 
forwarding.

8.3.2.3  ICMPv4 Communication Administratively Prohibited (Code 13) and 
ICMPv6 Communication with Destination Administratively Prohibited 
(Code 1)

In ICMPv4 and ICMPv6, these Destination Unreachable messages provide the abil-
ity to indicate that an administrative prohibition is preventing successful communi-
cation with the destination. This is typically the result of a firewall (see Chapter 7) 
that intentionally drops traffic that fails to comply with some operational policy 
enforced by the router that sent the ICMP error. In many cases, the fact that there is 
a special policy to drop traffic should not be advertised, so it is generally possible 
to disable the generation of these messages by either silently discarding incoming 
packets or generating some other ICMP error message instead.

8.3.2.4 ICMPv4 Port Unreachable (Code 3) and ICMPv6 Port Unreachable (Code 4)
The Port Unreachable message is generated when an incoming datagram is des-
tined for an application that is not ready to receive it. This occurs most commonly 
in conjunction with UDP (see Chapter 10), when a message is sent to a port number 

Figure 8-4  The ICMP Destination Unreachable messages in ICMPv4 (left) and ICMPv6 (right). The Length
field, present in extended ICMP implementations that conform to [RFC4884], gives the number of 
words used to hold the original datagram measured in 4-byte units (IPv4) or 8-byte units (IPv6). 
An optional extension structure may be included. The ICMP field labeled various is used to hold 
the next-hop MTU when the code value is 4, which is used by PMTUD. ICMPv6 uses a different 
ICMPv6 PTB message (ICMPv6 type 2) for this purpose. 
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that is not in use by any server process. If UDP receives a datagram and the des-
tination port does not correspond to a port that some process has in use, UDP 
responds with an ICMP Port Unreachable message.

We can illustrate the operation of ICMPv4 Port Unreachable messages using 
the Trivial File Transfer Protocol (TFTP) [RFC1350] client on Windows or Linux while 
watching the packet exchange using tcpdump. The well-known UDP port for the 
TFTP service is 69. However, while the TFTP client is available on many systems, 
most systems do not run TFTP servers. Therefore, it is easy to see what happens 
when we try to access a nonexistent server. In the example shown in Listing 8-1, 
we execute the TFTP client, called tftp, on a Windows machine and attempt to 
fetch a file from a Linux machine. The –s option for tcpdump causes 1500 bytes 
to be captured per packet; the –i eth1 option tells tcpdump to monitor traffic on 
the Ethernet interface named eth1; the –vv option causes additional descriptive 
output to be included; and the expression icmp or port tftp causes traffic 
matching either the TFTP port (69) or the ICMPv4 protocol to be included in the 
output.

Listing 8-1  TFTP client demonstrating an application timeout and ICMP rate limiting 

C:\> tftp 10.0.0.1 get /foo   try to fetch file "/foo" from 10.0.0.1
Timeout occurred              timeout occurred after about 9 seconds

Linux# tcpdump -s 1500 -i eth1 -vv icmp or port tftp

1 09:45:48.974812 IP (tos 0x0, ttl 128, id 9914, offset 0, 
                flags [none], length: 44)
                
                10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                RRQ "/foo" netascii

2 09:45:48.974812 IP (tos 0xc0, ttl 255, id 43734, offset 0, flags 
                [none], length: 72)     
                10.0.0.1 > 10.0.0.54: icmp 52: 
                  10.0.0.1 udp port tftp unreachable
                  for IP (tos 0x0, ttl 128, id 9914, offset 0, 
                  flags [none], length: 44)
                     10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                     RRQ "/foo" netascii

3 09:45:49.014812 IP (tos 0x0, ttl 128, id 9915, offset 0, 
                flags [none], length: 44)
                
                10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                RRQ "/foo" netascii

4 09:45:49.014812 IP (tos 0xc0, ttl 255, id 43735, offset 0, flags 
                [none], length: 72)      
                10.0.0.1 > 10.0.0.54: icmp 52: 
                  10.0.0.1 udp port tftp unreachable
                  for IP (tos 0x0, ttl 128, id 9915, offset 0, 
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                  flags [none], length: 44)
                     10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                     RRQ "/foo" netascii

5 09:45:49.014812 IP (tos 0x0, ttl 128, id 9916, offset 0, 
                flags [none], length: 44)
                
                10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                RRQ "/foo" netascii

6 09:45:49.014812 IP (tos 0xc0, ttl 255, id 43736, offset 0, flags 
                [none], length: 72)     
                10.0.0.1 > 10.0.0.54: icmp 52: 
                  10.0.0.1 udp port tftp unreachable
                  for IP (tos  0x0, ttl 128, id 9916, offset 0, 
                  flags [none], length: 44)
                     10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                     RRQ "/foo" netascii

7 09:45:49.024812 IP (tos 0x0, ttl 128, id 9917, offset 0, 
                flags [none], length: 44)
                
                10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                RRQ "/foo" netascii

8 09:45:49.024812 IP (tos 0xc0, ttl 255, id 43737, offset 0,
                flags [none], length: 72)     
                10.0.0.1 > 10.0.0.54: icmp 52: 
                  10.0.0.1 udp port tftp unreachable
                  for IP (tos 0x0, ttl 128, id 9917, offset 0, 
                  flags [none], length: 44)
                     10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                     RRQ "/foo" netascii

9 09:45:49.024812 IP (tos 0x0, ttl 128, id 9918, offset 0, 
                flags [none], length: 44)
                
                10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                RRQ "/foo" netascii

10 09:45:49.024812 IP (tos 0xc0, ttl 255, id 43738, offset 0,
                flags [none], length: 72)     
                10.0.0.1 > 10.0.0.54: icmp 52: 
                10.0.0.1 udp port tftp unreachable
                   for IP (tos 0x0, ttl 128, id 9918, offset 0, 
                   flags [none], length: 44)
                      10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                      RRQ "/foo" netascii

11 09:45:49.034812 IP (tos 0x0, ttl 128, id 9919, offset 0, 
                flags [none], length: 44)
                   10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                   RRQ "/foo" netascii
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12 09:45:49.034812 IP (tos 0xc0, ttl 255, id 43739, offset 0, 
                flags [none], length: 72)     
                10.0.0.1 > 10.0.0.54: icmp 52: 
                10.0.0.1 udp port tftp unreachable 
                   for IP (tos 0x0, ttl 128, id 9919, offset 0, 
                   flags [none], length: 44) 
                      10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                      RRQ "/foo" netascii

13 09:45:49.034812 IP (tos 0x0, ttl 128, id 9920, offset 0, 
                flags [none], length: 44)       
                10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                RRQ "/foo" netascii

14 09:45:57.054812 IP (tos 0x0, ttl 128, id 22856, offset 0, 
                flags [none], length: 44)   
                10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                RRQ "/foo" netascii

15 09:45:57.054812 IP (tos 0xc0, ttl 255, id 43740, offset 0, 
                flags [none], length: 72)     
                10.0.0.1 > 10.0.0.54: icmp 52: 
                   10.0.0.1 udp port tftp unreachable 
                   for IP (tos 0x0, ttl 128, id 22856, offset 0, 
                   flags [none], length: 44) 
                      10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  16 
                      RRQ "/foo" netascii

16 09:45:57.064812 IP (tos 0x0, ttl 128, id 22906, offset 0, 
                flags [none], length: 51)       
                10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]
                     23 ERROR EUNDEF timeout on receive"

17 09:45:57.064812 IP (tos 0xc0, ttl 255, id 43741, offset 0, 
                flags [none], length: 79)                    
                10.0.0.1 > 10.0.0.54: icmp 59: 
                   10.0.0.1 udp port tftp unreachable
                   for IP  (tos  0x0, ttl 128, id 22906, offset 0, 
                   flags [none], length: 51)  
                      10.0.0.54.3871 > 10.0.0.1.tftp: [udp sum ok]  
                           23 ERROR EUNDEF timeout on receive"

Here we see a set of seven requests grouped very close to each other in time. 
The initial request (identified as RRQ for file /foo) comes from UDP port 3871, 
destined for the TFTP service (port 69). An ICMPv4 Port Unreachable message is 
immediately returned (packet 2), but the TFTP client appears to ignore the mes-
sage, sending another UDP datagram right away. This continues immediately 
six more times. After waiting about another 8s, the client tries one last time and 
finally gives up.
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Note that the ICMPv4 messages are sent without any port number designa-
tion, and each 16-byte TFTP packet is from a specific port (3871) and to a specific 
port (TFTP, equal to 69). The number 16 at the end of each TFTP read request 
(RRQ) line is the length of the data in the UDP datagram. In this example, 16 is 
the sum of the TFTP’s 2-byte opcode, the 5-byte null-terminated name /foo, and 
the 9-byte null-terminated string netascii. The full ICMPv4 Unreachable mes-
sage is depicted in Figure 8-5. It is 52 bytes long (not including the IPv4 header): 
4 bytes for the basic ICMPv4 header, followed by 4 unused bytes (see Figure 8-5; 
this implementation does not use [RFC4884] extensions), the 20-byte offending 
IPv4 header, 8 bytes for the UDP header, and finally the remaining 16 bytes from 
the original tftp application request (4 + 4 + 20 + 8 + 16 = 52).

Figure 8-5  An ICMPv4 Destination Unreachable – Port Unreachable error message contains as 
much of the offending IPv4 datagram as possible such that the overall IPv4 datagram 
does not exceed 576 bytes. In this example, there is enough room to include the entire 
TFTP request message.

As mentioned previously, one reason ICMP includes the offending IP header 
in error messages is that doing so helps ICMP know how to interpret the bytes that 
follow encapsulated IP header (the UDP header in this example). Because a copy of 
the offending UDP header is included in the returned ICMP message, the source 
and destination port numbers can be learned. It is this destination port number 
(tftp, 69) that caused the ICMP Port Unreachable message to be generated. The 
source port number (3871) can be used by the system receiving the ICMP error to 
associate the error with a particular user process (the TFTP client in this example, 
although we saw that this client does not make much use of the indication).

Note that after the seventh request (packet 13), no error is returned for some 
time. The reason for this is that the Linux-based server performs rate limiting. That 
is, it limits the number of ICMP messages of the same type that can be generated 
in a period of time, as suggested by [RFC1812]. If we look at the elapsed time 
between the initial error message (packet 2, with timestamp 48.974812) and the 
final message before the 8s gap (packet 12, with timestamp 49.034812), we compute 
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that 60ms have elapsed. If we count the number of ICMP messages over this time, 
we conclude that (6 messages/.06s) = 100 messages/s is the rate limit. This can be 
verified by inspecting the values of the ICMPv4 rate mask and rate limit in Linux:

Linux% sysctl -a | grep icmp_rate
net.ipv4.icmp_ratemask = 6168
net.ipv4.icmp_ratelimit = 100

Here we see that several ICMPv4 messages are to be rate-limited, and that the 
rate limit for all of them is 100 (measured in messages per second). The ratemask
variable indicates which messages have the limit applied to them, by turning on 
the kth bit in the mask if the message with code number k is to be limited, starting 
from 0. In this case, codes 3, 4, 11, and 12 are being limited (because 6168 = 0x1818 
= 0001100000011000, where bits 3, 4, 11, and 12 from the right are turned on). If we 
were to set the rate limit to 0 (meaning no limit), we would find that Linux returns 
nine ICMPv4 messages, one corresponding to each tftp request packet, and the 
tftp client times out almost immediately. This behavior also occurs when trying 
to access a Windows XP machine, which does not perform ICMP rate limiting.

Why does the TFTP client keep retransmitting its request when the error mes-
sages are being returned? A detail of network programming is revealed here. 
Most systems do not notify user processes using UDP that ICMP that messages for 
them have arrived unless the process calls a special function (i.e., connect on the 
UDP socket). Common TFTP clients do not call this function, so they never receive 
the ICMP error notification. Without hearing any response regarding the fate of 
its TFTP protocol requests, the TFTP client tries again and again to retrieve its file. 
This is an example of a poor request and retry mechanism. Although TFTP does 
have extensions for adjusting this behavior (see [RFC2349]), we shall see later (in 
Chapter 16) that a more sophisticated transport protocol such as TCP has a much 
better algorithm.

8.3.2.5 ICMPv4 PTB (Code 4)
If an IPv4 router receives a datagram that it intends to forward, and if the data-
gram does not fit into the MTU in use on the selected outgoing network interface, 
the datagram must be fragmented (see Chapter 10). If the arriving datagram has 
the Don’t Fragment bit field set in its IP header, however, it is not forwarded but 
instead is dropped, and this ICMPv4 Destination Unreachable (PTB) message is 
generated. Because the router sending this message knows the MTU of the next 
hop, it is able to include the MTU value in the error message it generates.

This message was originally intended to be used for network diagnostics but 
has since been used for path MTU discovery. PMTUD is used to determine an 
appropriate packet size to use when communicating with a particular host, on the 
assumption that avoiding packet fragmentation is desirable. It is used most com-
monly with TCP, and we cover it in more detail in Chapter 14. 
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8.3.2.6 ICMPv6 PTB (Type 2, Code 0)
In ICMPv6, a special message and type code combination is used to indicate that 
a packet is too large for the MTU of the next hop (see Figure 8-6).

Figure 8-6    The ICMPv6 Packet Too Big message (type 2) works like the corresponding ICMPv4 
Destination Unreachable message. The ICMPv6 variant includes 32 bits to hold the next-
hop MTU.

This message is not a Destination Unreachable message. Recall that in IPv6, 
packet fragmentation is performed only by the sender of a datagram and that 
MTU discovery is always supposed to be used. Thus, this message is used pri-
marily by the IPv6 PMTUD mechanism, but also in the (rare) circumstances that 
a packet arrives that is too large to be carried over the next hop. Because routes 
may change after the operation of PMTUD and after a packet is injected into the 
network, it is always possible that a packet arriving at a router is too large for the 
outgoing MTU. As is the case with modern implementations of ICMPv4 Destina-
tion Unreachable code 4 (PTB) messages, the suggested MTU size of the packet, 
based on the MTU of the egress link of the router generating the ICMP message, 
is carried in the indication. 

8.3.2.7 ICMPv6 Beyond Scope of Source Address (Code 2)
As we saw in Chapter 2, IPv6 uses addresses of different scopes. Thus, it is pos-
sible to construct a packet with source and destination addresses of different 
scopes. Furthermore, it is possible that the destination address may not be reach-
able within the same scope. For example, a packet with a source address using 
link-local scope may be destined for a globally scoped destination that requires 
traversal of more than one router. Because the source address is of insufficient 
scope, the packet is dropped by a router, and this form of ICMPv6 error is pro-
duced to indicate the problem.
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8.3.2.8 ICMPv6 Source Address Failed Ingress/Egress Policy (Code 5)
Code 5 is a more refined version of code 1, to be used when a particular ingress 
or egress filtering policy is the reason for prohibiting the successful delivery of a 
datagram. This might be used, for example, when a host attempts to send traffic 
using a source IPv6 address from an unexpected network prefix [RFC3704].

8.3.2.9 ICMPv6 Reject Route to Destination (Code 6)
A reject or blocking route is a special routing or forwarding table entry (see Chapter 
5), which indicates that matching packets should be dropped and an ICMPv6 Des-
tination Unreachable Reject Route message should be generated. (A similar type of 
entry called a blackhole route also causes matching packets to be dropped, but usu-
ally without generating the Destination Unreachable message.) Such routes may 
be installed in a router’s forwarding table to prevent leakage of packets sent to 
unwanted destinations. Unwanted destinations may include martian routes (pre-
fixes not used on the public Internet) and  bogons (valid prefixes not yet allocated).

8.3.3 Redirect (ICMPv4 Type 5, ICMPv6 Type 137)

If a router receives a datagram from a host and can determine that it is not the cor-
rect next hop for the host to have used to deliver the datagram to its destination, 
the router sends a Redirect message to the host and sends the datagram on to the 
correct router (or host). That is, if it can determine that there is a better next hop 
than itself for the given datagram, it redirects the host to update its forwarding 
table so that future traffic for the same destination will be directed toward the 
new node. This facility provides a crude form of routing protocol by indicating to 
the IP forwarding function where to send its packets. The process of IP forward-
ing is discussed in detail in Chapter 5.

In Figure 8-7, a network segment has a host and two routers, R1 and R2. When 
the host sends a datagram incorrectly through router R2, R2 responds by sending 
the Redirect message to the host, while forwarding the datagram to R1. Although 
hosts may be configured to update their forwarding tables based on ICMP redi-
rects, routers are discouraged from doing so under the assumption that rout-
ers should already know the best next-hop nodes for all reachable destinations 
because they are using dynamic routing protocols. 

The ICMP Redirect message includes the IP address of the router (or destina-
tion host, if it is reachable using direct delivery) a host should use as a next hop for 
the destination specified in the ICMP error message (see Figure 8-8). Originally 
the redirect facility supported a distinction between a redirect for a host and a 
redirect for a network, but once classless addressing was used (CIDR; see Chapter 
2), the network redirect form effectively vanished. Thus, when a host receives a 
host redirect, it is effective only for that single IP destination address. A host that 
consistently chooses the wrong router can wind up with a forwarding table entry 
for every destination it contacts outside its local subnet, each of which has been 
added as the result of receiving a Redirect message from its configured default 
router. The format of the ICMPv4 Redirect message is shown in Figure 8-8. 
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Figure 8-7  The host incorrectly sends a datagram via R2 toward its destination. R2 realizes the 
host’s mistake and sends the datagram to the proper router, R1. It also informs the host 
of the error by sending an ICMP Redirect message. The host is expected to adjust its for-
warding tables so that future datagrams to the same destination go through R1 without 
bothering R2.

Figure 8-8  The ICMPv4 Redirect message includes the IPv4 address of the correct router to use as a 
next hop for the datagram included in the payload portion of the message. A host typi-
cally checks the IPv4 source address of the incoming Redirect message to verify that it is 
coming from the default router it is currently using.

We can examine the behavior of a Redirect message by changing our host to 
use an incorrect router (another host on the same network) as its default next hop. 
As an example, we first change our default route and then attempt to contact a 
remote server. Our system will mistakenly attempt to forward its outgoing pack-
ets to the specified host:

C:\> netstat -rn
Network Dest      Netmask     Gateway           Interface     Metric
0.0.0.0           0.0.0.0     10.212.2.1        10.212.2.88   1
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C:\> route delete 0.0.0.0                             delete default
C:\> route add 0.0.0.0 mask 0.0.0.0 10.212.2.112      add new
C:\> ping ds1.eecs.berkeley.edu                       sends thru 10.212.2.112
Pinging ds1.eecs.berkeley.edu [169.229.60.105] with 32 bytes of data:

Reply from 169.229.60.105: bytes=32 time=1ms TTL=250
Reply from 169.229.60.105: bytes=32 time=5ms TTL=250
Reply from 169.229.60.105: bytes=32 time=1ms TTL=250
Reply from 169.229.60.105: bytes=32 time=1ms TTL=250

Ping statistics for 169.229.60.105:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 5ms, Average = 2ms

While this is taking place, we can run tcpdump to observe the activities (some 
lines have been wrapped for clarity):

Linux# tcpdump host 10.212.2.88

1 20:27:00.759340 IP 10.212.2.88 > ds1.eecs.berkeley.edu: icmp 40: 
                   echo request seq 15616
2 20:27:00.759445 IP 10.212.2.112 > 10.212.2.88: icmp 68: 
                   redirect ds1.eecs.berkeley.edu to host 10.212.2.1
3 20:27:00.759468 IP 10.212.2.88 > ds1.eecs.berkeley.edu: icmp 40: 
                   echo request seq 15616
...

Here our host (10.212.2.88) sends an ICMPv4 Echo Request (ping) message 
to the host ds1.eecs.berkeley.edu. After the name is resolved by DNS (see 
Chapter 11) to the IPv4 address 169.229.60.105, the Request message is sent to the 
first hop, 10.212.2.112, rather than the correct default router, 10.212.2.1. Because 
the system with IPv4 address 10.212.2.112 is properly configured, it under-
stands that the original sending host should have used the router 10.212.2.1. As 
expected, it responds with an ICMPv4 Redirect message toward the host, indicat-
ing that in the future, any traffic destined for ds1.eecs.berkeley.edu should 
go through the router 10.212.2.1.

In ICMPv6, the Redirect message (type 137) contains the target address and 
the destination address (see Figure 8-9), and it is defined in conjunction with the 
ND process (see Section 8.5). The Target Address field contains the correct node’s 
link-local IPv6 address that should be used for the next hop. The Destination 
Address is the destination IPv6 address in the datagram that evoked the redirect. 
In the particular situation where the destination is an on-link neighbor to the host 
receiving the redirect, the Target Address and Destination Address fields are identi-
cal. This provides a method for informing a host that another host is on the same 
link, even if the two hosts do not share a common address prefix [RFC5942].
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As with other ND messages in ICMPv6, this message can include options. The 
types of options include the Target Link-Layer Address option and the Redirected 
Header option. The Target Link-Layer Address option is required in cases where 
the Redirect message is used on a non-broadcast multiple access (NBMA) network, 
because in such cases there may be no other efficient way for the host receiving 
the Redirect message to determine the link-layer address for the new next hop. 
The Redirected Header option holds a portion of the IPv6 packet that caused the 
Redirect message to be generated. We discuss the format of these options and oth-
ers in Section 8.5 when exploring IPv6 Neighbor Discovery. 

8.3.4 ICMP Time Exceeded (ICMPv4 Type 11, ICMPv6 Type 3)

Every IPv4 datagram has a Time-to-Live (TTL) field in its IPv4 header, and every 
IPv6 datagram has a Hop Limit field in its header (see Chapter 5). As originally 
conceived, the 8-bit TTL field was to hold the number of seconds a datagram was 
allowed to remain active in the network before being forcibly discarded (a good 
thing if forwarding loops are present). Because of an additional rule that said that 
any router must decrement the TTL field by at least 1, combined with the fact that 
datagram forwarding times grew to be small fractions of a second, the TTL field 
has been used in practice as a limitation on the number of hops an IPv4 datagram 
is allowed to take before it is discarded by a router. This usage was formalized and 
ultimately adopted in IPv6. ICMP Time Exceeded (code 0) messages are generated 
when a router discards a datagram because the TTL or Hop Limit field is too low 
(i.e., arrives with value 0 or 1 and must be forwarded). This message is important 
for the proper operation of the traceroute tool (called tracert on Windows). 
Its format, for both ICMPv4 and ICMPv6, is given in Figure 8-10.

Figure 8-9  The ICMPv6 Redirect message. The target address indicates the IPv6 address of a better 
next-hop router for the node identified by the destination address. This message can also 
be used to indicate that the destination address is an on-link neighbor to the node send-
ing the message that induced the error message. In this case, the destination and target 
addresses are the same.
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Another less common variant of this message is when a fragmented IP data-
gram only partially arrives at its destination (i.e., all its fragments do not arrive 
after a period of time). In such cases, a variant of the ICMP Time Exceeded mes-
sage (code 1) is used to inform the sender that its overall datagram has been dis-
carded. Recall that if any fragment of a datagram is dropped, the entire datagram 
is lost.

8.3.4.1 Example: The traceroute Tool
The traceroute tool is used to determine the routers used along a path from 
a sender to a destination. We shall discuss the operation of the IPv4 version. The 
approach involves sending datagrams first with an IPv4 TTL field set to 1 and 
allowing the expiring datagrams to induce routers along the path to send ICMPv4 
Time Exceeded (code 0) messages. Each round, the sending TTL value is increased 
by 1, causing the routers that are one hop farther to expire the datagrams and 
generate ICMP messages. These messages are sent from the router’s primary IPv4 
address “facing” the sender. Figure 8-11 shows how this approach works.

Figure 8-10  The ICMP Time Exceeded message format for ICMPv4 and ICMPv6. The message is 
standardized for both the TTL or hop count being exceeded (code 0) or the time for reas-
sembling fragments exceeding some preconfigured threshold (code 1).

Figure 8-11  The traceroute tool can be used to determine the routing path, assuming it does not 
fluctuate too quickly. When using traceroute, routers are typically identified by the 
IP addresses assigned to the interfaces “facing” or nearest to the host performing the 
trace. 
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In this example, traceroute is used to send UDP datagrams (see Chapter 
10) from the laptop to the host www.eecs.berkeley.edu (an Internet host with 
IPv4 address 128.32.244.172, not shown in Figure 8-11). This is accomplished 
using the following command:

Linux% traceroute –m 2 www.cs.berkeley.edu
traceroute to web2.eecs.berkeley.edu (128.32.244.172), 2 hops max, 
52 byte packets
 1  gw (192.168.0.1)  3.213 ms  0.839 ms  0.920 ms
 2  10.0.0.1 (10.0.0.1)  1.524 ms  1.221 ms  9.176 ms

The –m option instructs traceroute to perform only two rounds: one using 
TTL = 1 and one using TTL = 2. Each line gives the information found at the corre-
sponding TTL. For example, line 1 indicates that one hop away a router with IPv4 
address 192.168.0.1 was found and that three independent round-trip-time mea-
surements (3.213, 0.839, and 0.920ms) were taken. The difference between the 
first and subsequent times relates to additional work that is involved in the first 
measurement (i.e., an ARP transaction). Figures 8-12 and 8-13 show Wireshark 
packet captures indicating how the outgoing datagrams and returning ICMPv4 
messages are structured.

Figure 8-12  traceroute using IPv4 begins by sending a UDP/IPv4 datagram with TTL = 1 to destination port 
number 33435. Each TTL value is tried three times before being incremented by 1 and retried. Each 
expiring datagram causes the router at the appropriate hop distance to send an ICMPv4 Time Exceeded 
message back to the source. The message’s source address is that of the router “facing” the sender.

www.eecs.berkeley.edu
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Looking at Figure 8-12, we can see that traceroute sends six datagrams, and 
that each datagram is sent to a destination port number in sequence, starting with 
33435. If we look more closely, we can see that the first three datagrams are sent 
with TTL = 1 and the second set of three are sent with TTL = 2. Figure 8-12 shows 
the first one. Each datagram causes an ICMPv4 Time Exceeded (code 0) message 
to be sent. The first three are sent from router N3 (IPv4 address 192.168.0.1), and 
the next three are sent from router N2 (IPv4 address 10.0.0.1). Figure 8-13 shows the 
last ICMP message in more detail.

Figure 8-13  The final ICMPv4 Time Exceeded message of the trace is sent by N2 (IPv4 address 
10.0.0.1). It includes a copy of the original datagram that caused the Time Exceeded 
message to be generated. The TTL of the inner IPv4 header is 0 because N2 decremented 
it from 1.

This is the final Time Exceeded message of the trace. It contains the original 
IPv4 datagram (packet 11), as seen by N2 upon receipt. This datagram arrives with 
TTL = 1, but after being decremented is too small for N2 to perform additional 
forwarding to 128.32.244.172. Consequently, N2 sends a Time Exceeded message 
back to the source of the original datagram.
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8.3.5 Parameter Problem (ICMPv4 Type 12, ICMPv6 Type 4)

ICMP Parameter Problem messages are generated by a host or router receiving 
an IP datagram containing some problem in its IP header that cannot be repaired. 
When a datagram cannot be handled and no other ICMP message adequately 
describes the problem, this message acts as a sort of “catchall” error condition 
indicator. In both ICMPv4 and ICMPv6, if there is an error in the header such that 
some field is out of acceptable range, a special ICMP error message Pointer field 
indicates the byte offset of the field where the error was found, relative to the 
beginning of the offending IP header. With ICMPv4, for example, a value of 1 in 
the Pointer field indicates a bad IPv4 DS Field or ECN field (together, these fields 
used to be called the IPv4 Type of Service or ToS Byte which has since been rede-
fined and renamed; see Chapter 5). The format of the ICMPv4 Parameter Problem 
message is shown in Figure 8-14.

Figure 8-14  The ICMPv4 Parameter Problem message is used when no other message applies. The 
Pointer field indicates the byte index of the problematic value in the offending IPv4 
header. Code 0 is most common. Code 1 was formerly used to indicate that a required 
option was missing but is now historic. Code 2 indicates that the offending IPv4 data-
gram has a bad IHL or Total Length field.

Code 0 is the most common variant of the ICMPv4 Parameter Problem mes-
sages and is used when there is almost any problem with the IPv4 header, although 
problems with the header or datagram Total Length fields may instead generate 
code 2 messages. Code 1 was once used to indicate missing options such as secu-
rity labels on packets but is now historic. Code 2, a more recently defined code, 
indicates a bad length in the IHL or Total Length fields (see Chapter 5). The ICMPv6 
version of this error message is shown in Figure 8-15.

In ICMPv6, the treatment of this error has been refined somewhat, relative to 
the ICMPv4 version, into three cases: erroneous header field encountered (code 
0), unrecognized Next Header type encountered (code 1), and unrecognized IPv6 
option encountered (code 2). As with the corresponding error message in ICMPv4, 
the ICMPv6 parameter problem Pointer field gives the byte offset into the offend-
ing IPv6 header that caused the problem. For example, a Pointer field of 40 would 
indicate a problem with the first IPv6 extension header.
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The erroneous header (code 0) error occurs when a field in one of the IPv6 
headers contains an illegal value. A code 1 error occurs when an IPv6 Next Header
(header chaining) field contains a value corresponding to a header type that the 
IPv6 implementation does not support. Finally, code 2 is used when an IPv6 header 
option is received but not recognized by the implementation.

8.4 ICMP Query/Informational Messages

Although ICMP defines a number of query messages such as Address Mask 
Request/Reply (types 17/18), Timestamp Request/Reply (types 13/14), and Infor-
mation Request/Reply (types 15/16), these functions have been replaced by other, 
more purpose-specific protocols (including DHCP; see Chapter 6). The only 
remaining popular ICMP query/informational messages are the Echo Request/
Response messages, more commonly called ping, and the Router Discovery mes-
sages. Even the Router Discovery mechanism is not in wide use with IPv4, but its 
analog (part of Neighbor Discovery) in IPv6 is fundamental. In addition, ICMPv6 
has been extended to support Mobile IPv6 and the discovery of multicast-capable 
routers. In this section, we investigate the Echo Request/Reply functions and the 
messages used for basic router and Multicast Listener Discovery (also see Chap-
ters 6 and 9). In the subsequent section, we explore the operation of Neighbor 
Discovery in IPv6.

8.4.1 Echo Request/Reply (ping) (ICMPv4 Types 0/8, ICMPv6 Types 129/128)

One of the most commonly used ICMP message pairs is Echo Request and Echo 
Response (or Reply). In ICMPv4 these are types 8 and 0, respectively, and in 
ICMPv6 they are types 128 and 129, respectively. ICMP Echo Request messages 
may be of nearly arbitrary size (limited by the ultimate size of the encapsulating 

Figure 8-15  The ICMPv6 Parameter Problem message. The Pointer field gives the byte offset into 
the original datagram where an error was encountered. Code 0 indicates a bad header 
field. Code 1 indicates an unrecognized Next Header type, and Code 2 indicates that an 
unknown IPv6 option was encountered.
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IP datagram). With ICMP Echo Reply messages, the ICMP implementation is 
required to return any data received back to the sender, even if multiple IP frag-
ments are involved. The ICMP Echo Request/Response message format is shown 
in Figure 8-16.

As with other ICMP query/informational messages, the server must echo the 
Identifier and Sequence Number fields back in the reply.

Figure 8-16  Format of the ICMPv4 and ICMPv6 Echo Request and Echo Reply messages. Any 
optional data included in a request must be returned in a reply. NATs use the Identifier
field to match requests with replies, as discussed in Chapter 7.

These messages are sent by the ping program, which is commonly used to 
quickly determine if a computer is reachable on the Internet. At one time, if you 
could “ping” a host, you could almost certainly reach it by other means (remote 
login, other services, etc.). With firewalls in common use, however, this is now far 
from certain.

Note

The name ping is taken from the sonar operation to locate objects. The ping pro-
gram was written by Mike Muuss, who maintained an amusing Web page describ-
ing its history [PING].

Implementations of ping set the Identifier field in the ICMP message to some 
number that the sending host can use to demultiplex returned responses. In 
UNIX-based systems, for example, the process ID of the sending process is typi-
cally placed in the Identifier field. This allows the ping application to identify the 
returned responses if there are multiple instances of ping running at the same 
time on the same host, because the ICMP protocol does not have the benefit of 
transport-layer port numbers. This field is often known as the Query Identifier field 
when referring to firewall behavior (see Chapter 7).

When a new instance of the ping program is run, the Sequence Number field 
starts with the value 0 and is increased by 1 every time a new Echo Request 
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message is sent. ping prints the sequence number of each returned packet, allow-
ing the user to see if packets are missing, reordered, or duplicated. Recall that IP 
(and consequently ICMP) is a best-effort datagram delivery service, so any of these 
three conditions can occur. ICMP does, however, include a data checksum not 
provided by IP.

The ping program also typically includes a copy of the local time in the 
optional data area of outgoing echo requests. This time, along with the rest of the 
contents of the data area, is returned in an Echo Response message. The ping pro-
gram notes the current time when a response is received and subtracts the time 
in the reply from the current time, giving an estimate of the RTT to reach the host 
that was “pinged.” Because only the original sender’s notion of the current time is 
used, this feature does not require any synchronization between the clocks at the 
sender and receiver. A similar approach is used by the traceroute tool for its 
RTT measurements.

Early versions of the ping program operated by sending an Echo Request 
message once per second, printing each returning echo reply. Newer implementa-
tions, however, have increased the variability in output formats and behaviors. 
On Windows, the default is to send four echo requests, one per second, print some 
statistics, and exit; the -t option is required to allow the Windows ping applica-
tion to continue until stopped by the user. On Linux, the behavior is the traditional 
one—the default is to run until interrupted by the user, sending an echo request 
each second and printing any responses. Many other variants of ping have been 
developed over the years, and there are several other standard options. With some 
versions of the application, a large packet can be constructed to contain special 
data patterns. This has been used to look for data-dependent errors in network 
communications equipment.

In the following example, we send an ICMPv4 Echo Request to the subnet 
broadcast address. This particular version of the ping application (Linux) requires 
us to specify the -b flag to indicate that it is indeed our intention (and it gives us 
a warning regarding this, because it can generate a substantial volume of network 
traffic) to use the broadcast address:

Linux% ping -b 10.0.0.127
WARNING: pinging broadcast address
PING 10.0.0.127 (10.0.0.127) from 10.0.0.1 : 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=0 ttl=255 time=1.290 msec
64 bytes from 10.0.0.6: icmp_seq=0 ttl=64 time=1.853 msec (DUP!)
64 bytes from 10.0.0.47: icmp_seq=0 ttl=64 time=2.311 msec (DUP!)
64 bytes from 10.0.0.1: icmp_seq=1 ttl=255 time=382 usec
64 bytes from 10.0.0.6: icmp_seq=1 ttl=64 time=1.587 msec (DUP!)
64 bytes from 10.0.0.47: icmp_seq=1 ttl=64 time=2.406 msec (DUP!)
64 bytes from 10.0.0.1: icmp_seq=2 ttl=255 time=380 usec
64 bytes from 10.0.0.6: icmp_seq=2 ttl=64 time=1.573 msec (DUP!)
64 bytes from 10.0.0.47: icmp_seq=2 ttl=64 time=2.394 msec (DUP!)
64 bytes from 10.0.0.1: icmp_seq=3 ttl=255 time=389 usec
64 bytes from 10.0.0.6: icmp_seq=3 ttl=64 time=1.583 msec (DUP!)
64 bytes from 10.0.0.47: icmp_seq=3 ttl=64 time=2.403 msec (DUP!)
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--- 10.0.0.127 ping statistics ---
4 packets transmitted, 4 packets received, 
+8 duplicates, 0% packet loss
round-trip min/avg/max/mdev = 0.380/1.545/2.406/0.765 ms

Here, 4 outgoing Echo Request messages are sent and we see 12 responses. 
This behavior is typical of using the broadcast address: all receiving nodes are 
compelled to respond. We therefore see the sequence numbers 0, 1, 2, and 3, but 
for each one we see 3 responses. The (DUP!) notation indicates that an Echo Reply 
has been received containing a Sequence Number field identical to a previously 
received one. Observe that the TTL values are different (255 and 64), suggesting 
that different kinds of computers are responding.

Note that this procedure (sending echo requests to the IPv4 broadcast address) 
can be used to quickly populate the local system’s ARP table (see Chapter 4). 
Those systems responding to the Echo Request message form an Echo Reply mes-
sage directed at the sender of the request. When the reply is destined for a system 
on the same subnet, an ARP request is issued looking for the link-layer address 
of the originator of the request. In so doing, ARP is exchanged between every 
responder and the request sender. This causes the sender of the Echo Request 
message to learn the link-layer addresses of all the responders. In this example, 
even if the local system had no link-layer address mappings for the addresses 
10.0.0.1, 10.0.0.6, and 10.0.0.47, they would all be present in the ARP table 
after the broadcast. Note that returning Echo Reply messages to requests sent to 
the broadcast address is optional. By default, Linux systems return such replies 
and Windows XP systems do not.   

8.4.2 Router Discovery: Router Solicitation and Advertisement (ICMPv4 Types 9, 10)

In Chapter 6, we looked at how DHCP can be used for a host to acquire an IP 
address and learn about the existence of nearby routers. An alternative option we 
mentioned for learning about routers is called Router Discovery (RD). Although 
specified for configuring both IPv4 and IPv6 hosts, it is not widely used with IPv4 
because of widespread preference for DHCP. However, it is now specified for use 
in conjunction with Mobile IP, so we provide a brief description. The IPv6 version 
forms part of the IPv6 SLAAC function (see Chapter 6) and is logically part of 
IPv6 ND. Therefore, we shall return to discussing it in the broader context of ND 
in Section 8.5.

Router Discovery for IPv4 is accomplished using a pair of ICMPv4 informa-
tional messages [RFC1256]: Router Solicitation (RS, type 10) and Router Advertise-
ment (RA, type 9). The advertisements are sent by routers in two ways. First, they 
are periodically multicast on the local network (using TTL = 1) to the All Hosts 
multicast address (224.0.0.1), and they are also provided to hosts on demand that 
ask for them using RS messages. RS messages are sent using multicast to the All 
Routers multicast address (224.0.0.2). The primary purpose of Router Discovery 
is for a host to learn about all the routers on its local subnetwork, so that it can 
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choose a default route among them. It is also used to discover the presence of rout-
ers that are willing to act as Mobile IP home agents. See Chapter 9 for details on 
local network multicast. Figure 8-17 shows the ICMPv4 RA message format, which 
includes a list of the IPv4 addresses that can be used by a host as a default router.

Figure 8-17  The ICMPv4 Router Advertisement message includes a list of IPv4 addresses of routers that can 
be used as default next hops. The preference level lets network operators arrange for some order-
ing of preferences to be applied with respect to the list (higher is more preferred). Mobile IPv4 
[RFC5944] augments RA messages with extensions in order to advertise MIPv4 mobility agents 
and the prefix lengths of the advertised router addresses.

In Figure 8-17, the Number of Addresses field gives the number of router address 
blocks in the message. Each block contains an IPv4 address and accompanying 
preference level. The Address Entry Size field gives the number of 32-bit words per 
block (two in this case). The Lifetime field gives the number of seconds for which 
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the list of addresses should be considered valid. The preference level is a 32-bit 
signed two’s-complement integer for which higher values indicate greater prefer-
ence. The default preference level is 0; the special value 0x80000000 indicates an 
address that should not be used as a valid default router.

RA messages are also used by Mobile IP [RFC5944] for a node to locate a 
mobility (i.e., home and/or foreign) agent. Figure 8-17 depicts a Router Advertise-
ment message including a Mobility Agent Advertisement extension. This exten-
sion follows the conventional RA information and includes a Type field with value 
16 and a Length field giving the number of bytes in the extension area (not includ-
ing the Type and Length fields). Its value is equal to (6 + 4K), assuming that K care-
of addresses are included. The Sequence Number field gives the number of such 
extensions produced by the agent since initialization. The registration gives the 
maximum number of seconds during which the sending agent is willing to accept 
MIPv4 registrations (0xFFFF indicates infinity). There are a number of Flags bit 
fields with the following meanings: R (registration required for MIP services), B
(agent is too busy to accept new registrations), H (agent is willing to act as home 
agent), F (agent is willing to act as foreign agent), M (the minimum encapsulation 
format [RFC2004] is supported), G (the agent supports GRE tunnels for encapsu-
lated datagrams), r (reserved zero), T (reverse tunneling [RFC3024] is supported), 
U (UDP tunneling [RFC3519] is supported), X (registration revocation [RFC3543] 
is supported), and I (foreign agent supports regional registration [RFC4857]).

In addition to the Mobility Agent Advertisement extension, one other exten-
sion has been designed to help mobile nodes. The Prefix-Lengths extension may 
follow a Mobility Agent Advertisement extension and indicates the prefix length 
of each corresponding router address provided in the base router advertisement. 
The format is shown in Figure 8-18.

Figure 8-18  The ICMPv4 optional RA Prefix-Lengths extension gives the number of significant prefix bits for 
each of the N router addresses present in the basic Router Advertisement portion of the message. 
This extension follows the Mobility Agent Advertisement extension, if present.

In Figure 8-18, the Length field is set equal to N, the Number of Addresses field 
from the basic RA message. Each 8-bit Prefix Length field gives the number of bits 
in the corresponding Router Address field (see Figure 8-17) in use on the local sub-
network. This extension can be used by a mobile node to help determine whether 
it has moved from one network to another. Using algorithm 2 of [RFC5944], a 
mobile node may cache the set of prefixes available on a particular link. A move 
can be detected if the set of network prefixes has changed.
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8.4.3 Home Agent Address Discovery Request/Reply (ICMPv6 Types 144/145)

[RFC6275] defines four ICMPv6 messages used in support of MIPv6. Two of the 
ICMPv6 messages are used for dynamic home agent address discovery, and the 
other two are used for renumbering and mobile configuration. The Home Agent 
Address Discovery Request message is used by an MIPv6 node when visiting a 
new network to dynamically discover a home agent (see Figure 8-19). 

Figure 8-19  The MIPv6 Home Agent Address Discovery Request message contains an identifier that 
is returned in the response. It is sent to the Home Agents anycast address for the mobile 
node’s home prefix.

The message is sent to the MIPv6 Home Agents anycast address for its home 
prefix. The IPv6 source address is typically the care-of address—the address a 
mobile node has acquired on the network it is currently visiting (see Chapter 5). A 
Home Agent Address Discovery Response message (see Figure 8-20) is sent by a 
node willing to act as a home agent for the given node and its home prefix.

Figure 8-20  The MIPv6 Home Agent Address Discovery Reply message contains the identifier from 
the corresponding request and one or more addresses of a home agent willing to for-
ward packets for the mobile node.

The home agent address is provided directly to the mobile node’s unicast 
address, which is most likely a care-of address. These messages are intended to 
handle cases where a mobile node’s HA has changed while transitioning between 
networks. After reestablishing an appropriate HA, the mobile may initiate MIPv6 
binding updates (see Chapter 5).
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8.4.4 Mobile Prefix Solicitation/Advertisement (ICMPv6 Types 146/147)

The Mobile Prefix Solicitation message (see Figure 8-21) is used to solicit a routing 
prefix update from an HA when a node’s home address is about to become invalid. 
The mobile includes a Home Address option (IPv6 Destination Options; see Chap-
ter 5) and protects the solicitation using IPsec (see Chapter 18). 

Figure 8-21  The MIPv6 Mobile Prefix Solicitation message is sent by a mobile node when away to 
request a home agent to provide a mobile prefix advertisement.

The solicitation message includes a random value in the Identifier field, used 
to match requests with replies. It is similar to a Router Solicitation message but is 
sent to a mobile node’s HA instead of to the local subnetwork. In the advertise-
ment form of this message (see Figure 8-22), the encapsulating IPv6 datagram 
must include a type 2 routing header (see Chapter 5). The Identifier field contains 
a copy of the identifier provided in the solicitation message. The M (Managed 
Address) field indicates that hosts should use stateful address configuration and 
avoid autoconfiguration. The O (Other) field indicates that information other than 
the address is provided by a stateful configuration method. The advertisement 
then contains one or more Prefix Information options.

Figure 8-22  The MIPv6 Mobile Prefix Advertisement message. The Identifier field matches the cor-
responding field in the solicitation. The M (Managed) flag indicates that the address is 
provided by a stateful configuration mechanism. The O (Other) flag indicates that other 
information beyond the address is supplied by stateful mechanisms.

The Mobile Prefix Advertisement message is designed to inform a traveling 
mobile node that its home prefix has changed. This message is normally secured 
using IPsec (see Chapter 18) in order to help a mobile node protect itself from 
spoofed prefix advertisements. The Prefix Information option, which uses the 
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format described in [RFC4861], contains the prefix(es) the mobile node should use 
for configuring its home address(es).

8.4.5 Mobile IPv6 Fast Handover Messages (ICMPv6 Type 154)

A variant of MIPv6 defines fast handovers [RFC5568] for MIPv6 (called FMIPv6). It 
specifies methods for improving the IP-layer handoff latency when a mobile node 
moves from one network access point (AP) to another. This is accomplished by 
predicting the routers and addressing information that will be used prior to the 
handoff taking place. The protocol involves the discovery of so-called proxy rout-
ers, which behave like routers a mobile is likely to encounter after it is handed off 
to a new network. There are corresponding ICMPv6 Proxy Router Solicitation and 
Advertisement messages (called RtSolPr and PrRtAdv, respectively). The basic for-
mat of the RtSolPr and PrRtAdv messages is given in Figure 8-23.

Figure 8-23  The common ICMPv6 message type used for FMIPv6 messages. The Code and Subtype
fields give further information. Solicitation messages use code 0 and subtype 2 and may 
include the sender’s link-layer address and the link-layer address of its preferred next 
access point (if known) as options. Advertisements use codes 0–5 and subtype 3. The dif-
ferent code values indicate the presence of various options, whether the advertisement 
was solicited, if the prefix or router information has changed, and the handling of DHCP.

A mobile node may have some information available regarding the addresses 
or identifiers of APs it will use in the future (e.g., by “scanning” for 802.11 net-
works). A RtSolPr message uses code 0 and subtype 2 and must contain at least 
one option, the New Access Point Link-Layer Address option. This is used to indi-
cate which AP the mobile is requesting information about. The RtSolPr message 
may also contain a Link-Layer Address option identifying the source, if known. 
These options use the IPv6 ND option format, so we shall defer discussion of them 
until we look at ND in detail. 

8.4.6 Multicast Listener Query/Report/Done (ICMPv6 Types 130/131/132)

Multicast Listener Discovery (MLD) [RFC2710][RFC3590] provides management of 
multicast addresses on links using IPv6. It is similar to the IGMP protocol used by 
IPv4, described in Chapter 9. That chapter deals with the operation of IGMP and the 
use of this ICMPv6 message in detail; here we describe the message formats that 
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constitute MLD (version 1), including the Multicast Listener Query, Report, and Done 
messages. The basic format is given in Figure 8-24. These messages are sent with an 
IPv6 Hop Limit field value of 1 and the Router Alert Hop-by-Hop IPv6 option.

Figure 8-24  ICMPv6 MLD version 1 messages are all of this form. Queries (type 130) are either 
general or multicast-address-specific. General queries ask hosts to report which mul-
ticast addresses they have in use, and address-specific queries are used to determine 
if a specific address is (still) in use. The maximum response time gives the maximum 
number of milliseconds a host may delay sending a report in response to a query. The 
destination multicast address is 0 for general queries and the multicast address in ques-
tion for specific reports. For Report (type 131) and Done messages (type 132), it includes 
the address related to the report or what address is no longer of interest, respectively.

The main purpose of MLD is for multicast routers to learn the multicast 
addresses used by the hosts on each link to which they are mutually attached. 
MLDv2 (described in the next section) extends this capability by allowing hosts 
to specify particular hosts from which they wish to (or not to) receive traffic. Two 
forms of MLD queries are sent by multicast routers: general queries and multi-
cast-address-specific queries. Generally, routers send the query messages and hosts 
respond with reports, either in response to the queries, or unsolicited if a host’s 
multicast address membership changes.

The Maximum Response Time field, nonzero only in queries, gives the maxi-
mum number of milliseconds a host may delay sending a report in response 
to a query. Because the multicast router need only know that at least one host is 
interested in traffic destined for a particular multicast address (because link-layer 
multicast support allows the router to not have to replicate the message for each 
destination), nodes may intentionally and randomly delay their reports, suppress-
ing them entirely if they notice that another neighbor has responded already. 
This field provides an upper bound on how long this delay may be. The Multi-
cast Address field is 0 for general queries and the address for which the router is 
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interested in reports otherwise. For MLD Report messages (type 131) and MLD 
Done messages (type 132) it includes the address related to the report or what 
address is no longer of interest, respectively.

8.4.7 Version 2 Multicast Listener Discovery (MLDv2) (ICMPv6 Type 143)

[RFC3810] defines extensions to the MLD facility described in [RFC2710]. In particu-
lar, it defines a way for a multicast listener to specify a desire to hear from only one 
specific set of senders (or, alternatively, to exclude one specific set). It is therefore 
useful in supporting source-specific multicast (SSM; see Chapter 9 and [RFC4604]
[RFC4607]). It is basically a translation of the IGMPv3 protocol used with IPv4 for use 
with IPv6, which uses ICMPv6 for most multicast address management. Therefore, 
we will describe the message format here, but the detailed operation of multicast 
address dynamics is covered in Chapter 9. MLDv2 extends the MLD Query message 
with additional information pertaining to specific sources (see Figure 8-25). The 
first 24 bytes of the message are identical to the common MLD format.

The Maximum Response Code field specifies the maximum time allowed before 
sending an MLD Response message. The value of this field is special and therefore 
is interpreted slightly differently than in MLDv1: if it is less than 32,768, the maxi-
mum response delay is set equal to the value (in milliseconds) as in MLDv1. If the 
value is equal to or greater than 32,769, the field encodes a floating-point number 
using the format shown in Figure 8-26.

In this case, the maximum response delay is set equal to ((mant | 0x1000) << 
(exp + 3)) ms. The reason for this seemingly complex encoding strategy is to allow 
small and large values of the response delay to be encoded in this field and retain 
some compatibility with MLDv1. In particular, it allows for carefully adjusting the 
leave latency and affecting the report burstiness (see Chapter 9).

The Multicast Address field is set to 0 for a general query. For a multicast-
address-specific query or multicast-address- and source-specific query it is set 
to the multicast address being queried. The S field indicates whether router-side 
processing should be suppressed. When set, it indicates to any receiving multicast 
router that it must suppress the normal timer updates computed when hearing a 
query. It does not indicate that querier election or normal “host-side” processing 
should be suppressed if the router is itself a multicast listener.

The QRV (Querier Robustness Variable) field, if set, contains a value of no more 
than 7. If the sender’s internal QRV value exceeds 7, this field is set to 0. Robustness 
variables, described in Chapter 9, are used to fine-tune the rate of MLD updates 
based on an expectation of packet loss on a subnetwork. The QQIC (Querier’s 
Query Interval Code) field encodes the query interval and is shown in Figure 8-27. 

The query interval, measured in seconds, is computed from the QQIC field as fol-
lows: if QQIC < 128, then QQI = QQIC; otherwise, QQI = ((mant | 0x10) << (exp + 3)).

The Number of Sources (N) field indicates the number of source addresses 
present in the query. This field contains 0 for a general query or for a multicast-
address-specific query. It is nonzero for multicast-address- and source-specific 
query messages.
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Figure 8-25  The MLDv2 Query message format, which is compatible with the MLD version 1 mes-
sage common format. The major difference is the capability to limit or exclude specific 
multicast sources from the host’s list of interests.

01 3456789ABCDEF

Figure 8-26  Floating-point format used with MLDv2 Query messages when the Maximum Response Code
value is at least 32,768. In these cases, the delay is set to ((mant | 0x1000) << (exp + 3))ms.
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01 34567

Figure 8-27  The MLDv2 Querier’s Query Interval Code encodes the interval between MLDv2 queries. 
The (unencoded) version of this value is called the Querier’s Query Interval and is mea-
sured in seconds. The QQI is computed as follows: QQI = QQIC (if QQIC < 128) and QQI 
= ((mant | 0x10) << (exp + 3)) otherwise.

The multicast address records used in the MLDv2 reports (see Figures 8-28 
and 8-29) contain indicators of modifications to the source address filter being 
used by an IPv6 node (see Chapter 9 on multicast for more information on the 
operation of such filters, which describe sets of sending hosts that are or are not of 
interest to a particular receiving host).

Figure 8-28  The MLDv2 Report message includes a vector of multicast address records. 
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Figure 8-29  A multicast address (group) record. Multiple such records may be present in an MLDv2 
Report message. The Record Type field is one of the following: MODE_IS_INCLUDE, 
MODE_IS_EXCLUDE, CHANGE_TO_INCLUDE_MODE, CHANGE_TO_EXCLUDE_
MODE, ALLOW_NEW_SOURCES, or BLOCK_OLD_SOURCES. LW-MLDv2 simplifies 
MLDv2 by removing the EXCLUDE modes. The Aux Data Len field contains the amount 
of auxiliary data present in the record, in 32-bit-word units. For MLDv2, as specified in 
[RFC3810], this field must contain the value 0, indicating no auxiliary data. 
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The record types fall into three primary categories: current state records, fil-
ter mode change records, and source list change records. The first category includes 
the MODE_IS_INCLUDE (IS_IN) and MODE_IS_EXCLUDE (IS_EX) types, which 
indicate that the filter mode for the address is “include” or “exclude,” respectively, 
for the specified sources (at least one of which must be present). The filter mode 
change types CHANGE_TO_INCLUDE (TO_IN) or CHANGE_TO_EXCLUDE 
(TO_EX) types are similar to the current state records but are sent when there is a 
change and need not include a nonempty source list. The source list change types, 
ALLOW_NEW_SOURCES (ALLOW) and BLOCK_OLD_SOURCES (BLOCK), 
are used when the filter state (include/exclude) is not changed but only the list 
of sources is modified. A modification to MLDv2 (and IGMPv3) removes the 
EXCLUDE modes in order to simplify the operation of MLDv2 [RFC5790]. This 
“lightweight” approach, called LW-MLDv2 (and LW-IGMPv3), uses the same 
previously defined message formats but removes support for the seldom-used 
EXCLUDE directives that require multicast routers to keep additional state.

8.4.8 Multicast Router Discovery (MRD) (IGMP Types 48/49/50, ICMPv6 Types 
151/152/153)

[RFC4286] describes Multicast Router Discovery (MRD), a method defining special 
messages that can be used with ICMPv6 and IGMP to discover the presence of 
routers capable of forwarding multicast packets and some of their configuration 
parameters. It is envisioned primarily for use in conjunction with “IGMP/MLD 
snooping.” IGMP/MLD snooping is a mechanism by which systems other than 
hosts and routers (e.g., layer 2 switches) can also learn about the location of net-
work layer multicast routers and interested hosts. We discuss it in more detail in 
the context of IGMP in Chapter 9. MRD messages are always sent with the IPv4 
TTL or IPv6 Hop Limit field set to 1 with a Router Alert option and may be one of 
the following types: Advertisement (151), Solicitation (152), or Termination (153). 
Advertisements are sent periodically at a configured interval to indicate a router’s 
willingness to forward multicast traffic. The Termination message indicates the 
cessation of such willingness. Solicitation messages may be used to induce routers 
to produce Advertisement messages. The Advertisement message format is shown 
in Figure 8-30.

The Advertisement message is sent from the router’s IP address (a link-local 
address for IPv6) to the All Snoopers IP address: 224.0.0.106 for IPv4 and the link-
local multicast address ff02::6a for IPv6. A receiver is able to learn the router’s 
advertising interval and MLD parameters (QQI and QRV, described in more detail 
in Chapter 9). Note that the QQI value is the query interval (in seconds), and not 
the QQIC (encoded version of the QQI value) as previously described for MLDv2 
queries.

The formats of Solicitation and Termination messages are nearly the same (see 
Figure 8-31), differing only in the value of the Type field.
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Figure 8-31 shows the (nearly) common format used for Solicitation and Ter-
mination messages. The Solicitation message induces a multicast router to send 
an Advertisement message on demand. Such messages are sent to the All Rout-
ers address: 224.0.0.2 for IPv4 and the link-local multicast address ff02::2 for IPv6. 
Termination messages are sent to the All Snoopers IP address to indicate that the 
sending router is no longer willing to forward multicast traffic.

8.5 Neighbor Discovery in IPv6

The Neighbor Discovery Protocol in IPv6 (sometimes abbreviated as NDP or 
ND) [RFC4861] brings together the Router Discovery and Redirect mechanisms 
of ICMPv4 with the address-mapping capabilities provided by ARP. It is also 
specified for use in supporting Mobile IPv6. In contrast to ARP and IPv4, which 
generally use broadcast addressing (except for Router Discovery), ICMPv6 makes 
extensive use of multicast addressing, at both the network and link layers. (Recall 
from Chapters 2 and 5 that IPv6 does not even have broadcast addresses.) 

ND is designed to allow nodes (routers and hosts) on the same link or seg-
ment to find each other, determine if they have bidirectional connectivity, and 
determine if a neighbor has become inoperative or unavailable. It also supports 

Figure 8-30  The MRD Advertisement message (ICMPv6 type 151; IGMP type 48) contains the 
advertisement interval (in seconds) indicating how often unsolicited advertisements 
are sent, the sender’s query interval (QQI), and the robustness variable as defined by 
MLD. The IP address of the sender is used to indicate to a receiver the router that is able 
to forward multicast traffic. The message is sent to the All Snoopers multicast address 
(IPv4, 224.0.0.106; IPv6, ff02::6a). 

Figure 8-31  The ICMPv6 MRD Solicitation (ICMPv6 type 152; IGMP type 49) and Termination 
(ICMPv6 type 153; IGMP type 50) messages use a common format. MRD messages set 
the IPv6 Hop Limit field or IPv4 TTL field to 1 and include the Router Alert option. 
Solicitations are sent to the All Routers multicast address (IPv4, 224.0.0.2; IPv6, ff02::2). 
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stateless address autoconfiguration (see Chapter 6). All of the ND functionality is 
provided by ICMPv6 at or above the network layer, making it largely independent 
of the particular link-layer technology employed underneath. However, ND does 
prefer to make use of link-layer multicast capabilities (see Chapter 9), and for this 
reason operation on non-broadcast- and non-multicast-capable link layers (called 
non-broadcast multiple access or NBMA links) may differ somewhat.

The two main parts of ND are Neighbor Solicitation/Advertisement (NS/NA), 
which provides the ARP-like function of mapping between network- and link-
layer addresses, and Router Solicitation/Advertisement (RS/RA), which provides 
the functions of router discovery, Mobile IP agent discovery, and redirects, as 
well as some support for autoconfiguration. A secure variant of ND called SEND 
[RFC3971] adds authentication and special forms of addressing, primarily by 
introducing additional ND options.

ND messages are ICMPv6 messages sent using an IPv6 Hop Limit field value 
of 255. Receivers verify that incoming ND messages have this value to protect 
against off-link senders that may attempt to spoof local ICMPv6 messages (such 
messages would arrive with values less than 255). ND has a rich set of options that 
messages may carry. First we discuss the primary message types and then detail 
the available options.

8.5.1 ICMPv6 Router Solicitation and Advertisement (ICMPv6 Types 133, 134)

Router Advertisement (RA) messages indicate the presence and capabilities of a 
nearby router. They are sent periodically by routers, or in response to a Router 
Solicitation (RS) message. The RS message (see Figure 8-32) is used to induce 
on-link routers to send RA messages. RS messages are sent to the All Routers 
multicast address, ff02::2. A Source Link-Layer Address option is supposed to be 
included if the sender of the message is using an IPv6 address other than the 
unspecified address (used during autoconfiguration). It is the only valid option 
for such messages as of [RFC4861].

Figure 8-32  The ICMPv6 Router Solicitation message is very simple but ordinarily contains a Source 
Link-Layer Address option (unlike its ICMPv4 counterpart). It may also contain an 
MTU option if an unusual MTU value is in use on the link.
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The Router Advertisement (RA) message (see Figure 8-33) is sent by routers to 
the All Nodes multicast address (ff02::1) or the unicast address of the requesting 
host, if the advertisement is sent in response to a solicitation. RA messages inform 
local hosts and other routers of configuration details relevant to the local link. 

Figure 8-33  An ICMPv6 Router Advertisement message is sent to the All Nodes multicast address 
(ff02::1). Receiving nodes check to make sure that the Hop Limit field is 255, ensuring 
that the packet has not been forwarded through a router. The message includes three 
flags: M (Managed address configuration), O (Other stateful configuration), and H
(Home Agent).

The Current Hop Limit field specifies the default hop limit hosts are supposed 
to use for sending IPv6 datagrams. A value of 0 indicates that the sending router 
does not care. The next byte contains a number of bit fields, as summarized and 
extended in [RFC5175]. The M (Managed) field indicates that the local assignment 
of IPv6 addresses is handled by stateful configuration, and that hosts should avoid 
using stateless autoconfiguration. The O (Other) field indicates that other state-
ful information (that is, other than IPv6 addresses) uses a stateful configuration 
mechanism (see Chapter 6). The H (Home Agent) field indicates that the sending 
router is willing to act as a home agent for Mobile IPv6 nodes. The Pref (Prefer-
ence) field gives the level of preference for the sender of the message to be used 
as a default router as follows: 01, high; 00, medium (default); 11, low; 10, reserved 
(not used). More details about this field are given in [RFC4191]. The P (Proxy) flag 
is used in conjunction with the experimental ND proxy facility [RFC4389]. It pro-
vides a proxy-ARP-like capability (see Chapter 4) for IPv6.

The Router Lifetime field indicates the amount of time during which the send-
ing router can be used as a default next hop, in seconds. If it is set to 0, the sending 
router should never be used as a default router. This field applies only to the use of 
the sending router as a default router; it does not affect other options carried in the 
same message. The Reachable Time field gives the number of milliseconds in which 
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a node is to assume that another is reachable, assuming mutual communications 
have taken place. This is used by the Neighbor Unreachability Detection mechanism 
(see Section 8.5.4). The Retransmission Timer field dictates the time, in milliseconds, 
during which hosts delay sending successive ND messages. 

This message usually includes the Source Link-Layer option (if applicable) 
and should include an MTU option if variable-length MTUs are used on the link. 
The router should also include Prefix Information options that indicate which 
IPv6 prefixes are in use on the local link. Chapter 6 includes an example of how 
RS and RA messages are used (e.g., see Figures 6-24 and 6-25).

8.5.2 ICMPv6 Neighbor Solicitation and Advertisement (IMCPv6 Types 135, 136)

The Neighbor Solicitation (NS) message in ICMPv6 (see Figure 8-34) effectively 
replaces the ARP Request messages used with IPv4. Its primary purpose is to con-
vert IPv6 addresses to link-layer addresses. However, it is also used for detecting 
whether nearby nodes can be reached, and if they can be reached bidirectionally 
(that is, whether the nodes can talk to each other). When used to determine address 
mappings, it is sent to the Solicited-Node multicast address corresponding to the 
IPv6 address contained in the Target Address field (prefix f02::1:f/104, combined 
with the low-order 24 bits of the solicited IPv6 address). For more details on how 
Solicited-Node multicast addressing is used, see Chapter 9. When this message 
is used to determine connectivity to a neighbor, it is sent to that neighbor’s IPv6 
unicast address instead of the Solicited-Node address.

Figure 8-34  The ICMPv6 Neighbor Solicitation message is similar to the RS message but contains 
a target IPv6 address. These messages are sent to Solicited-Node multicast addresses 
to provide ARP-like functionality and to unicast addresses to test reachability to other 
nodes. NS messages contain a Source Link-Layer Address option on links that use 
lower-layer addressing.
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The NS message contains the IPv6 address for which the sender is trying 
to learn the link-layer address. The message may contain the Source Link-Layer 
Address option. This option must be included in networks that use link-layer 
addressing when the solicitation is sent to a multicast address and should be 
included for unicast solicitations. If the sender of the message is using the unspec-
ified address as its source address (e.g., during duplicate address detection), this 
option is not to be included.

The ICMPv6 Neighbor Advertisement (NA) message (see Figure 8-35) serves 
the purpose of the ARP Response message in IPv4 in addition to helping with 
neighbor unreachability detection (see Section 8.5.4). It is either sent as a response 
to an NS message or sent asynchronously when a node’s IPv6 address changes. It is 
sent either to the unicast address of the soliciting node, or to the All Nodes multicast 
address if the soliciting node used the unspecified address as its source address.

Figure 8-35  The ICMPv6 Neighbor Advertisement message contains the following flags: R indicates 
that the sender is a router, S indicates that the advertisement is a response to a solicita-
tion, and O indicates that the message contents should override other cached address 
mappings. The Target Address field contains the IPv6 address of the sender of the mes-
sage (generally, the unicast address of the solicited node from the ND solicitation). A 
Target Link-Layer Address option is included to enable ARP-like functionality for IPv6.

The R (Router) field indicates that the sender of the message is a router. This 
could change, for example, if a router ceases being a router and becomes only a 
host instead. The S (Solicited) field indicates that the advertisement is in response to 
a solicitation received earlier. This field is used to verify that bidirectional connec-
tivity between neighbors has been achieved. The O (Override) field indicates that 
information in the advertisement should override any previously cached infor-
mation the receiver of the message has. It is not supposed to be set for solicited 
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advertisements, for anycast addresses, or in solicited proxy advertisements. It is 
supposed to be set in other (solicited or unsolicited) advertisements.

For solicited advertisements, the Target Address field is the IPv6 address being 
looked up. For unsolicited advertisements, it is the IPv6 address that corresponds to a 
link-layer address that has changed. This message must contain the Target Link-Layer 
Address option on networks that support link-layer addressing when the advertise-
ment was solicited via a multicast address. We will now look at a simple example.

8.5.2.1 Example
Here we see the results of using ICMPv6 Echo Request/Reply, in conjunction with 
NDP. The sender is a Windows XP system with IPv6 enabled, and a packet trace 
is captured on a nearby Linux system. Some lines have been wrapped for clarity. 

C:\> ping6 -s fe80::210:18ff:fe00:100b fe80::211:11ff:fe6f:c603

Pinging fe80::211:11ff:fe6f:c603
from fe80::210:18ff:fe00:100b with 32 bytes of data:

Reply from fe80::211:11ff:fe6f:c603: bytes=32 time<1ms
Reply from fe80::211:11ff:fe6f:c603: bytes=32 time<1ms
Reply from fe80::211:11ff:fe6f:c603: bytes=32 time<1ms
Reply from fe80::211:11ff:fe6f:c603: bytes=32 time<1ms

Ping statistics for fe80::211:11ff:fe6f:c603:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms

Linux# tcpdump –i eth0 -s1500 -vv -p ip6
tcpdump: listening on eth0, 
         link-type EN10MB (Ethernet), capture size 1500 bytes

1 21:22:01.389656 fe80::211:11ff:fe6f:c603 > ff02::1:ff00:100b:
               [icmp6 sum ok] icmp6: neighbor sol: who has    
                                       fe80::210:18ff:fe00:100b
                                       (src lladdr: 00:11:11:6f:c6:03)     
                                       (len 32, hlim 255)
2 21:22:01.389845 fe80::210:18ff:fe00:100b > fe80::211:11ff:fe6f:c603:  
               [icmp6 sum ok] icmp6: neighbor adv: tgt is  
                                       fe80::210:18ff:fe00:100b(SO)
                                       (tgt lladdr:  00:10:18:00:10:0b) 
                                       (len 32, hlim 255)

3 21:22:02.390713 fe80::210:18ff:fe00:100b > fe80::211:11ff:fe6f:c603:  
               [icmp6 sum ok] icmp6: echo request seq 18 
                                       (len 40, hlim 128)
4 21:22:02.390780 fe80::211:11ff:fe6f:c603 > fe80::210:18ff:fe00:100b: 
               [icmp6 sum ok] icmp6: echo reply seq 18
                                       (len 40, hlim 64)
 ... continues ...
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The ping6 program is available on Windows XP and Linux. (Later versions 
of Windows incorporate the IPv6 functionality into the regular ping program.) 
The –s option tells it which source address to use. Recall that with IPv6 a host 
may have multiple addresses from which to choose, and here we have chosen one 
of its link-local addresses, fe80::211:11ff:fe6f:c603. The trace shows the NS/
NA exchange and an ICMP Echo Request/Reply pair. Observe that all of the ND 
messages use IPv6 Hop-Limit field values of 255, and the ICMPv6 Echo Request 
and Echo Reply messages use a value of 128 or 64.

The NS message is sent to the multicast address ff02::1:ff00:100b, which 
is the Solicited-Node multicast address corresponding to the IPv6 address being 
solicited (fe80::210:18ff:fe00:100b). We see that the soliciting node also 
includes its own link-layer address, 00:11:11:6f:c6:03, in a Source Link-Layer 
Address option.

The NA response message is sent using link-layer (and IP-layer) unicast 
addressing back to the soliciting node. The Target Address field contains the value 
requested in the solicitation: fe80::210:18ff:fe00:100b. In addition, we see that 
the S and O flag fields are set, indicating that the advertisement is in response to 
the earlier solicitation provided, and that the information being provided should 
override any other information the soliciting node may have cached. The R flag 
field is unset, indicating that the responding host is not acting as a router. Finally, 
the solicited node includes the most important information in a Target Link-Layer 
Address option: the solicited node’s link-layer address of 00:10:18:00:10:0b.

8.5.3 ICMPv6 Inverse Neighbor Discovery Solicitation/Advertisement (ICMPv6 
Types 141/142) 

The Inverse Neighbor Discovery (IND) facility in IPv6 [RFC3122] originated from a 
need to determine IPv6 addresses given link-layer addresses on Frame Relay net-
works. It resembles reverse ARP, a protocol once used with IPv4 networks primarily 
for supporting diskless computers. Its main function is to ascertain the network-
layer address(es) corresponding to a known link-layer address. Figure 8-36 shows 
the basic format of IND Solicitation and Advertisement messages.

Figure 8-36  The ICMPv6 IND Solicitation (type 141) and Advertisement (type 142) messages have 
the same basic format. They are used to map known link-layer addresses to IPv6 
addresses in environments where this is useful.
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The IND Solicitation message is sent to the All Nodes multicast address at 
the IPv6 layer but is encapsulated in a unicast link-layer address (the one being 
looked up). It must contain both a Source Link-Layer Address option and a Des-
tination Link-Layer Address option. It may also contain a Source/Target Address 
List option and/or an MTU option.

8.5.4 Neighbor Unreachability Detection (NUD)

One of the important features of ND is to detect when reachability between two 
systems on the same link has become lost or asymmetric (i.e., is not available in 
both directions). This is accomplished using the Neighbor Unreachability Detection
(NUD) algorithm. It is used to manage the neighbor cache present on each node. 
The neighbor cache is analogous to the ARP cache described in Chapter 4; it is 
a (conceptual) data structure that holds the IPv6-to-link-layer-address mapping 
information required to perform direct delivery of IPv6 datagrams to on-link 
neighbors as well as information regarding the state of the mapping. Figure 8-37 
shows how it maintains entries in the neighbor cache.

Figure 8-37  Neighbor Unreachability Detection helps maintain the neighbor cache consisting of 
several neighbor entries. Each entry is in one of five states at any given time. Confirma-
tions of reachability are accomplished by receiving Neighbor Advertisement messages 
or using other higher-layer protocol information, if available. Unsolicited evidence 
includes unsolicited Neighbor and Router Advertisement messages.
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Each mapping may be in one of five states: INCOMPLETE, REACHABLE, 
STALE, DELAY, or PROBE. The transition diagram in Figure 8-37 shows the ini-
tial states to be either INCOMPLETE or STALE. When an IPv6 node has a unicast 
datagram to send to a destination, it checks its destination cache to see if an entry 
corresponding to the destination is present. If so, and the destination is on-link, 
the neighbor cache is consulted to see if the neighbor’s state is REACHABLE. 
If so, the datagram is sent using direct delivery (see Chapter 5). If no neighbor 
cache entry is present but the destination appears to be on-link, NUD enters the 
INCOMPLETE state and sends an NS message. Successful receipt of a solicited NA 
message provides confirmation that the node is reachable, and the entry enters 
the REACHABLE state. The STALE state corresponds to apparently valid entries 
that have not yet been confirmed. This state is entered when either an entry has 
not been updated for some time when it was previously REACHABLE, or when 
unsolicited information is received (e.g., a node has changed its address and sent 
an unsolicited NA message). These cases suggest that reachability is possible, but 
confirmation in the form of a valid NA is still required.

The other states, DELAY and PROBE, are temporary states. DELAY is used when 
a packet is sent but ND has no current evidence to suggest that reachability is pos-
sible. The state gives upper-layer protocols an opportunity to provide additional evi-
dence. If after DELAY_FIRST_PROBE_TIME seconds (the constant 5) no evidence is 
received, the state changes to PROBE. In the PROBE state, ND sends periodic NS 
messages (every RetransTimer milliseconds, with constant default value RETRANS_
TIMER equal to 1000). If no evidence has been received after sending MAX_UNI-
CAST_SOLICIT NS messages (default 3), the entry is supposed to be deleted.

8.5.5 Secure Neighbor Discovery (SEND)

SEND [RFC3971] is a special set of enhancements aimed at providing additional 
security for ND messages. This is to help resist various spoofing attacks in which 
one host or router might masquerade as another (see Section 8.6, Chapter 18, and 
[RFC3756] for additional details). It specifically aims to protect against nodes mas-
querading as others when responding to NS messages. SEND does not use IPsec 
(see Chapter 18) but instead its own special mechanism. This mechanism is also 
used for securing FMIPv6 handoffs [RFC5269].

SEND operates in a framework with a set of assumptions. First, each SEND-
capable router has a certificate, or cryptographic credential, that it can use to prove 
its identity to a host. Next, each host is also equipped with a trust anchor—con-
figuration information enabling the credential to be verified. Finally, each node 
generates a public/private key pair when configuring the IPv6 addresses it will 
use. Details of credentials, trust anchors, key pairs, and other associated security 
techniques are given in Chapter 18.

8.5.5.1 Cryptographically Generated Addresses (CGAs)
Perhaps its most interesting feature, SEND uses an entirely different type of IPv6 
address called a cryptographically generated address (CGA) [RFC3972][RFC4581]
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[RFC4982]. This type of address is based on a node’s public key information, thereby 
linking the address to the node’s credential. Consequently, a node or address owner 
in possession of the corresponding private key is able to prove it is the authorized 
user of a particular CGA. CGAs also encode the subnet prefix with which they 
are associated so they cannot be moved trivially from one subnet to another. This 
approach is quite different from how addresses are typically assigned.

An IPv6 CGA is generated by ORing a 64-bit subnet prefix with a specially 
constructed interface identifier. The CGA interface identifier is computed using 
a secure hash function (a hash function believed difficult to invert; see Chapter 18) 
called Hash1 with inputs derived from the node’s public key and a special CGA 
parameters data structure. These parameters are also used as input to another 
secure hash function, Hash2, which provides a hash extension technique that effec-
tively extends the number of bits of output for the hash function, increasing its 
security (i.e., strength against an adversary producing a different input resulting 
in the same hash value) [A03][RFC6273]. The CGA technique allows for the address 
owner’s public key to be self-generated, so this approach can be used without an 
accompanying public key infrastructure (PKI) or other trusted third party.

The CGA parameters data structure is shown in Figure 8-38. The Modifier field 
is initialized with a random value, and the Collision Count field is initialized to 0. 
The structure includes an Extension Fields area that can be adapted for future uses 
[RFC4581].

Figure 8-38  The SEND method for computing CGAs. The CGA parameters data structure is used as input to 
two cryptographic hash functions, Hash1 and Hash2. The Hash2 value must have (16*Sec) initial 
0 bits, where Sec is a 3-bit parameter. The Modifier is changed until Hash2 computes appropriately. 
The resulting values are used to compute Hash1, which is combined with Sec and the subnet 
prefix to produce the CGA.
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A 3-bit unsigned parameter called Sec influences how resistant the approach 
is to mathematical compromise, which secure hash function is used [RFC4982], 
and how computationally expensive the computations are (they are exponential 
in the Sec value). The IANA maintains a registry for Sec values [SI]. The Hash1 
and Hash2 functions operate on the same CGA parameter block in conjunction 
with the Sec value. The address owner begins by picking a random value for the 
Modifier field, treating the subnet prefix field as 0, and computing the Hash2 value. 
The result is required to have (16*Sec) initial 0 bits, so the input is modified by 
incrementing the modifier value by 1 and recomputing Hash2 until the condition 
is satisfied. This computation has time complexity O(216*Sec) and therefore becomes 
much more expensive as Sec increases. However, this computation is required 
only when the address is initially established.

Once the proper modifier has been found, 59 bits of the Hash1 value are used 
in forming the low-order 59 bits of the interface identifier. The top 3 bits constitute 
the 3-bit Sec value, and bits 6–7 (from the left) contain two 0 bits (corresponding 
to the u and g address bits described in Chapter 2). If the address is found to be 
in conflict (e.g., using duplicate address detection, described in Chapter 6), the 
Collision Count field is incremented and Hash1 is recomputed. The collision count 
value is not permitted to grow beyond 2. Given that address collisions are unlikely 
to begin with, multiple such collisions should be considered evidence of a configu-
ration error or attack. Once all the necessary calculations are complete, the com-
plete CGA can be formed by concatenating the subnet prefix, Sec value, and Hash1 
value. Note that if the subnet prefix changes, only Hash1 needs to be recomputed 
as the modifier value can remain the same. (The reader interested in alternatives 
to CGAs should consult [RFC5535], which describes hash-based addresses, or HBAs. 
HBAs are used for multihomed hosts using multiple prefixes in a somewhat dif-
ferent context and with a different form of cryptography that is less computation-
ally expensive, although HBA-CGA-compatible options have also been defined.)

At this point we have seen how a CGA is generated but not how it is used for 
security. Note that anyone can generate a CGA given a subnet prefix, Sec value, 
and their own (or someone else’s) public key. To ensure that a CGA is well formed 
and is using an appropriate subnet prefix, it must be verified, a process called CGA 
verification. A verifier requires knowledge of the CGA and CGA parameters. The 
verification process involves ensuring all of the following: the collision count is 
not greater than 2, the CGA’s subnet prefix matches that in the CGA parameters, 
Hash1 computed on the CGA parameters matches the interface identifier portion 
of the CGA (where the first 3 bits and bits 6 and 7 are “don’t cares”), and the value 
of Hash2 computed on the CGA parameters with the Subnet Prefix and Collision 
Count fields set to 0 has (16*Sec) initial 0 bits. If all of these checks are successful, 
the CGA is a legitimate one for the corresponding subnet prefix. This computation 
involves at most two hash functions; it is far simpler than the address generation 
process.

To verify that a CGA is being used by its authorized address owner, called sig-
nature verification, the owner forms a typed message and attaches a CGA signature 
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that can be computed only with knowledge of the private key corresponding to 
the public key used with the CGA. A verifier forms a data block by concatenating 
a special 128-bit type tag with the message. The CGA ownership is verified using 
an RSA signature (RSASSA-PKCS1-v1_5 [RFC3447]) with the public key (extracted 
from the CGA parameters), data block, and signature as parameters. Generally, a 
CGA and its user are considered valid only if both the CGA verification and sig-
nature verification processes have completed successfully.

The handling of CGAs and verification is accomplished using two ICMPv6 
messages and six options defined in [RFC3971]. The RFC also defines two IANA-
managed registries for holding Name Type fields in the Trust Anchor option and 
the Cert Type field in the Certificate option (see Section 8.5.6.13). [RFC3972] defines 
the CGA Message Type registry, with the 128-bit value 0x086FCA5E10B200C99C8
CE00164277C08 given in [RFC3971] (other values are defined for uses other than 
SEND). A registry for Sec values is defined by [RFC4982] but at present provides 
only for values 0, 1, and 2, which correspond to use of the SHA-1 secure hash 
function using 0, 16, or 32 initial 0 bits for the Hash2 function, respectively. An 
extension format defined in [RFC4581] supports TLV encodings that can be used 
for future standard extensions, but only one has been defined to date [RFC5535]. 
We will now describe the two ICMPv6 messages used with SEND and defer dis-
cussion of the options until we cover all of the ICMPv6 options in the next section.

8.5.5.2 Certification Path Solicitation/Advertisement (ICMPv6 Types 148/149)
SEND defines Solicitation and Advertisement messages to help hosts determine 
certificates constituting a certification path. This is used for a host to verify the 
authenticity of router advertisements. Figure 8-39 shows the Solicitation message.

Figure 8-39  The Certification Path Solicitation message. The sender requests a particular certifi-
cate by position index, provided as the value of the Component field. The value 65535 
indicates that all certificates in the path rooted at the identity given within an attached 
Trust Anchor option are desired.

The Certification Path Solicitation message contains a random Identifier field 
used for matching solicitations with advertisements. The value of the Component
field provides an index to the point in the certification path in which the requestor 
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is interested. This value is set to all 1s (value 65535) if certificates for the entire 
path are desired. The messages may contain a Trust Anchor option (see Section 
8.5.6.12). Certificates and certification paths are described in more detail in Chap-
ter 18.

The Certification Path Advertisement message, shown in Figure 8-40, pro-
vides a method to express one component (certificate) in a multicomponent adver-
tisement. These messages are sent in response to a solicitation, or periodically by a 
SEND-capable router. When sent in response to a solicitation, the destination IPv6 
address is the Solicited-Node multicast address of the receiver.

Figure 8-40  The Certification Path Advertisement message. The sender requests a particular cer-
tificate by position index, provided as the value of the Component field. The value 65535 
indicates all certificates in the path rooted at an identity given within an attached Trust 
Anchor option.

The Identifier field holds the value received in a corresponding Solicitation 
message. It is set to 0 for unsolicited Advertisement messages that are sent to the 
All Nodes multicast address. The All Components field indicates the total number 
of components in the entire certification path, including the trust anchor. Note 
that a single advertisement message is recommended to avoid fragmentation, so 
such messages contain only a single component. The Component field gives the 
index in the certification path of the associated certificate (provided in an attached 
Certificate option). The recommended order for sending advertisements for an 
N-component certification path is (N - 1, N - 2, . . ., 0). Component N need not be 
sent as it is already present from the trust anchor.

8.5.6 ICMPv6 Neighbor Discovery (ND) Options

As with many of the protocols of the IPv6 family, a set of standard protocol head-
ers are defined, and one or more options may also be included. ND messages 
may contain zero or more options, and some options can occur more than once. 
However, with certain messages some of the options are mandatory. The general 
format for ND options is given in Figure 8-41. 
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All ND options start with an 8-bit Type and an 8-bit Length field, supporting 
options of variable length, up to 255 bytes. Options are padded to 8-byte bound-
aries, and the Length field gives the total length of the option in 8-byte units. The 
Type and Length fields are included in the value of the Length field, which has a 
minimum value of 1. Table 8-5 gives a list of 25 standard options that have been 
defined as of mid-2011 (plus the experimental values). The official list may be 
found in [ICMP6TYPES].

Figure 8-41  ND options are variable-length and begin with a common TLV arrangement. The 
Length field gives the total length of the option in 8-byte units (including the Type and 
Length fields).

Table 8-5  IPv6 ND option types, defining reference, use, and description

Type Name Reference Use/Comment

1 Source Link-Layer 
Address

[RFC4861] Sender’s link-layer address; used with NS, RS, 
and RA messages

2 Target Link-Layer 
Address

[RFC4861] Target’s link-layer address; used with NA and 
Redirect messages

3 Prefix Information [RFC4861] 
[RFC6275]

An IPv6 prefix or address; used with RA 
messages

4 Redirected Header [RFC4861] Portion of original IPv6 datagram; used with 
Redirect messages

5 MTU [RFC4861] Recommended MTU; used with RA messages, 
IND Advertisement messages

6 NMBA Shortcut Limit [RFC2491] Hop limit for “shortcut attempt”; used with NS 
messages

7 Advertisement Interval [RFC6275] Sending interval of unsolicited RA messages; 
used with RA messages

8 Home Agent Information [RFC6275] Preference and lifetime to be an MIPv6 HA; 
used with RA messages (H bit on)

9 Source Address List [RFC3122] Host’s addresses; used with IND messages
10 Target Address List [RFC3122] Target addresses; used with IND messages
11 CGA [RFC3971] Crypto-based address; used with secure 

Neighbor Discovery (SEND) messages
12 RSA Signature [RFC3971] Credential for host signature (SEND)
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8.5.6.1 Source/Target Link-Layer Address Option (Types 1, 2)
The Source Link-Layer Address option (type 1; see Figure 8-42) is supposed to be 
included in ICMPv6 RS messages, NS messages, and RA messages whenever used 
on a network supporting link-layer addressing. It specifies a link-layer address 
associated with the message. More than one of these options may be included for 
nodes with more than one address.

Type Name Reference Use/Comment

13 Timestamp [RFC3971] Anti-replay timestamp (SEND)
14 Nonce [RFC3971] Anti-replay random number (SEND)
15 Trust Anchor [RFC3971] Indicates credential type (SEND)
16 Certificate [RFC3971] Encodes a certificate (SEND)
17 IP Address/Prefix [RFC5568] Care-of or NAR addresses; used with FMIPv6 

PrRtAdv messages
19 Link-Layer Address [RFC5568] Desired next access point or mobile node’s 

address; used with FMIPv6 RtSolPr or 
PrRtAdv messages

20 Neighbor Advertisement 
ACK

[RFC5568] Tells mobile about next valid CoA; used with 
RA messages

24 Route Information [RFC4191] Route prefix/preferred router list
25 Recursive DNS Server [RFC6106] IP address of DNS server; added to RA 

messages
26 RA Flags Extension [RFC5175] Expands space for RA flags
27 Handover Key Request [RFC5269] FMIPv6—request key using SEND
28 Handover Key Reply [RFC5269] FMIPv6—key reply using SEND
31 DNS Search List [RFC6106] DNS domain search names; added to RA 

messages
253, 
254

Experimental [RFC4727] [RFC3692]-style experiments 1/2

Table 8-5  IPv6 ND option types, defining reference, use, and description (continued )

Figure 8-42  The Source (type 1) and Target (type 2) Link-Layer Address options. The Length field 
gives the length of the entire option, including the address, in units of 8 bytes (e.g., an 
IEEE Ethernet-type address would have the value of 1 in the Length field).
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The Target Link-Layer Address option (type 2), which uses a similar format, 
must be provided in an NA message when responding to multicast solicitations. 
This option is also typically included in Redirect messages (discussed previously) 
and must be included in such messages when operating on an NBMA network.

8.5.6.2 Prefix Information Option (Type 3) 
The Prefix Information option (PIO), provided on RA messages and Mobile Prefix 
Advertisement messages, indicates the IPv6 address prefixes and (in some cases) 
complete IPv6 addresses of individual nodes present on the link (see Figure 8-43). 
In cases where multiple prefixes or addresses are reported, multiple copies of this 
option may be included in a single message. A router is supposed to include a PIO 
for each prefix it uses. An R bit field set to 1 indicates that the Prefix field contains 
the entire global IPv6 address of the sending router, rather than just its prefix with 
the remaining bits of the prefix field being 0 or its link-local address (present in the 
Source IP Address field of the containing IPv6 datagram). This is useful for Mobile 
IPv6 home agent discovery, and home agents sending router advertisements must 
include this option with the R bit field set for at least one prefix.

Figure 8-43  The Prefix Information option contains an IPv6 address prefix in use on the local net-
work. It is used to provide hosts with prefixes for address autoconfiguration if the A
bit field is set. The L bit field indicates that the prefix is acceptable for use in on-link 
determination. The R bit field is used to indicate that the included prefix is the entire 
global IPv6 address of the sending router.

The Prefix Length field gives the number of bits (up to 128) in the Prefix field 
that should be considered valid for use in configuration. The L bit field is the 
“on-link” flag and indicates that the provided prefix is eligible to be used for 
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on-link determination (see the next paragraph). If it is not set, it makes no state-
ment one way or another about its use in on-link determination. The A bit field is 
the “autonomous autoconfiguration” flag and indicates that the provided prefix 
may be used for autoconfiguration (see Chapter 6). The Valid Lifetime and Preferred 
Lifetime fields indicate the number of seconds in which the prefix can be used for 
on-link determination and automatic address autoconfiguration, respectively. A 
value of 0xFFFFFFFF for either field indicates infinity.

In IPv6, nodes that are “on-link” correspond to those that can be reached using 
direct delivery (Chapter 5). In IPv4, nodes are assumed to be on-link if they share 
a common prefix, determined using a combination of their own IPv4 address and 
assigned subnet mask. Although this arrangement can be achieved using IPv6, it 
is not necessary, and on-link status is not assumed without confirmation. Instead, 
the L bit field indicates to a host or router which prefixes or list of individual hosts 
is present on-link [RFC5942]. Other mechanisms can also serve this purpose (e.g., 
DHCPv6, manual configuration, or ICMPv6 Redirect messages). A node is consid-
ered off-link unless there is confirming information to indicate that it is on-link.

8.5.6.3 Redirected Header Option (Type 4) 
The Redirected Header option is used to include a copy of (or part of) the original 
(“offending”) IPv6 datagram that caused a Redirect message to be generated. The 
option format is given in Figure 8-44. The option is ignored if it appears in any 
other type of message.

Figure 8-44  The Redirected Header option marks the beginning of a partial (or complete) copy of 
the offending IPv6 datagram. In any case, the message is limited to at most the mini-
mum IPv6 MTU (currently 1280 bytes).

8.5.6.4 MTU Option (Type 5) 
The MTU option is provided on RA messages and ignored otherwise (see Figure 
8-45). It provides the MTU to be used by hosts, assuming that a configurable MTU 
size is supported. 
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The MTU option is important, for example, when bridging two or more het-
erogeneous link-layer technologies that have different MTUs. Without this option 
(and assuming bridges do not generate ICMPv6 PTB messages), hosts may not be 
able to communicate reliably with other hosts on the bridged link-layer network. 
Note that this message reserves 32 bits to hold the MTU, supporting very large 
MTUs.

8.5.6.5 Advertisement Interval Option (Type 7)
This option may be included in RA messages and is ignored otherwise. It specifies 
the maximum interval between unsolicited multicast router advertisements (see 
Figure 8-46). 

Figure 8-45  The MTU option includes the MTU to be used on the local link. This option is used 
with RA messages and is most useful if a nonstandard or unknown MTU is to be used.

Figure 8-46  The Advertisement Interval gives the number of milliseconds between unsolicited 
multicast Router Advertisement messages.

The Advertisement Interval option gives the time between periodic router 
advertisement messages. The Advertisement Interval field defines the maximum 
number of milliseconds between transmissions of RA messages sent by the 
sender of this message on the arriving network. The sending router may send 
advertisements more frequently than the option indicates, but not less frequently. 
This option is used by Mobile IPv6 nodes in its movement detection algorithms 
[RFC6275].

8.5.6.6 Home Agent Information Option (Type 8)
This option may be included in RA messages being sent from routers willing to 
act as Mobile IPv6 home agents [RFC6275] (i.e., those that set the H bit field in their 
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RA messages) and is ignored otherwise. The option is not allowed to be included 
if the H bit field is not set. In cases where solicited RA messages are used such that 
multiple addresses are carried in separate messages and the R bit field is set, this 
option must be included with each of them and each must contain the same value. 
Figure 8-47 shows the Home Agent Information option format.

Figure 8-47  The Home Agent Information option indicates the preference and amount of time in 
which the sender of the option is willing to be considered a home agent for Mobile IPv6. 
Larger values of the Home Agent Preference field indicate a more desirable home agent. 
The Home Agent Lifetime field gives the number of seconds during which the sender is 
willing to be an HA.

The Home Agent Preference field is a 16-bit unsigned integer used to help a 
mobile node order the addresses provided to it via Home Agent Address Dis-
covery Reply messages. Larger values indicate a greater degree of preference for 
using the sending router as a home agent. If this option is not included in a Router 
Advertisement message where the H bit field (home agent) is set, the preference 
value of the originating router must be considered to be 0 (lowest preference).

The Home Agent Lifetime field, also a 16-bit unsigned integer, specifies the 
number of seconds in which the sender of the message should be considered eli-
gible to act as a home agent (with the corresponding preference described previ-
ously). The default value of this field is equal to the Lifetime field of the containing 
RA message. The maximum value of this field (65,535) corresponds to 18.2 hours, 
and the minimum value is 1 (0 is not allowed). If both the Home Agent Lifetime and 
the Home Agent Preference fields contain only default values, the entire option is not 
supposed to be included in the RA message.

8.5.6.7 Source/Target Address List Options (Types 9, 10)
These options may be included with an IND message [RFC3122]. The format is 
given in Figure 8-48. The Source Address List option (type 9) contains a list of the 
IPv6 addresses identified by the Source Link-Layer Address option. The Target 
Address List option (type 10) contains a list of the IPv6 addresses identified by the 
Destination Link-Layer Address option. The number of addresses included in the 
option is equal to (Length – 1)/2, where the Length field value contains the size of 
the option in 8-byte units.
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8.5.6.8 CGA Option (Type 11)
The CGA option is used with SEND [RFC3971] to carry the CGA parameters nec-
essary for a verifier to perform CGA validation and signature validation. Its for-
mat is given in Figure 8-49.

The CGA Parameters area is composed of the same fields depicted in Figure 
8-38. See [RFC3971] for more details.

Figure 8-48  The Source (type 9) and Target (type 10) Address List options. These are used in sup-
porting IND and provide a list of a node’s IPv6 addresses. Only the addresses used on 
the interface used to send the message should be included.



ptg999

Section 8.5 Neighbor Discovery in IPv6   415

8.5.6.9 RSA Signature Option (Type 12)
The RSA Signature option is used with SEND [RFC3971] to carry an RSA signa-
ture (see Chapter 18) that a verifier can use, in conjunction with CGA parameters, 
to determine if a sending system has possession of the private key associated with 
a CGA’s public key. Its format is given in Figure 8-50.

Figure 8-49  The CGA option used with SEND. The option encodes the CGA parameters shown in 
Figure 8-38.

Figure 8-50  The RSA Signature option used with SEND. The signature is encoded in the PKCS#1 v 
1.5 (see Chapter 18) format and is used to verify that the sender possesses the matching 
private key and is consequently the correct owner of the CGA.
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The Key Hash field contains the high-order 128 bits of a SHA-1 hash of the 
public key used in constructing the signature. The Digital Signature field contains 
a standardized signature over the following values: the CGA Message Type tag 
for SEND, the source IP and destination IP addresses, the first 32-bit word of the 
ICMPv6 header (Type, Code, and Checksum fields), and the ND protocol message 
header and options (not including the RSA signature option).

8.5.6.10 Timestamp Option (Type 13)
The Timestamp option gives the current time of day known to the sending system. 
This helps counter potential replay attacks against SEND [RFC3971]. Its format is 
given in Figure 8-51.

Figure 8-51  The Timestamp option used with SEND. The value encodes the number of seconds that 
have elapsed since January 1, 1970. It is used to guard against replay attacks.

The Timestamp field contains the number of seconds since January 1, 1970, 
00:00 UTC. The format is fixed-point. The high-order 48 bits encode the number 
of complete seconds. The remaining bits indicate the number of (1/64K) fractions 
of a second.

8.5.6.11 Nonce Option (Type 14)
The Nonce option holds a recently generated random number. This helps counter 
potential replay attacks against SEND [RFC3971]. Its format is given in Figure 8-52.

Figure 8-52  The Nonce option used with SEND. The value encodes a random number used in pairs 
of SEND messages. It is used to guard against replay attacks.
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The nonce value is a random number selected by the sender. The length of the 
number must be at least 6 bytes. Details on using nonces to combat replay attacks 
are given in Chapter 18.

8.5.6.12 Trust Anchor Option (Type 15)
The Trust Anchor option includes the name (root) of a certification path (see Chap-
ter 18). This is used with SEND for a host to verify the authenticity of RA mes-
sages. Its format is given in Figure 8-53.

Figure 8-53  The Trust Anchor option used with SEND. The trust anchor is the name of the root of 
a certificate chain. Subordinate certificates may be validated against the trust anchor. 
Certificate chains are used in SEND for a host to validate router advertisements.

The Name Type field indicates the type of name used. Currently, two values 
have been defined: 1, DER X.502 names; 2, fully qualified domain name (FQDN). 
More than one Trust Anchor option may be included. The Name field gives the 
name of the trust anchor in the format specified by the Name Type field. The trust 
anchor is the root of trust for a certificate chain that the sender of the message is 
willing to accept (see Chapter 18).

8.5.6.13 Certificate Option (Type 16)
The Certificate option holds a single certificate used with SEND [RFC3971] in pro-
viding a certification path. Its format is given in Figure 8-54.

The Cert Type field indicates the type of certificate used. Currently, one value 
has been defined: 1, X.509v3 certificate. Certificates and how they are managed 
are discussed in more detail in Chapter 18. 

8.5.6.14 IP Address/Prefix Option (Type 17)
The IP Address/Prefix option is used with FMIPv6 messages (ICMPv6 type 154) 
[RFC5568]. Its format is given in Figure 8-55.

The Option-Code field value indicates which type of address is encoded: 1, 
old care-of address; 2, new care-of address; 3, new access router’s (NAR’s) IPv6 
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address; 4, NAR’s prefix (in PrRtAdv). The Prefix Length field gives the number of 
valid leading bits in the IPv6 Address field. The IPv6 Address field encodes the IPv6 
address identified in the Option-Code field.

8.5.6.15 Link-Layer Address (LLA) Option (Type 19)
The Link-Layer Address (LLA) option is used with FMIPv6 messages (ICMPv6 
type 154) [RFC5568]. Its format is given in Figure 8-56.

The Option-Code field value indicates how the associated Link-Layer Address
field value is to be interpreted: 0, wildcard—resolution requested for all nearby 
APs; 1, address of the new AP; 2, address of the mobile node; 3, address of the 
new access router; 4, address of the source of the RtSolPr/PrRtAdv message; 5, 
address is current for the router; 6, no prefix information available for the AP 

Figure 8-54  The Certificate option used with SEND. The option holds a cryptographic certifi-
cate comprising one component of a certification path. This is used to validate router 
advertisements.

Figure 8-55  The IP Address/Prefix option used with FMIPv6. The option holds a prefix or IPv6 
address of the next access router or care-of address used by a mobile node.
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corresponding to the address; 7, no fast handovers available for the AP addressed. 
The Link-Layer Address field contains the address identified by the Option-Code
field.

8.5.6.16 Neighbor Advertisement ACK (NAACK) Option (Type 20)
This option is used with FMIPv6 messages (ICMPv6 type 154) [RFC5568]. Its for-
mat is given in Figure 8-57.

Figure 8-56  The Link-Layer Address option used with FMIPv6. The option-code value indicates 
what entity is associated with the address (i.e., any AP, particular AP, NAR, sender 
of RtSolPr or PrRtAdv message, router), if prefix information is available, and if fast 
handovers are supported by the AP indicated in the LLA.

Figure 8-57  The Neighbor Advertisement Acknowledgment option used with FMIPv6. When a 
mobile node moves from a previous access router to a new access router and proposes 
to use a particular new care-of address, the new router indicates the acceptability of the 
proposed address.

The Option-Code value is 0. The Status field indicates the disposition of the 
unsolicited neighbor advertisement. The following values are defined: 1, new 
care-of address (NCoA) is invalid (perform address configuration); 2, NCoA is 
invalid (use NCoA supplied in IP Address option); 3, NCoA is invalid (use NAR’s 
address as NCoA); 4, previous care-of address (PCoA) supplied (do not send bind-
ing update); 128, link-layer address unrecognized.
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8.5.6.17 Route Information Option (Type 24)
This option is used with RA messages to indicate which off-link prefixes are 
reachable through a particular router [RFC4191]. Its format is given in Figure 8-58.

Figure 8-58  The Route Information option indicates the preference for using a particular router to 
reach a particular off-link prefix. It is most useful in cases where multiple default rout-
ers are available and perform differently in reaching the same destinations.

The Prefix Length field gives the number of valid leading bits in the Prefix field. 
The Pref field indicates whether the router associated with the included prefix 
should be preferred over others. If this field contains the value 2, the option must 
be ignored. The Route Lifetime field gives the number of seconds for which the 
prefix is to be considered valid. The value of all 1s indicates infinity. The variable-
length Prefix field gives the IPv6 prefix being described.

8.5.6.18 Recursive DNS Server Option (RDNSS) (Type 25)
The Recursive DNS Server (RDNSS) option, defined in [RFC6106], can be used 
with RA messages to enhance stateless autoconfiguration by providing the IPv6 
address of one or more DNS servers (see Chapters 6 and 11). Multiple RDNSS 
options may be included with an RA message. The format is given in Figure 8-59.

The Lifetime field gives the amount of time in seconds during which the list 
of DNS server addresses should be considered valid. The all-1s value indicates 
an infinite lifetime. If different lifetimes are required, multiple distinct RDNSS 
options may be included in the same RA message.

8.5.6.19 Router Advertisement Flags Extension Option (EFO) (Type 26)
This option extends the Flags field used in RA messages [RFC5175]. It is also some-
times called the Expanded Flags option (EFO). Its format is given in Figure 8-60.

The Length field is currently defined to be 1 until the subsequent bits are 
allocated.
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Figure 8-59  The Recursive DNS Server option indicates the IPv6 address(es) of one or more DNS 
servers capable of performing recursive lookups (see Chapter 11).

Figure 8-60  The Router Advertisement Expanded Flags option provides an arbitrary amount of 
additional space for defining future RA flags.
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8.5.6.20 Handover Key Request Option (Type 27)
The Handover Key Request option is used with FMIPv6 messages that use SEND 
to secure signaling information [RFC5269]. Its format is given in Figure 8-61.

Figure 8-61  The Handover Key Request option is used with FMIPv6 signaling secured by SEND 
and provides CGA parameters including a public key. A router uses this information in 
forming a handoff key that is provided encrypted for a mobile node.

The Pad Length field gives the number of 0 padding bytes included at the end 
of the option (included in the Length field). The Algorithm Type (AT) field identifies 
the algorithm used to compute the authenticator (see [RFC5568]). The Handover 
Key Encryption Public Key field encodes the FMIPv6 CGA public key in the same 
format used with the CGA option. The Padding area contains bytes with value 0 to 
ensure that the option is a multiple of 8 bytes.

8.5.6.21 Handover Key Reply Option (Type 28)
This option is used with FMIPv6 messages that use SEND to secure signaling 
information [RFC5269]. Its format is given in Figure 8-62.

The Pad Length and AT fields are as given with the Handover Key Request 
option. The Key Lifetime field gives the number of seconds for which the hand-
over key is valid (the default is HK-LIFETIME or 43,200s). The Encrypted Hand-
over Key field holds a symmetric key (see Chapter 18) encrypted using the mobile 
node’s handover key encryption key. The encoding format is RSAES-PKCS1-v1_5 
[RFC3447]. The Padding field contains bytes with value 0 to ensure that the option 
is a multiple of 8 bytes.

8.5.6.22 DNS Search List Option (DNSSL) (Type 31)
The DNS Search List (DNSSL) option [RFC6106] is used to indicate a list of domain 
name extensions to be added to DNS queries a host might issue. Search lists are 
part of the DNS configuration information that may be provided to a host when it is 
initialized (see Chapter 6). The format of the DNSSL option is shown in Figure 8-63.
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Figure 8-63  The DNS Search List option provides a list of default domain name extensions used 
when configuring a host’s DNS parameters. The encoding format is the same one used 
for encoding DNS names (see Chapter 11).

The Lifetime field indicates how many seconds from the time the message is 
sent that the domain search list should be considered valid. The domain name 
search list includes a list of (uncompressed) domain name extensions used as a 
form of default for forming FQDNs from partial strings (see Chapter 11).

8.5.6.23 Experimental Values (Types 253, 254)
These values are used only for experimentation, as described in [RFC3692].

Figure 8-62  The Handover Key Reply option is used with FMIPv6 signaling secured by SEND and 
provides a symmetric handoff key encrypted using the mobile node’s public key. Only 
the correct mobile node possessing the corresponding private key can decrypt the 
option to recover the key.
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8.6 Translating ICMPv4 and ICMPv6

In Chapter 7 we discussed a framework for IPv4/IPv6 translation based on 
[RFC6144] and [RFC6145] and discussed how IP headers are translated. The meth-
ods used to translate ICMPv4 to ICMPv6 and vice versa are also described in 
[RFC6145]. When translating ICMP, both the IP and ICMP headers are translated 
(i.e., modified and replaced). In addition, ICMP error messages, which contain 
an internal offending packet header and data, have the internal (offending) data-
gram’s headers translated. Aside from mapping the appropriate type and code 
numbers, there are additional concerns regarding fragmentation, MTU sizes, and 
checksum computations. Recall that ICMPv6 uses a pseudo-header checksum 
covering information at the network layer, whereas the ICMPv4 checksum is com-
puted only over ICMPv4 information.

8.6.1 Translating ICMPv4 to ICMPv6

When translating ICMPv4 informational messages to ICMPv6, only the Echo 
Request and Echo Reply types are translated. To perform the translation, the type 
values (8 and 0) are translated to values 128 and 129, respectively. After this trans-
lation, the ICMPv6 pseudo-header checksum is computed and applied. When 
translating ICMPv4 error messages, only the following error messages are trans-
lated: Destination Unreachable (type 3), Time Exceeded (type 11), and Parameter 
Problem (type 12). Table 8-6 gives the type and code value mappings used to per-
form translation. Types and codes not shown are not translated, and the arriving 
packet that would have been translated is instead dropped.

Table 8-6  Type and code mappings used to translate ICMPv4 error messages to ICMPv6

ICMPv4 
Type/Code ICMPv4 Descriptive Name

ICMPv6 
Type/Code ICMPv6 Descriptive Name (Note)

3/0 Destination 
Unreachable—Network

1/0 Destination Unreachable—No Route

3/1 Destination Unreachable—Host 1/0 Destination Unreachable—No Route
3/2 Destination 

Unreachable—Protocol
4/1 Parameter Problem—Unrecognized 

Next Header (set Pointer to indicate 
Next Header)

3/3 Destination Unreachable—Port 1/4 Destination Unreachable—Port
3/4 Destination Unreachable—

Fragmentation Required (PTB)
2/0 PTB (adjust MTU field to reflect size 

of larger IPv6 header)
3/5 Destination Unreachable—

Source Route Failed
1/0 Destination Unreachable—No Route 

(unlikely to occur)
3/{6,7} Destination Unreachable—

Destination Network/Host 
Unknown

1/0 Destination Unreachable—No Route
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As shown in Table 8-6, for Parameter Problem messages where the Pointer
field gives the byte offset of the problem, an additional mapping is used to form 
the appropriate value for the IPv6 Pointer field. Table 8-7 gives this mapping.

In addition to performing the header translations, the offending datagram 
carried in an ICMPv4 error message is also translated according to the rules for 
IPv4/IPv6 translation. Note that this implies the resulting ICMPv6 datagram may 
be of a significantly different size from what it would be if the internal translation 
were not performed. The Total Length field in the base IPv6 header is updated to 
reflect any such effects. Note that only a single level of such inner translation is 
supported. If one or more additional internal headers are discovered, the packet 
being translated is discarded. Generally, packets other than ICMP messages fail-
ing translation result in an ICMPv4 Destination Unreachable—Communication 
Administratively Prohibited (code 13) message being sent to the sender of the 
failed packet.

ICMPv4 
Type/Code ICMPv4 Descriptive Name

ICMPv6 
Type/Code ICMPv6 Descriptive Name (Note)

3/8 Destination Unreachable—
Source Host Isolated

1/0 Destination Unreachable—No Route

3/{9,10} Destination Unreachable—
Destination Network/Host 
Administratively Prohibited

1/1 Destination Unreachable—
Communication with Destination 
Administratively Prohibited

3/{11,12} Destination Unreachable—ToS 
Unavailable

1/0 Destination Unreachable—No Route

3/13 Destination Unreachable—
Administratively Prohibited

1/1 Destination Unreachable—
Communication with Destination 
Administratively Prohibited

3/14 Destination Unreachable—
Host Precedence Violation

N/A (Drop)

3/15 Destination Unreachable—
Precedence Cutoff in Effect

1/1 Destination Unreachable—
Communication with Destination 
Administratively Prohibited

11/{0,1} Time Exceeded—TTL, 
Fragment Reassembly

3/{0,1} Time Exceeded (code remains 
unchanged)

12/0 Parameter Problem—Pointer 
Contains Byte Offset of Error

4/0 Parameter Problem—Erroneous 
Header Field Encountered (update 
Pointer as in Table 8-7)

12/1 Parameter Problem—Missing 
Option

N/A (Drop)

12/2 Parameter Problem—Bad 
Length

4/0 Parameter Problem—Erroneous 
Header Field Encountered (update 
Pointer as in Table 8-7)

Table 8-6  Type and code mappings used to translate ICMPv4 error messages to ICMPv6 (continued )
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Note that as with other IPv4 traffic being translated to IPv6 (see Chapter 7), 
packets arriving with the DF bit field not set result in one or more IPv6 packets 
with Fragment headers included and resulting fragments not exceeding the IPv6 
minimum MTU. This is to deal with the issue that IPv4 routers are permitted to 
fragment IPv4 traffic (including ICMPv4 traffic) but IPv6 routers are not. ICMPv4 
PTB messages may need to be translated to ICMPv6 PTB messages that contain an 
MTU less than the IPv6 minimum link MTU of 1280 bytes. A properly operating 
IPv6 stack processes all such messages and sends subsequent datagrams to the 
same destination equipped with Fragment headers.

8.6.2 Translating ICMPv6 to ICMPv4

Among ICMPv6 informational messages, Echo Request (type 128) and Echo 
Reply (type 129) messages are translated to ICMPv4 Echo Request (type 8) and 
Echo Reply (type 0) messages, respectively. The checksum is updated to take into 
account the type value changes and the lack of the pseudo-header computation.   
Other informational messages are discarded. Table 8-8 shows how error messages 
are translated, giving the incoming (ICMPv6) and outgoing (ICMPv4) type and 
code numbers.

Once again, the Pointer field used with the Parameter Problem message 
requires special handling. Table 8-9 provides this mapping for the ICMPv6-to-
ICMPv4 case.

Note that the ICMPv4 checksum does not use a pseudo-header, so when per-
forming a header translation, the resulting checksum must be updated appropri-
ately if a non-checksum-neutral address translation is performed. In addition, 
the internal IPv6 datagram may contain addresses that are not IPv4-translatable 
addresses, resulting in a need for stateful translation (see Chapter 7).

Table 8-7  Pointer field mappings used when translating ICMPv4 Parameter Problem messages to ICMPv6

IPv4
Pointer
Value

IPv4
Header
Field

IPv6
Pointer
Value

IPv6
Header
Field

0 Version/IHL 0 Version/DS Field/ECN (Traffic Class)
1 DS Field/ECN (ToS) 1 DS Field/ECN (Traffic Class)/Flow Label
2, 3 Total Length 4 Payload Length
4, 5 Identification N/A
6 Flags/Fragment Offset N/A
7 Fragment Offset N/A
8 Time to Live 7 Hop Limit
9 Protocol 6 Next Header
10,11 Header Checksum N/A
12–15 Source IP Address 8 Source IP Address
16–19 Destination IP Address 24 Destination IP Address
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Table 8-8  Type and code mappings used to translate ICMPv6 error messages to ICMPv4

ICMPv6
Type/Code ICMPv6 Descriptive Name

ICMPv4 
Type/Code ICMPv4 Descriptive Name (Note)

1/0 Destination Unreachable—No 
Route

3/1 Destination Unreachable—Host

1/1 Destination Unreachable—
Communication with 
Destination Administratively 
Prohibited

3/10 Destination Unreachable—
Destination Host Administratively 
Prohibited

1/2 Destination Unreachable—
Beyond Scope of Source 
Address

3/1 Destination Unreachable—Host

1/3 Destination 
Unreachable—Address

3/1 Destination Unreachable—Host

1/4 Destination Unreachable—Port 3/3 Destination Unreachable—Port
2/0 PTB (adjust MTU field to reflect 

size of larger IPv6 header)
3/4 Destination Unreachable—

Fragmentation Required (PTB)
3/{0, 1} Time Exceeded—Hop Limit, 

Fragment Reassembly
11/{0,1} Time Exceeded—TTL, Fragment 

Reassembly (code value is 
unchanged)

4/0 Parameter Problem—Erroneous 
Header Field Encountered 

12/0 Parameter Problem—Pointer 
Contains Byte Offset of Error 
(update Pointer as in Table 8-7)

4/1 Parameter Problem—
Unrecognized Next Header 

3/2 Destination Unreachable—Protocol 
(set Pointer to indicate Protocol field)

4/2 Parameter Problem—
Unrecognized IPv6 Option 
Encountered

N/A (Drop)

Table 8-9  Pointer field mappings used when translating ICMPv6 Parameter Problem messages to ICMPv4

IPv6
Pointer
Value

IPv6
Header
Field

IPv4
Pointer
Value

IPv4
Header
Field

0 Version/DS Field/ECN (Traffic Class) 0 Version/IHL/DS Field/ECN (ToS)
1 DS Field/ECN (Traffic Class)/Flow Label 1 DS Field/ECN (ToS)
2, 3 Flow Label N/A
4, 5 Payload Length N/A Total Length
6 Next Header 9 Protocol
7 Hop Limit 8 Time to Live
8–23 Source IP Address 12 Source IP Address
24–39 Destination IP Address 16 Destination IP Address
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When handling differences in packet sizes, recall that there is no Don’t Frag-
ment indication in IPv6 datagrams (“don’t fragment” is implicitly always true), 
and routers cannot perform fragmentation. As a result, IPv6 packets arriving at 
the translator that do not fit in the MTU of the IPv4 interface used to reach the 
next hop are discarded and an appropriate ICMPv6 PTB message is sent back to 
the IPv6 source of the offending datagram.

8.7 Attacks Involving ICMP

The types of attacks involving ICMP fall primarily into three categories: floods, 
bombs, and information disclosure. In essence, floods cause a large amount of traffic 
to be generated, leading to an effective DoS attack on one or more computers. The 
bomb class (sometimes called nuke class) refers to sending specially constructed 
messages that cause IP or ICMP processing to crash or hang. Information disclo-
sure attacks do not typically cause harm by themselves but can be used to inform 
the approaches used by other attack methods to avoid wasting time or avoid being 
detected. ICMP attacks against TCP have been documented separately [RFC5927].

One of the early attacks involving ICMP is called the smurf attack. This amounts 
to using ICMPv4 with a broadcast destination address to induce a large number of 
computers to respond. If this is done rapidly, it can result in a DoS attack because 
the victim computer is too busy processing the ICMP traffic to do anything else. 
Generally this attack is mounted by setting the source IP address to the intended 
victim’s address. Thus, when the broadcast ICMP message is received by several 
computers, all of them respond simultaneously to the source address in the ICMP 
message (i.e., the victim’s). This attack is easily handled by disallowing incoming 
directed broadcast traffic at the firewall perimeter.

With ICMPv4 Echo Request/Reply (ping) messages, it is possible to construct 
packet fragments in such a way that when they are reassembled, they form an 
IPv4 datagram that is too large (larger than the maximum of 64KB). This has been 
used to cause some systems to crash and therefore represents another form of DoS 
attack. It is sometimes called the ping of death attack. A somewhat related attack 
involves changing the Fragment Offset fields in IPv4 headers so as to induce errors 
in the IPv4 fragment reassembly routes. This is known as the teardrop attack.

Another unanticipated situation that has been taken advantage of is the 
assumption that an ICMP message would have distinct source and destination 
addresses. In the land attack, an ICMP message containing a source and destina-
tion IP address equal to the victim’s is sent to the victim. Some implementations 
react in unfortunate ways when receiving such a message.

The ICMP redirect capability can be used to cause an end system to use an 
incorrect system as a next-hop router. Although a number of checks are made on 
incoming ICMP Redirect messages in hopes of ensuring that they really origi-
nated with the current default router, these together fail to ensure that the mes-
sage is authentic. With this attack, a man-in-the-middle (see Chapter 18) can be 
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inserted along the flow of traffic, which is then recorded and analyzed. In addi-
tion, it could be modified to cause unwanted actions. It can achieve similar results 
to the ARP poisoning attack (see Chapter 4). In addition, it has been used to cause 
a victim to believe that itself is the preferred gateway to a destination. This causes 
an infinite loop and a consequential lockup of the victim computer.

The ICMP Router Advertisement and Router Solicitation messages can be 
used to create an attack that somewhat resembles the redirect attack. In particu-
lar, these messages can be used to induce victim systems to change their default 
routes to point to a compromised machine. In addition, passively receiving these 
messages can enable an attacker to learn about the topology of the local network 
environment. Note that the problem of such “rogue RAs,” whether malicious or 
accidental, has been considered in more detail separately [RFC6104].

ICMP can be used as a communication channel among invading programs 
that wish to coordinate. In the TFN (Tribe Flood Network) attack, ICMP is used to 
coordinate among a group of collaborating viruses after they have compromised 
computers.

The set of ICMP Destination Unreachable messages can be used to cause 
denial of service to currently existing connections (e.g., TCP connections). In some 
implementations, receiving a Host Unreachable, Port Unreachable, or Protocol 
Unreachable message from an IP address causes all transport-layer connections 
currently associated with that address to be closed. These attacks are sometimes 
called smack or bloop attacks.

The ICMP Timestamp Request/Reply message (which is not used anymore in 
normal operations) can be used, if enabled, to learn the time of day according to 
some host. Because many approaches to security are based on using cryptogra-
phy with random keys, if the source and state of randomness were to be known, 
an external actor could predict the sequence of pseudo-random numbers (that is 
why they are only pseudo-random) used for creating cryptographic keys, possibly 
allowing a third party to guess otherwise secret values and hijack connections 
(see Chapter 13 on TCP and Chapter 18’s discussion of random numbers). Because 
many random numbers are based on the current time of day, revealing a host’s 
precise notion of the time could be a problem.

Yet another attack involves modification of the PTB message. Recall that this 
message contains a field indicating the recommended MTU. This is used by trans-
port protocols such as TCP to pick their packet size. If an attacker modifies this 
value, it can force an endpoint TCP to run with very small packets (resulting in 
poor performance).

Most of these attacks have been made ineffective by modifying the ICMP 
implementations present in popular operating systems. However, without cryp-
tography, spoofing or masquerading attacks are still possible, in general. Protocols 
that use cryptographic methods (e.g., SEND) offer an enhanced level of security 
but may be considerably more complicated to deploy and analyze when problems 
arise.
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8.8 Summary

In this chapter we have looked at the Internet Control Message Protocol (ICMPv4 
and ICMPv6), a required part of every IP implementation. ICMP messages are car-
ried in IP datagrams and are the first messages we have discussed that carry an 
end-to-end checksum (a pseudo-header checksum in the case of ICMPv6). ICMP 
messages may be broadly divided into error and informational message types. 
Generally speaking, ICMP error messages are not generated in response to prob-
lematic ICMP error messages to avoid message flooding. For IP, ICMP provides a 
limited information and error-reporting capability. However, the important Echo 
Request/Reply and Time Exceeded messages are necessary to support the popu-
lar ping and traceroute tools. Other (less visible) uses include the Destination 
Unreachable, PTB, and Redirect messages that are necessary for proper operation 
of path MTU discovery and efficient router selection. 

We looked at the ICMP Destination Unreachable, Redirect, and Echo Request/
Reply messages in some detail. We also saw the fairly common ICMP Port 
Unreachable error message. This let us examine the information returned in an 
ICMP error: the IP header and as much of the IP datagram that caused the error as 
possible without causing the error message to become fragmented. This informa-
tion is required by the receiver of the ICMP error, to know more about the cause 
of the error and to help direct the error message to the appropriate process or 
protocol implementation. There is an extension facility that can be applied to cer-
tain ICMP messages to carry additional information (e.g., MPLS tags or next-hop 
router information). 

ICMPv6 is a far more complex and important protocol to IPv6 as compared 
to ICMPv4 for IPv4. It is critical for the basic configuration and operation of IPv6 
systems. ICMPv6 includes most of the useful ICMPv4 messages (e.g., Destination 
Unreachable, Time Exceeded, Fragmentation Required, Echo Request/Reply) but 
also handles ND (like ARP in IPv4), allows IPv6 nodes to discover their on-link 
hosts and default routers, and provides discovery services and dynamic configu-
ration for MIPv6 nodes. ICMPv6 is also used for managing multicast group mem-
berships, whereas this is accomplished using the IGMP protocol for IPv4. We shall 
examine both in Chapter 9. ICMPv6 defines a rich set of options used with ND, 
some of which are required. Because ICMPv6 is used for so many host configu-
ration messages that could be subject to attack, there is a secure variant (SEND) 
that allows addresses to be verified using cryptographically generated addresses 
(CGAs). CGAs are interesting in their own right and are used in protocols other 
than SEND. 
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Broadcasting and Local 
Multicasting (IGMP and MLD)

9.1 Introduction

We mentioned in Chapter 2 that there are four kinds of IP addresses: unicast, any-
cast, multicast, and broadcast. IPv4 may use all of them, and IPv6 uses any except the 
last form. In this chapter we discuss broadcasting and multicasting in more detail, 
including how link-layer addressing can be used to send multicast or broadcast 
traffic efficiently from one computer to several others. We also examine the Internet 
Group Management Protocol (IGMP) [RFC3376] and the IPv6 Multicast Listener Dis-
covery (MLD) [RFC3810] protocols, which are used to inform IPv4 and IPv6 mul-
ticast routers which multicast addresses are in use on a subnetwork. One topic we 
do not cover in this chapter (or this book) is how multicast routing is implemented 
in wide area networks such as the global Internet. At the present time, multicast is 
used more in enterprise and local networks than in the wide area. While the pro-
tocols we discuss in this chapter are prerequisites for a complete understanding of 
wide area multicasting, the wide area routing protocols are comparatively complex 
and would unnecessarily complicate the explanation of the important local area 
case. The reader interested in exploring these issues is referred to [EGW02].

Broadcasting and multicasting provide two services for an application: deliv-
ery of packets to multiple destinations, and solicitation/discovery of servers by 
clients.

• Delivery to multiple destinations 

There are many applications that deliver information to multiple recipients: 
interactive conferencing and dissemination of mail or news to multiple 
recipients, for example. Without broadcasting or multicasting, these types 
of services tend to use TCP today (delivering a separate copy to each desti-
nation, which can be very inefficient).
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• Solicitation of servers by clients 

Using broadcasting or multicasting, an application can send a request for a 
server without knowing any particular server’s IP address. This capability 
is very useful during configuration when little is known about the local 
networking environment. A laptop, for example, might need to get its ini-
tial IP address and find its nearest router using DHCP (see Chapter 6).

Although both broadcasting and multicasting can provide these important 
capabilities, multicasting is generally preferable to broadcasting because multicast-
ing involves only those systems that support or use a particular service or protocol, 
and broadcasting does not. Thus, a broadcast request affects all hosts that are reach-
able within the scope of the broadcast, whereas multicast affects only those hosts 
that are likely to be interested in the request. These concepts will become clearer as 
we explore the details of broadcasting and multicasting. For now, keep in mind that 
there is a trade-off between the higher overhead and simplicity of broadcast and 
the improved efficiency but greater complexity associated with multicast.

Broadcasting has been supported by the IPv4 protocol since its inception, 
and multicast was added with the publication of [RFC1112]. IPv6 supports multi-
casting but does not support broadcasting. Generally, only user applications that 
use the UDP transport protocol (Chapter 10) take advantage of broadcasting and 
multicasting, where it makes sense for an application to send a single message to 
multiple recipients. TCP is a connection-oriented protocol that implies a connec-
tion between two hosts (specified by IP addresses) and one process on each host 
(specified by port numbers). TCP can use unicast and anycast addresses (recall 
that anycast addresses behave like unicast addresses), but not broadcast or multi-
cast addresses.

Note

Broadcasting and multicasting are also used by important system processes 
such as routing protocols, ARP, ND in IPv6, and others. Although IP multicasting 
support was once an “add-on,” requiring users to patch their systems to make 
use of it, modern operating systems include the capability by default. Multicast-
ing is an important but arguably optional feature in IPv4, but it is mandatory in 
IPv6 because of its use in ND (see Chapter 8), a service critical even to unicast 
communication.

9.2 Broadcasting

Broadcasting refers to sending a message to all possible receivers in a network. In 
principle, this is simple: a router simply forwards a copy of any message it receives 
out of every interface other than the one on which the message arrived. Things are 
slightly more complicated when multiple hosts are attached to the same local area 
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network. In this case, features of the link layer may be used to make broadcasting 
somewhat more efficient. 

Consider a set of hosts on a network such as an Ethernet that supports broad-
casting at the link layer. Each Ethernet frame contains the source and destination 
MAC addresses (48-bit values). Normally, each IP packet is destined for a single 
host, so unicast addressing is used and the destination’s unique MAC address is 
determined using ARP or IPv6 ND. When a frame is sent to a unicast destination 
in this way, communication between any two hosts does not bother any of the 
remaining hosts on the network. For switched Ethernet networks, these are the 
types of addresses found in the station caches in switches and bridges (see Chap-
ter 3). There are times, however, when a host wants to send a frame to every other 
host on the network (or VLAN)—this is called a broadcast. We saw this with ARP 
in Chapter 4. 

9.2.1 Using Broadcast Addresses

On an Ethernet or similar network, a multicast MAC address has the low-order bit 
of the high-order byte turned on. In hexadecimal this looks like 01:00:00:00:00:00. 
We may consider the Ethernet broadcast address ff:ff:ff:ff:ff:ff as a special case of 
the Ethernet multicast address. From Chapter 2 recall that in IPv4, each subnet has 
a local subnet-directed broadcast address formed by placing all 1 bits in the host 
portion of the address, and the special address 255.255.255.255 corresponds to a 
local network (also called “limited”) broadcast.

9.2.1.1 Example
In Linux, the IPv4 subnet-directed broadcast address associated with each inter-
face can be found or set with the ifconfig command. We can see it displayed as 
follows:

Linux% ifconfig eth0
eth0      Link encap:Ethernet  HWaddr 00:08:74:93:C8:3C  
          inet addr:10.0.0.13  Bcast:10.0.0.127  Mask:255.255.255.128
          inet6 addr: 2001:5c0:9ae2:0:208:74ff:fe93:c83c/64 
                      Scope:Global
          inet6 addr: fe80::208:74ff:fe93:c83c/64 
                      Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:426469 errors:0 dropped:0 overruns:1 frame:0
          TX packets:779338 errors:0 dropped:0 overruns:0 carrier:0
          collisions:298048 txqueuelen:1000 
          RX bytes:44414543 (42.3 MiB)  TX bytes:1094425223 (1.0 GiB)
          Interrupt:19 Base address:0xec00

Here, the address 10.0.0.127 is the (subnet-directed) broadcast address used 
on the network to which device eth0 is attached. This address is formed by tak-
ing the network prefix (10.0.0.0/25) and combining it with 32 – 25 = 7 bits of 1s in 
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the host portion of the address: 10.0.0.0 OR 0.0.0.127 = 10.0.0.127. A simple utility 
called ipcalc is available on some systems to perform this calculation.

To see how simple broadcasting works, we can send an ICMPv4 Echo Request 
message using the ping program to the broadcast address of 10.0.0.127 indi-
cated by the output of the ifconfig command:

Linux# ping –b 10.0.0.127
WARNING: pinging broadcast address
PING 10.0.0.127 (10.0.0.127) 56(84) bytes of data.
64 bytes from 10.0.0.6: icmp_seq=1 ttl=64 time=1.05 ms
64 bytes from 10.0.0.113: icmp_seq=1 ttl=64 time=1.55 ms (DUP!)
64 bytes from 10.0.0.120: icmp_seq=1 ttl=64 time=3.09 ms (DUP!)

--- 10.0.0.127 ping statistics ---
1 packets transmitted, 1 received, +2 duplicates, 
0% packet loss, time 0ms

We mentioned in Chapter 8 that in this type of broadcast, all the hosts on the 
local LAN (or VLAN) are affected. Here we receive replies from three other hosts 
on the network, and the ping program notes that more responses were received 
than the number of requests sent (the DUP! indication). To see the addresses being 
used, we can investigate the action using Wireshark (see Figure 9-1).

Figure 9-1  An ICMPv4 Echo Request message sent to the directed broadcast address on the local 
subnetwork is encapsulated in a link-layer broadcast frame with a destination address 
of all 1s.
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The Echo Request message is sent to the address 10.0.0.127. The IPv4 imple-
mentation determines this to be the subnet-directed broadcast address by consult-
ing information in the local routing table and interface configuration information, 
and it sends the datagram using the link-layer broadcast address ff:ff:ff:ff:ff:ff, so 
no ARP request is needed to determine the MAC addresses for each destination. 
In fact, the sender is unaware of what hosts will respond until they do. It knows 
only that 10.0.0.127 is a broadcast address and that it should therefore use a 
broadcast link-layer destination address when sending. The source addresses at 
both the IP and link layers are entirely conventional unicast; multicast addresses 
are used only as destination addresses.

In this particular example, notice that each of the responses generated is 
directed at 10.0.0.13, the unicast address of the original sender, and that each 
response includes the IPv4 address of the responder: 10.0.0.6, 10.0.0.113, and 
10.0.0.120. This is a simple example of a more general principle: broad-
cast addressing (and multicast addressing, as we shall see shortly) can be used 
to discover systems or services that are otherwise unknown. In this example, 
the outgoing broadcast ping request discovered three hosts that are willing to 
respond to broadcast Echo Request messages.

9.2.2 Sending Broadcast Datagrams

Generally speaking, applications using broadcast use the UDP protocol (or ICMPv4 
protocol) and invoke an ordinary set of API calls to send traffic. The only excep-
tion is that when invoking the API calls, a special flag (SO_BROADCAST) is used 
in some operating systems to indicate that the application really does intend to 
send broadcast datagrams. For example, in Linux, failing to use the –b flag when 
attempting to do a broadcast ping causes the following output:

Linux% ping 10.0.0.127
Do you want to ping broadcast? Then –b

This error is caused because the SO_BROADCAST flag is provided through the 
API only when the –b option is provided in the command line. This helps to 
avoid accidentally generating broadcast traffic that could temporarily congest a 
network.

To determine which interfaces are used for broadcasting, the IPv4 forwarding 
table (called “routing table” here) is consulted. The following is an example of a 
Windows Vista routing table (later versions of Windows use an identical format) 
showing the interface list and broadcast-related routing information (other 
information has been removed for clarity):

C:\> netstat -rn
=======================================================================
Interface List
 10 ...02 00 4c 4f 4f 50 ...... Microsoft Loopback Adapter
  9 ...00 13 02 20 b9 18 ...... Intel(R) PRO/Wireless 3945ABG Network 
                                Connection
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  8 ...00 14 22 f4 19 5f . .... Broadcom 440x 10/100 Integrated 
                                Controller
  1 . ......................... Software Loopback Interface 1
 12 ...00 00 00 00 00 00 00 e0  Microsoft ISATAP Adapter
 13 ...00 00 00 00 00 00 00 e0  Microsoft ISATAP Adapter #2
 11 ...00 00 00 00 00 00 00 e0  isatap.
                                {2523E0D6-A8E2-42F1-8188-6AA108FEA1EA}
=======================================================================

IPv4 Route Table
=======================================================================
Active Routes:
Network Destination  Netmask          Gateway    Interface       Metric
0.0.0.0              0.0.0.0          10.0.0.1   10.0.0.57       25
10.0.0.127           255.255.255.255  On-link    10.0.0.57       281
127.255.255.255      255.255.255.255  On-link    127.0.0.1       306
169.254.255.255      255.255.255.255  On-link    169.254.57.240  286
255.255.255.255      255.255.255.255  On-link    127.0.0.1       306
255.255.255.255      255.255.255.255  On-link    169.254.57.240  286
255.255.255.255      255.255.255.255  On-link    10.0.0.57       281

The first portion of this output shows seven different network interfaces that 
may be used for carrying network traffic. The first is the virtual loopback inter-
face, the next is a Wi-Fi wireless interface, the third is a wired Ethernet interface 
(that is disconnected), the fourth is another loopback interface, and the next three 
are used as part of the nonstandard Intra-Site Automatic Tunnel Addressing Pro-
tocol (ISATAP) [RFC5214][RFC5579]. ISATAP is used in supporting IPv6 hosts 
separated by an IPv4 network.

Moving on to the routing table, we see that there are seven entries that could 
be used to determine where broadcast traffic should be sent. The first entry is the 
default route (mask 0.0.0.0), so it matches any destination. This could be used 
by broadcasts directed beyond the local network, if such a facility were enabled. 
This type of directed broadcast, which travels beyond the local network, is usu-
ally disabled by routers to avoid a number of security problems, as suggested by 
[RFC2644].

The next three entries are the directed subnet broadcast addresses associated 
with the three interfaces having IPv4 addresses 10.0.0.57, 127.0.0.1, and 
169.254.57.240, respectively. The last two are software loopback interfaces. 
These entries show how Windows expresses a directed subnet broadcast route as 
the network prefix combined with all 1s bits in the host part as the destination, 
and a /32 or 255.255.255.255 subnet mask. The Gateway column indicates On-
link, so traffic is delivered using direct delivery (see Chapter 5) on the interface 
identified in the Interface column. In these cases, there is not more than one 
match for each subnet-directed broadcast address, so the Metric column is not 
consulted.

The last three entries are routing entries for the limited broadcast address, 
255.255.255.255. In some ways, this address acts like a multicast address because 
it is not directly associated with the addresses in use on any directly attached 



ptg999

 Section 9.3 Multicasting  441

network. Thus, it is not immediately obvious which interface(s) should be used for 
sending traffic destined for the limited broadcast address. Unfortunately, Section 
3.3.6 of the Host Requirements RFC [RFC1122] provides little guidance:

There has been discussion on whether a datagram addressed to the Limited 
Broadcast address ought to be sent from all the interfaces of a multihomed host. 
This specification takes no stand on the issue.

As a consequence, the way outgoing traffic to the limited broadcast address is 
handled is operating-system-specific. Most systems pick a single broadcast-capa-
ble interface to use for sending such traffic. Linux and FreeBSD behave this way. 
FreeBSD actually converts the limited broadcast address into a subnet-directed 
broadcast address of the “primary” (first configured) interface, although an appli-
cation can disable this behavior using the IP_ONESBCAST API option. Windows, 
for example, has behaved differently in different versions. Up to Windows 2000, 
limited broadcasts were forwarded over multiple interfaces. With Windows XP 
and later, the default behavior is to send over a single interface. In this example, 
there are multiple possible matching routes for such traffic, so the entry with the 
lowest metric (interface 10.0.0.57) is used.

9.3 Multicasting

To reduce the amount of overhead involved in broadcasting, it is possible to send 
traffic only to those receivers that are interested in it. This is called multicasting. 
Fundamentally, this is accomplished by either having the sender indicate the 
receivers, or instead having the receivers independently indicate their interest. 
The network then becomes responsible for sending traffic only to intended/inter-
ested recipients. Implementing multicast is considerably more challenging than 
broadcast because multicast state (information) must be maintained by hosts and 
routers as to what traffic is of interest to what receivers. In the TCP/IP model of 
multicasting, receivers indicate their interest in what traffic they wish to receive 
by specifying a multicast address and optional list of sources. This information is 
maintained as soft state (see Chapter 4) within hosts and routers, meaning that it 
must be updated regularly or it will time out and be deleted. When this happens, 
delivery of multicast traffic either ceases or reverts to broadcast.

The inefficiencies of broadcast apply not only to wide area networks, where 
they can be extremely severe, but also to local area and enterprise networks. Every 
host that can be reached on the same LAN or VLAN must process broadcast pack-
ets. IP multicasting provides a more efficient way to carry out the same types of 
tasks. If IP multicasting is used properly, only those hosts involved or interested in 
the communication need to process the associated packets, traffic is carried only 
on those links where it will be used, and only one copy of any multicast datagram 
is carried on any such link. To make multicasting work, applications that wish 
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to be involved in a communication require a mechanism to notify their protocol 
implementations of their desires. The host software can then arrange to receive 
packets matching the applications’ criteria. 

IP multicasting originated using a design based on the way group address-
ing works in link-layer networks such as Ethernet. In this approach, each station 
selects the group address for which it is willing to accept traffic, irrespective of 
the sender. This approach is also sometimes called any-source multicast (ASM) 
because of the insensitivity to the identity of the sender. As IP multicasting has 
evolved, an alternative form that is sensitive to the identity of the sender called 
source-specific multicast (SSM) [RFC4607] has been developed that allows end 
stations to explicitly include or exclude traffic sent to a multicast group from a 
particular set of senders. The SSM service model is easier to implement than ASM, 
primarily because in wide area multicasting it is easier to determine the location 
of a single source than the locations of many sources. In the local area, however, 
much of the machinery involved in supporting either ASM or SSM is identical, so 
we treat them together and explain the few differences when they are important. 
We begin by investigating how IP multicast traffic makes use of MAC-layer multi-
cast addresses on multicast-capable IEEE LAN technology.

9.3.1 Converting IP Multicast Addresses to 802 MAC/Ethernet Addresses

When using unicast addresses on Ethernet-like networks, ARP (see Chapter 4) 
is usually used to determine a local destination’s MAC address given its IPv4 
address. In IPv6, ND serves a similar role (see Chapter 8). When we looked at 
broadcasting earlier, we noticed that there is a single well-known broadcast MAC 
address that can always be used to reach all stations on a LAN or VLAN. What 
destination MAC address should be placed in a link-layer frame when we wish 
to send multicast traffic? Ideally, we would not have to use a protocol message 
to determine the appropriate MAC address but could instead simply map an IP 
multicast address directly to some corresponding MAC address. To see how this 
is done, we shall focus on IEEE 802 networks, especially Ethernet and Wi-Fi. These 
networks represent the most common types of networks where IP multicasting is 
used. We will first discuss how the mapping works with IPv4, and then move on 
to the slightly different method used with IPv6.

To carry IP multicast efficiently on a link-layer network, there should be a one-
to-one mapping between packets and addresses at the IP layer and frames at the 
link layer. The IANA owns the IEEE Organizationally Unique Identifier (abbrevi-
ated OUI, or more informally Ethernet address prefix) 00:00:5e. With it, IANA 
is given the right to use group (multicast) MAC addresses starting with 01:00:5e 
as well as unicast addresses starting with 00:00:5e. This prefix is used as the 
high-order 24 bits of the Ethernet address, meaning that this block includes uni-
cast addresses in the range 00:00:5e:00:00:00 through 00:00:5e:ff:ff:ff and group 
addresses in the range 01:00:5e:00:00:00 through 01:00:5e:ff:ff:ff. Other organiza-
tions besides IANA own address blocks as well, but only IANA devotes some of 
its space to support of IP multicasting.
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The IANA allocates half of its group block to identifying IPv4 multicast traffic 
on IEEE 802 LANs. This means that the Ethernet addresses corresponding to IPv4 
multicasting are in the range 01:00:5e:00:00:00 through 01:00:5e:7f:ff:ff. 

Note

Our notation here uses the Internet standard bit order as the bits appear in mem-
ory. This is what most programmers and system administrators deal with. The 
IEEE documentation uses the transmission order of the bits.

The mapping of IPv4 addresses to their corresponding IEEE 802-style link-
layer addresses can be seen in Figure 9-2.

Figure 9-2  The IPv4-to-IEEE-802 MAC multicast address mapping uses the lower-order 23 bits of 
the IPv4 group address as the suffix of a MAC address starting with 01:00:5e. Because 
only 23 of the 28 group address bits are used, 32 groups are mapped to the same MAC-
layer address.

Recall from Chapter 2 that all IPv4 multicast addresses are contained within 
the address space from 224.0.0.0 to 239.255.255.255 (formerly known as class D 
address space). All such addresses share a common 4-bit sequence of 1110 in the 
high-order bits. Thus, there are 32 – 4 = 28 bits available to encode the entire space 
of 228 = 268,435,456 multicast IPv4 addresses (also called group IDs). For IPv4, the 
IANA policy of allocating half of its group addresses for use in supporting IPv4 
multicast means that all 268,435,456 IPv4 multicast group IDs need to be mapped 
into a link-layer address space containing only 223 = 8,388,608 unique entries. The 
mapping therefore is nonunique. That is, more than one IPv4 group ID is mapped 
to the same MAC-layer group address. Specifically, 228/223 = 25 = 32 distinct IPv4 
multicast group IDs are mapped to each group address. For example, both the 
multicast addresses 224.128.64.32 (hexadecimal e0.80.40.20) and 224.0.64.32 (hexa-
decimal e0.00.40.20) are mapped into the Ethernet address 01:00:5e:00:40:20.

For IPv6, the 16-bit OUI hexadecimal prefix is 33:33. This means that the last 32 
bits of the IPv6 address can be used to form the link-layer address. Thus, any address 
ending with the same 32 bits maps to the same MAC address (see Figure 9-3). Given 



ptg999

444 Broadcasting and Local Multicasting (IGMP and MLD) 

that all IPv6 multicast addresses begin with ff, and the subsequent 8 bits are used 
for flags and scope information, this leaves 128 – 16 = 112 bits for representing 2112 
groups. Thus, with the 32 bits of MAC-layer address available to encode these groups, 
there can be as many as 2112/232 = 280 groups that map to the same MAC address!

Figure 9-3  The IPv6-to-IEEE-802 MAC multicast address mapping uses the low-order 32 bits of the 
IPv6 multicast address as the suffix of a MAC address starting with 33:33. Because only 
32 of the 112 multicast address bits are used, 280 groups are mapped to the same MAC-
layer address.

9.3.2 Examples

In a previous example, we used a subnet broadcast address to determine all the 
hosts on the local subnet that would respond to a broadcast ICMPv4 Echo Request 
message. Here, because we can use multicast addressing to determine hosts that 
offer a particular service, we can send an ICMPv4 echo request to those hosts that 
respond to the Multicast DNS (mDNS [CK11]) address 224.0.0.251:

Linux% ping 224.0.0.251
PING 224.0.0.251 (224.0.0.251) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=60 time=1.10 ms
64 bytes from 10.0.0.11: icmp_seq=1 ttl=60 time=1.60 ms (DUP!)
64 bytes from 10.0.0.120: icmp_seq=1 ttl=64 time=2.59 ms (DUP!)
--- 224.0.0.251 ping statistics ---
1 packets transmitted, 1 received, +2 duplicates, 
0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.109/1.767/2.590/0.615 ms

Here, hosts 10.0.0.2, 10.0.0.11, and 10.0.0.120 all respond, indicating that 
they are subscribed to the mDNS group. Notice that these hosts are not the same 
ones that responded when we used the broadcast address of 10.0.0.127. This is not 
so surprising, as not all hosts support the mDNS protocol.
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Note

Multicast DNS (mDNS) is a service designed to support zero configuration (effort-
less system and device configuration). mDNS has been supported on Apple sys-
tems where it is part of Bonjour. Microsoft has promoted an alternative protocol that 
includes similar features known as Link Local Multicast Name Resolution (LLMNR) 
[RFC4795]. Neither protocol is currently an Internet standard within the IETF, but at 
present mDNS enjoys a longer history than LLMNR. See Chapter 11 for more details.

For IPv6, we can perform a similar operation using an ICMPv6 Echo Request 
message:

Linux% ping6 -I eth0 ff02::fb
PING ff02::fb(ff02::fb) from fe80::208:74ff:fe93:c83c eth0: 
     56 data bytes
64 bytes from fe80::217:f2ff:fee7:6d91: icmp_seq=1 ttl=64 time=2.76 ms

--- ff02::fb ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.768/2.768/2.768/0.000 ms

Note that in this case, we provide the outgoing interface as input to the ping6
program. This allows the program to select the appropriate outgoing IPv6 address 
in Windows XP. As we can see in Figure 9-4, the address selected is a link-local 
address associated with the eth0 device.

Figure 9-4  An ICMPv6 Echo Request message is sent from a link-local unicast address associated with the 
eth0 network interface to the multicast address ff02::fb. The reply includes the sender’s IPv6 link-
local IPv6 address.
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The packets are identified as ICMPv6 Echo Request/Reply messages with the 
Identifier field set to 0x1d47 and Sequence Number field set to 1. The source IPv6 
addresses are link-local in all cases. The destination address of the request is the 
multicast address ff02::fb, which is mapped to the MAC address 33:33:00:00:00:fb. 
The Echo Reply message is sent directly to the link-local IPv6 unicast address 
of the sender, fe80::208:74ff:fe93:c83c, from the responder’s link-local unicast 
address, fe80::217:f2ff:fee7:6d91. Note that the sender of the Echo Reply message 
arranges to use a source IPv6 address of the same scope (see the discussion on 
source address selection in Chapter 5, and compare Figure 9-4 with Figure 5-16). 

9.3.3 Sending Multicast Datagrams

When sending any IP packet, a decision must be made as to which source address 
and interface to use. This is especially true for IPv6, where having multiple 
addresses per interface is considered normal. To help determine this, we can look 
at the forwarding table present in the host. In either Windows or Linux, the net-
stat command can be used. Here are the IPv4 and IPv6 routing tables as output 
on Windows Vista (later versions use an identical format):

C:\> netstat -rn
... interface list ...

IPv4 Route Table
=======================================================================
Active Routes:
Network Destination  Netmask          Gateway   Interface       Metric
0.0.0.0              0.0.0.0          10.0.0.1  10.0.0.57       25
224.0.0.0            240.0.0.0        On-link   127.0.0.1       306
224.0.0.0            240.0.0.0        On-link   169.254.57.240  286
224.0.0.0            240.0.0.0        On-link   10.0.0.57       281
255.255.255.255      255.255.255.255  On-link   127.0.0.1       306
255.255.255.255      255.255.255.255  On-link   169.254.57.240  286
255.255.255.255      255.255.255.255  On-link   10.0.0.57       281
=======================================================================
Persistent Routes:
  None

IPv6 Route Table
=======================================================================
Active Routes:
 If Metric Network Destination      Gateway
  9    281 ::/0                     fe80::204:5aff:fe9f:9e80
  1    306 ff00::/8                 On-link
 10    286 ff00::/8                 On-link
  9    281 ff00::/8                 On-link
=======================================================================
Persistent Routes:
  None
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From this table we can see that a default route for IPv4 traffic goes to 10.0.0.1
using interface 10.0.0.57. Although this does match multicast traffic, there are 
other entries that are more specific. The entries listed as 224.0.0.0/4 (subnet 
mask 240.0.0.0) indicate that three different interfaces can carry outgoing multi-
cast traffic. The interface with the lowest metric (10.0.0.57, with metric 281) is the 
most preferred, so it is used unless an application specifies otherwise. For IPv6, 
all multicast addresses begin with ff, and there are no broadcast addresses, so 
interfaces 1, 9, and 10 can all be used. Interface 9 (which happens to be the same 
interface used for IPv4 and the default for IPv6 unicast traffic) has the lowest met-
ric. Additional information indicating which interfaces have which IP addresses 
can be determined using the Windows command ipconfig /all.

The output on Linux is separate for different protocol families (such as IPv4 
and IPv6). It is generated by different arguments to the netstat command, to 
indicate which version of IP (or other) protocol is of interest. For IPv4, there is 
nothing to show, as there is no special entry for multicast; a conventional default 
route handles the multicast traffic. For IPv6, however, we can see the following:

Linux% netstat -rn -A inet6
Kernel IPv6 routing table
Destination  Next Hop             Flags Metric Ref    Use   Iface
ff00::/8     ::                    U       256  0      0   eth0

In this case, there is no direct “next hop,” so the unspecified address (::) is 
listed in the table, but we can see that the outgoing interface is eth0. The Flags
column contains only U, indicating that the route is usable, but the lack of a G flag 
indicates that it is an on-link route, not requiring forwarding to a router.

9.3.4 Receiving Multicast Datagrams

Fundamental to multicasting is the concept of a process joining or leaving one or 
more multicast groups on a given interface on a host. (We use the term process to 
mean a program being executed by the operating system, often on behalf of a user.) 
Membership in a multicast group on a given interface is dynamic—it changes over 
time as processes join and leave groups. In addition to joining or leaving groups, 
additional methods are needed if a process wishes to specify sources it cares to 
hear from or exclude. These are required parts of any API on a host that supports 
multicasting. We use the qualifier “interface” because membership in a group is 
associated with an interface. A process can join the same group on multiple inter-
faces, multiple groups on the same interface, or any combination thereof.

9.3.4.1 Example
It is possible to determine what multicast groups are in use on each interface using 
an operating-system-specific command. In Windows, the commands are part of 
the netsh package. For IPv6, this works as follows (for IPv4, replace ipv6 with ip):
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C:\> netsh interface ipv6 show joins
Interface 1:  Loopback Pseudo-Interface 1
Scope       References  Last  Address
-------     ----------  ----- -----------------------------------------
0                   1   Yes   ff02::c

Interface 8:  Local Area Connection
Scope       References  Las   Address
-------     ----------  ----- -----------------------------------------
0                   0   Yes   ff01::1
0                   0   Yes   ff02::1
0                   1   Yes   ff02::c
0                   1   Yes   ff02::1:3
0                   1   Yes   ff02::1:ffdc:fc85

Here we can see how IPv6 uses several multicast addresses per interface. The 
first interface is a loopback, local interface. The only multicast group used on it is 
the link-local scoped Simple Service Discovery Protocol (SSDP) multicast address, 
which we saw in Chapter 7.

Note

SSDP is described in an (expired) Internet draft [GCLG99] authored by Microsoft 
and Hewlett-Packard. SSDP also operates on IPv4, using address 239.255.255.250 
and UDP port 1900.

On the other network interface, the addresses ff01::1 (node-local All Nodes 
address) and ff02::1 (link-local All Nodes address) show joins for all nodes, and 
ff02::c shows the use of SSDP. The next address, ff02::1:3, is for support of 
LLMNR, a local multicast name resolution system mentioned previously and dis-
cussed in more detail in Chapter 11. Finally, the address ff02::1:ffdc:fc85 is 
the Solicited-Node multicast address for this node, used by IPv6 ND. Recall that 
in IPv6, determining a neighbor’s MAC address is accomplished using multicast 
ICMPv6 ND messages, as opposed to the ARP mechanism used in IPv4.

On Linux, the netstat command displays the IP group memberships:

Linux% netstat –gn
IPv6/IPv4 Group Memberships
Interface       RefCnt Group
--------------- ------ ---------------------
lo              1      224.0.0.1
eth1            1      224.0.0.1
lo              1      ff02::1
eth1            1      ff02::1:ff2a:1988
eth1            1      ff02::1  

The output from this command includes the join information for multiple 
interfaces and for both IPv4 and IPv6. In this case, we see 224.0.0.1 (All Hosts) 
on both the Ethernet interface (eth1) as well as the local loopback interface (lo). 
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We can also see the link-local scope All Nodes bindings for each interface. Finally, 
the Solicited-Node address is ff02::1:ff2a:1988.

Note

With IP multicasting, a process may send to a multicast group without joining 
it. More commonly, processes do join the multicast groups with which they are 
interacting, and on one or more specific interfaces. There is a special option in the 
socket API (IP_MULTICAST_LOOP) to alter the way multicast traffic is handled 
among processes on the same host that are members of the same group on 
the same interface. In UNIX, this option applies to the send path, meaning that 
if the option is enabled, other processes on the same host receive the multi-
cast datagrams, even if they have the option disabled. Conversely, on Windows, 
the option applies on the receive path, meaning that any processes enabling the 
option receive multicast traffic from other applications on the same host even if 
they have the option disabled.

9.3.5 Host Address Filtering

To understand how the operating system processes received multicast datagrams 
for multicast groups that programs have joined, recall from Chapter 3 that filtering
takes place on each host’s network interface card (NIC), each time a frame is pre-
sented to it (e.g., by a bridge or switch) for possible reception. Figure 9-5 indicates 
how this occurs.

In a typical switched Ethernet environment, broadcast and multicast frames 
are replicated on all segments within a VLAN, along a spanning tree formed 
among the switches. Such frames are delivered to the NIC on each host which 
checks the correctness of the frame (using the CRC) and makes a decision about 
whether to receive the frame and deliver it to the device driver and network stack. 
Normally the NIC receives only those frames whose destination address is either 
the hardware address of the interface or the broadcast address. However, when 
multicast frames are involved, the situation is somewhat more complicated.

NICs tend to come in two varieties. One type performs filtering based on 
the hash values of the multicast hardware addresses in which the host software 
has expressed interest, which means that some unwanted frames can always get 
through because of hash collisions. The other type listens for a finite table of mul-
ticast addresses, meaning that if the host needs to receive frames destined for 
more multicast addresses than can fit in the table, the NIC is put into a “multi-
cast-promiscuous” mode, in which case all multicast traffic is given to the host 
software. Hence, both types of interfaces require that the device driver or higher-
layer software perform checking that the received frame is really wanted. Even 
if the interface performs perfect multicast filtering (based on the 48-bit hardware 
address), because the mapping from a multicast IPv4 or IPv6 address to a 48-bit 
hardware address is not unique, filtering is still required. Despite this imperfect 
address mapping and hardware filtering, multicasting is still more efficient than 
broadcasting.
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For NICs that support a multi-entry address table, the destination address on 
each received frame is compared against this table, and if the address is found in 
the table, the frame is received and processed by the device driver. The entries of 
this table are managed by the device driver software in combination with other 
layers of the protocol stack (such as the IPv4 and IPv6 implementations). Another 
method of implementing this type of filtering is to apply a hash function to the 
destination address, forming an index into a (smaller) binary vector. When the 
indexed entry in the vector contains a 1 bit, the corresponding address is deemed 
to be acceptable and the frame is processed further. This approach can save mem-
ory on the NIC, but because of collisions in the hash function, some frames may be 
considered admissible when they should not be. This is not a fatal problem, how-
ever, because higher layers of the stack also perform filtering, and no frames are 
ever discarded when they should not have been (i.e., there are no false negatives, 
but there may be false positives).

Note

The specific capabilities of an NIC vary based on manufacturer. As an example, 
the Intel 82583V Ethernet controller includes a 16-entry exact match table (uni-
cast or multicast), a 4096-bit hash filter for multicast destinations, and support for 

Figure 9-5  Each layer implements filtering on some portion of the received message. MAC address 
filtering can take place in either software or hardware. Cheaper NICs tend to impose a 
larger processing burden on software because they perform fewer functions in hardware.
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both promiscuous reception and promiscuous multicast reception in addition to 
filtering based on up to 4096 VLAN tags.

Once the NIC hardware has verified a frame as acceptable (i.e., the CRC is cor-
rect, any VLAN tags match, and the destination MAC address matches an address 
entry in one or more of the NIC’s tables), the frame is passed to the device driver, 
where additional filtering is performed. First, the frame type must specify a pro-
tocol that is supported (e.g., IPv4, IPv6, ARP, etc.). Second, additional multicast 
filtering may be performed to check whether the host belongs to the addressed 
multicast group (indicated by the destination IP address). This is necessary for 
NICs that may generate false positives. 

The device driver then passes the frame to the next layer, such as IP, if the 
frame type specifies an IP datagram. IP performs more filtering, based on the 
source and destination IP addresses, and passes the datagram up to the next layer 
(such as TCP or UDP) if all is well. Each time UDP receives a datagram from IP, 
it performs filtering based on the destination port number, and sometimes the 
source port number, too. If no process is currently using the destination port 
number, the datagram is discarded and an ICMPv4 or ICMPv6 Port Unreachable 
message is normally generated. (TCP performs similar filtering based on its port 
numbers.) If the UDP datagram has a checksum error, UDP silently discards it.

One of the primary motivations behind the development of the multicast 
addressing features was to avoid the overhead of broadcasting. Consider an appli-
cation that is designed to use UDP broadcasts. If there are 50 hosts on the network 
(or VLAN), but only 20 are participating in the application, every time one of the 
20 sends a UDP broadcast, the other 30 nonparticipating hosts have to process the 
broadcast, all the way up through the UDP layer, before the UDP datagram is dis-
carded. The UDP datagram is discarded by these 30 hosts because the destination 
port number is not in use. The intent of multicasting is to reduce this load on hosts 
with no interest in the application. With multicasting, a host specifically joins one 
or more multicast groups. If possible, the NIC is told which multicast groups the 
host belongs to, and only those multicast frames associated with the IP-layer mul-
ticast groups are allowed through the filter in the NIC. All of this machinery offers 
less overhead imposed on the host, in exchange for additional complexity in man-
aging multicast addresses and group memberships.

9.4 The Internet Group Management Protocol (IGMP) and 
Multicast Listener Discovery Protocol (MLD)

So far we have discussed how multicast datagrams are transmitted, filtered, 
and received from a host’s perspective. When multicast datagrams are to be for-
warded over a wide area network or within an enterprise across multiple sub-
nets, we require that multicast routing be enabled by one or more multicast routers. 
This complicates the situation considerably, because multicast routers require 
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knowledge about which hosts are interested in what multicast groups, in order 
to arrange for multicast traffic to be delivered appropriately. They also execute a 
special procedure called the Reverse Path Forwarding (RPF) check. This procedure 
performs a routing lookup on the source address of an arriving multicast data-
gram. Only if the outgoing interface for routing matches the interface on which 
the datagram arrived is the datagram forwarded. The RPF check is important for 
avoiding multicast loops. Multicast routing is largely separate from conventional 
unicast routing provided by IP routers. However, some capabilities of multicast 
routing are required for the IPv6 ND protocol (see Chapter 8) to operate properly. 

Two major protocols are used to allow multicast routers to learn the groups in 
which nearby hosts are interested: the Internet Group Management Protocol (IGMP) 
used by IPv4 and the Multicast Listener Discovery (MLD) protocol used by IPv6. Both 
are used by hosts and routers that support multicasting, and the protocols are very 
similar. These protocols let the multicast routers on a LAN (VLAN) know which 
hosts currently belong to which multicast groups. This information is required by 
the routers so that they know which multicast datagrams to forward on to which 
interfaces. In most cases, a multicast router only requires knowledge that at least one
listening host is reachable by a particular interface, as link-layer multicast address-
ing (assuming it is supported) permits the multicast router to send link-layer multi-
cast frames that will be received by all interested listeners. This allows a multicast 
router to do its job without keeping track of every individual host on each interface 
that might be interested in multicast traffic for a particular group.

IGMP has evolved over time, and [RFC3376] defines version 3 (the most cur-
rent one at the time of writing). MLD has evolved in parallel, and its current 
version (2) is defined in [RFC3810]. IGMPv3 and/or MLDv2 are required for sup-
porting SSM. See [RFC4604] for more details on how these protocols are restricted 
when using only a single source per multicast group.

Version 1 of IGMP was the first commonly used version of IGMP. Version 
2 added the ability to leave groups more quickly (also supported by MLDv1). 
IGMPv3 and MLDv2 add the ability to select the sources of multicast traffic and 
are required for deployment of SSM. While IGMP is a separate protocol used with 
IPv4, MLD is really part of ICMPv6 (see Chapter 8). 

Figure 9-6 indicates how IGMP (MLD) is used by an IPv4 (IPv6) multicast-
enabled router. Such routers are interested in ascertaining which multicast groups 
are of interest on each of its attached interfaces. These routers require this infor-
mation in order to avoid simply broadcasting all traffic out of every interface.

In Figure 9-6, we can see how IGMP (MLD) queries are sent by multicast rout-
ers. These are sent to the All Hosts multicast address, 224.0.0.1 (IGMP), or the All 
Nodes link-scope multicast address, ff02::1 (MLD), and processed by every host 
implementing IP multicast (see the exception in Section 9.4.2 for “specific” que-
ries). Membership report messages are sent by group members (hosts) in response 
to the queries but may also be sent in an unsolicited way from hosts that wish 
to inform multicast routers that their group membership(s) and/or interest in 
particular sources has changed. IGMPv3 reports are sent to the IGMPv3-capable 
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multicast router address 224.0.0.22. MLDv2 reports are sent to the correspond-
ing MLDv2 Listeners IPv6 multicast address ff02::16. Note that multicast routers 
themselves may also act as members when they join multicast groups.

Note

In IGMPv1 and IGMPv2, after receiving a query, hosts do not respond immedi-
ately but instead may wait a small random amount of time to see if any other host 
responds for the same group. If so, a host’s response is suppressed (not sent). 
This is accomplished by having reports sent to the multicast address of the group 
in question. Appendix A of [RFC3376] indicates why this operation was removed 
in IGMPv3. In short, multicast routers may wish to track individual hosts’ subscrip-
tions, suppression does not work well in bridged LANs using IGMP snooping (see 
Section 9.4.7), handling suppression complicates the protocol implementation, 
and IGMPv3 reports contain information on multiple groups, making successful 
suppression less likely. Note that both IGMPv3 and MLDv2 require backward 
compatibility with earlier versions of themselves and revert to using older-version 
protocol messages of older hosts or routers detected on the same subnet.

The encapsulations for IGMP and MLD are shown in Figure 9-7. Like ICMP, 
IGMP is considered part of the IP layer. Also like ICMP, IGMP messages are trans-
mitted in IPv4 datagrams. Unlike other protocols that we have seen, IGMP uses 
a fixed TTL of 1, so packets are limited to the local subnetwork. IGMP packets 
also use the IPv4 Router Alert option and use the 6-bit value 0x30 in the DS Field

Figure 9-6  Multicast routers send IGMP (MLD) requests to each attached subnet periodically to 
determine which groups and sources are of interest to the attached hosts. Hosts respond 
with reports indicating which groups and sources are of interest. Hosts may also send 
unsolicited reports if membership changes occur.
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Figure 9-7  IGMP is encapsulated as a separate protocol in IPv4. MLD is a type of ICMPv6 message.

to represent Internetwork Control (CS6, see Chapter 5). In IPv6, MLD is part of 
ICMPv6, but the functionality of MLD is nearly identical to that of IGMP, so we 
describe it here (we described its message formats briefly when describing ICMPv6 
in Chapter 8). Its encapsulation makes use of an IPv6 Hop-by-Hop extension header 
to hold the Router Alert option. In many cases, the list of sources is empty.

IGMP and MLD define two sets of protocol processing rules: those performed 
by hosts that are group members and those performed by multicast routers. Gen-
erally speaking, the job of the member hosts (which we will call “group members”) 
is to spontaneously report changes in interest in multicast groups and sources 
and to respond to periodic queries. Multicast routers send queries to ascertain 
whether any interest is present on an attached link for any groups, or for a specific 
multicast group and source. Routers also interact with wide area multicast proto-
cols (such as PIM-SM and BIDIR-PIM) to bring the desired traffic to the interested 
hosts or prohibit traffic from flowing to uninterested hosts. For more details on 
these protocols, please see [RFC4601] and [RFC5015].

9.4.1 IGMP and MLD Processing by Group Members (“Group Member Part”)

The group members’ portion of IGMP and MLD is designed to allow hosts to 
specify what groups they are interested in and whether traffic sent from particu-
lar sources should be accepted or filtered out. This is accomplished by sending 
reports to one or more multicast routers (and participating hosts) attached to the 
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same subnet. Reports may be sent as a result of receiving a query, or spontane-
ously (unsolicited) because of a local change in reception state (e.g., an application 
joins or leaves a group). IGMP reports take the form shown in Figure 9-8.

Figure 9-8  The IGMPv3 membership report contains group records for N groups. Each group 
record indicates a multicast address and optional list of sources.

Report messages are fairly simple. They contain a vector of group records, each 
of which provides information about a particular multicast group, including the 
address of the subject group, and an optional list of sources used for establishing 
filters (see Figure 9-9).

Each group record contains a type, the address of the subject group, and a list 
of source addresses to either include or exclude. There is also support for includ-
ing auxiliary data, but this feature is not used by IGMPv3. Table 9-1 reveals the sig-
nificant flexibility that can be achieved using IGMPv3 report record types. MLD 
uses the same values. A list of sources is said to refer to include mode or exclude
mode. In include mode, the sources in the list are the only sources from which 
traffic should be accepted. In exclude mode, the sources in the list are the ones to 
be filtered out (all others are allowed). Leaving a group can be expressed as using 
an include mode filter with no sources, and a simple join of a group (i.e., for any 
source) can be expressed as using the exclude mode filter with no sources. Note 
that when using SSM, types 0x02 and 0x04 are not used, as only a single source is 
assumed for any group.
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Figure 9-9  An IGMPv3 group record includes a multicast address (group) and an optional list of 
sources. Groups of sources are either allowed as senders (include mode) or filtered out 
(exclude mode). Previous versions of IGMP reports did not include a list of sources.

T able 9-1  Type values for IGMP and MLD source lists indicate the filtering mode (include or exclude) and 
whether the source list has changed

Type Name and Meaning When Sent

0x01 MODE_IS_INCLUDE (IS_IN): traffic sent from any of 
the associated source addresses is not to be filtered.

In response to a query from a 
multicast router

0x02 MODE_IS_EXCLUDE (IS_EX): traffic sent from any of 
the associated source addresses should be filtered.

In response to a query from a 
multicast router

0x03 CHANGE_TO_INCLUDE_MODE (TO_IN): a change 
from exclude mode; traffic sent from any of the 
associated source addresses should now not be filtered.

In response to a local action 
changing the filter mode from 
exclude to include

0x04 CHANGE_TO_EXCLUDE_MODE (TO_EX): a change 
from include mode; traffic sent from any of the 
associated source addresses should now be filtered.

In response to a local action 
changing the filter mode from 
include to exclude

0x05 ALLOW_NEW_SOURCES (ALLOW): a change in 
source list; traffic sent from any of the associated source 
addresses should now not be filtered.

In response to a local action 
changing the source list to 
allow new sources

0x06 BLOCK_OLD_SOURCES (BLOCK): a change in source 
list; traffic sent from any of the associated source 
addresses should now be filtered.

In response to a local action 
changing the source list to 
disallow previously allowed 
sources
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The first two message types (0x01, 0x02) are known as current-state records and 
are used to report the current filter state in response to a query. The next two 
(0x03, 0x04) are known as filter-mode-change records, which indicate a change from 
include to exclude mode or vice versa. The last two (0x05, 0x06) are known as 
source-list-change records and indicate a change to the sources being handled in 
either exclude or include mode. The last four types are also described more gener-
ally as state-change records or state-change reports. These are sent as a result of some 
local state change such as a new application being started or stopped, or a running 
application changing its group/source interests. Note that IGMP and MLD que-
ries/reports themselves are never filtered. MLD reports use a structure similar to 
IGMP reports but accommodate larger addresses and use an ICMPv6 type code of 
143 (see Chapter 8).

When receiving a query, group members do not respond immediately. Instead, 
they set a random (bounded) timer to determine when to respond. During this 
delay interval, processes may alter their group/source interests. Any such modi-
fications can be processed together before a timer expires to trigger the report. In 
this way, once the timer does expire, the status of multiple groups can more likely 
be merged into a single report, saving overhead.

The source address used for IGMP is the primary or preferred IPv4 address 
of the sending interface. For MLD, the source address is a link-local IPv6 address. 
One complication arises when a host is booting and attempting to determine its 
own IPv6 address. During this time, it selects a potential IPv6 address to use and 
executes the duplicate address detection (DAD) procedure (see Chapter 6) to deter-
mine if any other systems are already using this address. Because DAD involves 
multicast, some source address must be assigned to outgoing MLD messages. This 
is addressed by [RFC3590], which allows the unspecified address (::) to be used as 
the source IPv6 address for MLD traffic during configuration.

9.4.2 IGMP and MLD Processing by Multicast Routers (“Multicast Router Part”) 

In IGMP and MLD, the job of the multicast router is to determine, for each multi-
cast group, interface, and source list, whether at least one group member is pres-
ent to receive corresponding traffic. This is accomplished by sending queries and 
building state describing the existence of such members based on the reports they 
send. This state is soft state, meaning that it is cleared after a certain amount of 
time if not refreshed. To build this state, multicast routers send IGMPv3 queries of 
the form depicted in Figure 9-10.

The IGMP query message is very similar to the ICMPv6 MLD query we dis-
cussed in Chapter 8. In this case, the group (multicast) address is 32 bits in length 
and the Max Resp Code field is 8 bits instead of 16. The Max Resp Code field encodes 
the maximum amount of time the receiver of the query should delay before send-
ing a report, encoded in 100ms units for values below 128. For values above 127, the 
field is encoded as shown in Figure 9-11.
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This encoding provides for a possible range of (16)(8) = 128 to (31)(1024) = 
31,744 (i.e., about 13s to 53 minutes). Using smaller values for the Max Resp Code
field allows for tuning the leave latency (the elapsed time from when the last group 
member leaves to the time corresponding traffic ceases to be forwarded). Larger 
values of this field reduce the traffic load of the IGMP messages generated by 
members by increasing the likelihood of longer periods for reporting.

The remaining fields in a query include an Internet-style checksum across the 
whole message, the address of the subject group, a list of sources, and the S, QRV, 

Figure 9-10  The IGMPv3 query includes the multicast group address and optional list of sources. 
General queries use a group address of 0 and are sent to the All Hosts multicast address, 
224.0.0.1. The QRV value encodes the maximum number of retransmissions the sender 
will use, and the QQIC field encodes the periodic query interval. Specific queries are 
used before terminating traffic flow for a group or source/group combination. In this 
case (and all cases with IGMPv2 or IGMPv1), the query is sent to the address of the 
subject group.

Figure 9-11  The Max Resp Code field encodes the maximum time to delay responses in 100ms units. 
For values above 127, an exponential value can be used to accommodate larger values.
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and QQIC fields we defined in Chapter 8 with MLD. In cases where the multicast 
router wishes to know about interest in all multicast groups, the Group Address
field is set to 0 (such queries are called “general queries”). The S and QRV fields 
are used for fault tolerance and retransmission of reports and are discussed in 
Section 9.4.5. The QQIC field is the Querier’s Query Interval Code. This value is the 
query sending period, in units of seconds and encoded using the same method as 
the Max Resp Code field (i.e., a range from 0 to 31,744).

There are three variants of the query message that can be sent by a multicast 
router: general query, group-specific query, and group-and-source-specific query. The 
first form is used by the multicast router to update information regarding any 
multicast group, and for such queries the group list is empty. Group-specific que-
ries are similar to general queries but are specific to the identified group. The last 
type is essentially a group-specific query with a set of sources included. The spe-
cific queries are sent to the destination IP address of the subject group, as opposed 
to general queries that are sent to the All Systems multicast address (for IPv4) or 
the link-scope All Nodes multicast address for IPv6 (ff02::1).

The specific queries are sent in response to state-change reports in order to 
verify that it is appropriate for the router to take some action (e.g., to ensure that no 
interest remains in a particular group before constructing a filter). When receiv-
ing either filter-mode-change records or source-list-change records, the multicast 
router arranges to add new traffic sources and may be able to filter out traffic from 
certain sources. In cases where the multicast router is prepared to begin filter-
ing out traffic that was flowing previously, it uses the group-specific query and 
group-and-source-specific query first. If these queries elicit no reports, the router 
is free to begin filtering out the corresponding traffic. Because such changes can 
significantly affect the flow of multicast traffic, state-change reports and specific 
queries are retransmitted (see Section 9.4.5).

9.4.3 Examples

Figure 9-12 shows a packet trace containing a combination of IGMPv2, IGMPv3, 
MLDv1, and MLDv2 protocols, all working on the same subnet. The trace is 16 
packets in length (the first 10 are shown in Figure 9-12) and begins with an MLD 
query from fe80::204:5aff:fe9f:9e80, the link-local IPv6 address of the querier. 
Recall that MLD and MLDv2 use the same query format. This same system also 
acts as an IGMP querier using the IPv4 source address 10.0.0.1.

In Figure 9-12, the MLD query (packet 1) is sent by the querier using its link-
local IPv6 address fe80::204:5aff:fe9f:9e80 to the multicast address ff02::1 (All 
Nodes). The MAC-layer addresses are 00:04:5a:9f:9e:80 and 33:33:00:00:00:01, 
respectively. Here we can see how an IPv6 link-local unicast address relates to the 
corresponding MAC address, and also how the All Nodes address is mapped to 
the MAC address using prefix 33:33, as we discussed earlier. The IPv6 Hop Limit
field is set to 1, as MLD messages are applicable only to the local link. The IPv6 
Payload Length field indicates 36 bytes, which includes 8 bytes holding the MLD 
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form of Router Alert (a Hop-by-Hop option), 4 bytes of ICMPv6 header informa-
tion, and 24 bytes to hold the MLD data itself. The Type, Code, Checksum, and Max 
Response fields of the MLD message together require 8 bytes of the 24; 16 more 
are used to hold the Multicast Address field (set to 0/unknown or the unspecified 
address to refer to all groups). The S bit field, QRV, and QQIC fields together use 
2 more bytes, and the last 2 hold the number of sources identified, which in this 
case is 0. In this example, we see default values for all MLD information: 10s for 
the maximum response delay, QRV = 2, and 125s for the query interval. The next 
message (packet 2, Figure 9-13) is the response for the query.

Figure 9-13 is an MLDv2 report indicating interest in the multicast address 
ff02::c (the link-local multicast address for SSDP). Interest is indicated in such 
reports using an exclude mode report containing an empty source list. The next 
few packets of the trace show the use of MLDv1 (still used by some systems).

Figure 9-12  IGMPv2, IGMPv3, MLDv1, and MLDv2, all working on the same subnet. The highlighted packet 
is an MLD query.
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Packets 3 through 5 in Figure 9-14 are all MLDv1 reports. Only packet 3 is 
shown here, as the others are similar (they differ only in their respective destina-
tion IPv6 addresses). As with MLDv2, each report uses the same structure for the 
IPv6 base and extension headers, but the destination address of the report is the 
multicast address of interest, ff02::2:7408:ff56. Note that at the MAC layer, this des-
tination address is mapped to 33:33:74:08:ff:56. The next portion of the trace, start-
ing with packet 6 in Figure 9-15, shows how MLDv2 can report multiple interests.

Figure 9-13  An MLDv2 listener report message expresses interest in the group ff02::c (the link-local scope 
multicast address for SSDP) by using an exclude-type message with no sources.

Figure 9-14  The MLDv1 report message expresses an interest in the multicast address ff02::2:7408:ff56, which 
is also the destination IPv6 address.
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Packet 6 in Figure 9-15 is the first MLDv2 report indicating interest in more 
than one multicast address. In this case, it is from fe80::204:5aff:fe9f:9e80 (the 
MLD querier) and contains information for five groups: ff02::16 (all MLDv2-
capable routers), ff02::1:ff00:0 (first solicited-node address), ff02::2 (All Routers), 
ff02::202 (ONC RPC, a form of remote procedure call), and ff02::1:ff9f:9e80 (its own 
solicited-node group). Packet 7 (not detailed) is an MLDv2 report indicating that 
host fe80::fd26:de93:5ab7:405a has interest in address ff02::1:ffb7:405a, its solicited-
node address. We now move on to the non-IPv6 traffic in the trace as shown in 
Figure 9-16.

Packet 8 in Figure 9-16 is the first IPv4 packet of the trace, and it is an IGMPv3 
general query from the querier 10.0.0.1. The packet is sent to the All Nodes 
address, 224.0.0.1, and this multicast address is mapped to the link-layer address 

Figure 9-15  This MLDv2 report expresses interest in five multicast groups. Each multicast address 
record reports interest in a single group by indicating that no sources are to be excluded 
(i.e., mode is exclude with no associated sources). 
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01:00:5e:00:00:01. The TTL is set to 1, as IGMP messages are not forwarded 
through routers. The IPv4 header is 24 bytes, which is 4 bytes larger than a basic 
IPv4 header in order to hold the 4-byte Router Alert option. This particular packet 
is an IGMPv3 membership query, with the default maximum response time of 10s 
and query interval of 125s. The multicast address (group) identified is 0.0.0.0, so 
this is a general query requesting knowledge about all multicast groups in use. 
Packet 9 (not detailed but similar to packets 7 and 2) is an interspersed MLDv2 
response, indicating interest in the multicast address ff02::1:3 (LLMNR). The last 
seven packets are shown in Figure 9-17.

Packet 10 in Figure 9-17 is an IGMPv2 membership report sent from 10.0.0.14 
(a network-attached printer) to 224.0.1.60, which is a discovery service used for 
equipment manufactured by Hewlett-Packard. As with MLDv1, IGMPv2 mes-
sages are sent to the IP address of the group being referenced. Such messages have 
TTL = 1, include the Router Alert option, and are 32 bytes in length (24 bytes of 
IPv4 header plus 8 bytes of IGMP report information). 

Figure 9-16  An IGMPv3 general membership query is sent to the All Nodes multicast address, 
224.0.0.1. Its IPv4 header contains a DSCP value of 0x30 (class selector 6) and the IPv4 
Router Alert option.
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The remaining packets are not detailed as they are similar to other packets we 
have already seen in detail. Packet 11 reports that the same system, 10.0.0.14, wishes 
to join the group 239.255.255.250 (part of UPnP). Packet 12 is an MLDv2 report indi-
cating that the host fe80::208:74ff:fe93:c83c is interested in the multicast addresses 
ff02::202 (ONC RPC) and ff02::1:ff93:f83c (its solicited-node address). Packets 13 
and 14 are IGMPv3 reports indicating that the host with IPv4 address 10.0.0.57 has 
interest in groups 239.255.255.250 and 224.0.0.252 (LLMNR), respectively. The last 
two packets indicate that hosts 10.0.0.13 and 10.0.0.14 wish to join group 224.0.0.251 
(mDNS; see Chapter 11). They are IGMPv3 and IGMPv2 reports, respectively.

9.4.4 Lightweight IGMPv3 and MLDv2

As we have seen, hosts maintain filter state about what multicast groups their 
applications and system software are interested in. With IGMPv3 or MLDv2 they 
also maintain a list of sources that are excluded or included. Multicast routers 
maintain similar state in order to know what traffic needs to be forwarded on to 
a link for receipt by interested hosts. The reverse is also true: a multicast router 
can forgo forwarding multicast traffic sent from a host that is in every receiver’s 
exclude list. Practical experience has shown, however, that applications rarely need 
to block specific sources, and support for this function is somewhat complicated. 

Figure 9-17  Packet 10 is detailed along with the last seven packets, which are a mix of IGMPv2 and IGMPv3 
membership reports (except packet 12). IGMPv2 reports do not contain source-specific 
information.
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However, hosts often wish to include a specific source associated with a group, 
especially when SSM is in use. As a consequence, simplified versions of IGMPv3 
and MLDv2, called Lightweight IGMPv3 (LW-IGMPv3) and Lightweight MLDv2
(LW-MLDv2), respectively, have been defined in [RFC5790].

LW-IGMPv3 and LW-MLDv2 are subsets of their progenitors. They support 
both ASM and SSM and use a message format compatible with IGMPv3 and 
MLDv2, but they lack the specific source-blocking function. Instead, the only 
exclude mode supported is the case with no sources listed, which corresponds to a 
conventional group join in all versions of IGMP or MLD (e.g., as with Figure 9-13). 
For a multicast router, this means that the only state required is to keep track of 
which groups are of interest, and possibly which sources are of interest. It does not 
need to keep track of any individual sources that are not desired.

Table 9-2 shows the modifications in message types used in the lightweight 
variants of IGMPv3 and MLDv2. In this table, the empty set notation ({}) indicates 
a null source address list. For example, TO_EX({}) indicates a message of type 0x04 
indicating a change to EXCLUDE mode with no associated sources. The notation 
(*, G) indicates group G associated with any sources, and the notation (S, G) indi-
cates group G associated with specific source S.

Table 9-2  Comparison of operations of full versions of IGMPv3 and MLDv2 and their “lightweight” 
counterparts, LW-IGMPv3 and LW-MLDv2

Full Lightweight When Sent

IS_EX({}) TO_EX({}) Query response for (*, G) join
IS_EX(S) N/A Query response for EXCLUDE (S, G) join
IS_IN(S) ALLOW(S) Query response for INCLUDE (S, G) join
ALLOW(S) ALLOW(S) INCLUDE (S, G) join
BLOCK(S) BLOCK(S) INCLUDE (S, G) leave
TO_IN(S) TO_IN(S) Change to INCLUDE (S, G) join
TO_IN({}) TO_IN({}) (*, G) leave
TO_EX(S) N/A Change to EXCLUDE (S, G) join
TO_EX({}) TO_EX({}) (*, G) join

Compare the values in Table 9-2 with those in Table 9-1. Notably, the non-null 
EXCLUDE modes are not used and the state indicator types have been removed. In 
addition, the current-state records (IS_EX and IS_EN) have been removed for com-
pliant hosts. Lightweight multicast routers are still supposed to be able to receive 
such messages but may treat them as though they always contain a null source list.

9.4.5 IGMP and MLD Robustness

There are two main concerns with the robustness and reliability of the IGMP and 
MLD protocols. Failures of IGMP or MLD, or multicast more generally, can lead 
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to either the distribution of unwanted multicast traffic or the inability to deliver 
desired multicast traffic. The types of failures handled by IGMP and MLD include 
the failure of a multicast router and the loss of protocol messages.

The potential failure of a multicast router is handled by allowing more than 
one multicast router to operate on the same link. As mentioned previously, in this 
configuration the router with the lowest IP address is elected the “querier.” The 
querier is responsible for sending general and specific queries to determine the 
current state of hosts on the subnet. Other (non-querier) routers monitor the pro-
tocol messages, because they are also group members or multicast-promiscuous 
listeners, and a different router is able to step in as the querier should the current 
querier fail. To make this work properly, all the multicast routers attached to the 
same link need to coordinate their queries, responses, and some of their configu-
ration information (primarily timers).

The first type of coordination that multiple multicast routers accomplish is 
querier election. Each multicast router can hear the others’ queries. When a multi-
cast router starts, it believes itself to be the querier and sends a general query to 
determine what groups are active on a subnet. When a router receives a multi-
cast query from another router, it compares the source IP address with its own. If 
the source IP address in the received query is smaller than its own, the receiving 
router enters a standby mode. As a result, the router with the lowest IP address is 
deemed the winner and becomes the single querier responsible for sending que-
ries to its attached subnet. Routers that are standing by set timers, and if they do 
not see more queries within a specified period of time (called the other-querier-
present timer), they become queriers again.

The querying multicast router sends periodic general queries to determine 
which groups and hosts are of interest to the hosts on the same subnet. The rate 
at which these queries are sent is determined by the querier’s query interval, a con-
figurable timer parameter. When more than one multicast router operates on the 
same subnet, the interval of the current querier is adopted by all other routers. 
In this way, if the current querier fails, a switch to an alternative multicast router 
does not perturb the periodic query rate.

A multicast router that has reason to believe a group (or source) is no longer 
of interest sends specific queries prior to discontinuing the forwarding of the cor-
responding multicast traffic (or informing the multicast routing protocol). These 
queries are sent with a different interval (called the Last Member Query Time or 
LMQT) from that of general queries. The LMQT is typically lower (shorter) than 
the query interval and governs the leave latency. A complication can arise when 
multiple multicast routers operate on the same subnet, hosts wish to leave groups 
(or drop sources), and protocol messages are lost.

To help guard against lost protocol messages, some messages are retransmit-
ted up to a small number of times (determined by the querier robustness variable 
or QRV). The QRV value is encoded in the QRV field included in queries, and non-
querying routers adopt the querier’s QRV as their own. Once again, this helps to 
keep consistency if a change of querier occurs. The types of messages protected 
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with retransmission include state-change reports and specific queries. Other mes-
sages (current-state reports) do not typically result in a change of forwarding 
state but instead only involve refreshing soft state by adjusting timers, so they are 
not protected using retransmission. When retransmissions do occur, the retrans-
mission interval of reports is chosen at random uniformly between 0 and a con-
figurable parameter called the Unsolicited Report Interval, and the retransmission 
interval for queries is periodic (with the interval based on the LMQT). Links that 
are expected to be more prone to loss (e.g., wireless links) may require increasing 
the robustness variable to increase robustness to packet loss at the expense of gen-
erating additional traffic.

To help keep multicast routers synchronized when handling specific queries, 
the S bit field in the query message indicates that router-side (timer) processing 
should be suppressed. When a specific query is sent by the querier, a number 
(QRV) of retransmissions are scheduled. In the first query sent, the S bit field is 
clear. Upon transmission or receipt of such queries, a multicast router lowers its 
timer for subsequent retransmissions to the LMQT. At this point, it is possible for 
an interested host to provide a report indicating its continued interest in a group 
or source. If no messages are lost, the report causes each multicast router to reset 
its timer to its ordinary value and continue without change. However, the sched-
uled retransmissions are not abandoned. Instead, retransmissions of the specific 
query are sent with the S bit field set, which causes receiving routers to not lower 
their timers to the LMQT.

The reason for keeping query retransmissions even after the receipt of a report 
expressing interest is so that the timeouts for groups across all multicast routers 
can be made consistent. The purpose of the S bit field, then, is to allow specific que-
ries to be (re)sent, but to avoid lowering the timer to LMQT because a legitimate 
report expressing interest may have been received, even if it or the initial query 
was missed by the non-querier router(s). Without this capability, retransmitted 
specific queries would cause non-querier routers to lower their timers incorrectly 
(because a legitimate report indicating interest had already been received).

9.4.6 IGMP and MLD Counters and Variables

IGMP and MLD are soft-state protocols that also deal with failures of routers, loss 
of protocol messages, and interoperability with earlier protocol versions. Much 
of the machinery to enable these capabilities is based on timers that trigger state 
changes and protocol actions. Table 9-3 provides a summary of all of the configu-
ration parameters and state variables used by IGMP and MLD.

In Table 9-3, it is clear that MLD and IGMP share most of their timers and 
configuration parameters, although in some cases the terminology is different. 
Some values, those indicated as “cannot be changed,” are set as a function of other 
values and are not independently changeable.
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9.4.7 IGMP and MLD Snooping

IGMP and MLD manage the flow of IP multicast traffic among routers. To opti-
mize traffic flow even further, it is possible for layer 2 switches (that would not 
ordinarily process layer 3 IGMP or MLD messages) to become aware of whether 

Table 9-3  Parameters and timer values for IGMP and MLD. Most values can be altered as configuration 
parameters in an implementation.

Name and Meaning
Default Value 
(Restrictions)

Robustness Variable (RV)—arranges for up to RV - 1 retransmissions for some 
state-change reports/queries.

2 (must not be 0; 
should not be 1)

Query Interval (QI)—time between general queries sent by the current 
querier.

125s

Query Response Interval (QRI)—the maximum response time to wait for 
generation of reports. This value is encoded to form the Max Response field.

10s

Group Membership Interval (GMI) in IGMP and Multicast Address Listening 
Interval (MALI) in MLD—the amount of time that must pass without seeing a 
report for a multicast router to declare that there is no remaining interest in a 
group or source/group combination.

RV * QI + QRI 
(cannot be 
changed)

Other Querier Present Interval in IGMP and Other Querier Present Timeout 
in MLD—the amount of time that must pass without seeing a general request 
for a non-querier multicast router to declare that there is no longer an active 
querier.

RV * QI + (0.5) * 
QRI (cannot be 
changed)

Startup Query Interval—the interval between general queries used by a 
querier just starting up.

(0.25) * QI

Startup Query Count—the number of general queries sent by a querier just 
starting up.

RV

Last Member Query Interval (LMQI) in IGMP and Last Listener Query 
Interval (LLQI) in MLD—the maximum response time to wait for generation 
of reports responding to specific queries. This value is encoded to form the 
Max Response field in specific queries.

1s

Last Member Query Count in IGMP and Last Listener Query Count in MLD—
the number of specific queries to send without receiving a response to declare 
that there is no longer an interested host.

RV

Unsolicited Report Interval—the time between retransmissions of a host’s 
initial state-change report. 

1s

Older Version Querier Present Timeout—the amount of time a host waits 
without receiving an IGMPv1 or IGMPv2 request message to revert back to 
IGMPv3.

RV * QI + QRI 
(cannot be 
changed)

Older Host Present Interval in IGMP and Older Version Host Present Timeout 
in MLD—the amount of time a querier waits without receiving an IGMPv1 or 
IGMPv2 report message to revert back to IGMPv3.

RV * QI + QRI 
(cannot be 
changed)
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certain multicast traffic flows are of interest or not by looking at layer 3 informa-
tion. This capability is indicated by a switch feature known as IGMP (MLD) snoop-
ing [RFC4541] and is supported by many switch vendors. Without IGMP snooping, 
switches typically send link-layer multicast traffic by broadcasting it along all the 
branches of the spanning tree formed among switches. This can be wasteful for 
the reasons we described earlier. IGMP (MLD)-aware (sometimes called IGS for 
IGMP snooping) switches monitor IGMP (MLD) traffic between hosts and mul-
ticast routers and are able to keep track of which ports require which particu-
lar multicast flows in much the same way as a multicast router does. Doing so 
can substantially affect the amount of unwanted multicast traffic being carried 
through a switched network.

There are a few details that complicate the straightforward implementation of 
IGMP/MLD snooping. In IGMPv3 and MLDv2, reports are generated in response 
to queries. However, in earlier versions of these protocols, a report generated by 
one host and heard by others that are group members on the same link cause the 
additional members to suppress their reports. This can lead to a problem if IGS 
switches were to forward reports to all attached interfaces, as hosts on some LAN 
(VLAN) segments with group members may not be noticed. Thus, IGS switches 
supporting earlier versions of IGMP and MLD avoid broadcasting reports out of 
all interfaces. Instead, they forward reports only to the nearest multicast router. 
Determining the location of multicast routers is made easier if Multicast Router 
Discovery (MRD) is used (see Chapter 8).

Another issue of concern when implementing snooping relates to the differ-
ence in message formats between IGMP and MLD. Because MLD is encapsulated 
as part of ICMPv6 instead of its own separate protocol, MLD-snooping switches 
must process ICMPv6 information and be careful to separate the MLD messages 
from the others. In particular, other ICMPv6 traffic must be allowed to flow freely 
for the various other functions for which ICMPv6 is used (see Chapter 8).

Other nonstandard proprietary protocols have been implemented to further 
optimize IP multicast traffic carried through layer 2 devices. For example, Cisco 
has proposed the Router-port Group Management Protocol (RGMP) [RFC3488]. In 
RGMP, a mechanism is employed so that not only do hosts report their groups 
and sources of interest (as in IGMP/MLD), but multicast routers also do the same. 
This information is used to optimize layer 2 forwarding of multicast traffic among 
multicast routers (not just hosts). 

9.5 Attacks Involving IGMP and MLD

Because IGMP and MLD are signaling protocols that control the flow of multicast 
traffic, attacks using these protocols primarily are either DoS attacks or resource 
utilization attacks. There have also been attacks that exploit buggy implementa-
tion of the protocols, to either disable hosts or cause them to execute code provided 
by an attacker.
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A simple DoS attack can be mounted by sending IGMP or MLD to subscribe 
to a large number of high-bandwidth multicast groups. Doing so can cause band-
width exhaustion, leading to a denial of service. A more complex attack can be 
mounted by generating requests using a relatively low IP address. In this case, the 
attacker is elected to be the querier for the link and can advertise its own robust-
ness variable, query interval, and maximum response time that will be adopted 
by the other multicast routers. If the maximum response time is very small, hosts 
are induced to send reports rapidly, using CPU resources.

Several attacks have been carried out by exploiting implementation bugs. 
Fragmented IGMP packets have been used to induce crashes in certain operat-
ing systems. More recently, specially crafted IGMP or MLD packets using SSM 
information have been used to induce remote code execution bugs. Overall, the 
impact of IGMP or MLD vulnerabilities tends to be somewhat less than with other 
protocols, as multicast tends to be supported only in the local area. As a result, 
remote attackers lacking on-link access to the target LAN are likely to be limited. 

9.6 Summary

Broadcasting, generically, means sending traffic to all nodes on a network. In the 
context of TCP/IP, broadcasting means sending a packet to all hosts in a network 
or subnetwork, typically the locally attached network. Multicasting refers to send-
ing traffic to only a subset of nodes in a network. In TCP/IP, multicasting means 
sending a packet to a subset of the interested hosts in the network. The method 
for selecting the subset is dependent on the scope of the multicast traffic and the 
interest of receivers. In many applications multicasting is better than broadcast-
ing, since multicasting imposes less overhead on hosts that are not participating 
in the communication. Broadcasting is supported in IPv4 but not in IPv6. Broad-
casting and multicasting can be used to avoid having to send the same content to 
multiple destinations by repeatedly using unicast connections. It can also be used 
to discover servers that are otherwise unknown. Multicasting is a more complex 
capability than broadcasting, as state must be maintained to determine which 
hosts are interested in which groups. 

In IPv4 there are two types of broadcast addresses: limited (255.255.255.255) 
and directed. The directed broadcast address is based on the network prefix and 
its length and is formed by creating a 32-bit address whose initial bits are equal 
to the network prefix and whose low-order bits are set to 1. It is usually preferable 
to use directed broadcasts instead of the limited broadcast address. Selection of 
which interfaces are used to send outgoing broadcast traffic is operating-system-
dependent. A typical case is to use one primary interface for limited broadcast 
traffic and use the information present in the host’s forwarding table to select the 
interface for outgoing directed broadcasts and multicasts.

Multicasting in IP supports a model whereby processes interested in receiving 
multicast packets subscribe to a particular group (using an IP address) on a set of 
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interfaces. Transmitting multicast IPv4 traffic on multicast-capable IEEE link-layer 
networks (such as Ethernet) involves combining the low-order 23 bits of the group 
address with the prefix 01:00:5e to form a MAC-layer destination address used 
for link-layer multicasting. Transmitting IPv6 multicast traffic involves combining 
the lower-order 32 bits of the group address with the 16-bit prefix 33:33 to form 
a MAC-layer destination address. These mappings are nonunique, meaning that 
more than one IPv4 or IPv6 group address uses the same MAC-layer address. As a 
consequence, host software performs filtering of incoming traffic to remove traffic 
for unwanted groups.

The IGMP and MLD protocols are used with IPv4 and IPv6, respectively, in 
supporting multicast packet delivery. Multicast routers send query messages to 
nearby hosts in order to determine which hosts are interested in which groups, 
and (for IGMPv3 and MLDv2) which senders are of interest to these groups. Hosts 
respond by sending reports indicating the groups of interest. MLD is part of the 
ICMPv6 protocol, whereas IGMP is an independent protocol layered above IPv4 
(like ICMP). Some switches are equipped to “snoop” IGMP and MLD traffic in 
order to avoid sending multicast IP traffic along spanning tree branches where 
there are no interested receiving hosts. IGMP and MLD have a “robustness vari-
able” that can be set to enable retransmissions of important messages on networks 
prone to loss.

Because IGMP and MLD are both signaling protocols that control the flow of 
other traffic, attacks against them tend to cause extra resource consumption, pos-
sibly leading to denial of service. Other forms of attacks that exploit implementa-
tion bugs have also been seen and have been used to cause execution of unwanted 
code provided by an attacker. As MLD (and MLDv2) are relatively new in terms of 
deployment, it is likely that additional exploits will ultimately be found, but these 
protocols are limited in operation to a single link.
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10

User Datagram Protocol (UDP) 
and IP Fragmentation

10.1 Introduction

UDP is a simple, datagram-oriented, transport-layer protocol that preserves mes-
sage boundaries. It does not provide error correction, sequencing, duplicate elimi-
nation, flow control, or congestion control. It can provide error detection, and it 
includes the first true end-to-end checksum at the transport layer that we have 
encountered. This protocol provides minimal functionality itself, so applications 
using it have a great deal of control over how packets are sent and processed. 
Applications wishing to ensure that their data is reliably delivered or sequenced 
must implement these protections themselves. Generally, each UDP output opera-
tion requested by an application produces exactly one UDP datagram, which 
causes one IP datagram to be sent. This is in contrast to a stream-oriented protocol 
such as TCP (see Chapter 15), where the amount of data written by an application 
may have little relationship to what actually gets sent in a single IP datagram or 
what is consumed at the receiver.

[RFC0768] is the official specification of UDP, and it has remained as a stan-
dard without significant revisions for more than 30 years. As mentioned, UDP 
provides no error correction: it sends the datagrams that the application writes 
to the IP layer, but there is no guarantee that they ever reach their destination. In 
addition, there is no protocol mechanism to prevent high-rate UDP traffic from 
negatively impacting other network users. Given this lack of reliability and pro-
tection, we might be tempted to conclude that there are no benefits to using UDP 
at all. This is not true, however. Because of its connectionless character, it has less 
overhead than other transport protocols. In addition, broadcast and multicast 
operations (see Chapter 9) are much more straightforward using a connectionless 
transport such as UDP. Finally, the ability of an application to choose its own unit 
of retransmission can be an important consideration (see [CT90], for example).
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Figure 10-1 shows the encapsulation of a UDP datagram as a single IPv4 data-
gram. The IPv6 encapsulation is similar, but other details differ slightly and we 
discuss them in Section 10.5. The IPv4 Protocol field has the value 17 to indicate 
UDP. IPv6 uses the same value in the Next Header field. Later in this chapter we 
will examine what happens when the size of the UDP datagram exceeds the MTU 
size and the datagram must be fragmented into more than one IP-layer packet.

Figure 10-1    Encapsulation of a UDP datagram in a single IPv4 datagram (the typical case with no IPv4 
options). The IPv6 encapsulation is similar; the UDP header follows the header chain.

10.2 UDP Header

Figure 10-2 shows a UDP datagram, including the payload and UDP header (which 
is always 8 bytes in size). 

Port numbers act as mailboxes and help a protocol implementation identify the 
sending and receiving processes (see Chapter 1). They are purely abstract—they do 
not correspond to any physical entity on a host. In UDP, port numbers are positive 
16-bit numbers, and the source port number is optional; it may be set to 0 if the 
sender of the datagram never requires a reply. Transport protocols such as TCP, 
UDP, and SCTP [RFC4960] use the destination port number to help demultiplex 
incoming data from IP. Because IP demultiplexes the incoming IP datagram to a 
particular transport protocol based on the value of the Protocol field in the IPv4 
header or Next Header field in the IPv6 header, this means that the port numbers 
can be made independent among the transport protocols. That is, TCP port num-
bers are used only by TCP, and the UDP port numbers only by UDP, and so on. 
A straightforward consequence of this separation is that two completely distinct 
servers can use the same port number and IP address, as long as they use different 
transport protocols.

Note

Despite this independence, if a well-known service is provided (or can conceiv-
ably be provided) by both TCP and UDP, the port number is normally allocated 
to be the same for both transport protocols. This is purely for convenience and is 
not required by the protocols. See [IPORT] for details on how port numbers are 
formally assigned.
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Referring to Figure 10-2, the UDP Length field is the length of the UDP header 
and the UDP data in bytes. The minimum value for this field is 8 except when 
UDP is used with IPv6 jumbograms (see Section 10.5). Sending a UDP datagram 
with 0 bytes of data is acceptable, although rare. Note that the UDP Length field 
is redundant; the IPv4 header contains the datagram’s total length (see Chapter 
5), and the IPv6 header contains the payload length. The length of a UDP/IPv4 
datagram is then the total length of the IPv4 datagram minus the length of the 
IPv4 header. A UDP/IPv6 datagram’s length is the value of the Payload Length field 
contained in the IPv6 header minus the lengths of any extension headers (unless 
jumbograms are being used). In either case, the UDP Length field should match the 
length computed from the IP-layer information.

10.3 UDP Checksum

The UDP checksum is the first end-to-end transport-layer checksum we have 
encountered (ICMP has an end-to-end checksum but is not a true transport proto-
col). It covers the UDP header, the UDP data, and a pseudo-header (defined later in 
this section). It is computed at the initial sender and checked at the final destination. 

Figure 10-2  The UDP header and payload (data) area. The Checksum field is end-to-end and is 
computed over the UDP pseudo-header, which includes the Source and Destination IP 
Address fields from the IP header. Thus, any modification made to those fields (e.g., by 
NAT) requires a modification to the UDP checksum.
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It is not modified in transit (except when it passes through a NAT, as described in 
Chapter 7). Recall that the checksum in the IPv4 header covers only the header 
(i.e., it does not cover any data in the IP packet) and is recomputed at each IP hop 
(required because the IPv4 TTL field is decremented by routers when the data-
gram is forwarded). Transport protocols (e.g., TCP, UDP) use checksums to cover 
their headers and data. With UDP, the checksum is optional (although strongly 
suggested), while with the others it is mandatory. When UDP is used with IPv6, 
computation and use of the checksum are mandatory because there is no header 
checksum at the IP layer. To provide error-free data to applications, a transport-
layer protocol such as UDP must always compute a checksum or use some other 
error detection mechanism before delivering the data to a receiving application.

Although the basics for calculating the UDP checksum are similar to what we 
described in Chapter 5 for the general Internet checksum (the one’s complement 
of the one’s complement sum of 16-bit words), there are two small special details. 
First, the length of the UDP datagram can be an odd number of bytes, whereas 
the checksum algorithm adds 16-bit words (always an even number of bytes). The 
procedure for UDP is to append a (virtual) pad byte of 0 to the end of odd-length 
datagrams, just for the checksum computation and verification. This pad byte is 
not actually transmitted and is thus called “virtual” here.

The second detail is that UDP (as well as TCP) computes its checksum over a 
12-byte pseudo-header derived (solely) from fields in the IPv4 header or a 40-byte 
pseudo-header derived from fields in the IPv6 header. This pseudo-header is also 
virtual and is used only for purposes of the checksum computation (at both the 
sender and the receiver). It is never actually transmitted. This pseudo-header 
includes the source and destination addresses and Protocol or Next Header field 
(which should contain the value 17) from the IP header. Its purpose is to let the 
UDP layer verify that the data has arrived at the correct destination (i.e., that IP 
has not accepted a misaddressed datagram, and that IP has not given UDP a data-
gram that is for another transport protocol). Figure 10-3 shows what is covered 
when computing the UDP checksum, including the pseudo-header along with the 
UDP header and payload.

Note

The careful reader will note that this causes a so-called layering violation. That 
is, the UDP protocol (transport layer) is directly processing bits “owned” by IP 
(network layer). While true, it is of only minor consequence to protocol implemen-
tations, which in general have IP-layer information readily available when data 
is passed to (or from) UDP. It is of far greater concern for NATs (see Chapter 7), 
especially if UDP datagrams are fragmented.

Figure 10-3 shows a datagram with an odd data length, requiring a pad byte 
for the checksum computation. Note that the length of the UDP datagram appears 
twice in the checksum computation. If the value of the calculated checksum 
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happens to be 0x0000, it is stored in the header as all 1 bits (0xFFFF), which is 
equivalent in one’s complement arithmetic (see Chapter 5). Upon receipt, a Check-
sum field value of 0x0000 indicates that the sender did not compute a checksum. 
If the sender did compute a checksum and the receiver detects a checksum error, 
the UDP datagram is silently discarded. No error message is generated, although 
some statistical counts may be updated. (This is what happens if an IPv4 header 
checksum error is detected.)

Despite UDP checksums being optional in the original UDP specification, 
they are currently required to be enabled on hosts by default [RFC1122]. During 
the 1980s some computer vendors turned off UDP checksums by default to speed 

Figure 10-3    Fields used in computing the checksum for UDP/IPv4 datagrams, including the 
pseudo-header, the UDP header, and data. If the data is not an even number of bytes, it 
is padded with one 0 byte for purposes of computing the checksum. The pseudo-header 
and any pad bytes are not transmitted with the datagram.
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up their implementation of Sun’s Network File System (NFS), which uses UDP. 
While this might not cause problems in many cases because of the presence of 
layer 2 CRC protection (which is stronger than the Internet checksum; see Chapter 
3), it is considered bad form (and a violation of the RFCs) to disable checksums 
by default. Early experience in the Internet revealed that when datagrams pass 
through routers, all bets are off with respect to their correctness. Believe it or not, 
there have been routers with software and hardware bugs that have modified bits 
in the datagrams being forwarded. These errors are undetectable in a UDP data-
gram if the end-to-end UDP checksum is disabled. Also realize that some older 
data-link protocols (e.g., serial line IP, or SLIP) do not have any form of data-link 
checksum, thereby leaving open the possibility that IP packets could be undetect-
ably modified unless another checksum is employed.

Note

[RFC1122] requires that UDP checksums be enabled by default. It also states that 
an implementation must verify a received checksum if the sender calculated one 
(i.e., if the received checksum is not 0).

Given the structure of the pseudo-header, it is clear that when a UDP/IPv4 data-
gram passes through a NAT, not only is the IP-layer header checksum modified, 
but the UDP pseudo-header checksum must be appropriately modified because 
the IP-layer addressing and/or UDP-layer port numbers may have changed. NATs 
therefore routinely perform “layering violations” by modifying multiple layers of 
protocol within packets at the same time. Of course, given that the pseudo-header 
is itself a layering violation, a NAT has little choice. The particular rules that apply 
when UDP traffic is processed by a NAT are given in [RFC4787]. We also dis-
cussed them briefly in Chapter 7.

Recently there has been interest in relaxation of the UDP checksum for appli-
cations that are partially insensitive to errors (multimedia applications being the 
typical case). The discussion relates to whether having a partial checksum is a valu-
able concept. A partial checksum covers only a portion of the payload specified by 
the application. We discuss this in Section 10.6 in the context of UDP-Lite.

10.4 Examples

We will use the sock program [SOCK] to generate some UDP datagrams that we 
can watch with tcpdump. In the first example, we are running a server on the 
discard port (9) on the destination machine. In the second example, we have dis-
abled the server, and the client is informed of this fact as illustrated here. Very few 
UDP-based services are made available in typical machine configurations because 
of security concerns, so the second part of the example is not unusual.
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Linux% sock -v -u -i 10.0.0.3 discard
connected on 10.0.0.5.46274 to 10.0.0.3
wrote 1024 bytes
...                                         (1023 more times)

Linux% sock -v -u -i 10.0.0.3 discard
connected on 10.0.0.5.46294 to 10.0.0.3
wrote 1 bytes
write returned -1, expected 1024: Connection refused

When we execute the sock program, we specify the verbose mode, -v, to see 
the ephemeral port numbers, specify UDP -u instead of the default TCP, and use 
the -i option to send data instead of trying to read and write standard input and 
output. The default number of datagrams (1024) is sent to the destination host with 
IP address 10.0.0.3. In this case we have arranged a server to process incoming 
datagrams to the discard port. To capture the traffic sent, we use the following 
command on a host with access to the traffic stream:

Linux# tcpdump -n -p -s 1500 -vvv host 10.0.0.3 and \( udp or icmp \)

This command captures any UDP or ICMP traffic between the two machines (and 
possibly additional traffic not illustrated). The -s 1500 option directs tcpdump
to collect packets up to 1500 bytes in length (longer than the 1024 bytes we are 
sending, in this case), and the –vvv option indicates verbose printing. The –n
option tells tcpdump to not convert IP addresses to machine names, and the –p
option avoids placing the default network interface into promiscuous mode. The 
resulting tcpdump output is illustrated in Listing 10-1 (some lines have been 
wrapped for clarity).

Listing 10-1  tcpdump output showing packets from the first sock command (server running)

1 22:52:53.102838 10.0.0.5.46274 > 10.0.0.3.9: 
                [udp sum ok] udp 1024 (DF) (ttl 64, id 24462, len 1052)
2 22:52:53.102964 10.0.0.5.46274 > 10.0.0.3.9: 
                [udp sum ok] udp 1024 (DF) (ttl 64, id 24463, len 1052)
3 22:52:53.103091 10.0.0.5.46274 > 10.0.0.3.9: 
                [udp sum ok] udp 1024 (DF) (ttl 64, id 24464, len 1052)
4 22:52:53.103215 10.0.0.5.46274 > 10.0.0.3.9: 
                [udp sum ok] udp 1024 (DF) (ttl 64, id 24465, len 1052)
. . . repeated 1020 times . . .

This output shows four 1052-byte UDP/IPv4 datagrams (1024 bytes of UDP 
payload plus 8 bytes of UDP header and the 20-byte IPv4 header) sent from IPv4 
address 10.0.0.5 and port 46274 to port 9 (the discard port), with an inter-
packet time of about 100µs. In addition, we may observe that UDP checksums 
are enabled and are valid (checked by tcpdump), that the Don’t Fragment (DF) 
bit field is turned on, the IPv4 TTL field is 64, and the IPv4 Identification field is 
different (and increasing by 1) for each datagram. No ICMP traffic is generated, 
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and it would appear that all data was successfully delivered to the destination 
machine; although because there are no acknowledgments, we do not know with 
certainty. We shall see in Chapter 13 that the other major transport protocol, TCP, 
normally uses a handshake with the other end before the first byte of data can be 
sent and uses subsequent acknowledgments to know what data has been success-
fully transferred to the receiver.

The second time we run the sock program with the same arguments, but 
this time we send our datagrams to the discard service after the server has been 
disabled. Listing 10-2 shows the trace for this example (some lines have been 
wrapped for clarity). 

Listing 10-2  tcpdum p output showing ICMP Destination Unreachable (Port Unreachable) message 
from host (server disabled)

1 22:55:07.223094 10.0.0.5.46294 > 10.0.0.3.9: 
                [udp sum ok] udp 1024 (DF) (ttl 64, id 37874, len 1052)

2 22:55:07.223134 10.0.0.3 > 10.0.0.5: icmp: 
                10.0.0.3 udp port 9 unreachable for 
                   10.0.0.5.46294 > 10.0.0.3.9: 
                         udp 1024 (DF) (ttl 64, id 37874, len 1052) 
                [tos 0xc0]  (ttl 255, id 63302, len 576)

In this example we see somewhat different behavior. Here, only a single UDP 
datagram is sent, and an ICMP message is returned in response. Although all 
other parameters are the same, no server is running to receive the incoming data-
grams. In this case, the underlying UDP implementation causes an ICMPv4 Des-
tination Unreachable (Port Unreachable) message (see Chapter 8) to be generated 
and returned to the sender. This message includes a copy of the first 556 bytes 
of the original (“offending”) datagram. If the ICMP message is not discarded by 
the intervening network (accidentally or on purpose by firewalls), the sending 
application (if it is still running when the ICMP message arrives) can learn of 
the absence of the receiver and print an error, as indicated in the listing at the 
beginning of this section (i.e., the write returned -1 message). Note that the 
returning ICMP error message contains enough information for the sending host 
to ascertain which port was not reachable. Finally, note that the source UDP port 
number changes each time the program is run. First it was 46274 and then it 
was 46294. We mentioned in Chapter 1 that the ephemeral port numbers used by 
clients are suggested to be in the range 49152 through 65535, so here we observe 
noncompliant behavior.

Note

For Linux, the local port parameter range can be easily modified by changing the 
contents of the file /proc/sys/net/ipv4/ip_local_port_range. In Win-
dows Vista and later, the netsh command can be used to set the dynamic port 
range [KB929851]. See [IPORT] for current port numbers.



ptg999

Section 10.5 UDP and IPv6   481

10.5 UDP and IPv6

Given its simplicity, UDP requires only small changes when operating over IPv6 
instead of IPv4. The most obvious differences are the 128-bit addresses used by 
IPv6 and the corresponding effect on the construction of the pseudo-header. A 
related but more subtle distinction is that in IPv6, no IP-layer header checksum is 
present. Thus, if UDP were to operate with checksums disabled, there would be no 
end-to-end check whatsoever on the correctness of the IP-layer addressing informa-
tion. For this reason, when UDP is used with IPv6, a pseudo-header checksum, 
common to both UDP and TCP, is required (by Section 8 of [RFC2460]). The con-
struction of the pseudo-header is given in Figure 10-4. Note that the Length field 
has expanded from its IPv4 counterpart to 32 bits. Recall from earlier that this field 
is redundant for UDP, but we shall see in Chapter 13 that it is not redundant when 
used with TCP (either TCP/IPv4 or TCP/IPv6) and has thus been retained for use 
with both UDP/IPv6 and TCP/IPv6.

Expanding the discussion regarding the IPv6 packet length, two aspects of 
IPv6’s packet size can affect UDP. First, in IPv6, the minimum MTU size is 1280 
bytes (as opposed to the 576 bytes required by IPv4 as the minimum size required 
to be supported by all hosts). Second, IPv6 supports jumbograms (packets larger 
than 65,535 bytes). If we inspect the IPv6 header and option set (see Chapter 5), 
we can observe that with jumbograms, 32 bits are available to hold the payload 
length. This implies that a single UDP/IPv6 datagram could be very large indeed. 
As described in [RFC2675], this poses a problem for the UDP Length field in the 
UDP header, which is only 16 bits long. As such, when encapsulated in IPv6, a 
UDP/IPv6 datagram exceeding 65,535 bytes has its UDP Length field value set to 
0. Note that the size of the Length field in the pseudo-header is still large enough 

Figure 10-4  The UDP (and TCP) pseudo-header used with IPv6 ([RFC2460]). The pseudo-header 
includes the source and destination IPv6 addresses and a larger 32-bit Length field 
value. The pseudo-header checksum is required when UDP is used with IPv6 because 
the IPv6 header lacks a checksum. The Next Header field is copied from the last IPv6 
header of the chain.
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(32 bits). Computing the value of this field for IPv6 jumbograms involves taking 
the total length of the UDP header plus data. Checking this field when receiv-
ing a packet involves computing the size of the UDP datagram (header plus data) 
by subtracting the size of all IPv6 extension headers from the value found in the 
Jumbo Payload option, which gives the length of the IPv6 payload (i.e., the total 
datagram length minus the 40-byte IPv6 header). In the “unexpected” case where 
the Length field in the UDP header is 0 but no Jumbo Payload option is present, the 
UDP length can be inferred based on the nonzero IPv6 Payload Length field (see 
Section 4 of [RFC2675]). 

10.5.1 Teredo: Tunneling IPv6 through IPv4 Networks

Although it was once thought that a worldwide transition to IPv6 might hap-
pen quickly, this has not materialized exactly as forecast. Consequently, a num-
ber of (theoretically temporary) transition mechanisms [RFC4213][RFC5969] have 
been proposed to ease the transition burden. One such mechanism is called 6to4
[RFC3056], whereby IPv6 packets used by hosts are encapsulated in IPv4 packets 
that may be delivered over an IPv4-only infrastructure. One problem with 6to4 is 
that it suffers from the same types of NAT traversal problems as other applications 
on the Internet. It is also known to have scaling problems that make its contin-
ued use unattractive [RFC6343]. Although methods we have seen such as ICE (see 
Chapter 7) could conceivably be used for handling this issue, a special protocol 
called Teredo (originally called “shipworm” but renamed based on the Latin name 
for a common genus of shipworm to avoid confusion with computer worms) has 
been devised especially to address this problem [RFC4380][RFC5991][RFC6081]. It 
is popular because of its widespread availability in modern versions of Microsoft 
Windows.

Teredo (also called Teredo tunneling) transports IPv6 datagrams in the payload 
area of UDP/IPv4 datagrams for systems that have no other IPv6 connectivity 
options. An example scenario is given in Figure 10-5. Teredo clients are IPv4/IPv6 
hosts that implement a Teredo tunneling interface. Such interfaces are assigned 
special Teredo addresses using the 2001::/32 IPv6 prefix after having successfully 
engaged in a “qualification” procedure, described in the next paragraph. Teredo 
servers, which serve a general purpose similar to STUN servers (Chapter 7), are 
used to help establish direct tunnels of Teredo-encapsulated IPv6 packets through 
NATs. Teredo relays serve a purpose similar to TURN servers and consequently 
may take significant processing resources if used by many clients. Note that serv-
ers must include all of the capabilities of relays, but not vice versa. Using Teredo 
relays is a “last-resort” option for IPv6 connectivity. Nodes cease to perform Teredo 
tunneling if they discover that they have any other IPv6 connectivity option (e.g., 
direct or using 6to4).

Referring to Figure 10-5, a Teredo client is initially configured with the name 
or IPv4 address and UDP port number (usually 3544) of a Teredo server. Teredo 
was initially developed by Microsoft, and a Teredo server is available using the 
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name teredo.ipv6.microsoft.com. When ready to obtain an address, it starts 
the qualification procedure. The client begins by sending an ICMPv6 RS packet (see 
Chapter 8) from one of its link-local IPv6 addresses using its Teredo service port, 
the agent responsible for encapsulating and decapsulating IPv6 traffic within 
UDP/IPv4. The encapsulation format is the Origin Indication format, one of two 
shown in Figure 10-6.

Successful responses are ICMPv6 RA messages that use the Origin Indica-
tion Encapsulation format from Figure 10-6. The RA contains a Prefix Information 
option with a valid Teredo prefix (see Chapter 2). The Origin Indication provides 
the client with knowledge of its own mapped address and port information. The 
source address of the RA is a valid link-local IPv6 address of the server. The desti-
nation is the client’s link-local IPv6 address used as the source of the RS message. 
Assuming that all goes well, the client is now “qualified” and can build its Teredo 
IPv6 address based on the prefix and origin information provided by the server. 
The Teredo address is an IPv6 address constructed from various parameters using 
the format of Figure 10-7. 

A Teredo address (see Figure 10-7) contains the Teredo prefix (2001::/32), the 
IPv4 address of the Teredo server, a 16-bit Flags field detailed in the next para-
graph, followed by the mapped port number and mapped IPv4 address. The last 
two values are the addressing information of the client as seen from the Teredo 
server and are usually determined by the client’s outermost NAT. The actual 

Figure 10-5  Teredo, an IPv6 transition mechanism, encapsulates IPv6 datagrams and optional trail-
ers within the payload area of UDP/IPv4 datagrams to carry IPv6 traffic across IPv4-
only infrastructures. The server helps clients obtain an IPv6 address and determine 
their mapped addresses and port numbers. Relays, if required, can forward traffic 
between Teredo, 6to4, and native IPv6 clients.



ptg999

484 User Datagram Protocol (UDP) and IP Fragmentation 

Figure 10-6  The Simple Encapsulation and Origin Indication Encapsulation formats used by Teredo. 
The Origin Indication Encapsulation carries UDP address and port number informa-
tion between the UDP header and encapsulated IPv6 datagram. This information is 
used to inform Teredo clients about their mapped addresses and port numbers when 
creating a Teredo address. Addresses and port numbers are “obfuscated” by inverting 
each bit present to fend off NATs that attempt to rewrite this information. Zero or more 
trailers may be present, encoded as TLV triples. They are used to implement a number 
of Teredo extensions (e.g., support for symmetric NATs).

Figure 10-7  Teredo clients use IPv6 addresses from the 2001::/32 Teredo prefix. The subsequent 
bits contain the Teredo server’s IPv4 address, 16 flag bits that identify the type of NAT 
encountered and random bits to help thwart address-guessing attacks, and 16 bits con-
taining the client’s mapped port number and the client’s mapped 32-bit IPv4 address. 
The last two values are “obfuscated.”
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address and port number information is bitwise-inverted to cause indiscriminate 
NATs to not rewrite them.

The 16-bit Flags field has been used to indicate the type of NAT discovered 
during the qualification process. Some NATs (formerly called symmetric NATs—
the types of NATs that have either address-dependent mapping or address- and 
port-dependent mapping along with either address-dependent or address- and 
port-dependent filtering behavior) work with Teredo only when extensions are 
supported (see later in this section), but the most common types for household 
networks (including “cone NATs”—NATs with endpoint-independent mapping 
and endpoint-independent filtering behavior) work without such extensions. 
Originally, the C (cone NAT) bit field was used to indicate if a cone NAT was 
encountered and to arrange appropriate support, but this usage is now deprecated 
and the field should be set to 0 (clients ignore the field; servers inspect it to look 
for legacy clients). The next bit field is set to 0. The U (Universal) and G (Group) bit 
fields are available for future use but are also currently set to 0. The Random1 and 
Random2 field values are chosen as random numbers according to [RFC5991] to 
make Teredo addresses harder to guess (a security measure intended to reduce 
random probes by potential attackers).

Once a qualified client builds its Teredo address, it can send IPv6 traffic. For 
details on what happens when qualification fails or a secure qualification is to be 
used, see [RFC4380]. In general, a Teredo client may wish to communicate with 
another client on the same link, another client within the IPv4 Internet, or with 
a host on the IPv6 Internet. In each case, Teredo provides some UDP/IPv4-based 
alternative to IPv6 ND. For clients on the same link, Teredo uses an IPv4 multicast 
discovery protocol that operates using the multicast address 224.0.0.253. Special 
Teredo “bubble” packets (those with no data payload) are used to determine if 
a destination is on the same link. Such bubbles appear as minimum-size Teredo 
packets using the Simple Encapsulation format of Figure 10-6. They contain an 
IPv6 header with the Destination IP Address field set to the target of the commu-
nication. The IPv6 packet contains an IPv6 header with no payload or additional 
extensions (the Next Header field is set to 0x3b, indicating none). For clients within 
the IPv4 Internet, recall that the Teredo IPv6 address contains the IPv4-mapped 
address and port number. Thus, it is straightforward for one client to send a Teredo-
encapsulated packet to another’s NAT. For NATs that are restrictive, Teredo uses 
bubble packets to perform hole punching and establish UDP NAT mappings (see 
Chapter 7 and [RFC6081]).

When a qualified client has a packet to send to an IPv6 host (i.e., one that does 
not use a Teredo address), it first determines whether it already knows a Teredo 
relay for the destination. If so, the packet is sent using Simple Encapsulation. If not, 
the client formats an ICMPv6 Echo Request containing a large (e.g., 64-bit) random 
number and sends it to the IPv6 destination by way of the Teredo server. The 
server forwards this packet to the destination IPv6 host. The receiving host sees an 
incoming IPv6 datagram with the source address equal to the Teredo address of 
the client. It forms an Echo Reply, which is routed to the nearest Teredo relay. The 
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relay then forwards the reply back to the client. The receiving client observes the 
IPv4 address of the relay and updates a cache to indicate that subsequent packets 
destined for the IPv6 host should use the relay address it just determined.

As of [RFC6081], Teredo can support a number of optional extensions, several 
of which help to support Teredo operation with symmetric NATs. The extensions 
are protocol behavior modifications and include the following: Symmetric NAT 
Support (SNS), UPnP-Enabled Symmetric NAT (UP), Port-Preserving Symmetric 
NAT (PP), Sequential Port-Symmetric NAT (SP), Hairpinning (HP), and Server 
Load Reduction (SLR). The extensions can be used independently, except that both 
the UP and PP extensions depend on the SNS extension. The various NAT types 
that can be supported with various extension combinations are given in a table 
(see Section 3 of [RFC6081]).

To implement the extensions, one or more trailers may be present in a Teredo 
message. Trailers are encoded as an ordered list of TLV combinations, using the 
same basic format as for ICMPv6 ND options (Figure 8-41), which contain an 8-bit 
Type field and an 8-bit Length field. The two highest-order bits of the Type field 
encode what processing should be performed if the host does not recognize the 
trailer type. The bit pattern 01 indicates that the host should discard the packet; 
all others indicate that the unknown trailer should be skipped and others should 
be processed in order. The official list of trailer type values is maintained by the 
IANA [TTYPES]. The trailers currently defined are listed here in Table 10-1. 

Table 10-1  Teredo trailers are carried after the IPv6 payload encapsulated in a UDP/IPv4 datagram. Each 
trailer has a type value, name, and associated explanation. In some cases, the length value is a 
constant. 

Type Length Name Use Notes

0x00 Reserved (Unassigned) (Unassigned) (Unassigned)
0x01 0x04 Nonce SNS, UP, PP, SP, 

HP
32-bit nonce for protection against 
replays (see Chapter 18)

0x02 Reserved (Unassigned) (Unassigned) (Unassigned)
0x03 [8, 26] Alternate Address HP Additional addresses/ports usable 

by Teredo clients behind the same 
NAT

0x04 0x04 ND Option SLR Allows NAT refresh using direct 
bubbles (that carry NS messages)

0x05 0x02 Random Port PP Sender’s predicted mapped port

The Nonce trailer contains a 32-bit random value that is unique for each 
message. It is a security measure to guard against replay attacks (see Chapter 18) 
and is used with either HP or SNS (IPv4 address, port) pairs. Each pair is 6 bytes 
long, and the trailer can hold from one to four such pairs. These pairs identify 
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UDP/IPv4 endpoints that other Teredo clients on the same side of a NAT can use 
to contact the sender, and they are used with the HP extension. 

The ND Option trailer includes 1 byte that indicates either TeredoDiscovery-
Solicitation (0x00) or TeredoDiscoveryAdvertisement (0x01). In the first case, the 
receiver is requested to respond with a direct bubble (i.e., sent directly between 
Teredo clients) containing the second form of message. The TeredoDiscoveryAd-
vertisement type is the response. This trailer is used in supporting the SLR exten-
sion, which effectively allows NS/NA messages carried in direct bubbles to be 
used for refreshing NAT state instead of indirect bubbles, which require process-
ing by servers. Finally, the Random Port trailer contains a 16-bit UDP port number, 
which is the sender’s best guess as to its mapped port number. This is used by the 
PP extension (see Section 6.3 of [RFC6081]).

10.6 UDP-Lite

Some applications are tolerant of bit errors that may be introduced in the data they 
send and receive. Often, these types of applications wish to use UDP in order to 
avoid connection setup overhead or to use broadcast or multicast addressing, but 
UDP uses a checksum that covers either the entire payload or none of it (i.e., when 
no checksum is computed by the sender). A protocol called UDP-Lite or UDPLite
[RFC3828] addresses this issue by modifying the conventional UDP protocol to 
provide partial checksums. Such checksums cover only a portion of the payload 
in each UDP datagram. UDP-Lite has its own IPv4 Protocol and IPv6 Next Header
field value (136), so it effectively counts as a separate transport protocol. UDP-Lite 
modifies the UDP header by replacing the (redundant) Length field with a Check-
sum Coverage field (see Figure 10-8).

Figure 10-8  UDP-Lite includes a Checksum Coverage field that gives the number of bytes (starting 
with the first byte of the UDP-Lite header) covered by the checksum. The minimum 
value is 0, indicating that the whole datagram is covered. Values 1 through 7 are invalid, 
as the header is always covered. UDP-Lite uses a different IPv4 protocol number (136) 
from UDP (17). IPv6 uses the same values in the Next Header field.
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The Checksum Coverage field in Figure 10-8 is the number of bytes (starting 
from the first byte of the UDP-Lite header) covered by the checksum. Except for 
the special value 0, the minimum value is 8, because the UDP-Lite header itself 
is always required to be covered by the checksum. The value 0 indicates that the 
entire payload is covered by the checksum, as with conventional UDP. There is a 
slight issue with IPv6 jumbograms because of the limited space used to hold the 
Checksum Coverage field. For such datagrams, the number of bytes covered can 
be at most 64KB or the entire datagram (i.e., when the Checksum Coverage field 
has value 0). Special socket API options are used for applications to specify the 
use of UDP-Lite (IPPROTO_UDPLITE) and the amount of checksum coverage 
requested (using the SOL_UDPLITE, UDPLITE_SEND_CSCOV, and UDPLITE_
RECV_CSCOV options to setsockopt).

10.7 IP Fragmentation

As we described in Chapter 3, link-layer framing normally imposes an upper limit 
on the maximum size of a frame that can be transmitted. To keep the IP datagram 
abstraction consistent and isolated from link-layer details, IP employs fragmen-
tation and reassembly. Whenever the IP layer receives an IP datagram to send, it 
determines which local interface the datagram is to be sent over next (via a for-
warding table lookup; see Chapter 5) and what MTU is required. IP compares 
the outgoing interface’s MTU with the datagram size and performs fragmentation 
if the datagram is too large. Fragmentation in IPv4 can take place at the origi-
nal sending host and at any intermediate routers along the end-to-end path. Note 
that datagram fragments can themselves be fragmented. Fragmentation in IPv6 is 
somewhat different because only the source is permitted to perform fragmenta-
tion. We saw an example of IPv6 fragmentation in Chapter 5.

When an IP datagram is fragmented, it is not reassembled until it reaches its 
final destination. Two reasons have been given for this, the second more compel-
ling than the first. First, not performing reassembly within the network alleviates 
the forwarding software (or hardware) in routers from implementing this feature. 
Second, it is possible for different fragments of the same datagram to follow differ-
ent paths to their common destination. If this happens, no single router along the 
path would in general be capable of reassembling the original datagram because 
it would see only a subset of the fragments. The first argument is not terribly con-
vincing at face value given the current performance levels of routers, but it is even 
less convincing when one considers that most routers must ultimately be capable 
of functioning as end hosts anyhow (e.g., when being managed or configured). 
The second argument remains compelling.

10.7.1 Example: UDP/IPv4 Fragmentation

An application using UDP may need to worry about the size of the resulting IP 
datagram it creates if it wishes to avoid IP-layer fragmentation. In particular, if 
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the size of the resulting datagram exceeds the link’s MTU, the IP datagram is split 
across multiple IP packets, which can lead to performance issues because if any 
fragment is lost, the entire datagram is lost. Figure 10-9 illustrates the situation when 
a 3020-byte UDP/IPv4 datagram is split into multiple IPv4 packets.

Figure 10-9  A single UDP datagram with 2992 UDP payload bytes is fragmented into three UDP/
IPv4 packets (no options). The UDP header that contains the source and destination 
port numbers appears only in the first fragment (a complicating factor for firewalls and 
NATs). Fragmentation is controlled by the Identification, Fragment Offset, and More Frag-
ments (MF) fields in the IPv4 header.

In Figure 10-9, we conclude that the original UDP datagram included 2992 
bytes of application (UDP payload) data and 8 bytes of UDP header, resulting in 
an IPv4 Total Length field value of 3020 bytes (recall that this size includes a 20-byte 
IPv4 header as well). When this datagram was fragmented into three packets, 40 
extra bytes were created (20 bytes for each of the newly created IPv4 fragment 
headers). Thus, the total number of bytes sent is 3060, an increase in IP-layer over-
head of about 1.3%. The Identification field value (set by the original sender) is 
copied to each fragment and is used to group them together when they arrive. The 
Fragment Offset field gives the offset of the first byte of the fragment payload byte 
in the original IPv4 datagram (in 8-byte units). Clearly, the first fragment always 
has offset 0. Here, we observe the second fragment with offset 185 (185 * 8 = 1480). 
The size of 1480 is the size of the first fragment less the size of the IPv4 header. A 
similar analysis applies to the third fragment. Finally, the MF bit field indicates 
whether more fragments in the datagram should be expected and is 0 only in the 
final fragment. When the fragment with MF = 0 is received, the reassembly pro-
cess can ascertain the length of the original datagram, as a sum of the Fragment 
Offset field value (times 8) and the IPv4 Total Length field value (minus the IPv4 
header length). Because each Offset field is relative to the original datagram, the 
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reassembly process can handle fragments that arrive out of order. When a data-
gram is fragmented, the Total Length field in the IPv4 header of each fragment is 
changed to be the total size of that fragment. 

Although IP fragmentation looks transparent, there is one feature mentioned 
earlier that makes it less than desirable: if one fragment is lost, the entire data-
gram is lost. To understand why this happens, realize that IP itself has no error 
correction mechanism of its own. Mechanisms such as timeout and retransmis-
sion are left as the responsibility of the higher layers. (TCP performs timeout and 
retransmission; UDP does not. Some UDP-based applications perform timeout and 
retransmission themselves, but this happens at a layer above UDP.) When a frag-
ment of a TCP segment is lost, TCP retransmits the entire TCP segment, which cor-
responds to an entire IP datagram. There is no way to resend only one fragment of 
a datagram. Indeed, if the fragmentation was done by an intermediate router, and 
not the originating system, there is no way for the originating system to know how 
the datagram was fragmented. For this reason, fragmentation is often avoided. 
[KM87] provides arguments for avoiding fragmentation.

Using UDP, it is easy to generate IP fragmentation. (We shall see later that 
TCP tries to avoid fragmentation and that it is nearly impossible for an application 
to force TCP to send segments large enough to require fragmentation.) We can 
use our sock program and increase the size of the datagram until fragmentation 
occurs. On an Ethernet, the maximum amount of data in a frame is ordinarily 1500 
bytes (see Chapter 3), which leaves at most 1472 bytes for application data to avoid 
fragmentation, assuming 20 bytes for the IPv4 header and 8 bytes for the UDP 
header.1 We will run our sock program with data sizes of 1471, 1472, 1473, and 
1474 bytes. We expect the last two to cause fragmentation:

Linux% sock -u -i -n1 -w1471 10.0.0.3 discard
Linux% sock -u -i -n1 -w1472 10.0.0.3 discard
Linux% sock -u -i -n1 -w1473 10.0.0.3 discard
Linux% sock -u -i -n1 -w1474 10.0.0.3 discard

Listing 10-3 illustrates the tcpdump output (some lines are wrapped for 
clarity).

Listing 10-3    UDP fragmentation on a 1500-byte MTU Ethernet link

1 23:42:43.562452 10.0.0.5.46530 > 10.0.0.3.9: 
                udp 1471 (DF) (ttl 64, id 61350, len 1499)
2 23:42:50.267424 10.0.0.5.46531 > 10.0.0.3.9:  
                udp 1472 (DF) (ttl 64, id 62020, len 1500)
3 23:42:57.814555 10.0.0.5 > 10.0.0.3: 
                udp (frag 37671:1@1480) (ttl 64, len 21)
4 23:42:57.814715 10.0.0.5.46532 > 10.0.0.3.9:  
                udp 1473 (frag 37671:1480@0+) (ttl 64, len 1500)

1. Recall the assumption that no options are used. For IPv4 datagrams with options, the header 
exceeds 20 bytes, up to a maximum of 60 bytes.
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5 23:43:04.368677 10.0.0.5 > 10.0.0.3: 
                udp (frag 37672:2@1480) (ttl 64, len 22)
6 23:43:04.368838 10.0.0.5.46535 > 10.0.0.3.9:  
                udp 1474 (frag 37672:1480@0+) (ttl 64, len 1500)

The first two UDP datagrams (packets 1 and 2) fit into 1500-byte Ethernet 
frames (using the typical “DIX” or “Ethernet” encapsulation) and are not frag-
mented. In the third case, the length of the IPv4 datagram corresponding to the 
application write of 1473 bytes is 1501, which must be fragmented (packets 3 and 
4). Similarly, the datagram generated by the write of 1474 bytes is 1502 bytes long 
and is also fragmented (packets 5 and 6).

When it captures a fragmented datagram, tcpdump prints additional infor-
mation. First, the outputs frag 37671 (packets 3 and 4) and frag 37672 (packets 
5 and 6) specify the value of the Identification field in the IPv4 header. The next 
number in the fragmentation information (between the colon and the @ sign in 
packets 4 and 6) is the IPv4 packet size, excluding the IPv4 header. The first frag-
ment of both datagrams contains 1480 bytes of data: 8 bytes for the UDP header 
and 1472 bytes of user data. (The 20-byte option-free IPv4 header makes the packet 
exactly 1500 bytes.) The second fragment of the first fragmented datagram (packet 
3) contains 1 byte of data (the remaining byte of user data). The second fragment 
of the second fragmented datagram (packet 5) contains the remaining 2 bytes of 
user data. Fragmentation requires that the data portion of the generated fragments 
(that is, everything excluding the IPv4 header) be a multiple of 8 bytes for all frag-
ments other than the final one. In this example, 1480 is a multiple of 8. (Constrast 
this case with the IPv6 fragmentation example in Chapter 5, where the 1500-byte 
Ethernet MTU was not able to be fully utilized.)

The number following the @ is the offset of the data in the fragment from the 
start of the datagram. The first fragment of each new fragmented datagram starts 
with offset 0 (packets 4 and 6), and the second fragment of both datagrams starts 
at byte offset 1480 (packets 3 and 5). The + sign following an offset value means 
that there are more fragments composing this datagram, corresponding to the MF
bit field being set to 1 in the 3-bit Flags field in the IPv4 header.

One observation that may be surprising is that the fragments with larger off-
sets are delivered prior to the first fragments. In effect, the sender has intentionally 
reordered the fragments. Upon reflection, we realize that this behavior can be 
beneficial. If the last fragment is delivered first, the receiving host is able to ascer-
tain the maximum amount of buffer space it will require in order to reassemble 
the entire datagram. Given that the reassembly process is robust to reordering 
anyhow, this presents no major problem. On the other hand, there are techniques 
that would like to take advantage of higher-layer information available in the first 
fragment (including UDP port numbers) that is not present in the later fragments 
[KEWG96].

Finally, note that packets 3 and 5 (fragments other than the first) omit the 
source and destination UDP port numbers. In order for tcpdump to print the port 
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numbers associated with fragments other than the first, it would have to reas-
semble fragmented datagrams to recover the port numbers that appear only in the 
UDP header located in the first fragments (which it does not do). 

10.7.2 Reassembly Timeout

The IP layer must start a timer when any fragment of a datagram first arrives. If 
this were not done, fragments that never arrive (as we see in Listing 10-4) could 
eventually cause the receiver to run out of buffers and can constitute a form of 
attack opportunity. The example in the listing was created with a special program 
that constructs and sends only the first two fragments of an ICMPv4 Echo Request 
message separated by a delay but then never sends any additional fragments. List-
ing 10-4 illustrates the response (some lines have been wrapped for clarity).

Listing 10-4    Timeout during IPv4 fragment reassembly

1 17:35:59.609387 10.0.0.5 > 10.0.0.3: 
     icmp: echo request (frag 28519:380@0+) (ttl 255, len 400)
2 17:36:19.617272 10.0.0.5 > 10.0.0.3: 
     icmp (frag 28519:380@376+) (ttl 255, len 400)
3 17:36:29.602373 10.0.0.3 > 10.0.0.5: 
     icmp: ip reassembly time exceeded for 10.0.0.5 > 10.0.0.3:   
           icmp: echo request (frag 28519:380@0+) (ttl 255, len 400) 
           [tos 0xc0](ttl 64, id 38816, len 424)

Here we see that the first fragment (in both time and sequence space) is sent, 
with total length 400. A second fragment is sent 20s later, but no final fragment 
is ever sent. Thirty seconds after receiving the first fragment, the target machine 
responds with an ICMPv4 Time Exceeded (code 1) message, telling the sender 
that the datagram has been discarded by including a copy of the first fragment. A 
normal timeout value is 30 or 60s. As we can see, the timer starts when any of the 
fragments is received and is not reset when new fragments arrive. Thus, the timer 
places a sort of bound on the maximum span of time by which fragments of the 
same datagram can be separated.

Note

Historically, most Berkeley-UNIX-derived IP implementations simply never gener-
ated this error. While these implementations did set a timer, and did discard all 
fragments when the timer expired, the ICMP error was never generated. Another 
detail one sometimes encounters is that an implementation is not required to 
generate the ICMP error unless the first fragment has been received (i.e., the one 
with the 0 Fragment Offset field). The reason is that the receiver of the ICMP error 
cannot tell which user process sent the datagram that was discarded, because 
the transport-layer header is not available. It is assumed that higher-layer proto-
cols will eventually time out and retransmit if necessary.



ptg999

Section 10.8 Path MTU Discovery with UDP   493

10.8 Path MTU Discovery with UDP

Let us examine the interaction between an application using UDP and the path 
MTU discovery mechanism (PMTUD) [RFC1191]. For a protocol such as UDP, in 
which the calling application is generally in control of the outgoing datagram size, 
it is useful if there is some way to determine an appropriate datagram size if frag-
mentation is to be avoided. Conventional PMTUD uses ICMP PTB messages (see 
Chapter 8) in determining the largest packet size along a routing path that can 
be used without inducing fragmentation. These messages are typically processed 
below the UDP layer and are not directly visible to an application, so either an API 
call is used for the application to learn the best current estimate of the path MTU 
size for each destination with which it has communicated, or the IP layer can per-
form PMTUD independently without the application knowing. The IP layer often 
caches PMTUD information on a per-destination basis and times it out if it is not 
refreshed.

10.8.1 Example

In the following example, we use the sock program to create a UDP datagram 
that produces a 1501-byte IPv4 datagram. Both our host system and the attached 
LAN support an MTU larger than 1500 bytes, but the outgoing link to the Internet 
at the router does not. The command attempts to send three UDP messages to the 
echo service (UDP port 7) in quick succession.

Linux% sock -u -i -n 3 -w1473 www.cs.berkeley.edu echo

Listing 10-6 illustrates the corresponding packet trace we can see using tcp-
dump at the sender (some lines are wrapped for clarity).

Listing 10-6  tcpdump output illustrating ICMP PTB message. The suggested MTU is included.

1 14:42:18.359366 IP (tos 0x0, ttl 64, id 18331, offset 0, flags [DF], 
    proto UDP (17), length 1501)
    12.46.129.28.33954 > 128.32.244.172.7: UDP, length 1473

2 14:42:18.359384 IP (tos 0x0, ttl 64, id 18332, offset 0, flags [DF],  
    proto UDP (17), length 1501)
    12.46.129.28.33954 > 128.32.244.172.7: UDP, length 1473

3 14:42:18.359402 IP (tos 0x0, ttl 64, id 18333, offset 0, flags [DF],    
    proto UDP (17), length 1501)
    12.46.129.28.33954 > 128.32.244.172.7: UDP, length 1473

4 14:42:18.360156 IP (tos 0x0, ttl 255, id 23457, offset 0, 
    flags [none],  proto ICMP (1), length 56)    
    12.46.129.1 > 12.46.129.28: ICMP 
    128.32.244.172 unreachable - need to frag (mtu 1500), length 36
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      IP (tos 0x0, ttl 63, id 18331, offset 0, flags [DF], 
      proto UDP (17), length 1501)
      12.46.129.28.33954 > 128.32.244.172.7: UDP, length 1473

In Listing 10-6 we see three UDP datagrams of 1473 UDP (application) pay-
load bytes each. Each produces a 1501-byte (unfragmented) IPv4 datagram. Each 
of these datagrams has the IPv4 DF bit field turned on (the default on this system), 
so when one of them reaches a router (IPv4 address 12.46.129.1), an ICMPv4 PTB 
message is produced, which includes the suggested next-hop MTU of 1500 bytes. 
We may also observe that the ICMPv4 messages produced contain the UDP/IPv4 
headers (and first 8 data bytes) from our discarded (“offending”) datagrams. In 
this example, our sock program sent its datagrams so quickly (in under a mil-
lisecond) that it completed its execution before any of the ICMP messages were 
returned and processed.

Note

The 1500-byte MTU is now a common minimum MTU among ISPs. Some ISPs 
that incorporate PPPoE for address assignment and management use smaller, 
1492-byte MTUs. The PPPoE header (see Chapter 3) comprises 6 bytes, and the 
following PPP header is 2, leaving 1500 – 6 – 2 = 1492 bytes for the encapsulated 
datagram.

If we use another destination host (one about which we have no path MTU 
history), and we add additional delay between writes, we can observe different 
behavior. Using the sock command with the -p 2 option, which adds 2s of delay 
between each send, we use the following two (identical) commands:

Linux% sock -u -i -n 3 -w1473 -p 2 www.wisc.edu echo
write returned -1, expected 1473: Message too long
Linux% sock -u -i -n 3 -w1473 -p 2 www.wisc.edu echo

The tcpdump output, using an alternative version of tcpdump, for these com-
mands is given in Listing 10-7 (some lines are wrapped for clarity).

Listing 10-7    Illustration of successful Path MTU discovery on 3000-byte MTU link adapting to 
1500-byte path MTU

1 17:22:16.331023 IP (tos 0x0, ttl  64, id 58648, offset 0, flags [DF], 
    proto: UDP (17), length: 1501) 
    12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

2 17:22:16.331581 IP (tos 0x0, ttl 255, id 38518, offset 0, 
    flags [none], proto: ICMP (1), length: 56)
    12.46.129.1 > 12.46.129.28: ICMP 
    144.92.9.185 unreachable - need to frag (mtu 1500), length 36
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      IP (tos 0x0, ttl  63, id 58648, offset 0, flags [DF],  
      proto: UDP (17), length: 1501) 
      12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

3 17:22:24.284866 IP (tos 0x0, ttl 64, id 53776, offset 0, flags [+], 
    proto: UDP (17), length: 1500) 
    12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

4 17:22:24.284873 IP (tos 0x0, ttl 64, id 53776, offset 1480, 
    flags [none], proto: UDP (17), length: 21) 
    12.46.129.28 > 144.92.9.185: udp

5 17:22:26.293554 IP (tos 0x0, ttl  64, id 53777, offset 0, flags [+], 
    proto: UDP (17), length: 1500) 
    12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

6 17:22:26.293559 IP (tos 0x0, ttl  64, id 53777, offset 1480, 
    flags [none], proto: UDP (17), length: 21) 
    12.46.129.28 > 144.92.9.185: udp

7 17:22:28.301469 IP (tos 0x0, ttl  64, id 53778, offset 0, flags [+], 
    proto: UDP (17), length: 1500) 
    12.46.129.28.33955 > 144.92.9.185.7: UDP, length 1473

8 17:22:28.301474 IP (tos 0x0, ttl  64, id 53778, offset 1480, 
    flags [none], proto: UDP (17), length: 21) 
    12.46.129.28 > 144.92.9.185: udp

In Listing 10-7 we can see that the first time we ran our program it resulted 
in an error due to the ICMPv4 PTB message. The extra time provided within and 
between runs provides an opportunity for the PTB message to reach the sending 
host and for the error condition to be delivered back to the sender for processing. 
Interestingly, when we run the program a second time, the path MTU has been 
discovered to be 1500 bytes and the system is able to send the program’s three 
datagrams using fragmentation (packets 3, 5, and 7 indicate the first fragments of 
the three datagrams). After 15 minutes (not illustrated), the path MTU informa-
tion is considered stale, the datagram is sent unfragmented, another ICMPv4 PTB 
message is returned, and the process repeats.

Note

[RFC1191] recommends a PMTU value determined using PMTUD to be consid-
ered stale after 10 minutes. Path MTU discovery can sometimes cause problems 
because firewalls and filtering gateways may drop ICMP traffic indiscriminately, 
which can harm the PMTU discovery algorithm. Because of this, it is possible to 
disable PMTU discovery on a system-wide or finer-granularity basis. On Linux, the 
file /proc/sys/net/ipv4/ip_no_pmtu_disc can have a 1 written to it to dis-
able the feature. On Windows, it involves editing the registry entry HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters\
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EnablePMTUDiscovery to include the value 0. An alternative to conventional 
PMTUD that does not use ICMP has also been developed [RFC4821]; we will 
discuss it in the context of TCP in Chapter 15.

10.9 Interaction between IP Fragmentation and ARP/ND

Using UDP, we can see the relationship between induced IP fragmentation and 
typical implementations of ARP. Recall that ARP is used to map IP-layer addresses 
to corresponding MAC-layer addresses on the same IPv4 subnet (see Chapter 4). 
The questions with which we are concerned include, When multiple fragments are 
to be sent, how many ARP messages should be generated, and how many of the 
fragments are held until a pending ARP request/response is completed? (Similar 
questions apply with IPv6 ND.) Returning to our host and LAN using a 1500-byte 
MTU, we use the following two commands to see the answer:

Linux% sock -u -i -n1 -w8192 10.0.0.20 echo
Linux% sock -u -i -n1 -w8192 10.0.0.3 echo

These arguments cause our sock program to generate a single UDP datagram 
with 8192 bytes of user data. We expect this to generate six fragments on an Ether-
net using a 1500-byte MTU size. We also make sure that the ARP cache is empty 
before running the program, so that an ARP request and reply must be exchanged 
before any fragments are sent (see Listing 10-8; some lines are wrapped for clarity).

Listing 10-8  ARP and fragmentation on Ethernet with 1500-byte MTU

1 15:45:49.063561 arp who-has 10.0.0.20 tell 10.0.0.5
2 15:45:50.059523 arp who-has 10.0.0.20 tell 10.0.0.5
3 15:45:51.059505 arp who-has 10.0.0.20 tell 10.0.0.5
---
4 15:46:08.555725 arp who-has 10.0.0.3 tell 10.0.0.5
5 15:46:08.555973 arp reply 10.0.0.3 is-at 0:0:c0:c2:9b:26
6 15:46:08.555992 10.0.0.5 > 10.0.0.3: 
     udp (frag 27358:1480@2960+) (ttl 64, len 1500)
7 15:46:08.555998 10.0.0.5 > 10.0.0.3: 
     udp (frag 27358:1480@1480+) (ttl 64, len 1500)
8 15:46:08.556004 10.0.0.5.32808 > 10.0.0.3.7: 
     udp 8192 (frag 27358:1480@0+) (ttl 64, len 1500)

For this experiment, we happen to know that there is no running host assigned 
address 10.0.0.20, so we should expect no reply. In the first part of Listing 10-8 
(packets 1–3), we observe three ARP requests spaced approximately 1s apart. No 
host responds after three requests are sent, so the ARP requestor gives up. In the 
next case, an ARP response is received in about 250µs, and a fragment is sent 
about 20µs thereafter. After this, the remaining fragments are sent very closely 
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together, within about 6µs of each other. Recall that in this system (Linux), the last 
fragment is sent first. 

Note

Historically, the interaction between fragmentation and ARP has been problem-
atic. For example, in some cases an ARP request was sent for each fragment, and 
in many cases only one of the fragments was queued pending the ARP response 
(thus losing the datagram, as all but one of its fragments were discarded). The 
first problem was addressed in [RFC1122], which requires an implementation to 
prevent this type of ARP flooding. The recommended maximum rate is one per 
second. The second problem is also discussed in [RFC1122], but this states only 
that the link layer “SHOULD save (rather than discard) at least one (the latest) 
packet of each set of packets destined to the same unresolved IP address, and 
transmit the saved packet when the address has been resolved.” This approach 
can lead to unnecessary packet loss and has been addressed in individual imple-
mentations by providing a larger queue for packets while their ARP requests are 
pending.

10.10 Maximum UDP Datagram Size

Theoretically, the maximum size of an IPv4 datagram is 65,535 bytes, imposed by 
the 16-bit Total Length field in the IPv4 header (see Chapter 5). With an optionless 
IPv4 header of 20 bytes and a UDP header of 8 bytes, this leaves a maximum of 
65,507 bytes of user data in a UDP datagram. For IPv6, the 16-bit Payload Length
field permits an effective UDP payload of 65,527 bytes (8 of the 65,535 IPv6 payload 
bytes are used for the UDP header), assuming jumbograms are not being used. 
There are two main reasons why a full-size datagram of these sizes may not be 
delivered end-to-end, however. First, the system’s local protocol implementation 
may have some limitation. Second, the receiving application may not be prepared 
to handle such large datagrams.

10.10.1 Implementation Limitations

Protocol implementations provide an API to applications that pick some default 
buffer size for sending and receiving. Some implementations provide defaults that 
are less than the maximum IP datagram size, and some actually do not support 
sending datagrams larger than a few tens of kilobytes (although this problem is 
not common).

The sockets API [UNP3] provides a set of functions that an application can 
call to set or query the size of the receive and send buffers. For a UDP socket, this 
size is directly related to the maximum size of UDP datagram the application can 
read or write. Typical default values are 8192 bytes or 65,535 bytes, but these can 
generally be made larger by invoking the setsockopt() API call.
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We mentioned in Chapter 5 that a host is required to provide enough buffering 
to receive at least a 576-byte IPv4 datagram on reassembly. Many UDP applications 
are designed to restrict their application data size to 512 bytes or less (resulting in 
IPv4 datagrams under 576 bytes), to stay below this limit. Examples employing 
such limitations to their UDP datagram size include the DNS (see Chapter 11) and 
DHCP (see Chapter 6).

10.10.2 Datagram Truncation

Just because UDP/IP is capable of sending and receiving a datagram of a given 
(large) size does not mean the receiving application is prepared to read that size. 
UDP programming interfaces allow the application to specify the maximum num-
ber of bytes to return each time a network read operation completes. What hap-
pens if the received datagram exceeds the size specified?

In most cases, the answer to this question is that the API truncates the data-
gram, discarding any excess data in the datagram beyond the number of bytes 
specified by the receiving application. However, the exact behavior varies from 
implementation to implementation. Some systems provide the unconsumed por-
tion of the datagram in subsequent read operations, and others inform the caller of 
how much data was truncated (or, in yet other cases, that some data was truncated, 
but not exactly how much).

Note

In Linux, the MSG_TRUNC option may be given to the sockets API to discover 
how much data was truncated. On HP-UX, MSG_TRUNC is instead a flag set 
when a read call returns that some data was truncated. The sockets API under 
SVR4 (including Solaris 2.x) does not truncate the datagram. Any excess data is 
returned in subsequent reads. The application is not notified that multiple reads 
are being fulfilled from a single UDP datagram.

When we discuss TCP we shall see that it provides a continuous stream of 
bytes to the application, without any message boundaries. Thus, an application 
consumes however much data it requests, provided sufficient data is available (if 
not, it usually waits).

10.11 UDP Server Design

There are some characteristics of UDP that affect the design and implementation 
of networking application software wishing to use it [RFC5405]. Servers typically 
interact with the operating system, and most need a way to handle multiple cli-
ents at the same time. Client design and implementation are usually simpler, and 
therefore we will not discuss them here.
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In the typical client/server scenario, a client starts, immediately communi-
cates with a single server, and is done. Servers, on the other hand, start and then 
go to sleep, waiting for a client’s request to arrive. They awaken when a client’s 
datagram arrives, which usually requires the server to evaluate the request and 
possibly perform further processing. Our interest here is not in the programming 
aspects of clients and servers ([UNP3] covers all those details) but in the protocol 
features of UDP that affect the design and implementation of a server using UDP. 
(We examine the details of TCP server design in Chapter 13.) Although some of 
the features we describe depend slightly on the implementation of UDP being 
used, the features are common to most implementations.

10.11.1 IP Addresses and UDP Port Numbers

What arrives at a UDP server from a client is a UDP datagram. The IP header con-
tains the source and destination IP addresses, and the UDP header contains the 
source and destination UDP port numbers. When an application receives a UDP 
message, the IP and UDP headers have been stripped off; the application must be 
told by the operating system in some other way who sent the message (the source 
IP address and port number), if it intends to furnish a reply. This feature allows a 
UDP server to handle multiple clients. 

Some servers need to know to whom the datagram was sent, that is, the desti-
nation IP address. While it may seem obvious that such information would imme-
diately be known by a server without looking into the received datagram, this 
is not always the case. For example, because of multihoming, IP address alias-
ing, and ordinary IPv6 usage with multiple scopes, a host may have multiple IP 
addresses, and a single server may receive incoming datagrams using any of them 
(this is in fact the common case). Any server wishing to perform its tasks differ-
ently depending on the destination IP address selected by the client would require 
access to the destination IP address information. In addition, some services may 
respond differently if the destination address is broadcast or multicast (e.g., 
the Host Requirements RFC [RFC1122] states that a TFTP server should ignore 
received datagrams that are sent to a broadcast address). 

Note

A DNS server is one type of server that is sensitive to the destination IP address. It 
can use this information to arrange a particular sorting order on the address map-
pings it returns. This behavior of DNS is described in more detail in Chapter 11.

The lesson here is that even though an API may deliver all the data contained 
in a transport-layer datagram, additional information from the various layers 
(typically addressing information) may be required for a server to operate most 
effectively. This issue is not unique to UDP, of course, but because it is the first 
transport-layer protocol we study, it is worthwhile to point out now.
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UDP servers designed for use with both IPv4 and IPv6 must consider the fact 
that these two types of addresses have significantly different lengths and require 
different data structures. In addition, the interoperability mechanism of encoding 
IPv4 addresses in IPv6 addresses may allow the use of IPv6 sockets to handle both 
IPv4 and IPv6 addressing. See [UNP3] for more details.

10.11.2 Restricting Local IP Addresses

Most UDP servers wildcard their local IP address when they bind a UDP end-
point. This means that an incoming UDP datagram destined for the server’s port 
is accepted on any local IP address (any IP address in use on the local machine, 
including the local loopback address). For example, we can start an IPv4 UDP 
server on port 7777:

Linux% sock -u -s 7777

We can then use the netstat command to see the state of the endpoint (see List-
ing 10-9).

Listing 10-9  netstat listing of IPv4 UDP servers using wildcarded address bindings

Linux% netstat -l --udp -n
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address                                 
udp        0      0 *:7777                  0.0.0.0:*

We have deleted several lines of output other than the one in which we are 
interested. The -l flag reports on all listening sockets (servers). The --udp flag 
provides data relating only to the UDP protocol. The -n flag prints IP addresses 
rather than fully expanded host names.

Note

While not all systems provide exactly these (Linux) flags for netstat, most pro-
vide the netstat command with some combination of flags to obtain similar 
results. On BSD, the -l and -p udp flags are supported. On Windows, the -n, 
-a, and -p udp flags can be used.

The local address is printed as *:7777, where the asterisk means that the local 
IP address has been wildcarded. When the server creates its endpoint, it can spec-
ify one of the host’s local IP addresses, including a broadcast address, as the local 
IP address for the endpoint. In such cases, incoming UDP datagrams are then 
passed to this endpoint only if the destination IP address matches the specified 
local address. With our sock program, if we specify an IP address before the 
port number, that IP address becomes the local IP address for the endpoint. For 
example, the command
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Linux% sock -u -s 127.0.0.1 7777

restricts the server to accepting only datagrams arriving on the local loopback 
interface (127.0.0.1), which can be generated only on the same host. The netstat
output in Listing 10-10 shows this case.

Listing 10-10  netstat listing of UDP IPv4 server bound to only the local loopback interface

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address             
udp        0      0 127.0.0.1:7777          0.0.0.0:*

If we try to send this server a datagram from a host on the same Ethernet, 
an ICMPv4 Port Unreachable message is returned, and the sending application 
receives an error. The server never sees the datagram.

Linux% sock -u -v 10.0.0.3 6666
connected on 10.0.0.5.50997 to 10.0.0.3.6666
123
error: Connection refused

10.11.3 Using Multiple Addresses

It is possible to start different servers on the same port number, each with a differ-
ent local IP address. Normally, however, the system must be told by the applica-
tion that it is OK to reuse the same port number in this way.

Note

With the sockets API, the SO_REUSEADDR socket option must be specified. 
This is done in our sock program by specifying the -A option.

Even if we have only one true network interface, we can establish additional 
IP addresses for it to use. Here, our host has a native IPv4 address of 10.0.0.30, but 
we will give it two additional addresses:

Linux# ip addr add 10.0.2.13 scope host dev eth0
Linux# ip addr add 10.0.2.14 scope host dev eth0

Now our host has four unicast IPv4 addresses: its native address, the two 
we have just added, plus its local loopback address. We can start three different 
instances of the UDP on the same port using our sock program on the same UDP 
port (8888):

Linux% sock -u -s -A 10.0.2.13 8888
Linux% sock -u -s -A 10.0.2.14 8888
Linux% sock -u -s -A 8888
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The servers must be started with the -A flag, telling the system that it is OK 
to reuse the same addressing information. The netstat output in Listing 10-11 
shows the addresses and port numbers on which the servers are listening.

Listing 10-11  Restricted and wildcarded UDP servers on the same UDP port

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address         Foreign Address               
udp        0      0 10.0.2.13:8888        0.0.0.0:*                           
udp        0      0 0.0.0.0:8888          0.0.0.0:*                           
udp        0      0 10.0.2.14:8888        0.0.0.0:*

In this scenario, the only IPv4 datagrams that will go to the server with the 
wildcarded local address are those destined for 10.0.0.30, the directed broadcast 
address (e.g., 10.255.255.255), the limited broadcast address (255.255.255.255), or 
the local loopback address (127.0.0.1), because the restricted servers cover all other 
possibilities.

There is a priority implied when an endpoint with a wildcard address exists. 
An endpoint with a specific IP address that matches the destination IP address is 
always chosen over a wildcard. The wildcard endpoint is used only when a spe-
cific match is not found.

10.11.4 Restricting Foreign IP Address

In all the netstat output that we showed earlier, the foreign IP address (i.e., 
the one not local to the host where the server is running) and foreign port num-
ber are shown as 0.0.0.0:*, meaning that the endpoint will accept an incoming 
UDP datagram from any IPv4 address and any port number. However, there is an 
option to restrict the foreign address. This means that the endpoint receives UDP 
datagrams only from that specific IPv4 address and port number. Note that this 
restriction can be added once a server has heard from a client, in order to filter 
out additional traffic from other clients. Our sock program uses the -f option to 
specify the foreign IPv4 address and port number:

Linux% sock -u -s -f 10.0.0.14.4444 5555

This sets the foreign IPv4 address to 10.0.0.14 and the foreign port number 
to 4444. The server’s port is 5555. If we run netstat, we see that the local address 
has also been set, even though we did not specify it explicitly (see Listing 10-12).

Listing 10-12  Restricting the foreign address causes assignment of a local address.

Linux% netstat  --udp -n  
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address  Foreign Address      State      
udp        0      0 10.0.0.30:5555 10.0.0.14:4444       ESTABLISHED
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This is a typical side effect of specifying the foreign IP address and foreign 
port: if the local address has not been chosen when the foreign address is speci-
fied, the local address is chosen automatically. Its value becomes the IP address of 
the interface chosen by IP routing to reach the specified foreign IP address. Indeed, 
in this example the primary IPv4 address for the Ethernet that is connected to the 
foreign address is 10.0.0.30. Note that as a consequence of the endpoints being 
determined and the foreign address restricted, the State column now indicates 
that the association is ESTABLISHED.

Table 10-2 summarizes the three types of address bindings that a UDP server 
can establish.

Table 10-2    Types of address bindings for a UDP server

Local Address Foreign Address Description

local_IP.local_port foreign_IP.foreign_port Restricted to one client

local_IP.local_port *.* (wildcard) Restricted to one local IP 
address and port (but for 
any client)

*.local_port *.* (wildcard) Restricted to local port 
only

In all cases, local_port is the server’s port and local_IP must be one of 
the locally assigned IP addresses. The ordering of the three rows in the table is the 
order that the UDP module applies when trying to determine which local end-
point receives an incoming datagram. The most specific binding (the first row) is 
tried first, and the least specific (the last row with both IP addresses wildcarded) 
is tried last.

10.11.5 Using Multiple Servers per Port

Although it is not specified in the RFCs, by default most implementations allow 
only one application endpoint at a time to be associated with any one (local IP 
address, UDP port number) pair for a given address family (i.e., IPv4 or IPv6). When 
a UDP datagram arrives at a host destined for its IP address and an active port 
number, one copy is delivered to that single endpoint (e.g., a listening application). 
The IP address of the endpoint can be the wildcard, as shown earlier, but only a 
single application can receive datagrams for the address(es) specified. If we then 
try to start another server with the same wildcarded local address and the same 
port using the same address family, it does not work:

Linux% sock -u -s 12.46.129.3 8888 &
Linux% sock -u -s 12.46.129.3 8888
can’t bind local address: Address already in use
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In support of multicasting (see Chapter 9), multiple endpoints can be allowed 
to use the same (local IP address, UDP port number) pair, although the applica-
tion normally must tell the API that this is OK (i.e., our -A flag to specify the 
SO_REUSEADDR socket option illustrated previously).

Note

4.4BSD requires the application to set a different socket option (SO_ REUSEPORT) 
to allow multiple endpoints to share the same port. Furthermore, each endpoint 
must specify this option, including the first one to use the port.

When a UDP datagram arrives whose destination IP address is a broadcast or 
multicast address, and there are multiple endpoints at the destination IP address 
and port number, one copy of the incoming datagram is passed to each endpoint. 
(The endpoint’s local IP address can be the wildcard, which matches any destina-
tion IP address.) But if a UDP datagram arrives whose destination IP address is 
a unicast address (i.e., an ordinary address), only a single copy of the datagram 
is delivered to one of the endpoints. Which endpoint gets the unicast datagram 
is implementation-dependent, but this policy helps to allow multithreaded and 
multiprocess servers to operate without being invoked multiple times on the same 
incoming request.

10.11.6 Spanning Address Families: IPv4 and IPv6

It is possible to write servers that span not only protocols (such as servers that 
respond to both TCP and UDP) but also across address families. That is, we may 
write a UDP server that responds to incoming requests for IPv4 as well as for IPv6. 
While this may seem entirely straightforward (IPv6 addresses are just additional 
IP addresses on the same host that happen to be 128 bits long), there is a subtlety 
related to the sharing of the port space. On some systems, the port space between 
IPv6 and IPv4 for UDP (and TCP) is shared. This means that if a service binds to a 
UDP port using IPv4, it is also allocated the same port in the IPv6 port space (and 
vice versa), preventing other services from using it (unless the SO_REUSEADDR 
socket option is used, as mentioned before). Furthermore, because IPv6 addresses 
can encode IPv4 addresses in an interoperable way (see Chapter 2), wildcard bind-
ings in IPv6 may receive incoming IPv4 traffic.

Note

The situation is implementation-specific. In Linux, all port space is shared, and 
any wildcard IPv6 binding implies a corresponding IPv4 binding. In FreeBSD, the 
IPV6_V6ONLY socket option may be used to ensure that bindings are present 
only in the IPv6 space. Programmers should consult the socket interface for IPv6 
for whichever operating environment they are supporting. C language bindings 
are described in [RFC3493].
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10.11.7 Lack of Flow and Congestion Control

Most UDP servers are iterative servers. This means that a single server thread (or 
process) handles all the client requests on a single UDP port (e.g., the server’s 
well-known port). Normally there is a limited-size input queue associated with 
each UDP port that an application is using. This means that requests arriving at 
about the same time from different clients are automatically queued by UDP. The 
received UDP datagrams are passed to the application (when it asks for the next 
one) in the order in which they were received (i.e., FCFS—first come, first served).

It is possible, however, for this queue to overflow, causing the UDP implemen-
tation to discard incoming datagrams. This can happen even if only one client is 
being served because UDP provides no flow control (that is, no way for the server 
to tell the client to slow down). Because UDP is a connectionless protocol with no 
reliability mechanism of its own, applications are not told when the UDP input 
queue overflows. The excess datagrams are just discarded by UDP.

Another concern arises from the fact that queues are also present in the IP 
routers between the sender and the receiver—in the middle of the network. When 
these queues become full, traffic may be discarded in a fashion similar to that 
of the UDP input queue. When this happens, the network is said to be congested. 
Congestion is undesirable because it affects all network users with traffic that tra-
verses the point where congestion is occurring, as opposed to the UDP input case 
mentioned previously, where only a single application server was affected. UDP 
poses a special concern for congestion because it has no way of being informed 
that it should slow down its sending rate if the network is being driven into con-
gestion. (It also has no mechanism for slowing down, even if it were told to do so.) 
Thus, it is said to lack congestion control. Congestion control is a complex subject 
and still an active area of research. We will return to considerations of congestion 
control when we discuss TCP (see Chapter 16).

10.12 Translating UDP/IPv4 and UDP/IPv6 Datagrams

In Chapter 7 we discussed a framework for translating IP datagrams from IPv4 
to IPv6 and vice versa. Chapter 8 described how this framework applies to ICMP. 
When UDP passes through a translator, the translation takes place as described 
in Chapter 7, except there are issues specific to the UDP checksum. For UDP/
IPv4 datagrams, the UDP header’s Checksum field is allowed to be 0 (uncomputed), 
whereas in UDP/IPv6 this is not allowed. Consequently, complete datagrams 
arriving with a zero checksum being translated from IPv4 to IPv6 result in either 
a UDP/IPv6 datagram with a fully computed pseudo-header checksum being 
generated, or with the arriving packet being dropped. The translator is supposed 
to provide a configuration option to select which is desired, as the overhead of 
generating such checksums may be objectionable. Packets containing a nonzero 
checksum being translated in either direction require the checksum to be updated 
if a non-checksum-neutral address mapping is used (see Chapter 7).
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Fragmented datagrams present another challenge. For stateless translators, a 
fragmented UDP/IPv4 datagram with a zero checksum cannot be translated, as 
the appropriate UDP/IPv6 checksum cannot be computed. Such datagrams are 
dropped. Stateful translators (i.e., NAT64) can reassemble a number of fragments 
and compute the required checksum. Fragmented UDP/IP datagrams with com-
puted checksums are handled as ordinary fragments in either direction, as speci-
fied in Chapter 7. Large UDP/IPv4 datagrams that require fragmentation to fit 
within the IPv6 minimum MTU after translation are also handled as conventional 
IPv4 datagrams (i.e., they are fragmented as needed).

10.13 UDP in the Internet

If we attempt to characterize the amount of UDP traffic in the Internet, we find 
that useful, publicly available data is somewhat hard to come by, and that the 
breakdown of traffic load by protocol varies from site to site. That said, studies 
such as [FKMC03] find that UDP accounts for between 10% and 40% of Internet 
traffic observed, and that as peer-to-peer applications gain in popularity, the use 
of UDP is also on the rise [Z09], although TCP traffic still dominates in terms of 
packets and bytes.

In [SMC02], fragmentation of Internet traffic is found to be most common with 
UDP (68.3% of the fragmented traffic is UDP), although very little traffic overall 
is fragmented (about 0.3% of packets, 0.8% of bytes). The authors report that the 
most common type of traffic that is fragmented is UDP-based multimedia traffic 
(53%; Microsoft’s Media Player is responsible for about half of this) and encap-
sulated/tunneled traffic such as that present in VPN tunnels (about 22%). Fur-
thermore, about 10% of the fragmentation is reverse-order (we said this earlier in 
the examples where the last IP fragment was sent prior to the first), and the most 
commonly seen fragment size is 1500 bytes (79%), followed by 1484 bytes (18%) 
and 1492 bytes (1%).

Note

The 1500-byte MTU is related to the native usable payload size for Ethernet. The 
1484 size was produced by Digital Equipment Corporation’s GigaSwitch (now 
defunct), which represented significant portions of the topology measured at the 
time. 

The causes of fragmentation appear to derive from two factors: careless encap-
sulation and lack of path MTU discovery and adaptation for applications that like 
to use large messages. The former case relates to multiple levels of encapsulation 
across many protocol layers that add additional headers, forcing IP packets that 
initially fit into 1500-byte MTUs (the most common size) to no longer fit (e.g., appli-
cation traffic carried over VPN tunnels). The second factor arises for applications 
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that use larger packets (e.g., video applications) that end up being fragmented. A 
curious (and unfortunate) finding in the [SMC02] study is that numerous UDP 
packets with the IPv4 DF bit field turned on (presumably trying to perform PMTU 
discovery) are encapsulated in UDP packets that do not (thereby defeating the 
attempt and leaving the responsible application ignorant of the fact).

10.14 Attacks Involving UDP and IP Fragmentation

Most attacks involving UDP relate to exhaustion of some shared resource (buffers, 
link capacity, etc.) or exploitation of bugs in protocol implementations causing sys-
tem crashes or other undesired behavior. Both fall into the broad category of DoS 
attacks: the successful attacker is able to cause services to be made unavailable to 
legitimate users. The most straightforward DoS attack with UDP is simply gener-
ating massive amounts of traffic as fast as possible. Because UDP does not regulate 
its sending traffic rate, this can negatively impact the performance of other appli-
cations sharing the same network path. This can happen even without malicious 
intent.

A more sophisticated form of DoS attack frequently associated with UDP is a 
magnification attack. This type of attack generally involves an attacker sending a 
small amount of traffic that induces other systems to generate much more. In the 
so-called fraggle attack, a malicious UDP sender forges the IP source address to be 
that of a victim and sets the destination address to a form of broadcast (e.g., the 
directed broadcast address). UDP packets are sent to a service that generates traf-
fic in response to an incoming datagram. When the servers implementing these 
services respond, they direct their messages to the IP address contained in the 
Source IP Address field of the arriving UDP packet. In this case, the source address 
is that of the victim, and so the victim host is subject to being overloaded by the 
multiple UDP traffic responders. Variants of this magnification attack are numer-
ous, including inducing a character-generating service to be coupled to the echo 
service, thereby causing traffic to be “ping-ponged” forever. This attack is closely 
related to the ICMP smurf attack (see Chapter 8).

Several attacks involving IP fragmentation have appeared. IP fragmenta-
tion processing is somewhat more complex than UDP processing, so it is not so 
surprising that bugs in its implementation have been found and exploited. One 
form of attack involves sending fragments that contain no data whatsoever. This 
attack exploited a bug in IPv4 reassembly code and caused some systems to crash. 
Another attack on the IPv4 reassembly layer is the teardrop attack, which involves 
carefully constructing a series of fragments with overlapping Fragment Offset
fields that crash or otherwise badly affect some systems. A variant of this involves 
overlapping fragment offsets that overwrite the UDP header from an earlier frag-
ment. Overlapping fragments are now prohibited with IPv6 [RFC5722]. Finally, 
the also-related ping of death attack (typically constructed with ICMPv4 Echo 
Request but also applicable to UDP) operates by creating an IPv4 datagram that on 
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reassembly exceeds the maximum limit. This is fairly straightforward because the 
Fragment Offset field can be set to a value as high as 8191, which represents a byte 
offset of 65,528 bytes. Any such fragment with length exceeding 7 bytes would—if 
not prevented from doing so—result in a reconstructed datagram exceeding the 
maximum size of 65,535 bytes. Mitigation techniques for some forms of fragment 
attacks are given in [RFC3128].

10.15 Summary

UDP is a simple protocol. Its official specification, [RFC0768], requires only three 
pages (including references!). The services it provides to a user process, above 
and beyond IP, are port numbers and a checksum. It provides no flow control, 
no congestion control, and no error correction. It does provide error detection 
(optional for UDP/IPv4 but mandatory for UDP/IPv6) and preservation of mes-
sage boundaries. We used UDP to examine the Internet checksum and to see how 
IP fragmentation is performed. We also looked at other aspects of UDP: how it is 
used with path MTU discovery, how it impacts server design, and its presence in 
the Internet.

UDP is most commonly used when the overhead of connection establishment 
is to be avoided, when multipoint delivery (multicasting, broadcasting) is used, 
or when the comparatively “heavyweight” reliability semantics of TCP (such as 
sequencing, flow control, and retransmission) are not desired. It has enjoyed a 
growing level of use because of multimedia and peer-to-peer applications and is 
the primary protocol for supporting VoIP [RFC3550][RFC3261]. It is also a conve-
nient method for encapsulating traffic that must transition a NAT without intro-
ducing much extra overhead (only 8 bytes for the UDP header). We have seen this 
use for supporting an IPv6 transition mechanism (Teredo) and for aiding NAT 
traversal with STUN (see Chapter 7), and we will see it again in Chapter 18 where 
it is used for IPsec NAT traversal. One of UDP’s other major uses is for supporting 
the DNS. We explore this important application next, in Chapter 11.
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11

Name Resolution and the 
Domain Name System (DNS) 

11.1 Introduction 

The protocols we have studied so far operate using IP addresses to identify the 
hosts that participate in a distributed application. These addresses (especially IPv6 
addresses) are cumbersome for humans to use and remember, so the Internet sup-
ports the use of host names to identify hosts, both clients and servers. In order to be 
used by protocols such as TCP and IP, host names are converted into IP addresses 
using a process known as name resolution. There are different forms of name reso-
lution in the Internet, but the most prevalent and important one uses a distributed 
database system known as the Domain Name System (DNS) [MD88]. DNS runs as 
an application on the Internet, using IPv4 or IPv6 (or both). For scalability, DNS 
names are hierarchical, as are the servers that support name resolution.

DNS is a distributed client/server networked database that is used by TCP/IP 
applications to map between host names and IP addresses (and vice versa), to pro-
vide electronic mail routing information, service naming, and other capabilities. 
We use the term distributed because no single site on the Internet knows all of the 
information. Each site (university department, campus, company, or department 
within a company, for example) maintains its own database of information and 
runs a server program that other systems across the Internet (clients) can query. 
The DNS provides the protocol that allows clients and servers to communicate 
with each other and also a protocol for allowing servers to exchange information. 

From an application’s point of view, access to the DNS is through an applica-
tion library called a resolver. In general, an application must convert a host name 
to an IPv4 and/or IPv6 address before it can ask TCP to open a connection or send 
a unicast datagram using UDP. The TCP and IP protocol implementations know 
nothing about the DNS; they operate only with the addresses. 
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In this chapter we will take a look at how the names in DNS are set up, how 
resolvers and servers communicate using the Internet protocols (mainly UDP), and 
some of the other resolution mechanisms that are used in Internet environments. 
We do not cover all of the administrative details of running a name server or all of 
the options available with resolvers and servers. Such information is available from 
various other sources, including Albitz and Liu’s DNS and BIND text [AL06] and in 
[RFC6168]. We discuss the details of DNS security (DNSSEC) in Chapter 18. 

11.2 The DNS Name Space 

The set of all names used with DNS constitutes the DNS name space. This space is 
partitioned hierarchically and is case insensitive, similar to computer file system 
folders (directories) and files. The current DNS name space is a tree of domains 
with an unnamed root at the top. The top echelons of the tree are the so-called 
top-level domains (TLDs), which include generic TLDs (gTLDs), country-code TLDs
(ccTLDs), and internationalized country-code TLDs (IDN ccTLDs), plus a special 
infrastructure TLD called, for historical reasons, ARPA [RFC3172]. These form the 
top levels of a naming tree with the form shown in Figure 11-1. 

There are five commonly used groups of TLDs, and one group of specialized 
domains being used for internationalized domain names (IDNs).1 The history of IDNs, 
one piece of the “internationalization” or “i18n” of the Internet, is long and some-
what complicated. Across the world, there are multiple languages, and each uses 
one or more written scripts. While the Unicode standard [U11] aims to capture 
the entire set of characters, many characters look the same but have different Uni-
code values. Furthermore, characters written as text may flow from right to left, left 
to right, or (when combining certain texts with others) in both directions. Couple 
these (and other) somewhat technical concerns with concerns regarding equity 
and international law and politics, and a considerable hurdle results. The interested 
reader may wish to consult the IAB’s review of IDNs [RFC4690], published in 2006, 
for more information. Current information is available from [IIDN]. 

The gTLDs are grouped into categories: generic, generic-restricted, and sponsored. 
The generic gTLDs (generic appears twice) are open for unrestricted use. The others 
(generic-restricted and sponsored) are limited to various sorts of uses or are con-
strained as to what entity may assign names from the domain. For example, EDU is 
used for educational institutions, MIL and GOV are used for military and govern-
ment institutions of the United States, and INT is used for international organiza-
tions (such as NATO). Table 11-1 provides a summary of the 22 gTLDs from [GTLD] 
as of mid-2011. There is a “new gTLD” program in the works that may significantly 
expand the current set, possibly to several hundred or even thousand. This pro-
gram and policies relating to TLD management in general are maintained by the 
Internet Corporation for Assigned Names and Numbers (ICANN) [ICANN].

1. Figure 11-1 also shows 11 test IDN domains, which are still available.
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Figure 11-1   The DNS name space forms a hierarchy with an unnamed root at the top. The top-level domains (TLDs) include generic TLDs (gTLDs), country-
code TLDs (ccTLDs), internationalized TLDs (IDN ccTLDs), and a special infrastructure TLD called ARPA. 
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The ccTLDs include the two-letter country codes specified by the ISO 3166 
standard [ISO3166], plus five that are not: uk, su, ac, eu, and tp (the last one is 
being phased out). Because some of these two-letter codes are suggestive of other 
uses and meanings, various countries have been able to find commercial wind-
falls from selling names within their ccTLDs. For example, the domain name cnn.
tv is really a registration in the Pacific island of Tuvalu, which has been selling 
domain names associated with the television entertainment industry. Creating a 
name in such an unconventional way is sometimes called a domain hack. 

11.2.1 DNS Naming Syntax 

The names below a TLD in the DNS name tree are further partitioned into groups 
known as subdomains. This is very common practice, especially for the ccTLDs. For 

Table 11-1  The generic top-level domains (gTLDs), circa 2011 

TLD First Use (est.) Use Example

AERO December 21, 2001 Air-transport industry www.sita.aero
ARPA January 1, 1985 Infrastructure 18.in-addr.arpa
ASIA May 2, 2007 Pan-Asia and Asia Pacific www.seo.asia
BIZ June 26, 2001 Business uses neustar.biz
CAT December 19, 2005 Catalan linguistic/cultural 

community
www.domini.cat

COM January 1, 1985 Generic icanhascheezburger.com
COOP December 15, 2001 Cooperative associations www.ems.coop
EDU January 1, 1985 Post-secondary educational 

institutions recognized by U.S.A.
hpu.edu

GOV January 1, 1985 U.S. government whitehouse.gov
INFO June 25, 2001 Generic germany.info
INT November 3, 1988 International treaty organizations nato.int
JOBS September 8, 2005 Human resource managers intel.jobs
MIL January 1, 1985 U.S. military dtic.mil
MOBI October 30, 2005 Customers/providers of mobile 

products/services
flowers.mobi

MUSEUM October 30, 2001 Museums icom.museum
NAME August 16, 2001 Individuals www.name
NET January 1, 1985 Generic ja.net
ORG December 9, 2002 Generic slashdot.org
PRO May 6, 2002 Credentialed professionals/entities nic.pro
TEL March 1, 2007 Contact data for businesses/

individuals
telnic.tel

TRAVEL July 27, 2005 Travel industry cancun.travel
XXX April 15, 2011 Adult entertainment industry whois.nic.xxx

www.sita.aero
www.seo.asia
www.domini.cat
www.ems.coop
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example, most educational sites in England use the suffix .ac.uk, whereas names 
for most for-profit companies there end in the suffix .co.uk. In the United States, 
city government Web sites tend to use the subdomain ci.city.state.us where state
is the two-letter abbreviation for the name of the state and city is the name of the 
city. For example, the site www.ci.manhattan-beach.ca.us is the site of Man-
hattan Beach, California’s, city government in the United States. 

The example names we have seen so far are known as fully qualified domain 
names (FQDNs). They are sometimes written more formally with a trailing period 
(e.g., mit.edu.). This trailing period indicates that the name is complete; no 
additional information should be added to the name when performing a name 
resolution. In contrast to the FQDN, an unqualified domain name, which is used 
in combination with a default domain or domain search list set during system 
configuration, has one or more strings appended to the end. When a system is 
configured (see Chapter 6), it is typically assigned a default domain extension and 
search list using DHCP (or, less commonly, the RDNSS and DNSSL RA options). 
For example, the default domain cs.berkeley.edu might be configured in sys-
tems at the computer science department at UC Berkeley. If a user on one of these 
machines types in the name vangogh, the local resolver software converts this 
name to the FQDN vangogh.cs.berkeley.edu. before invoking a resolver to 
determine vangogh’s IP address. 

A domain name consists of a sequence of labels separated by periods. The 
name represents a location in the name hierarchy, where the period is the hierar-
chy delimiter and descending down the tree takes place from right to left in the 
name. For example, the FQDN 

www.net.in.tum.de.

contains a host name label (www) in a four-level-deep domain (net.in.tum.de). 
Starting from the root, and working from right to left in the name, the TLD is de
(the ccTLD for Germany), tum is shorthand for Technische Universität München, 
in is shorthand for informatik (German for “computer science”), and finally net is 
shorthand for the networks group within the computer science department. Labels 
are case-insensitive for matching purposes, so the name ACME.COM is equivalent 
to acme.com or AcMe.cOm [RFC4343]. Each label can be up to 63 characters long, 
and an entire FQDN is limited to at most 255 (1-byte) characters. For example, this 
domain name: 

thelongestdomainnameintheworldandthensomeandthensomemoreandmore.com

was allegedly submitted as a potential world record for the longest name, with 
a label of length 63, but was judged to have been of insufficient merit to justify a 
place in the Guinness World Records. 

The hierarchical structure of the DNS name space allows different administra-
tive authorities to manage different parts of the name space. For example, creating 

www.ci.manhattan-beach.ca.us
www.net.in.tum.de
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a new DNS name of the form elevator.cs.berkeley.edu would likely require 
dealing with the owner of the cs.berkeley.edu subdomain only. The berkeley
.edu and edu portions of the name space would not require alteration, so the 
owners of those would not need to be bothered. This feature of DNS is one key 
aspect of its scalability. That is, no single entity is required to administer all the 
changes for the entire DNS name space. Indeed, creating a hierarchical structure 
for names was one of the first responses in the Internet community to the pres-
sures of scaling and a major motivator for the structure used today. The origi-
nal Internet naming scheme was flat (i.e., no hierarchy), and a single entity was 
responsible for assigning, maintaining, and distributing the list of nonconflicting 
names. Over time, as more names were required and more changes were being 
made, this approach became unworkable [MD88]. 

11.3 Name Servers and Zones 

Management responsibility for portions of the DNS name space is assigned to 
individuals or organizations. A person given responsibility for managing part of 
the active DNS name space (one or more domains) is supposed to arrange for at 
least two name servers or DNS servers to hold information about the name space 
so that users of the Internet can perform queries on the names. The collection of 
servers forms the DNS (service) itself, a distributed system whose primary job is 
to provide name-to-address mappings. However, it can also provide a wide array 
of additional information. 

The unit of administrative delegation, in the language of DNS servers, is 
called a zone. A zone is a subtree of the DNS name space that can be administered 
separately from other zones. Every domain name exists within some zone, even 
the TLDs that exist in the root zone. Whenever a new record is added to a zone, the 
DNS administrator for the zone allocates a name and additional information (usu-
ally an IP address) for the new entry and enters these into the name server’s data-
base. At a small campus, for example, one person could do this each time a new 
server is added to the network, but in a large enterprise the responsibility would 
have to be delegated (probably by departments or other organizational units), as 
one person likely could not keep up with the work. 

A DNS server can contain information for more than one zone. At any hierar-
chical change point in a domain name (i.e., wherever a period appears), a different 
zone and containing server may be accessed to provide information for the name. 
This is called a delegation. A common delegation approach uses a zone for imple-
menting a second-level domain name, such as berkeley.edu. In this domain, 
there may be individual hosts (e.g., www.berkeley.edu) or other domains (e.g., 
cs.berkeley.edu). Each zone has a designated owner or responsible party who 
is given authority to manage the names, addresses, and subordinate zones within 
the zone. Often this person manages not only the contents of the zone but also the 
name servers that contain the zone’s database(s). 

www.berkeley.edu
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Zone information is supposed to exist in at least two places, implying that 
there should be at least two servers containing information for each zone. This is 
for redundancy; if one server is not functioning properly, at least one other server 
is available. All of these servers contain identical information about a zone. Typi-
cally, among the servers, a primary server contains the zone database in a disk 
file, and one or more secondary servers obtain copies of the database in its entirety 
from the primary using a process called a zone transfer. DNS has a special protocol 
for performing zone transfers, but copies of a zone’s contents can also be obtained 
using other means (e.g., the rsync utility [RSYNC]). 

11.4 Caching 

Name servers contain information such as name-to-IP-address mappings that 
may be obtained from three sources. The name server obtains the information 
directly from the zone database, as the result of a zone transfer (e.g., for a slave 
server), or from another server in the course of processing a resolution. In the first 
case, the server is said to contain authoritative information about the zone and may 
be called an authoritative server for the zone. Such servers are identified by name 
within the zone information. 

Most name servers (except some of the root and TLD servers) also cache zone 
information they learn, up to a time limit called the time to live (TTL). They use this 
cached information to answer queries. Doing so can greatly decrease the amount 
of DNS message traffic that would otherwise be carried on the Internet [J02]. 
When answering a query, a server indicates whether the information it is return-
ing has been derived from its cache or from its authoritative copy of the zone. 
When cached information is returned, it is common for a server to also include the 
domain names of the name servers that can be contacted to retrieve authoritative 
information about the corresponding zone. 

As we shall see, each DNS record (e.g., name-to-IP-address mapping) has its 
own TTL that controls how long it can be cached. These values are set and altered 
by the zone administrator when necessary. The TTL dictates how long a mapping 
can be cached anywhere within DNS, so if a zone changes, there still may exist 
cached data within the network, potentially leading to incorrect DNS resolution 
behavior until expiry of the TTL. For this reason, some zone administrators, antic-
ipating a change to the zone contents, first reduce the TTL before implementing 
the change. Doing so reduces the window for incorrect cached data to be present 
in the network. 

It is worth mentioning that caching is applied both for successful resolutions 
and for unsuccessful resolutions (called negative caching). If a request for a particu-
lar domain name fails to return a record, this fact is also cached. Doing so can help 
to reduce Internet traffic when errant applications repeatedly make requests for 
names that do not exist. Negative caching was changed from optional to manda-
tory by [RFC2308]. 
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In some network configurations (e.g., those using older UNIX-compatible sys-
tems), the cache is maintained in a nearby name server, not in the resolvers resi-
dent in the clients. Placing the cache in the server allows any hosts on the LAN 
that use the nearby server to benefit from the server’s cache but implies a small 
delay in accessing the cache over the local network. In Windows and more recent 
systems (e.g., Linux), the client can maintain a cache, and it is made available to all 
applications running on the same system. In Windows, this happens by default, 
and in Linux, it is a service that can be enabled or disabled.

On Windows, the local system’s cache parameters may be modified by editing 
the following registry entry: 

HKLM\SYSTEM\CurrentControlSet\Services\DNSCache\Parameters

The DWORD value MaxNegativeCacheTtl gives the maximum number of 
seconds that a negative DNS result remains in the resolver cache. The DWORD 
value MaxCacheTtl gives the maximum number of seconds that a DNS record 
may remain in the resolver cache. If this value is less than the TTL of a received 
DNS record, the lesser value controls how long the record remains in cache. These 
two registry keys do not exist by default, so they must be created in order to be 
used.

In Linux and other systems that support it, the Name Service Caching  Daemon 
(NSCD) provides a client-side caching capability. It is controlled by the 
/etc/nscd.conf file that can indicate which types of resolutions (for DNS and 
some other services) are cached, along with some cache parameters such as TTL 
settings. In addition, the file /etc/nsswitch.conf controls how name resolu-
tion for applications takes place. Among other things, it can control whether local 
files, the DNS protocol (see Section 11.5), and/or NSCD is employed for mappings. 

11.5 The DNS Protocol 

The DNS protocol consists of two main parts: a query/response protocol used for 
performing queries against the DNS for particular names, and another protocol 
for name servers to exchange database records (zone transfers). It also has a way 
to notify secondary servers that the zone database has evolved and a zone transfer 
is necessary (DNS Notify), and a way to dynamically update the zone (dynamic 
updates). By far, the most typical usage is a simple query/response to look up the 
IPv4 address that corresponds to a domain name. 

Most often, DNS name resolution is the process of mapping a domain name 
to an IPv4 address, although IPv6 addresses mappings work in essentially the 
same way. DNS query/response operations are supported over the distributed 
DNS infrastructure consisting of servers deployed locally at each site or ISP, and a 
special set of root servers. There is also a special set of generic top-level domain servers 
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used for scaling some of the larger gTLDs, including COM and NET. As of mid-
2011, there are 13 root servers named by the letters A through M (see [ROOTS] for 
more information about them); 9 of them have IPv6 addresses. There are also 13 
gTLD servers, also labeled A through M; 2 of them have IPv6 addresses. By con-
tacting a root server and possibly a gTLD server, the name server for any TLD in 
the Internet can be discovered. These servers are mutually coordinated to provide 
the same information. Some of them are not a single physical server but instead 
a group of servers (over 50 for the J root server) that use the same IP address (i.e., 
using IP anycast addressing; see Chapter 2). 

A full resolution that is unable to benefit from preexisting cached entries takes 
place among several entities, as shown in Figure 11-2. 
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Figure 11-2  A typical recursive DNS query for EXAMPLE.COM from A.HOME involves up to ten messages. The 
local recursive server (GW.HOME here) uses a DNS server provided by its ISP. That server, in turn, 
uses an Internet root name server and a gTLD server (for COM and NET TLDs) to find the name 
server for the EXAMPLE.COM domain. That name server (A.IANA-SERVERS.NET here) provides 
the required IP address for the host EXAMPLE.COM. All of the recursive servers cache any infor-
mation learned for later use. 

Here, we have a laptop called A.HOME residing nearby the DNS server 
GW.HOME. The domain HOME is private, so it is not known to the Internet—only 
locally at the user’s residence. When a user on A.HOME wishes to connect to the 
host EXAMPLE.COM (e.g., because a Web browser has been instructed to access 
the page http://EXAMPLE.COM), A.HOME must determine the IP address for the 
server EXAMPLE.COM. Assuming it does not know this address already (it might 
if it has accessed the host recently), the resolver software on A.HOME first makes 
a request to its local name server, GW.HOME. This is a request to convert the name 
EXAMPLE.COM into an address and constitutes message 1 (labeled on an arrow in 
Figure 11-2).
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Note

If the A.HOME system is configured with a default domain search list, there may 
be additional queries. For example, if .HOME is a default search domain used by 
A.HOME, the first DNS query may be for the name EXAMPLE.COM.HOME, which 
will fail at the GW.HOME name server, which is authoritative for .HOME. A subse-
quent query will typically remove the default extension, resulting in a query for 
EXAMPLE.COM.

If GW.HOME does not already know the IP address for EXAMPLE.COM or the 
name servers for either the EXAMPLE.COM domain or the COM TLD, it forwards the 
request to another DNS server (called recursion). In this case, a request (message 
2) goes to an ISP-provided DNS server. Assuming that this server also does not 
know the required address or other information, it contacts one of the root name 
servers (message 3). The root servers are not recursive, so they do not process 
the request further but instead return the information required to contact a name 
server for the COM TLD. For example, it might return the name A.GTLD-SERVERS
.NET and one or more of its IP addresses (message 4). With this information, the 
ISP-provided server contacts the gTLD server (message 5) and discovers the name 
and IP addresses of the name servers for the domain EXAMPLE.COM (message 6). 
In this case, one of the servers is A.IANA-SERVERS.NET. 

Given the correct server for the domain, the ISP-provided server contacts the 
appropriate server (message 7), which responds with the requested IP address 
(message 8). At this point, the ISP-provided server can respond to GW.HOME with 
the required information (message 9). GW.HOME is now able to complete the initial 
query and responds to the client with the desired IPv4 and/or IPv6 address(es) 
(message 10). 

From the perspective of A.HOME, the local name server was able to per-
form the request. However, what really happened is a recursive query, where the 
GW.HOME and ISP-provided servers in turn made additional DNS requests to sat-
isfy A.HOME’s query. In general, most name servers perform recursive queries such 
as this. The notable exceptions are the root servers and other TLD servers that do 
not perform recursive queries. These servers are a relatively precious resource, so 
encumbering them with recursive queries for every machine that performs a DNS 
query would lead to poor global Internet performance. 

11.5.1 DNS Message Format 

There is one basic DNS message format [RFC6195]. It is used for all DNS opera-
tions (queries, responses, zone transfers, notifications, and dynamic updates), as 
illustrated in Figure 11-3. 

The basic DNS message begins with a fixed 12-byte header followed by four 
variable-length sections: questions (or queries), answers, authority records, and 
additional records. All but the first section contain one or more resource records 
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(RRs), which we discuss in detail in Section 11.5.6. (The question section contains 
a data item that is very close in structure to an RR.) RRs can be cached; questions 
are not. 

In the fixed-length header, the Transaction ID field is set by the client and 
returned by the server. It lets the client match responses to requests. The second 
16-bit word includes a number of flags and other subfields. Beginning from the 
left-most bit, QR is a 1-bit field: 0 means the message is a query; 1 means it is a 
response. The next is the OpCode, a 4-bit field. The normal value is 0 (a standard 
query) for requests and responses. Other values are: 4 (notify), and 5 (update). 
Other values (1–3) are deprecated or never seen in operational use. Next is the AA
bit field that indicates an “authoritative answer” (as opposed to a cached answer). 
TC is a 1-bit field that means “truncated.” With UDP, this flag being set means that 
the total size of the reply exceeded 512 bytes, and only the first 512 bytes of the 
reply were returned. 

RD is a bit field that means “recursion desired.” It can be set in a query and 
is then returned in the response. It tells the server to perform a recursive query. 
If the bit is not set, and the requested name server does not have an authoritative 
answer, the requested name server returns a list of other name servers to contact 

Figure 11-3  The DNS message format has a fixed 12-byte header. The entire message is usually 
carried in a UDP/IPv4 datagram and limited to 512 bytes. DNS UPDATE (DNS with 
dynamic updates) uses the field names ZOCOUNT, PRCOUNT, UPCOUNT, and 
ADCOUNT. A special extension format (called EDNS0) allows messages to be larger 
than 512 bytes, which is required for DNSSEC (see Chapter 18). 
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for the answer. At this point, the overall query may be continued by contacting 
the list of other name servers. This is called an iterative query. RA is a bit field that 
means “recursion available.” This bit is set in the response if the server supports 
recursion. Root servers generally do not support recursion, thereby forcing clients 
to perform iterative queries to complete name resolution. The Z bit field must be 0 
for now but is reserved for future use. 

The AD bit field is set to true if the contained information is authenticated, 
and the CD bit is set to true if security checking is disabled (see Chapter 18). The 
Response Code (or RCODE) field is a 4-bit field with the return code whose possible 
values are given in [DNSPARAM]. The common values include 0 (no error) and 
3 (name error or “nonexistent domain,” written as NXDOMAIN). A list of the 
first 11 error codes is given in Table 11-2 (values 11 through 15 are unassigned). 
Additional types are defined using a special extension (see Section 11.5.2). A 
name error is returned only from an authoritative name server and means that the 
domain name specified in the query does not exist.

Table 11-2   The first ten error types used with the RCODE field

Value Name Reference Description and Purpose

0 NoError [RFC1035] No error
1 FormErr [RFC1035] Format error; query cannot be interpreted
2 ServFail [RFC1035] Server failure; error in processing at server
3 NXDomain [RFC1035] Nonexistent domain; unknown domain referenced
4 NotImp [RFC1035] Not implemented; request not supported in server
5 Refused [RFC1035] Refused; server unwilling to provide answer
6 YXDomain [RFC2136] Name exists but should not (used with updates)
7 YXRRSet [RFC2136] RRSet exists but should not (used with updates)
8 NXRRSet [RFC2136] RRSet does not exist but should (used with updates)
9 NotAuth [RFC2136] Server not authorized for zone (used with updates)
10 NotZone [RFC2136] Name not contained in zone (used with updates)

The next four fields are 16 bits in size and specify the number of entries in the 
question, answer, authority, and additional information sections that complete the 
DNS message. For a query, the number of questions is normally 1 and the other 
three counts are 0. For a reply, the number of answers is at least 1. Questions have 
a name, type, and class. (Class supports non-Internet records, but we ignore this 
for our purposes. The type identifies the type of object being looked up.) All of 
the other sections contain zero or more RRs. RRs contain a name, type, and class 
information, but also the TTL value that controls how long the data can be cached. 
We shall discuss the most important RR types in detail once we have a look at how 
DNS encodes names and selects which transport protocol to use when carrying 
DNS messages. 
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11.5.1.1 Names and Labels 
The variable-length sections at the end of a DNS message contain a collection of 
questions, answers, authority information (names of name servers that contain 
authoritative information for certain data), and additional information that may 
be useful to reduce the number of necessary queries. Each question and each RR 
begins with a name (called the domain name or owning name) to which it refers. 
Each name consists of a sequence of labels. There are two categories of label types: 
data labels and compression labels. Data labels contain characters that constitute a 
label; compression labels act as pointers to other labels. Compression labels help to 
save space in a DNS message when multiple copies of the same string of characters 
are present across multiple labels. 

11.5.1.2 Data Labels 
Each data label begins with a 1-byte count that specifies the number of bytes that 
immediately follow. The name is terminated with a byte containing the value 0, 
which is a label with a length of 0 (the label of the root). For example, the encoding 
of the name www.pearson.com would be as shown in Figure 11-4. 

Figure 11-4  DNS names are encoded as a sequence of labels. This example encodes the name www.
pearson.com, which (technically) has four labels. The end of the name is identified by 
a 0-length label of the nameless root.

For data labels, each label Length byte must be in the range of 0 to 63, as labels 
are limited to 63 bytes. No padding is used for labels, so the total name length 
could be odd. Although these labels are sometimes called “text” labels, they are 
capable of containing non-ASCII values. This use, however, is uncommon and 
not recommended. Indeed, even the internationalized domain names, which can 
encode Unicode characters [RFC5890][RFC5891], use a curious encoding syntax 
called “punycode” [RFC3492] that expresses Unicode characters using the ASCII 
character set. To be completely safe, it is recommended to follow the requirements 
in [RFC1035], which suggest that labels “start with a letter, end with a letter or 
digit, and have as interior characters only letters, digits and hyphen.” 

11.5.1.3 Compression Labels 
In many cases, a DNS response carries information in the answer, authority, and 
additional information sections relating to the same domain name. If data labels 
were used, the same characters would be repeated in the DNS message when refer-
ring to the same name. To avoid this redundancy and save space, a compression 

www.pearson.com
www.pearson.com
www.pearson.com
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scheme is used. Anywhere the label portion of a domain name can occur, the 
single preceding count byte (which is normally between 0 and 63) instead has its 
2 high-order bits turned on, and the remaining bits are combined with the bits in 
the subsequent byte to form a 14-bit pointer (offset) in the DNS message. The offset 
gives the number of bytes from the beginning of the DNS message where a data 
label (called the compression target) is to be found that should be substituted for the 
compression label. Compression labels are thus able to point to a location up to 
16,383 bytes from the beginning. Figure 11-5 illustrates how we might encode the 
domain names usc.edu and ucla.edu using compression labels.

Figure 11-5  A compression label can reference other labels to save space. This is accomplished by 
setting the 2 high-order bits of the byte preceding the label contents. This signals that 
the following 14 bits are used in providing an offset for the replacement label. In this 
example, usc.edu and ucla.edu share the edu label.

In Figure 11-5 we see how the common label edu can be shared by the two 
domain names. Assuming the names start at offset 0, data labels are used to 
encode usc.edu as described previously. The next name is ucla.edu, and the 
label ucla is encoded using a data label. However, the label edu may be reused 
from the encoding of usc.edu. This is accomplished by setting the 2 high-order 
bits of the label Type byte to 1 and encoding the offset of edu in the remaining 14 
bits. Because the first occurrence of edu is at offset 4, we only need to set the first 
byte to 192 (6 bits of 0) and the next byte to 4. The example in Figure 11-5 shows a 
savings of only 4 bytes, but it is clear how compression of larger common labels 
can result in more substantial savings.

11.5.2 The DNS Extension Format (EDNS0) 

The basic DNS message format described so far can be restrictive in a number of 
ways. It has fixed-length fields, a total length limitation of 512 bytes when used 
with UDP (not including UDP or IP headers), and limited space (the 4-bit RCODE
field) for indicating error types. An extension mechanism called EDNS0 (because 
there could be future extensions beyond the index 0) is specified in [RFC2671]. 
While its use is not ubiquitous at present, it is necessary for supporting DNS secu-
rity (DNSSEC; see Chapter 18), so it is likely to receive more widespread deploy-
ment over time. 
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EDNS0 specifies a particular type of RR (called an OPT pseudo-RR or meta-RR) 
that is added to the additional data section of a request or response to indicate 
the use of EDNS0. At most one such record may be present in any DNS message. 
We will discuss the particular format of an OPT pseudo-RR when we discuss the 
other RR types in Section 11.5.6. For now, the important thing to note is that if a 
UDP DNS message includes an OPT RR, it is permitted to exceed the 512-byte 
length limitation and may contain an expanded set of error codes.

EDNS0 also defines an extended label type (extending beyond the data labels 
and compression labels mentioned earlier). Extended labels have their first 2 bits 
in the label Type/Length byte set to 01, corresponding to values between 64 and 
127 (inclusive). An experimental binary labeling scheme (type 65) was used at one 
time but is now not recommended. The value 127 is reserved for future use, and 
values above 127 are unallocated. 

11.5.3 UDP or TCP 

The well-known port number for DNS is 53, for both UDP and TCP. The most com-
mon format uses the UDP/IPv4 datagram structure shown in Figure 11-6.

Figure 11-6  DNS messages are typically encapsulated in a UDP/IPv4 datagram and are limited to 
512 bytes in size unless TCP and/or EDNS0 is used. Each section (except the question 
section) contains a set of resource records. 

When a resolver issues a query and the response comes back with the TC bit 
field set (“truncated”), the size of the true response exceeded 512 bytes, so only 
the first 512 bytes are returned by the server. The resolver may issue the request 
again, using TCP, which now must be a supported configuration [RFC5966]. This 
allows more than 512 bytes to be returned because TCP breaks up large messages 
into multiple segments. 

When a secondary name server for a zone starts up, it normally performs 
a zone transfer from the primary name server for the zone. Zone transfers can 
also be initiated by a timer or as a result of a DNS NOTIFY message (see Sec-
tion 11.5.8.3). Full zone transfers use TCP as they can be large. Incremental zone 
transfers, where only the updated entries are transferred, may use UDP at first but 
switch to TCP if the response is too large, just like a conventional query. 
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When UDP is used, both the resolver and the server application software must 
perform their own timeout and retransmission. A recommendation for how to do 
this is given in [RFC1536]. It suggests starting with a timeout of at least 4s, and that 
subsequent timeouts result in an exponential increase of the timeout (a bit like 
TCP’s algorithms; see Chapter 14). Linux and UNIX-like systems allow a change to 
be made to the retransmission timeout parameters by altering the contents of the 
/etc/resolv.conf file (by setting the timeout and attempts options). 

11.5.4 Question (Query) and Zone Section Format 

The question or query section of a DNS message lists the question(s) being refer-
enced. The format of each question in the question section is shown in Figure 11-7. 
There is normally just one, although the protocol can support more. The same struc-
ture is also used for the zone section in dynamic updates (see Section 11.5.7), but 
with different names.  

Figure 11-7  The query (or question) section of a DNS message does not contain a TTL because it is 
not cached. 

The Query Name is the domain name being looked up, using the encoding for 
labels we described before. Each question has a Query Type and Query Class. The 
class value is 1, 254, or 255, indicating the Internet class, no class, or all classes, 
respectively, for all cases in which we are interested (other values are not typically 
used for TCP/IP networks). The Query Type field holds a value indicating the type 
of query being performed using the values from Table 11-2. The most common 
query type is A (or AAAA if IPv6 DNS resolution is enabled), which means that 
an IP address is desired for the query name. It is also possible to create a query 
of type ANY, which returns all RRs of any type in the same class that match the 
query name. 

11.5.5 Answer, Authority, and Additional Information Section Formats 

The final three sections in the DNS message, the answer, authority, and additional 
information sections, contain sets of RRs. RRs in these sections can, for the most 
part, have wildcard domain names as owning names. These are domain names 
in which the asterisk label—a data label containing only the asterisk character 
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[RFC4592]—appears first (i.e., leftmost). Each resource record has the form shown 
in Figure 11-8. 

Figure 11-8  The format of a DNS resource record. For DNS in the Internet, the Class field always 
contains the value 1. The TTL field gives the maximum amount of time the RR can be 
cached (in seconds). 

The Name field (sometimes called the “owning name,” “owner,” or “record 
owner’s name”) is the domain name to which the following resource data cor-
responds. It is in the same format we described earlier for names and labels. The 
Type field specifies one of the RR type codes (see Section 11.5.6). These are the 
same as the query type values we described earlier. The Class field is 1 for Internet 
data. The TTL field is the number of seconds for which the RR can be cached. The 
Resource Data Length (RDLENGTH) field specifies the number of bytes contained 
in the Resource Data (RDATA) field. The format of this data depends on the type. 
For example, A records (type 1) have a 32-bit IPv4 address in the RDATA area. We 
discuss other RR types later. 

[RFC2181] defines the term Resource Record Set (RRSet) to be a set of resource 
records that share the same name, class, and type but not the same data. This 
occurs, for example, when a host has more than one address record for its name 
(e.g., because it has more than one IP address). TTLs for RRs in the same RRSet 
must be equal. 

11.5.6 Resource Record Types 

Although DNS is most commonly used to determine the IP address(es) that cor-
respond to a particular name, it can also be used for the opposite purpose and for 
a number of other things. It can be used with both IPv4 and IPv6 and can even 
provide a distributed database function for other than Internet data (other classes, 



ptg999

528 Name Resolution and the Domain Name System (DNS)  

in DNS terminology [RFC6195]). The wide range of capabilities provided by DNS 
is largely attributable to its ability to have different types of resource records. 

There are many types of resource records (see [DNSPARAMS] for the com-
plete list), and a single name may have multiple matching RRs. Table 11-3 provides 
a listing of the most common RR types used with conventional DNS (i.e., DNS 
without the DNSSEC security extensions). 

Table 11-3  The popular resource record and query types used in DNS protocol messages. Additional records 
(not shown) are used when DNS security (DNSSEC) is employed. 

Value RR Type Reference Description and Purpose

1 A [RFC1035] Address record for IPv4 (32-bit IPv4 address)
2 NS [RFC1035] Name server; provides name of authoritative name server 

for zone
5 CNAME [RFC1035] Canonical name; maps one name to another (to provide a 

form of name aliasing)
6 SOA [RFC1035] Start of authority; provides authoritative information for the 

zone (name servers, e-mail address of contact, serial number, 
zone transfer timers)

12 PTR [RFC1035] Pointer; provides address to (canonical) name mapping; 
used with in-addr.arpa and ip6.arpa domains for IPv4 
and IPv6 reverse queries

15 MX [RFC1035] Mail exchanger; provides name of e-mail handling host for 
a domain

16 TXT [RFC1035] 
[RFC1464]

Text; provides a variety of information (e.g., used with SPF 
anti-spam scheme to identify authorized e-mail servers)

28 AAAA [RFC3596] Address record for IPv6 (128-bit IPv6 address)
33 SRV [RFC2782] Server selection; transport endpoints of a generic service
35 NAPTR [RFC3403] Name authority pointer; supports alternative name spaces
41 OPT [RFC2671] Pseudo-RR; supports larger datagrams, labels, return codes 

in EDNS0
251 IXFR [RFC1995] Incremental zone transfer
252 AXFR [RFC1035] 

[RFC5936]
Full zone transfer; carried over TCP

255 (ANY) [RFC1035] Request for all (any) records

Resource records are used for many purposes but can be divided into three 
broad categories: data types, query types, and meta types. Data types are used 
to convey information stored in the DNS such as IP addresses and the names of 
authoritative name servers. Query types use the same values as data types, with 
a few additional values (e.g., AXFR, IXFR, and *). They can be used in the ques-
tion section we described previously. Meta types designate transient data associ-
ated with a particular single DNS message. The OPT RR is the only meta type we 
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discuss in this chapter (all others are covered in Chapter 18). The most common 
data-type RRs include A, NS, SOA, MX, CNAME, PTR, TXT, AAAA, SRV, and 
NAPTR. The NS records are used to relate the DNS name space to the servers that 
perform resolution, and they contain the names of authoritative name servers for 
a zone. The A and AAAA records are used to provide an IPv4 or IPv6 address, 
respectively, given a particular name. The CNAME record provides a way to have 
an alias for another domain name. SRV and NAPTR records help applications to 
discover the location of servers supporting particular services, and to use alterna-
tive naming schemes (beyond DNS) to access such services. We shall explore each 
of these record types in the following sections. 

11.5.6.1 Address (A, AAAA) and Name Server (NS) Records 
Arguably, the most important records within DNS are the address (A, AAAA) and 
name server (NS) records. The A records contain 32-bit IPv4 addresses, and AAAA 
(called “quad-A”) records contain IPv6 addresses. An NS record contains the name 
of an authoritative DNS server that contains information for a particular zone. 
Because the name of a DNS server alone is not sufficient to perform a query, the 
IP address(es) of these servers is also typically provided as a so-called glue record 
in the additional information section of DNS responses. Indeed, such glue records 
are required to avoid loops whenever the names of the authoritative name servers 
use the same domain name for which they are authoritative. (Consider how ns1.
example.com would be resolved if the name server for example.com was ns1.
example.com.) We can see the structure of A, AAAA, and NS records using the 
dig tool provided on most Linux/UNIX-like systems. Here, we make a request for 
records of any type associated with the domain name rfc-editor.org:

Linux% dig +nostats -t ANY rfc-editor.org  

; <<>> DiG 9.6.0-P1 <<>> +nostats -t ANY rfc-editor.org 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53052 
;; flags: qr rd ra; QUERY: 1, ANSWER: 12, AUTHORITY: 0, ADDITIONAL: 2 

;; QUESTION SECTION: 
;rfc-editor.org.   IN ANY 

;; ANSWER SECTION: 
...
rfc-editor.org.  1654 IN AAAA 2001:1890:1112:1::2f 
rfc-editor.org.  1654 IN A 64.170.98.47
rfc-editor.org.  1654 IN NS ns0.ietf.org. 
rfc-editor.org.  1654 IN NS ns1.hkg1.afilias-nst.info. 
...
;; ADDITIONAL SECTION:
ns0.ietf.org.     756   IN    A     64.170.98.2
ns0.ietf.org.     756   IN    AAAA  2001:1890:1112:1::14



ptg999

530 Name Resolution and the Domain Name System (DNS)  

In the command’s output, the first two lines indicate the version of the dig
program being used and the options provided to it, plus implied options (+cmd
means that this information itself should be printed). The next portion indicates 
data in the DNS reply message: the QUERY opcode, NOERROR status indicating no 
errors were encountered, and a transaction ID of 53052. In the OpCode field, QUERY
is used for both queries and responses. Next, the flags line indicates that the mes-
sage is a query response (qr flag) and not a query and that recursion was desired in 
the original query (rd flag) and is provided by the responding server (ra flag). The 
message contains a section with one query, and 12 resource records in the answer 
section (only 4 are shown). There are no RRs in the authority section, meaning that 
this response is likely from a caching server (the RRs are not authoritative). Differ-
ent results might be obtained by interacting with different servers. The additional 
information section contains IPv4 and IPv6 addresses for one of the authoritative 
servers, should we wish to contact it. The question section contains a copy of our 
original query: type ANY for domain name rfc-editor.org. 

Among the four RRs in the answer section shown, we find one A type, one 
AAAA type, and two NS types. From this information we can see that the domain 
name rfc-editor.org is a host with IPv4 address 64.170.98.47 and IPv6 
address 2001:1890:1112:1::2f. It is also a subdomain, as indicated by the pres-
ence of the NS records. We can quickly guess and verify that there is at least one 
host in this subdomain using the following command: 

Linux% host ftp.rfc-editor.org
ftp.rfc-editor.org has address 64.170.98.47 

This example indicates a few interesting aspects of A, AAAA, and NS records. 
First, it is possible for a single domain name to have records of each of these types 
(and more). This is fairly common for IPv6-capable servers that are the “well-
known” servers for a particular organization. We can also see that each record has 
a TTL value, and they differ considerably, except for those in the same RRSet. The 
TTL for the records in the answer section is 1654s (about half an hour), and the 
TTL for records in the additional information section is 756s (about 12 minutes). 
Note that the TTL value of a cached record is never more than the TTL of the same 
record retrieved from the authoritative source. TTLs for cached records “decay” 
until the record is retrieved again from an authoritative server. As a result, retriev-
ing a cached record multiple times from the same server usually shows a decreas-
ing TTL value. 

11.5.6.2 Example
Now that we have seen the DNS message format, transport protocol options, and 
RR types for basic queries and responses, let us see an example. We start with a 
simple case to see the communication between a resolver on a client, a local name 
server, and a remote name server managed by an ISP. This scenario demonstrates 
the importance of caching in DNS. The topology is shown in Figure 11-9. 
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Figure 11-9  A simple DNS query/response example. The local DNS server (GW.HOME) provides recursion to 
the client (A.HOME), and uses the DNS server provided at the ISP when requested data is not pres-
ent in the cache. 

On our Windows client (A.HOME) we begin with a command that removes 
any DNS data cached by the resolver libraries. We then perform a query for the 
address (A record type) of the domain name berkeley.edu: 

C:\> ipconfig /flushdns
Windows IP Configuration 

Successfully flushed the DNS Resolver Cache. 

C:\> nslookup
Default Server:  gw 
Address:  10.0.0.1 

> set type=a 
> berkeley.edu.
Server:  gw 
Address:  10.0.0.1 

Non-authoritative answer: 
Name:    berkeley.edu 
Address:  169.229.131.81 

The first command is specific to Windows and removes data cached by the cli-
ent’s resolver software. The nslookup program, available on both Windows and 
Linux/UNIX-based systems, provides a basic way to query the DNS for specific 
data. Upon execution, it indicates which name server it is using for resolution (here 
the server is gw at the address 10.0.0.1). Using the set command, we arrange to 
query for A records, and then query for the name berkeley.edu.. Once again, 
nslookup indicates which server it uses for the resolution. It then also gives us 
an indication that the answer is nonauthoritative (i.e., it is being provided by a 
caching server) and the requested address is 169.229.131.81. 

To see what happens with the DNS protocol at the packet level, we use Wire-
shark and have a look at the first packet in detail, as shown in Figure 11-10. 
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Figure 11-10  A UDP/IPv4 datagram containing a DNS standard query for the IPv4 address associ-
ated with berkeley.edu.. 

There are two messages in the trace: a standard query and a standard query 
response. In the first message (the query), the source IPv4 address is 10.0.0.120 (a 
DHCP-assigned address at the client; see Chapter 6), and the destination is 10.0.0.1 
(the DNS server). The query is a UDP/IPv4 datagram with source port 56288 (an 
ephemeral port) and destination port 53 (the well-known DNS port). In terms of its 
full encapsulation, the request is an Ethernet frame containing 72 bytes. This size 
can be derived by summing the following parts: Ethernet header (14 bytes), IPv4 
header (20 bytes), UDP header (8 bytes), DNS fixed header (12 bytes), query type (2 
bytes), query class (2 bytes), plus the data labels for berkeley (9 bytes) and edu
(4 bytes), plus the trailing 0 byte. 

Turning to the details of the DNS header, the transaction ID is 0x0002 and 
forms the first 2 bytes of the DNS header, located at the start of the UDP payload. 
Only a single flag (recursion requested, the default) is set, so this message is a 
query. The message contains a standard query with one question. The other sec-
tions are empty. The question itself is for the name berkeley.edu and is seeking 
information of type A (address records) in the IN (Internet) class. After receiv-
ing this message, the name server process running on 10.0.0.1, unable to directly 
respond because it does not know the address, forwards the query to the next 
(upstream) name server it is configured to use. In this particular case, that name 
server is at the address 206.13.28.12 (see Figure 11-11). 

In Figure 11-11 we see a query similar to the one sent by the client, but in this 
case the source IPv4 address is 70.231.136.162 (the ISP-side IPv4 address of GW.HOME). 
The destination address is 206.13.28.12, the IPv4 address of the ISP-provided DNS 
server, and the source port is an ephemeral port on the local DNS server (60961). 
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Figure 11-11  A DNS request generated at GW.HOME being sent to the ISP name server as a conse-
quence of recursion. 

The transaction ID is generated anew and set to 0xb0b8. Note that Wireshark indi-
cates that the response to the query is contained in packet number 2.

Packet 2 in Figure 11-12 is the first DNS response we have seen. First, we note 
that the UDP source port number is 53, but the destination port is the ephemeral 
port number 60961. The transaction ID matches the query (0xb0b8), but the Flags
field now contains the value 0x8180 (response, recursion requested, and recursion 
available are all set). The question section contains a copy of the question for which 
answers are being provided and typically matches the original query sent by the 
client exactly (e.g., case is preserved). There is one RR in the answer section. It is of 
type A (address), has a TTL of 10 minutes and a data length of 4 bytes (the size of 
an IPv4 address), and the value is 169.229.131.81, the IPv4 address we requested for 
berkeley.edu. Note that the authority flag is not set, and the authority section of 
the reply is empty. This response is based upon cached data; it is not authoritative 
for the domain. At this point, the local name server also caches the value (but only 
for up to 10 minutes as specified by the TTL in the RR it received) and responds to 
the requesting client (see Figure 11-13).

The response in Figure 11-13, packet 2, is much like the one from 206.13.28.12, 
except it is now sent from 10.0.0.1 to our original client at 10.0.0.120, and the trans-
action ID matches the one in the original DNS request. Note also that from the cli-
ent’s point of view the entire round-trip time of the transaction was about 14.7ms, 
but we know that most of that time (14.2ms) was taken up in the transaction 
between the local name server (GW.HOME) and the ISP’s name server (206.13.28.12). 
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11.5.6.3 Canonical Name (CNAME) Records 
The CNAME record stands for canonical name record and is used to introduce an 
alias for a single domain name into the DNS naming system. For example, the 
name www.berkeley.edu may have a CNAME record that maps to some other 
machine (e.g., www.w3.berkeley.edu), so that if the Web server is located at a 
different computer, a relatively simple change to the DNS database may be all that 
is required for the rest of the world to find the new system. It is now common prac-
tice to use CNAME records to establish aliases for common services. As a result, 
names such as www.berkeley.edu, ftp.sun.com, mail.berkeley.edu, and 
www.ucsd.edu are all CNAME entries in the DNS that refer to other RRs. 

Within a CNAME RR, the RDATA section contains the “canonical name” asso-
ciated with the domain name (alias). Such names use the same type of encoding as 
other names (e.g., data labels and compression labels). When a CNAME RR is pres-
ent for a particular name, no other data is permitted [RFC1912] (unless DNSSEC 

Figure 11-12  A standard DNS response sent from the ISP’s DNS server back to GW.HOME. 

www.berkeley.edu
www.w3.berkeley.edu
www.berkeley.edu
www.ucsd.edu
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is in use; see Chapter 18). Domain names of CNAME RRs may not be used in all 
places that regular domain names can (e.g., as the target of an NS RR). Also, the 
canonical name may itself be a CNAME (called CNAME chaining), but this is usu-
ally discouraged, as it can cause DNS resolvers to make more queries than would 
otherwise be necessary. Nonetheless, there are certain services that make use of 
this feature. For example, the high-volume site www.whitehouse.gov (at the time 
of writing) uses a content delivery network (CDN)2 provided by the Akamai Corpora-
tion. When we look up this domain name, we find the following: 

Linux% host –t any www.whitehouse.gov 
www.whitehouse.gov is an alias for www.whitehouse.gov.edgesuite.net. 
Linux% host –t any www.whitehouse.gov.edgesuite.net
www.whitehouse.gov.edgesuite.net is an alias for a1128.h.akamai.net. 
Linux% host –t any a1128.h.akamai.net 
a1128.h.akamai.net has address 92.123.65.42
a1128.h.akamai.net has address 92.123.65.51

2. A content delivery network typically includes a number of synchronized content caches located in 
particular topological locations in the network. CDNs attempt to minimize latency for consumers 
accessing content in exchange for payment from content providers. 

Figure 11-13  A response generated by GW.HOME and destined for the client. This message completes 
the recursive DNS transaction. 

www.whitehouse.gov
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Thus, CNAME chains can be used with DNS. However, because of their 
potential performance impact, such chains are often limited by resolvers to a few 
“links” (such as five). Long chains are likely the result of an error in execution or 
a misunderstanding, as it is hard to imagine why they should be necessary under 
normal circumstances. 

Note

There is a standard resource record called DNAME (type 39) [RFC2672][IDDN]. 
DNAME records act like CNAME records but for an entire zone. For example, 
all names of the form NAME.example.com could be mapped to NAME.newex-
ample.com using a single DNAME resource record. However, DNAME records 
do not apply to the top-level record itself (example.com here).

11.5.6.4 Reverse DNS Queries: PTR (Pointer) Records 
Although the most critical function of DNS is to provide mappings from names 
to IP addresses, there are many circumstances where the reverse mapping is 
required. For example, a server receiving an incoming TCP/IP connection request 
is able to ascertain the source IP address of the connection from the incoming IP 
datagram, but the name(s) corresponding to the address are not carried in the con-
nection itself; such name(s) must be looked up in some other way. Fortunately, a 
clever use of the DNS can provide this capability. 

The PTR RR type is used in response to reverse DNS queries, which are typi-
cally necessary when converting an IP address to a name. This uses the special 
in-addr.arpa (ip6.arpa for IPv6) domain, in a special way. Consider an IPv4 
address such as 128.32.112.208. In the classful address structure (see Chapter 2), 
this address is taken from the 128.32 class B address space. To determine the name 
corresponding to this address, the address is first reversed, and then the special 
domain is added. In this example, a query for a PTR record using the name 

208.112.32.128.in-addr.arpa.

would be used. In effect, this is a query for the “host” 208 in the “domain” 
112.32.128.in-addr.arpa.. We shall see more examples of reverse DNS que-
ries later in this section. 

Note

The regular DNS name space, which usually uses NS, A, and AAAA records, 
is not automatically linked with the “reverse” name space supported by PTR 
records. Thus it is possible (and even relatively common) to have an existing 
forward resolution that does not have a corresponding reverse mapping set up 
(or has a different one). Some services check to see that both directions are set 
up with equivalent mappings and may deny service under such circumstances.
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Recall that IPv4 addresses are typically written in the “dotted-decimal” for-
mat and IPv6 addresses are written in the hex format (e.g., 169.229.131.81 and 
2001:503:a83e::2:30, respectively). These addresses can be thought of as names 
existing in a left-to-right hierarchy. For example, the address 169.229.131.81 has 
the top-down hierarchy (reading left to right) 169, 229, 131, 81. By reversing the 
dotted-decimal IPv4 address and treating it as a DNS name, we can employ DNS 
to perform the mapping from IP address to name(s). So, the name 81.131.229.169 
would effectively be the reversal of the IPv4 address 169.229.131.81. For IPv6, the 
scheme is similar, but any suppressed zeros are expanded, and each hexadecimal 
digit becomes a character. For example, the reversal of 2001:503:a83e::2:30 would 
be 0.3.0.0.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.e.3.8.a.3.0.5.0.1.0.0.2. Fortunately, users rarely 
have to type in these names directly. 

As mentioned previously, the special domains .in-addr.arpa (for IPv4) and 
.ip6.arpa (for IPv6) are used in conjunction with the PTR (“pointer”) RR type in 
support of these types of names and reverse DNS lookups. For example, consider 
the following commands: 

C:\> nslookup 
Default Server:  gw 
Address:  10.0.0.1  
> server c.in-addr-servers.arpa
Default Server:  c.in-addr-servers.arpa 
Address:  196.216.169.10 
> set type=ptr 
> 81.131.229.169.in-addr.arpa. 
Server:  c.in-addr-servers.arpa 
Address: 196.216.169.10 

169.in-addr.arpa  nameserver = w.arin.net 
169.in-addr.arpa  nameserver = t.arin.net 
169.in-addr.arpa  nameserver = dill.arin.net 
169.in-addr.arpa  nameserver = x.arin.net 
169.in-addr.arpa  nameserver = z.arin.net
169.in-addr.arpa  nameserver = y.arin.net
169.in-addr.arpa  nameserver = u.arin.net 
169.in-addr.arpa  nameserver = v.arin.net 

This example shows how the .in-addr.arpa domain is set up. According 
to [RFC5855], the in-addr-servers.arpa and ip6-servers.arpa domains 
are used in forming the domain names associated with the servers that provide 
reverse DNS mappings for IPv4 and IPv6, respectively. As of 2011, there are five 
such servers for each version of IP: X.in-addr-servers.arpa and X.ip6-
servers.arpa, where X is any letter a through f (inclusive).

Although the ten servers we have mentioned contain authoritative data for 
reverse mappings, they do not contain the information we are looking for. In our 
example, the first server contacted instead told us to contact one of the eight name 
servers maintained by ARIN, the American Registry for Internet Numbers, which 
is authoritative for IPv4 addresses that start with 169. If we in turn contact one 
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of these servers, we find that a PTR query for 81.131.229.169.in-addr.arpa.
gives the following response: 

> server w.arin.net 
Default Server: w.arin.net 
Address: 72.52.71. 2
Default Server: w.arin.net 
Address: 2001:470:1a::2 
> 81.131.229.169.in-addr.arpa. 
Server:  w.arin.net 
Address: 72.52.71.2 

229.169.in-addr.arpa nameserver = adns1.berkeley.edu. 
229.169.in-addr.arpa nameserver = phloem.uoregon.edu. 
229.169.in-addr.arpa nameserver = aodns1.berkeley.edu. 
229.169.in-addr.arpa nameserver = adns2.berkeley.edu. 

Here we can surmise that the network prefix 169.229/16 is owned by an educa-
tional institution called Berkeley, that the campus maintains three name servers 
covering its in-addr.arpa space, and that the University of Oregon also pro-
vides a copy. Continuing by contacting one of these servers, we find our answer 
(this time using the Linux version of nslookup with slightly different output): 

Linux% nslookup
> set type=ptr
> server adns1.berkeley.edu
Default Server:  adns1.berkeley.edu 
Address:  128.32.136.3#53
Default Server:  adns1.berkeley.edu 
Address:  2607:f140:ffff:fffe::3#53
> 81.131.229.169.in-addr.arpa.
Server:  adns1.berkeley.edu 
Address: 128.32.136.3#53 

81.131.229.169.in-addr.arpa     name = webfarm.Berkeley.EDU 

Here we obtain the result we were looking for, that the IPv4 address 
169.229.131.81 has the name webfarm.Berkeley.EDU. The DNS server uses 
port 53, as indicated by the #53 following the IP addresses. This output makes 
it obvious that accessing the DNS with UDP/IPv4 (as opposed to UDP/IPv6) can 
still provide mappings for IPv6 addresses using “quad-A” (AAAA) DNS records 
because we can see that the IPv6 address of the server is 2607:f140:ffff:fffe::3. 

If there were not a separate branch of the DNS tree for handling the address-
to-name translation, there would be essentially no way to do the reverse transla-
tion other than starting at the root of the tree and trying every top-level domain. 
This is clearly an unreasonable option, given the current size of the Internet. The 
in-addr.arpa solution is effective and fairly efficient, although the reversed 
bytes of the IPv4/IPv6 address and the special domains can be confusing. 
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Fortunately, as mentioned before, users can typically avoid having to type or refer 
to them. Even application writers do not typically have to manipulate addresses 
to perform reverse queries, as library functions (such as the C library function 
getnameinfo()) perform this task. 

It is worth mentioning here that PTR queries have become a significant con-
cern for the global DNS servers. Consider a home network using one of the pri-
vate address prefixes such as 10.0.0.0/8 (IPv4) or fc00:/7 (IPv6). When a system 
receives an incoming connection request from another system on the same pri-
vately addressed subnet, it may wish to resolve the source address to a name and 
does so by performing a PTR query. If the query is not answered by the local DNS 
server, it will likely propagate to the global Internet. For this reason (and a few 
others), [RFC6303] specifies that local name servers—especially those operating 
in networks using private IP addressing that are attached to the Internet—provide 
PTR mappings for the private address space defined in [RFC1918] for IPv4 and 
[RFC4193] for IPv6 (i.e., in IN-ADDR.ARPA and D.F.IP6.ARPA, respectively).

11.5.6.5 Classless in-addr.arpa Delegation 
When organizations join the Internet and obtain authority to fill in a portion of 
the DNS name space, they often also obtain authority for a portion of the in-
addr.arpa name space corresponding to their IPv4 addresses on the Internet. In 
the case of UC Berkeley, authority includes the network prefix 169.229/16, which, 
using older terminology, is “class B” network number 169.229. Thus, UC Berkeley 
would be expected to populate a portion of the DNS tree with PTR records using 
names ending in 229.169.in-addr.arpa. This works fine for cases where the 
address prefix assigned to the organization is one of the older class A, B, or C 
styles where the number of bits is an integral multiple of 8. However, many orga-
nizations today are given prefix lengths of greater than 24 bits or greater than 16 
bits (but less than 24). In these cases, the address range is not easily written as a 
simple reversal of the IP address. Instead, some method of conveying the network 
prefix length must be included as well. 

The standard method for implementing this, given by [RFC2317], is to append 
the length of the prefix to the reversed octets and use it as the first label in the 
domain name. For example, assume that a site is assigned the prefix 12.17.136.128/25, 
a prefix that includes 128 addresses. According to [RFC2317], two types of records 
should be provided. First, for each name of the form X.136.17.12.in-addr.arpa
(where X is at least 128 and not more than 255), a CNAME RR is created, likely 
maintained by a site’s ISP, according to the following pattern: 

128.136.17.12.in-addr.arpa. canonical name = 
                            128.128/25.136.17.12.in-addr.arpa. 
129.136.17.12.in-addr.arpa. canonical name = 
                            129.128/25.136.17.12.in-addr.arpa. 
... 
255.136.17.12.in-addr.arpa. canonical name = 
                            255.128/25.136.17.12.in-addr.arpa. 
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Here we can see how the network prefix is encoded, with the / notation asso-
ciated with the second label in the domain name (for this example). These entries 
are typically placed by an ISP and allow for delegations on non-byte-aligned 
address ranges. In this example, the customer is now able to provide mappings 
for the zone 128.128/25.136.17.12.in-addr.arpa. We can trace the delegation 
as follows: 

C:\> nslookup 
Default Server:  gw 
Address:  10.0.0.1 
> server f.in-addr-servers.arpa 
Default Server:  f.in-addr-servers.arpa 
Addresses:  193.0.9.1 
> set type=ptr 
> 129.128/25.136.17.12.in-addr.arpa. 
Server:  f.in-addr-servers.arpa 
Address:  193.0.9.1 
12.in-addr.arpa nameserver = dbru.br.ns.els-gms.att.net 
12.in-addr.arpa nameserver = cbru.br.ns.els-gms.att.net 
12.in-addr.arpa nameserver = cmtu.mt.ns.els-gms.att.net 
12.in-addr.arpa nameserver = dmtu.mt.ns.els-gms.att.net 
> server dbru.br.ns.els-gms.att.net. 
Default Server:  dbru.br.ns.els-gms.att.net 
Address:  199.191.128.106 

> 129.128/25.136.17.12.in-addr.arpa. 
128/25.136.17.12.in-addr.arpa   nameserver = ns2.intel-research.net 
128/25.136.17.12.in-addr.arpa   nameserver= ns1.intel-research.net 

> server ns1.intel-research.net.
Server:  ns1.intel-research.net 
Address:  12.155.161.131 
> 129.128/25.136.17.12.in-addr.arpa. 

129.128/25.136.17.12.in-addr.arpa      
                     name = dmz.slouter.seattle.intel-research.net 
128/25.136.17.12.in-addr.arpa 
              nameserver = bldmzsvr.berkeley.intel-research.net 
128/25.136.17.12.in-addr.arpa 
              nameserver = sldmzsvr.intel-research.net 
bldmzsvr.berkeley.intel-research.net internet address = 12.155.161.131 
sldmzsvr.intel-research.net internet address = 12.17.136.131 

In this example, we wish to find out the name for the host associated with IPv4 
address 12.17.136.129. We have already seen that it has a CNAME RR pointing 
to the canonical name 129.128/25.136.17.12.in-addr.arpa.. We instruct our 
resolver to use one of the root servers (F) and arrange for the query type to be for 
a PTR RR. At this point we request a resolution for 129.128/25.136.17.12.in-
addr.arpa.. The root name server does not have this information, and it does not 
perform recursion, so it returns the name of the authoritative servers for the domain 



ptg999

Section 11.5 The DNS Protocol   541

12.in-addr.arpa.. Picking one of them (DBRU), we again try to resolve our ques-
tion. This time we find two name servers (ns1 and ns2). Picking one of these, we 
are able to resolve the PTR request. It resolves to the name dmz.slouter.seattle
.intel-research.net. 

11.5.6.6 Authority (SOA) Records 
In DNS, each zone has an authority record, using an RR type called start of author-
ity (SOA). These records provide authoritative links between portions of the DNS 
name space and the servers that provide the zone information allowing various 
queries to be performed for addresses and other information. The SOA RR is used 
to identify the name of the host providing the official permanent database, the 
responsible party’s e-mail address (where “.” is used instead of @), zone update 
parameters, and the default TTL. The default TTL is applied to RRs in the zone 
that are not otherwise assigned an explicit per-RR TTL. 

The zone update parameters include a serial number, refresh time, retry time, 
and expire time. The serial number is increased (by at least 1), usually by the 
network administrator, anytime there is a change to the zone contents. It is used 
by secondary servers to determine if they should initiate a zone transfer (when 
they do not have a copy of the zone contents with largest serial number). The 
refresh time tells secondary servers how long to wait before checking the SOA 
record from the primary and its version number to determine if a zone transfer is 
required. The retry and expire times are used in the case of zone transfer failure. 
The retry value gives the time (in seconds) a secondary will wait before retrying. 
The expire time is an upper bound (in seconds) that a secondary server will keep 
retrying zone transfers before giving up. If it gives up, such a server ceases to 
respond to queries for the zone. In general, a zone can contain a mix of IPv4 and 
IPv6 data and can be accessed using either version of IP. In this example, we use 
IPv6 (using nslookup on an IPv6-only Windows host): 

C:\> nslookup 
Default Server:  gw 
Address:  fe80::204:5aff:fe9f:9e80 

> set type=soa 
> berkeley.edu. 
Server:  gw 
Address:  fe80::204:5aff:fe9f:9e80 

Non-authoritative answer: 
berkeley.edu 
        primary name server = ns-master1.berkeley.edu 
        responsible mail addr = hostmaster.berkeley.edu 
        serial  = 2009050116 
        refresh = 10800 (3 hours) 
        retry   = 1800 (30 mins) 
        expire  = 3600000 (41 days 16 hours) 
        default TTL = 300 (5 mins) 
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> server adns1.berkeley.edu. 
Default Server:  adns1.berkeley.edu 
Addresses:  2607:f140:ffff:fffe::3 
          128.32.136.3 

> berkeley.edu. 
Server:  adns1.berkeley.edu 
Addresses:  2607:f140:ffff:fffe::3 
          128.32.136.3 

berkeley.edu 
        primary name server = ns-master1.berkeley.edu 
        responsible mail addr = hostmaster.berkeley.edu 
        serial  = 2009050116 
        refresh = 10800 (3 hours) 
        retry   = 1800 (30 mins) 
        expire  = 3600000 (41 days 16 hours) 
        default TTL = 300 (5 mins) 
berkeley.edu    nameserver = ns.v6.berkeley.edu 
berkeley.edu    nameserver = aodns1.berkeley.edu 
berkeley.edu    nameserver = adns2.berkeley.edu 
berkeley.edu    nameserver = phloem.uoregon.edu 
berkeley.edu    nameserver = adns1.berkeley.edu 
berkeley.edu    nameserver = ucb-ns.NYU.edu 
ns.v6.berkeley.edu      internet address = 128.32.136.6 
ns.v6.berkeley.edu      AAAA IPv6 address = 2607:f140:ffff:fffe::6 
adns1.berkeley.edu      internet address = 128.32.136.3 
adns1.berkeley.edu      AAAA IPv6 address = 2607:f140:ffff:fffe::3 
adns2.berkeley.edu      internet address = 128.32.136.14 
adns2.berkeley.edu      AAAA IPv6 address = 2607:f140:ffff:fffe::e 
aodns1.berkeley.edu     internet address = 192.35.225.133 
aodns1.berkeley.edu     AAAA IPv6 address = 
                                 2607:f010:3f8:8000:214:4fff:fe45:e6a2 
phloem.uoregon.edu      internet address = 128.223.32.35 
phloem.uoregon.edu      AAAA IPv6 address = 2001:468:d01:20::80df:2023 

Here we can see that not only did we receive the SOA record, but we also 
received a list of six authoritative name servers, and the IPv4/IPv6 addresses (glue 
records) for five of them (the address for the NYU server is not given, as glue 
records for NYU.edu would be in a different zone supported by a different server). 
As this is one of the more interesting responses we have seen, let us look at the 
packet contents corresponding to the request sent to the authoritative name server, 
adns1.berkeley.edu (see Figure 11-14). 

This trace contains two packets, and we have chosen to display the reply, 
which is the more interesting of the two. A query for an SOA RR was sent to the 
host 2607:f140:ffff:fffe::3 (adns1.Berkeley.EDU) from the local system’s globally 
scoped IPv6 address 2001:5c0:1101:ed00:5571:5f81:e0a6:4978. The response is car-
ried in an IPv6 datagram with 491 bytes total length (the Payload Length field is 
451). This particular packet contains the IPv6 header (40 bytes), UDP header (8 
bytes), plus the DNS message (443 bytes). The DNS message includes one ques-
tion, one answer, six authority RRs, and ten additional RRs. 
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Figure 11-14  Response to a DNS query for an SOA record using IPv6. The response includes IPv4 and IPv6 addresses for the zone. 



ptg999

544 Name Resolution and the Domain Name System (DNS)  

The question section contains the labels berkeley and edu and is 18 bytes 
long. The answer section contains the relevant information for the berkeley.
edu domain described earlier and is able to take advantage of compression labels 
thanks to the contents of the question section. The total length for this section is 58 
bytes. The authority section contains six NS records identifying name servers. This 
information takes another 135 bytes. The additional information section includes 
five A records and five AAAA records for a total of 220 bytes. The size of the 
RDATA field for each AAAA record is 16 bytes, so although the IPv6 address can 
be written in textual form with the :: convention to save space, it is not encoded 
this way in the packet. Instead, the full 128 bits of the address are used.

11.5.6.7 Mail Exchanger (MX) Records 
An MX record provides the name of a mail exchanger—a host willing to engage 
in the Simple Mail Transfer Protocol (SMTP) [RFC5321] to receive incoming e-mail 
on behalf of users associated with a domain name. When the Internet was still 
developing, some sites did not have permanent connections but instead would 
dial up and connect to hosts that did have permanent Internet connections. In 
such scenarios, the e-mail destination might be disconnected from the network 
when e-mail was in transit, so another host would hold on to the mail until the 
destination was attached. This was one motivation for the inclusion of MX records 
in the DNS—to allow sending hosts to deliver e-mail to an intermediary (“relay 
server”) even if the true destination was not available. Today, MX records are still 
used, and mail agents prefer to deliver e-mail to the host(s) listed in an MX record 
associated with a particular domain name. 

MX records include a preference value, so that more than one MX record may 
be present for a particular domain name. The preference value allows a sending 
agent to sort the hosts in preference order (smaller is more preferable) in deciding 
which host to use as an e-mail destination. For example, we can use the host com-
mand again to query the DNS for MX records associated with the domain name 
cs.ucla.edu: 

Linux% host –t MX cs.ucla.edu ns3.dns.ucla.edu 
Using domain server: 
Name: ns3.dns.ucla.edu 
Address: 2607:f600:8001:1::ff:fe01:35#53 
Aliases:  

cs.ucla.edu mail is handled by 13 Pelican.cs.ucla.edu. 
cs.ucla.edu mail is handled by 3 Moa.cs.ucla.edu. 
cs.ucla.edu mail is handled by 13 Mailman.cs.ucla.edu. 

Here we can see that an e-mail addressed to person@cs.ucla.edu is han-
dled by one of three mail servers configured in the DNS. All of these mail servers 
are part of the cs.ucla.edu domain, but in general mail servers do not have to be 
named with the same domain as the e-mail they are handling. These three servers 
can be grouped into two parts: one with preference 3 and one set with preference 
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13. The server with the smaller preference number is preferred, so the sender first 
tries Moa.cs.ucla.edu. If that fails, it tries either Pelican or Mailman, selected 
at random. 

It is possible that none of the MX record target hosts is reachable. This is an 
error condition. It is also possible that there are no MX records present, but there 
are CNAME, A, or AAAA records for the domain name. If there is a CNAME 
record, the target of the CNAME is used in place of the original domain name. If 
there are A or AAAA records, the mail agent may connect to these addresses. Each 
is considered to have a preference of zero (called implicit MX). MX record targets 
must be domain names that resolve to A or AAAA records; they cannot point to 
CNAMEs [RFC5321]. 

11.5.6.8  Fighting Spam: The Sender Policy Framework (SPF) and Text (TXT) 
Records 

For outgoing e-mail, MX records allow the DNS to help determine the names of 
mail relays and servers for a domain. More recently, the DNS has been leveraged 
by receiving mail agents to determine which relaying or sending mail servers are 
authorized to send mail from a particular domain name. This is used to help com-
bat spam (unwanted e-mail) that is sent by a rogue mail agent pretending to be an 
authorized mail sender. 

E-mail received by a mail server is rejected, stored, or forwarded to another mail 
server. Rejection can happen for a number of reasons, such as a protocol error or lack 
of available storage space at the receiver. It can also be rejected because the sending 
mail client does not appear to be the proper one for sending e-mail. This capability 
is supported by the Sender Policy Framework (SPF) and documented in [RFC4408], an 
experimental RFC. There is another framework known as Sender ID [RFC4406] that 
incorporates SPF’s functions. It is also experimental but less widely deployed.

Version 1 of SPF uses DNS TXT or SPF (type 99) resource records. Records are 
set up and published in the DNS by a domain’s owner to indicate which servers 
are authorized to send mail originating from the domain. Although the SPF record 
type is a more “proper” place to carry SPF-related information in some sense, some 
DNS client implementations do not process SPF records properly, so to avoid this 
complication TXT records are used. TXT records hold simple strings associated 
with a domain name. Historically they have held strings useful for human con-
sumption, to aid in debugging or identifying the owner or location of a domain. 
Today, they are usually processed by programs such as the SPF application. 

SPF supports a rich syntax to express criteria used to match against details 
about an incoming mail message and the connection in which it is carried. For 
example, UC Berkeley uses the following SPF entry (some lines have been wrapped 
for clarity): 

Linux% host –t txt berkeley.edu
berkeley.edu descriptive text 
       "v=spf1 ip4:169.229.218.128/25 ip6:2607:F140:0:1000::/64     
       include:outboundmail.convio.net ~all" 
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In this example, the information being provided is for SPF version 1 (indicated 
by the v=spf1 string in the version section) and uses a TXT RR. When a receiv-
ing mail agent receives e-mail purportedly coming from the domain berkeley.
edu, it performs a DNS query for records of type TXT against the berkeley.edu
domain. The value of the text record contains the matching criteria (called mecha-
nisms) and other information (called modifiers). Preceding each mechanism is a 
qualifier that determines the consequence of a matching mechanism. Processing 
of SPF records takes place using a function called check_host(). The function 
evaluates various mechanisms and completes when the first matching mechanism 
is encountered. Ultimately, check_host() provides a return value that is one of 
the following: None, Neutral, Pass, Fail, SoftFail, TempError, PermError. The None 
and Neutral return values indicate that no information was available or that infor-
mation was available but that no result is asserted. These are handled identically. 
Pass indicates a match, as described in the next paragraph. Fail indicates that the 
sending host is not authorized to send mail from the domain. SoftFail is some-
what ambiguous but is to be treated “somewhere between a ‘Fail’ and a ‘Neutral,’” 
according to [RFC4408]. The TempError return indicates some transient failure 
(e.g., communication failure) that is likely to abate. The PermError return indicates 
that there was a problem in the SPF configuration, usually due to a malformed 
TXT or SPF record for the domain.

Reading from left to right in the example, the string v=spf1 is a modifier indi-
cating that the SPF version is 1. The ip4 mechanism specifies that the SMTP sender 
has an IPv4 address from the prefix 169.229.218.128/25. The ip6 mechanism 
specifies any sending host with IPv6 address prefix 2607:F140:0:1000::/64. 
Finally, the include mechanism incorporates, by reference, the TXT records with 
outboundmail.convio.net:

Linux% host –t txt outboundmail.convio.net
outboundmail.convio.net descriptive text 
       "v=spf1 +ip4:66.45.103.0/25 +ip4:69.48.252.128/25 
       +ip4:209.163.168.192/26 ~all"
outboundmail.convio.net descriptive text 
       "spf2.0/pra 
       +ip4:66.45.103.0/25 +ip4:69.48.252.128/25  
       +ip4:209.163.168.192/26 ~all"

Note that these TXT records are used for both SPF and for Sender ID (which 
uses the value of spf2.0/pra in the version section). The first record is used 
by SPF. The + qualifier indicates that a match results in a Pass indication. Any 
mechanism missing a qualifier is assumed to have the + qualifier. Other possible 
qualifiers include – (Fail), ~ (Soft Fail), and ? (Neutral). If none of the match-
ing mechanisms produces a Pass result, the final mechanism (all) matches any 
condition. The tilde character (~) before the all criterion indicates that a SoftFail 
return should be generated if all is the only matching mechanism. The exact way 
a soft failure is handled is dependent on the receiving e-mail software. Note that 
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even with SPF support, validation is provided only on the sending domain and 
system, and not on the sending user. In Chapter 18 we will look at DKIM, which 
provides SPF-like capabilities but uses cryptography for authentication. 

11.5.6.9 Option (OPT) Pseudo-Records 
In conjunction with EDNS0, described previously, a special OPT pseudo-RR has 
been defined [RFC2671]. It is “pseudo” in the sense that it pertains only to the 
contents of a single DNS message and is not conventional DNS RR data. Conse-
quently, OPT RRs are not cached, forwarded, or persistently stored, and they may 
appear only once (or not at all) in a DNS message. If one is present in a DNS mes-
sage, it is found in the additional information section. 

An OPT RR contains a 10-byte fixed portion followed by a variable portion. 
The fixed portion includes 16 bits indicating the RR type (41), 16 bits indicating the 
UDP payload size, 32 bits constituting an extended RCODE field and flags area, 
and 16 bits giving the size of the variable portion in bytes. These fields are located 
in the same relative positions as the Name, Type, Class, TTL, and RDLEN fields, 
respectively, in a conventional RR (see Figure 11-8). OPT RRs use a null domain 
name in the Name field (0 bytes). The extended RCODE and Flags area (32 bits, cor-
responding to the TTL field in Figure 11-8) is subdivided into an 8-bit area to hold 
an extra 8 high-order bits augmenting the RCODE field in Figure 11-3, and an 8-bit 
Version field (currently set to 0 to indicate EDNS0). The remaining 16 bits are not 
yet defined and must be 0. The additional 8 bits provide an extended set of pos-
sible DNS error types, and these values are given in Table 11-4. (Note that value 16 
is defined by two distinct RFCs.)

Table 11-4  Extended RCODE values. Most are used to support security extensions.

Value Name Reference Description and Purpose

16 BADVERS [RFC2671] Bad EDNS version
16 BADSIG [RFC2845] Bad TSIG signature (see Chapter 18)
17 BADKEY [RFC2845] Bad TSIG key (see Chapter 18)
18 BADTIME [RFC2845] Bad TSIG signature (time problem; see Chapter 18)
19 BADMODE [RFC2930] Bad TKEY mode (see Chapter 18)
20 BADNAME [RFC2930] Duplicate key name (see Chapter 18)
21 BADALG [RFC2930] Algorithm not supported (see Chapter 18)

As we have mentioned, OPT RRs contain a variable-length RDATA field. This 
field is used to hold an extensible list of attribute-value pairs. The current set of 
attributes, meanings, and defining RFCs is maintained by the IANA [DNSPAR-
AMS]. One such option, called NSID (EDNS option code 3) [RFC5001], indicates a 
special identifying value for a responding DNS server. The format of this value is 
not defined by standard but is instead configurable by the system administrator 
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of the DNS server. This capability may be useful in circumstances where an any-
cast address is used to identify a group of servers. The NSID is able to identify a 
specific responding server using a value other than the sending IP address. We 
shall see more examples of OPT RRs and EDNS0 usage when we look at DNSSEC 
in Chapter 18.

11.5.6.10 Service (SRV) Records 
[RFC2782] defines the service (SRV) resource record. SRV RRs generalize the MX 
record format to describe the host, protocols, and port numbers used to contact a 
particular service. An SRV RR is ordinarily structured as follows: 

_Service._Proto.Name TTL IN  SRV    Prio    Weight    Port    Target 

The Service identifier is the official name of a service. The Proto identifier 
is the transport protocol used to access the service, usually TCP or UDP. The TTL 
value is a conventional RR TTL, and IN and SRV indicate the Internet class and 
SRV RR type, respectively. The Prio value is a 16-bit unsigned value and works 
like the priority value in MX records (lower numbers represent higher priorities). 
The Weight value is used to choose an RR among several whose priority values 
are equal. The idea is that the weight is to be used as a weighted probability to 
select the particular entry for load balancing, so larger weights indicate a greater 
probability of selection. The Port is the TCP or UDP (or other transport protocol’s) 
port number. The Target is the domain name of the target host where the ser-
vice is being provided. The Name identifier is the containing domain in which a 
particular service is to be found. One of the purposes of SRV records is to identify 
when multiple individual servers in a domain support the same service. 

For example, if a client would like to determine the host and port where the 
ldap service is available using the TCP protocol in the domain example.com, 
it would perform a query for SRV records using the domain name _ldap._tcp
.example.com. Here is a real-world example: 

Linux% host –t srv _ldap._tcp.openldap.org
_ldap._tcp.openldap.org has SRV record 0 0 389 www.openldap.org. 

In this example, we are looking for a server providing the Lightweight Direc-
tory Access Protocol (LDAP) [RFC4510] service over TCP within the domain 
openldap.org. We find that it can be accessed at the server www.openldap.org
using TCP port 389 (the default LDAP port). The Priority and Weight values 
are 0, as there are no alternative servers. 

 [RFC2782] did not specify a new IANA registry for SRV Service and Proto
values. So, by default, the names correspond to the names maintained in IANA’s 
“Service Name and Transport Protocol Port Number” registry [ISPR], and the Proto
values are either _tcp or _udp. There are a few exceptions, however. [RFC5509] 
establishes conventions for SIP-based presence and instant messaging using the 

www.openldap.org


ptg999

Section 11.5 The DNS Protocol   549

following SRV Service and Proto names: _im._sip and _pres._sip. [RFC6186] 
defines the following SRV Service names for e-mail user agents to easily discover 
the contact information for IMAPS, SMTP, IMAP, and POP3 servers (the first two are 
ordinarily preferred when setting up an an e-mail client): _ submission, _imap, 
_imaps, _pop3, _pop3s. Although [RFC6186] doesn’t require these names to use 
TCP as the corresponding Proto value, this is currently the only real option. For 
example, a user configuring a new mail user agent (MUA, essentially an e-mail pro-
gram) might specify only the domain example.com. The MUA implementation 
would then likely perform DNS queries for at least _submission._tcp. example.
com and _imaps._tcp.example.com.

11.5.6.11 Name Authority Pointer (NAPTR) Records 
The Name Authority Pointer (NAPTR) RR type is used when DNS supports a 
Dynamic Delegation Discovery System (DDDS) [RFC3401]. A DDDS is a general, 
abstract algorithm for applying dynamically retrieved string transformation rules 
to strings provided by applications and using the results, most often, for locating 
resources. Each DDDS application customizes the operation of the general DDDS 
rules for its particular use case. A DDDS includes a rules database and a set of 
algorithms for forming strings that are used with the database to produce output 
strings. DNS is one such database [RFC3403], and with it the NAPTR resource 
record type is used to hold the transformation rules. One such DDDS application 
has been defined for use with DNS to handle multinational telephone numbers 
and convert them to a standard Uniform Resource Identifier (URI) format [RFC3986] 
using ENUM (see Section 11.5.6.12).  

In a DDDS, an algorithm [RFC3402] directs how an application-unique string
(AUS) is processed by rules contained in a database. The result can be either a 
terminal string (complete output) or another (nonterminal) string used to retrieve 
another rule that is applied to the AUS. In all, the collection forms a powerful 
string rewriting system that can be used to encode nearly anything that has a suf-
ficiently regular syntax. The essence of this algorithm is captured in Figure 11-15. 

The process illustrated in Figure 11-15 starts by applying the first Well-Known 
Rule to the AUS, which is uniquely identified for each application. The result forms 
a key used to retrieve another rule from a database. Rules are string-rewriting pat-
terns and flags that are applied to the AUS, but never to the result of a rewritten 
string. The particular way this works is dependent on the application, but usu-
ally the rules are regular expression substitutions, similar to those used with the 
UNIX sed program [DR97]. When using the DNS as a database for supporting a 
DDDS [RFC3403], the case in which we are interested, the keys are domain names 
and the rules are stored in NAPTR resource records. Each NAPTR RR contains 
the following fields: Order, Preference, Flags, Services, Regular Expression (sometimes 
abbreviated Regexp), and Replacement. 

The Order field is a 16-bit unsigned integer specifying which NAPTR record to 
use before others (lower numbers are preferred to higher ones), as the DNS archi-
tecture does not guarantee the ordering of any particular set of resource records. 
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The Preference field is used to influence the order of records containing the same 
order number. The Order field is supposed to place a mandatory ordering on RRs, 
whereas the preference number is advisory. The Flags field contains an unor-
dered list of single characters from the set A–Z and 0–9 (case-insensitive). The 
particular application using NAPTR records (e.g., ENUM, described in the next 
section) defines the interpretation of the Flags field. The Services field is defined 
by the application to indicate which type of service is being described. The Regu-
lar Expression field contains a substitution expression that is applied to the AUS 
to form the identity of another server to use for another NAPTR lookup (non- 
terminal case) or the output string (terminal case). The Replacement field (which 
exists only when the Regular Expression does not) indicates the next server to query 

Figure 11-15  Abstract operation of the DDDS algorithm. Non-terminal records are permitted to form 
loops. Each iteration involves a string rewrite operation on the application’s unique 
string. 
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for NAPTR records. It is encoded as a separate FQDN (no name compression is 
used within the DNS message). The uses for these two final (mutually exclusive) 
fields are very similar for historical reasons in the development of the NAPTR RR. 

To get a better sense of how NAPTR processing works with applications, we 
will have a brief look at the ENUM and SIP DDDS applications, the URI/URN 
DDDS applications, and alternatives for regular NAPTR records called S-NAPTR 
and U-NAPTR. Specifying a DDDS entails specifying the application’s AUS, first 
Well-Known Rule, expected output, valid databases, flags, and service parameters. 

11.5.6.12 ENUM and SIP 
In the ENUM DDDS [R06][RFC6116][RFC6117][RFC5483], which is used to map 
phone numbers to URI information, the AUS is an E.164-format telephone number 
(up to 15 digits starting with the + character). The initial + character differentiates 
E.164 numbers acceptable for use with the ENUM DDS from numbers in other 
name spaces. The first Well-Known Rule starts by removing any dashes or other 
non-digit characters in the AUS. The DDDS database is the DNS, where keys are 
domain names created from the AUS (which now consists only of digits) as fol-
lows: dot (.) characters are inserted between each digit and the result is reversed. 
Then, the suffix .e164.arpa is added. For example, the E.164 number +1-415-
555-1212 would be tranformed to the key 2.1.2.1.5.5.5.5.1.4.1.e164.arpa. 
The resulting domain name is used to query for NAPTR records.

The final output, possibly after multiple loops of the DDDS algorithm shown 
in Figure 11-15, is an absolute (not relative) URI. The only flag defined is the U
flag, indicating a terminal rule that produces a URI. The lack of any flag indicates 
a non-terminal rule, sometimes called a non-terminal NAPTR (NTN). The service 
parameters, encoded in the Service field of the NAPTR record, are of the form 
E2U+Service, which derives from the string E2U (an indicator for E.164 to URI) 
plus a Service name subfield providing information about particular services 
associated with the number. Together, they form an enumservice identifier, and such 
services are registered with the IANA [ENUM][RFC6117]. Many have been created, 
including enumservices for fax, instant messaging, and presence indicators. 

To see how this all works, we can construct a query for the number 
+420738511111 at the University of Ostrava in the Czech Republic (lines are 
wrapped for clarity): 

Linux% host -t naptr 1.1.1.1.1.5.8.3.7.0.2.4.e164.arpa 
1.1.1.1.1.5.8.3.7.0.2.4.e164.arpa has NAPTR record 
       50 50 "u" "E2U+sip" "!^\\+(.*)$!sip:\\1@osu.cz!" . 
1.1.1.1.1.5.8.3.7.0.2.4.e164.arpa has NAPTR record 
       100 50 "u" "E2U+sip""!^\\+(.*)$!sip:\\1@cesnet.cz!" . 
1.1.1.1.1.5.8.3.7.0.2.4.e164.arpa has NAPTR record 
       200 50 "u" "E2U+h323" "!^\\+(.*)$!h323:\\1@gk1ext.cesnet.cz!" . 

Here we see the contents of three NAPTR records in the ENUM DDDS application, 
two for the SIP service and one for the H.323 service, used for Internet telephony. 
The order numbers are 50 and 100 for the SIP entries and 200 for the H.323 entry, 
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showing how it is possible using ENUM and NAPTR records to have multiple 
services associated with a single telephone number, and how the provider of the 
NAPTR records can indicate a preferred ordering of more than one gateway pro-
viding the same service.

Note

SIP is an IETF-specified protocol used for signaling and is especially popular for 
facilitating the connection of multimedia clients and servers. H.323 is an ITU-
specified protocol for multimedia conferencing and communication, including a 
signaling sub-protocol. It is widely implemented in teleconferencing equipment. 
In this example and those that follow, the host program produces output that can 
be used as input to a zone file for a DNS server such as BIND. As a consequence, 
the output shows extra escape “\” characters (which appear as “\\”) that are not 
present in the actual DNS responses provided by the server.

To better understand how a NAPTR record’s rules are applied to the AUS, 
we will look at the second SIP record from the preceding example. After the DNS 
query is performed and the NAPTR RR is received, the string appearing between 
the first and second ! characters is used as a regular expression match and replace-
ment. Thus, the string +420738511111 is matched against the regular expression 
^\+(.*)$. According to the matching rules for regular expressions, the match is 
successful, so the string rewrite rule becomes sip:\1@cesnet.cz . The special 
variable \1 is replaced with the substring matching the first regular expression 
contained in parenthesis characters, (), which in this case is everything in the 
AUS except for the initial + character. In summary, the AUS +420738511111 is 
transformed into the URI sip:420738511111@cesnet.cz. 

Once this URI is formed, the natural next step is for the driving application to 
contact a SIP server. However, SIP can itself be carried over different transport pro-
tocols, so the next step uses another DDDS that is tailored for SIP [RFC3263]. In this 
application, NAPTR records contain targets that identify the domain that should 
be used to perform SRV record queries. Continuing with the preceding example: 

Linux% host -t naptr cesnet.cz  
cesnet.cz has NAPTR record 200 50 "s" "SIP+D2T" "" _sip._tcp.cesnet.cz. 
cesnet.cz has NAPTR record 100 50 "s" "SIP+D2U" "" _sip._udp.cesnet.cz. 

Here we see the use of the s flag in the NAPTR, indicating that an SRV record 
is the result. The Regexp field is not used, so the result is a simple domain name 
substitution, given by the string in the Replacement field. The Service field is of the 
form SIP+D2x or SIPS+D2x where SIP and SIPS indicate the use of the SIP pro-
tocol and SIP protocol with security (TLS; see Chapter 18), respectively, and x is 
the single-letter identifier of the transport protocol: U for UDP, T for TCP, and S for 
SCTP [RFC4960]. In this example, the application would first attempt to look up 
and use the SRV record corresponding to SIP/UDP and would resort to SIP/TCP 
if that fails because the UDP entry has a lower preference value. 
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11.5.6.13 URI/URN Resolution 
Although ENUM may be the most mature use of NAPTR records in the DNS, there 
are also DDDS applications defined for resolving URIs [RFC3404] and for persis-
tent, location-independent URIs called Uniform Resource Names (URNs) [RFC2141]. 
All URIs (including URNs) consist of a scheme name followed by a substring com-
pliant with semantics that are specific to the scheme. The current list of official 
schemes is maintained by the IANA [URI]. The URI and URN applications are so 
similar that it is worth considering them together. For the URI/URN DDDS appli-
cation, then, the AUS is the URI or URN for which an authoritative “resolution” 
server is being located. The first Well-Known Rule for the URI application is sim-
ply the scheme name. For URNs, it is the name space identifier (the substring that 
appears after the urn: scheme identifier and before the next colon character). For 
example, http://www.pearson.com is a URI using the scheme (key) http, and 
the URN urn:foo:foospace would use foo as the first key. Four possible flags 
are currently defined: S, A, U, and P. The first three are terminal and indicate that 
the result is the domain name to use for fetching an SRV record, an IP address, or 
a URI, respectively. The P flag indicates that processing of the DDDS algorithm is 
to be discontinued and some application-specific processing (defined elsewhere) 
begins. All such flags are mutually exclusive. As with ENUM, the lack of any flag 
indicates an NTN. 

Support for the URI/URN DDDS is still evolving. If we take a current (2011) 
look into the DNS, we can see how some of the schemes have been populated into 
the uri.arpa TLD: 

Linux% host –t naptr http.uri.arpa 
http.uri.arpa has NAPTR record 0 0 "" "" "!^http://([^:/?#]*).*$!\\1!i" . 
Linux% host –t naptr ftp.uri.arpa 
ftp.uri.arpa has NAPTR record 0 0 "" "" "!^ftp://([^:/?#]*).*$!\\1!i" . 

Linux% host –t naptr mailto.uri.arpa 
mailto.uri.arpa has NAPTR record 0 0 "" "" "!^mailto:(.*)@(.*)$!\\2!i" . 
Linux% host –t naptr urn.uri.arpa 
urn.uri.arpa has NAPTR record 0 0 "" "" "/urn:([^:]+)/\\1/i" . 

The first three of these NAPTR records contain rewrite rules and no flags. 
Thus, they essentially indicate that the application should extract the domain 
name from the corresponding URI and continue the DDDS algorithm. The trail-
ing i flag after the last ! character indicates that case checking is to be performed 
in an insensitive way. For example, mAiLto:person@example.com is rewritten 
to be just example.com. The fourth record is used to extract the URN name space 
ID and continue processing. For URNs, there are a small number (two at present) 
of NAPTR records in the DNS set up in urn.arpa: 

Linux% host –t naptr pin.urn.arpa 
pin.urn.arpa has NAPTR record 100 100 "" "" "" pin.verisignlabs.com. 
Linux% host –t naptr uci.urn.arpa 
uci.urn.arpa has NAPTR record 100 100 "" "" "" uci.or.kr. 

http://www.pearson.com
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These URN name spaces appear to be receiving little attention at present, and 
it is still unclear to what extent URNs will be widely used, as there are now com-
peting methods for expressing and locating objects using persistent identifiers 
(e.g., see [P10]). Nevertheless, more than 40 URN name spaces have been defined 
[URN], so there continues to be community interest in establishing name spaces, 
even though few have corresponding global, active NAPTR records. 

11.5.6.14 S-NAPTR and U-NAPTR 
A common issue arises when an application wishes to determine the particular 
host, protocol, and port number to use for reaching a service within a domain. 
For example, a mail-reading application running on a user’s computer in the 
example.com domain may need to find a server offering the IMAP service. A 
convention has arisen to simply prepend the service name to the domain (e.g., 
imap.example.com). Using CNAME, A, or AAAA records is somewhat inflex-
ible, because these record types do not convey any indication of which transport 
protocol or port number to use. SRV records go further by providing another layer 
of indirection, but their targets may contain only domain names for which an A or 
AAAA record is subsequently retrieved. Using NAPTR records instead provides 
more flexibility through an additional layer of indirection and allows for other 
target record types (such as SRV records) to be used. 

The NAPTR structure and rewrite capabilities have caused concern for some 
implementers and operators given the complexity of the regular expressions. In 
an effort to simplify the situation yet still provide a method beyond basic SRV 
records for locating services, straightforward NAPTR (S-NAPTR) [RFC3958] speci-
fies a DDDS application for mapping domain “labels” that contain a service name 
using certain simplifying restrictions on the contents of the NAPTR records. 

For S-NAPTR, the AUS is a domain label for which an authoritative server for 
a particular service is sought. The first Well-Known Rule is the identity function. 
The expected output is the information necessary to contact a particular applica-
tion service within a domain (e.g., protocol, host, port). Only S and A terminal 
flags are permitted, which indicate an SRV RR or a domain name (which is to 
be used to form a subsequent request for an A or AAAA RR), respectively. The 
service parameters are taken from a set maintained in an IANA registry [SNP], 
and the Regexp field is not used. Only the Replacement field is active. S-NAPTR is 
used in conjunction with the Internet Registry Information Service (IRIS) [RFC3981], 
an XML-based text application protocol for exchanging information pertaining 
to domain name and other registration information whose database is contained 
within the iris.arpa portion of the DNS name space; for example: 

Linux% host –t naptr areg.iris.arpa
reg.iris.arpa NAPTR 
       100 10 "" "AREG1:iris.xpc:iris.lwz" "" areg.nro.net. 

This example uses S-NAPTR (no regular expression) to indicate that in order to 
perform an ISIS query for AREG1-type data (see [RFC4698]), a subsequent NAPTR 
query should be initiated to areg.nro.net. 
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Experience and further consideration of S-NAPTR led to the development of 
URI-enabled NAPTR (U-NAPTR) [RFC4848], which relaxes some of the restrictions 
of S-NAPTR but maintains all of its other features and registries. Most important, 
an additional U flag is permitted, which enables the NAPTR record target to be 
a URI and thus allows the use of regular expressions. This is similar to the fully 
generic version of NAPTR, except U-NAPTR regular expressions are restricted to 
the following form: !.*!<URI>!. That is, the entire AUS is replaced with a URI. 
U-NAPTR is being used in conjunction with the Location-to-Service Translation pro-
tocol (LoST) [RFC5222], which can be used to determine the correct service given a 
point of network attachment and geographical location. Such information is use-
ful in public safety applications where geography dictates the particular jurisdic-
tion and responsible parties that should provide emergency services. 

11.5.7 Dynamic Updates (DNS UPDATE) 

It is possible to dynamically update a zone, called DNS UPDATE, using a protocol 
defined in [RFC2136]. It supports the ability to specify prerequisites in conjunction 
with an update request. Prerequisites are evaluated at the server; if they are not 
true, the update is not performed and an error message is returned.

DNS UPDATE is accomplished by sending dynamic update DNS messages to an 
authoritative DNS server for a zone. The structure of such messages is the same as 
for a conventional DNS message, except the header fields and sections have differ-
ent names (see Figure 11-3). The sections indicate the zone being updated, prereq-
uisites that require various RRs to be present (or not) for the update to take effect, 
and the update information. In an update, the header mirrors the format for a query, 
but the Opcode field is set to Update (5). The header fields ZOCOUNT, PRCOUNT, 
UPCOUNT, and ADCOUNT contain counts of the following: zones to be updated 
(this will have the value 1), prerequisites to consider, updates to be made, and 
additional information records, respectively. [RFC2136] also defines a collection of 
RCODE values carried in DNS response messages capable of indicating conditions 
relating to problems with the prerequisites or server (values 6–10 in Table 11-2). 

The zone section of an update message (see Figure 11-7) indicates the zone’s 
name, a type, and a class. The type value will be 6 to indicate the presence of an 
SOA record, which identifies the zone. The class value will be 1 (Internet) for any 
update message with which we are concerned. All records being updated must be 
in the same zone. 

The prerequisite section of an update message contains one or more prereq-
uisites, expressed using the format for RRs we discussed previously in Section 
11.5.5. There are five types of prerequisites: RRSet exists (value-dependent and 
value-independent varieties), RRSet does not exist, name is in use, and name is not in 
use. Recall that an RRSet is a group of RRs from the same zone sharing a common 
name, class, and type. To express the semantics of a prerequisite, a combination of 
an RR’s class, type, and RDATA values are set according to Table 11-5.

The RRSet exists type means that at least one RRSet exists in the zone specified 
in the zone section that matches the name and type of the corresponding RR in 
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Table 11-5  RR Class and Type fields used in prerequisite section to indicate prerequisite type

Prerequisite Type (Semantics) Class Setting Type Setting RDATA Setting

RRSet exists (value-independent) ANY Same as zone’s type Empty
RRSet exists (value-dependent) Same as zone’s class Type being checked RRSet being 

checked
RRSet does not exist NONE Type being checked Empty
Name is in use ANY ANY Empty
Name is not in use NONE ANY Empty

the prerequisite section. In the value-dependent case, the prerequisite is true only 
if the matching RRs also contain matching RDATA values. The RRSet does not exist
type means that no RRSet in the zone specified in the zone section matches the 
name and type of the RR in the Prerequisites section. The last two cases (Name is 
in use and Name is not in use) refer only to the domain name; the type value is not 
used.  The values for NONE and ANY as DNS classes are 254 and 255, respectively.

Following the Prerequisite section, the Update section contains RRs to be 
added or deleted from the zone specified in the zone section. There are four types 
of updates, encoded as an RR with various combinations of values in the Class, 
Type, and RDATA fields, as indicated in Table 11-6.

Table 11-6  RR Class and Type fields used in Update section to indicate update type 

Use Class Setting Type Setting RDATA

Add RR to RRSet Same as zone’s 
class

Type of RR being 
added

RDATA of RR being 
added

Delete RRSet ANY Type of RRSet to 
delete

Empty (TTL and 
RDLENGTH also zero)

Delete all RRSets from a name ANY ANY Empty (TTL and 
RDLENGTH also zero)

Delete RR from RRSet NONE Type of RR being 
deleted

Matching RDATA to 
delete

The update section contains a collection of RRs that are processed provided no 
errors have occurred due to prerequisites or server problems. Each RR encodes an 
addition or deletion operation. Modifications can be performed as a deletion fol-
lowed by an addition. To see an example of DNS UPDATE, we can induce a Win-
dows machine to perform a dynamic DNS update using the following command: 

C:\> ipconfig /registerdns

Windows clients issue updates for their computer name and domain name by 
default, but this behavior can also be enabled for IPv4 on a per-DNS-suffix basis 
by checking the box labeled “Use this connection’s DNS suffix in DNS registration” 
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under the DNS section of the Advanced TCP/IP Settings, found on the General tab 
of the Internet Protocol (TCP/IP) Properties menu associated with each interface 
enabled for TCP/IP. For IPv6, the same procedure is used, but on the IPv6 Properties 
menu. In the example shown in Figure 11-16, we can see how the machine named 
vista updates the local zone dyn.home as it issues the DNS update message shown.

Figure 11-16  A DNS dynamic update contains an SOA record in the zone section and RRs in 
the update section. This case includes new IPv4 and IPv6 addresses for the host 
vista.dyn.home.

Figure 11-16 shows how a dynamic update is encoded. The DNS server at 
10.0.0.1 (running BIND9 [AL06] in this example) is configured to allow dynamic 
updates. The zone section contains an SOA record identifying the zone to be 
updated (vista.dyn.home). The prerequisite section contains an RR with a zero-
length RDATA section and 0 TTL value. The RR corresponds to the type of pre-
requisite in the third row of Table 11-5 (RRset does not exist) because its type is not 
ANY (it is CNAME) and its class is set to NONE (254).  

In this particular case, the addresses 10.0.0.57 and 2001:5c0:1101:ed00:fd26:
de93:5ab7:405a are to be associated with the name vista.dyn.home. This is 
accomplished by first deleting the AAAA and A RRSets (corresponding to row 2 
in Table 11-6), and then adding the AAAA and A RRSets (corresponding to row 1 
in Table 11-6) for the desired addresses.
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Figure 11-17  The response to a dynamic update request includes a transaction ID and status flag set. 

Responses to DNS updates are straightforward and compact. The response for 
the update shown in Figure 11-16 is illustrated in Figure 11-17. 

The Flags field indicates a successful update (no error). The transaction ID 
(0x4089) is used to ensure that the update response matches a corresponding 
request. Note that on Linux, the nsupdate program can be used to update a 
cooperative DNS server. DNS servers cooperate with a requested update only if an 
authentication and access control procedure indicates that the request is acceptable. 
This can be as simple as nothing or listing the IP addresses of clients at the server, 
neither of which is very secure, or using somewhat more complex and secure meth-
ods that provide transaction authentication (see TSIG and SIG(0) in Chapter 18). 

11.5.8 Zone Transfers and DNS NOTIFY

A zone transfer is used to copy a set of RRs for a zone from one server to another 
(generally from the master server to slave servers). The purpose of doing so is to 
keep multiple servers in sync with respect to a zone’s contents. Multiple servers 
provide resiliency to failure, in case a server should go down. Performance can 
also be improved as multiple servers can be used to share the processing load for 
incoming queries. Finally, the latency of a DNS query/response can potentially be 
reduced if servers are placed in locations close to clients (i.e., where the network 
latency between resolver and server is small). 
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As originally specified, zone transfers are initiated after polling, where slaves 
periodically contact masters to see if a zone transfer is necessary by comparing the 
zones’ version numbers. A later method says if a zone transfer needs to be initi-
ated using an asynchronous update mechanism when the zone contents change. 
This is called DNS NOTIFY. Once a zone transfer is initiated, either the entire 
zone is transferred (using DNS AXFR messages) [RFC5936], or an incremental zone 
transfer option may be used (using DNS IXFR messages) [RFC1995]. The general 
scheme operates according to the illustration in Figure 11-18. 

Figure 11-18  A DNS zone transfer copies the contents of zones between servers. An optional notifi-
cation can cause a slave to request a full or incremental zone transfer. 

We will now have a closer look at each of the options, including full and incre-
mental zone transfers, plus DNS Notify. 

11.5.8.1 Full Zone Transfers (AXFR Messages) 
Full zone transfers are controlled by the zone transfer parameters carried in a zone’s 
SOA record: primary name server, serial number, and the refresh, retry, and expire 
intervals. When configured, a slave server attempts to contact the primary server to 
see if a zone transfer is necessary. Contacts are attempted periodically, according to 
the refresh interval. They are also attempted when a server first starts. If a contact 
is not successful (no response from the server), retries are attempted periodically 
according to the retry interval (generally shorter than the refresh interval). The 
entire zone contents are flushed if not refreshed within the expire interval, effec-
tively incapacitating the server for the zone. 

An All Zone Transfer (AXFR) DNS message (a standard query containing 
type AXFR in the Question section) is used to request a complete zone transfer 
using TCP. To see such a message, we may arrange for a request to be initiated 
using the host program in our local network: 
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Linux% host -l home. 
Using domain server: 
Name: 10.0.0.1 
Address: 10.0.0.1#53 
Aliases:  

home name server gw.home. 
ap.home has address 10.0.0.6 
gw.home has address 10.0.0.1 
... 

The -l flag asks the host program to perform a full zone transfer from a local 
DNS server. The program initiates a TCP-based query/response dialogue, illus-
trated in Figure 11-19.

Figure 11-19  A DNS request for a full zone transfer uses the AXFR record type and TCP as a trans-
port protocol. 

In Figure 11-19 we can see how the zone transfer takes place using TCP. The 
first three TCP segments are part of the standard TCP connection establishment 
process (see Chapter 13). The fourth (decoded) packet is the request. It is a nor-
mal DNS standard, with type AXFR and class IN (Internet). The query is for the 
domain name home. The response to this query is contained in message 6, follow-
ing the TCP ACK (see Figure 11-20).
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Figure 11-20  The successful response for a full zone transfer request includes all of the records for 
the zone. The transaction takes place using TCP, as the zone contents may be large and 
a reliable copy is required. 

In Figure 11-20 we can see how the entire zone is carried in the response. After 
receiving the response, the client’s TCP ACKs the data and initiates a TCP con-
nection close. The connection is closed gracefully using the FIN-ACK handshake 
(packets 8–10). See Chapter 13 for more details on the standard TCP connection 
establishment and clearing. 

Although it used to be possible to perform such zone transfers with virtually 
any DNS server, they are now typically restricted to the authoritative servers in a 
zone (e.g., those listed in NS records for the zone). The reason for this restriction 
is privacy and security—knowledge of the hosts within the zone might help an 
attacker target particular services or hosts. 

11.5.8.2 Incremental Zone Transfers (IXFR Messages) 
To improve the efficiency of zone transfers, [RFC1995] defines the use of incremen-
tal zone transfers. Using incremental zone transfers and the IXFR message type, 
only the changes in a zone are provided. To execute an incremental zone transfer, 
the client (e.g., slave server) must provide its current serial number for the zone. In 



ptg999

562 Name Resolution and the Domain Name System (DNS)  

the following example, we can emulate a requesting server by providing the serial 
number and using the dig program: 

Linux% dig +short @10.0.0.1 -t ixfr=1997022700 home.
gw.home. hostmaster.gw.home. 1997022700 10800 15 604800 10800 

The command line indicates that output from the command should be short, 
10.0.0.1 is the address of the DNS server to use, and an incremental zone transfer 
starting with serial number 1997022700 should be performed. This example cre-
ates an exchange similar to the one illustrated in Figures 11-19 and 11-20 for AXFR, 
except in this case the serial number of the request matches the current serial 
number (see Figure 11-21). 

Figure 11-21  An incremental zone transfer request (IXFR record type) carried on TCP. The serial 
number is used to determine which records, if any, have changed since an earlier zone 
transfer took place. 
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Figure 11-22 shows how the IXFR request includes a mostly empty SOA RR 
in the authority section. The SOA record includes the serial number specified 
(1997022700). The response (packet 6) contains no real information because this 
serial number matches the current one at the server. 

Figure 11-22  The response to an IXFR request when the serial number is current contains only an 
SOA record and no additional information. 

The response in Figure 11-22 contains only the SOA RR in the answer sec-
tion. Unlike the one contained in the query, this one is filled in with the complete 
SOA fields (e.g., mailbox, zone transfer parameters). However, there are no addi-
tional answers because the current serial number for the zone matches that of the 
request. Thus, the requesting client is assumed to be up-to-date and not in need of 
any additional information or a zone transfer. 
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11.5.8.3 DNS NOTIFY 
As mentioned previously, polling has traditionally been used to determine the 
need for zone transfers, meaning that the slave servers would check with a master 
periodically (the “refresh” interval) to see if the zone had been updated (indicated 
by a different serial number), in which case a zone transfer would be initiated. 
This is a somewhat wasteful process because many useless polls may occur before 
the zone is updated. To improve the situation, [RFC1996] developed the DNS 
NOTIFY mechanism. DNS NOTIFY allows a server with modified zone contents 
to notify slave servers that an update has been made and a zone transfer should 
be initiated. More specifically, if enabled, a notification message is sent to a set 
of interested servers if the SOA RR for a zone changes (e.g., if the serial number 
increases). This allows zone transfers to be initiated easily when required. Using a 
local (home) name server, we can see how this works (see Figure 11-23). 

Figure 11-23  A DNS NOTIFY indicating an update to the zone file. There are two retransmissions 
spaced 15s apart (contrary to the method suggested in the standard). 
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This example illustrates the simple DNS NOTIFY message sent to a host in the 
server’s notify set of servers that should be informed of a zone change. The message 
is a UDP/IPv4 DNS query message with the Flags field indicating a zone change 
notification. The query section contains the type and class for an SOA record, and 
the answer section contains the current SOA RR for the zone (with TTL 0), includ-
ing the serial number. This provides sufficient information for a notified server 
to determine that a zone transfer may be necessary. Note that a single server may 
receive notifications from multiple other servers as they update their zone infor-
mation. This does not present a problem for the protocol’s operation. 

The DNS NOTIFY mechanism defaults to using UDP, an unreliable protocol. 
In this particular example, the notify set contains only the address 10.0.0.11, which 
does not run a DNS server. Consequently, the message is resent every 15s hoping 
for a response that never arrives. 

Note

The time between retransmissions and the total number of retransmissions to 
attempt are suggested by [RFC1996] to be 60s and five retransmissions, respec-
tively. It also suggests that a timer backoff method (additive or exponential) be 
used. Here we can see that the BIND9 implementation fails to respect these sug-
gestions, as the two retransmissions are 15s apart. 

Responses are simply DNS response messages with no useful information 
except the transaction ID; they are used only to complete the protocol and cancel 
retransmissions at the sending server.

11.6 Sort Lists, Round-Robin, and Split DNS 

So far we have discussed how domain names are set up, the types of resource 
records DNS supports, and the DNS protocol used to fetch and update a zone. One 
subtle point to consider is what data is returned and in what order in response 
to a DNS query. A DNS server could return all matching data to any client in 
whatever order the server finds most convenient. However, special configuration 
options and behaviors are available in most DNS server software to achieve cer-
tain operational, privacy, or performance goals. Consider the topology shown in 
Figure 11-24. 

The type of topology shown in Figure 11-24 is typical of a small enterprise. 
There is a private network and a public network including a DNS server. In addi-
tion, there is a pair of hosts on the DMZ (A and B), one on the internal network (C) 
and one on the Internet (R). A multihomed host (M) spans the DMZ and internal 
networks. M therefore has two IP addresses drawn from two different network 
prefixes. 
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A host wishing to contact M performs a DNS lookup that returns two 
addresses—one associated with the internal network and one with the DMZ. 
Naturally, it would be more efficient if A, B, and R reached M via the DMZ and 
C reached M via the internal network. This generally happens if the DNS server 
orders its returned address records based on the source IP address of the request. 
(It could also use the destination IP address, especially if M uses multiple IP 
addresses from different subnets on the same network interface.) If the request-
ing system uses a source IP address with the same network prefix as the source 
of a returning address record, the DNS server places the set of such matching 
records early in the returned message. This behavior encourages the client to find 
the “closest” IP address for a particular server it is attempting to contact, because 
most simple applications attempt to contact the first address found among the 
returned address records. The precise behavior can usually be controlled using 
a so-called sortlist or rrset-order directive (options used in configuration 
files for resolvers and servers). Such sorting behavior may also happen automati-
cally if performed by the DNS server software by default. 

A somewhat related situation arises when one service is offered using more 
than one server such that the incoming connections are load-balanced (i.e., divided 
among the servers). In the preceding example, imagine that a service is offered on 
both A and B. Such a service may be identified by the URL http://www.example
.com. Requesting clients (like R) perform a DNS query on the domain name 
www.example.com, and the DNS server eventually returns a set of address 
records. To achieve load balancing, the DNS server may be configured to use 
DNS round-robin, which means that the server permutes the order of the returned 
address records. Doing so encourages each new client to access the service on a 
different server from the previous client. While this helps to balance load, it is far 
from perfect. When records are cached, the desired effect may not occur because 
of reuse of existing cached address records. In addition, this scheme may bal-
ance the number of connections well across servers, but not the load. Different 

Figure 11-24  In a small enterprise topology, DNS may be configured to return different addresses 
depending on the requesting IP address. 
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connections can have radically different processing requirements, so the true pro-
cessing load is likely to remain unbalanced unless the particular service always 
has the same processing requirements. 

A final consideration regarding the data returned by a DNS server is sup-
port for privacy. In this example, we may wish to arrange for hosts within the 
enterprise to be able to retrieve resource records for every computer in the net-
work, while we limit the set of systems that remain visible to R. A technique for 
implementing this goal is called split DNS. In split DNS, the set of resource records 
returned in response to a query is dependent on the identity of the client and pos-
sibly query destination address. Most often, the client is identified by IP address 
or address prefix. With split DNS, we could arrange for any host in the enterprise 
(i.e., those sharing a set of prefixes) to be provided with the entire DNS database, 
whereas those outside are given visibility only to A and B, where the main Web 
service is offered. 

11.7 Open DNS Servers and DynDNS 

Many home users are assigned a single IPv4 address by their ISP, and this address 
may change over time as the user’s computer or home gateway connects, discon-
nects, and reconnects to the Internet. Consequently, it is often difficult for the user 
to establish a DNS entry that allows for running services that are visible from 
the Internet. A number of so-called open Dynamic DNS (DDNS) servers are avail-
able that support a special update protocol called the DNS Update API [DYNDNS], 
whereby a user may update an entry in a provider’s DNS server given a preregis-
tration or account. This scheme does not use the [RFC2136] DNS UPDATE protocol 
described earlier but is instead a separate application-layer protocol. 

To use the service, a DDNS client program (e.g., inadyn or ddclient on 
Linux and DynDNS Updater for Windows) runs on the client system, which could 
also be a user’s home router. Most often, these programs are configured with login 
information used to access a remote DDNS service. When the service is invoked, 
the client program contacts the server, provides the current global IP address of its 
host (the one assigned by an ISP, often a NAT mapped address), and goes quiescent. 
After that, it periodically renews the information with the server. Doing so allows 
the server to clear the information if an update is not received within a certain 
time interval. Such services include those provided at the following Web sites (as of 
2011): http://www.dyndns.com/services/dns/dyndns, http://freedns
.afraid.org, and http://www.no-ip.com/services/managed_dns/free_
dynamic_dns.html. 

11.8 Transparency and Extensibility

The DNS is one of the most ubiquitous services on the Internet and has been 
an attractive service to consider as a basis for adding new capabilities through 

http://www.dyndns.com/services/dns/dyndns
http://freedns.afraid.org
http://freedns.afraid.org
http://www.no-ip.com/services/managed_dns/free_dynamic_dns.html
http://www.no-ip.com/services/managed_dns/free_dynamic_dns.html
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extensions. There are, for example, numerous record types such as TXT, SRV, and 
even A (e.g., see [RFC5782]) that could be used for encoding data useful for vari-
ous future services. [RFC5507] considers various methods for extending the DNS, 
ultimately concluding that creation and implementation of new RR types is the 
most attractive approach. Thanks to an earlier specification [RFC3597], there is a 
standard method for handling unknown RR types as opaque data. That is, they 
are not interpreted unless recognized; the processing is transparent. This allows 
for new RR types to be carried along without causing negative impact on the pro-
cessing of existing RR types.

One complication with preserving transparency is the encoding of embed-
ded domain names and compression. For known RR types, embedded domain 
names are permitted to have their cases altered in order to achieve compression 
with compression labels. Owner domain names (the “keys” of queries) are always 
subject to compression. For unknown RR types, however, embedded domain 
names are not permitted to use compression labels. In addition, future RR types 
that contain embedded domain names are likewise prohibited (see Section 4 of 
[RFC3597]). Unknown types can still be compared (e.g., for dynamic updates) in 
a bitwise fashion. This implies that any embedded domain names are compared 
in a case-sensitive manner [RFC4343], contrary to most other DNS operations. This 
same situation appears for embedded domain names used with TXT records.

A different issue arises regarding transparency when new forms of servers 
and proxies are introduced that process DNS traffic. It is now relatively common 
practice to include a DNS proxy colocated inside a home gateway or firewall. A 
typical proxy handles incoming DNS requests from a user’s home network and 
forwards the request to an ISP-provided name server. It also receives returned 
information and may or may not cache the results. Historically, some proxies have 
tried to do more than merely relay requests and replies, and this has caused some 
problems with DNS interoperability. [RFC5625] specifies the proper operation 
of a DNS proxy, essentially requiring DNS RRs to be uninterpreted and merely 
relayed by the proxy. In cases where packet truncation cannot be avoided, any 
such proxy must set the TC bit field to indicate that some DNS data was removed. 
Furthermore, any such proxies should be prepared to handle TCP requests, as this 
is the conventional fallback mechanism when a previous UDP-based request was 
truncated and is required by [RFC5966].

11.9 Translating DNS from IPv4 to IPv6 (DNS64)

In Chapter 7 we described a framework for translating IP datagrams back and 
forth between IPv4 and IPv6. Translators supporting such capabilities are envi-
sioned to be deployed with a related capability that translates between DNS A 
and AAAA records [RFC6147], allowing IPv6-only clients to access DNS informa-
tion that appears in A records (e.g., in the IPv4 Internet). The capability is called 
DNS64, and one of its proposed deployment scenarios (called “DNS64 in DNS 
recursive-resolver mode”) is illustrated in Figure 11-25. 
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As shown in Figure 11-25, DNS64 is used in conjunction with an IPv4/IPv6 
translator (see Chapter 7). Each device is configured with one or more common 
IPv6 prefixes used in creating IPv4-embedded addresses. Each prefix may be a 
Network-Specific Prefix (e.g., that is owned by an operator) or the Well-Known 
Prefix (64:ff9b::/96). The DNS64 device acts as a caching DNS server. IPv6-only 
clients use it as the primary DNS server and are able to request AAAA records for 
domain names. DNS64 converts such requests to requests for both A and AAAA 
records on its IPv4 side. If no AAAA records are returned, DNS64 provides syn-
thetic AAAA records by forming an IPv4-embedded address based on the config-
ured prefix and the contents of each A record it retrieves. DNS64 also responds to 
PTR queries for any of the IPv6 prefixes it uses for synthesizing AAAA RRs. 

To implement AAA RR synthesis in a DNS64 device, only the answer sec-
tion of a DNS message is effectively altered. Other sections remain as they appear 
when retrieved on the IPv4 side. In cases of CNAME or DNAME chains, the chain 
is followed recursively until an A or AAAA record is found and the elements of 
the chain are included in the response. In addition, DNS64 may be configured so 
as to avoid synthesis for particular excluded IPv6 or IPv4 address ranges. This 
prevents certain anomalous behavior (e.g., forming IPv4-embedded addresses 
based on special-use IPv4 addresses). Note that DNS64 has subtle interactions 
with DNSSEC; these issues are covered in Chapter 18.

11.10 LLMNR and mDNS 

The ordinary DNS system requires a set of DNS servers to be configured to provide 
mappings between names and addresses, and possibly other information. Some-
times this is too much overhead when only a few local hosts wish to communicate. 
In cases where a DNS server is not available (e.g., a quickly formed ad hoc network 
of clients that connect only to each other), a special local version of DNS called 
Link-Local Multicast Name Resolution (LLMRR) [RFC4795] may be available. It is a 
(nonstandard) protocol based on DNS developed by Microsoft and used in local 

Figure 11-25  DNS64 translates A records to AAAA records and works together with an IPv4/IPv6 translator 
to allow IPv6-only clients to access services in IPv4 networks.
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environments to help discover devices on a local area network, such as printers 
and file servers. It is supported in Windows Vista, Server 2008, and 7. It uses UDP 
port 5355 with the IPv4 multicast address 224.0.0.252 and IPv6 address ff02::1:3. 
The servers also use TCP on port 5355 from whatever unicast IP address they 
respond from. 

Multicast DNS (mDNS) [IDMDNS] is another form of local DNS-like capabil-
ity developed by Apple. When it is combined with the DNS Service Discovery 
protocol, Apple calls the resulting framework Bonjour. mDNS uses DNS messages 
carried over local multicast addresses. It uses UDP with port 5353. It specifies 
that the special TLD .local is to be treated with special semantics. The .local
TLD is link-local in scope. Any DNS queries for domain names in this TLD are 
sent to the mDNS IPv4 address 224.0.0.251 or the IPv6 address ff02::fb. Queries 
for other domains may optionally be sent to these multicast addresses. Allow-
ing link-local servers to respond to mappings for global names can raise signifi-
cant security concerns. To combat this problem, DNSSEC can be employed (see 
Chapter 18). mDNS supports autonomous assignment of names in the .local
pseudo-TLD, although this pseudo-TLD has not been officially reserved for this 
purpose [RFC2606]. Thus, hosts on small networks such as home LANs can be 
assigned convenient names such as printer.local, fileserver.local, cam-
era1.local, kevinlaptop.local, and the like. A mechanism in mDNS is used 
to detect and resolve conflicts. 

11.11 LDAP 

So far we have discussed DNS and local name services that resemble DNS. To 
support richer queries and data manipulations, there is a more general directory 
service we mentioned earlier called LDAP [RFC4510]. LDAP (now LDAPv3) is 
an application protocol for the Internet that provides access to general directo-
ries (e.g., “white pages”) in accordance with the X.500 (1993) [X500] data and ser-
vice models. It provides the ability to search, modify, add, compare, and remove 
entries based on user-selected patterns. An LDAP directory is a tree of directory 
entries, where each entry consists of a set of attributes. As TCP/IP has become 
more popular, LDAP has evolved from its roots to work in conjunction with DNS. 
For example, a query about directory entries matching the chancellor’s office at 
MIT could be formed using the LDAP search tool ldapsearch (Microsoft has a 
comparable tool called ldp available as a support tool from its Web site), which 
works as follows: 

Linux% ldapsearch -x -h ldap.mit.edu -b "dc=mit,dc=edu" \ 
"(ou=*Chancellor*)"
# extended LDIF 
# 
# LDAPv3 
# base <dc=mit,dc=edu> with scope sub 
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# filter: (ou=*Chancellor*) 
# requesting: ALL 
# 
..... 

The command line indicates that the server ldap.mit.edu should be 
contacted without using any special authentication protocol (-x option). While a 
complete discussion of LDAP is well beyond the scope of this chapter (and 
book!), the partial output shows how the dc (domain component) attribute is 
used to link LDAP data with the DNS. Each dc component holds one DNS label, 
and together they can be used to encode an entire domain name, which is used as 
the “base” portion for the LDAP query. Using this convention, it is not especially 
difficult to form valid LDAP queries. In this case, it is for the organizational unit 
(ou) containing the word Chancellor. Note that wildcards can be used. 

LDAP servers are used most often within enterprises to hold directory information 
such as location, telephone number, and organizational unit. Microsoft’s Active 
Directory product includes LDAP capabilities and is used extensively for manag-
ing user accounts, services, and access rights in large enterprises using Windows. 
Some LDAP servers (such as MIT’s and those of many other universities) are also 
available through the public Internet. 

11.12 Attacks on the DNS 

The DNS is a critical component of the Internet and has been the object of sev-
eral attacks and countermeasures over the years [RFC3833]. Relatively recently, 
a global effort called DNS Security (DNSSEC) has made substantial progress in 
adding strong authentication to DNS operations. We defer the detailed discussion 
of how DNSSEC works to Chapter 18, where we also cover the necessary cryp-
tography background. We now explore some of the attacks that have been waged 
against the DNS. 

There have been two main forms of attacks against the DNS. The first form 
involves a DoS attack where the DNS is rendered inoperative because of overload-
ing of important DNS servers, such as the root or TLD servers. The second form 
alters the contents of resource records or masquerades as an official DNS server 
but responds with bogus resource records, thereby causing hosts to contact the 
incorrect IP address when attempting to connect to another machine (e.g., a Web 
site such as a bank). 

The first major DoS attack on DNS took place in early 2001. The attack involved 
generating many requests for the MX records of AOL.COM. The attacker generated 
DNS requests for an MX record using forged source IP addresses. The request 
is a relatively small packet, whereas the response is larger (by about a factor of 
20), so this type of attack is called an amplification attack because the amount of 
bandwidth consumed as the result of the attack is greater than the amount used 
in generating the attack by a significant factor. The responses are directed at the 
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IP address contained in the request packets, so the attacker could essentially cause 
the response traffic to be directed wherever (s)he intended. The attack is docu-
mented in detail in a CERT incident note [CIN]. 

A form of attack involving modification of the data within DNS was reported 
in late 2008 [CKB] and is now known as the Kaminsky Attack. It involves cache 
poisoning, where the cached contents of a DNS server are replaced with erroneous 
or forged data and ultimately served to the resolvers on end hosts. In one vari-
ant, an attacker responds to a caching server’s query for an A record with an NS 
record for the domain using a particular host domain name. The host’s IP address 
(chosen by the attacker) is also provided in the additional information section of 
the DNS response. The host domain name may or may not share the same sub-
domains as the original DNS request. The main risk associated with this form of 
attack is that clients that depend on proper DNS name-to-address resolution may 
be directed to fake servers. If such servers are intentionally configured to mimic 
the original host (e.g., masquerading as a bank’s Web server), users may unwit-
tingly trust the masquerading server and divulge sensitive information. Mitiga-
tion techniques for this and other related attacks are given by [RFC5452]. One 
approach not described in [RFC5452] called DNS-0x20 [D08] involves encoding a 
nonce in the 0x20 bit position of each character in the Query Name part of a ques-
tion section that is echoed back in the corresponding area of each response. This 
is made possible because, although domain names are compared in a case-insen-
sitive way, servers tend to return an exact copy of the Query Name when forming 
responses. If the case of the owner’s name is intentionally mixed up in the query, 
an unsolicited response will have difficulty reproducing the nonce, and can more 
readily be identified (and ignored).

11.13 Summary 

The DNS is an essential part of the Internet, and DNS technology is widely used 
in private networks as well. The DNS name space is worldwide in scope and is 
divided into a hierarchy starting with top-level domains (TLDs). Domain names 
can be represented in multiple languages and scripts using internationalized 
domain names (IDNs). Applications use resolvers to contact one or more DNS 
servers to perform lookup tasks against a zone database, such as converting a host 
name to an IP address and vice versa. Resolvers then contact a local name server, 
and this server may act recursively to contact one of the root servers or other serv-
ers to fulfill the request. Most DNS servers, and some resolvers, cache information 
learned in order to provide it to subsequent clients for some period of time called 
the time to live (TTL). Queries and responses use a special DNS protocol that 
works with either TCP or UDP. The protocol also works with either IPv4 or IPv6, 
or any mixture of the two. 

All DNS queries and responses have the same basic message format that 
includes questions, answers, authority information, and additional information. 
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Resource records are used to hold most DNS information, and there are many 
such types: addresses, mail exchange points, pointers to names, among others. 
In the Internet, most DNS messages are carried using UDP/IPv4 and are limited 
to 512 bytes in length, but a special extension option (EDNS0) provides for longer 
messages and is required to support DNS security (DNSSEC), which we discuss 
in detail in Chapter 18. 

DNS supports some special features such as zone transfers and dynamic 
updates. Zone transfers (complete or incremental) are used to allow redundant 
slave servers to synchronize the zone contents with a master server, primarily for 
redundancy. Dynamic updates allow zone contents to be modified by an appli-
cation using an online protocol. There are really two forms of this capability, 
one standardized by [RFC2136] and used in enterprises and a nonstandard but 
very popular dynamic DNS capability that allows users assigned temporary IP 
addresses (e.g., on cable or DSL) to obtain a DNS entry so that services they pro-
vide can be found by name throughout the world.

DNS has been the subject of numerous attacks, ranging from DoS attacks that 
leave the DNS with limited capability, to cache poisoning attacks that can be used 
to make malicious servers appear to be legitimate. Various techniques have arisen 
to combat this problem, including cryptographic techniques (covered in Chap-
ter 18) and modifications to DNS servers to be less accepting of unsolicited DNS 
responses. 
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12

TCP: The Transmission Control 
Protocol (Preliminaries)

12.1 Introduction

So far we have been discussing protocols that do not include their own mecha-
nisms for delivering data reliably. They may detect that erroneous data has been 
received, using a mathematical function such as a checksum or CRC, but they do 
not try very hard to repair errors. With IP and UDP, no error repair is done at all. 
With Ethernet and other protocols based on it, the protocol provides some number 
of retries and then gives up if it cannot succeed.

The problem of communicating in environments where the communication 
medium may lose or alter the messages being delivered has been studied for 
years. Some of the most important theoretical work on the topic was developed 
by Claude Shannon in 1948 [S48]. This work, which popularized the term bit and 
became the foundation of the field of information theory, helps us understand the 
fundamental limits on the amount of information that can be moved across an 
information channel that is lossy (that may delete or alter bits). Information theory 
is closely related to the field of coding theory, which provides ways of encoding 
information so that it is as resilient as possible to errors in the communications 
channel. Using error-correcting codes (basically, adding redundant bits so that the 
real information can be retrieved even if some bits are damaged) to correct com-
munications problems is one very important method for handling errors. Another 
is to simply “try sending again” until the information is finally received. This 
approach, called Automatic Repeat Request (ARQ), forms the basis for many com-
munications protocols, including TCP.
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12.1.1 ARQ and Retransmission

If we consider not only a single communication channel but the multihop cascade 
of several, we realize that not only may we have the types of errors mentioned so 
far (packet bit errors), but there may be others. These problems might arise at an 
intermediate router and are the types of problems we brought up when discussing 
IP: packet reordering, packet duplication, and packet erasures (drops). An error-
correcting protocol designed for use over a multihop communications channel 
(such as IP) must cope with all of these problems. Let us now explore the protocol 
mechanisms that can be brought to bear on them. After we discuss these in the 
abstract, we shall explore how they are used by TCP in the Internet.

A straightforward method of dealing with packet drops (and bit errors) is to 
resend the packet until it is received properly. This requires a way to determine (1) 
whether the receiver has received the packet and (2) whether the packet it received 
was the same one the sender sent. The method for a receiver to signal to a sender 
that it has received a packet is called an acknowledgment, or ACK. In its most basic 
form, the sender sends a packet and awaits an ACK. When the receiver receives 
the packet, it sends the ACK. When the sender receives the ACK, it sends another 
packet, and the process continues. Interesting questions to ask here are (1) How 
long should the sender wait for an ACK? (2) What if the ACK is lost? (3) What if 
the packet was received but had errors in it?

As we shall see, the first question turns out to be deep. Deciding how long to 
wait relates to how long the sender should expect to wait for an ACK. Determin-
ing this may be difficult; we postpone the discussion of techniques for it until we 
discuss TCP in detail later (see Chapter 14). The answer to question 2 is easier: 
if an ACK is dropped, the sender cannot readily distinguish this case from the 
case in which the original packet is dropped, so it simply sends the packet again. 
Of course, the receiver may receive two or more copies in that case, so it must be 
prepared to handle that situation (see the next paragraph). As for the third ques-
tion, we can appeal to the codes mentioned in Section 12.1. It is generally much 
easier to use codes to detect errors in a large packet (with high probability) using 
only a few bits than it is to correct them. Simpler codes are typically not capable 
of correcting errors but are capable of detecting them. That is why checksums and 
CRCs are so popular. In order to detect errors in a packet, then, we use a form of 
checksum. When a receiver receives a packet containing an error, it refrains from 
sending an ACK. Eventually, the sender resends the packet, which ideally arrives 
undamaged.

Even with the simple scenario presented so far, there is the possibility that 
the receiver might receive duplicate copies of the packet being transferred. This 
problem is addressed using a sequence number. Basically, every unique packet gets 
a new sequence number when it is sent at the source, and this sequence number is 
carried along in the packet itself. The receiver can use this number to determine 
whether it has already seen the packet and if so, discard it.

The protocol described so far is reliable but not very efficient. Consider what 
happens when the time to deliver even a small packet from sender to receiver (the 
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delay or latency) is large (e.g., a second or two, which is not unusual for satellite 
links) and there are several packets to send. The sender is able to inject a single 
packet into the communications path but then must stop until it hears the ACK. 
This protocol is therefore called “stop and wait.” Its throughput performance (data 
sent on the network per unit time) is proportional to M/R where M is the packet 
size and R is the round-trip time (RTT), assuming no packets are lost or irrepara-
bly damaged in transit. For a fixed-size packet, as R goes up, the throughput goes 
down. If packets are lost or damaged, the situation is even worse: the “goodput” 
(useful amount of data transferred per unit time) can be considerably less than the 
throughput. 

For a network that doesn’t damage or drop many packets, the cause for low 
throughput is usually that the network is not being kept busy. The situation is 
similar to using an assembly line where new work cannot enter the line until a 
complete product emerges. Most of the line goes idle. If we take this comparison 
one step further, it seems obvious that we would do better if we could have more 
than one work unit in the line at a time. It is the same for network communica-
tion—if we could have more than one packet in the network, we would keep it 
“more busy,” leading to higher throughput.

Allowing more than one packet to be in the network at a time complicates 
matters considerably. Now the sender must decide not only when to inject a packet 
into the network, but also how many. It also must figure out how to keep the 
timers when waiting for ACKs, and it must keep a copy of each packet not yet 
acknowledged in case retransmissions are necessary. The receiver needs to have 
a more sophisticated ACK mechanism: one that can distinguish which packets 
have been received and which have not. The receiver may need a more sophisti-
cated buffering (packet storage) mechanism—one that allows it to hold “out-of-
sequence” packets (those packets that have arrived earlier than those expected 
because of loss or reordering), unless it simply wants to throw away such pack-
ets, which is very inefficient. There are other issues that may not be so obvious. 
What if the receiver is slower than the sender? If the sender simply injects many 
packets at a very high rate, the receiver might just drop them because of process-
ing or memory limitations. The same question can be asked about the routers in 
the middle. What if the network infrastructure cannot handle the rate of data the 
sender and receiver wish to use?

12.1.2 Windows of Packets and Sliding Windows

To handle all of these problems, we begin with the assumption that each unique 
packet has a sequence number, as described earlier. We define a window of packets 
as the collection of packets (or their sequence numbers) that have been injected by 
the sender but not yet completely acknowledged (i.e., the sender has not received 
an ACK for them). We refer to the window size as the number of packets in the 
window. The term window comes from the idea that if you lined up all the packets 
sent during a communication session in a long row but had only a small aperture 
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through which to view them, you would see only a subset of them—like peering 
through a window. The sender’s window (and the line of other packets) can be 
graphically depicted as shown in Figure 12-1.

Figure 12-1  The sender’s window, showing which packets are eligible to be sent (or have already 
been sent), which are not yet eligible, and which have already been sent and acknowl-
edged. In this example, the window size is fixed at three packets.

This figure shows the current window of three packets, for a total window 
size of 3. Packet number 3 has already been sent and acknowledged, so the copy 
of it that the sender was keeping can now be released. Packet 7 is ready at the 
sender but not yet able to be sent because it is not yet “in” the window. If we now 
imagine that data starts to flow from the sender to the receiver and ACKs start to 
flow in the reverse direction, the sender might next receive an ACK for packet 4. 
When this happens, the window “slides” to the right by one packet, meaning that 
the copy of packet 4 can be released and packet 7 can be sent. This movement of 
the window gives rise to another name for this type of protocol, a sliding window
protocol.

The sliding window approach can be used to combat many of the problems 
described so far. Typically, this window structure is kept at both the sender and 
the receiver. At the sender, it keeps track of what packets can be released, what 
packets are awaiting ACKs, and what packets cannot yet be sent. At the receiver, it 
keeps track of what packets have already been received and acknowledged, what 
packets are expected (and how much memory has been allocated to hold them), 
and which packets, even if received, will not be kept because of limited memory. 
Although the window structure is convenient for keeping track of data as it flows 
between sender and receiver, it does not provide guidance as to how large the 
window should be, or what happens if the receiver or network cannot handle the 
sender’s data rate. We shall now see how these are related.
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12.1.3 Variable Windows: Flow Control and Congestion Control

To handle the problem that arises when a receiver is too slow relative to a sender, 
we introduce a way to force the sender to slow down when the receiver cannot 
keep up. This is called flow control and is usually handled in one of two ways. One 
way, called rate-based flow control, gives the sender a certain data rate allocation 
and ensures that data is never allowed to be sent at a rate that exceeds the alloca-
tion. This type of flow control is most appropriate for streaming applications and 
can be used with broadcast and multicast delivery (see Chapter 9).

The other predominant form of flow control is called window-based flow con-
trol and is the most popular approach when sliding windows are being used. In 
this approach, the window size is not fixed but is instead allowed to vary over 
time. To achieve flow control using this technique, there must be a method for the 
receiver to signal the sender how large a window to use. This is typically called a 
window advertisement, or simply a window update. This value is used by the sender 
(i.e., the receiver of the window advertisement) to adjust its window size. Logi-
cally, a window update is separate from the ACKs we discussed previously, but 
in practice the window update and ACK are carried in a single packet, meaning 
that the sender tends to adjust the size of its window at the same time it slides it 
to the right.

If we consider the effect of changing the window size at the sender, it becomes 
clear how this achieves flow control. The sender is allowed to inject W packets 
into the network before it hears an ACK for any of them. If the sender and receiver 
are sufficiently fast, and the network loses no packets and has an infinite capac-
ity, this means that the transfer rate is proportional to (SW/R) bits/s, where W is 
the window size, S is the packet size in bits, and R is the RTT. When the window 
advertisement from the receiver clamps the value of W at the sender, the sender’s 
overall rate can be limited so as to not overwhelm the receiver. This approach 
works fine for protecting the receiver, but what about the network in between? We 
may have routers with limited memory between the sender and the receiver that 
have to contend with slow network links. When this happens, it is possible for the 
sender’s rate to exceed a router’s ability to keep up, leading to packet loss. This is 
addressed with a special form of flow control called congestion control.

Congestion control involves the sender slowing down so as to not overwhelm 
the network between itself and the receiver. Recall that in our discussion of flow 
control, we used a window advertisement to signal the sender to slow down for the 
receiver. This is called explicit signaling, because there is a protocol field specifi-
cally used to inform the sender about what is happening. Another option might be 
for the sender to guess that it needs to slow down. Such an approach would involve 
implicit signaling—that is, it would involve deciding to slow down based on some 
other evidence.

The problem of congestion control in datagram-style networks, and more gen-
erally queuing theory to which it is closely related, has remained a major research 
topic for years, and it is unlikely to ever be solved completely for all circumstances. 
It is also not practical to discuss all the options and methods of performing flow 
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control here. The interested reader is referred to [J90], [K97], and [K75]. In Chapter 
16 we will explore the particular congestion control technique used with TCP in 
more detail, along with a number of variants that have arisen over the years.

12.1.4 Setting the Retransmission Timeout

One of the most important performance issues the designer of a retransmission-
based reliable protocol faces is how long to wait before concluding that a packet 
has been lost and should be resent. Stated another way, What should the retrans-
mission timeout be? Intuitively, the amount of time the sender should wait before 
resending a packet is about the sum of the following times: the time to send the 
packet, the time for the receiver to process it and send an ACK, the time for the 
ACK to travel back to the sender, and the time for the sender to process the ACK. 
Unfortunately, in practice, none of these times are known with certainty. To make 
matters worse, any or all of them vary over time as additional load is added to or 
removed from the end hosts or routers.

Because it is not practical for the user to tell the protocol implementation what 
the values of all the times are (or to keep them up-to-date) for all circumstances, a 
better strategy is to have the protocol implementation try to estimate them. This is 
called round-trip-time estimation and is a statistical process. Basically, the true RTT 
is likely to be close to the sample mean of a collection of samples of RTTs. Note that 
this average naturally changes over time (it is not stationary), as the paths taken 
through the network may change.

Once some estimate of the RTT is made, the question of setting the actual 
timeout value, used to trigger retransmissions, remains. If we recall the defini-
tion of a mean, it can never be the extreme value of a set of samples (unless they 
are all the same). So, it would not be sensible to set the retransmission timer to be 
exactly equal to the mean estimator, as it is likely that many actual RTTs will be 
larger, thereby inducing unwanted retransmissions. Clearly, the timeout should 
be set to something larger than the mean, but exactly what this relationship is (or 
even if the mean should be directly used) is not yet clear. Setting the timeout too 
large is also undesirable, as this leads back to letting the network go idle, reducing 
throughput. We shall defer further exploration of this topic to Chapter 14, where 
we explore how TCP, in particular, approaches this problem.

12.2 Introduction to TCP

Given the background we now have regarding the issues affecting reliable deliv-
ery in general, let us see how they play out in TCP and what type of service it 
provides to Internet applications. We also look at the fields in the TCP header, 
noticing how many of the concepts we have seen so far (e.g., ACKs, window adver-
tisements) are captured in the header description. In the chapters that follow, we 
examine all of these header fields in more detail.
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Our description of TCP starts in this chapter and continues in the next five 
chapters. Chapter 13 describes how a TCP connection is established and termi-
nated. Chapter 14 details how TCP estimates the per-connection RTT and how 
the retransmission timeout is set based on this estimate. Chapter 15 looks at the 
normal transfer of data, starting with “interactive” applications (such as chat). It 
then covers window management and flow control, which apply to both interac-
tive and “bulk” data flow applications (such as file transfer), along with TCP’s 
urgent mechanism, which allows a sender to mark certain data in the data stream 
as special. Chapter 16 takes a look at congestion control algorithms in TCP that 
help to reduce packet loss when the network is very busy. It also discusses some 
modifications that have been proposed to increase throughput on fast networks 
or improve resiliency on lossy (e.g., wireless) networks. Finally, Chapter 17 shows 
how TCP keeps connections active even when no data is flowing.

The original specification for TCP is [RFC0793], although some errors in that RFC 
are corrected in the Host Requirements RFC, [RFC1122]. Since then, specifications 
for TCP have been revised and extended to include clarified and improved conges-
tion control behavior [RFC5681][RFC3782][RFC3517][RFC3390][RFC3168], retrans-
mission timeouts [RFC6298][RFC5682][RFC4015], operation with NATs [RFC5382], 
acknowledgment behavior [RFC2883], security [RFC6056][RFC5927][RFC5926], con-
nection management [RFC5482], and urgent mechanism implementation guidelines 
[RFC6093]. There have also been a rich variety of experimental modifications cov-
ering retransmission behaviors [RFC5827][RFC3708], congestion detection and con-
trol [RFC5690][RFC5562][RFC4782][RFC3649][RFC2861], and other features. Finally, 
there is an effort to explore how TCP might take advantage of multiple simultaneous 
network-layer paths [RFC6182].

12.2.1 The TCP Service Model

Even though TCP and UDP use the same network layer (IPv4 or IPv6), TCP pro-
vides a totally different service to the application layer from what UDP does. TCP 
provides a connection-oriented, reliable, byte stream service. The term connection-
oriented means that the two applications using TCP must establish a TCP connec-
tion by contacting each other before they can exchange data. The typical analogy 
is dialing a telephone number, waiting for the other party to answer the phone 
and saying “Hello,” and then saying “Who’s calling?” There are exactly two end-
points communicating with each other on a TCP connection; concepts such as 
broadcasting and multicasting (see Chapter 9) are not applicable to TCP.

TCP provides a byte stream abstraction to applications that use it. The conse-
quence of this design decision is that no record markers or message boundaries 
are automatically inserted by TCP (see Chapter 1). A record marker corresponds 
to an indication of an application’s write extent. If the application on one end 
writes 10 bytes, followed by a write of 20 bytes, followed by a write of 50 bytes, the 
application at the other end of the connection cannot tell what size the individual 
writes were. For example, the other end may read the 80 bytes in four reads of 20 
bytes at a time or in some other way. One end puts a stream of bytes into TCP, and 
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the identical stream of bytes appears at the other end. Each endpoint individually 
chooses its read and write sizes.

TCP does not interpret the contents of the bytes in the byte stream at all. It has 
no idea if the data bytes being exchanged are binary data, ASCII characters, EBCDIC 
characters, or something else. The interpretation of this byte stream is up to the 
applications on each end of the connection. TCP does, however, support the urgent 
mechanism mentioned before, although it is no longer recommended for use.

12.2.2 Reliability in TCP

TCP provides reliability using specific variations on the techniques just described. 
Because it provides a byte stream interface, TCP must convert a sending applica-
tion’s stream of bytes into a set of packets that IP can carry. This is called packetiza-
tion. These packets contain sequence numbers, which in TCP actually represent 
the byte offsets of the first byte in each packet in the overall data stream rather 
than packet numbers. This allows packets to be of variable size during a transfer 
and may also allow them to be combined, called repacketization. The application 
data is broken into what TCP considers the best-size chunks to send, typically 
fitting each segment into a single IP-layer datagram that will not be fragmented. 
This is different from UDP, where each write by the application usually gener-
ates a UDP datagram of that size (plus headers). The chunk passed by TCP to IP 
is called a segment (see Figure 12-2). In Chapter 15 we shall see how TCP decides 
what size a segment should be.

TCP maintains a mandatory checksum on its header, any associated appli-
cation data, and fields from the IP header. This is an end-to-end pseudo-header 
checksum whose purpose is to detect any bit errors introduced in transit. If a 
segment arrives with an invalid checksum, TCP discards it without sending any 
acknowledgment for the discarded packet. The receiving TCP might acknowledge 
a previous (already acknowledged) segment, however, to help the sender with its 
congestion control computations (see Chapter 16). The TCP checksum uses the 
same mathematical function as is used by other Internet protocols (UDP, ICMP, 
etc.). For large data transfers, there is some concern that this checksum is not 
really strong enough [SP00], so careful applications should apply their own error 
protection methods (e.g., stronger checksums or CRCs) or use a middleware layer 
to achieve the same result (e.g., see [RFC5044]).

When TCP sends a group of segments, it normally sets a single retransmission 
timer, waiting for the other end to acknowledge reception. TCP does not set a dif-
ferent retransmission timer for every segment. Rather, it sets a timer when it sends 
a window of data and updates the timeout as ACKs arrive. If an acknowledgment 
is not received in time, a segment is retransmitted. In Chapter 14 we will look at 
TCP’s adaptive timeout and retransmission strategy in more detail.

When TCP receives data from the other end of the connection, it sends an 
acknowledgment. This acknowledgment may not be sent immediately but is nor-
mally delayed a fraction of a second. The ACKs used by TCP are cumulative in the 
sense that an ACK indicating byte number N implies that all bytes up to number N 
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(but not including it) have already been received successfully. This provides some 
robustness against ACK loss—if an ACK is lost, it is very likely that a subsequent 
ACK is sufficient to ACK the previous segments.

TCP provides a full-duplex service to the application layer. This means that 
data can be flowing in each direction, independent of the other direction. There-
fore, each end of a connection must maintain a sequence number of the data flow-
ing in each direction. Once a connection is established, every TCP segment that 
contains data flowing in one direction of the connection also includes an ACK for 
segments flowing in the opposite direction. Each segment also contains a win-
dow advertisement for implementing flow control in the opposite direction. Thus, 
when a TCP segment arrives on a connection, the window may slide forward, 
the window size may change, and new data may have arrived. As we shall see in 
Chapter 13, a fully active TCP connection is bidirectional and symmetric; data can 
flow equally well in either direction.

Using sequence numbers, a receiving TCP discards duplicate segments and 
reorders segments that arrive out of order. Recall that any of these anomalies 
can happen because TCP uses IP to deliver its segments, and IP does not provide 
duplicate elimination or guarantee correct ordering. Because it is a byte stream 
protocol, however, TCP never delivers data to the receiving application out of order. 
Thus, the receiving TCP may be forced to hold on to data with larger sequence 
numbers before giving it to an application until a missing lower-sequence-num-
bered segment (a “hole”) is filled in.

We will now begin to look at some of the details of TCP. In this chapter we 
will only introduce the encapsulation and header structure for TCP. Other details 
appear in the next five chapters. TCP can be used with IPv4 or IPv6, and the 
pseudo-header checksum it uses (similar to UDP’s) is mandatory for use with 
either IPv4 or IPv6.

12.3 TCP Header and Encapsulation

TCP is encapsulated in IP datagrams as shown in Figure 12-2.

Figure 12-2  The TCP header appears immediately following the IP header or last IPv6 extension 
header and is often 20 bytes long (with no TCP options). With options, the TCP header 
can be as large as 60 bytes. Common options include Maximum Segment Size, Time-
stamps, Window Scaling, and Selective ACKs.
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The header itself is considerably more complicated than the header we saw 
for UDP in Chapter 10. This is not very surprising, as TCP is a significantly more 
complicated protocol that must keep each end of the connection informed (syn-
chronized) about the current state. It is shown in Figure 12-3.

Figure 12-3  The TCP header. Its normal size is 20 bytes, unless options are present. The Header 
Length field gives the size of the header in 32-bit words (minimum value is 5). The 
shaded fields (Acknowledgment Number, Window Size, plus ECE and ACK bits) refer to the 
data flowing in the opposite direction relative to the sender of this segment.

Each TCP header contains the source and destination port number. These 
two values, along with the source and destination IP addresses in the IP header, 
uniquely identify each connection. The combination of an IP address and a port 
number is sometimes called an endpoint or socket in the TCP literature. The latter 
term appeared in [RFC0793] and was ultimately adopted as the name of the Berke-
ley-derived programming interface for network communications (now frequently 
called “Berkeley sockets”). It is a pair of sockets or endpoints (the 4-tuple con-
sisting of the client IP address, client port number, server IP address, and server 
port number) that uniquely identifies each TCP connection. This fact will become 
important when we look at how a TCP server can communicate with multiple 
clients (see Chapter 13).

The Sequence Number field identifies the byte in the stream of data from the 
sending TCP to the receiving TCP that the first byte of data in the containing 
segment represents. If we consider the stream of bytes flowing in one direction 
between two applications, TCP numbers each byte with a sequence number. This 
sequence number is a 32-bit unsigned number that wraps back around to 0 after 
reaching (232) − 1. Because every byte exchanged is numbered, the Acknowledgment 
Number field (also called the ACK Number or ACK field for short) contains the next 
sequence number that the sender of the acknowledgment expects to receive. This 
is therefore the sequence number of the last successfully received byte of data plus 
1. This field is valid only if the ACK bit field (described later in this section) is on, 
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which it usually is for all but initial and closing segments. Sending an ACK costs 
nothing more than sending any other TCP segment because the 32-bit ACK Num-
ber field is always part of the header, as is the ACK bit field.

When a new connection is being established, the SYN bit field is turned on in 
the first segment sent from client to server. Such segments are called SYN segments, 
or simply SYNs. The Sequence Number field then contains the first sequence number 
to be used on that direction of the connection for subsequent sequence numbers 
and in returning ACK numbers (recall that connections are all bidirectional). Note 
that this number is not 0 or 1 but instead is another number, often randomly cho-
sen, called the initial sequence number (ISN). The reason for the ISN not being 0 or 1 
is a security measure and will be discussed in Chapter 13. The sequence number 
of the first byte of data sent on this direction of the connection is the ISN plus 1 
because the SYN bit field consumes one sequence number. As we shall see later, 
consuming a sequence number also implies reliable delivery using retransmission. 
Thus, SYNs and application bytes (and FINs, which we will see later) are reliably 
delivered. ACKs, which do not consume sequence numbers, are not. 

TCP can be described as “a sliding window protocol with cumulative positive 
acknowledgments.” The ACK Number field is constructed to indicate the largest 
byte received in order at the receiver (plus 1). For example, if bytes 1–1024 are 
received OK, and the next segment contains bytes 2049–3072, the receiver cannot 
use the regular ACK Number field to signal the sender that it received this new 
segment. Modern TCPs, however, have a selective acknowledgment (SACK) option 
that allows the receiver to indicate to the sender out-of-order data it has received 
correctly. When paired with a TCP sender capable of selective repeat, a significant 
performance benefit may be realized [FF96]. In Chapter 14 we will see how TCP 
uses duplicate acknowledgments (multiple segments with the same ACK field) to 
help with its congestion control and error control procedures.

The Header Length field gives the length of the header in 32-bit words. This is 
required because the length of the Options field is variable. With a 4-bit field, TCP 
is limited to a 60-byte header. Without options, however, the size is 20 bytes.

Currently eight bit fields are defined for the TCP header, although some older 
implementations understand only the last six of them.1 One or more of them can 
be turned on at the same time. We briefly mention their use here and discuss each 
of them in more detail in later chapters.

 1. CWR—Congestion Window Reduced (the sender reduced its sending rate); 
see Chapter 16.

 2. ECE—ECN Echo (the sender received an earlier congestion notification); 
see Chapter 16.

 3. URG—Urgent (the Urgent Pointer field is valid—rarely used); see Chapter 15. 

1. Note that [RFC3540], an experimental RFC, also defines the least significant of the Resv bits as a 
nonce sum (NS). See Section 16.12.
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 4. ACK—Acknowledgment (the Acknowledgment Number field is valid—
always on after a connection is established); see Chapters 13 and 15.

 5. PSH—Push (the receiver should pass this data to the application as soon as 
possible—not reliably implemented or used); see Chapter 15.

 6. RST—Reset the connection (connection abort, usually because of an error); 
see Chapter 13.

 7. SYN—Synchronize sequence numbers to initiate a connection; see Chapter 13.

 8. FIN—The sender of the segment is finished sending data to its peer; see 
Chapter 13.

TCP’s flow control is provided by each end advertising a window size using 
the Window Size field. This is the number of bytes, starting with the one specified 
by the ACK number, that the receiver is willing to accept. This is a 16-bit field, 
limiting the window to 65,535 bytes, and thereby limiting TCP’s throughput per-
formance. In Chapter 15 we will look at the Window Scale option that allows this 
value to be scaled, providing much larger windows and improved performance 
for high-speed and long-delay networks.

The TCP Checksum field covers the TCP header and data and some fields in 
the IP header, using a pseudo-header computation similar to the one used with 
ICMPv6 and UDP that we discussed in Chapters 8 and 10. It is mandatory for this 
field to be calculated and stored by the sender, and then verified by the receiver. 
The TCP checksum is calculated with the same algorithm as the IP, ICMP, and 
UDP (“Internet”) checksums.

The Urgent Pointer field is valid only if the URG bit field is set. This “pointer” is 
a positive offset that must be added to the Sequence Number field of the segment to 
yield the sequence number of the last byte of urgent data. TCP’s urgent mechanism 
is a way for the sender to provide specially marked data to the other end. 

The most common Option field is the Maximum Segment Size option, called 
the MSS. Each end of a connection normally specifies this option on the first seg-
ment it sends (the ones with the SYN bit field set to establish the connection). The 
MSS option specifies the maximum-size segment that the sender of the option is 
willing to receive in the reverse direction. We describe the MSS option in more 
detail in Chapter 13 and some of the other TCP options in Chapters 14 and 15. Other 
common options we investigate include SACK, Timestamp, and Window Scale.

In Figure 12-2 we note that the data portion of the TCP segment is optional. 
We will see in Chapter 13 that when a connection is established, and when a con-
nection is terminated, segments are exchanged that contain only the TCP header 
(with or without options) but no data. A header without any data is also used 
to acknowledge received data, if there is no data to be transmitted in that direc-
tion (called a pure ACK), and to notify the communication peer of a change in the 
window size (called a window update). There are also some cases resulting from 
timeouts when a segment can be sent without any data. 
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12.4 Summary

The problem of providing reliable communications over lossy communication 
channels has been studied for years. The two primary methods for dealing with 
errors include error-correcting codes and data retransmission. The protocols using 
retransmissions must also handle data loss, usually by setting a timer, and must 
also arrange some way for the receiver to signal the sender what it has received. 
Deciding how long to wait for an ACK can be tricky, as the appropriate time may 
change as network routing or load on the end systems varies. Modern protocols 
estimate the round-trip time and set the retransmission timer based on some 
function of these measurements.

Except for setting the retransmission timer, retransmission protocols are sim-
ple when only one packet may be in the network at one time, but they perform 
poorly for networks where the delay is high. To be more efficient, multiple packets 
must be injected into the network before an ACK is received. This approach is more 
efficient but also more complex. A typical approach to managing the complexity is 
to use sliding windows, whereby packets are marked with sequence numbers, and 
the window size bounds the number of such packets. When the window size var-
ies based on either feedback from the receiver or other signals (such as dropped 
packets), both flow control and congestion control can be achieved.

TCP provides a reliable, connection-oriented, byte stream, transport-layer ser-
vice built using many of these techniques. We looked briefly at all of the fields 
in the TCP header, noting that most of them are directly related to these abstract 
concepts in reliable delivery. We will examine them in detail in the chapters that 
follow. TCP packetizes the application data into segments, sets a timeout anytime 
it sends data, acknowledges data received by the other end, reorders out-of-order 
data, discards duplicate data, provides end-to-end flow control, and calculates and 
verifies a mandatory end-to-end checksum. It is the most widely used protocol on 
the Internet. It is used by most of the popular applications, such as HTTP, SSH/
TLS, NetBIOS (NBT—NetBIOS over TCP), Telnet, FTP, and electronic mail (SMTP). 
Many distributed file-sharing applications (e.g., BitTorrent, Shareaza) also use TCP.
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13

TCP Connection Management 

13.1 Introduction

TCP is a unicast connection-oriented protocol. Before either end can send data to the 
other, a connection must be established between them. In this chapter, we take a 
detailed look at what a TCP connection is, how it is established, and how it is ter-
minated. Recall that TCP’s service model is a byte stream. TCP detects and repairs 
essentially all the data transfer problems that may be introduced by packet loss, 
duplication, or errors at the IP layer (or below).

Because of its management of connection state (information about the connec-
tion kept by both endpoints), TCP is a considerably more complicated protocol 
than UDP (see Chapter 10). UDP is a connectionless protocol that involves no con-
nection establishment or termination. One of the major differences we shall see 
between the two is the amount of detail required to handle the various TCP states 
properly: when connections are created, terminated normally, and reset without 
warning. In other chapters we will look at what happens once the connection is 
established and data is transferred.

During connection establishment, several options can be exchanged between 
the two endpoints regarding the parameters of the connection. Some options are 
allowed to be sent only when the connection is established, and others can be sent 
later. Recall from Chapter 12 that the TCP header has a limited space for holding 
options (40 bytes).

13.2 TCP Connection Establishment and Termination

A TCP connection is defined to be a 4-tuple consisting of two IP addresses and two 
port numbers. More precisely, it is a pair of endpoints or sockets where each end-
point is identified by an (IP address, port number) pair. 
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A connection typically goes through three phases: setup, data transfer (called 
established), and teardown (closing). As we will see, some of the difficulty in creat-
ing a robust TCP implementation is handling all of the transitions between and 
among these phases correctly. A typical TCP connection establishment and close 
(without any data transfer) is shown in Figure 13-1.

Figure 13-1  A normal TCP connection establishment and termination. Usually, the client initiates a three-way 
handshake to exchange initial sequence numbers carried on SYN segments for the client and 
server (ISN(c) and ISN(s), respectively). The connection terminates after each side has sent a FIN 
and received an acknowledgment for it.

The figure shows a timeline of what happens during connection establish-
ment. To establish a TCP connection, the following events usually take place:

 1. The active opener (normally called the client) sends a SYN segment (i.e., a 
TCP/IP packet with the SYN bit field turned on in the TCP header) specify-
ing the port number of the peer to which it wants to connect and the client’s 
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initial sequence number or ISN(c) (see Section 13.2.3). It typically sends one 
or more options at this point (see Section 13.3). This is segment 1.

2. The server responds with its own SYN segment containing its initial 
sequence number (ISN(s)). This is segment 2. The server also acknowledges 
the client’s SYN by ACKing ISN(c) plus 1. A SYN consumes one sequence 
number and is retransmitted if lost.

3. The client must acknowledge this SYN from the server by ACKing ISN(s) 
plus 1. This is segment 3.

These three segments complete the connection establishment. This is often 
called the three-way handshake. Its main purposes are to let each end of the connec-
tion know that a connection is starting and the special details that are carried as 
options, and to exchange the ISNs.

The side that sends the first SYN is said to perform an active open. As men-
tioned, this is typically a client. The other side, which receives this SYN and sends 
the next SYN, performs a passive open. It is most commonly called the server. (In 
Section 13.2.2 we describe a supported but unusual simultaneous open when both 
sides can do an active open at the same time and become both clients and servers.) 

Note

TCP supports the capability of carrying application data on SYN segments. This 
is rarely used, however, because the Berkeley sockets API does not support it.

Figure 13-1 also shows how a TCP connection is closed (also called cleared or 
terminated). Either end can initiate a close operation, and simultaneous closes are 
also supported but are rare. Traditionally, it was most common for the client to 
initiate a close (as shown in Figure 13-1). However, other servers (e.g., Web servers) 
initiate a close after they have completed a request. Usually a close operation starts 
with an application indicating its desire to terminate its connection (e.g., using the 
close() system call). The closing TCP initiates the close operation by sending a 
FIN segment (i.e., a TCP segment with the FIN bit field set). The complete close 
operation occurs after both sides have completed the close:

 1. The active closer sends a FIN segment specifying the current sequence num-
ber the receiver expects to see (K in Figure 13-1). The FIN also includes an 
ACK for the last data sent in the other direction (labeled L in Figure 13-1).

 2. The passive closer responds by ACKing value K + 1 to indicate its success-
ful receipt of the active closer’s FIN. At this point, the application is noti-
fied that the other end of its connection has performed a close. Typically 
this results in the application initiating its own close operation. The passive 
closer then effectively becomes another active closer and sends its own FIN. 
The sequence number is equal to L.
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3. To complete the close, the final segment contains an ACK for the last FIN. 
Note that if a FIN is lost, it is retransmitted until an ACK for it is received.

While it takes three segments to establish a connection, it takes four to termi-
nate one. It is also possible for the connection to be in a half-open state (see Section 
13.6.3), although this is not common. This reason is that TCP’s data communica-
tions model is bidirectional, meaning it is possible to have only one of the two 
directions operating. The half-close operation in TCP closes only a single direction 
of the data flow. Two half-close operations together close the entire connection. 
The rule is that either end can send a FIN when it is done sending data. When a 
TCP receives a FIN, it must notify the application that the other end has termi-
nated that direction of data flow. The sending of a FIN is normally the result of 
the application issuing a close operation, which typically causes both directions 
to close. 

The seven segments we have seen are baseline overheads for any TCP connec-
tion that is established and cleared “gracefully.” (There are more abrupt ways to 
tear down a TCP connection using special reset segments, which we cover later.) 
When a small amount of data needs to be exchanged, it is now apparent why some 
applications prefer to use UDP because of its ability to send and receive data with-
out establishing connections. However, such applications are then faced with han-
dling their own error repair features, congestion management, and flow control.

13.2.1 TCP Half-Close

As we have mentioned, TCP supports a half-close operation. Few applications 
require this capability, so it is not common. To use this feature, the API must pro-
vide a way for the application to say, essentially, “I am done sending data, so send 
a FIN to the other end, but I still want to receive data from the other end, until it 
sends me a FIN.” The Berkeley sockets API supports half-close, if the application 
calls the shutdown() function instead of calling the more typical close() func-
tion. Most applications, however, terminate both directions of the connection by 
calling close. Figure 13-2 shows an example of a half-close being used. We show 
the client on the left side initiating the half-close, but either end can do this.

The first two segments are the same as for a regular close: a FIN by the initia-
tor, followed by an ACK of the FIN by the recipient. The operation then differs 
from Figure 13-1, because the side that receives the half-close can still send data. 
We show only one data segment, followed by an ACK, but any number of data 
segments can be sent. (We talk more about the exchange of data segments and 
acknowledgments in Chapter 15.) When the end that received the half-close is 
done sending data, it closes its end of the connection, causing a FIN to be sent, and 
this delivers an end-of-file indication to the application that initiated the half-close. 
When this second FIN is acknowledged, the connection is completely closed.
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13.2.2 Simultaneous Open and Close

It is possible, although highly improbable unless specifically arranged, for two 
applications to perform an active open to each other at the same time. Each end 
must have transmitted a SYN before receiving a SYN from the other side; the 
SYNs must pass each other on the network. This scenario also requires each end 
to have an IP address and port number that are known to the other end, which is 
rare (except for the firewall “hole-punching” techniques we saw in Chapter 7). If 
this happens, it is called a simultaneous open.

For example, a simultaneous open occurs when an application on host A using 
local port 7777 performs an active open to port 8888 on host B, while at the same 
time an application on host B using local port 8888 performs an active open to 
port 7777 on host A. This is not the same as connecting a client on host A to a 
server on host B, while at the same time having a client on host B connect to a 
conventional server on host A. In that case, both servers perform passive opens, 
not active opens, and the clients assign themselves different ephemeral port num-
bers. This results in two distinct TCP connections. Figure 13-3 shows the segments 
exchanged during a simultaneous open.

Figure 13-2  With the TCP half-close operation, one direction of the connection can terminate while the other 
continues until it is closed. Few applications use this feature.
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A simultaneous open requires the exchange of four segments, one more than 
the normal three-way handshake. Also note that we do not call either end a cli-
ent or a server, because both ends act as client and server. A simultaneous close is 
not very different. We said earlier that one side (often, but not always, the client) 
performs the active close, causing the first FIN to be sent. In a simultaneous close, 
both do. Figure 13-4 shows the segments exchanged during a simultaneous close.

Figure 13-3  Segments exchanged during simultaneous open. One additional segment is required compared 
to the ordinary connection establishment procedure. The SYN bit field is on in each segment 
until an ACK for it is received.

Figure 13-4  Segments exchanged during simultaneous close work like a conventional close, but the 
segment ordering is interleaved.
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With a simultaneous close the same number of segments are exchanged as in 
the normal close. The only real difference is that the segment sequence is inter-
leaved instead of sequential. Later we will see that simultaneous open and close 
operations use particular states in the TCP implementation that are not commonly 
exercised.

13.2.3 Initial Sequence Number (ISN)

When a connection is open, any segment with the appropriate two IP addresses 
and port numbers is accepted as valid provided the sequence number is valid 
(i.e., within the window) and the checksum is OK. This brings up the question of 
whether it might be possible to have TCP segments being routed through the net-
work that could show up later and disrupt a connection. This concern is addressed 
by careful selection of the ISN, which we now investigate.

Before each end sends its SYN to establish the connection, it chooses an ISN 
for that connection. The ISN should change over time, so that each connection 
has a different one. [RFC0793] specifies that the ISN should be viewed as a 32-bit 
counter that increments by 1 every 4µs. The purpose of doing this is to arrange 
for the sequence numbers for segments on one connection to not overlap with 
sequence numbers on a another (new) identical connection. In particular, new 
sequence numbers must not be allowed to overlap between different instantiations
(or incarnations) of the same connection.

The idea of different instantiations of the same connection becomes clear 
when we recall that a TCP connection is identified by a pair of endpoints, creat-
ing a 4-tuple of two address/port pairs. If a connection had one of its segments 
delayed for a long period of time and closed, but then opened again with the same 
4-tuple, it is conceivable that the delayed segment could reenter the new connec-
tion’s data stream as valid data. This would be most troublesome. By taking steps 
to avoid overlap in sequence numbers between connection instantiations, we can 
try to minimize this risk. It does suggest, however, that an application with a very 
great need for data integrity should employ its own CRCs or checksums at the 
application layer to ensure that its own data has been transferred without error. 
This is generally good practice in any case, and it is commonly done for large files.

As we shall see, knowing the connection 4-tuple as well as the currently active 
window of sequence numbers is all that is required to form a TCP segment that is 
considered valid to a communicating TCP endpoint. This represents a form of vul-
nerability for TCP: anyone can forge a TCP segment and, if the sequence numbers, 
IP addresses, and port numbers are chosen appropriately, can interrupt a TCP 
connection [RFC5961]. One way of repelling this is to make the initial sequence 
number (or ephemeral port number [RFC6056]) relatively hard to guess. Another 
is encryption (see Chapter 18).

In modern systems, the ISN is typically selected in a semirandom way. An 
interesting discussion of the subtleties of doing this properly is contained in CERT 
Advisory CA-2001-09 [CERTISN]. Linux goes through a fairly elaborate process to 
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select its ISNs. It uses a clock-based scheme but starts the clock at a random offset 
for each connection. The random offset is chosen as a cryptographically hashed 
function on the connection identifier (4-tuple). A secret input to the hash func-
tion changes every 5 minutes. Of the 32 bits in the ISN, the top-most 8 bits are a 
sequence number of the secret, and the remaining bits are generated by the hash. 
This produces an ISN that is difficult to guess, but also one that increases over 
time. Windows reportedly uses a similar scheme based on RC4 [S96].

13.2.4 Example

Now that we have a basic idea of how a TCP connection is established and cleared, 
let us look at the packet-level details. To do so we make a TCP connection to a 
nearby Web server running on the machine with IPv4 address 10.0.0.2. The cli-
ent is the Telnet application on Windows:

C:\> telnet 10.0.0.2 80
Welcome to Microsoft Telnet Client
Escape Character is 'CTRL+]'
... wait about 4.4 seconds ...
Microsoft Telnet> quit

The telnet command establishes a TCP connection with the host having IPv4 
address 10.0.0.2 on the port corresponding to the http or Web service (port 80). 
When the Telnet program connects to a port other than 23 (the well-known port 
for the Telnet protocol [RFC0854]), it does not engage in the application protocol. 
Instead, it merely copies bytes from its input to its TCP connection and vice versa. 
When a Web server receives the incoming connection request, the first thing it does 
is await a request for a Web page. In this case, we do not provide one, so the server 
does not produce any data. This is ideal for us, because for now we are interested 
only in the connection establishment and termination packet exchange. Figure 13-5 
shows the Wireshark output for the segments generated by this command.

In the figure, we can see that the client begins with a SYN segment contain-
ing an ISN of 685506836 and window advertisement of 65535. This segment also 
contains several options we discuss in Section 13.3. The second segment is both 
a SYN from the server and an ACK for the client. The sequence number (server’s 
ISN) is 1479690171 and the ACK number is 685506837, 1 more than the client’s ISN. 
This indicates successful receipt of the client’s ISN. This segment also includes a 
window advertisement indicating that the server is willing to accept up to 64,240 
bytes. Completion of the three-way handshake takes place with segment 3, which 
contains ACK number 1479690172. Remember that ACK numbers are cumulative 
and always indicate the sequence number the sender of the ACK expects to see 
next (not the one that it last received).

After a pause of about 4.4s, the Telnet application is instructed to close the 
connection. This results in the client’s TCP sending the FIN in segment 4. The 
sequence number of the FIN is 685506837, which is ACKed in segment 5 (with 
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ACK number 685506838). Shortly thereafter the server sends its own FIN with 
sequence number 1479690172. This segment also (redundantly) ACKs the client’s 
FIN once again. Note that the PSH bit field is on. This has no real effect on the 
closing of the connection but usually indicates that the server has no additional 
data to send. The final segment ACKs the server’s FIN by including ACK number 
1479690173.

Note

[RFC1025] calls a segment with the maximum number of features enabled (e.g., 
flags and options) a “Kamikaze” packet. Other colorful terms include “nastygram,” 
“Christmas tree packet,” and “lamp test segment.” 

One thing we can see in Figure 13-5 is that the SYN segments contain one or more 
options. These take up additional space in the TCP header. For example, the length 
of the first TCP header is 44 bytes, 24 bytes greater than the minimum size. TCP 

Figure 13-5  A TCP connection between 192.168.35.130 and 10.0.0.2 is established and cleared without sending 
any data. The PSH (Push) bit indicates that segment 6 is sending all data from its buffer (which 
is none).
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has several supported options, which we detail after we see what happens when a 
connection cannot be established.

13.2.5 Timeout of Connection Establishment

There are several circumstances in which a connection cannot be established. One 
obvious case is when the server host is down. To simulate this scenario, we issue 
our telnet command to a nonexistent host in the same subnet. If we do this 
without modifying the ARP table, the client exits with a “No route to host” error 
message, generated because no ARP reply is ever returned for the ARP request 
(see Chapter 4). If, however, we place an ARP entry for a nonexistent host in the 
ARP table first, the ARP request is not sent, and the system immediately attempts 
to contact the nonexistent host with TCP/IP. First, the commands:

Linux# arp -s 192.168.10.180 00:00:1a:1b:1c:1d
Linux% date; telnet 192.168.10.180 80; date
Tue June  7 21:16:34 PDT 2009 
Trying 192.168.10.180...
telnet: connect to address 192.168.10.180: Connection timed out
Tue June  7 21:19:43 PDT 2009
Linux%

Here the MAC address 00:00:1a:1b:1c:1d was chosen simply as a MAC 
address not being used on the LAN; it is of no special consequence. The timeout 
occurs about 3.2 minutes after the initial command. Because there is no host to 
respond, all of the segments generated are from the client. Listing 13-1 shows the 
output using Wireshark in packet summary (text) mode.

Listing 13-1   Wireshark output for connection establishment that times out

No. Time      Source           Destination      Protocol Info
 1  0.000000  192.168.10.144   192.168.10.180   TCP      32787 > http
 2  2.997928  192.168.10.144   192.168.10.180   TCP      32787 > http
 3  8.997962  192.168.10.144   192.168.10.180   TCP      32787 > http
 4  20.997942 192.168.10.144   192.168.10.180   TCP      32787 > http
 5  44.997936 192.168.10.144   192.168.10.180   TCP      32787 > http
 6  92.997937 192.168.10.144   192.168.10.180   TCP      32787 > http

The interesting point in this output is how frequently the client’s TCP sends a 
SYN to try to establish the connection. The second segment is sent 3s after the first, 
the third is sent 6s after the second, the fourth is sent 12s after the third, and so 
on. This behavior is called exponential backoff, and we saw something like it before 
when we discussed the behavior of Ethernet’s CSMA/CD media access control 
protocol (see Chapter 3). In that case, it was a little different, however, because 
here each backoff is deterministically (i.e., always) twice the previous backoff, 
whereas in Ethernet, the maximum backoff is doubled and the actual backoff is 
chosen randomly.
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The number of times to retry an initial SYN can be configured on some sys-
tems and usually has a fairly small value such as 5. In Linux, the system configura-
tion variable net.ipv4.tcp_syn_retries gives the maximum number of times 
to attempt to resend a SYN segment during an active open. A corresponding value 
called net.ipv4.tcp_synack_retries gives the maximum number of times 
to attempt to resend a SYN + ACK segment when responding to a peer’s active 
open request. It can also be used on an individual connection basis by setting the 
Linux-specific TCP_SYNCNT socket option. Its default value is five retries, as we 
see here. The exponential backoff timing between these retransmissions is part of 
TCP’s congestion management response. We shall examine it in detail when we 
discuss Karn’s algorithm (see Chapter 16).

13.2.6 Connections and Translators

In Chapter 7 we discussed how conventional NAT translates the addresses and 
port numbers used by protocols such as TCP and UDP. We also examined how IP 
packets can be translated between IPv6 and IPv4. When NAT is used with TCP, 
the pseudo-header checksum usually requires adjustment (except in cases where 
a checksum-neutral address modifier is used). This is also true for other protocols 
that use pseudo-header checksums, because the computation involves informa-
tion at the transport layer as well as the network layer.  

When a TCP connection is first established, a NAT (or NAT64) can ascertain 
this fact because of the presence of the SYN bit field in a segment. It can also deter-
mine when a connection has become fully established by looking for subsequent 
SYN + ACK and ACK segments containing the appropriate sequence numbers. 
The same applies for the termination of a connection. By implementing a portion 
of the TCP state machine in a NAT (see, for example, Sections 3.5.2.1 and 3.5.2.2 of 
[RFC6146]), the connection can be tracked, including the current states, sequence 
numbers in each direction, and corresponding ACK numbers. Such state tracking 
is typical for NAT implementations.  

Further complications arise when a NAT acts as an editor and rewrites con-
tents in the transport protocol’s data payload. For TCP, this may involve removing 
or adding bytes to the data stream, and consequently affecting the sequence num-
bers (and segment) lengths. Doing so also necessarily affects the checksum, but it 
also affects the data sequence. If data is inserted or removed from the data stream 
by the NAT, these values can be adjusted appropriately. Doing so is somewhat 
fragile because if the NAT state becomes desynchronized with the state in the end 
hosts, the connection will not operate properly.

13.3 TCP Options

The TCP header can contain options (see Figure 12-3). The only options defined in the 
original TCP specification are the End of Option List (EOL), the No Operation (NOP), 
and the Maximum Segment Size (MSS) options. Since then, several options have been 
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defined. The entire list is maintained by the IANA [TPARAMS]; Table 13-1 gives the 
current options of interest (i.e., those with standards-track RFC descriptions). 

Every option begins with a 1-byte kind that specifies the type of option. Options 
that are not understood are simply ignored, according to [RFC1122]. The options 
with a kind value of 0 and 1 occupy a single byte. The other options have a len byte 
that follows the kind byte. The length is the total length, including the kind and 
len bytes. The reason for the NOP option is to allow the sender to pad fields to a 
multiple of 4 bytes, if it needs to. Remember that the TCP header’s length is always 
required to be a multiple of 32 bits because the TCP Header Length field uses that 
unit. The EOL option indicates the end of the list and that no further processing of 
the options list is to be performed. Now we will have a look at the other options.

13.3.1 Maximum Segment Size (MSS) Option

The maximum segment size (MSS) is the largest segment that a TCP is willing to 
receive from its peer and, consequently, the largest size its peer should ever use 
when sending. The MSS value counts only TCP data bytes and does not include 
the sizes of any associated TCP or IP header [RFC0879]. When a connection is 
established, each end usually announces its MSS in an MSS option carried with its 
SYN segment. The option allows for 16 bits to be used to specify the MSS value. If 
no MSS option is provided, a default value of 536 bytes is used. Recall the rule that 
requires any host to be capable of processing IPv4 datagrams at least as large as 
576. With minimum-size IPv4 and TCP headers, a TCP using a sending MSS size 
of 536 bytes produces an IPv4 datagram of size 20 + 20 + 536 = 576 bytes.

The MSS values in Figure 13-5 are all 1460, which is typical for IPv4. The 
resulting IPv4 datagram is normally 40 bytes larger (1500 bytes total, the typical 

Table 13-1  The TCP option values. Up to 40 bytes are available to hold options.

Kind Length Name Reference Description and Purpose

0 1 EOL [RFC0793] End of Option List
1 1 NOP [RFC0793] No Operation (used for padding)
2 4 MSS [RFC0793] Maximum Segment Size
3 3 WSOPT [RFC1323] Window Scaling Factor (left-shift amount on 

window)
4 2 SACK-Permitted [RFC2018] Sender supports SACK options
5 Var. SACK [RFC2018] SACK block (out-of-order data received)
8 10 TSOPT [RFC1323] Timestamps option
28 4 UTO [RFC5482] User Timeout (abort after idle time)
29 Var. TCP-AO [RFC5925] Authentication option (using various 

algorithms)
253 Var. Experimental [RFC4727] Reserved for experimental use
254 Var. Experimental [RFC4727] Reserved for experimental use
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MTU size for Ethernet and path MTU for the Internet): 20 bytes for the TCP header 
and 20 bytes for the IPv4 header. When IPv6 is used, the MSS is usually 1440, 20 
bytes less because of the larger IPv6 header. The special MSS value of 65535 can be 
used with IPv6 jumbograms to indicate an effective MSS of infinity [RFC2675]. In 
this case the SMSS will be determined as the PMTU minus 60 bytes (40 bytes for 
the IPv6 header and 20 bytes for the TCP header). Note that the MSS option is not 
a negotiation between one TCP and its peer; it is a limit. When one TCP gives its 
MSS option to the other, it is indicating its unwillingness to accept any segments 
larger than that size for the duration of the connection. 

13.3.2 Selective Acknowledgment (SACK) Options

In Chapter 12 we introduced the concept of a sliding window, and we described 
how TCP handles its sequence numbers and acknowledgments. Because it uses 
cumulative ACKs, TCP is never able to acknowledge data it has received correctly 
but that is not contiguous, in terms of sequence numbers, with data it has received 
previously. In such cases, the TCP receiver is said to have holes in its received data 
queue. A receiving TCP prevents applications from consuming data beyond a hole 
because of the byte stream abstraction it provides.

If a TCP sender were able to learn of the existence of holes (and out-of-
sequence data blocks beyond holes in the sequence space) at the receiver, it could 
better select which particular TCP segments to retransmit when segments are lost 
or otherwise missing at the receiver. The TCP selective acknowledgment (SACK) 
options [RFC2018][RFC2883] provide this capability. The scheme works effec-
tively, however, only if the TCP sender logic is able to make effective use of the 
SACK information it receives from a SACK-capable receiver.

A TCP learns that its peer is capable of advertising SACK information by 
receiving the SACK-Permitted option in a SYN (or SYN + ACK) segment. Once 
this has taken place, the TCP receiving out-of-sequence data may provide a SACK 
option that describes the out-of-sequence data to help its peer perform retransmis-
sions more efficiently. SACK information contained in a SACK option consists of a 
range of sequence numbers representing data blocks the receiver has successfully 
received. Each range is called a SACK block and is represented by a pair of 32-bit 
sequence numbers. Thus, a SACK option containing n SACK blocks is (8n + 2) 
bytes long. Two bytes are used to hold the kind and length of the SACK option.

Because of the limited amount of space available in the option space of a TCP 
header, the maximum number of SACK blocks available to be sent in a single seg-
ment is three (assuming the Timestamps option is also used, described in Section 
13.3.4, which is typical for modern TCP implementations). Although the SACK-
Permitted option is only ever sent in a SYN segment, the SACK blocks themselves 
may be sent in any segment once the sender has sent the SACK-Permitted option. 
Because the operation of SACK is most easily (and importantly) related to the error 
and congestion control operations of TCP, we discuss it in further detail when we 
cover these topics in Chapters 14 and 16.
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13.3.3 Window Scale (WSCALE or WSOPT) Option

The Window Scale option (denoted WSCALE or WSOPT) [RFC1323] effectively 
increases the capacity of the TCP Window Advertisement field from 16 to about 30 
bits. Instead of changing the field size, however, the header still holds a 16-bit 
value, and an option is defined that applies a scaling factor to the 16-bit value. This 
factor effectively left-shifts the window field value by the scale factor. This, in 
effect, multiplies the window value by the value 2s, where s is the scale factor. 
The 1-byte shift count is between 0 and 14 (inclusive). A shift count of 0 indicates 
no scaling. The maximum scale value of 14 provides for a maximum window of 
1,073,725,440 bytes (65,535 × 214), close to 1,073,741,823 (230 −1), effectively 1GB. TCP 
then maintains the “real” window size internally as a 32-bit value.

This option can appear only in a SYN segment, so the scale factor is fixed 
in each direction when the connection is established. To enable window scaling, 
both ends must send the option in their SYN segments. The end doing the active 
open sends the option in its SYN, but the end doing the passive open can send the 
option only if the received SYN specifies the option. The scale factor can be differ-
ent in each direction. If the end doing the active open sends a nonzero scale factor 
but does not receive a Window Scale option from the other end, it sets its send 
and receive scale values to 0. This lets systems that do not understand the option 
interoperate with systems that do.

Assume we are using the Window Scale option, with a shift count of S for 
sending and a shift count of R for receiving. Then every 16-bit advertised window 
that we receive from the other end is left-shifted by R bits to obtain the real adver-
tised window size. Every time we send a window advertisement to the other end, 
we take our real 32-bit window size and right-shift it S bits, placing the resulting 
16-bit value in the TCP header.

The shift count is automatically chosen by TCP, based on the size of the 
receive buffer. The size of this buffer is set by the system, but the capability is 
normally provided for the application to change it. The Window Scale option is 
most relevant when TCP is used to provide bulk data transfer over networks with 
large-bandwidth-delay products (i.e., those with a product of round-trip time and 
bandwidth being relatively large). Thus, we shall discuss the importance and use 
of this option more in Chapter 16.

13.3.4 Timestamps Option and Protection against Wrapped Sequence Numbers 
(PAWS)

The Timestamps option (sometimes called the Timestamp option and written as 
TSOPT or TSopt) lets the sender place two 4-byte timestamp values in every seg-
ment. The receiver reflects these values in the acknowledgment, allowing the 
sender to calculate an estimate of the connection’s RTT for each ACK received. 
(We must say “each ACK received” and not “each segment” because TCP often 
acknowledges multiple segments per ACK; we will see this in Chapter 15.) When 
using the Timestamps option, the sender places a 32-bit value in the Timestamp 
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Value field (called TSV or TSval) in the first part of the TSOPT, and the receiver 
echoes this back unchanged in the second Timestamp Echo Retry field (called TSER 
or TSecr). TCP headers containing this option increase by 10 bytes (8 bytes for the 
two timestamp values and 2 to indicate the option value and length).

The timestamp is a monotonically increasing value. Because the receiver 
simply echoes what it receives, it does not care what the timestamp units or val-
ues actually are. This option does not require any form of clock synchronization 
between the two hosts. [RFC1323] recommends that the sender increment the 
timestamp value by at least 1 every second. Figure 13-6 shows the Timestamps 
option, as displayed by Wireshark.

Figure 13-6  A TCP connection with the Timestamps, Window Scaling, and MSS options being used. 
The TCP header is 44 bytes long. The initial SYN (packet 1) starts with the TSV set to 
81813090. The second packet, highlighted, echoes this value back to the active opener 
and includes its own value of 349742014.

Here, both ends participate by generating and echoing back the other’s 
timestamps. The first segment (client’s SYN) uses an initial timestamp value of 
81813090. This value is placed in the TSV. The second portion, TSER, has a value 
of 0 on the first segment because the client does not know the server’s timestamp 
value yet.
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The main reason for wishing to calculate a good estimate of the connection’s 
RTT is to set the retransmission timeout, which tells TCP when it should try 
resending a segment that is likely lost. In Chapter 12 we discussed the need to set 
this timeout based on some function of the RTT. With the Timestamps option, we 
can get relatively fine-grain measurements of the RTT. Prior to the creation of the 
Timestamps option, most TCPs would perform just one RTT sample per window 
of data. With the Timestamps option, more samples can be taken, leading to the 
potential of a better RTT estimate (see [RFC1323] and [RFC6298]).

Because the Timestamps option is most relevant to the setting of the retrans-
mission timer, we discuss its use for that purpose in more detail when we dis-
cuss retransmission in Chapter 14. We say “for that purpose” because although 
the Timestamps option allows for more frequent RTT samples, it also provides 
a way for the receiver to avoid receiving old segments and considering them as 
valid. This is called Protection Against Wrapped Sequence Numbers (PAWS), and it is 
described in [RFC1323] along with the Timestamps option. We’ll now take a look 
at how it works.

Consider a TCP connection using the Window Scale option with the larg-
est possible window, about 1GB (230). Also assume that the Timestamps option is 
being used and that the timestamp value assigned by the sender increments by 1 
for each window that is sent. (This is conservative. Normally the timestamp incre-
ments faster than this.) Table 13-2 shows the possible data flow between the two 
hosts when transferring 6GB. To avoid lots of ten-digit numbers, we use the nota-
tion G to mean a multiple of 1,073,741,824. We also use the notation from tcpdump
that J:K means byte J through and including byte K − 1.

Table 13-2  The TCP Timestamps option can disambiguate segments with the same sequence num-
bers by providing an extra 32 bits of effective sequence number space.

Time Bytes Sent
Send
Seq. No.

Send
Timestamp Receive

A 0G:1G 0G:1G 1 OK
B 1G:2G 1G:2G 2 OK, but one segment lost and retransmitted
C 2G:3G 2G:3G 3 OK
D 3G:4G 3G:4G 4 OK
E 4G:5G 0G:1G 5 OK
F 5G:6G 1G:2G 6 OK, but retransmitted segment reappears

The 32-bit Sequence Number field wraps between times D and E. We assume 
that one segment gets lost at time B and is retransmitted. We also assume that this 
lost segment reappears at time F. This assumes that the time difference between 
the segment getting lost and reappearing is less than the maximum time a seg-
ment can live in the network (called the MSL; see Section 13.5.2); otherwise the 
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segment would have been discarded by some router when its TTL expired. As we 
mentioned earlier, it is only with relatively high-speed connections that this prob-
lem appears, where old segments can reappear and contain sequence numbers 
currently being transmitted.

We can also see from Table 13-2 that using the Timestamps option prevents 
this problem. The receiver considers the timestamp as a 32-bit extension of the 
sequence number. Because the lost segment that reappears at time F has a time-
stamp of 2, which is less than the most recent valid timestamp (5 or 6), it is dis-
carded by the PAWS algorithm. The PAWS algorithm does not require any form of 
time synchronization between the sender and the receiver. All the receiver needs 
is for the timestamp values to be monotonically increasing, and to increase by at 
least 1 per window of data.

13.3.5 User Timeout (UTO) Option

The User Timeout (UTO) option is a relatively new TCP capability described in 
[RFC5482]. The UTO value (also called USER_TIMEOUT) specifies the amount of 
time a TCP sender is willing to wait for an ACK of outstanding data before con-
cluding that the remote end has failed. USER_TIMEOUT has traditionally been a 
local configuration parameter for TCP [RFC0793]. The UTO option allows one TCP 
to signal its USER_TIMEOUT value to its connection peer. This allows the receiv-
ing TCP to adjust its behavior (e.g., to tolerate a longer period of disrupted con-
nectivity prior to aborting a connection). NAT devices could also interpret such 
information to help set their connection activity timers.

UTO option values are advisory; just because one end of a connection might 
wish to use a large or small UTO value does not mean that the other end needs to 
comply. [RFC1122] refines the definition of USER_TIMEOUT and suggests that a 
TCP reaching a threshold of three (R1) retransmissions should notify the request-
ing application, and that after 100s (R2) the connection should be closed. Some 
implementations have an API function to change R1 and R2. Because long UTOs 
might lead to resource exhaustion concerns and short UTOs might result in some 
connections being torn down early (a type of DoS attack), upper and lower limits 
are placed on the possible UTO values. The way to set USER_TIMEOUT, then, is 
as follows:

USER_TIMEOUT = min(U_LIMIT, max(ADV_UTO, REMOTE_UTO, L_LIMIT))

where ADV_UTO is the UTO option advertised to the remote TCP, REMOTE_UTO 
is the peer’s advertised UTO option value, U_LIMIT is the local system’s upper 
UTO limit, and L_LIMIT is the local system’s UTO lower limit. Note that this for-
mula does not guarantee that each end of the same connection will arrive at the 
same USER_TIMEOUT value. In all cases the L_LIMIT value must be greater than 
the associated connection’s retransmission timeout (RTO) value (see Chapter 14), 
and it is recommended to be set to 100s to retain compatibility with [RFC1122].
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UTO options are included on SYN segments when a connection is estab-
lished, on the first non-SYN segments, and whenever the USER_TIMEOUT value 
is changed. The option value is expressed as a 15-bit value in units of seconds 
or minutes following a bit field (“granularity”) that indicates that the value is in 
minutes (1) or seconds (0). As a relatively new option, it is not yet widely deployed.

13.3.6 Authentication Option (TCP-AO)

There is an option used to enhance the security of TCP connections. It is designed 
to enhance and replace an earlier mechanism called TCP-MD5 [RFC2385]. Called 
the TCP Authentication Option (TCP-AO) [RFC5925], it uses a cryptographic hash 
algorithm (see Chapter 18), in combination with a secret value known to each 
end of a TCP connection, to authenticate each segment. TCP-AO improves upon 
TCP-MD5 by supporting a variety of cryptographic algorithms and identifying 
changing of keys using in-band signaling. It does not provide a comprehensive 
key management solution, however. That is, each end still has to have a way to 
establish a shared set of keys prior to operation.

When sending, the TCP derives a traffic key from the shared secret key 
and computes the hash value according to a particular cryptographic algorithm 
[RFC5926]. A receiver, equipped with the same secret key, is likewise able to derive 
the traffic key and use it to ensure that an arriving segment has not been modified 
in transit (with high probability). This option is intended as a strong countermea-
sure to a variety of TCP spoofing attacks (see Section 13.8). However, because it 
requires creation and distribution of a shared key (and is a relatively new option), 
it is not yet widely deployed.

13.4 Path MTU Discovery with TCP

In Chapter 3, we described the concept of the path MTU. It is the minimum MTU 
on any network segment that is currently in the path between two hosts. Knowing 
the path MTU can help protocols such as TCP avoid fragmentation. In Chapter 10, 
we looked at how discovery of the path MTU (PMTUD) is accomplished based on 
ICMP messages, but in that case UDP is not usually able to adapt its datagram size 
because the application specifies the size (i.e., not the transport protocol). TCP, in 
providing the byte stream abstraction it implements, determines what segment 
size to use and as a result has a much greater degree of control over the size of IP 
datagrams that are ultimately generated.

In this section we will examine how PMTUD is used by TCP. Our discus-
sion will apply to both TCP/IPv4 and TCP/IPv6. More details are provided by 
[RFC1191] and [RFC1981], respectively. A method that avoids the use of ICMP, 
called Packetization Layer Path MTU Discovery (PLPMTUD), can also be used by 
TCP [RFC4821] or by other transport protocols. We shall use the ICMPv6 Packet 
Too Big (PTB) terminology to refer to either ICMPv4 Destination Unreachable 
(Fragmentation Required) or ICMPv6 Packet Too Big messages.
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TCP’s regular PMTUD process operates as follows: When a connection is 
established, TCP uses the minimum of the MTU of the outgoing interface, or the 
MSS announced by the other end, as the basis for selecting its send maximum 
segment size (SMSS). PMTUD does not allow TCP to exceed the MSS announced 
by the other end. If the other end does not specify an MSS, the sender assumes a 
default of 536 bytes, but this situation is now rare. It is also possible for an imple-
mentation to save path MTU information on a per-destination basis to help in 
selecting its segment size. Note that the path MTU in each direction of a connec-
tion could be different.

Once the initial SMSS is chosen, all IPv4 datagrams sent by TCP on that con-
nection have the IPv4 DF bit field set. For TCP/IPv6, this is not necessary because 
there is no DF bit field; all datagrams are assumed to have it set implicitly. If a PTB 
is received, TCP decreases the segment size and retransmits using a different seg-
ment size. If the PTB contains the suggested next-hop MTU, the segment size can 
be set to the next-hop MTU minus the sizes of the IPv4 (or IPv6) and TCP headers. 
If the next-hop MTU value is not present (e.g., an older ICMP error was returned 
that lacks this information), the sender may try a variety of values (e.g., binary 
search for a usable value). This also affects TCP’s congestion control management 
(see Chapter 16). For PLPMTUD the situation is similar, except PTB messages are 
not used. Instead, the protocol performing PMTUD must be able to detect message 
discards quickly and perform its own datagram size adjustments.

Because routes can change dynamically, when some time has passed since 
the last decrease of the segment size, a larger value (up to the initial SMSS) can be 
tried. Guidance in [RFC1191] and [RFC1981] recommends that this time interval 
be about 10 minutes.

There are a number of problems with PMTUD when it operates in an Internet 
environment with firewalls that block PTB messages [RFC2923]. Of the various 
operational problems with PMTUD, black holes have been the most problematic, 
although the situation is improving (in [LS10], 80% of systems studied were able 
to properly process PTB messages). PMTUD black holes arise when a TCP imple-
mentation that depends on the delivery of ICMP messages to adjust its segment 
size never receives them. This could be for several reasons, including a firewall or 
NAT configuration that prohibits such ICMP messages from being forwarded. The 
consequence is a TCP connection that cannot proceed once it starts to use larger 
packets. It can be difficult to diagnose because only large packets cannot be for-
warded. The smaller ones (such as SYN and SYN + ACK packets used to establish 
the connection) generally succeed. Some TCP implementations have “black hole 
detection,” which amounts to trying a smaller segment size when a segment is 
retransmitted several times. 

13.4.1 Example

We can see the correct behavior of PMTUD when an intermediate router has an 
MTU less than either of the endpoints’ MSS. To create this situation, we begin with 
a router (a Linux host with local address 10.0.0.1) that has a PPPoE interface to a 
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DSL service provider. The PPPoE link uses an MTU of 1492 (1500 bytes for Ether-
net, minus 6 bytes of PPPoE overhead, minus another 2 bytes of PPP overhead; see 
Chapter 3). Figure 13-7 is an illustration of the topology.

Figure 13-7  The PPPoE encapsulation drops the path MTU of most TCP connections to 1492 bytes 
from what might otherwise have been 1500 bytes (the typical MTU for Ethernet). To 
demonstrate TCP’s use of PMTUD, we set the MTU even smaller (288 bytes).

In order to induce this behavior specifically, we can reduce the MTU size on 
the PPPoE link from 1492 to, say, 288 bytes. On the GW machine, the following 
command accomplishes this task:

Linux(GW)# ifconfig ppp0 mtu 288

In addition, we need to tell the client system (C) that small segments are allowed:

Linux(C)# sysctl -w net.ipv4.route.min_pmtu=68

If we did not perform this second operation, Linux would clamp its minimum 
path MTU at the default value of 552 bytes, which helps avoid certain small MTU 
attacks (see Section 13.8). The consequence of doing so in our example here is that 
any packets larger than 288 bytes would be fragmented. To avoid this, and to dem-
onstrate PMTUD more effectively, we remove this minimum. We then start a file 
transfer from machine C (address 10.0.0.123) to the server S on the Internet (address 
169.229.62.97). Listing 13-2 shows a tcpdump packet trace from this exchange. Sev-
eral lines have been wrapped and extraneous fields have been removed for clarity.

Listing 13-2  The path MTU discovery mechanism finds an appropriate segment size to use when 
transiting the network where the middle link has a smaller MTU than the endpoints.

1 20:20:21.992721 IP (tos 0x0, ttl 45, id 43565, offset 0, flags [DF],  
                proto 6, length: 588)
                169.229.62.97.22 > 10.0.0.123.1027: P [tcp sum ok] 
                41:577(536) ack 23
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2 20:20:21.993727 IP (tos 0x0, ttl 64, id 57659, offset 0, flags [DF], 
                proto 6, length: 588)
                10.0.0.123.1027 > 169.229.62.97.22: P [tcp sum ok] 
                23:559(536) ack 577 

3 20:20:21.994093 IP (tos 0xc0, ttl 64, id 57547, offset 0, flags 
                [none], proto 1, length: 576)
                10.0.0.1 > 10.0.0.123: icmp 556: 
                169.229.62.97 unreachable - need to frag (mtu 288) for
                  IP (tos 0x0, ttl 63, id 57659, offset 0, flags [DF], 
                  proto 6, length: 588)
                    10.0.0.123.1027 > 169.229.62.97.22: 
                    P 23:559(536) ack 577 

4 20:20:21.994884 IP (tos 0x0, ttl 64, id 57660, offset 0, flags [DF], 
                proto 6, length: 288)
                10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok] 
                23:259(236) ack 577 

...

5 20:20:22.488856 IP (tos 0x0, ttl 45, id 6712, offset 0, flags [DF], 
                proto 6, length: 836)
                169.229.62.97.22 > 10.0.0.123.1027: P [tcp sum ok]  
                857:1641(784)ack 855 
...
6 20:20:29.672947 IP (tos 0x8, ttl 64, id 57679, offset 0, flags [DF], 
                proto 6, length: 1452)
                10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok] 
                1431:2831(1400) ack 2105 

7 20:20:29.674123 IP (tos 0xc8, ttl 64, id 57548, offset 0, flags 
                [none], proto 1, length: 576)
                10.0.0.1 > 10.0.0.123: icmp 556: 
                169.229.62.97 unreachable - need to frag (mtu 288) for
                  IP (tos 0x8, ttl 63, id 57679, offset 0, flags [DF], 
                  proto 6, length: 1452)
                    10.0.0.123.1027 > 169.229.62.97.22: . 
                    1431:2831(1400) ack 2105 

8 20:20:29.673751 IP (tos 0x8, ttl 64, id 57680, offset 0, flags [DF], 
                proto 6, length: 1452)
                10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok] 
                2831:4231(1400) ack 2105 

9 20:20:29.675180 IP (tos 0xc8, ttl 64, id 57549, offset 0, flags 
                [none], proto 1, length: 576)
                10.0.0.1 > 10.0.0.123: icmp 556: 
                169.229.62.97 unreachable - need to frag (mtu 288) for
                  IP (tos 0x8, ttl  63, id 57680, offset 0, flags [DF], 
                  proto 6, length: 1452)
                  10.0.0.123.1027 > 169.229.62.97.22: . 
                  2831:4231(1400) ack 2105 
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10 20:20:29.674932 IP (tos 0x8, ttl  64, id 57681, offset 0, flags   
                [DF], proto 6, length: 288)
                10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok] 
                1431:1667(236) ack 2105 

11 20:20:29.675143 IP (tos 0x8, ttl  64, id 57682, offset 0, flags 
               [DF], proto 6, length: 288) 
               10.0.0.123.1027 > 169.229.62.97.22: . [tcp sum ok] 
               1667:1903(236) ack 2105

In the tcpdump output, the connection has already been set up and MSS 
options have been exchanged. All packets on the connection have the DF bit field 
set, so both ends are performing PMTUD. The remote side’s first packet is 588
bytes long, which transitions the router successfully in one piece, despite our con-
figuration of the MTU on the PPPoE links being 288 bytes. The reason for this is 
asymmetry in the MTU configuration. Although the local end of the PPPoE link 
is using a maximum transmission unit of 288 bytes, the other end is using a larger 
size SMSS, presumably 1492 bytes. This leaves us in the situation where our out-
going packets need to be small (288 bytes or less), and packets traveling in the 
reverse direction can be larger.

When the local end attempts to send a larger packet of size 588 bytes with 
the DF bit field turned on, a PTB message is generated by the router (10.0.0.1), 
indicating that the appropriate MTU for the next-hop link is 288 bytes. The TCP 
responds by sending its next packet with size 288 bytes, as instructed. To then 
send the rest of the sequence numbers it attempted to send in its 588-byte packet, 
it sends two additional packets, of sizes 288 and 116. We see a similar pattern of 
sizes repeats during the course of the file transfer.

The PMTU discovery process is one of the only ways TCP explicitly attempts to 
adapt its segment size after a connection has started, at least when large amounts 
of data are transferred. The size of a segment can affect the overall throughput 
performance, as can the window size. We discuss how these affect overall perfor-
mance in Chapter 15.

13.5 TCP State Transitions

We have described numerous rules regarding the initiation and termination of 
a TCP connection, and we have seen which types of segments are sent during 
different phases of a connection. The rules that determine what TCP does are 
determined by what state TCP is in. The current state is changed based on vari-
ous stimuli, such as segments that are transmitted or received, timers that expire, 
application reads or writes, or information from other layers. These rules can be 
summarized in TCP’s state transition diagram.
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13.5.1 TCP State Transition Diagram

TCP’s state transition diagram is shown in Figure 13-8. States are indicated by 
ovals and transitions between states by arrows. Each endpoint of a connection 
transitions through the states. Some transitions are triggered by the receipt of a 
segment with certain control bit fields set (e.g., SYN, ACK, FIN). Some transitions 

Figure 13-8  The TCP state transition diagram (also called finite state machine). Arrows represent 
transitions between states due to segment transmission, segment reception, or timers 
expiring. The bold arrows indicate typical client behavior, and the dashed arrows indi-
cate typical server behavior. The boldface directives (e.g., open, close) are actions per-
formed by applications.
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also cause a segment with particular control bit fields set to be sent. Other transi-
tions may be triggered by application actions or by timers expiring. Each of these 
cases is indicated in the diagram as a textual annotation near the associated tran-
sition arrow. When initialized, TCP starts in the CLOSED state. Usually an imme-
diate transition takes it to either the SYN_SENT or LISTEN state, depending on 
whether the TCP is asked to perform an active or passive open, respectively.

Note in this diagram that only a subset of the state transitions is “typical.” 
We have marked the normal client transitions with a darker solid arrow, and the 
normal server transitions with a dashed arrow. The two transitions leading to the 
ESTABLISHED state correspond to opening a connection, and the two transitions 
leading from the ESTABLISHED state are for the termination of a connection. The 
ESTABLISHED state is where data transfer can occur between the two ends in 
both directions. Chapters 14–17 describe what happens in this state.

We have labeled the FIN_WAIT_1, FIN_WAIT_2, and TIME_WAIT states 
as being (at least partially) in a box called “Active Close.” These are the set of 
states entered when the local application initiates a close request. Two other states 
(CLOSE_WAIT and LAST_ACK) are collected in a dashed box with the label “Pas-
sive Close.” These states correspond to waiting for a peer to acknowledge a FIN 
segment and perform its close. Simultaneous close, which is a form of double 
active close, uses the CLOSING state.

The names of the 11 states (CLOSED, LISTEN, SYN_SENT, etc.) in this figure 
are based on the names output by the netstat command in UNIX, Linux, and 
Windows, which are themselves based on the names originally used in [RFC0793]. 
The state CLOSED is not really an “official” state but has been added as a useful 
starting point and ending point for the diagram.

The state transition from LISTEN to SYN_SENT is legal in the TCP protocol 
but is not supported by Berkeley sockets and is rarely seen. The transition from 
SYN_RCVD back to LISTEN is valid only if the SYN_RCVD state was entered 
from the LISTEN state (the normal scenario), not from the SYN_SENT state (a 
simultaneous open). This means that if we perform a passive open (enter LISTEN), 
receive a SYN, send a SYN with an ACK (enter SYN_RCVD), and then receive a 
reset instead of an ACK, the endpoint returns to the LISTEN state and waits for 
another connection request to arrive.

Figure 13-9 shows the normal TCP connection establishment and termination, 
detailing the different states through which the client and server pass. It is a simpler 
version of Figure 13-1 showing the relevant states but not the options or ISN details. 
We assume in Figure 13-9 that the client on the left side does an active open and 
the server on the right side does a passive open. Although we show the client 
doing the active close, as we mentioned earlier, either side can do the active close.

13.5.2 TIME_WAIT (2MSL Wait) State

The TIME_WAIT state is also called the 2MSL wait state. It is a state in which TCP 
waits for a time equal to twice the Maximum Segment Lifetime (MSL), sometimes 
called timed wait. Every implementation must choose a value for the MSL. It is 
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the maximum amount of time any segment can exist in the network before being 
discarded. We know that this time limit is bounded, because TCP segments are 
transmitted as IP datagrams, and the IP datagram has the TTL field or Hop Limit
field that limits its effective lifetime (see Chapter 5). [RFC0793] specifies the MSL 
as 2 minutes. Common implementation values, however, are 30s, 1 minute, or 2 
minutes. In most cases, the value can be modified. On Linux, the value net.ipv4.
tcp_fin_timeout holds the 2MSL wait timeout value (in seconds). On Win-
dows, the following registry key:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay

holds the timeout. It is permitted to be in the range of 30 to 300s. For IPv6, replace 
the term Tcpip with Tcpip6.

Given the MSL value for an implementation, the rule is: When TCP performs 
an active close and sends the final ACK, that connection must stay in the TIME_
WAIT state for twice the MSL. This lets TCP resend the final ACK in case it is lost. 
The final ACK is resent not because the TCP retransmits ACKs (they do not con-
sume sequence numbers and are not retransmitted by TCP), but because the other 
side will retransmit its FIN (which does consume a sequence number).  Indeed, 
TCP will always retransmit FINs until it receives a final ACK.

Figure 13-9   TCP states corresponding to normal connection establishment and termination



ptg999

620 TCP Connection Management  

Another effect of this 2MSL wait state is that while the TCP implementation 
waits, the endpoints defining that connection (client IP address, client port num-
ber, server IP address, and server port number) cannot be reused. That connection 
can be reused only when the 2MSL wait is over, or when a new connection uses 
an ISN that exceeds the highest sequence number used on the previous instantia-
tion of the connection [RFC1122], or if the use of the Timestamps option allows 
the disambiguation of segments from a previous connection instantiation to not 
otherwise be confused [RFC6191]. Unfortunately, some implementations impose a 
more stringent constraint. In these systems, a local port number cannot be reused 
while that port number is the local port number of any endpoint that is in the 
2MSL wait state on the system. We will see examples of this constraint in Listings 
13-3 and 13-4.

Most implementations and APIs provide a way to bypass this restriction. With 
the Berkeley sockets API, the SO_REUSEADDR socket option enables the bypass 
operation. It lets the caller assign itself a local port number even if that port num-
ber is part of some connection in the 2MSL wait state. We will see, however, that 
even with this bypass mechanism for one socket (address, port number pair), the 
rules of TCP still (should) prevent this port number from being reused by another 
instantiation of the same connection that is in the 2MSL wait state. Any delayed 
segments that arrive for a connection while it is in the 2MSL wait state are dis-
carded. Because the connection defined by the address/port 4-tuple in the 2MSL 
wait state cannot be reused during this time period, when a valid connection is 
finally established, we know that delayed segments from an earlier instantiation 
of this connection cannot be misinterpreted as being part of the new connection.

For interactive applications, it is normally the client that does the active close 
and enters the TIME_WAIT state. The server usually does the passive close and 
does not go through the TIME_WAIT state. The implication is that if we terminate 
a client, and restart the same client immediately, that new client cannot reuse the 
same local port number. This is not ordinarily a problem, because clients normally 
use ephemeral ports assigned by the operating system and do not care what the 
assigned port number is. (Recall, it is actually a recommended practice for them 
to be randomized for security reasons [RFC6056].)  This is important to know 
because a client that makes a large number of connections quickly (especially to 
the same server) could conceivably have to delay while other connections termi-
nate if ephemeral ports are in short supply.

With servers, however, the situation is different. They almost always use well-
known ports. If we terminate a server process that has a connection established 
and immediately try to restart it, the server cannot assign its assigned port num-
ber to its endpoint (it gets an “Address already in use” binding error), because that 
port number is part of a connection that is in a 2MSL wait state. It may take from 
1 to 4 minutes for the server to be able to restart, depending on the local system’s 
value for the MSL. We can see this scenario using our sock program. In Listing 
13-3 we start the server, connect to it from a client, and then terminate the server.
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Listing 13-3  A TCP connection must complete a 2MSL delay in the TIME_WAIT state before a port 
number can be reused by another process.

Linux% sock -v -s 6666
(now a client on another computer connects to this server)
connection on 192.168.10.144.6666 from 192.168.10.140.2623
(server stopped by typing interrupt character)
(now server is restarted)
Linux% sock -v -s 6666
can't bind local address: Address already in use

Linux% netstat -n -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q   Local Address       Foreign Address     State
tcp    0      0       192.168.10.144:6666 192.168.10.140:2623 TIME_WAIT

(wait one minute and restart server again)
Linux% sock -v -s 6666

When we try to restart the server, the program outputs an error message indi-
cating that it cannot bind its port number because the address is already in use. 
This really means that the address and port number combination is already in 
use; it is in a 2MSL wait state because of the previous connection. This is the more 
stringent restriction on port number reuse mentioned before. The output from 
the netstat command shows that the connection is in the TIME_WAIT state. 
Although clients do not typically experience as many issues with 2MSL wait states 
as servers do, we can demonstrate the same issue by having the client specify its 
own port number, as shown in Listing 13-4.

Listing 13-4  A client cannot reuse a port number while it is still being used by another connection 
in the 2MSL wait state.

(start server in one window)
Linux% sock -s -v 6666

(connect to it from another window)
Linux% sock -v 127.0.0.1 6666

(server identifies incoming connection)
connection on 127.0.0.1.6666 from 127.0.0.1.2091
      
(client identifies connection establishment, and is interrupted)
connected on 127.0.0.1.2091 to 127.0.0.1.6666
      
^C
       
(server identifies connection has terminated and exits)
connection closed by peer
Linux% 



ptg999

622 TCP Connection Management  

(client is restarted, specifying same port number as before)
Linux% sock -b 2091 -v 127.0.0.1 6666
bind() error: Address already in use

(wait 30 seconds and try again)
Linux% sock -b 2091 -v 192.168.10.144 6666
connect() error: Connection refused

The first time we execute the client we specify the -v option to see what the 
local (ephemeral) port number assigned to the client is (2091). The second time we 
execute the client we specify the -b option, telling the client to assign itself 2091
as its local port number instead of being given another ephemeral port number by 
the operating system. As we expect, the client cannot do this, because port 2091
is part of a connection that is in a 2MSL wait state. Once the wait is over (1 minute 
on this Linux machine), the client attempts to connect again, but the server exited 
when the connection was interrupted the first time, so it is refused. We shall see 
how TCP reset segments are used to signal this connection refused condition in 
Section 13.6.

We mentioned earlier that most systems provide a way of overriding the 
default behavior, which allows processes to bind to ports even if those ports are 
part of connections in the 2MSL wait state. Now we try the same scenario as 
before, but using the -A option to sock, which enables the bypass mechanism:

Linux% sock -A -v -s 6666
Linux% sock -A -v -s 6666

In this example, we start the server with the -A option, which enables the 
SO_REUSEADDR socket option that we mentioned. By doing this, we allow the 
server to bind to its port even though it is part of a connection in the 2MSL wait 
state. If we try to use the client right away with the same port, however, the fol-
lowing happens:

Linux% sock -b 32840 -v 127.0.0.1 6666
bind() error: Address already in use

Once again, the endpoint 127.0.0.1.32840 is in use, so the client fails. If, how-
ever, we also use the -A option for the client, we can force the connection to work:

Linux% sock -A -b 32840 -v 127.0.0.1 6666
Connected on 127.0.0.1.32840 to 127.0.0.1.6666
TCP_MAXSEG = 16383

Here we see that even though the same connection (4-tuple) is being used 
again before the 2MSL wait state expires, the use of the -A option has forced the 
connection to be allowed. Of course, this is all taking place on the same computer, 
so the operating system is able to ascertain what processes represent what ends 
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of the connections in the 2MSL wait state and (potentially, at least) keep them 
separate. What if we try the same thing again but establish the connection from 
another host? Here we test this idea:

(start server on first machine)
Linux% sock -v -s 6666

(connect to it from second - Windows - machine)
C:\> sock -A -v 10.0.0.1 6666

(server identifies incoming connection) 
connection on 10.0.0.1.6666 from 10.0.0.3.2172
      
(client identifies connection establishment, and is interrupted)
connected on 10.0.0.3.2172 to 10.0.0.1.6666
^C
C:\> 

(server identifies connection has terminated and exits)

connection closed by peer
Linux% 

(client is restarted, specifying same port number as before)

C:\> sock -A -b 2091 -v 10.0.0.1 6666
connect() error: Address already in use
C:\> sock -A -b 2091 -v 10.0.0.1 6666
connect() error: Address already in use

(wait 30 seconds and try again)

C:\> sock -A -b 2091 -v 10.0.0.1 6666
connect() error: Connection refused

This example is similar to the previous one, except the client and server are on 
different machines. We observe that irrespective of the -A flag on the client, the 
2MSL wait time is induced. Here the 2MSL wait lasts for 30s. After that, the client 
attempts to contact the server, which has already exited.

One interesting thing happens if we switch the client and server machines. 
We will now use Windows as the server and Linux as the client and repeat the 
experiment:

(start server on Windows machine)
C:\> sock -v -s 6666

(connect to it from second - Linux - machine)
Linux% sock -A -v 192.168.10.145 6666

(server identifies incoming connection)      
connection on 192.168.10.145.6666 from 192.168.10.145.32843
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(client identifies connection establishment, and is interrupted)
connected on 192.168.10.144.32843 to 192.168.10.145.6666
^C
Linux% 

(server identifies connection has terminated and exits)

connection closed by peer
C:\> 

(client is restarted, specifying same port number as before)

Linux% sock -A -b 32843 -v 192.168.10.144 6666
bind() error: Connection refused

At this point we would expect local port 32843 to be unavailable, but because 
of the way -A works on Linux, we are allowed to make use of it. This is a violation 
of the original TCP specification, but it is allowed by [RFC1122] and [RFC6191], as 
mentioned before. These specifications allow a new connection request to arrive 
and be accepted for a connection that is in the TIME_WAIT state, if there is a 
strong reason to believe that segments on the new connection will not be confused 
with segments on the previous instantiation of the connection based on a combi-
nation of the sequence numbers and timestamps. [RFC1337] and the appendix of 
[RFC1323] show some of the pitfalls related to this rule. 

13.5.3 Quiet Time Concept

The 2MSL wait provides protection against delayed segments from an earlier 
instantiation of a connection being interpreted as part of a new connection that 
uses the same local and foreign IP addresses and port numbers. But this works 
only if a host with connections in the 2MSL wait does not crash.

What if a host with connections in the TIME_WAIT state crashes, reboots 
within the MSL, and immediately establishes new connections using the same 
local and foreign IP addresses and port numbers corresponding to the local con-
nections that were in the TIME_WAIT state before the crash? In this scenario, 
delayed segments from the connections that existed before the crash can be mis-
interpreted as belonging to the new connections created after the reboot. This can 
happen regardless of how the initial sequence number is chosen after the reboot.

To protect against this scenario, [RFC0793] states that TCP should wait an 
amount of time equal to the MSL before creating any new connections after a 
reboot or crash. This is called the quiet time. Few implementations abide by this 
because most hosts take longer than the MSL to reboot after a crash. Also, if appli-
cations use their own checksums or encryption, errors such as these are easily 
detected.
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13.5.4 FIN_WAIT_2 State

In the FIN_WAIT_2 state, TCP has sent a FIN and the other end has acknowledged 
it. Unless a half-close is being performed, the TCP must wait for the application 
on the other end to recognize that it has received an end-of-file notification and 
close its end of the connection, which causes a FIN to be sent. Only when the 
application performs this close (and its FIN is received) does the active closing 
TCP move from the FIN_WAIT_2 to the TIME_WAIT state. This means that one 
end of the connection can remain in this state forever. The other end is still in the 
CLOSE_WAIT state and can remain there forever, until the application decides to 
issue its close.

Many implementations prevent this infinite wait in the FIN_WAIT_2 state as 
follows: If the application that does the active close does a complete close, not a 
half-close indicating that it expects to receive data, a timer is set. If the connection 
is idle when the timer expires, TCP moves the connection into the CLOSED state. 
In Linux, the variable net.ipv4.tcp_fin_timeout can be adjusted to control 
the number of seconds to which the timer is set. Its default value is 60s.

13.5.5 Simultaneous Open and Close Transitions

We have seen the normal uses for the SYN_SENT and SYN_RCVD states that 
correspond to sending and receiving SYN segments, respectively. As illustrated 
in Figure 13-3, TCP was purposely designed to handle simultaneous opens that 
result in a single connection. When a simultaneous open occurs, the state tran-
sitions differ from those shown in Figure 13-9. Both ends send a SYN at about 
the same time, entering the SYN_SENT state. When each end receives its peer’s 
SYN segments, the state changes to SYN_RCVD, and each end resends a SYN and 
acknowledges the received SYN. When each end receives the SYN plus the ACK, 
the state changes to ESTABLISHED.

For a simultaneous close, in terms of Figure 13-6, both ends go from ESTAB-
LISHED to FIN_WAIT_1 when the application issues the close. This causes both 
FINs to be sent, and they probably pass each other somewhere in the network. 
When its peer’s FIN arrives, each end transitions from FIN_WAIT_1 to the CLOS-
ING state, and each endpoint sends its final ACK. Upon receiving a final ACK, 
each endpoint’s state changes to TIME_WAIT, and the 2MSL wait is initiated.

13.6 Reset Segments

We mentioned the RST bit field in the TCP header in Chapter 12. A segment hav-
ing this bit set to “on” is called a “reset segment” or simply a “reset.” In general, a 
reset is sent by TCP whenever a segment arrives that does not appear to be correct 
for the referenced connection. (We use the term referenced connection to mean the 
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connection specified by the 4-tuple in the TCP and IP headers of the reset.) Resets 
ordinarily result in a fast teardown of a TCP connection. We can construct sce-
narios to demonstrate the use of reset segments.

13.6.1 Connection Request to Nonexistent Port

A common case for generating a reset segment is when a connection request 
arrives and no process is listening on the destination port. We saw this previously 
when we encountered the “connection refused” error messages. These are com-
mon with TCP. In the case of UDP, we saw in Chapter 10 that an ICMP Destination 
Unreachable (Port Unreachable) message is generated when a datagram arrives 
for a destination port that is not in use. TCP uses a reset segment instead.

An example of this is trivial to generate—we use the Telnet client and specify 
a port number that is not in use on the destination. This destination can just as 
well be the local computer:

Linux% telnet localhost 9999
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Connection refused

This error message is output by the Telnet client immediately. Listing 13-5 
shows the packet exchange corresponding to this command.

Listing 13-5   Reset generated by attempt to open connection to nonexistent port

1 22:15:16.348064 127.0.0.1.32803 > 127.0.0.1.9999:
       S [tcp sum ok] 3357881819:3357881819(0) win 32767
       <mss 16396,sackOK,timestamp 16945235 0,nop,wscale 0>
       (DF) [tos 0x10]  (ttl 64, id 42376, len 60)
2 22:15:16.348105 127.0.0.1.9999 > 127.0.0.1.32803:
       R [tcp sum ok] 0:0(0) ack 3357881820 win 0
       (DF) [tos 0x10]  (ttl 64, id 0, len 40)

The values we need to examine in Listing 13-5 are the Sequence Number field 
and ACK Number field in the reset (second) segment. Because the ACK bit field 
was not on in the arriving SYN segment, the sequence number of the reset is set 
to 0 and the ACK number is set to the incoming ISN plus the number of data bytes 
in the segment. Although there is no data in the arriving segment, the SYN bit 
logically occupies 1 byte of sequence number space; therefore, in this example the 
ACK number in the reset segment is set to the ISN, plus the data length (0), plus 
1 for the SYN bit.

For a reset segment to be accepted by a TCP, the ACK bit field must be set and 
the ACK Number field must be within the valid window (see Chapter 12). This 
helps to prevent a simple attack in which anyone able to generate a reset matching 
the appropriate connection (4-tuple) could disrupt a connection [RFC5961].
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13.6.2 Aborting a Connection

We saw in Figure 13-1 that the normal way to terminate a connection is for one 
side to send a FIN. This is sometimes called an orderly release because the FIN is 
sent after all previously queued data has been sent, and there is normally no loss 
of data. But it is also possible to abort a connection by sending a reset instead of a 
FIN at any time. This is sometimes called an abortive release.

Aborting a connection provides two features to the application: (1) any queued 
data is thrown away and a reset segment is sent immediately, and (2) the receiver 
of the reset can tell that the other end did an abort instead of a normal close. 
The API being used by the application must provide a way to generate the abort 
instead of a normal close.

The sockets API provides this capability by using the “linger on close” socket 
option (SO_LINGER) with a 0 linger value. Essentially this means “Linger for 
no time in making sure data gets to the other side, then abort.” In the following 
example, we show what happens when a remote command that generates a large 
amount of output is canceled by the user:

Linux% ssh linux cat /usr/share/dict/words
Aarhus
Aaron
Ababa
aback
abaft
abandon
abandoned
abandoning
abandonment
abandons
... continues ...
^C
Killed by signal 2.

Here the user has decided to abort the output of this command. The words
file has 45,427 words in it, so this command was probably some sort of mistake. 
When the user types the interrupt character, the system indicates that the process 
(here, the ssh program) has been killed by signal number 2. This signal is called 
SIGINT and usually terminates a program when it is delivered. Listing 13-6 shows 
the tcpdump output for this example. (We have deleted many of the intermediate 
packets, because they add nothing to the discussion.)

Listing 13-6  Aborting a connection with a reset (RST) instead of a FIN

Linux# tcpdump -vvv -s 1500 tcp
    
1 22:33:06.386747 192.168.10.140.2788 > 192.168.10.144.ssh:

            S [tcp sum ok] 1520364313:1520364313(0) win 65535
            <mss 1460,nop,nop,sackOK>
            (DF) (ttl 128, id 43922, len 48)
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2 22:33:06.386855 192.168.10.144.ssh > 192.168.10.140.2788:
            S [tcp sum ok] 181637276:181637276(0) ack 1520364314 
            win 5840
            <mss 1460,nop,nop,sackOK>
            (DF) (ttl 64, id 0, len 48)
     
3 22:33:06.387676 192.168.10.140.2788 > 192.168.10.144.ssh:

            . [tcp sum ok] 1:1(0) ack 1 win 65535 
            (DF) (ttl 128, id 43923, len 40)

(... ssh encrypted authentication exchange and bulk data transfer ...)

4 22:33:13.648247 192.168.10.140.2788 > 192.168.10.144.ssh:
            R [tcp sum ok] 1343:1343(0) ack 132929 win 0
            (DF) (ttl 128, id 44004, len 40)

Segments 1–3 show the normal connection establishment. When the interrupt 
character is hit, the connection is aborted. The reset segment contains a sequence 
number and acknowledgment number. Also notice that the reset segment elicits 
no response from the other end—it is not acknowledged at all. The receiver of the 
reset aborts the connection and advises the application that the connection was 
reset. This often results in the error indication “Connection reset by peer” or a 
similar message.

13.6.3 Half-Open Connections

A TCP connection is said to be half-open if one end has closed or aborted the con-
nection without the knowledge of the other end. This can happen anytime one of 
the peers crashes. As long as there is no attempt to transfer data across a half-open 
connection, the end that is still up does not detect that the other end has crashed.

Another common cause of a half-open connection is when one host is pow-
ered off instead of shut down properly. This happens, for example, when PCs are 
being used to run remote login clients and are switched off at the end of the day. 
If there was no data transfer going on when the power was cut, the server will 
never know that the client disappeared (it would still think the connection is in 
the ESTABLISHED state). When the user comes in the next morning, powers on 
the PC, and starts a new session, a new occurrence of the server is started on the 
server host. This can lead to many half-open TCP connections on the server host. 
(In Chapter 17 we will see a way for one end of a TCP connection to discover that 
the other end has disappeared using TCP’s keepalive option.)

We can easily create a half-open connection. In this case, we do so on the 
client rather than the server. We will execute the Telnet client on 10.0.0.1, con-
necting to the Sun RPC Service (sunrpc, port 111) server at 10.0.0.7 (see Listing 
13-7). We type one line of input and watch it go across with tcpdump, and then 
we disconnect the Ethernet cable on the server’s host and reboot the server host. 
This simulates the server host crashing. (We disconnect the Ethernet cable before 
rebooting the server to prevent it from sending a FIN out of the open connections, 
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which some TCPs do when they are shut down.) After the server has rebooted, we 
reconnect the cable and try to send another line from the client to the server. After 
rebooting, the server’s TCP has lost all memory of the connections that existed 
before, so it knows nothing about the connection that the data segment references. 
The rule of TCP is that the receiver responds with a reset.

Listing 13-7  The server host is disconnected and rebooted, leaving a half-open connection at the 
client. When it receives additional data on the connection it now knows nothing about, 
the server responds with a reset segment, closing the connection at both ends.

Linux% telnet 10.0.0.7 sunrpc
Trying 10.0.0.7...
Connected to 10.0.0.7.
Escape character is '^]'.
foo
(Ethernet cable disconnected and server rebooted)
bar
Connection closed by remote host

Listing 13-8 shows the tcpdump output for this example.

Listing 13-8  Reset in response to data segment on a half-open connection

1 23:15:48.804142 IP (tos 0x10, ttl  64, id 20095, offset 0, 
      flags [DF], proto 6, length: 60)
      10.0.0.1.1310 > 10.0.0.7.sunrpc:
      S [tcp sum ok] 2365970104:2365970104(0) win 5840
      <mss 1460,sackOK,timestamp 3849492679 0,nop,wscale 2>

2 23:15:48.804742 IP (tos 0x0, ttl  64, id 0, offset 0, flags [DF], 
      proto 6, length: 60)
      10.0.0.7.sunrpc > 10.0.0.1.1310:
      S [tcp sum ok] 2093796387:2093796387(0) ack 2365970105 win 5792
      <mss 1460,sackOK,timestamp 654784 3849492679,nop,wscale 0>

3 23:15:48.805028 IP (tos 0x10, ttl  64, id 20097, offset 0, 
      flags [DF], proto 6, length: 52)
      10.0.0.1.1310 > 10.0.0.7.sunrpc:
      . [tcp sum ok] 1:1(0) ack 1 win 1460
      <nop,nop,timestamp 3849492680 654784>

4 23:15:51.999394 IP (tos 0x10, ttl  64, id 20099, offset 0, 
      flags [DF], proto 6, length: 57)
            10.0.0.1.1310 > 10.0.0.7.sunrpc:
      P [tcp sum ok] 1:6(5) ack 1 win 1460
      <nop,nop,timestamp 3849495875 654784>

5 23:15:51.999874 IP (tos 0x0, ttl  64, id 12773, offset 0, 
      flags [DF], proto 6, length: 52)
            10.0.0.7.sunrpc > 10.0.0.1.1310:
      . [tcp sum ok] 1:1(0) ack 6 win 5792
      <nop,nop,timestamp 656421 3849495875>
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6 23:17:19.419611 arp who-has 10.0.0.7 (Broadcast) tell 0.0.0.0
7 23:17:20.419142 arp who-has 10.0.0.7 (Broadcast) tell 0.0.0.0
8 23:17:21.427458 arp reply 10.0.0.7 is-at 00:e0:00:88:ad:d6

9 23:17:21.921745 arp who-has 10.0.0.1 tell 10.0.0.7
10 23:17:21.921892 arp reply 10.0.0.1 is-at 00:04:5a:9f:9e:80

11 23:17:23.437114 arp who-has 10.0.0.7 (Broadcast) tell 10.0.0.7

12 23:17:34.804196 arp who-has 10.0.0.7 tell 10.0.0.1
13 23:17:34.804650 arp reply 10.0.0.7 is-at 00:e0:00:88:ad:d6

14 23:17:43.684786 IP (tos 0x10, ttl  64, id 20101, offset 0, 
      flags [DF], proto 6, length: 57)
      10.0.0.1.1310 > 10.0.0.7.sunrpc:
      P [tcp sum ok] 6:11(5) ack 1 win 1460
      <nop,nop,timestamp 3849607577 656421>

15 23:17:43.685277 IP (tos 0x10, ttl  64, id 0, offset 0, 
      flags [DF], proto 6, length: 40)
      10.0.0.7.sunrpc > 10.0.0.1.1310:
      R [tcp sum ok] 2093796388:2093796388(0) win 0

Segments 1–3 are the normal connection establishment. Segment 4 sends the 
line “foo” to the sunrpc server (the 5 bytes required include a carriage return and 
newline character), and segment 5 is the acknowledgment.

At this point we disconnect the Ethernet cable from the server (address 
10.0.0.7), reboot, and reconnect the cable. This takes about 90s. We then type the 
next line of input to the client (“bar”), and when we type the return key the line is 
sent to the server (the first TCP segment after the ARP traffic in Listing 13-9). This 
elicits a reset response from the server, which no longer has any knowledge of the 
existence of the connection.

Note that when the host reboots, it uses gratuitous ARP (see Chapter 4) in 
order to determine if its IPv4 address is already in use on the segment, and to 
supply it to others. It also requests the MAC address for IPv4 address 10.0.0.1
because that is its default router to the Internet.

13.6.4 TIME-WAIT Assassination (TWA)

As mentioned previously, the TIME_WAIT state is intended to allow any data-
grams lingering from a closed connection to be discarded. During this period, the 
waiting TCP usually has little to do; it merely holds the state until the 2MSL timer 
expires. If, however, it receives certain segments from the connection during this 
period, or more specifically an RST segment, it can become desynchronized. This 
is called TIME-WAIT Assassination (TWA) [RFC1337]. Consider the exchange of 
packets shown in Figure 13-10.
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In the example shown in Figure 13-10, the server has completed its role in the 
connection and cleared any state. The client remains in the TIME_WAIT state. 
When the FIN exchange completes, the client’s next sequence number is K and 
the server’s is L. The late-arriving segment is sent from the server to the client 
using sequence number L - 100 and containing ACK number K - 200. When the cli-
ent receives this segment, it determines that both the sequence number and ACK 
values are “old.” When receiving such old segments, TCP responds by sending an 
ACK with the most current sequence number and ACK values (K and L, respec-
tively). However, when the server receives this segment, it has no information 
whatsoever about the connection and therefore replies with an RST segment. This 
is no problem for the server, but it causes the client to prematurely transition from 
TIME_WAIT to CLOSED. Most systems avoid this problem by simply not reacting 
to reset segments while in the TIME_WAIT state.

13.7 TCP Server Operation

We said in Chapter 1 that most TCP servers are concurrent. When a new con-
nection request arrives at a server, the server accepts the connection and invokes 

Figure 13-10  An RST segment can “assassinate” the TIME_WAIT state and force the connection to 
close prematurely. Various methods exist to resist this problem, including ignoring 
RST segments when in the TIME_WAIT state.



ptg999

632 TCP Connection Management  

a new process or thread to handle the new client. Depending on the operating 
system, various other resources may be allocated to invoke the new server. We are 
interested in the interaction of TCP with concurrent servers. In particular, we wish 
to become familiar with how TCP servers use port numbers and how multiple 
concurrent clients are handled.

13.7.1 TCP Port Numbers

We can see how TCP handles port numbers by watching any TCP server. We shall 
watch the secure shell server (called sshd) using the netstat command on a 
dual-stack IPv4/IPv6-capable host. The sshd application implements the Secure 
Shell Protocol [RFC4254], which provides an encrypted and authenticated remote 
terminal capability. The following output is on a system with no active secure 
shell connections. (We have deleted all of the output lines except the one associ-
ated with the server.)

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q    Local Address    Foreign Address   State
tcp        0      0            :::22               :::*   LISTEN

The -a option reports on all network endpoints, including those in either lis-
tening or non-listening state. The -n flag prints IP addresses as dotted-decimal (or 
hex) numbers, instead of trying to use the DNS to convert the address to a name, 
and prints numeric port numbers (e.g., 22) instead of service names (e.g., ssh). 
The -t option selects only TCP endpoints.

The local address (which really means local endpoint) is output as :::22, 
which is the IPv6-oriented way of referring to the all-zeros address, also called 
the wildcard address, along with port number 22. This means that an incoming 
connection request (i.e., a SYN) to port 22 will be accepted on any local interface. 
If the host were multihomed (this one is), we could specify a single IP address for 
the local IP address (one of the host’s IP addresses), and only connections received 
on that interface would be accepted. (We will see an example of this later in this 
section.) Port 22 is the well-known port number reserved for the Secure Shell Pro-
tocol. Other port numbers are maintained by the IANA [ITP].

The foreign address is output as :::*, which means both a wildcard address 
and port number (i.e., it represents a wildcard endpoint). Here, the foreign IP 
address and foreign port number are not known yet, because the local endpoint is 
in the LISTEN state, waiting for a connection to arrive. We now start a secure shell 
client on the host 10.0.0.3 that connects to this server. Here are the relevant lines 
from the netstat output (the Recv-Q and Send-Q columns, which contain only 
values of zero, have been removed for clarity):

Linux% netstat -a -n -t
Active Internet connections (servers and established)
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Proto        Local Address       Foreign Address   State
tcp                  :::22                  :::*   LISTEN
tcp     ::ffff:10.0.0.1:22 ::ffff:10.0.0.3:16137   ESTABLISHED

The second line for port 22 is the ESTABLISHED connection. All four elements 
of the local and foreign endpoints are filled in for this connection: the local IP 
address and port number, and the foreign IP address and port number. The local IP 
address corresponds to the interface on which the connection request arrived (the 
Ethernet interface, identified by its IPv4-mapped IPv6 address, ::ffff:10.0.0.1).

The local endpoint in the LISTEN state is left alone. This is the endpoint that 
the concurrent server uses to accept future connection requests. It is the TCP mod-
ule in the operating system that creates the new endpoint in the ESTABLISHED
state, when the incoming connection request arrives and is accepted. Also notice 
that the port number for the ESTABLISHED connection does not change: it is 22, 
the same as the LISTEN endpoint.

We now initiate another client request from the same system (10.0.0.3) to this 
server. Here is the relevant netstat output:

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Proto        Local Address       Foreign Address   State
tcp                  :::22                  :::*   LISTEN
tcp     ::ffff:10.0.0.1:22 ::ffff:10.0.0.3:16140   ESTABLISHED
tcp     ::ffff:10.0.0.1:22 ::ffff:10.0.0.3:16137   ESTABLISHED

We now have two ESTABLISHED connections from the same host to the same 
server. Both have a local port number on the server of 22. This is not a problem 
for TCP because the foreign port numbers are different. They must be different 
because each of the secure shell clients uses an ephemeral port, and the definition 
of an ephemeral port is one that is not currently in use on that host (10.0.0.3).

This example reiterates, yet again, that TCP demultiplexes incoming segments 
using all four values that constitute the local and foreign endpoints: destination 
IP address, destination port number, source IP address, and source port number. 
TCP cannot determine which process gets an incoming segment by looking at the 
destination port number only. Also, the only one of the three endpoints at port 
22 that will receive incoming connection requests is the one in the LISTEN state. 
The endpoints in the ESTABLISHED state cannot receive SYN segments, and the 
endpoint in the LISTEN state cannot receive data segments. The host operating 
system ensures this. (If it did not, TCP could become quite confused and not work 
properly.)

Next we initiate a third client connection, from the IP address 169.229.62.97
that is across the DSL PPPoE link from the server 10.0.0.1, and not on the same 
Ethernet. (The output below has the Proto column removed, which contains only 
tcp, for clarity.)



ptg999

634 TCP Connection Management  

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Send-Q           Local Address            Foreign Address  State
     0                    :::22                      :::*  LISTEN
     0       ::ffff:10.0.0.1:22     ::ffff:10.0.0.3:16140  ESTABLISHED
     0       ::ffff:10.0.0.1:22     ::ffff:10.0.0.3:16137  ESTABLISHED
   928 ::ffff:67.125.227.195:22 ::ffff:169.229.62.97:1473  ESTABLISHED  

The local IP address of the third ESTABLISHED connection now corresponds to 
the interface address of the PPPoE link on the multihomed host (67.125.227.195). 
Note that the Send-Q status is not 0 but is instead 928 bytes. This means that the 
server host has sent 928 bytes on the connection for which it has not yet heard an 
acknowledgment.

13.7.2 Restricting Local IP Addresses

We can see what happens when the server does not wildcard the local IP address 
but instead sets it to one particular local address. If we run our sock program as a 
server and provide it with a particuclar IP address, that address becomes the local 
address of the listening endpoint. For example:

Linux% sock -s 10.0.0.1 8888

This restricts this server to using connections that arrive only on the local IPv4 
address 10.0.0.1. The netstat output reflects this:

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q   Local Address    Foreign Address      State
tcp        0      0   10.0.0.1:8888          0.0.0.0:*      LISTEN

One thing that is especially interesting about this example is that our sock
program is binding only to the local IPv4 address 10.0.0.1, so our netstat out-
put looks significantly different. In our previous example, the wildcard address 
and port number indications were across both versions of IP. In this case, how-
ever, we are bound to a particular address, port, and address family (IPv4 only). 
If we now connect to this server from the local network, from the host 10.0.0.3, 
it works fine:

Linux% netstat -a -n -t
Active Internet connections (servers and established)
Proto Recv-Q Send-Q   Local Address    Foreign Address      State
tcp        0      0   10.0.0.1:8888          0.0.0.0:*      LISTEN
tcp        0      0   10.0.0.1:8888     10.0.0.3:16153      ESTABLISHED

If we instead try to connect to this server from a host using a destination 
address other than 10.0.0.1 (even including the local address 127.0.0.1), the 
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connection request is not accepted by the TCP module. If we watch with tcp-
dump, the SYN elicits an RST segment, as we show in Listing 13-9.

Listing 13-9   Rejection of a connection request based on local IP address of server

1 22:29:19.905593 IP 127.0.0.1.1292 > 127.0.0.1.8888:
      S 591843787:591843787(0) win 32767
      <mss 16396,sackOK,timestamp 3587463952 0,nop,wscale 2>
2 22:29:19.906095 IP 127.0.0.1.8888 > 127.0.0.1.1292:
      R 0:0(0) ack 591843788 win 0

The server application never sees the connection request—the rejection is 
done by the operating system’s TCP module, based on the local address specified 
by the application and the destination address contained in the arriving SYN seg-
ment. We see that the capability of restricting local IP addresses is quite strict.

13.7.3 Restricting Foreign Endpoints

In Chapter 10, we saw that a UDP server can normally specify the foreign IP address 
and foreign port number, in addition to specifying the local IP address and local 
port number. The abstract interface functions for TCP given in [RFC0793] allow a 
server doing a passive open to have either a fully specified foreign endpoint (to 
wait for a particular client to issue an active open) or an unspecified foreign end-
point (to wait for any client).

Unfortunately, the ordinary Berkeley sockets API does not provide a way to 
do this. The server must leave the client’s endpoint unspecified, wait for the con-
nection to arrive, and then examine the IP address and port number of the client. 
Table 13-3 summarizes the three types of address bindings that a TCP server can 
establish.

Table 13-3   Address and port number binding options available to a TCP server

Local Address Foreign Address Restricted to Comment

local_IP.lport foraddr.foreign_port One client Not usually supported
local_IP.lport *.* One local 

endpoint
Unusual (used by DNS 
servers)

*.local_port *.* One local port Most common; multiple 
address families (IPv4/IPv6) 
may be supported

In all cases, local_port is the server’s assigned port and local_IP must 
be a unicast IP address used by the local system. The ordering of the three rows 
in the table is the order that the TCP module applies when trying to determine 
which local endpoint receives an incoming connection request. The most specific 
binding (the first row, if supported) is tried first, and the least specific (the last row 
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with both IP addresses wildcarded) is tried last. For systems supporting IPv4 and 
IPv6 (“dual-stack”), the port space may be combined. In essence, this means that 
writing a server that binds to a port using IPv6 addressing is also bound to the 
same port in IPv4.

13.7.4 Incoming Connection Queue

A concurrent server invokes a new process or thread to handle each client, so 
the listening server should always be ready to handle the next incoming connec-
tion request. That is the underlying reason for using concurrent servers. But there 
is still a chance that multiple connection requests will arrive while the listening 
server is creating a new process, or while the operating system is busy running 
other higher-priority processes, or worse yet, that the server is being attacked with 
bogus connection requests that are never allowed to be established. How does 
TCP handle these scenarios?

To fully explore this question, we must first understand that new connections 
may be in one of two distinct states before they are made available to an applica-
tion. The first case is connections that have not yet completed but for which a 
SYN has been received (these are in the SYN_RCVD state). The second case is 
connections that have already completed the three-way handshake and are in the 
ESTABLISHED state but have not yet been accepted by the application. Internally, 
the operating system ordinarily has two distinct connection queues, one for each 
of these cases.

An application has limited control over the sizing of these queues. Tradition-
ally, using the Berkeley sockets API, an application had only indirect control of the 
sum of the sizes of these two queues. In modern Linux kernels this behavior has 
been changed to be the number of connections in the second case (ESTABLISHED 
connections). The application can therefore limit the number of fully formed con-
nections waiting for it to handle. In Linux, then, the following rules apply:

1. When a connection request arrives (i.e., the SYN segment), the system-wide 
parameter net.ipv4.tcp_max_syn_backlog is checked (default 1000). 
If the number of connections in the SYN_RCVD state would exceed this 
threshold, the incoming connection is rejected. 

2. Each listening endpoint has a fixed-length queue of connections that have 
been completely accepted by TCP (i.e., the three-way handshake is com-
plete) but not yet accepted by the application. The application specifies 
a limit to this queue, commonly called the backlog. This backlog must be 
between 0 and a system-specific maximum called net.core.somaxconn, 
inclusive (default 128).

Keep in mind that this backlog value specifies only the maximum number 
of queued connections for one listening endpoint, all of which have already 
been accepted by TCP and are waiting to be accepted by the application. 
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This backlog has no effect whatsoever on the maximum number of estab-
lished connections allowed by the system, or on the number of clients that 
a concurrent server can handle concurrently.

3. If there is room on this listening endpoint’s queue for this new connection, 
the TCP module ACKs the SYN and completes the connection. The server 
application with the listening endpoint does not see this new connection 
until the third segment of the three-way handshake is received. Also, the 
client may think the server is ready to receive data when the client’s active 
open completes successfully, before the server application has been noti-
fied of the new connection. If this happens, the server’s TCP just queues the 
incoming data.

4. If there is not enough room on the queue for the new connection, the TCP 
delays responding to the SYN, to give the application a chance to catch 
up. Linux is somewhat unique in this behavior—it persists in not ignoring 
incoming connections if it possibly can. If the net.ipv4.tcp_abort_on_
overflow system control variable is set, new incoming connections are 
reset with a reset segment.

Sending reset segments on overflow is not generally advisable and is not 
turned on by default. The client has attempted to contact the server, and if it 
receives a reset during the SYN exchange, it may falsely conclude that no server is 
present (instead of concluding that there is a server present but it is busy). Being 
too busy is really a form of “soft” or temporary error rather than a hard error. 
Normally, when the queue is full, the application or the operating system is busy, 
preventing the application from servicing incoming connections. This condition 
could change in a short while. But if the server’s TCP responded with a reset, 
the client’s active open would abort (which is what we saw happen if the server 
was not started). Without the reset, if the listening server does not get around to 
accepting some of the already-accepted connections that have filled its queue to 
the limit, the client’s active open eventually times out, according to normal TCP 
mechanisms. In the case of Linux, the connecting clients are just slowed for a sig-
nificant period of time—they will neither time out nor be reset.

We can see what happens when the incoming connection queue becomes full 
using our sock program. We invoke it with a new option (-O) that tells it to pause 
after creating the listening endpoint, before accepting any connection requests. 
If we then invoke multiple clients during this pause period, the server’s queue of 
accepted connections should fill, and we can see what happens with tcpdump.

Linux% sock -s -v -q1 -O30000 6666

The -q1 option sets the backlog of the listening endpoint to 1. The -O30000
option causes the program to sleep for 30,000s (basically a long time, about 8 
hours) before accepting any client connections. If we now try to connect to this 
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server continually, the first four connections are completed immediately. After 
that, two connections are completed every 9s. Other operating systems vary con-
siderably in how this is handled. In Solaris 8 and FreeBSD 4.7, for example, two 
connections are handled immediately and the third times out; subsequent con-
nections time out as well.

Listing 13-10 shows the tcpdump output of a Linux client connecting to a 
FreeBSD server running the sock program with the arguments just given. (We 
have marked the client port numbers in bold when the TCP connection is estab-
lished—when the three-way handshake completes.)

Listing 13-10  The FreeBSD server accepts two connections immediately. Subsequent connections 
receive no response and eventually time out at the client.

1 21:28:47.399872 IP (tos 0x0, ttl  64, id 46646, offset 0, 
      flags [DF], proto 6, length: 60) 
      63.203.76.212.2461 > 169.229.62.97.6666:
      S [tcp sum ok] 2998137201:2998137201(0) win 5808
      <mss 1452,sackOK,timestamp 4102309703 0,nop,wscale 2>

2 21:28:47.413770 IP (tos 0x0, ttl  47, id 6876, offset 0, 
      flags [DF], proto 6, length: 60) 
      169.229.62.97.6666 > 63.203.76.212.2461:
      S [tcp sum ok] 5583769:5583769(0) ack 2998137202 win 1460
      <mss 1412,nop,wscale 0,nop,nop,timestamp 219082980 4102309703>

3 21:28:47.414058 IP (tos 0x0, ttl  64, id 46648, offset 0, 
      flags [DF], proto 6, length: 52) 
      63.203.76.212.2461 > 169.229.62.97.6666:
      . [tcp sum ok] 1:1(0) ack 1 win 1452
      <nop,nop,timestamp 4102309717 219082980>

4 21:28:47.423673 IP (tos 0x0, ttl  64, id 19651, offset 0, 
      flags [DF], proto 6, length: 60) 
      63.203.76.212.2462 > 169.229.62.97.6666:
      S [tcp sum ok] 2996964252:2996964252(0) win 5808
      <mss 1452,sackOK,timestamp 4102309727 0,nop,wscale 2>

5 21:28:47.436897 IP (tos 0x0, ttl  47, id 26581, offset 0, 
      flags [DF], proto 6, length: 60) 
      169.229.62.97.6666 > 63.203.76.212.2462:
      S [tcp sum ok] 3761536245:3761536245(0) ack 2996964253 win 1460
      <mss 1412,nop,wscale 0,nop,nop,timestamp 219082983 4102309727>

6 21:28:47.437186 IP (tos 0x0, ttl  64, id 19653, offset 0, 
      flags [DF], proto 6, length: 52) 
      63.203.76.212.2462 > 169.229.62.97.6666:
      . [tcp sum ok] 1:1(0) ack 1 win 1452
      <nop,nop,timestamp 4102309741 219082983>

7 21:28:47.446198 IP (tos 0x0, ttl  64, id 24292, offset 0, 
      flags [DF], proto 6, length: 60) 
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      63.203.76.212.2463 > 169.229.62.97.6666:
      S [tcp sum ok] 2991331729:2991331729(0) win 5808
      <mss 1452,sackOK,timestamp 4102309749 0,nop,wscale 2>

8 21:28:50.445771 IP (tos 0x0, ttl  64, id 24294, offset 0, 
      flags [DF], proto 6, length: 60) 
      63.203.76.212.2463 > 169.229.62.97.6666:
      S [tcp sum ok] 2991331729:2991331729(0) win 5808
      <mss 1452,sackOK,timestamp 4102312750 0,nop,wscale 2>

9 21:28:56.444900 IP (tos 0x0, ttl  64, id 24296, offset 0, 
      flags [DF], proto 6, length: 60) 
      63.203.76.212.2463 > 169.229.62.97.6666:
      S [tcp sum ok] 2991331729:2991331729(0) win 5808
      <mss 1452,sackOK,timestamp 4102318750 0,nop,wscale 2>

10 21:29:08.443031 IP (tos 0x0, ttl  64, id 24298, offset 0, 
      flags [DF], proto 6, length: 60) 6
      3.203.76.212.2463 > 169.229.62.97.6666:
      S [tcp sum ok] 2991331729:2991331729(0) win 5808
      <mss 1452,sackOK,timestamp 4102330750 0,nop,wscale 2>

11 21:29:32.439406 IP (tos 0x0, ttl  64, id 24300, offset 0, 
      flags [DF], proto 6, length: 60) 
      63.203.76.212.2463 > 169.229.62.97.6666:
      S [tcp sum ok] 2991331729:2991331729(0) win 5808
      <mss 1452,sackOK,timestamp 4102354750 0,nop,wscale 2>

12 21:30:20.432118 IP (tos 0x0, ttl  64, id 24302, offset 0, 
      flags [DF], proto 6, length: 60) 
      63.203.76.212.2463 > 169.229.62.97.6666:
      S [tcp sum ok] 2991331729:2991331729(0) win 5808
      <mss 1452,sackOK,timestamp 4102402750 0,nop,wscale 2>

The first client’s connection request from port 2461 is accepted by TCP (seg-
ments 1–3). The second client’s connection request from port 2462 is also accepted 
by TCP (segments 4–6). The server application is still asleep and has not accepted 
either connection yet. Everything has been done by the TCP module in the oper-
ating system. Also, the two clients have returned successfully from their active 
opens, because the three-way handshakes are complete.

We try to start a third whose SYN appears as segment 7 (port 2463), but the 
server-side TCP ignores the SYNs because the queue for this listening endpoint 
is full. The client retransmits its SYN in segments 8–12 using binary exponential 
backoff. In FreeBSD and Solaris, TCP ignores the incoming SYN when the queue 
is full.

Recall that TCP accepts an incoming connection request (i.e., a SYN) if there is 
room on the listener’s queue, without giving the application a chance to see where 
it is from (the source IP address and source port number). This is not required 
by TCP; it is just the common implementation technique (i.e., the way Berkeley 
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sockets work). If an alternative to the Berkeley sockets API were used (e.g., TLI/
XTI), the application could be provided a way to learn when a connection request 
arrives and then allow the application to choose whether to accept the connection 
or not. Even though TLI provided this capability in theory, it never fully caught 
on, so we are effectively left with the TCP interface provided by Berkeley sockets.

So with Berkeley sockets, be aware that with TCP, when the application is told 
that a connection has just arrived, TCP’s three-way handshake is already over. This 
behavior also means that a TCP server has no way to cause a client’s active open to 
fail. When a new client connection is passed to the server application, TCP’s three-
way handshake is over, and the client’s active open has completed successfully. If 
the server then looks at the client’s IP address and port number and decides it does 
not want to service this client, all the server can do is either close the connection 
(causing a FIN to be sent) or reset the connection (causing an RST to be sent). In 
either case the client thought everything was OK when its active open completed 
and may have already sent a request to the server. Other transport-layer proto-
cols may be implemented that provide this separation to the application between 
arrival and acceptance (i.e., the OSI transport layer), but not TCP.

13.8 Attacks Involving TCP Connection Management

A SYN flood is a TCP DoS attack whereby one or more malicious clients generate 
a series of TCP connection attempts (SYN segments) and send them at a server, 
often with a “spoofed” (e.g., random) source IP address. The server allocates some 
amount of connection resources to each partial connection. Because the connec-
tions are never established, the server may start to deny service to future legiti-
mate requests because its memory is exhausted holding state for many half-open 
connections.

This attack is somewhat difficult to repel, because it is not always easy to dis-
tinguish between legitimate connection attempts and SYN floods. One mecha-
nism invented to deal with this issue is called SYN cookies [RFC4987]. The main 
insight with SYN cookies is that most of the information that would be stored for a 
connection when a SYN arrives could be encoded inside the Sequence Number field 
supplied with the SYN + ACK. The target machine using SYN cookies need not 
allocate any storage for the incoming connection request—it allocates real memory 
only once the SYN + ACK segment has itself been acknowledged (and the initial 
sequence number is returned). In that case, all the vital connection parameters can 
be recovered and the connection can be placed in the ESTABLISHED state.

Producing SYN cookies involves a careful selection process of the TCP ISN 
at servers. Essentially, the server must encode any essential state in the Sequence 
Number field in its SYN + ACK that is returned in the ACK Number field from a 
legitimate client. There are several ways of doing this, but we will mention the 
technique adopted by Linux.
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A server receiving an incoming SYN causes its ISN (supplied to the client in 
the SYN + ACK segment) to be set to a value constructed in the following way: the 
top 5 bits are (t mod 32) where t is a 32-bit counter that increases by 1 every 64s, 
the next 3 bits are an encoding of the server’s MSS (one of eight possibilities), and 
the remaining 24 bits are a server-selected cryptographic hash of the connection 
4-tuple and t value. (See Chapter 18 for a detailed explanation of cryptographic 
hashes.)

When SYN cookies are used, the server always responds with a SYN + ACK (as 
with any typical TCP connection establishment), and the server is able to rebuild 
its queue of arriving SYNs when it receives a legitimate ACK where the value for 
t still produces the same output from the cryptographic hash. There are at least 
two pitfalls of this approach. First, the scheme prohibits the use of arbitrary-size 
segments because of the encoding of the MSS. Second, and much less serious, 
connection establishment cycles that are very long (longer than 64s) do not work 
properly because the counter would wrap. For these reasons, this function is not 
enabled by default.

Another type of degradation attack on TCP involves PMTUD. In this case, an 
attacker fabricates an ICMP PTB message containing a very small MTU value (e.g., 
68 bytes). This forces the victim TCP to attempt to fit its data into very small pack-
ets, greatly reducing its performance. This problem can be addressed in several 
ways. The most brute-force way would be to simply disable PMTUD for the host. 
Other options would be to disable PMTUD in cases where an ICMP PTB message 
with next-hop MTU under 576 bytes is received. Another option, implemented 
by Linux and mentioned briefly earlier, is to insist that the minimum packet size 
(for large packets used by TCP) always be fixed at some value, and larger packets 
simply not have the IPv4 DF bit field turned on. This approach is similar, although 
perhaps somewhat more attractive, than completely disabling PMTUD.

Another type of attack involves disrupting an existing TCP connection and 
possibly taking it over (called hijacking). These forms of attacks usually involve a 
first step of “desynchronizing” the two TCP endpoints so that if they were to talk 
to each other, they would be using invalid sequence numbers. They are particu-
lar examples of sequence number attacks [RFC1948]. They can be accomplished in 
at least two ways: by causing invalid state transitions during connection estab-
lishment (similar to TWA; see Section 13.6.4), and by generating extra data while 
in the ESTABLISHED state. Once the two ends can no longer communicate (but 
believe they have an open connection), an attacker can introduce traffic into the 
connection, which is considered (by TCP at least) as valid.

A collection of attacks generally called spoofing attacks involve TCP segments 
that have been specially tailored by an attacker to disrupt or alter the behavior of 
an existing TCP connection. A variety of these attacks and their mitigation tech-
niques are discussed in [RFC4953]. An attacker can generate a spoofed reset seg-
ment and send it to an existing TCP endpoint. Provided the connection 4-tuple 
and checksum are correct, and the sequence number is in range, the reset gener-
ally results in a connection abort at either endpoint. This is of growing concern 
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because as networks become faster, a wider range of sequence numbers are con-
sidered “in window” to maintain performance (see Chapter 15). Other types of 
segments (SYNs, even ACKs) can also be spoofed (and combined with flooding 
attacks), causing myriad problems. Mitigation techniques include authenticating 
each segment (e.g., using the TCP-AO option), requiring reset segments to have 
one particular sequence number instead of one from a range, requiring particular 
values in the Timestamps option, and using other forms of cookies in which other-
wise noncritical data values are arranged to depend on more exact knowledge of 
the connection or a secret value.

There are spoofing attacks that are not part of the TCP protocol yet can affect 
TCP’s operation. For example, ICMP can be used to modify PMTUD behavior. 
It can also be used to indicate that a port or host is not available, and this often 
causes a TCP connection to be terminated. Many of these attacks are described in 
[RFC5927], which also suggests a number of ways of improving robustness against 
spoofed ICMP messages. The suggestions amount to validating not only the ICMP 
message but also as much of the contained TCP segment as possible. For example, 
the contained segment should have an appropriate 4-tuple and sequence number.

13.9 Summary

Before two processes can exchange data using TCP, they must establish a connec-
tion between themselves. When they are done, they terminate the connection. This 
chapter has provided a detailed look at how connections are established using a 
three-way handshake, and how they are terminated using four segments. We also 
saw how TCP can handle simultaneous open and close operations and how vari-
ous options, including the Selective ACK, Timestamps, MSS, TCP-AO, and UTO 
options, are handled.

We used tcpdump and Wireshark to show TCP’s behavior and its use of the 
fields in the TCP header. We also saw how connection establishment can time out, 
how resets are sent and interpreted, what happens with a half-open connection, 
and how TCP provides a half-close. TCP bounds both the number of connection 
attempts it will try when performing an active open and also the number of con-
nection attempts it will service after performing a passive open.

Fundamental to understanding the operation of TCP is its state transition 
diagram. We followed through the steps involved in connection establishment 
and termination, and the state transitions that take place. We also looked at the 
implications of TCP’s connection establishment for the design of concurrent TCP 
servers.

A TCP connection is uniquely defined by a 4-tuple: the local IP address, local 
port number, foreign IP address, and foreign port number. Whenever a connec-
tion is terminated, one end must maintain knowledge of the connection, and we 
saw that the TIME_WAIT state handles this. The rule is that the end that does 
the active close enters this state for twice the implementation’s MSL, which helps 
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protect TCP from processing segments from an older instantiation of the same 
connection. Using the Timestamps option can shorten the waiting time when new 
connections attempt to use the same 4-tuple, and it has other benefits for detecting 
wrapped sequence numbers and performing better RTT measurements.

TCP can be vulnerable to both resource exhaustion and spoofing attacks, but 
a number of methods have been developed to resist such issues. In addition, TCP 
can be affected by other protocols such as ICMP. Additional protection for ICMP 
is possible by carefully processing the original datagram returned by ICMP mes-
sages. Finally, TCP can be used in combination with protocols that provide secu-
rity at other layers (e.g., IPsec and TLS/SSL, described in Chapter 18), which is 
now standard practice. 
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14

TCP Timeout and 
Retransmission 

14.1 Introduction

Efficiency and performance are issues that we have not discussed much so far. 
We have primarily been concerned with correctness of operation. In this chapter 
and the next two, we will be focusing not only on the basic tasks TCP performs, 
but also on how well it performs them. The TCP protocol provides a reliable data 
delivery service between two applications using an underlying network layer 
(IP) that may lose, duplicate, or reorder packets. In order to provide an error-free 
exchange of data, TCP resends data it believes has been lost. To decide what data 
it needs to resend, TCP depends on a continuous flow of acknowledgments from 
receiver to sender. When data segments or acknowledgments are lost, TCP initi-
ates a retransmission of the data that has not been acknowledged. TCP has two 
separate mechanisms for accomplishing retransmission, one based on time and 
one based on the structure of the acknowledgments. The second approach is usu-
ally much more efficient than the first.

TCP sets a timer when it sends data, and if the data is not acknowledged when 
the timer expires, a timeout or timer-based retransmission of data occurs. The time-
out occurs after an interval called the retransmission timeout (RTO). It has another 
way of initiating a retransmission called fast retransmission or fast retransmit, which 
usually happens without any delay. Fast retransmit is based on inferring losses by 
noticing when TCP’s cumulative acknowledgment fails to advance in the ACKs 
received over time, or when ACKs carrying selective acknowledgment informa-
tion (SACKs) indicate that out-of-order segments are present at the receiver. Gen-
erally speaking, when the sender believes that the receiver might be missing some 
data, a choice needs to be made between sending new (unsent) data and retrans-
mitting. In this chapter we look closely at how TCP determines that a segment 
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is lost and what to send in response. The issue of how much to send is deferred 
until Chapter 16, where we discuss TCP’s congestion control procedures that are 
commonly invoked when packet loss is suspected. Here, we investigate how the 
RTO is set based on measurements of a connection’s round-trip time (RTT), the 
mechanics of a timer-based retransmission, and how TCP’s fast retransmission 
mechanism works. We also look at how SACKs are used to help a TCP sender 
determine what data is missing at the receiver, the effect of reordering and dupli-
cation of IP packets on TCP’s behavior, and the way TCP can change its packet size 
when retransmitting. We also look briefly at some attacks that can be mounted to 
fool TCP into behaving more aggressively or more passively.

14.2 Simple Timeout and Retransmission Example

We have already seen some examples of timeout and retransmission. (1) In the 
ICMP Destination Unreachable (Port Unreachable) example in Chapter 8 we saw 
the TFTP client using UDP employing a simple (and poor) timeout and retrans-
mission strategy: it assumed 5s was an adequate timeout period and retransmit-
ted every 5s. (2) In the attempted connection to a nonexistent host in Chapter 13, 
we saw that when TCP tried to establish the connection it retransmitted its SYN 
segment using a longer and longer delay between each successive retransmission. 
(3) In Chapter 3, we saw what happens when Ethernet encounters a collision. All 
of these mechanisms are initiated by the expiration of a timer.

We shall first look at the timer-based retransmission strategy used by TCP. We 
will establish a connection, send some data to verify that everything is OK, isolate 
one end of the connection, send some more data, and watch what TCP does. In this 
case, we will use Wireshark to see how the connection progresses (see Figure 14-1).

Segments 1, 2, and 3 correspond to the normal TCP connection establish-
ment handshake. When the Web server completes the connection establishment, 
it remains silent, awaiting a Web request. Before we provide the request, we isolate 
(disconnect) the server host. The input at the client side is as follows:

Linux% telnet 10.0.0.10 80
Trying 10.0.0.10...
Connected to 10.0.0.10.
Escape character is '^]'.
GET / HTTP/1.0
Connection closed by foreign host.

This request cannot be delivered to the server, so it remains in TCP’s queue at 
the client for quite some time. During this period, the netstat command on the 
client indicates that the queue is not empty:

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q   Local Address       Foreign Address  State
tcp        0     18   10.0.0.9:1043       10.0.0.10:www    ESTABLISHED
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Figure 14-1  A simple example of TCP’s timeout and retransmission mechanism. The first retransmit occurs at time 42.954, followed 
by other retransmissions at times 43.374, 44.215, 45.895, and 49.255. The intervals between successive retransmissions 
are 206ms, 420ms, 841ms, 1.68s, and 3.36s, respectively. These times represent a doubling of the timeout between suc-
cessive retransmissions of the same segment.



ptg999

650 TCP Timeout and Retransmission  

Here we see that 18 bytes are in the send queue, waiting to be delivered to 
the Web server. The 18 bytes consist of the characters displayed in the preceding 
request, plus two sets of carriage-return and newline characters. Details of the 
rest of the output, including addresses and state information, are described in the 
following paragraphs.

Segment 4 is the client’s first attempt to send the Web request, at 42.748s. The 
next try is at 42.954, 0.206s later. Then it launches another try at 43.374, which 
is 0.420s later. Additional retries (retransmissions) occur at 44.215, 45.895, and 
49.255s. These represent time differences of 0.841, 1.680, and 3.360s, respectively.

This doubling of time between successive retransmissions is called a binary 
exponential backoff, and we saw it in Chapter 13 during a failed TCP connection 
establishment attempt. We shall explore it in more detail later. If we measure the 
elapsed time between the initial request and the time at which the connection is 
finally aborted, the total time is about 15.5 minutes. After that, the following error 
message is displayed at the client:

Connection closed by foreign host.

Logically, TCP has two thresholds to determine how persistently it will attempt 
to resend the same segment. These thresholds are described in the Host Require-
ments RFC [RFC1122], and we mentioned them briefly in Chapter 13. Threshold R1 
indicates the number of tries TCP will make (or the amount of time it will wait) to 
resend a segment before passing “negative advice” to the IP layer (e.g., causing it to 
reevaluate the IP route it is using). Threshold R2 (larger than R1) dictates the point 
at which TCP should abandon the connection. These thresholds are suggested to 
be at least three retransmissions and 100s, respectively. For connection establish-
ment (sending SYN segments), these values may be different from those for data 
segments, and the R2 value for SYN segments is required to be at least 3 minutes.

In Linux, the R1 and R2 values for regular data segments are available to be 
changed by applications or can be changed using the system-wide configuration 
variables net.ipv4.tcp_retries1 and net.ipv4.tcp_retries2, respec-
tively. These are measured in the number of retransmissions, and not in units of 
time. The default value for tcp_retries2 is 15, which corresponds roughly to 
13–30 minutes, depending on the connection’s RTO. The default value for net.
ipv4.tcp_retries1 is 3. For SYN segments, net.ipv4.tcp_syn_retries
and net.ipv4.tcp_synack_retries bounds the number of retransmissions 
of SYN segments; their default value is 5 (roughly 180s). Windows also has a num-
ber of variables that affect the overall behavior of TCP, including values for R1 and 
R2. These are all available by modifying values under the following registry keys 
[WINREG]:

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters
HKLM\System\CurrentControlSet\Services\Tcpip6\Parameters
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Of immediate interest is the value called TcpMaxDataRetransmissions. 
This corresponds to the value of tcp_retries2 in Linux. It has a default value of 
5. Even in the simple retransmission example we have seen so far, TCP is required 
to assign some timeout value to its retransmission timer to dictate how long it 
should await an ACK for data it sends. If TCP were only ever used in one static 
environment, it would be possible to determine one particular correct value for the 
timeout value. Because TCP needs to operate in a large variety of environments, 
which themselves may change over time, TCP needs to determine this timeout 
value based on the current situation. For example, if a network link failed and traf-
fic were rerouted, the RTT would change (possibly in a major way). In other words, 
TCP needs to dynamically determine its RTO. We consider this problem next.

14.3 Setting the Retransmission Timeout (RTO)

Fundamental to TCP’s timeout and retransmission procedures is how to set the 
RTO based upon measurement of the RTT experienced on a given connection. 
If TCP retransmits a segment earlier than the RTT, it may be injecting duplicate 
traffic into the network unnecessarily. Conversely, if it delays sending until much 
longer than one RTT, the overall network utilization (and single-connection 
throughput) drops when traffic is lost. Knowing the RTT is made more compli-
cated because it can change over time, as routes and network usage vary. TCP 
must track these changes and modify its timeout accordingly in order to maintain 
good performance.

Because TCP sends acknowledgments when it receives data, it is possible to 
send a byte with a particular sequence number and measure the time required to 
receive an acknowledgment that covers that sequence number. Each such mea-
surement is called an RTT sample. The challenge for TCP is to establish a good 
estimate for the range of RTT values given a set of samples that vary over time. 
The second step is how to set the RTO based on these values. Getting this “right” 
is very important for TCP’s performance.

The RTT is estimated for each TCP connection separately, and one retransmis-
sion timer is pending whenever any data is in flight that consumes a sequence 
number (including SYN and FIN segments). The proper way to set this timer has 
been a subject of research for years, and improvements are made on an occasional 
basis. In this section, we will explore some of the more important milestones in the 
evolution of the method used to compute the RTO. We begin with the first (“clas-
sic”) method, as detailed in [RFC0793].

14.3.1 The Classic Method

The original TCP specification [RFC0793] had TCP update a smoothed RTT estima-
tor (called SRTT) using the following formula:

SRTT ← α(SRTT) + (1 − α) RTTs
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Here, SRTT is updated based on both its existing value and a new sample, 
RTTs. The constant α is a smoothing or scale factor with a recommended value 
between 0.8 and 0.9. SRTT is updated every time a new measurement is made. 
With the original recommended value for α, it is clear that 80% to 90% of each new 
estimate is from the previous estimate and 10% to 20% is from the new measure-
ment. This type of average is also known as an exponentially weighted moving aver-
age (EWMA) or low-pass filter. It is convenient for implementation reasons because 
it requires only one previous value of SRTT to be stored in order to keep the run-
ning estimate.

Given the estimator SRTT, which changes as the RTT changes, [RFC0793] rec-
ommended that the RTO be set to the following:

RTO = min(ubound, max(lbound,(SRTT)β))

where β is a delay variance factor with a recommended value of 1.3 to 2.0, ubound
is an upper bound (suggested to be, e.g., 1 minute), and lbound is a lower bound 
(suggested to be, e.g., 1s) on the RTO. We shall call this assignment procedure the 
classic method. It generally results in the RTO being set either to 1s, or to about twice 
SRTT. For relatively stable distributions of the RTT, this was adequate. However, 
when TCP was run over networks with highly variable RTTs (e.g., early packet 
radio networks in this case), it did not perform so well.

14.3.2 The Standard Method

In [J88], Jacobson detailed problems with the classic method further—basically, 
that the timer specified by [RFC0793] cannot keep up with wide fluctuations in the 
RTT (and in particular, it causes unnecessary retransmissions when the real RTT is 
much larger than expected). Unnecessary retransmissions add to the network load, 
when the network is already loaded, as indicated by the increasing sample RTT.

To address this problem, the method used to assign the RTO was enhanced 
to accommodate a larger variability in the RTT. This is accomplished by keeping 
track of an estimate of the variability in the RTT measurements in addition to the 
estimate of its average. Setting the RTO based on both a mean and a variability 
estimator provides a better timeout response to wide fluctuations in the round-
trip times than just calculating the RTO as a constant multiple of the mean.

Figures 5 and 6 in [J88] show a comparison of the [RFC0793] RTO values for 
some actual round-trip times, versus the RTO calculations we show next, which 
take into account the variability of the round-trip times. If we think of the RTT 
measurements made by TCP as samples of a statistical process, estimating both 
the mean and variance (or standard deviation) helps to make better predictions 
about the possible future values the process may take on. A good prediction for 
the range of possible values for the RTT helps TCP determine an RTO that is nei-
ther too large nor too small in most cases.
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As described by Jacobson, the mean deviation is a good approximation to the 
standard deviation, but it is easier and faster to compute. Calculating the standard 
deviation requires executing a square root mathematical operation on the vari-
ance, which was considered to be too expensive for a fast TCP implementation. 
(This is not the whole story, really. See the fascinating history of “the debate” in 
[G04].) We therefore need running estimates of both the average as well as the 
mean deviation. This leads to the following equations that are applied to each RTT 
measurement M (called RTTs earlier):

srtt ← (1 - g)(srtt) + (g)M

rttvar ← (1 - h)(rttvar) + (h)(|M - srtt|)

RTO = srtt + 4(rttvar)

Here, the value srtt effectively replaces the earlier value of SRTT, and the value 
rttvar, which becomes an EWMA of the mean deviation, is used instead of β to 
help determine the RTO. This set of equations can also be written in a form that 
requires a smaller number of operations when implemented on a conventional 
computer: 

Err = M − srtt

srtt ← srtt + g(Err)

rttvar ← rttvar + h(|Err| − rttvar)

RTO = srtt + 4(rttvar)

As suggested, srtt is the EWMA for the mean and rttvar is the EWMA for 
the absolute error, |Err|. Err is the difference between the measured value M and 
the current RTT estimator srtt. Both srtt and rttvar are used to calculate the RTO, 
which varies over time. The gain g is the weight given to a new RTT sample M
in the average srtt and is set to 1/8. The gain h is the weight given to a new mean 
deviation sample (absolute difference of the new sample M from the running aver-
age srtt) for the deviation estimate rttvar and is set to 1/4. The larger gain for the 
deviation makes the RTO go up faster when the RTT changes. The values for g and 
h are chosen as (negative) powers of 2, allowing the overall set of computations to 
be implemented in a computer using fixed-point integer arithmetic with shift and 
add operations instead of multiplies and divides. 

Note

[J88] specified 2 * rttvar in the calculation of RTO, but after further research, [J90] 
changed the value to 4 * rttvar, which is what appeared in the BSD Net/1 imple-
mentation and ultimately in the standard [RFC6298].



ptg999

654 TCP Timeout and Retransmission  

Comparing the classic method with Jacobson’s, we see that the calculations of 
the RTT average are similar (α is 1 minus the gain g) but a different gain is used. 
Also, Jacobson’s calculation of the RTO depends on both the smoothed RTT and 
the smoothed deviation, whereas the classic method used a simple multiple of the 
smoothed RTT. This is the basis for the way many TCP implementations compute 
their RTOs to this day, and because of its adoption as the basis for [RFC6298] we 
shall call it the standard method, although there are slight refinements in [RFC6298], 
which we shall now discuss.

14.3.2.1 Clock Granularity and RTO Bounds
TCP has a continuously running “clock” that is used when taking RTT measure-
ments. As with initial sequence numbers, real TCP connections do not start their 
clocks at zero and the clock does not have infinite precision. Rather, the TCP clock 
is usually the value of a variable that is updated as the system clock advances, not 
necessarily one-for-one. The length of the TCP’s clock “tick” is called its granular-
ity. Traditionally, this value was relatively large (about 500ms), but more recent 
implementations use finer-granularity clocks (e.g., 1ms for Linux).

The granularity can affect the details of making RTT measurements and also 
how the RTO is set. In [RFC6298], the granularity is used to refine how updates to 
the RTO are made. In addition, a lower bound is placed on the RTO. The equation 
used is as follows:

RTO = max(srtt + max(G, 4(rttvar)), 1000)

where G is the timer granularity and 1000ms represents a lower bound on the total 
RTO (recommended by rule (2.4) of [RFC6298]). Consequently, the RTO is always at 
least 1s. An optional upper bound is also allowed, provided it has a value of at least 60s.

14.3.2.2 Initial Values
We have seen how the estimators are updated as time progresses, but we also need 
to know how to set their initial values. Before the first SYN exchange, TCP has no 
good idea what value to use for setting the initial RTO. It also does not know what 
to use as the initial values for its estimators, unless the system has provided hints 
at this information (some systems cache this information in the forwarding table; 
see Section 14.9). According to [RFC6298], the initial setting for the RTO should be 
1s, although 3s is used in the event of a timeout on the initial SYN segment. When 
the first RTT measurement M is received, the estimators are initialized as follows: 

srtt ← M

rttvar ← M/2

We now have enough detail to see how the estimators are initialized and main-
tained. The procedures depend on obtaining RTT samples, which would appear to 
be straightforward. We now look at why this might not always be the case. 
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14.3.2.3 Retransmission Ambiguity and Karn’s Algorithm
A problem measuring an RTT sample can occur when a packet is retransmitted. 
Say a packet is transmitted, a timeout occurs, the packet is retransmitted, and an 
acknowledgment is received for it. Is the ACK for the first transmission or the sec-
ond? This is an example of the retransmi  ssion ambiguity problem. It happens because 
unless the Timestamps option is being used, an ACK provides only the ACK num-
ber with no indication of which copy (e.g., first or second) of a sequence number 
is being ACKed.

The paper [KP87] specifies that when a timeout and retransmission occur, we 
cannot update the RTT estimators when the acknowledgment for the retransmit-
ted data finally arrives. This is the “first part” of Karn’s algorithm. It eliminates 
the acknowledgment ambiguity problem by removing the ambiguity for purposes 
of computing the RTT estimate. It is a requirement in [RFC6298].

If we were to simply ignore retransmitted segments entirely when setting the 
RTO, however, we would be failing to take into account some useful information 
being provided by the network (i.e., that it is probably experiencing some form of 
inability to deliver packets quickly). In such cases, it would be beneficial to reduce 
the load on the network by decreasing the retransmission rate, at least until pack-
ets are no longer being lost. This reasoning is the basis for the exponential backoff 
behavior we saw in Figure 14-1.

 TCP applies a backoff factor to the RTO, which doubles each time a subsequent 
retransmission timer expires. Doubling continues until an acknowledgment is 
received for a segment that was not retransmitted. At that time, the backoff factor 
is set back to 1 (i.e., the binary exponential backoff is canceled), and the retrans-
mission timer returns to its normal value. Doubling the backoff factor on subse-
quent retransmissions is the “second part” of Karn’s algorithm. Note that when 
TCP times out, it also invokes congestion control procedures that alter its sending 
rate. (Congestion control is discussed in detail in Chapter 16.) Karn’s algorithm, 
then, really consists of two parts. As quoted directly from the 1987 paper [KP87]:

When an acknowledgement arrives for a packet that has been sent more than once 
(i.e., is retransmitted at least once), ignore any round-trip measurement based on 
this packet, thus avoiding the retransmission ambiguity problem. In addition, the 
backed-off RTO for this packet is kept for the next packet. Only when it (or a suc-
ceeding packet) is acknowledged without an intervening retransmission will the 
RTO be recalculated from SRTT.

This algorithm has been a required procedure in a TCP implementation for 
some time (since [RFC1122]). There is an exception, however, when the TCP Time-
stamps option is being used (see Chapter 13). In that case, the acknowledgment 
ambiguity problem can be avoided and the first part of Karn’s algorithm does not 
apply.
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14.3.2.4 RTT Measurement (RTTM) with the Timestamps Option
The TCP Timestamps option (TSOPT), in addition to providing a basis for the 
PAWS algorithm we saw in Chapter 13, can be used for round-trip time measurement
(RTTM) [RFC1323]. The basic format of the TSOPT was described in Chapter 13. It 
allows the sender to include a 32-bit number in a TCP segment that is returned in 
a corresponding acknowledgment. 

The timestamp value (TSV) is carried in the TSOPT of the initial SYN and 
returned in the TSER part of the TSOPT in the SYN + ACK, which is how the initial 
values for srtt, rttvar, and RTO are determined. Because the initial SYN “counts” 
as data (i.e., it is retransmitted if lost and consumes a sequence number), its RTT is 
measured. TSOPTs are also carried in other segments, so the connection’s RTT can 
be estimated on an ongoing basis. This seems straightforward enough but is made 
more complex because TCP does not always provide an ACK for each segment it 
receives. For example, TCP often provides one ACK for every other segment (see 
Chapter 15) when large volumes of data are transferred. In addition, when data is 
lost, reordered, or successfully retransmitted, the cumulative ACK mechanism of 
TCP means that there is not necessarily any fixed correspondence between a seg-
ment and its ACK. To handle these challenges, TCPs that use this option (most of 
them today—Linux and Windows included), employ the following algorithm for 
taking RTT samples:

1. The sending TCP includes a 32-bit timestamp value in the TSV portion of 
the TSOPT in each TCP segment it sends. This field contains the value of 
the sender’s TCP “clock” when the segment is transmitted.

2. A receiving TCP keeps track of the received TSV value to send in the next 
ACK it generates (in a variable typically named TsRecent) and the ACK num-
ber in the last ACK that it sent (in a variable named LastACK). Recall that 
ACK numbers represent the next in-order sequence number the receiver 
(i.e., sender of the ACK) expects to see.

3. When a new segment arrives, if it contains the sequence number matching 
the value in LastACK (i.e., it is the next expected segment), the segment’s 
TSV is saved in TsRecent.

4. Whenever the receiver sends an ACK, a TSOPT is included such that the 
timestamp value contained in TsRecent is placed in the TSER part of the 
TSOPT in the ACK.

5. A sender receiving an ACK that advances its window subtracts the TSER 
from its current TCP clock and uses the difference as a sample value to 
update its RTT estimators.

Timestamps are enabled by default in FreeBSD, Linux, and in response to sys-
tems that use them for later versions of Windows. In Linux, the system configura-
tion variable net.ipv4.tcp_timestamps dictates whether or not they are used 
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(value 0 for not used, value 1 for used). In Windows, their use is controlled by the 
Tcp1323Opts value in the registry area mentioned earlier. If it has the value 0, 
timestamps are disabled. If its value is 2, timestamps are enabled. This key has 
no default value (it is not in the registry by default). The default behavior is to use 
timestamps if a peer uses them when initiating a connection.

14.3.3 The Linux Method

The Linux RTT estimation procedure works somewhat differently from the stan-
dard method. It uses a clock granularity of 1ms, which is finer than that of many 
other implementations, along with the TSOPT. The combination of frequent mea-
surements of the RTT and the fine-grain clock contributes to a more accurate esti-
mate of the RTT but also tends to minimize the value of rttvar over time [LS00]. 
This happens because when a large enough number of mean deviation samples 
are accumulated, they tend to cancel each other out. This is one consideration for 
setting the RTO that differs somewhat from the standard method. Another relates 
to the way the standard method increases rttvar when an RTT sample is signifi-
cantly below the existing RTT estimate srtt.

To understand the second issue better, recall that the RTO is usually set to the 
value srtt + 4(rttvar). Consequently, any large change in rttvar causes the RTO to 
increase, whether the latest RTT sample is greater or less than srtt. This is counter-
intuitive—if the actual RTT has dropped significantly, it is not desirable to have 
the RTO increase as a consequence. Linux deals with this issue by limiting the 
impact of significant downward drops in RTT sample values on the value of rttvar. 
We will now look at the details for the procedure Linux uses to set its RTO; the 
procedure addresses both of the issues just discussed.

Linux keeps the variables srtt and rttvar, as with the standard method, but 
also two new ones called mdev and mdev_max. The value mdev keeps the running 
estimate of the mean deviation using the standard algorithm for rttvar described 
before. The value mdev_max holds the maximum value of mdev seen over the last 
measured RTT and is never allowed to be less than 50ms. In addition, rttvar is 
regularly updated to ensure that it is at least as large as mdev_max. Consequently, 
the RTO never dips below 200ms.

Note

The minimum RTO can be changed. TCP_RTO_MIN, which is a kernel configu-
ration constant, can be changed prior to recompiling and installing the kernel. 
Some Linux versions also allow it to be changed using the ip route command. 
When TCP is used in data-center networks where RTTs may be a few microsec-
onds, 200ms minimum RTO can lead to severe performance degradations due to 
slow TCP recovery after packet loss in local switches. This is the so-called TCP 
“incast” problem. Various solutions exist to this problem, including modification of 
the TCP timer granularity and minimum RTO to be on the order of microseconds 
[V09]. Such small minimum RTO values are not recommended for use on the 
global Internet.
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Linux updates rttvar to the value of mdev_max whenever the maximum 
increases. It always sets the RTO to be the sum of srtt and 4(rttvar) and ensures 
that the RTO never exceeds TCP_RTO_MAX, which defaults to 120s. See [SK02] 
for more details. We can see how the details of all of this work in Figure 14-2. This 
figure also shows how the Timestamps option operates.

Figure 14-2  The TCP Timestamps option carries a copy of the TCP clock at the sender. ACKs return 
this value to the sender, which uses the difference (current clock - returned timestamp) 
to update its srtt and rttvar estimates. For clarity, only one set of timestamps is depicted. 
In this Linux system, the rttvar value is constrained to be at least 50 (millisecond) units, 
and the RTO has a lower bound of 200ms.
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In Figure 14-2 we see a TCP connection using the Timestamps option as it 
starts up. The sender is a Linux 2.6 system and the receiver is a FreeBSD 5.4 system. 
Sequence numbers and timestamp values are depicted as relative values for clarity. 
In addition, only the sender’s timestamps are shown. The figure is not drawn exactly 
to temporal scale, in order to make the numerical values easier to read. Based on the 
initial RTT measurement in this example, Linux makes the following updates:

• srtt = 16ms

• mdev = (16/2)ms = 8ms

• rttvar = mdev_max = max(mdev, TCP_RTO_MIN) = max(8, 50) = 50ms

• RTO = srtt + 4(rttvar) = 16 + 4(50) = 216ms

After the initial SYN exchange, the sender supplies an ACK for the receiver’s 
SYN and the receiver responds with a window update. As neither of these packets 
contains data (or SYN or FIN bit fields, which are counted as data), they are not 
timed, and no RTT estimator update is performed when the window update arrives 
back at the sender. Segments that do not contain data are not reliably delivered by 
TCP, meaning they are not retransmitted if lost. These types of segments do not 
require a retransmission timer to be set, because they are never retransmitted.

Note

It is worth mentioning that TCP options, by themselves, are also not retransmitted 
or reliably delivered. Only when options are specifically arranged to be present in 
data segments (including SYN and FIN segments) will options be retransmitted if 
lost, and then only as a side effect.

When the application performs its first write, the sending TCP emits two seg-
ments, each with a TSV value equal to 127. The values are identical in these two 
segments because the TCP clock has advanced less than 1ms (the sending TCP’s 
clock granularity) between the first and second transmission. It is not unusual to 
see the clock fail to advance, or advance by small amounts, when the sender is 
sending multiple segments “back-to-back” in this fashion.

The LastACK variable at the receiver holds the ACK number last sent by the 
receiver. In this example, LastACK starts with the value 1 because the last ACK 
sent was the SYN + ACK packet sent during connection establishment. When the 
first full-size segment arrives, its sequence number matches the LastACK value, 
so the TsRecent variable is updated to contain the value 127 from the arriving seg-
ment’s TSV. The arrival of the second segment does not update the TsRecent vari-
able because its Sequence Number field does not match the value in LastACK. The 
ACK sent in response to the arriving packets includes the value of TsRecent in its 
TSER, and its transmission also causes the receiver to update the LastACK variable 
to the ACK number, 2801.
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When this ACK arrives, TCP is able to make its second RTT measurement. 
It takes the current TCP clock and subtracts the TSER value from the arriving 
packet, forming the measurement m: m = 223 – 127 = 96. With this measurement, 
the Linux TCP updates the connection variables as follows:

• mdev = mdev (3/4) + |m-srtt|(1/4) = 8(3/4) + |80|(1/4) = 26ms

• mdev_max = max(mdev_max, mdev) = max(50, 26) = 50ms

• srtt = srtt (7/8) + m(1/8) = 16(7/8) + 96(1/8) = 14 + 12 = 26ms

• rttvar = mdev_max = 50ms

• RTO = srtt + 4(rttvar) = 26 + 4(50) = 226ms

As mentioned previously, Linux TCP has several special modifications to the 
classic RTT estimation algorithm that merit discussion. At the time the classic 
algorithms were developed, the typical granularity of the TCP clock was 500ms 
and the Timestamps option was not in widespread use. It was typical to take only 
one RTT sample per window and update the estimators accordingly. This is still 
used if timestamps are not available or not enabled.

If only one RTT sample is taken per window, the rttvar term changes relatively 
slowly. With timestamps and per-packet timestamp measurements, many more 
measurements can take place. Because it is common for the RTT to vary little from 
one packet to the next in the same window of data, taking so many measurements 
in a small period of time (e.g., when the window is large) can lead to the mean 
deviation estimate being small (near zero, thanks to the law of large numbers 
[F68]). To address this issue, Linux maintains the mdev variable as the running 
mean deviation estimate but sets the RTO based on the rttvar, which is increased 
to the maximum value of mdev during one window of data and also clamped to 
be at least 50ms. Rttvar is allowed to decrease only one time, from one window to 
the next.

The standard approach uses a heavy weight (factor of 4) given to the rttvar
term, and consequently the RTO tends to increase, even when the RTT is decreas-
ing. With a coarse-granularity clock (e.g., 500ms) this may have relatively little 
effect because there are so few values the RTO can take on. However, with a 
finer-granularity clock, such as the 1ms used by Linux, this can be of concern. To 
address this issue, Linux handles the case where the RTT is decreasing by giving 
less weight to the new sample if it is below the “lower end” of the estimated RTT 
range (srtt - mdev). The complete relationship is as follows:

if (m < (srtt – mdev)) 

 mdev = (31/32) * mdev + (1/32) * |srtt - m|

else

 mdev = (3/4) * mdev + (1/4) * |srtt - m|
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The conditional determines if the new RTT sample is below the bottom of the 
range of what an RTT measurement is expected to be. If so, the new sample indi-
cates that the connection may be experiencing a significantly reducing RTT. To 
avoid increasing mdev (and consequently rttvar and RTO) in such cases, the new 
mean deviation sample, |srtt - m|, is given an 8x reduced weight versus its nor-
mal weighting. Overall, this results in avoiding the problem of increasing the RTO 
in cases where the RTT is decreasing. For an in-depth discussion of these issues, 
please see [LS00] and [SK02]. In [RKS07], the authors evaluated the TCP RTT esti-
mation algorithms with various operating systems on 2.8 million TCP flows. They 
conclude that the Linux estimator is the most effective among those studied, largely 
because of its relatively quick convergence, but that it can also be tuned most effec-
tively by reducing the influence of RTT variance on setting the RTO.

Returning now to Figure 14-2, when ACK 7001 is generated at the receiver, we 
see that its TSER contains a copy of a TSV value, not from the most recently arriv-
ing segment, but instead from the oldest segment that has not been ACKed. When 
returned to the sender, this ACK causes the RTT sample to be measured from the 
first of the two segments, rather than from the last one sent. This is how the time-
stamp algorithm works with delayed or otherwise erratic ACKs. When the RTT 
sample from the oldest packet is measured, the RTT sample is taken to be the time 
the sender should wait to expect an ACK, rather than the actual network RTT. This 
is important because the sender needs to base its RTO on the rate at which it can 
expect ACKs from the receiver, which may be less than the packet sending rate.

14.3.4 RTT Estimator Behaviors

As we have seen, substantial innovation and engineering have been invested in 
how to set TCP’s RTO and how to estimate the RTT. Figure 14-3 shows how the 
more popular estimators work, based on applying the standard and Linux algo-
rithms to a synthetic data set. The 1s RTO minimum recommended by [RFC6298] 
has been removed for the standard method for illustration. Most real-world TCP 
implementations today violate this directive anyhow [RKS07].

The graph shows a time-series plot of 200 synthetic values drawn from two 
Gaussian probability distributions, N(200, 50) and N(50, 50). The first distribution 
is used for the first 100 points, and the second is used for the second 100 points. 
Any negative samples were made positive by sign inversion (applicable only to the 
second distribution). Each plus (+) indicates a specific sample value. The signifi-
cant drop in sample values after sample 100 is apparent, and it is easy to see how 
the Linux approach drops the RTO almost immediately after sample 100, while the 
standard approach requires another 20 samples.

If we focus now on the Linux rttvar line, we can see that it remains relatively 
constant. This is because of the 50ms minimum on the mdev_max value (and con-
sequently the rttvar value). This has the effect of making the Linux RTO value 
always at least 200ms, and all unnecessary retransmissions are avoided (although 
the timer may not fire as quickly, leading to reduced performance when packets 
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are lost). The standard approach runs into potential problems at samples 78 and 
191, where a spurious retransmission could take place. We shall discuss this problem 
later. 

14.3.5 RTTM Robustness to Loss and Reordering

The TSOPT has been shown to work properly when packets are not lost, whether 
or not the receiver delays some ACKs. The algorithm also operates correctly in the 
following cases:

• Out-of-order segments: When a receiver receives an out-of-order segment, 
typically because of the loss of a previous segment, an ACK is supposed 
to be generated immediately to help the fast retransmit algorithm (see 
Section 14.5) operate. This ACK includes as its TSER value the TSV value 
from the most recent in-order segment that arrived at the receiver (i.e., the 
most recent one to advance the window, which is generally not the arriving 

Figure 14-3  The Linux and standard RTO assignment and RTT estimation algorithms applied to 
synthetic (pseudorandom) sample points. The first 100 points are drawn from an N(200, 
50) distribution, and the second 100 are drawn from an N(50, 50) distribution with neg-
ative values turned positive. Linux avoids the increase in RTO when the mean drops 
after sample 100. With Linux, the minimum RTO is effectively set to 200ms, so after 
sample 120, the standard method is tighter. Linux avoids setting the RTO too low in all 
cases for this example. The standard approach runs into potential problems at samples 
78 and 191.
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out-of-order segment). This tends to cause the sender’s RTT sample values 
to increase, leading to a corresponding increase in the sender’s RTO. When 
packets are being reordered, this is beneficial because it tends to allow the 
sender a bit more time to realize that packets are reordered rather than lost 
before initiating a retransmission.

• Successful retransmissions: When a receiver receives a segment that fills a 
hole in its receive buffer (e.g., because of the successful arrival of a retrans-
mission), the window generally jumps forward. In this case, the value 
carried in the TSER of the corresponding ACK is from the most recently 
arriving segment. This is useful because if an older segment’s TSV were 
used, it might be more than one RTO’s worth of time old, leading to a large 
unwanted bias in the sender’s RTT estimate.

The example in Figure 14-4 illustrates these points. Assume that three seg-
ments, each containing 1024 bytes, are received in the following order: segment 1 
with bytes 1–1024, segment 3 with bytes 2049–3072, and then segment 2 with bytes 
1025–2048. 

Figure 14-4  When segments are reordered, the returned timestamp is that of the last segment to 
advance the receiver’s window (not the largest timestamp to arrive at the receiver). 
This biases the sender’s RTO toward overestimating the RTT during periods of packet 
reordering and reduces its aggressiveness.

The ACKs sent back in Figure 14-4 are ACK 1025 with the timestamp from 
segment 1 (a normal ACK for data that was expected), ACK 1025 with the time-
stamp from segment 1 (a duplicate ACK in response to the in-window but out-of-
sequence segment), then ACK 3073 with the timestamp from segment 2 (not the 
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timestamp from segment 3). This has the effect of overestimating the RTT when 
segments are reordered (or lost). A larger RTT estimate leads to a larger RTO, mak-
ing the sender less aggressive to retransmit. This is especially desirable in cases 
where packet reordering occurs, because aggressive retransmissions are likely to 
be spurious. 

So, we have seen that the Timestamps option allows the sender to make esti-
mates of the RTT even when there are packet delays, losses, and reorderings. The 
sender can measure the RTT using whatever values it wishes to in the option, but 
these units must at least be proportional to real time and of a reasonable granu-
larity to be compatible with TCP sequence numbers and plausible link rates (see 
[RFC1323] for more details on this). In particular, to be useful to the sender, the 
TCP clock must “tick” at least once for any plausible RTT. On the other hand, it 
should not change faster than once every 59ns. If it did, the 32-bit TSV value hold-
ing the TCP clock value could wrap around within the maximum time permitted 
by the IP layer for a single packet to exist (255s) [ID1323b]. Assuming all this to be 
correct, the RTO value can now be used to trigger retransmissions.

14.4 Timer-Based Retransmission

Once a sending TCP has established its RTO based upon measurements of the 
time-varying values of effective RTT, whenever it sends a segment it ensures that 
a retransmission timer is set appropriately. When setting a retransmission timer, 
the sequence number of the so-called timed segment is recorded, and if an ACK 
is received in time, the retransmission timer is canceled. The next time the sender 
emits a packet with data in it, a new retransmission timer is set, the old one is 
canceled, and the new sequence number is recorded. The sending TCP therefore 
continuously sets and cancels one retransmission timer per connection; if no data 
is ever lost, no retransmission timer ever expires.

Note

This observation proved somewhat of a surprise to the designers of the host 
operating systems. In a typical operating system, timers are used to signal a wide 
variety of events, and the implementation of the timer facility is tuned to efficiently 
set up and expire timers (which invoke system functions). For TCP, however, the 
requirement is for efficient setting and resetting or canceling of timers; if TCP is 
working well, timers never expire.

When TCP fails to receive an ACK for a segment it has timed on a connec-
tion within the RTO, it performs a timer-based retransmission. We have seen this 
already in Figure 14-1. TCP considers a timer-based retransmission as a fairly 
major event; it reacts very cautiously when it happens by quickly reducing the rate 
at which it sends data into the network. It does this in two ways. The first way is 
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to reduce its sending window size based on congestion control procedures (see 
Chapter 16). The other way is to keep increasing a multiplicative backoff factor 
applied to the RTO each time a retransmitted segment is again retransmitted. This 
is implemented in the “second part” of Karn’s algorithm mentioned previously. 
In particular, the RTO value is (temporarily) multiplied by the value γ to form the 
backed-off timeout when multiple retransmissions of the same segment occur:

RTO = γRTO

In ordinary circumstances, γ has the value 1. On subsequent retransmissions, 
γ is doubled: 2, 4, 8, and so forth. There is typically a maximum backoff factor that γ
is not allowed to exceed (Linux ensures that the used RTO never exceeds the value 
TCP_RTO_MAX, which defaults to 120s). Once an acceptable ACK is received, γ is 
reset to 1.

14.4.1 Example

We can see the action of the retransmission timer by creating a connection similar 
to the one we looked at in Figures 14-1 and 14-2, but where we purposely drop the 
segment with sequence number 1401 twice (see Figure 14-5).

For this example, we send the TCP segments through a special function that 
is able to drop them a certain number of times based on their TCP sequence num-
bers. This adds a bit of extra delay to the RTT as compared with Figure 14-2. The 
connection starts out as before, except when the pair of segments with sequence 
numbers 1 and 1401 is sent, the second packet is dropped. Presumably the first of 
these segments reaches the receiver, but the receiver is delaying ACKs and does not 
respond immediately. Lacking a response in 219ms, the sender’s retransmission 
timer expires, causing the packet with sequence number 1 to be resent (this time 
with TSV value 577). Its arrival elicits an ACK from the receiver, which returns to 
the sender. Because this ACK acknowledges data and moves the sender’s window 
forward, its TSER value is used to update the srtt and RTO values to 34 and 234, 
respectively.

The next three ACKs are generated in response to packets that arrive at the 
receiver. The ACKs with the asterisks (*) are all duplicate ACKs and contain SACK 
information. We will discuss the effect of duplicate ACKs and SACKs in Sections 
14.5 and 14.6. For now, because these ACKs do not move the sender’s window for-
ward, their TSER values are not used.

With the eventual retransmission and arrival of segment 1401 (at TCP clock 
time 911) at the receiver, the repair period is complete, and the receiver responds 
with ACK number 7001, indicating that all data has been received.

The retransmission timer provides a form of “last-resort restart” for a TCP 
connection that has ceased to move data through the network regularly. In most 
cases it is unnecessary (and undesirable) to have retransmission timers trigger 
retransmissions because the RTO is generally established to be larger than the 



ptg999

666 TCP Timeout and Retransmission  

Figure 14-5  Segment 1401 is forcibly dropped twice. This results in a timer-based retransmission at the sender. 
The srtt, rttvar, and RTO values are updated only by a returning ACK that advances the sender’s 
window. ACKs with asterisks (*) include SACK information.
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typical RTT (by about a factor of 2 or more), so a timer-based retransmission often 
leads to underutilization of the network capacity. Fortunately, TCP has another 
method for detecting and repairing lost packets, which is almost always more effi-
cient than timer-based retransmissions. It is called fast retransmit because it does 
not require the expiration of a retransmission timer to be invoked. 

14.5 Fast Retransmit

Fast retransmit [RFC5681] is a TCP procedure that can induce a packet retransmis-
sion based on feedback from the receiver instead of requiring a retransmission 
timer to expire. As a result, packet loss can often be more quickly and efficiently 
repaired using fast retransmit than with timer-based retransmission. A typical 
TCP implements both fast retransmit and timer-based retransmission. Before 
we describe fast retransmit in more detail, it is important to realize that TCP is 
required to generate an immediate acknowledgment (a “duplicate ACK”) when 
an out-of-order segment is received, and that the loss of a segment implies out-of-
order arrivals at the receiver when subsequent data arrives. When this happens, a 
hole is created at the receiver. The sender’s job then becomes filling the receiver’s 
holes as quickly and efficiently as possible.

The duplicate ACKs sent immediately when out-of-order data arrives are not 
delayed. The reason is to let the sender know that a segment was received out of 
order, and to indicate what sequence number is expected (i.e., where the hole is). 
When SACK is used, these duplicate ACKs typically contain SACK blocks as well, 
which can provide information about more than one hole.

A duplicate ACK (with or without SACK blocks) arriving at a sender is a 
potential indicator that a packet sent earlier has been lost. As we discuss in Sec-
tion 14.8 in more detail, duplicate ACKs can also appear when there is packet 
reordering in the network—if a receiver receives a packet for a sequence number 
beyond the one it is expecting next, the expected packet could be either missing 
or merely delayed. Because we generally do not know which one, TCP waits for a 
small number of duplicate ACKs (called the duplicate ACK threshold or dupthresh) 
to be received before concluding that a packet has been lost and initiating a fast 
retransmit. Traditionally, dupthresh has been a constant (with value 3), but some 
nonstandard implementations (including Linux) alter this value based on the cur-
rent measured level of reordering (see Section 14.8).

A TCP sender observing at least dupthresh duplicate ACKs retransmits one 
or more packets that appear to be missing without waiting for a retransmission 
timer to expire. It may also send additional data that has not yet been sent. This is 
the essence of the fast retransmit algorithm. Packet loss inferred by the presence 
of duplicate ACKs is assumed to be related to network congestion, and congestion 
control procedures (discussed in Chapter 16) are invoked along with fast retrans-
mit. Without SACK, no more than one segment is typically retransmitted until 
an acceptable ACK is received. With SACK, ACKs contain additional information 
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allowing the sender to fill more than one hole in the receiver per RTT. We explore 
the use of SACK with fast retransmit after illustrating an example of the basic fast 
retransmit algorithm.

14.5.1 Example

In the following example, we create a TCP connection similar to the one from 
Figure 14-4, except this time we drop segments 23801 and 26601 and SACK is dis-
abled. We will see how TCP uses the basic fast retransmit algorithm to repair these 
holes. The sender is a Linux 2.6 system and the receiver is a FreeBSD 5.4 system. 
The plot in Figure 14-6 from Wireshark’s Statistics | TCP Stream Graph | Time-
Sequence Graph (tcptrace) screen shows fast retransmit in action.

Fast Retransmit
Retransmit Due
to Partial ACK

Figure 14-6  In this plot, TCP sequence numbers are on the y-axis and time is on the x-axis. Outgo-
ing segments are displayed as darker line segments, and the incoming ACK numbers 
appear as lighter gray segments. Fast retransmit is triggered by the arrival of the third 
duplicate ACK at time 0.993s. This connection does not use SACK, so it is able to repair 
at most only one hole per RTT. Additional duplicate ACKs arriving after the third cause 
the sender to send new segments (not retransmissions). A “partial ACK” arriving at 
time 1.32 causes the next retransmission.
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This plot indicates the relative sending sequence number on the y-axis and 
the elapsed time on the x-axis. The black vertical I-shaped extents indicate the 
span of sequence numbers present in the transmitted segment. The blue lines in 
Wireshark (lower light gray line in Figure 14-6) indicate ACK numbers in return-
ing packets. At approximately time 1.0, sequence number 23801 is retransmitted 
because of the fast retransmit algorithm (the initial transmission is not visible 
because it was dropped by the process at the sender below the TCP protocol layer). 
The retransmission is triggered by the arrival of the third duplicate ACK, as illus-
trated by the repeated lower line segments. The retransmit can also be seen using 
the basic analysis screen of Wireshark (see Figure 14-7).

Figure 14-7  The TCP exchange showing relative sequence numbers. Packets 50 and 66 are retransmissions. 
Packet 50 is retransmitted because of the fast retransmit algorithm, which triggers as a result of 
three duplicate ACKs. No retransmission timer is required, so recovery is relatively quick.

The first line of Figure 14-7 (number 40) indicates the first time ACK 23801 is 
received. Wireshark highlights (in red, appearing as black in Figure 14-7) other 
“interesting” TCP packets. Such packets differ from what would be expected for 
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a TCP transfer with no losses or other anomalies. We see window updates, dupli-
cate ACKs, and retransmissions. The window update at time 0.853 is an ACK with 
a duplicate sequence number (because no data is being carried) but contains a 
change to the TCP flow control window. The window changes from 231,616 bytes 
to 233,016 bytes. Thus, it is not counted toward the three-duplicate-ACK threshold 
required to initiate a fast retransmit. Window updates merely provide a copy of 
the window advertisement. We will look at these in more detail in Chapter 15.

The packets arriving at times 0.890, 0.926, and 0.964 are all duplicate ACKs for 
sequence number 23801. The arrival of the third of these duplicate ACKs triggers 
the fast retransmit of segment 23801 at time 0.993. This can also be seen using 
Wireshark’s Statistics | Flow Graph feature (see Figure 14-8).

Figure 14-8  The retransmission at time 0.993 is triggered by the fast retransmit algorithm after 
receiving duplicate ACKs at times 0.890, 0.926, and 0.964. The ACK at time 0.853 is not 
considered a duplicate ACK because it contains a window update.
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Here we see, in a slightly different way, the same fast retransmit at time 0.993. 
We can also see the second retransmission that takes place at time 1.326. This 
second retransmission takes place because of the arrival of the ACK at time 1.322.

The second retransmission is somewhat different from the first. When the 
first retransmission takes place, the sending TCP notes the highest sequence num-
ber it had sent just before it performed the retransmission (43401 + 1400 = 44801). 
This is called the recovery point. TCP is considered to be recovering from loss after 
a retransmission until it receives an ACK that matches or exceeds the sequence 
number of the recovery point. In this example, the ACKs at times 1.322 and 1.321 
are not for 44801, but instead for 26601. This number is larger than the previous 
highest ACK value seen (23801), but not enough to meet or exceed the recovery 
point (44801). This type of ACK is called a partial ACK for this reason. When par-
tial ACKs arrive, the sending TCP immediately sends the segment that appears to 
be missing (26601 in this case) and continues this way until the recovery point is 
matched or exceeded by an arriving ACK. If permitted by congestion control pro-
cedures (see Chapter 16), it may also send new data it has not yet sent.

This example illustrates the behavior of a TCP not using SACKs, when using 
fast retransmit, and when performing additional retransmits during recovery 
based on the “NewReno” sending algorithm [RFC3782]. Because no SACKs are 
being used, the sender can learn of at most one receiver hole per round-trip time, 
indicated by the increase in the ACK number of returning packets, which can only 
occur once a retransmission filling the receiver’s lowest-numbered hole has been 
received and ACKed.

The precise behavior during recovery varies, depending on the type and 
configuration of the TCP sender and receiver. This example illustrates a non-
SACK sender using the NewReno algorithm, a fairly common arrangement. With 
NewReno, partial ACKs keep the sender in recovery as described. With older TCP 
variants (plain Reno), there is no such concept, and any acceptable ACK brings the 
TCP out of recovery. Doing so can present some performance problems for TCP, 
and these are discussed in detail in Chapter 16. NewReno and SACK, which we 
discuss next, are sometimes called “advanced loss recovery” techniques to distin-
guish them from the older approaches.

14.6 Retransmission with Selective Acknowledgments

With the standardization of the Selective Acknowledgment options in [RFC2018], 
a SACK-capable TCP receiver is able to describe data it has received with sequence 
numbers beyond the cumulative ACK Number field it sends in the primary portion 
of the TCP header. As we mentioned before, gaps between the ACK number and 
other in-window data cached at the receiver are called holes. Data with sequence 
numbers beyond the holes are called out-of-sequence data because that data is not 
contiguous, in terms of its sequence numbers, with the other data the receiver has 
already received.
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The job of a sending TCP is to fill the holes in the receiver by retransmitting 
any data the receiver is missing, yet to be as efficient as possible by not resend-
ing data the receiver already has. In many circumstances, the properly operating 
SACK sender is able to fill these holes more quickly and with fewer unnecessary 
retransmissions than a comparable non-SACK sender because it does not have to 
wait an entire RTT to learn about additional holes. When the SACK option is being 
used, an ACK can be augmented with up to three or four SACK blocks that contain 
information about out-of-sequence data at the receiver. Each SACK block contains 
two 32-bit sequence numbers representing the first and last sequence numbers 
(plus 1) of a continuous block of out-of-sequence data being held at the receiver.

A SACK option that specifies n blocks has a length of 8n + 2 bytes, so the 
40 bytes available to hold TCP options can specify a maximum of four blocks. It 
is expected that SACK will often be used in conjunction with the TSOPT, which 
takes an additional 10 bytes (plus 2 bytes of padding), meaning that SACK is typi-
cally able to include only three blocks per ACK.

With three distinct blocks, up to three holes can be reported to the sender. If 
not limited by congestion control (see Chapter 16), all three could be filled within 
one round-trip time using a SACK-capable sender. An ACK packet containing one 
or more SACK blocks is sometimes called simply a “SACK.”

14.6.1 SACK Receiver Behavior

A SACK-capable receiver is allowed to generate SACKs if it has received the 
SACK-Permitted option during the TCP connection establishment (see Chapter 
13). Generally speaking, a receiver generates SACKs whenever there is any out-of-
order data in its buffer. This can happen either because data was lost in transit, or 
because it has been reordered and newer data has arrived at the receiver before 
older data. We consider the first case here and discuss the second one later.

The receiver places in the first SACK block the sequence number range con-
tained in the segment it has most recently received. Because the space in a SACK 
option is limited, it is best to ensure that the most recent information is always 
provided to the sending TCP, if possible. Other SACK blocks are listed in the order 
in which they appeared as first blocks in previous SACK options. That is, they are 
filled in by repeating the most recently sent SACK blocks (in other segments) that 
are not subsets of another block about to be placed in the option being constructed.

The purpose of including more than one SACK block in a SACK option and 
repeating these blocks across multiple SACKs is to provide some redundancy in 
the case where SACKs are lost. If SACKs were never lost, [RFC2018] points out that 
only one SACK block would be required per SACK for full SACK functionality. 
Unfortunately, SACKs and regular ACKs are sometimes lost and are not retrans-
mitted by TCP unless they contain data (or the SYN or FIN control bit fields are 
turned on). 
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14.6.2 SACK Sender Behavior

Although it is necessary for a SACK-capable receiver to generate proper SACK 
information to make full use of SACK, it is not sufficient for a TCP connection to 
benefit from SACKs. A SACK-capable sender must be used that treats the SACK 
blocks appropriately and performs selective retransmission by sending only those 
segments missing at the receiver, a process also called selective repeat. The SACK 
sender keeps track of any cumulative ACK information it receives (like any TCP 
sender), plus any SACK information it receives. It uses the SACK information it 
receives in ACKs generated at the receiver to avoid retransmitting data the receiver 
reports that it already has. One way it can do this is to keep a “SACKed” indication 
for each segment in its retransmission buffer that is set whenever a corresponding 
range of sequence numbers arrives in a SACK.

When a SACK-capable sender has the opportunity to perform a retransmis-
sion, usually because it has received a SACK or seen multiple duplicate ACKs, it 
has the choice of whether it sends new data or retransmits old data. The SACK 
information provides the sequence number ranges present at the receiver, so the 
sender can infer what segments likely need to be retransmitted to fill the receiver’s 
holes. The simplest approach is to have the sender first fill the holes at the receiver 
and then move on to send more new data [RFC3517] if the congestion control pro-
cedures allow. This is the most common approach.

There is one exception to this behavior. In [RFC2018], the current specification 
for SACK options, SACK blocks are considered advisory. This means that a receiver 
could provide a SACK to the sender indicating that some sequence numbers have 
been received successfully and then change its mind later (“renege”). Because of 
this, the SACK sender is not able to free its retransmission buffer of data it has 
received only a SACK for; it is permitted to free a block of data only once the regu-
lar TCP ACK number of the receiver has passed by the highest sequence number of 
this data. The rule also affects what TCP is supposed to do when a retransmission 
timer expires. When a sending TCP initiates a timer-based retransmission, any 
information regarding out-of-sequence data at the receiver derived from SACKs is 
supposed to be forgotten. If out-of-sequence data remains at the receiver, the ACK 
for the retransmitted segment contains additional SACK blocks the sender can 
then use. Fortunately, reneging is rare and discouraged.

14.6.3 Example

To understand how the use of SACK alters the sender and receiver behaviors, we 
repeat the preceding fast retransmit experiment with the same setup (dropping 
sequence numbers 23601 and 28801), but this time the sender and receiver are 
using SACK. To get an immediate idea of what happens, we again use Wireshark’s 
TCP sequence number (tcptrace) plot function (see Figure 14-9).
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Figure 14-9 is similar to Figure 14-6, but the SACK sender has not had to wait 
an RTT to retransmit lost segment 28801 after retransmitting segment 23601. This 
is a result of the SACK information contained in the arriving ACKs. We will look 
at those in detail later, but first we verify the negotiation of the SACK-Permitted 
option during connection setup. This can be seen in Figure 14-10. 

As expected, the receiver indicates its ability to use SACKs with the SACK- 
Permitted option. The SYN packet from the sender, the first packet of the trace, 
also contains an identical option. These options are present only at connection 
setup, and thus they only ever appear in segments with the SYN bit field set.

Once the connection is permitted to use SACKs, packet loss generally causes 
the receiver to start producing SACKs. For example, Wireshark shows the contents 
of the SACK options when the first SACK is selected (see Figure 14-11).

First Retransmission Triggered
by First Duplicate ACK

Second Retransmission 
Sent During Same RTT

Figure 14-9  Fast retransmit is triggered by the arrival of the first duplicate ACK containing SACK informa-
tion. The arrival of the next ACK allows the sender to learn of the second missing segment and 
retransmit it within the same RTT.
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Figure 14-11 shows the series of events after the first SACK is received. Wire-
shark indicates SACK information by indicating the left edge and right edge of 
the SACK range. Here we see that the ACK for 23801 contains a SACK block of 
[25201,26601], indicating a hole at the receiver. The receiver is missing the sequence 
number range [23801,25200], which corresponds to the single 1400-byte packet 
starting with sequence number 23801. Note that this SACK is a window update 
and is not counted as a duplicate ACK for the reasons discussed earlier. It does not 
trigger fast retransmit.

The SACK arriving at time 0.967 contains two SACK blocks: [28001,29401] and 
[25201,26601]. Recall that the first SACK blocks from previous SACKs are repeated 
in later positions in subsequent SACKs for robustness against ACK loss. This SACK 
is a duplicate ACK for sequence number 23801 and suggests that the receiver now 
requires two full-size segments starting with sequence numbers 23801 and 26601. 
The sender reacts immediately by initiating fast retransmit, but because of conges-
tion control procedures (see Chapter 16), the sender sends only one retransmis-
sion, for segment 23801. With the arrival of two additional ACKs, the sender is 
permitted to send its second retransmission, for segment 26601.

Figure 14-10  The SACK-Permitted option is exchanged in SYN segments to indicate the capability to gener-
ate and process SACK information. Most modern TCPs support the MSS, Timestamps, Window 
Scale, and SACK-Permitted options during connection establishment.
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A TCP SACK sender uses the recovery point idea introduced with NewReno. 
In this example, the highest sequence number sent prior to the retransmission is 
43400, which is lower than in the NewReno example from Figure 14-5. For this 
implementation of SACK fast retransmit, three duplicate ACKs are not required; 
the TCP initiates its retransmission earlier. The recovery exit is essentially the 
same, though. Once the ACK for sequence number 43401 is received at time 1.3958, 
recovery is complete.

It is interesting to note that the potential for better control of the sender using 
SACKs does not always lead to increased overall throughput performance. This 
fact is suggested by looking at the two examples we have seen. The NewReno 
(non-SACK) sender completes the data transfer of 131,074 bytes in 3.592s. The 
SACK sender completes it in 3.674s. These two measurements are not directly com-
parable, however, because they did not face precisely the same network conditions 
(this was not a simulation but rather a live test), although the conditions were 
largely similar. The benefits of SACKs are more pronounced when the RTT is large 
and packet loss is severe. Under such circumstances, the benefits of being able to 
fill more than one hole per RTT are likely to be more significant.

Figure 14-11  The first ACK containing SACK information indicates an out-of-order block with 
sequence number range 25201 to 26601.
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14.7 Spurious Timeouts and Retransmissions

Under a number of circumstances, TCP may initiate a retransmission even when 
no data has been lost. Such undesirable retransmissions are called spurious retrans-
missions and are caused by spurious timeouts (timeouts firing too early) and other 
reasons such as packet reordering, packet duplication, or lost ACKs. Spurious 
timeouts can occur when the real RTT has recently increased significantly, beyond 
the RTO. This happens more frequently in environments where lower-layer pro-
tocols have widely varying performance (e.g., wireless) and was a concern men-
tioned in [KP87]. Here we focus primarily on spurious retransmissions caused by 
spurious timeouts. The effects of reordering and duplication on TCP are deferred 
until the following section.

A number of approaches have been suggested to deal with spurious time-
outs. They generally involve a detection algorithm and a response algorithm. The 
detection algorithm attempts to determine whether a timeout or timer-based 
retransmission was spurious. The response algorithm is invoked once a timeout 
or retransmission is deemed spurious. Its purpose is to undo or mitigate some 
action that is otherwise normally performed by TCP when a retransmission timer 
expires. In this chapter we discuss only the segment retransmission behavior. The 
response algorithms typically involve congestion control changes as well, and 
those aspects are discussed in Chapter 16.

Figure 14-12 illustrates a highly simplified exchange that shows what happens 
to a basic TCP when a spurious retransmission occurs because of a delay spike in 
the ACK path after segment 8 is sent. After the retransmission of segment 5 occurs 
because of a timeout, there are still ACKs in flight from the original transmis-
sions of segments 5 through 8. In this illustration, sequence and ACK numbers are 
based on packets instead of bytes, with ACKs indicating what has already arrived 
instead of what is expected next, for simplicity. When they arrive, TCP begins to 
retransmit additional segments that have already been received, starting with the 
segment following the ACKed segment. This causes TCP to behave in an unde-
sirable “go-back-N” behavior pattern and in turn causes a collection of duplicate 
ACKs to be generated and returned to the sender, possibly triggering fast retrans-
mit as well. Several techniques have been developed to mitigate these problems. 
We now have a look at some of the more popular ones.

14.7.1 Duplicate SACK (DSACK) Extension 

With a non-SACK TCP, an ACK can indicate only the highest in-sequence segment 
back to the sender. With SACK, it can signal other (out-of-order) segments as well. 
The basic SACK mechanism we discussed previously does not say what happens 
when a receiver receives duplicate data segments. Such segments can be the result 
of spurious retransmissions, duplication within the network, or other reasons.
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DSACK or D-SACK, which stands for duplicate SACK [RFC2883], is a rule, 
applied at the SACK receiver and interoperable with conventional SACK senders, 
that causes the first SACK block to indicate the sequence numbers of a duplicate 
segment that has arrived at the receiver. The main purpose of DSACK is to deter-
mine when a retransmission was not necessary and to learn additional facts about 
the network. With it, a sender has at least the possibility of inferring whether 
packet reordering, loss of ACKs, packet replication, and/or spurious retransmis-
sions are taking place.

The implementation of DSACK is compatible with conventional SACK in the 
sense that no separate negotiation is required to make use of it. For it to work 
properly, a change is made to the content of SACKs sent from the receiver and 
a corresponding change to the logic at the sender. If a non-DSACK TCP shares 
a connection with a DSACK TCP, they will interoperate, but without any of the 
benefits of DSACK.

The change to the SACK receiver is to allow a SACK block to be included even 
if it covers sequence numbers below (or equal to) the cumulative ACK Number field. 

Figure 14-12  A delay spike occurs after the transmission of packet 8, causing a spurious retransmis-
sion timeout and retransmission of packet 5. After retransmission, an ACK for the first 
copy of 5 arrives. The retransmission for 5 creates a duplicate packet at the receiver, fol-
lowed by an undesirable “go-back-N” behavior whereby packets 6, 7, and 8 are retrans-
mitted even though they are already present at the receiver.
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This was not the original intent of SACK, but its capability is well matched to this 
purpose. (It applies equally well in cases where the DSACK information is above 
the cumulative ACK Number field; this happens for duplicated out-of-order seg-
ments.) DSACK information is included in only a single ACK, and such an ACK 
is called a DSACK. DSACK information is not repeated across multiple SACKs as 
conventional SACK information is. As a consequence, DSACKs are less robust to 
ACK loss than regular SACKs.

Exactly what a sender given DSACK information is supposed to do with it 
is not specified by [RFC2883]. An experimental algorithm is given in [RFC3708] 
for detecting spurious retransmissions using DSACK but does not provide any 
response algorithm. One option it mentions is to use the Eifel Response Algo-
rithm, which we investigate in Section 14.7.4 after introducing a few other detec-
tion algorithms.

14.7.2 The Eifel Detection Algorithm

At the beginning of this chapter, we discussed the retransmission ambiguity prob-
lem. The experimental Eifel Detection Algorithm [RFC3522] deals with this problem 
using the TCP TSOPT to detect spurious retransmissions. After a retransmission 
timeout occurs, Eifel awaits the next acceptable ACK. If the next acceptable ACK 
indicates that the first copy of a retransmitted packet (called the original transmit) 
was the cause for the ACK, the retransmission is considered to be spurious.

The Eifel Detection Algorithm is able to detect spurious behavior earlier than 
the approach using only DSACK because it relies on ACKs generated as a result 
of packets arriving before loss recovery is initiated. DSACKs, conversely, are able 
to be sent only after a duplicate segment has arrived at the receiver and able to be 
acted upon only after the DSACK is returned to the sender. Detecting spurious 
retransmissions early can offer advantages, because it allows the sender to avoid 
most of the go-back-N behavior mentioned earlier.

The mechanics of the Eifel Detection Algorithm are simple. It requires the use 
of the TCP TSOPT. When a retransmission is sent (either a timer-based retransmis-
sion or a fast retransmit), the TSV value is stored. When the first acceptable ACK 
covering its sequence number is received, the incoming ACK’s TSER is examined. 
If it is smaller than the stored value, the ACK corresponds to the original transmis-
sion of the packet and not the retransmission, implying that the retransmission 
must have been spurious. This approach is fairly robust to ACK loss as well. If an 
ACK is lost, any subsequent ACKs still have TSER values less than the stored TSV 
of the retransmitted segment. Thus, a retransmission can be deemed spurious as a 
result of any of the window’s worth of ACKs arriving, so a loss of any single ACK 
is not likely to cause a problem.

The Eifel Detection Algorithm can be combined with DSACKs. This can be 
beneficial in the situation where an entire window’s worth of ACKs are lost but 
both the original transmit and retransmission have arrived at the receiver. In this 
particular case, the arriving retransmit causes a DSACK to be generated. The Eifel 
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Detection Algorithm would by default conclude that the retransmission is spuri-
ous. It is thought, however, that if so many ACKs are being lost, allowing TCP 
to believe the retransmission was not spurious is useful (e.g., to induce it to start 
sending more slowly—a consequence of the congestion control procedures we dis-
cuss in Chapter 16). Thus, arriving DSACKs cause the Eifel Detection Algorithm to 
conclude that the corresponding retransmission is not spurious.

14.7.3 Forward-RTO Recovery (F-RTO)

Forward-RTO Recovery (F-RTO) [RFC5682] is a standard algorithm for detecting 
spurious retransmissions. It does not require any TCP options, so when it is imple-
mented in a sender, it can be used effectively even with an older receiver that does 
not support the TCP TSOPT. It attempts to detect only spurious retransmissions 
caused by expiration of the retransmission timer; it does not deal with the other 
causes for spurious retransmissions or duplications mentioned before.

F-RTO makes a modification to the action TCP ordinarily takes after a timer-
based retransmission. These retransmissions are for the smallest sequence number 
for which no ACK has yet been received. Ordinarily, TCP continues sending addi-
tional adjacent packets in order as additional ACKs arrive. This is the go-back-N 
behavior described previously. 

F-RTO modifies the ordinary behavior of TCP by having TCP send new (so far 
unsent) data after the timeout-based retransmission when the first ACK arrives. 
It then inspects the second arriving ACK. If either of the first two ACKs arriv-
ing after the retransmission was sent are duplicate ACKs, the retransmission is 
deemed OK. If they are both acceptable ACKs that advance the sender’s window, 
the retransmission is deemed to have been spurious. This approach is fairly intui-
tive. If the transmission of new data results in the arrival of acceptable ACKs, the 
arrival of the new data is moving the receiver’s window forward. If such data is 
only causing duplicate ACKs, there must be one or more holes at the receiver. In 
either case, the reception of new data at the receiver does not harm the overall data 
transfer performance (provided there are sufficient buffers at the receiver).

14.7.4 The Eifel Response Algorithm

The Eifel Response Algorithm [RFC4015] is a standard set of operations to be exe-
cuted by a TCP once a retransmission has been deemed spurious. Because the 
response algorithm is logically decoupled from the Eifel Detection Algorithm, it 
can be used with any of the detection algorithms we just discussed. The Eifel 
Response Algorithm was originally intended to operate for both timer-based and 
fast retransmit spurious retransmissions but is currently specified only for timer-
based retransmissions.

Although the Eifel Response Algorithm can be used with any of the detec-
tion algorithms, it behaves somewhat differently based on whether a spurious 
timeout was detected early (e.g., by the Eifel or F-RTO detection algorithms) or 
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later (e.g., by DSACKs). The former cases are called spurious timeouts and operate 
by inspecting ACKs for original transmissions. The latter are called late spurious 
timeouts and are based on ACKs for retransmissions invoked as a result of (spuri-
ous) timeouts.

The response algorithm operates on the first retransmission timer event only. 
It is not executed if a subsequent timeout occurs before recovery is complete. After 
the retransmission timer expires, it takes a snapshot of the values in srtt and rttvar
and records them in new variables srtt_prev and rttvar_prev as follows:

srtt_prev = srtt + 2(G)

rttvar_prev = rttvar

These variables are assigned on any timer expiration but are used only when the 
timeout is determined to be spurious. If so, they help form the basis for setting 
the new RTO. In the formula, the value G represents the TCP clock granularity. 
srtt_prev is set to srtt plus twice the timer granularity based on the following chain 
of reasoning: The spurious timeout may have been invoked because the value of 
srtt is just a tad too small. If it were just a bit larger, no timeout would have hap-
pened. Adding the term 2(G) to srtt deals with this situation by storing a slightly 
increased value into srtt_prev, which is used later for setting the RTO.

After the srtt_prev and rttvar_prev values are stored, one of the detection algo-
rithms is invoked. The result of running the algorithm produces a value assigned 
to a special variable called SpuriousRecovery. If the algorithm detects a spurious 
timeout, SpuriousRecovery is set to SPUR_TO. If it detects a late spurious timeout, it 
sets SpuriousRecovery to LATE_SPUR_TO. Otherwise, the timeout is not spurious, 
and ordinary TCP timeout processing continues.

If SpuriousRecovery is SPUR_TO, TCP can take action before recovery is com-
plete. It does this by adjusting the sequence number of the next segment it is about 
to send (called SND.NXT) to the first new, unsent segment (called SND.MAX). 
This avoids the undesirable go-back-N behavior after the initial retransmission 
discussed previously. If the detection algorithm detects a late spurious timeout, 
an ACK for the initial retransmission has already taken place, so SND.NXT is not 
changed. In either case, however, the congestion control state is reset (see Chapter 
16). In addition, once an acceptable ACK is received for a segment transmitted 
after the retransmission timer expires, the values of srtt, rttvar, and RTO can be 
updated as follows:

srtt ← max(srtt_prev, m)

rttvar ← max(rttvar_prev, m/2)

RTO = srtt + max(G, 4(rttvar))

Here, m is a sample of the RTT of the connection based on the arrival of the 
first acceptable ACK for data sent after the timeout. The motivation for these 
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modifications is that the real RTT may have changed so significantly that the RTT 
history in the current estimators is no longer a valid basis for setting the RTO. If 
the real path RTT has increased abruptly (e.g., because of wireless handoff to a 
new base station), the current srtt and rttvar values are likely to be too small and 
should be reinitialized. On the other hand, an increase in path RTT could be only 
temporary, implying that reinitializing srtt and rttvar might not be such a good 
idea because they are likely to be approximately correct.

These equations try to balance between the two situations by reassigning the 
moving averages srtt and rttvar only if the new RTT samples are larger. Doing so 
effectively throws out the previous history of the RTT (and RTT variance). The val-
ues of srtt and rttvar can only increase as a result of the response algorithm. If the 
RTT does not appear to be increasing, the running estimators remain unchanged, 
essentially ignoring the fact that a timeout has occurred. The RTO is reassigned 
in the conventional way in any case, and a new retransmission timer is set for this 
timeout value.

14.8 Packet Reordering and Duplication

Most of the issues discussed so far relate to how TCP handles packet loss. This 
is a relatively common issue, and a great deal of work has gone into making TCP 
robust to packet drops. As we began to see in the last section, other packet delivery 
anomalies such as duplication and reordering can also affect TCP’s operation. In 
both of these cases, we wish TCP to be able to distinguish between packets that 
are reordered or duplicated and those that are lost. As we shall now see, this is 
sometimes not so simple.

14.8.1 Reordering

Packet reordering can occur in an IP network because IP provides no guarantee 
that relative ordering between packets is maintained during delivery. This can be 
beneficial (to IP at least), because IP can choose another path for traffic (e.g., that is 
faster) without having to worry about the consequences that doing so may cause 
traffic freshly injected into the network to pass ahead of older traffic, resulting in 
the order of packet arrivals at the receiver not matching the order of transmission 
at the sender. There are other reasons packet reordering may occur. For example, 
some high-performance routers employ multiple parallel data paths within the 
hardware [BPS99], and different processing delays among packets can lead to a 
departure order that does not match the arrival order.

Reordering may take place in the forward path or the reverse path of a TCP 
connection (or in some cases both). The reordering of data segments has a some-
what different effect on TCP as does reordering of ACK packets. Recall that 
because of asymmetric routing, it is frequently the case that ACKs travel along 
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different network links (and through different routers) from data packets on the 
forward path.

 When traffic is reordered, TCP can be affected in several ways. If reordering 
takes place in the reverse (ACK) direction, it causes the sending TCP to receive 
some ACKs that move the window significantly forward followed by some evi-
dently old redundant ACKs that are discarded. This can lead to an unwanted 
burstiness (instantaneous high-speed sending) behavior in the sending pattern 
of TCP and also trouble in taking advantage of available network bandwidth, 
because of the behavior of TCP’s congestion control (see Chapter 16). 

If reordering occurs in the forward direction, TCP may have trouble distin-
guishing this condition from loss. Both loss and reordering result in the receiver 
receiving out-of-order packets that create holes between the next expected packet 
and the other packets received so far. When reordering is moderate (e.g., two adja-
cent packets switch order), the situation can be handled fairly quickly. When reor-
derings are more severe, TCP can be tricked into believing that data has been 
lost even though it has not. This can result in spurious retransmissions, primarily 
from the fast retransmit algorithm. 

Recall from previous discussions that the fast retransmit algorithm relies 
on observing duplicate acknowledgments from a TCP receiver in order to infer 
the loss of a packet and to initiate a retransmission without having to wait for a 
retransmission timer to expire. Because a TCP receiver is supposed to immedi-
ately ACK any out-of-sequence data it receives in order to help induce fast retrans-
mit to be triggered on packet loss, any packet that is reordered within the network 
causes a receiver to produce a duplicate ACK. If fast retransmit were to be invoked 
whenever any duplicate ACK is received at the sender, a large number of unnec-
essary retransmissions would occur on network paths where a small amount of 
reordering is common. To handle this situation, fast retransmit is triggered only 
after the duplicate threshold (dupthresh) has been reached. 

The effect is illustrated in Figure 14-13. The left portion of the figure indicates 
how TCP behaves with light reordering, where dupthresh is set to 3. In this case, the 
single duplicate ACK does not affect TCP. It is effectively ignored and TCP over-
comes the reordering. The right-hand side indicates what happens when a packet 
has been more severely reordered. Because it is three positions out of sequence, 
three duplicate ACKs are generated. This invokes the fast retransmit procedure in 
the sending TCP, producing a duplicate segment at the receiver.

The problem of distinguishing loss from reordering is not trivial. Dealing 
with it involves trying to decide when a sender has waited long enough to try to 
fill apparent holes at the receiver. Fortunately, severe reordering on the Internet is 
not common [J03], so setting dupthresh to a relatively small number (such as the 
default of 3) handles most circumstances. That said, there are a number of research 
projects that modify TCP to handle more severe reordering [LLY07]. Some of these 
adjust dupthresh dynamically, as does the Linux TCP implementation.
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14.8.2 Duplication

Although rare, the IP protocol may deliver a single packet more than one time. 
This can happen, for example, when a link-layer network protocol performs a 
retransmission and creates two copies of the same packet. When duplicates are 
created, TCP can become confused in some of the ways we have seen already. 
Consider the case shown in Figure 14-14 in which packet number 3 has been dupli-
cated three times.

Figure 14-13  Mild reordering (left) is overcome by ignoring a small number of duplicate ACKs. 
When reordering is more severe (right), as in this case where packet 4 is three places 
out of sequence, a spurious fast retransmit can be triggered.

Figure 14-14  Packet duplication in the network has caused a spurious fast retransmission due to the 
presence of duplicate ACKs. 
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As we can see, the effect of packet 3 being duplicated is to produce a series 
of duplicate ACKs from the receiver. This is enough to trigger a spurious fast 
retransmit, as the non-SACK sender may mistakenly believe that packets 5 and 
6 have arrived earlier. With SACK (and DSACK, in particular) this is more easily 
diagnosed at the sender. With DSACK, each of the duplicate ACKs for A3 con-
tains DSACK information that segment 3 has already been received. Furthermore, 
none of them contains an indication of any out-of-order data, meaning the arriv-
ing packets (or their ACKs) must have been duplicates. TCP can often suppress 
spurious retransmissions in such cases.

14.9 Destination Metrics

As we have seen, TCP “learns” the characteristics of the network path between 
the sender and the receiver over time. The learning is kept in state variables at 
the sender such as srtt and rttvar. Some TCP implementations also keep track of 
an estimate of the amount of packet reordering that has occurred recently along 
a path. Historically, this learning is lost once the connection is closed. That is, if 
a new TCP connection is opened to the same receiver, it must start to determine 
values for the state variables from scratch.

Newer TCP implementations maintain many of the metrics that we have 
described in this chapter in a routing or forwarding table entry or other system-
wide data structure that exists even after TCP connections are closed. When a 
new connection is created, TCP consults the data structure to see if there is any 
preexisting information regarding the path to the destination host with which it 
will be communicating. If so, initial values for srtt, rttvar, and so on can be initial-
ized to some value based on previous, relatively recent experience. When a TCP 
connection closes down, it has the opportunity to update the statistics. This can be 
accomplished by replacing the existing statistics or updating them in some other 
way. In the case of Linux 2.6, the values are updated to be the maximum of the 
existing values and those measured by the most recent TCP. These values can be 
inspected using the ip program available from the iproute2 suite of tools [IPR2]:

Linux% ip route show cache 132.239.50.184
132.239.50.184 from 10.0.0.9 tos 0x10 via 10.0.0.1 dev eth0
    cache  mtu 1500 rtt 29ms rttvar 29ms cwnd 2 advmss 1460 hoplimit 64

This command shows information cached about previous connections with a 
particular DSCP value (16, indicating CS2 but represented using the older “ToS” 
byte terminology with value 0x10) between the local system and 132.239.50.184
using the IPv4 next hop 10.0.0.1 and accessed using the network device eth0. 
We can see packet size information (the path MTU learned with PMTUD, the MSS 
advertised by the remote side), the maximum number of hops to use (for IPv6; not 
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applicable here), values of srtt and rttvar, along with congestion control informa-
tion such as cwnd that we discuss in Chapter 16.

14.10 Repacketization

When TCP times out and retransmits, it does not have to retransmit the identi-
cal segment. Instead, TCP is allowed to perform repacketization, sending a bigger 
segment, which can increase performance. (Naturally, this bigger segment cannot 
exceed the MSS announced by the receiver and should not exceed the path MTU.) 
This is allowed in the protocol because TCP identifies the data being sent and 
acknowledged by its byte number, not its segment (or packet) number.

TCP’s ability to retransmit a segment with a different size from the original 
segment provides another way of addressing the retransmission ambiguity prob-
lem. This has been the basis of an idea called STODER [TZZ05] that uses repack-
etization to detect spurious timeouts.

We can easily see repacketization in action. We use our sock program as a 
server and connect to it with Telnet. First we type the line hello there. This 
produces a segment of 13 data bytes, including the carriage-return and newline 
characters produced when the Enter key is pressed. We then disconnect the net-
work and type line number 2 (14 bytes, including the newline). We then wait 
about 45s, type and 3, and terminate the connection:

Linux% telnet 169.229.62.97 6666
hello there                   (first line gets sent OK)
                              (then we disconnect the Ethernet cable)
line number 2                 (this line gets retransmitted)
and 3                         (reconnect Ethernet)
^] telnet> quit

We can see the results using tcpdump:t

1 19:51:47.674418 IP 10.0.0.7.1029 > 169.229.62.97.6666:
      P 1:14(13) ack 1 win 5840
      <nop,nop,timestamp 2343578137 596377728>

2 19:51:47.788992 IP 169.229.62.97.6666 > 10.0.0.7.1029:
      . ack 14 win 58254 <nop,nop,timestamp 596378252 2343578137>

3 19:52:35.130837 IP 10.0.0.7.1029 > 169.229.62.97.6666:
      FP 29:36(7) ack 1 win 5840
      <nop,nop,timestamp 2343602439 596378252>

4 19:52:35.146358 IP 169.229.62.97.6666 > 10.0.0.7.1029:
      . ack 14 win 58254
      <nop,nop,timestamp 596382987 2343578137,nop,nop,
      sack sack 1 {29:36}>

"hello there\r\n"

"and 3\r\n"
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5 19:52:39.414253 IP 10.0.0.7.1029 > 169.229.62.97.6666:
      FP 14:36(22) ack 1 win 5840
      <nop,nop,timestamp 2343604633 596382987>

6 19:52:39.429228 IP 169.229.62.97.6666 > 10.0.0.7.1029:
      . ack 37 win 58248 <nop,nop,timestamp 596383416 2343604633>

7 19:52:39.429696 IP 169.229.62.97.6666 > 10.0.0.7.1029:
      F 1:1(0) ack 37 win 58254
      <nop,nop,timestamp 596383416 2343604633>

8 19:52:39.430119 IP 10.0.0.7.1029 > 169.229.62.97.6666:
      . ack 2 win 5840 <nop,nop,timestamp 2343604641 596383416>

In this trace, the initial SYN exchange has been removed. The first two seg-
ments contain the data strings hello there and its acknowledgment. The next 
packet in the trace is not in sequence: it starts with sequence number 29 and con-
tains the string and 3 (7 bytes). Its returning ACK contains ACK number 14 but 
a SACK block with relative sequence numbers {29,36}. The middle sequence of 
characters has been lost. TCP retransmits this but uses a larger packet, containing 
sequence numbers 14:36. Thus, we can see how the retransmission for sequence 
number 14 resulted in a repacketization to form a larger packet of size 22 bytes. 
Interestingly, this packet overlaps the data present in the SACK block and also car-
ries the FIN bit field, indicating that it is the last data of the connection.

14.11 Attacks Involving TCP Retransmission

There is a class of DoS attack called low-rate DoS attacks [KK03]. In such an attack, 
an attacker sends bursts of traffic to a gateway or host, causing the victim sys-
tem to experience a retransmission timeout. Given an ability to predict when the 
victim TCP will attempt to retransmit, the attacker generates a burst of traffic at 
each retransmission attempt. As a consequence, the victim TCP perceives conges-
tion in the network, throttles its sending rate to near zero, keeps backing off its 
RTO according to Karn’s algorithm, and effectively receives very little network 
throughput. The proposed mechanism to deal with this type of attack is to add 
randomization to the RTO, making it difficult for the attacker to guess the precise 
times when a retransmission will take place.

A related but distinct form of DoS attack involves slowing a victim TCP’s seg-
ments down so that the RTT estimate is too high. Doing so causes the victim TCP 
to be less aggressive in retransmitting its own packets when they are lost. The 
opposite attack is also possible: an attacker forges ACKs when data has been trans-
mitted but has not actually arrived at the receiver yet. In this case, the attacker can 
cause the victim TCP to believe that the connection RTT is significantly smaller 
than it really is, leading to an overaggressive TCP that creates numerous unwanted 
retransmissions.

“line number2\r\n
and 3\r\n”
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14.12 Summary

This chapter provided a detailed look at TCP’s timeout and retransmission strat-
egy. Our first example illustrated a case in which we simply unplugged the net-
work when a TCP had a packet to send. This resulted in a retransmission timer 
initiating a timeout-based retransmission. Each successive retransmit took place 
at an interval twice as long as the previous transmission, the result of the second 
part of Karn’s algorithm that incorporates binary exponential backoff.

TCP measures the RTT and then uses these measurements to keep track of a 
smoothed RTT estimator and a smoothed mean deviation estimator. These two 
estimators are then used to calculate the next retransmission timeout value. With-
out the Timestamps option, a TCP measures only a single RTT per window of data. 
Karn’s algorithm removes the retransmission ambiguity problem by preventing 
the use of RTT measurements for segments that have been lost. Today, most TCPs 
use the Timestamps option, which permits each segment to be individually timed. 
The Timestamps option operates correctly even in the face of packet reordering or 
packet duplication.

We looked at the fast retransmit algorithm, which can be triggered without 
requiring a timer to expire. This is the most efficient method (and the most fre-
quently used one) for TCP to fill holes at the receiver caused by missing packets. 
Fast retransmit can be improved with the use of selective ACKs. These carry addi-
tional information in the ACKs and permit the SACK-capable TCP sender to repair 
more than one hole per RTT. Doing so can lead to improved performance under 
some circumstances.

If the RTT estimate is below the actual RTT of the connection, a spurious 
retransmission may take place. In such cases, if TCP waited a little longer, the 
(unnecessary) retransmission would not happen. A number of algorithms have 
been developed to detect when a TCP has experienced a spurious timeout. The 
DSACK approach requires the arrival of a duplicate segment at the receiver. The 
Eifel Detection Algorithm depends on TCP timestamps but can react faster than 
DSACKs because it detects spurious timeouts based on ACKs returning from seg-
ments that were sent prior to the timeout. F-RTO is another algorithm that behaves 
similarly to Eifel but does not require timestamps. It also changes the sender to 
send new data after a timeout that is deemed to be spurious. All of these detection 
algorithms can be combined with a response algorithm. The main one described 
so far is the Eifel Response Algorithm, which can reset RTT and RTT variance 
estimates if the delay has increased substantially (and otherwise “undoes” any 
changes TCP would otherwise perform on a timeout). 

We also looked at how TCP state can be cached across connections, how TCP 
is allowed to repacketize its data, and some attacks that can be mounted to fool 
TCP into behaving in undesired ways such as being too passive or aggressive. We 
shall see more about the consequences of these attacks in Chapter 16, where we 
investigate TCP’s congestion control procedures.



ptg999

 Section 14.13 References  689

14.13 References

[G04] S. Gorard, “Revisiting a 90-Year-Old Debate: The Advantages of the Mean 
Deviation,” Department of Educational Studies, University of York, paper 
presented at the British Educational Research Association Annual Conference, 
University of Manchester, September 16–18, 2004.

[BPS99] J. Bennett, C. Partridge, and N. Shectman, “Packet Re-ordering Is Not 
Pathological Network Behavior,” IEEE/ACM Transactions on Networking, 7(6), Dec. 
1999.

[F68] W. Feller, An Introduction to Probability Theory and Its Applications, Volume 1
(Wiley, 1968).

[ID1323b] V. Jacobson, B. Braden, and D. Borman, “TCP Extensions for High Per-
formance” (expired), Internet draft-jacobson-tsvwg-1323bis-01, work in progress, 
Mar. 2009.

[IPR2] http://www.linuxfoundation.org/collaborate/workgroups/networking/
iproute2

[J88] V. Jacobson, “Congestion Avoidance and Control,” Proc. ACM SIGCOMM, 
Aug. 1988.

[J90] V. Jacobson, “Berkeley TCP Evolution from 4.3-Tahoe to 4.3 Reno,” Proc. 18th 
IETF, Sept. 1990.

[J03] S. Jaiswal et al., “Measurement and Classification of Out-of-Sequence Pack-
ets in a Tier-1 IP Backbone,” Proc. IEEE INFOCOM, Apr. 2003.

[KK03] A. Kuzmanovic and E. Knightly, “Low-Rate TCP-Targeted Denial of Ser-
vice Attacks,” Proc. ACM SIGCOMM, Aug. 2003.

[KP87] P. Karn and C. Partridge, “Improving Round-Trip Time Estimates in Reli-
able Transport Protocols,” Proc. ACM SIGCOMM, Aug. 1987.

[LLY07] K. Leung, V. Li, and D. Yang, “An Overview of Packet Reordering in 
Transmission Control Protocol (TCP): Problems, Solutions and Challenges,” IEEE 
Trans. Parallel and Distributed Systems, 18(4), Apr. 2007.

[LS00] R. Ludwig and K. Sklower, “The Eifel Retransmission Timer,” ACM Com-
puter Communication Review, 30(3), July 2000.

[RFC0793] J. Postel, “Transmission Control Protocol,” Internet RFC 0793/
STD0007, Sept. 1981.

[RFC1122] R. Braden, ed., “Requirements for Internet Hosts,” Internet RFC 1122/
STD 0003, Oct. 1989.

[RFC1323] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High 
Performance,” Internet RFC 1323, May 1992.

http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2


ptg999

690 TCP Timeout and Retransmission  

[RFC2018] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective 
Acknowledgment Options,” Internet RFC 2018, Oct. 1996.

[RFC2883] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to 
the Selective Acknowledgement (SACK) Option for TCP,” Internet RFC 2883, July 
2000.

[RFC3517] E. Blanton, M. Allman, K. Fall, and L. Wang, “A Conservative Selec-
tive Acknowledgment (SACK)-Based Loss Recovery Algorithm for TCP,” Internet 
RFC 3517, Apr. 2003.

[RFC3522] R. Ludwig and M. Meyer, “The Eifel Detection Algorithm for TCP,” 
Internet RFC 3522 (experimental), Apr. 2003.

[RFC3708] E. Blanton and M. Allman, “Using TCP Duplicate Selective Acknowl-
edgement (DSACKs) and Stream Control Transmission Protocol (SCTP) 
Duplicate Transmission Sequence Numbers (TSNs) to Detect Spurious Retrans-
missions,” Internet RFC 3708 (experimental), Feb. 2004.

[RFC3782] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to 
TCP’s Fast Recovery Algorithm,” Internet RFC 3782, Apr. 2004.

[RFC4015] R. Ludwig and A. Gurtov, “The Eifel Response Algorithm for TCP,” 
Internet RFC 4015, Feb. 2005.

[RFC5681] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” 
Internet RFC 5681, Sept. 2009.

[RFC5682] P. Sarolahti, M. Kojo, K. Yamamoto, and M. Hata, “Forward RTO-
Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Time-
outs with TCP,” Internet RFC 5682, Sept. 2009.

[RFC6298] V. Paxson, M. Allman, and J. Chu, “Computing TCP’s Retransmission 
Timer,” Internet RFC 6298, June 2011.

[RKS07] S. Rewaskar, J. Kaur, and F. D. Smith, “Performance Study of Loss Detec-
tion/Recovery in Real-World TCP Implementations,” Proc. IEEE ICNP, Oct. 2007.

[SK02] P. Sarolahti and A. Kuznetsov, “Congestion Control in Linux TCP,” Proc. 
Usenix Freenix Track, June 2002.

[TZZ05] K. Tan and Q. Zhang, “STODER: A Robust and Efficient Algorithm for 
Handling Spurious Timeouts in TCP,” Proc. IEEE Globecomm, Dec. 2005.

[V09] V. Vasudevan et al., “Safe and Fine-Grained TCP Retransmissions for Data-
center Communication,” Proc. ACM SIGCOMM, Aug. 2009.

[WINREG] TCP/IP Registry Values for Microsoft Windows Vista and Windows 
Server 2008, Jan. 2008. See http://www.microsoft.com/download/en/details.
aspx?id=9152

http://www.microsoft.com/download/en/details.aspx?id=9152
http://www.microsoft.com/download/en/details.aspx?id=9152


ptg999

691

15

TCP Data Flow and Window 
Management

15.1 Introduction

Chapter 13 dealt with the establishment and termination of TCP connections, and 
Chapter 14 examined how TCP ensures reliable delivery using retransmissions 
of data that has been lost. We now examine the dynamics of TCP data transfers, 
focusing initially on interactive connections and then introducing flow control 
and associated window management procedures that are used in conjunction 
with congestion control (see Chapter 16) for bulk data transfers.

An “interactive” TCP connection is one in which user input such as keystrokes, 
short messages, or joystick/mouse movements need to be delivered between a cli-
ent and a server. If small segments are used to carry such user input, the protocol 
imposes more overhead because there are fewer useful payload bytes per packet 
exchanged. On the other hand, filling packets with more data usually requires 
them to be delayed, which can have a negative impact on delay-sensitive appli-
cations such as online games and collaboration tools. We shall investigate tech-
niques with which the application can trade off between these two issues. 

After discussing interactive communications, we discuss the methods used 
by TCP for achieving flow control by dynamically adapting the window size to 
ensure that a sender does not overrun a receiver. This issue primarily impacts 
bulk data transfer (i.e., noninteractive communications) but can also affect inter-
active applications. In Chapter 16 we will explore how the concept of flow control 
can be extended to protect not only the receiver, but also the network between the 
sender and the receiver.
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15.2 Interactive Communication

The amount of network traffic carried in a particular portion of the Internet over 
a certain amount of time is usually measured in terms of bytes or packets. There 
is considerable variation in these numbers. For example, local area traffic differs 
from wide area traffic, and traffic between different sites tends to vary. Studies 
of TCP traffic [P05][F03] usually find that 90% or more of all TCP segments con-
tain bulk data (e.g., Web, file sharing, electronic mail, backups) and the remain-
ing portion contains interactive data (e.g., remote login, network games). Bulk data 
segments tend to be relatively large (1500 bytes or larger), while interactive data 
segments tend to be much smaller (tens of bytes of user data).

TCP handles both types of data using the same protocol and packet format, 
but different algorithms come into play for each. In this section, we will look at 
how interactive data is transferred by TCP, using the ssh (secure shell) application 
as one example. Secure shell [RFC4251] is a remote login protocol that provides 
strong security (privacy and authentication based on cryptography). It has mostly 
replaced the earlier UNIX rlogin and Telnet programs that provide remote login 
service but without strong security.

As we investigate ssh, we will see how delayed acknowledgments work and 
how the Nagle algorithm reduces the number of small packets across wide area net-
works. The same algorithms apply to other applications supporting remote login 
capability such as Telnet, rlogin, and Windows Terminal Services.

Let us look at the flow of data when we type an interactive command on an 
ssh connection. The client captures what the user types and ships it over to the 
server to be interpreted, and the server ships any responses back to the client. The 
client encrypts the data it sends, meaning that the characters typed by the user are 
encoded before being transferred over the connection (see Chapter 18). The encod-
ing makes determining the typed keys difficult for an eavesdropper. The client 
supports several encryption algorithms and different authentication methods. It 
also supports several other advanced features such as tunneling other protocols 
(see Chapter 3 and [RFC4254]).

Many newcomers to TCP/IP are surprised to find that each interactive key-
stroke normally generates a separate data packet. That is, the keystrokes are sent 
from the client to the server individually (one character at a time rather than one 
line at a time). Furthermore, ssh invokes a shell (command interpreter) on the 
remote system (the server), which echoes the characters that are typed at the cli-
ent. A single typed character could thus generate four TCP segments: the inter-
active keystroke from the client, an acknowledgment of the keystroke from the 
server, the echo of the keystroke from the server, and an acknowledgment of the 
echo from the client back to the server (see Figure 15-1(a)).

Normally, however, segments 2 and 3 are combined—in Figure 15-1(b), the 
acknowledgment of the keystroke is sent along with the echo of the characters 
typed. We describe the technique that combines these (called delayed acknowledg-
ments with piggybacking) in the next section.
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We purposely use ssh for this example because it generates a packet for each 
character typed from the client to the server. If the user types especially fast, 
however, more than one character might be carried in a single packet. Figure 15-2 
shows the flow of data using Wireshark when we type the date command across 
an active ssh connection to a Linux server.

Figure 15-1  One possible way to remotely echo an interactive keystroke is a separate ACK and echo 
packet (a). A typical TCP coalesces the ACK for the data byte and the echo of the byte 
into a single packet (b).

Figure 15-2  TCP segments sent when the date command is typed on an already-established ssh connection.

In Figure 15-2, packet 1 carries the character d from the client to the server. 
Packet 2 is the acknowledgment of this character and its echo (combining the mid-
dle two segments as in Figure 15-1). Packet 3 is the acknowledgment of the echoed 
character. Packets 4–6 correspond to the character a, packets 7–9 to the character t, 
and packets 10–12 to the character e. Packets 13–15 correspond to the Enter (carriage 
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return) key. The delays between packets 3–4, 6–7, 9–10, and 12–13 are the human 
delays between typing each character, which were intentionally made unusually 
long (about 1.5s) in this case for illustration.

Notice that packets 16–19 are slightly different because they have grown in 
size from 48 bytes to 64 bytes. Packet 16 contains the output of the date command 
from the server. The 64 bytes are the encrypted version of the following 28 clear-
text (not-yet-encrypted) characters:

Wed Dec 28 22:47:16 PST 2005

plus the carriage-return and line-feed characters at the end. The next packet sent 
from the server to the client (packet 18) contains the client’s prompt on the server 
host: Linux%. Packet 19 acknowledges this data.

Figure 15-3 is the same trace as in Figure 15-2, except now more of the TCP-
layer information is shown, indicating how TCP acknowledgments operate and the 
packet sizes used by ssh. Packet 1 (containing the d character) starts with the relative 
sequence number 0. Packet 2 ACKs the packet from line 1 by setting the ACK number 
to 48, the sequence number of the last successfully received byte plus 1. Packet 2 also 
sends the data byte with a sequence number of 0 from the server to the client, contain-
ing the echo of the d character. The echoed d is ACKed by the client in packet 3 by set-
ting the ACK number to 48. We see that the connection has two streams of sequence 
numbers in use—one from the client to the server, and one in the reverse direction. 
We shall explore this in more detail when we discuss window advertisements.

Figure 15-3  The same trace as in Figure 15-2, except the protocol decode for ssh has been disabled, revealing 
the TCP sequence number information. Note that all data packets are 48 bytes in size except the 
last two. The size of 48 bytes relates to the cryptography used in ssh (see Chapter 18).

One other observation we can make about this trace is that each packet with 
data in it (not zero length) also has the PSH bit field set. As mentioned earlier, 
this flag is conventionally used to indicate that the buffer at the side sending the 
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packet has been emptied in conjunction with sending the packet. In other words, 
when the packet with the PSH bit field set left the sender, the sender had no more 
data to send.

15.3 Delayed Acknowledgments

In many cases, TCP does not provide an ACK for every incoming packet. This is 
possible because of TCP’s cumulative ACK field (see Chapter 12). Using a cumula-
tive ACK allows TCP to intentionally delay sending an ACK for some amount of 
time, in the hope that it can combine the ACK it needs to send with some data the 
local application wishes to send in the other direction. This is a form of piggyback-
ing that is used most often in conjunction with bulk data transfers. Obviously a 
TCP cannot delay ACKs indefinitely; otherwise its peer could conclude that data 
has been lost and initiate an unnecessary retransmission.

Note

The Host Requirements RFC [RFC1122] states that TCP should implement a 
delayed ACK but the delay must be less than 500ms. Many implementations use 
a maximum of 200ms.

Delaying ACKs causes less traffic to be carried over the network than when 
ACKs are not delayed because fewer ACKs are used. A ratio of 2 to 1 is fairly com-
mon for bulk transfers. The use of delayed ACKs and the maximum amount of 
time TCP is allowed to wait before sending an ACK can be configured, depend-
ing on the host operating system. Linux uses a dynamic adjustment algorithm 
whereby it can change between ACKing every segment (called “quickack” mode) 
and conventional delayed ACK mode. On Mac OS X, the system variable net.
inet.tcp.delayed_ack determines how delayed ACKs are to be used. The val-
ues work as follows: disable delay (0), always delay (1), ACK every other packet 
(2), and autodetect when to respond (3). The default is 3. On recent versions of 
Windows, the registry entries under

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\IG

(where IG refers to the GUID of the particular network interface being referenced) 
for each interface GUID work a bit differently. The value for TcpAckFrequency
(which needs to be added) can range from 0 to 255 and defaults to 2. It determines 
the number of ACKs outstanding before the delayed ACK timer is ignored. Setting 
the value to 1 effectively causes ACKs to be generated for every segment received. 
The ACK timer, when used, can be controlled with the TcpDelAckTicks registry 
entry. This value can be set in the range from 2 to 6 and defaults to 2. It is the num-
ber of hundreds of milliseconds to wait before sending a delayed ACK. 
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For the reasons mentioned earlier, TCP is generally set up to delay ACKs 
under certain circumstances, but not to delay them too long. We will see extensive 
use of delayed ACKs in Chapter 16, when we look at how TCP’s congestion control 
behaves during bulk transfers with large packets. When smaller packets are used, 
such as for interactive applications, another algorithm comes into play. The com-
bination of this algorithm with delayed ACKs can lead to poor performance if not 
handled carefully, so we will now look at it in more detail.

15.4 Nagle Algorithm

We saw in the previous section that as little as one keystroke at a time often flows 
from the client to the server across an ssh connection. When using IPv4, sending 
one single key press generates TCP/IPv4 packets of about 88 bytes in size (using 
the encryption and authentication from the example): 20 bytes for the IP header, 
20 bytes for the TCP header (assuming no options), and 48 bytes of data. These 
small packets (called tinygrams) have a relatively high overhead for the network. 
That is, they contain relatively little useful application data compared to the rest 
of the packet contents. Such high-overhead packets are normally not a problem on 
LANs, because most LANs are not congested and such packets would not need to 
be carried very far. However, these tinygrams can add to congestion and lead to 
inefficient use of capacity on wide area networks. A simple and elegant solution 
was proposed by John Nagle in [RFC0896], now called the Nagle algorithm. First we 
will describe how it operates, and then we will discuss some pitfalls and problems 
that can occur as a result of using it with delayed ACKs.

The Nagle algorithm says that when a TCP connection has outstanding data 
that has not yet been acknowledged, small segments (those smaller than the SMSS) 
cannot be sent until all outstanding data is acknowledged. Instead, small amounts 
of data are collected by TCP and sent in a single segment when an acknowledg-
ment arrives. This procedure effectively forces TCP into stop-and-wait behavior—it 
stops sending until an ACK is received for any outstanding data. The beauty of 
this algorithm is that it is self-clocking: the faster the ACKs come back, the faster the 
data is sent. On a comparatively high-delay WAN, where reducing the number of 
tinygrams is desirable, fewer segments are sent per unit time. Said another way, 
the RTT controls the packet sending rate.

We saw in Figure 15-3 that the RTT for a single byte to be sent, acknowledged, 
and echoed can be small (under 15ms). To generate data faster than this we would 
have to type more than 60 characters per second. This means that we rarely 
encounter any observable effects of this algorithm when sending data between 
two hosts with a small RTT, such as when they are on the same LAN.

To illustrate the effect of the Nagle algorithm, we can compare the behaviors 
of an application using TCP with the Nagle algorithm enabled and disabled. We 
modify a version of the ssh client for this purpose. Using a connection with a rela-
tively large RTT of about 190ms, we can see the differences. First, we examine the 
case when Nagle is disabled (the default for ssh), as shown in Figure 15-4.
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Figure 15-4  An ssh trace showing a TCP connection with approximately a 190ms RTT. The Nagle 
algorithm is disabled. Transmissions and ACKs are intermingled, and the exchange 
takes 0.58s using 19 packets. Many packets are relatively small (48 bytes of user data). 
Pure ACKs (segments with no data) indicate that command output at the server has 
been processed by the client.

The trace in Figure 15-4 begins after the initial authentication protocol has 
completed and the login session has begun. The date command is then typed. 
We see that 19 packets are captured, and the entire exchange lasts 0.58s. There are 
five ssh request packets, seven ssh response packets, and seven TCP-level pure 
ACKs (no data). If we repeat this measurement soon after (i.e., in similar network 
conditions), but instead leave the Nagle algorithm enabled, we see the behavior 
shown in Figure 15-5.

We can see immediately that the number of packets in Figure 15-5 is smaller 
than in Figure 15-4 (by eight). The other striking difference is the regularity of 
how the requests and responses are ordered and separated by time. Recall that the 
Nagle algorithm forces TCP to operate in a stop-and-wait fashion, so that the TCP 
sender cannot proceed until ACKs are received. If we look at the times for each 
request/response pair—0.0, 0.19, 0.38, and 0.57—we see that they follow a pattern; 
each is separated by almost exactly 190ms, which is very close to the RTT of the 
connection. The consequence of having to wait one RTT for each request/response 
adds to the overall time to complete the exchange (0.80s instead of the 0.58s when 
Nagle was disabled). This is the trade-off the Nagle algorithm makes: fewer and 
larger packets are used, but the required delay is higher. The different behaviors 
can be seen even more clearly in Figure 15-6.

The effect of the Nagle algorithm’s stop-and-wait behavior can be seen clearly 
in Figure 15-6. The exchange on the left side keeps both directions of the connec-
tion busy, while with the Nagle algorithm enabled only one direction of the con-
nection is busy at any given time.
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Figure 15-5  An ssh trace showing a TCP connection with a 190ms RTT and the Nagle algorithm in 
operation. Requests are followed in lockstep with responses, and the exchange takes 
0.80s using 11 packets. 

Figure 15-6  Comparing the use of the Nagle algorithm for TCP connections with a similar operat-
ing environment. With Nagle enabled, at most one packet is allowed to be outstanding 
at any given time. This reduces the number of small packets but increases delay.
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15.4.1 Delayed ACK and Nagle Algorithm Interaction

If we consider what happens when the delayed ACK and Nagle algorithms are 
used together, we can construct an undesirable scenario. Consider a client using 
delayed ACKs that sends a request to a server, and the server responds with an 
amount of data that does not quite fit inside a single packet (see Figure 15-7).

Figure 15-7  The interaction between the Nagle algorithm and delayed ACKs. A temporary form of 
deadlock can occur until the delayed ACK timer fires.

Here we see that the client, after receiving two packets from the server, with-
holds an ACK, hoping that additional data headed toward the server can be piggy-
backed. Generally, TCP is required to provide an ACK for two received packets 
only if they are full-size, and they are not here. At the server side, because the 
Nagle algorithm is operating, no additional packets are permitted to be sent to the 
client until an ACK is returned because at most one “small” packet is allowed to 
be outstanding. The combination of delayed ACKs and the Nagle algorithm leads 
to a form of deadlock (each side waiting for the other) [MMSV99][MM01]. Fortu-
nately, this deadlock is not permanent and is broken when the delayed ACK timer 
fires, which forces the client to provide an ACK even if the client has no additional 
data to send. However, the entire data transfer becomes idle during this deadlock 
period, which is usually not desirable. The Nagle algorithm can be disabled in 
such circumstances, as we saw with ssh.

15.4.2 Disabling the Nagle Algorithm

As we might conclude from the previous example, there are times when the Nagle 
algorithm needs to be turned off. Typical examples include cases where as little 
delay as possible is required, for example, when a mouse movement or keystroke 
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must be delivered without delay to provide real-time feedback for a user whose 
display is handled remotely. Another example is in multiplayer online games, 
where character movements must be delivered as quickly as possible so as to not 
interfere with proper causality in the game (and to not delay it too much for other 
players).

The Nagle algorithm can be disabled in a number of ways. The ability to dis-
able it is required by the Host Requirements RFC [RFC1122]. An application can 
specify the TCP_NODELAY option when using the Berkeley sockets API. In addi-
tion, it is possible to disable the Nagle algorithm on a system-wide basis. In Win-
dows, this can be accomplished using the following registry key:

HKLM\SOFTWARE\Microsoft\MSMQ\Parameters\TCPNoDelay

This DWORD value, which must be added by the user, should be set to the value 1 
in order to disable the Nagle algorithm. Message Queuing may have to be installed 
for this change to be effective [MMQ].

15.5  Flow Control and Window Management

Recall from Chapter 12 that a variable sliding window can be used to implement 
flow control. In Figure 15-8, a TCP client and server are interacting, providing each 
other with information about the data flow, including segment sequence numbers, 
ACK numbers, and window sizes (i.e., available space at the receiver).

Figure 15-8  Each TCP connection is bidirectional. Data going in one direction causes the peer to respond 
with ACKs and window advertisements. The same is true for the reverse direction.



ptg999

Section 15.5  Flow Control and Window Management   701

The two large arrows in Figure 15-8 indicate the direction of data flow (the 
direction in which TCP segments are sent). Recalling that every TCP connection 
has data flowing in both directions, we have two arrows, one in the client-to-
server direction (C→S) and another in the server-to-client direction (S→C). Every 
segment contains ACK and window information and may also contain some user 
data. The fields used in the TCP header are shaded based on the direction of data 
flow they describe. For example, data flowing in the C→S direction is included 
in segments flowing along the bottom arrow, but the ACK number and window 
advertisement for this data are returned in segments following the top arrow. 
Every TCP segment (except those exchanged during connection establishment) 
includes a valid Sequence Number field, an ACK Number or Acknowledgment field, 
and a Window Size field (containing the window advertisement).

In each of the ssh examples in this chapter so far, we have seen an unchang-
ing window advertisement conveyed from one TCP peer to the other. Examples 
include 8320 bytes, 4220 bytes, and 32,900 bytes. These sizes represent the amount 
of space the sender of the segment has reserved for storing incoming data the 
peer sends. When TCP-based applications are not busy doing other things, they 
are typically able to consume any and all data TCP has received and queued for 
them, leading to no change of the Window Size field as the connection progresses. 
On slow systems, or when the application has other things to accomplish, data 
may have arrived for the application, been acknowledged by TCP, and be sitting 
in a queue waiting for the application to read or “consume” it. When TCP starts to 
queue data in this way, the amount of space available to hold new incoming data 
decreases, and this change is reflected by a decreasing value of the Window Size 
field. Eventually, if the application does not read or otherwise consume the data 
at all, TCP must take some action to cause the sender to cease sending new data 
entirely, because there would be no place to put it on arrival. This is accomplished 
by sending a window advertisement of zero (no space).

The Window Size field in each TCP header indicates the amount of empty 
space, in bytes, remaining in the receive buffer. The field is 16 bits in TCP, but with 
the Window Scale option, values larger than 65,535 can be used (see Chapter 13). 
The largest sequence number the sender of a segment is willing to accept in the 
reverse direction is equal to the sum of the Acknowledgment Number and Window 
Size fields in the TCP header (scaled appropriately).

15.5.1 Sliding Windows

Each endpoint of a TCP connection is capable of sending and receiving data. The 
amount of data sent or received on a connection is maintained by a set of window 
structures. For each active connection, each TCP endpoint maintains a send window 
structure and a receive window structure. These structures are similar to the con-
ceptual window structures described in Chapter 12, but here we describe them in 
more detail. Figure 15-9 shows a hypothetical TCP send window structure.
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TCP maintains its window structures in terms of bytes (not packets). In Fig-
ure 15-9 we have numbered the bytes 2 through 11. The window advertised by the 
receiver is called the offered window and covers bytes 4 through 9, meaning that the 
receiver has acknowledged all bytes up through and including number 3 and has 
advertised a window size of 6. Recall from Chapter 12 that the Window Size field con-
tains a byte offset relative to the ACK number. The sender computes its usable window, 
which is how much data it can send immediately. The usable window is the offered 
window minus the amount of data already sent but not yet acknowledged. The vari-
ables SND.UNA and SND.WND are used to hold the values of the left window edge 
and offered window. The variable SND.NXT holds the next sequence number to be 
sent, so the usable window is equal to (SND.UNA + SND.WND – SND.NXT).

Over time this sliding window moves to the right, as the receiver acknowl-
edges data. The relative motion of the two ends of the window increases or 
decreases the size of the window. Three terms are used to describe the movement 
of the right and left edges of the window:

 1. The window closes as the left edge advances to the right. This happens when 
data that has been sent is acknowledged and the window size gets smaller.

 2. The window opens when the right edge moves to the right, allowing more 
data to be sent. This happens when the receiving process on the other end 
reads acknowledged data, freeing up space in its TCP receive buffer.

 3. The window shrinks when the right edge moves to the left. The Host 
Requirements RFC [RFC1122] strongly discourages this, but TCP must be 
able to cope with it. Section 15.5.3 on silly window syndrome shows an 
example where one side would like to shrink the window by moving the 
right edge to the left but cannot.

(SND.WND)

(SND.UNA) (SND.UNA + SND.WND)SND.NXT

Figure 15-9  The TCP sender-side sliding window structure keeps track of which sequence numbers 
have already been acknowledged, which are in flight, and which are yet to be sent. The 
size of the offered window is controlled by the Window Size field sent by the receiver 
in each ACK.
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Because every TCP segment contains both an ACK number and a window 
advertisement, a TCP sender adjusts the window structure based on both values 
whenever an incoming segment arrives. The left edge of the window cannot move 
to the left, because this edge is controlled by the ACK number received from the 
other end that is cumulative and never goes backward. When the ACK number 
advances the window but the window size does not change (a common case), the 
window is said to advance or “slide” forward. If the ACK number advances but 
the window advertisement grows smaller with other arriving ACKs, the left edge 
of the window moves closer to the right edge. If the left edge reaches the right 
edge, it is called a zero window. This stops the sender from transmitting any data. 
If this happens, the sending TCP begins to probe the peer’s window (see Section 
15.5.2) to look for an increase in the offered window.

The receiver also keeps a window structure, which is somewhat simpler than 
the sender’s. The receiver window structure keeps track of what data has already 
been received and ACKed, as well as the maximum sequence number it is willing 
to receive. The TCP receiver depends on this structure to ensure the correctness 
of the data it receives. In particular, it wishes to avoid storing duplicate bytes it 
has already received and ACKed, and it also wishes to avoid storing bytes that it 
should not have received (any bytes beyond the sender’s right window edge). The 
receiver’s window structure is illustrated in Figure 15-10.

(RCV.WND)

(RCV.NXT+RCV.WND)

Figure 15-10  The TCP receiver-side sliding window structure helps the receiver know which 
sequence numbers to expect next. Sequence numbers in the receive window are stored 
when received. Those outside the window are discarded.

This structure also contains a left and right window edge like the sender’s 
window, but the in-window bytes (4–9 in this picture) need not be differentiated 
as they are in the sender’s window structure. For the receiver, any bytes received 
with sequence numbers less than the left window edge (called RCV.NXT) are dis-
carded as duplicates, and any bytes received with sequence numbers beyond the 
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right window edge (RCV.WND bytes beyond RCV.NXT) are discarded as out of 
scope. Bytes arriving with any sequence number in the receive window range are 
accepted. Note that the ACK number generated at the receiver may be advanced 
only when segments fill in directly at the left window edge because of TCP’s 
cumulative ACK structure. With selective ACKs, other in-window segments can 
be acknowledged using the TCP SACK option, but ultimately the ACK number 
itself is advanced only when data contiguous to the left window edge is received 
(see Chapter 14 for more details on SACK).

15.5.2 Zero Windows and the TCP Persist Timer

We have seen that TCP implements flow control by having the receiver specify 
the amount of data it is willing to accept from the sender: the receiver’s adver-
tised window. When the receiver’s advertised window goes to zero, the sender is 
effectively stopped from transmitting data until the window becomes nonzero. 
When the receiver once again has space available, it provides a window update to 
the sender to indicate that data is permitted to flow once again. Because such 
updates do not generally contain data (they are a form of “pure ACK”), they are 
not reliably delivered by TCP. TCP must therefore handle the case where such 
window updates that would open the window are lost.

If an acknowledgment (containing a window update) is lost, we could end up 
with both sides waiting for the other: the receiver waiting to receive data (because 
it provided the sender with a nonzero window and expects to see incoming data) 
and the sender waiting to receive the window update allowing it to send. To pre-
vent this form of deadlock from occurring, the sender uses a persist timer to query 
the receiver periodically, to find out if the window size has increased. The persist 
timer triggers the transmission of window probes. Window probes are segments 
that force the receiver to provide an ACK, which also necessarily contains a Win-
dow Size field. The Host Requirements RFC [RFC1122] suggests that the first probe 
should happen after one RTO and subsequent problems should occur at exponen-
tially spaced intervals (i.e., similar to the “second part” of Karn’s algorithm, which 
we discussed in Chapter 14).

Window probes contain a single byte of data and are therefore reliably deliv-
ered (retransmitted) by TCP if lost, thereby eliminating the potential deadlock 
condition caused by lost window updates. The probes are sent whenever the TCP 
persist timer expires, and the byte included may or may not be accepted by the 
receiver, depending on how much buffer space it has available. As with the TCP 
retransmission timer (see Chapter 14), the normal exponential backoff can be used 
when calculating the timeout for the persist timer. An important difference, how-
ever, is that a normal TCP never gives up sending window probes, whereas it may 
eventually give up trying to perform retransmissions. This can lead to a certain 
resource exhaustion vulnerability that we discuss in Section 15.7.
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15.5.2.1 Example
To illustrate the use of the dynamic window size adjustment and flow control in 
TCP, we create a TCP connection and cause the receiving process to pause before 
consuming data from the network. For this experiment, we use a Mac OS X 10.6 
sender and a Windows 7 receiver. The receiver runs our sock program with the 
–P flag as follows:

C:\> sock -i -s -P 20 6666

This arranges for the receiver to pause 20s prior to consuming data from the net-
work. The result is that eventually the receiver’s advertised window begins to 
close, as shown with packet 125 in Figure 15-11. 

Figure 15-11  After a period when the advertised window does not change, acknowledgments 
continue but the window size grows smaller as the receiver’s buffer fills up. If the 
receiving application fails to consume any data and the sender continues, the window 
eventually reaches zero.
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In this trace we see that for more than 100 packets the receiver’s window 
remains pegged at 64KB. This is because of an automatic window adjustment 
algorithm (see Section 15.5.4) that allocates memory to the receiving TCP even if 
not requested by the application. However, this eventually runs short, so we see 
the window begin to reduce starting with packet 125. A large number of ACKs fol-
low, each reducing the window further while increasing the ACK number by 2896 
bytes per ACK. This indicates that the receiving TCP is storing the data, but the 
application is not consuming it. If we look further into the trace, we see that even-
tually the receiver has no more space to hold the incoming data (see Figure 15-12).

Figure 15-12  The receiver’s buffer has filled up. When the receiving application starts reading again, a win-
dow update tells the sender that there is now an opportunity to transfer more data.

Here we can see that packet 151 fills the small 327-byte window, as indicated 
by the TCP Window Full comment provided by Wireshark. After about 200ms, 
at time 4.979, a zero window advertisement is produced, indicating that no more 
data can be received. This is no surprise, given that the sender has filled the last 
known available window and the receiving application will not consume any data 
until time 20.143.

After receiving the zero window advertisement, the sending TCP tries to probe 
the receiver three times at 5s intervals to see if the window has opened. At time 
20, as instructed, the receiver begins to consume the data present in TCP’s queue. 
This causes two window updates to be sent to the sender, indicating that further 
data transmission (up to 64KB) is now possible. Such segments are called window 
updates because they do not acknowledge any new data—they just advance the 
right edge of the window. At this point, the sender is able to resume normal data 
transmission and complete the transfer.
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There are numerous points that we can summarize using Figures 15-11 and 
15-12:

1. The sender does not have to transmit a full window’s worth of data.

2. A single segment from the receiver acknowledges data and slides the win-
dow to the right at the same time. This is because the window advertise-
ment is relative to the ACK number in the same segment.

3. The size of the window can decrease, as shown by the series of ACKs in 
Figure 15-11, but the right edge of the window does not move left, so as to 
avoid window shrinkage.

4. The receiver does not have to wait for the window to fill before sending an 
ACK. 

In addition to these points, it is instructive to look at the throughput this connec-
tion achieves as a function of time. Using Wireshark’s Statistics | TCP Stream Graph 
| Throughput Graph function, we observe the time series as shown in Figure 15-13. 

Figure 15-13  With a relatively large receive buffer, a significant amount of data can be transferred 
even before the receiving application reads any data from the network.
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Here we see an interesting behavior. Even before the receiving application has 
consumed any data, the connection still achieves a throughput of approximately 
1.3MB/s. This continues until approximately time 0.10. After that, the throughput is 
essentially zero until the receiver begins consuming data much later (after time 20).

15.5.3 Silly Window Syndrome (SWS)

Window-based flow control schemes, especially those that do not use fixed-size 
segments (such as TCP), can fall victim to a condition known as the silly window 
syndrome (SWS). When it occurs, small data segments are exchanged across the 
connection instead of full-size segments [RFC0813]. This leads to undesirable inef-
ficiency because each segment has relatively high overhead—a small number of 
data bytes relative to the number of bytes in the headers.

SWS can be caused by either end of a TCP connection: the receiver can adver-
tise small windows (instead of waiting until a larger window can be advertised), 
and the sender can transmit small data segments (instead of waiting for addi-
tional data to send a larger segment). Correct avoidance of silly window syndrome 
requires a TCP to implement rules specifically for this purpose, whether operating 
as a sender or a receiver. TCP never knows ahead of time how a peer TCP will 
behave. The following rules are applied:

1. When operating as a receiver, small windows are not advertised. The receive 
algorithm specified by [RFC1122] is to not send a segment advertising a 
larger window than is currently being advertised (which can be 0) until the 
window can be increased by either one full-size segment (i.e., the receive 
MSS) or by one-half of the receiver’s buffer space, whichever is smaller. 
Note that there are two cases where this rule can come into play: when buf-
fer space has become available because of an application consuming data 
from the network, and when TCP must respond to a window probe. 

2. When sending, small segments are not sent and the Nagle algorithm gov-
erns when to send. Senders avoid SWS by not transmitting a segment 
unless at least one of the following conditions is true:

a. A full-size (send MSS bytes) segment can be sent.

b. TCP can send at least one-half of the maximum-size window that the 
other end has ever advertised on this connection.

c. TCP can send everything it has to send and either (i) an ACK is not cur-
rently expected (i.e., we have no outstanding unacknowledged data) or 
(ii) the Nagle algorithm is disabled for this connection. 

Condition (a) is the most straightforward and directly avoids the high-over-
head segment problem. Condition (b) deals with hosts that always advertise tiny 
windows, perhaps smaller than the segment size. Condition (c) prevents TCP from 
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sending small segments when there is unacknowledged data waiting to be ACKed 
and the Nagle algorithm is enabled. If the sending application is doing small writes 
(e.g., smaller than the segment size), condition (c) avoids silly window syndrome.

These three conditions also let us answer the following question: If the Nagle 
algorithm prevents us from sending small segments while there is outstanding 
unacknowledged data, how small is small? From condition (a) we see that “small” 
means that the number of bytes is less than the SMSS (i.e., the largest packet size 
that does not exceed the PMTU or the receiver’s MSS). Condition (b) comes into 
play only with older, primitive hosts or when a small advertised window is used 
because of a limited receive buffer size.

Condition (b) of step 2 requires that the sender keep track of the maximum 
window size advertised by the other end. This is an attempt by the sender to guess 
the size of the other end’s receive buffer. Although the size of the receive buffer 
could decrease while the connection is established, in practice this is rare. Further-
more, recall that TCP avoids window shrinkage.

15.5.3.1 Example
We will now present a detailed example to see silly window syndrome avoidance 
in action; this example also involves the persist timer. We will use our sock pro-
gram with a Windows XP sending host and a FreeBSD receiver, doing three 2048-
byte writes to the network. The command at the sender is as follows:

C:\> sock -i -n 3 -w 2048 10.0.0.8 6666

The corresponding command at the receiver is

FreeBSD% sock -i -s -P 15 -p 2 -r 256 -R 3000 6666

This fixes the receive buffer at 3000 bytes, causes an initial delay of 15s before 
reading from the network, injects 2s of delay between each read, and sets each 
read amount to be 256 bytes. The reason for the initial pause is to let the receiver’s 
buffer fill, ultimately forcing the transmitter to stop. By having the receiver then 
perform small reads from the network, we expect to see it perform silly window 
syndrome avoidance. Figure 15-14 is the trace as displayed by Wireshark.

The contents of the entire connection are displayed in the figure. Packet 
lengths are described in terms of how many TCP payload bytes are included in 
each segment. During connection establishment, the receiver advertises a window 
of 3000 bytes with an MSS of 1460 bytes. The sender sends a 1460-byte packet 
(packet 4) at time 0.052 and 588 bytes (packet 5) at time 0.053. The sum of these 
sizes equals the 2048-byte write size used by the application. Packet 6 acknowl-
edges both data packets from the sender and provides a window advertisement of 
952 bytes (3000 – 1460 – 588 = 952).

The 952-byte window (packet 6) is not as large as a full MSS, so the Nagle 
algorithm at the sender prevents filling it immediately. Instead, we see a delay 
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of 5s before any further action is taken. The sender waits for 5s, until the persist 
timer expires, before sending a window probe. Given that the sender is sending a 
packet anyhow, the sending TCP adds the permitted 952 bytes to fill the available 
window. This fills the window, as confirmed by the zero window advertisement 
contained in packet 8.

The next event in the trace is when TCP sends a window probe at time 6.970, 
about 2s after receiving the first zero window advertisement. The probe itself con-
tains a single data byte and is labeled “TCP ZeroWindowProbe” by Wireshark, 
but the ACK for this does not move the ACK number forward (Wireshark labels 
this a “TCP ZeroWindowProbeAck”), so the byte has not been kept at the receiver. 
Another 1-byte probe is produced at time 10.782 (about 4s later), and another at 
time 18.408 (about 8s later), showing the characteristic exponential timeout back-
off. Note that for this latter window probe, the single byte is acknowledged by the 
receiver.

Figure 15-14  Trace of a TCP transfer illustrating silly window syndrome avoidance. The sender avoids filling 
the offered window at time 0.053 because of sender-side SWS avoidance. Instead, it waits until 
time 5.066, also acting effectively as a window probe. Receiver-side SWS avoidance can be seen 
by looking at packet 14, which advertises a zero window even though the receiver has consumed 
some data. 
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At time 25.061, after the application has had a chance to perform six 256-byte 
reads (spaced 2s apart), a window update indicates that 1535 bytes (plus 1 for the 
ACK number) are now free in the receiver’s buffer. This is “large enough” accord-
ing to receiver-side SWS avoidance. The sender begins to fill the window, starting 
with a 1460-byte packet at time 25.064, resulting in an ACK at time 25.161 for byte 
4462 with a window advertisement of only 75 bytes (packet 17). This advertise-
ment appears to violate our rule that the amount advertised should be at least an 
MSS or (in the case of FreeBSD) one-quarter of the total buffer. The reason is to 
avoid window shrinkage. With the last window update (packet 15), the receiver 
advertises a right window edge of byte (3002 + 1535) = 4537. If the present ACK 
(packet 17) were to advertise less than 75 bytes, as would be required by receiver-
side SWS avoidance, the right window edge would move left, a condition TCP is 
not supposed to allow. Consequently the 75-byte advertisement represents a form 
of override: avoiding window shrinkage is preferred to avoiding SWS.

We see the effect of sender-side SWS avoidance once again with the 5s delay 
between packets 17 and 18. The sender is forced to send the 75-byte packet and 
the receiver responds with another zero window advertisement. Packet 20, which 
appears a second later, is another window probe, which results in a window of 767 
bytes. Another round of sender-side SWS avoidance results in a 5s delay; the sender 
fills the window, again resulting in a zero window; and the pattern repeats. The 
pattern is eventually broken because the sender has no more data to send. Packet 
30 represents the last data sent, and the connection is eventually closed some 20s 
later (because of the 2s delays between each read at the receiving application).

To understand the relationships among the application behavior, the adver-
tised window, and SWS avoidance, we can capture the connection’s dynamics in 
tabular form. Table 15-1 gives the action at the sender and the receiver, as well as 
an estimated time when the receiving application performs its reads.

Table 15-1  Dynamics of the window advertisement and application to avoid silly window syndrome

Time
Packet 
Number

Action Receive Buffer

TCP Sender TCP Receiver Application Data Available

0.000 1 SYN 0 3000
0.000 2 SYN + ACK 1

win 3000
0 3000

0.001 3 ACK 0 3000
0.052 4 1:1460(1460) 1460 1539
0.053 5 1461:2049(588) 2048 952
0.053 6 ACK 2049

win 952
2048 952

5.066 7 2049:3000(952) 3000 0
5.160 8 ACK 3001

win 0
3000 0

(continues )
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Table 15-1  Dynamics of the window advertisement and application to avoid silly window syndrome (continued )

Time
Packet 
Number

Action Receive Buffer

TCP Sender TCP Receiver Application Data Available

6.970 9 3001:3001(1) 3000 0
6.970 10 ACK 3001

win 0
3000 0

10.782 11 3001:3001(1) 3000 0
10.782 12 ACK 3001

win 0
3000 0

15 256 byte read 2744 256
17 256 byte read 2488 512
18.408 13 3001:3001(1) 2489 511
18.408 14 ACK 3002

win 0
2489 511

19 256 byte read 2233 767
21 256 byte read 1977 1023
23 256 byte read 1721 1279
25 256 byte read 1465 1535
25.061 15 ACK 3002

win 1535
1465 1535

25.064 16 3002:4461(1460) 2925 75
25.161 17 ACK 4462

win 75
2925 75

27 256 byte read 2669 331
29 256 byte read 2413 587
30.043 18 4462:4536(75) 2488 512
30.141 19 ACK 4537

win 0
2488 512

31 256 byte read 2232 768
31.548 20 4537:4537(1) 2233 767
31.548 21 ACK 4538

win 767
2233 767

33 256 byte read 1977 1023
35 256 byte read 1721 1279
36.574 22 4538:5304(767) 2488 512
36.671 23 ACK 5305

win 0
2488 512

37 256 byte read 2232 768
37.667 24 5305:5305(1) 2233 767
37.667 25 ACK 5306

win 767
2233 767

39 256 byte read 1977 1023
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In Table 15-1, the first column is the relative point in time for each action if it 
appears in the trace. Those times with three digits to the right of the decimal point 
are taken from the Wireshark output (refer to Figure 15-16). Those times with no 
digits to the right of the decimal point are the inferred times of the action on the 
receiving host, which are not represented in the trace.

The amount of data in the receiver’s buffer (labeled “Data” in the table) 
increases when data arrives from the sender and decreases as the application 
reads (consumes) data from the buffer. What we want to follow are the window 
advertisements sent by the receiver to the sender, and what those window adver-
tisements contain. This lets us see how the receiver avoids SWS.

As discussed previously, the first evidence of SWS avoidance is the 5s delay 
between segments 6 and 7, where the sender avoids trying to send with a 952-
byte window until it is forced to. When this happens, the receiver fills up, caus-
ing a series of zero window advertisements and window probe exchanges. We 
can see the exponential backoff on the persist timer in action: probes are sent at 
times 6.970, 10.782, and 18.408. These are approximately 2, 4, and 8s from when the 
sender first received the zero window advertisement at time 5.160.

Table 15-1  Dynamics of the window advertisement and application to avoid silly window syndrome (continued )

Time
Packet 
Number

Action Receive Buffer

TCP Sender TCP Receiver Application Data Available

41 256 byte read 1721 1279
42.784 26 5306:6073(767) 2488 512
42.881 27 ACK 6074

win 0
2488 512

43 256 byte read 2232 768
43.485 28 6073:6073(1) 2233 767
43.485 29 ACK 6074

win 767
2233 767

43.486 30 6074:6144(71) 2304 696
43.581 31 ACK 6145

win 696
2304 696

43.711 32 6145 (FIN)
43.711 33 ACK 6146

win 695
2305 695

45,47,49,51
53,55

6x256 byte 
read

769 2231

55.212 34 ACK 6146
win 2232

768 2232

57,59,61 3x256 byte 
read

0 3000

63 0 byte read 0 3000
63.252 35 FIN 0 3000
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Although the application reads data at times 15 and 17, it has read only 512 
bytes by time 18.408. The receiver-side SWS avoidance rules dictate that no win-
dow update should be provided to the sender because the available 512 bytes of 
buffer are neither half the size of the total buffer (3000 bytes) nor at least one MSS 
(1460 bytes). Lacking a window update, the sender sends a window probe at time 
18.408 (segment 13). This probe is received and the byte is kept by the receiver, 
because some buffer space is available, as verified by the increasing ACK number 
between segments 12 and 14.

Although 511 bytes are available in the receiver’s buffer, receiver-side SWS 
avoidance kicks in once again. The FreeBSD implementation of receiver SWS 
avoidance differentiates between when to send a window update and how to 
respond to a window probe. Although it follows the rules in [RFC1122] and sends 
a window update only when at least half of the total receive buffer (or an MSS) can 
be advertised, when responding to a window probe it advertises a larger window 
when the window is either at least an MSS size or when at least one-fourth of the 
total receive buffer size can be advertised. In either case, the 511 bytes are less than 
a full MSS and also less than 3000/4 = 750 bytes, so this form of receiver-side SWS 
avoidance dictates that the window advertisement included in the ACK for seg-
ment 13 must contain the value 0.

By the time the application completes its sixth read at time 25, the receive buf-
fer has 1535 bytes free (more than half of the total 3000-byte size), so a window 
update is sent (segment 15). The sender continues with a full-size segment (seg-
ment 16), for which it receives an ACK but a window advertisement of only 75 
bytes. In the next 5s, both sender- and receiver-side SWS avoidance takes place. 
The sender waits for a larger window advertisement, and the application performs 
reads at times 27 and 29, but the 587 bytes of free receive buffer space are not 
enough to allow a window update to be sent. The sender therefore has to wait the 
entire 5s and eventually sends its 75 bytes, forcing the receiver again into SWS 
avoidance.

With the receiver not providing a window update, the sender’s persist timer 
causes a window probe to be sent at time 31.548. In this case, the FreeBSD receiver 
responds with a nonzero window, of size 767 bytes (larger than one-fourth of the 
total receive buffer). This window is not large enough for the sender’s SWS avoid-
ance procedure, however, so the sender waits another 5s and the process repeats. 
Finally, at time 43.486, the last 71 bytes are sent and acknowledged. The acknowl-
edgment contains a window advertisement of 696 bytes. Although it is less than 
one-quarter of the receiver’s total buffer size, the advertisement is not made zero 
by receiver-side SWS avoidance in order to avoid window shrinkage.

The connection termination begins with segment 32, which contains no data. 
It is acknowledged immediately with a window advertisement of 695 bytes (the 
FIN consumed a sequence number at the receiver). After the application completes 
another six reads, the receiver provides a window update, but the sender is done 
sending and remains silent. The application performs another four reads, three of 
which return 256 bytes and the final one of which returns nothing, indicating the 
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end of arriving data. At this point, the receiver closes the connection, causing the 
FIN to be sent to the sender. The sender responds with the final ACK, completing 
the bidirectional closing of the connection.

Because the sending application issues a close operation after performing its 
three 2048-byte writes, the sender’s end of the connection goes from the ESTAB-
LISHED state to the FIN_WAIT_1 state after sending segment 32 (see Chapter 
13). It then goes to the FIN_WAIT_2 state after receiving segment 33. Although 
it receives a window update while in this state, no action is taken, because it has 
already sent a FIN that has been acknowledged (there is no timer in this state). 
Instead, it merely sits in this state until receiving a FIN from the other end. This is 
why we see no further transmissions by the sender until it receives the FIN (seg-
ment 35).

15.5.4 Large Buffers and Auto-Tuning

In this chapter, we have seen that an application using a small receive buffer size 
may be doomed to significant throughput degradation compared to other applica-
tions using TCP in similar conditions. Even if the receiver specifies a large enough 
buffer, the sender might specify too small a buffer, ultimately leading to bad per-
formance. This problem became so important that many TCP stacks now decouple 
the allocation of the receive buffer from the size specified by the application. In 
most cases, the size specified by the application is effectively ignored, and the 
operating system instead uses either a large fixed value or a dynamically calcu-
lated value.

In newer versions of Windows (Vista/7) and Linux, receive window auto-
tuning [S98] is supported. With auto-tuning, the amount of data that can be out-
standing in the connection (its bandwidth-delay product, an important concept 
we discuss in Chapter 16) is continuously estimated, and the advertised window 
is arranged to always be at least this large (provided enough buffer space remains 
to do so). This has the advantage of allowing TCP to achieve its maximum avail-
able throughput rate (subject to the available network capacity) without having to 
allocate excessively large buffers at the sender or receiver ahead of time. In Win-
dows, the receiver’s buffer size is auto-sized by the operating system by default. 
However, the behavior can be modified using the netsh command: 

C:\> netsh interface tcp set heuristics disabled

C:\> netsh interface tcp set global autotuninglevel=X

where X is one of the following: disabled, highlyrestricted, restricted, 
normal, or experimental. The setting affects the automatic selection of the 
receiver’s advertised window. In the disabled state, auto-tuning is not used, and the 
window size uses a default value. The restricted modes slow the window growth, 
and the normal setting allows it to grow relatively quickly. The experimental 
mode allows the window to grow very aggressively but is not recommended for 
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normal use because many Internet sites and some firewalls interfere with or fail to 
implement the TCP Window Scale option properly.

With Linux 2.4 and later, sender-side auto-tuning is supported. With version 
2.6.7 and later, both receiver- and sender-side auto-tuning is supported. However, 
auto-tuning is subject to limits placed on the buffer sizes. The following Linux 
sysctl variables control the sender and receiver maximum buffer sizes. The val-
ues after the equal sign are the default values (which may vary depending on the 
particular Linux distribution), which should be increased if the system is to be 
used in high bandwidth-delay-product environments:

net.core.rmem_max = 131071
net.core.wmem_max = 131071
net.core.rmem_default = 110592
net.core.wmem_default = 110592

In addition, the auto-tuning parameters are given by the following variables:

net.ipv4.tcp_rmem = 4096 87380 174760
net.ipv4.tcp_wmem = 4096 16384 131072

Each of these variables contains three values: the minimum, default, and max-
imum buffer size used by auto-tuning.

15.5.4.1 Example
To demonstrate the behavior of receiver auto-tuning, we use a Windows XP sender 
(set to use large windows and window scaling) and a Linux 2.6.11 receiver that 
includes auto-tuning. At the sender, we issue the following command:

C:\> sock -n 512 -i 10.0.0.1 6666

At the receiver, we do not specify any setting for the receive buffer, but we do 
arrange for an initial delay of 20s before the application performs any reads:

Linux% sock -i -s -v -P 20 6666

To illustrate the growth of the receiver’s advertised window, we can use Wire-
shark to sort the displayed packets based on the receiver’s address (see Figure 15-15).  
During connection establishment, the receiver begins with an initial window size 
of 1460 bytes and an initial MSS of 1412 bytes. It is using window scaling, with a 
shift amount of 2 (not shown), leading to a maximum usable window of 256KB. 
We can see that after the initial packets, the window increases, which corresponds 
to the sender’s increase in the data sending rate. We explore the sender’s data rate 
control when we investigate TCP congestion control in Chapter 16. For now, we 
need only know that when the sender starts up, it typically starts by sending one 
packet and then increases the amount of outstanding data by one MSS packet for 
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each ACK it receives that indicates progress. Thus, it typically sends two MSS-size 
segments for each ACK it receives.

Looking at the pattern of the window advertisements—10712, 13536, 16360, 
19184, . . .—we can see that the advertised window is increased by twice the MSS 
on each ACK, which mimics the way the sender’s congestion control scheme oper-
ates, as we shall see in Chapter 16. Provided enough memory is available at the 
receiver, the advertised window is always larger than what the sender is permit-
ted to send according to its congestion control limitations. This is the best case—
the minimal amount of buffer space is being used and advertised by the receiver 
that keeps the sender sending as fast as possible. 

Figure 15-15  The Linux receiver performs receiver-side auto-tuning by increasing the window as more data is 
received. Because the application does not read for 20s, the window eventually closes.
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If the receiver exhausts its buffers, auto-tuning is compromised. In this 
example, by time 0.678 the pattern of window growth reverses, having achieved 
a maximum of 33,304 bytes. The window size is no longer increasing, but instead 
the buffer is filling up while the application pauses. When the application begins 
reading at time 20, the window size again increases and goes beyond the point 
where it was previously (see Figure 15-16).

Figure 15-16  With the application pausing before reading, auto-tuning is compromised because the receive 
buffer becomes full. As the application begins reading, the advertised window increases, 
exceeding its previous value. 

The zero window advertisement (packet 117) forces the sender to perform a 
series of window probes, resulting in a series of zero window advertisements. 
After the application begins reading at time 20.043, a window update is sent to 
the sender. The window begins to grow once again, twice the MSS in bytes for 
each ACK. As the sender continues to send additional data and the receiver con-
sumes it, the receiver continues to increase the advertised window until the value 
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67808 is reached, which is the largest value the receiver ever advertises on this 
connection. This version of Linux also measures the time between adjacent appli-
cation read completions and compares this value against the estimated connection 
round-trip time. If the RTT estimate increases, the buffer size is also increased 
(it is not decreased if the RTT becomes smaller). This helps auto-tuning keep the 
receiver’s advertised window ahead of the sender’s window even when the con-
nection’s bandwidth-delay product is increasing.

The problem of TCP applications using too-small buffers became a signifi-
cant one as faster wide area Internet connections became available. In the United 
States, with cross-country round-trip times of approximately 100ms, using a 64KB 
window over a 1Gb/s network limits TCP throughput to about 640KB/s instead 
of the calculated maximum of about 130MB/s (a 99% waste of bandwidth). Practi-
cally speaking, it is not uncommon to see a factor of 100 increase in throughput 
performance when moving from a TCP with limited buffers to one with larger 
buffers on such networks. Significant credit should be given to the Web100 project 
[W100]. It created a set of tools and software patches in an effort to maximize the 
available throughput performance an application can obtain from various TCP 
implementations.

15.6 Urgent Mechanism

We saw in Chapter 12 that the TCP header has a special URG bit field to indicate 
“urgent data.” An application is able to mark data as urgent by specifying a special 
option to the Berkeley sockets API (MSG_OOB) when it performs a write opera-
tion, although the use of urgent data is no longer recommended [RFC6093]. When 
the sender’s TCP receives such a write request, it enters a special state called urgent 
mode. Upon entering urgent mode, it records the last byte the application specified 
as urgent data. This is used to set the Urgent Pointer field in each subsequent TCP 
header the sender generates until the application ceases writing urgent data and 
all the sequence numbers up to the urgent pointer have been acknowledged by 
the receiver. According to [RFC6093], the urgent pointer points to the sequence 
number of the byte of data following the last byte of urgent data. This resolves a 
longstanding ambiguity in various RFCs that included contradictory statements 
about the semantics of the Urgent Pointer field. When an IPv6 jumbogram is used, 
the Urgent Pointer value of 65535 may be used to indicate the end of urgent data is 
to be found at the end of the TCP data area [RFC2675], beyond the 64K byte offset 
expressible using the conventional 16-bit Urgent Pointer field.

A receiving TCP enters urgent mode when it receives a segment with the URG
bit field set. The receiving application can discover whether its TCP has entered 
urgent mode using a standard socket API call (select()). The operation of the 
urgent mechanism has been a source of confusion because the Berkeley sockets 
API and documentation use the term out-of-band (OOB) data, although in real-
ity TCP does not implement any true OOB capability. Instead, virtually all TCP 



ptg999

720 TCP Data Flow and Window Management 

implementations deliver the last byte of urgent data to an application using a dis-
tinct API call parameter at the receiver. The receiver must specify either the MSG_
OOB option to retrieve the special byte or specify MSG_OOBINLINE to have the 
special byte remain in the regular data stream (this is now the required method, 
assuming the urgent mechanism is used at all).

15.6.1 Example

To get a better understanding of the urgent mechanism, we use a Mac OS X sender 
and Linux receiver to show how urgent mode behaves, including what happens 
during a zero window event. To achieve this, we first limit receive window auto-
tuning on the Linux receiver:

Linux# sysctl –w net.ipv4.tcp_rmem='4096 4096 174760'

Linux% sock –i –v –s –p 1 –P 10 5555

The first command ensures that any receive window automatic adjustment 
does not exceed 4KB. This will be useful to us in order to see what happens when 
the window closes. The second command invokes the server and instructs it to 
wait 10s before performing any reads, and to wait 1s between each read operation 
it does perform. At the client, we execute the following command:

Mac% sock –i –n 7 –U 7 –p 1 –S 8192 10.0.1.1 5555
SO_SNDBUF = 8192
connected on 10.0.1.33.51101 to 10.0.1.1.5555
TCP_MAXSEG = 1448
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1 byte of urgent data
wrote 1024 bytes

This command creates a client that performs seven 1024-byte writes spaced 1s 
apart but also performs a write of 1 byte of urgent data prior to the last write. The 
client’s buffer is sufficiently large (set to 8192 bytes) that this application completes 
execution immediately because all the data it sends is buffered by the sending TCP. 

In Figure 15-17, we can see how the initial right window edge advertised by 
the receiver is 2800 and is quickly increased to 5121. At time 1.0 the application 
performs a write, and the right window edge advances to about 6145. From then on 
the receiver’s window increases no more because auto-tuning has been effectively 
disabled above 4192 bytes and the receiving application has not performed any 
reads. Until time 10.0, the sender probes the receiver but no additional window 
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Figure 15-17  After six write operations, the receiver’s window has not advanced. The sending TCP stops 
transmitting until the window opens at time 10.

growth occurs. Finally, when the receiver starts performing read operations after 
time 10.0, the window opens and the sender completes the transfer. The packets 
exchanged are shown in Figure 15-18.

The “exit point” for urgent mode is defined to be the sum of the Sequence Num-
ber field and the Urgent Pointer field in a TCP segment. Only one urgent “point” (a 
sequence number offset) is maintained per TCP connection, so a packet arriving 
with a valid Urgent Pointer field causes the information contained in any previous 
urgent pointer to be lost. Segment 16 is the first segment containing a valid urgent 
pointer, resulting in an exit point relative sequence number of 6146. Note that this 
sequence number may not be contained in the segment providing the indication 
but could instead be in some later segment. This is the case with segment 17, for 
example, which contains no data but includes the urgent pointer (with value 1).

As mentioned before, there has been some historical confusion about whether 
the exit point indicates the last byte of urgent data or the following first byte of 
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nonurgent data. In [RFC1122], the pointer is declared to point to the last byte of 
urgent data. However, essentially all TCP implementations do not follow this 
specification, so [RFC6093] recognizes this fact and changes various specifications 
to make the pointer indicate the first byte of nonurgent data. In this example, the 
byte with sequence number 6145 contains the 1 byte of urgent data produced by 
the sock client, but in all the segments we have seen the urgent pointer has a 
value of 1 when the sequence number field is 6145. Consequently, we can see that 
with this implementation of TCP, as with most, the exit point is the sequence num-
ber of the first byte of nonurgent data.

As we can see from this example, TCP carries urgent data inline with the data 
stream (not “out of band”). If an application really wants a separate out-of-band 
channel, a second TCP connection is the easiest way to accomplish this. (Some 
transport-layer protocols do provide what most people consider OOB data: a logi-
cally separate data path using the same connection as the normal data path. This 
is not what TCP provides.) 

Figure 15-18  The entire data transfer showing a zero window advertisement from the receiver at time 5.012. 
When the application performs its next writes, the sending TCP enters urgent mode, resulting 
in the URG bit being set starting at time 6.0113 on a window probe segment containing one 
sequence number. At time 7 the application performs its final write and closes, producing two 
empty segments. A window update at time 10.006 restarts the data transfer. A zero window 
advertisement at time 10.009 again stops the transfer but also indicates that urgent mode can 
now be exited because the urgent pointer has been acknowledged. The FIN at time 11.007 con-
tains the final data byte.
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15.7 Attacks Involving Window Management

The window management procedures for TCP have been the subject of various 
attacks, primarily forms of resource exhaustion. In essence, advertising a small 
window slows a TCP transfer, tying up resources such as memory for a potentially 
long time. This has been used as a form of attack on bad traffic (i.e., worms). The 
LaBrea tarpit [L01], for example, arranges to complete the TCP three-way hand-
shake and then either does nothing or produces minimal responses that simply 
cause the sending TCP to continually slow down. This keeps the sending TCP 
busy and essentially slows down worm propagation. Tarpits are thus attacks on 
attacking traffic.

A more recent attack was published in 2009 [I09], based on a known vulner-
ability of the persist timer. It uses a client-side variety of the “SYN cookies” tech-
nique (see Chapter 13). All the necessary connection state can thus be offloaded 
onto the victim machine, minimizing the amount of resources consumed at the 
attacker’s machine. The attack itself is similar to the LaBrea idea, except it focuses 
specifically on the persist timer. Multiple such attacks can be mounted on the 
same server, which can lead to resource exhaustion (e.g., running out of system 
memory). The “solution” to this attack, as suggested by [C723308], is to allow some 
other process to terminate TCP connections when resource exhaustion appears to 
be taking place.

15.8 Summary

Interactive data is normally transmitted in segments smaller than the SMSS. 
Delayed acknowledgments may be used by the receiver of these small segments 
to see if the acknowledgment can be piggybacked along with data going back to 
the sender. This often reduces the number of segments, especially for interactive 
traffic, where the server is echoing the characters typed at the client. However, it 
may introduce additional delay.

On connections with relatively large round-trip times, such as WANs, the 
Nagle algorithm is often used to reduce the number of small segments. This algo-
rithm limits the sender to a single small packet of unacknowledged data at any 
time. While this can reduce the number of high-overhead small packets in the 
network and reduce the total number of packets carried during a connection, it 
adds delay that is sometimes unacceptable to applications. In addition, the interac-
tion between delayed ACKs and the Nagle algorithm can lead to an undesirable 
form of temporary deadlock. Because of these issues, the Nagle algorithm can be 
disabled by applications, and most interactive applications take advantage of this 
capability.

TCP implements flow control by including a window advertisement on every 
ACK it sends. Such window advertisements signal the peer TCP how much buf-
fer space is left at the endpoint that sent the window advertisement ACK. The 
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maximum window advertisement is 65,535 bytes unless the Window Scale TCP 
option is used. In that case, the maximum window advertisement can be much 
larger (about 1GB).

The window advertisement can be as small as 0 bytes, indicating that the 
receiver is completely full. When this happens, the sender stops sending data 
and instead begins probing the closed window using a retransmission interval 
with a backoff scheme similar to timer-based retransmissions (see Chapter 14). 
This probing of the closed window continues indefinitely, until either an ACK is 
returned indicating a larger window or the receiver sends an unsolicited window 
advertisement (a window update) because buffer space has become available. This 
indefinite behavior has been used to create a resource exhaustion attack against 
TCP.

During the development of TCP, a curious phenomenon was observed. When 
a small window was advertised, the sender would immediately fill it. This behav-
ior, which causes the connection to use a large number of high-overhead small 
packets, would continue until the connection became idle and was dubbed “silly 
window syndrome.” Techniques were created to avoid it, applying to both the 
TCP send and receive logic. The sender avoids sending small segments when a 
small window is advertised; receivers try to avoid ever sending small window 
advertisements.

The size of the receiver’s window is limited by the size of the receiver’s buffer. 
Historically, applications that failed to specify their receive buffers would be allo-
cated a relatively small buffer that would cause throughput performance to suffer 
over network paths with high bandwidth and high delay. In more recent operat-
ing systems, auto-tuning sets the buffer size allocated automatically in an efficient 
way, causing such concerns to largely be a thing of the past.
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16

TCP Congestion Control

16.1 Introduction

In this chapter we investigate how TCP approaches the issue of congestion control, 
which is most important in the context of bulk data transfers. Congestion control 
is a set of behaviors determined by algorithms that each TCP implements in an 
attempt to prevent the network from being overwhelmed by too large an aggre-
gate offered traffic load. The basic approach is to have TCP slow down when it has 
reason to believe the network is about to be congested (or is already so congested 
that routers are discarding packets). The challenge is to determine exactly when 
and how TCP should slow down, and when it can speed up again.

TCP is a protocol designed to provide reliable delivery of data from one system 
to another. We have already seen in Chapter 15 how a sending TCP can be made 
to slow down if its peer (receiving) TCP cannot keep up. This is accomplished by 
TCP’s procedures for flow control and is realized by a sender adapting its sending 
rate based on the advertised Window Size field provided by a receiver in its ACKs. 
This provides explicit information about the state of the receiver back to the sender 
and allows it to avoid overrunning the receiver’s buffers.

Consider what happens when the network between a collection of senders and 
receivers is asked to carry more traffic than it can handle. Either the senders must 
slow down or the network must ultimately throw some data away (or some combi-
nation thereof). This fact arises from the most basic observation from queuing the-
ory as applied at a router: even if the router can store some data, if the long-term data 
arrival rate exceeds the long-term departure rate, any amount of intermediate stor-
age will grow without bound. Stated more simply, if a router receives more data per 
unit time than it can send out, it must store that data. If this situation persists, eventu-
ally the storage will run out and the router will be forced to drop some of the data.

This situation, when a router is forced to discard data because it cannot handle 
the arriving traffic rate, is called congestion. The router is said to be congested when 
it is in this state, and even a single connection can drive one or more routers into 
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congestion. Left unaddressed, congestion can cause the performance of a network 
to be reduced so badly that it becomes unusable. In the very worst cases, it is said 
to be in a state of congestion collapse. To either avoid or at least react effectively to 
mitigate this situation, each TCP implements congestion control procedures. Differ-
ent versions or variants of TCP (and the operating systems that host the TCP/IP 
stack) have somewhat different procedures and behaviors. We will discuss most 
of the better-known ones in this chapter.

16.1.1 Detection of Congestion in TCP

As we have seen, the primary mechanism TCP has available to combat packet loss 
is retransmission, induced either by a retransmission timer expiring, or by the fast 
retransmit algorithm (see Chapter 14). Consider, for a moment, the consequence 
of many TCP connections that share an Internet path simply retransmitting more 
packets while the network is in a state of congestion collapse. As you can imagine, 
this only makes the situation worse. It has been called the analog of pouring gaso-
line on a fire and is something to be avoided.

In order to deal with congestion, we would like to have sending TCPs slow 
down when congestion is present (or about to be) and, if the congestion has sub-
sided, detect and use an appropriate amount of new bandwidth when it becomes 
available. In the Internet, this can be quite challenging, as there has traditionally 
been no explicit way for a sending TCP to learn about the state of the intermediate 
routers. In other words, there is no explicit signaling about congestion. Instead, if 
a typical TCP is to react somehow to congestion, it must first conclude that con-
gestion is occurring. This is usually accomplished by detecting that one or more 
packets have been lost. In TCP, an assumption is made that a lost packet is an indi-
cator of congestion, and that some response (i.e., slowing down in some way) is 
required. We shall see that TCP has been this way since the late 1980s. Other meth-
ods for detecting congestion, including measuring delay and network-supported 
Explicit Congestion Notification (ECN), which we discuss in Section 16.11, allow TCP 
to learn about congestion even before it has become so bad as to cause dropped 
packets. We discuss these approaches after studying the “classic” algorithms.

Note

In today’s wired networks, packet loss is caused primarily by congestion in routers 
or switches. With wireless networks, transmission and reception errors become a 
significant cause of packet loss. Determining whether loss is due to congestion or 
transmission errors has been an active research topic since the mid-1990s when 
wireless networks started to attain widespread use.

In Chapter 14 we saw how TCP can use timers, acknowledgments, and selec-
tive acknowledgments to detect and recover from dropped packets. When packets 
are detected as lost, it is TCP’s responsibility to resend them. We are now concerned 
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with what else TCP does when it observes a lost packet. In particular, we are inter-
ested in how it interprets this as a signal that congestion has occurred, and that it 
should slow down. Just how it slows down and when (and how it speeds back up 
again) are the main subjects of the following sections. We begin with the classic 
algorithm used on a new connection to establish the base data rate and continue 
with another classic algorithm that is used by TCP during its steady-state operation 
when performing large data transfers. We will also incorporate the recommended 
variations on these algorithms into the discussion and discuss other modifica-
tions that have been made over the years. We will also examine an extended trace 
in detail. We conclude with a discussion of some of the security issues related to 
TCP congestion control and summarize the most important points. The area of 
congestion control has been a fertile area for networking researchers [RFC6077], 
and several new papers on this subject tend to appear each year.

16.1.2 Slowing Down a TCP Sender

One detail we need to address right away is just how to slow down a TCP sender. 
We saw in Chapter 15 that the Window Size field in the TCP header is used to sig-
nal a sender to adjust its window based on the availability of buffer space at the 
receiver. We can go a step further and arrange for the sender to slow down if either 
the receiver is too slow or the network is too slow. This is accomplished by intro-
ducing a window control variable at the sender that is based on an estimate of the 
network’s capacity and ensuring that the sender’s window size never exceeds the 
minimum of the two. In effect, a sending TCP then sends at a rate equal to what 
the receiver or the network can handle, whichever is less.

The new value used to hold the estimate of the network’s available capacity is 
called the congestion window, written more compactly as simply cwnd. The sender’s 
actual (usable) window W is then written as the minimum of the receiver’s adver-
tised window awnd and the congestion window:

W = min(cwnd, awnd)

With this relationship, the TCP sender is not permitted to have more than W
unacknowledged packets or bytes outstanding in the network. The total amount 
of data a sender has introduced into the network for which it has not yet received 
an acknowledgment is sometimes called the flight size, which is always less than or 
equal to W. In general, W can be maintained in either packet or byte units.

Note

When TCP does not make use of selective acknowledgment, the restriction on 
W means that the sender is not permitted to send a segment with a sequence 
number greater than the sum of the highest acknowledged sequence number and 
the value of W. A SACK TCP sender treats W somewhat differently, using it as an 
overall limit to the flight size. 
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This all seems logical but is far from the whole story. Because both the state 
of the network and the state of the receiver change with time, the values of both 
awnd and cwnd change over time. In addition, because of the lack of explicit signals 
(see the preceding section), the “correct” value of cwnd is generally not directly 
available to the sending TCP. Thus, all of the values W, cwnd, and awnd must be 
empirically determined and dynamically updated. In addition, as we said before, 
we do not want W to be too big or too small—we want it to be set to about the 
bandwidth-delay product (BDP) of the network path, also called the optimal window 
size. This is the amount of data that can be stored in the network in transit to the 
receiver. It is equal to the product of the RTT and the capacity of the lowest capac-
ity (“bottleneck”) link on the path from sender to receiver. Generally, the sending 
strategy is to keep the network busy by arranging to have an amount of data at 
least as large as the BDP in the network. Using an outstanding limit that substan-
tially exceeds the BDP, however, is usually undesirable as it can lead to unwanted 
delays (see Section 16.10). On the Internet, determining the BDP for a connection 
can be challenging, given that routes, delay, and the level of statistical multiplex-
ing (i.e., sharing of capacity) change as a function of time. 

Note

Although handling congestion at the TCP sender is our primary area of inter-
est, work has been done on handling the cases where congestion occurs on the 
reverse path, because of ACKs. In [RFC5690] a method is introduced to inform 
a TCP receiver of the ACK ratio it should use (i.e., how many packets it should 
receive before sending an ACK).

16.2 The Classic Algorithms

When a new TCP connection first starts out, it usually has no idea what the initial 
value for cwnd should be, as it has no idea how much network capacity is available 
for it to send its data. (There are some exceptions, such as systems that cache per-
formance values that were determined earlier. These were called destination met-
rics in Chapter 14.) TCP learns the value for awnd with one packet exchange to the 
receiver, but without any explicit signaling, the only obvious way it has to learn a 
good value for cwnd is to try sending data at faster and faster rates until it experi-
ences a packet drop (or other congestion indicator). This could be accomplished 
by either sending immediately at the maximum rate it can (subject to the value 
of awnd), or it could start more slowly. Because of the detrimental effects on the 
performance of other TCP connections sharing the same network path that could 
be experienced when starting at full rate, a TCP generally uses one algorithm to 
avoid starting so fast when it starts up to get to steady state. It uses a different one 
once it is in steady state.

The operation of TCP congestion control at a sender is driven or “clocked” by 
the receipt of ACKs. If a TCP is operating at steady state (with an appropriate value 
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of cwnd), receipt of an ACK indicates that one or more packets have been removed 
from the network, and consequently that an opportunity to send more has arisen. 
Following this line of reasoning, the TCP congestion behavior in steady state 
attempts to achieve a conservation of packets in the network (see Figure 16-1). The 
term conservation here is used in the sense it is in physics—that some quantity 
(e.g., momentum, energy) going into a system does not simply disappear or appear 
but rather can be found as long as proper accounting is performed.

Figure 16-1  TCP congestion control operates on a principle of conservation of packets. Packets (Pb) 
are “stretched out” in time as they are sent from sender to receiver over links with con-
strained capacity. As they are received at the receiver spaced apart (Pr), ACKs are gener-
ated (Ar), which return to the sender. ACKs traveling from receiver to sender become 
spaced out (Ab) in relation to the inter-packet spacing of the packets. When ACKs reach 
the sender (As), their arrivals provide a signal or “ACK clock,” used to tell the sender it 
is time to send more. In steady state, the overall system is said to be “self-clocked.” The 
figure is adapted from [J88] and copied from S. Seshan’s CMU Lecture Notes dated March 22, 2005.

This idea is illustrated in Figure 16-1. We shall call the top and bottom objects 
“funnels.” The top funnel holds (larger) data packets traveling along the path from 
the sender to the receiver. The comparatively narrow width of the funnel depicts 
how packets are “stretched out” in time as they travel through a relatively slow 
link. The ends of the funnels (at sender and receiver) show the queues where pack-
ets are held before or after they travel along the path. The bottom funnel holds the 
ACKs sent by the receiver back to the sender that correspond to the data packets 
in the top funnel. When operating efficiently at steady state, there are no bunches 
of packets in the top or bottom funnels. In addition, there is no significant extra 
space between packets in the top funnel. Note that an arrival of an ACK at the 
sender “liberates” another data packet to be sent into the top funnel, and that 
this happens at just the right time (i.e., when the network is able to accept another 
packet). This relationship is sometimes called self-clocking, because the arrival of 
an ACK, called the ACK clock, triggers the system to take the action of sending 
another packet.

We now turn to the main two algorithms of TCP: slow start and congestion 
avoidance. These algorithms, based on the principles of packet conservation and 
ACK clocking, were first formally described in the classic paper by Jacobson [J88]. 



ptg999

732 TCP Congestion Control 

An update to the congestion avoidance algorithm was given by Jacobson a couple 
of years later [J90]. These algorithms do not operate at the same time—TCP exe-
cutes only one at any given time, but it may switch back and forth between the 
two. We now explore these in more detail and examine what determines when 
each of them is used. We also look at how they have been modified and extended 
since they were initially implemented. Each TCP connection is able to individually 
execute these algorithms.

16.2.1 Slow Start

The slow start algorithm is executed when a new TCP connection is created or 
when a loss has been detected due to a retransmission timeout (RTO). It may also 
be invoked after a sending TCP has gone idle for some time. The purpose of slow 
start is to help TCP find a value for cwnd before probing for more available band-
width using congestion avoidance and to establish the ACK clock. Typically, a 
TCP begins a new connection in slow start, eventually drops a packet, and then 
settles into steady-state operation using the congestion avoidance algorithm (Sec-
tion 16.2.2). To quote from [RFC5681]:

Beginning transmission into a network with unknown conditions requires TCP 
to slowly probe the network to determine the available capacity, in order to avoid 
congesting the network with an inappropriately large burst of data. The slow start 
algorithm is used for this purpose at the beginning of a transfer, or after repairing 
loss detected by the retransmission timer.

A TCP begins in slow start by sending a certain number of segments (after 
the SYN exchange), called the initial window (IW). The value of IW was originally 
one SMSS, although with [RFC5681] it is allowed to be larger. The formula works 
as follows:

IW = 2*(SMSS) and not more than 2 segments (if SMSS > 2190 bytes)

IW = 3*(SMSS) and not more than 3 segments (if 2190 ≥ SMSS > 1095 bytes)

IW = 4*(SMSS) and not more than 4 segments (otherwise)

While this assignment for IW may allow several packets (e.g., three or four) 
in the initial window, we shall discuss the case where IW = 1 SMSS for simplicity. 
A TCP just starting out begins its connection, then, with cwnd = 1 SMSS, meaning 
the initial usable window W is also equal to SMSS. Note that in most cases SMSS 
is equal to the smaller of the receiver’s MSS and the path MTU (less header sizes).

Assuming no packets are lost and each packet causes an ACK to be sent in 
response, an ACK is returned for the first segment, allowing the sending TCP 
to send another segment. However, slow start operates by incrementing cwnd by 
min(N, SMSS) for each good ACK received, where N is the number of previously 



ptg999

Section 16.2 The Classic Algorithms   733

unacknowledged bytes ACKed by the received “good ACK.” A good ACK is one 
that returns a higher ACK number than has been seen so far. 

Note

The number of bytes ACKed is used to support Appropriate Byte Counting (ABC) 
[RFC3465], an experimental specification recommended by [RFC5681]. It can be 
used to counter an “ACK division” attack, described in Section 16.12, where many 
small ACKs are used in an attempt to cause a TCP sender to send faster than nor-
mal. Linux uses the Boolean system configuration variable net.ipv4.tcp_abc
to determine if ABC is enabled (default no). In recent versions of Windows, ABC 
defaults to on.

Thus, after one segment is ACKed, the cwnd value is ordinarily increased to 2, 
and two segments are sent. If each of those causes new good ACKs to be returned, 
2 increases to 4, 4 to 8, and so on. In general, assuming no loss and an ACK for 
every packet, the value of W after k round-trip exchanges is W = 2k. Rewriting, 
we can say that k = log2W RTTs are required to reach an operating window of W. 
This growth seems quite “fast” (increasing as an exponential function) but is still 
“slower” than what TCP would do if it were allowed to send immediately a win-
dow of packets equal in size to the receiver’s advertised window. (Recall that W is 
still never allowed to exceed awnd.)

If we imagine a TCP connection where the receiver’s advertised window is 
very large (say, infinitely large), cwnd is the primary governor of the sending rate 
(provided there is something for the sender to send). As we saw, this value grows 
exponentially fast in the RTT of the connection. So, eventually, cwnd (and thus 
W) could become so large that the corresponding window of packets sent over-
whelms the network (recall that TCP’s throughput rate is proportional to W/RTT). 
When this happens, cwnd is reduced substantially (to half of its former value). In 
addition, this is the point at which TCP switches from operating in slow start to 
operating in congestion avoidance. The switch point is determined by the relation-
ship between cwnd and a value called the slow start threshold (or ssthresh). 

Figure 16-2 (left) illustrates the operation of slow start. The numbers are in 
units of the RTT of the connection. Assuming the connection starts out with one 
packet (top), one ACK is returned, allowing two packets to be sent during the 
second RTT. These packets cause two ACKs to be returned. The TCP sender incre-
ments cwnd by one segment for each ACK returned, so the process continues. The 
exponential growth of cwnd as a function of time is illustrated on the right. The 
second line shows how cwnd grows when every other packet is acknowledged, 
which is common when delayed ACKs are being used. In this case, the growth 
is still exponential but not as rapid. For this reason, some TCPs arrange to delay 
ACKs only after the connection has completed slow start. In Linux, this is called 
quick acknowledgments (“quickack mode”) and has been part of the basic TCP/IP 
stack since kernel version 2.4.4.
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16.2.2 Congestion Avoidance

Slow start, just described, is used when initiating data flow across a connection or 
after a loss event invoked by a timeout. It increases cwnd fairly rapidly and helps to 
establish a value for ssthresh. Once this is achieved, there is always the possibility 
that more network capacity may become available for a connection. If such capac-
ity were to be immediately used with large traffic bursts, other TCP connections 
with packets sharing the same queues in routers would likely experience signifi-
cant packet drops, leading to overall instability in the network as many connec-
tions simultaneously experience packet drops and react with retransmissions.

To address the problem of trying to find additional capacity that may become 
available, but to not do so too aggressively, TCP implements the congestion avoid-
ance algorithm. Once ssthresh is established and cwnd is at least at this level, a 
TCP runs the congestion avoidance algorithm, which seeks additional capacity by 
increasing cwnd by approximately one segment for each window’s worth of data 
that is moved from sender to receiver successfully. This provides a much slower 
growth rate than slow start: approximately linear in terms of time, as opposed to 
slow start’s exponential growth. More precisely, cwnd is usually updated as fol-
lows for each received nonduplicate ACK:

cwndt+1 = cwndt + SMSS * SMSS/cwndt

Figure 16-2  Operation of the classic slow start algorithm. In the simple case where ACKs are not delayed, 
every arriving good ACK allows the sender to inject two new packets (left). This leads to an expo-
nential growth in the size of the sender’s window as a function of time (right, upper line). When 
ACKs are delayed, such as when an ACK is produced for every other packet, the growth is still 
exponential but slower (right, lower line).
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Looking at this relationship briefly, assume cwnd0 = k*SMSS bytes were sent 
into the network in k segments. After the first ACK arrives, cwnd is updated to be 
larger by a factor of (1/k):

cwnd1 = cwnd0 + SMSS * SMSS/cwnd0 = k*SMSS + SMSS * (SMSS/(k*SMSS)) =
k*SMSS + (1/k) * SMSS = (k + (1/k))*SMSS = cwnd0 + (1/k)*SMSS 

Because the value of cwnd grows slightly with each new ACK arrival, and this 
value is in the denominator of the expression in the first equation above, the overall 
growth rate of cwnd is slightly sublinear. Nonetheless, we generally think of con-
gestion avoidance growing the window linearly with respect to time (Figure 16-3), 
whereas slow start grows it exponentially with respect to time (Figure 16-2). This 
function is also called additive increase because a particular value (about one packet 
in this case) is added to cwnd for each successfully received window’s worth of data.

Figure 16-3  Operation of the congestion avoidance algorithm. In the simple case where ACKs are not delayed, 
every arriving good ACK allows the sender to inject approximately 1/W fraction of a new packet. 
This leads to approximately linear growth in the size of the sender’s window as a function of time 
(right, upper line). When ACKs are delayed, such as when an ACK is produced for every other 
packet, the growth is still approximately linear but somewhat slower (right, lower line).

Figure 16-3 (left) illustrates the operation of congestion avoidance. Once again, 
the numbers are in units of the RTT of the connection. Assuming the connection 
sends four packets (top), four ACKs are returned, allowing cwnd to grow slightly. 
By the second RTT period, the growth is enough to overcome the integer rounding 
and cause an increase of one SMSS to cwnd, allowing one additional packet to be 
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sent. The growth of cwnd as a nearly linear function of time is illustrated on the 
right, on a linear-linear plot. The second line to the right shows how cwnd grows 
when every other packet is acknowledged, simulating the use of delayed ACKs. In 
this case, the growth is still about linear, but not as rapid.

The assumption of the algorithm is that packet loss caused by bit errors is very 
small (much less than 1%), and therefore the loss of a packet signals congestion 
somewhere in the network between the source and destination. If this assumption 
is false, which it sometimes is for wireless networks, TCP slows down even when 
no congestion is present. In addition, many RTTs may be required for the value 
of cwnd to grow large, which is required for efficient use of networks with high 
capacity. Fixing these issues with TCP has been a popular area for research, and 
we discuss some of the various approaches later.

16.2.3 Selecting between Slow Start and Congestion Avoidance

In normal operations, a TCP connection is always running either the slow start or 
the congestion avoidance procedure, but never the two simultaneously. We now 
turn to the question, What determines the algorithm TCP uses at any given time? 
We already know that slow start is used when a new connection is created or 
when a timeout-based retransmission occurs. We now turn to what controls the 
selection between slow start and congestion avoidance.

We mentioned ssthresh earlier. This threshold is a limit on the value of cwnd
that determines which algorithm is in operation, slow start or congestion avoid-
ance. When cwnd < ssthresh, slow start is used, and when cwnd > ssthresh, con-
gestion avoidance is used. When they are equal, either can be used. The most 
important distinction between slow start and congestion avoidance, as we have 
seen, is how each modifies the value of cwnd when new ACKs arrive. What makes 
TCP somewhat tricky and interesting is that the value of ssthresh is not fixed but 
instead varies over time. Its main purpose is to remember the last “best” estimate 
of the operating window when no loss was present. Said another way, it holds the 
lower bound on TCP’s best estimate of the optimal window size.

The initial value of ssthresh may be set arbitrarily high (e.g., to awnd or higher), 
which causes TCP to always start with slow start. When a retransmission occurs, 
caused by either a retransmission timeout or the execution of fast retransmit, 
ssthresh is updated as follows:

ssthresh = max( flight size/2, 2*SMSS) [1]

Note

In Microsoft’s most recent (“Next Generation”) TCP/IP stack, this equation is 
reportedly changed to the somewhat more conservative relationship: ssthresh = 
max(min(cwnd, awnd)/2, 2*SMSS) [NB08].
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Here we see that if a retransmission is required, TCP assumes that the oper-
ating window must have been too large for the network to handle. Reducing 
the estimate of the optimal window size is accompanied by altering ssthresh to 
be about half of what the current window size is (but not ever below twice the 
SMSS). This usually results in lowering ssthresh, but it can also result in increasing 
ssthresh. If we examine the congestion avoidance procedure for TCP, we recall that 
if an entire window’s worth of data is successfully exchanged, the value of cwnd is 
allowed to increase by approximately 1 SMSS. Thus, if cwnd has grown large over 
a considerable amount of time, setting ssthresh to half of the flight size could cause 
it to increase. This happens when TCP has discovered more usable bandwidth. 
The interplay between ssthresh and cwnd, in conjunction with the operation of slow 
start and congestion avoidance, gives TCP its characteristic behavior in the face of 
congestion. We now explore the complete, combined algorithms.

16.2.4 Tahoe, Reno, and Fast Recovery

The algorithms discussed so far, slow start and congestion avoidance, constitute 
the first congestion control algorithms applied to TCP. They were introduced in 
the late 1980s with the 4.2 release of UC Berkeley’s version of UNIX, called the 
Berkeley Software Distribution, or BSD UNIX. Thus began the convention of nam-
ing various versions of TCP after U.S. cities, especially those where gambling is 
permitted.

The 4.2 release of BSD (called Tahoe) included a version of TCP that started 
connections in slow start, and if a packet was lost, detected by either a timeout or 
the fast retransmit procedure, the slow start algorithm was reinitiated. Tahoe was 
implemented by simply reducing cwnd to its starting value (1 SMSS at that time) 
upon any loss, forcing the connection to slow start until cwnd grew to the value 
ssthresh.

One problem with this approach is that for large BDP paths, this can cause the 
connection to significantly underutilize the available bandwidth while the send-
ing TCP goes through slow start to get back to the point at which it was operating 
before the packet loss. To address this problem, the reinitiation of slow start on any 
packet loss was reconsidered. Ultimately, if packet loss is detected by duplicate 
ACKs (invoking fast retransmit), cwnd is instead reset to the last value of ssthresh
instead of only 1 SMSS. (Slow start is still initiated on a timeout, which is generally 
the case for most TCP variants.) This approach allows the TCP to slow down to 
half of its previous rate without reverting to slow start.

In exploring the issue of large BDP paths further and thinking back to the 
conservation of packets principle mentioned before, it has been observed that any 
ACKs that are received, even while recovering after a loss, still represent oppor-
tunities to inject new packets into the network. This became the basis of the fast 
recovery procedure, which was released in conjunction with the popular 4.3 BSD 
Reno version of BSD UNIX. Fast recovery allows cwnd to (temporarily) grow by 1 
SMSS for each ACK received while recovering. The congestion window is therefore 
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inflated for a period of time, allowing an additional new packet to be sent for each 
ACK received, until a good ACK is seen. Any nonduplicate (“good”) ACK causes 
TCP to exit recovery and reduces the congestion back to its pre-inflated value. TCP 
Reno became very popular and ultimately the basis for what might reasonably be 
called “standard TCP.”

16.2.5 Standard TCP

Although what constitutes “standard” TCP is subject to some debate, the algo-
rithms we have discussed so far constitute the primary procedures identified 
with standard TCP operation. The slow start and congestion avoidance algorithms 
are usually implemented together, and the baseline overall behavior is given in 
[RFC5681]. This specification does not require the use of these exact algorithms, 
but a requirement is imposed that any TCP implementation not be more aggres-
sive than these algorithms would allow.

To summarize the combined algorithm from [RFC5681], TCP begins a con-
nection in slow start (cwnd = IW) with a large value of ssthresh, generally at least 
the value of awnd. Upon receiving a good ACK (one that acknowledges new data), 
TCP updates the value of cwnd as follows:

 cwnd += SMSS (if cwnd < ssthresh) Slow start

 cwnd += SMSS*SMSS/cwnd (if cwnd > ssthresh) Congestion avoidance

When fast retransmit is invoked because of receipt of a third duplicate ACK 
(or other signal, if conventional fast retransmit initiation is not used), the follow-
ing actions are performed:

 1. ssthresh is updated to no more than the value given in equation [1].

2. The fast retransmit algorithm is performed, and cwnd is set to (ssthresh + 
3*SMSS).

 3. cwnd is temporarily increased by SMSS for each duplicate ACK received.

4. When a good ACK is received, cwnd is reset back to ssthresh.

The actions in steps 2 and 3 constitute fast recovery. Step 2 first adjusts cwnd, 
which usually causes it to be reduced to half of its former value, and then tempo-
rarily inflates it to take into account the fact that the receipt of each duplicate ACK 
indicates that some packet has left the network (and thus should permit another to 
be inserted). This step is also where multiplicative decrease occurs, as cwnd is ordi-
narily multiplied by some value (0.5 here) to form its new value. Step 3 continues 
the inflation process, allowing the sender to send additional packets (assuming 
awnd is not exceeded). In step 4, the TCP is assumed to have recovered, so the 
temporary inflation is removed (and so this step is sometimes called “deflation”).
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Slow start is always used in two cases: when a new connection is started, and 
when a retransmission timeout occurs. It can also be invoked when a sender has 
been idle for a relatively long time or there is some other reason to suspect that 
cwnd may not accurately reflect the current network congestion state (see Section 
16.3.5). In this case, the initial value of cwnd is set to the restart window (RW). In 
[RFC5681], the recommended value of RW = min(IW, cwnd). Other than this case, 
when slow start is invoked, cwnd is set to IW.

16.3 Evolution of the Standard Algorithms

The classic and standard TCP algorithms made a tremendous contribution to the 
operation of TCP, essentially addressing the major problem of Internet congestion 
collapse. 

Note

The problem of Internet congestion collapse was a serious concern during the 
years 1986–1988. In October 1986 the NSFNET backbone, an important compo-
nent of the early Internet, had been observed to operate with an effective capac-
ity some 1000 times less than it should have (called the “NSFNET meltdown”). 
The primary reason for the problem was aggressive retransmissions during times 
of loss without any controls. This behavior drove the network into a persistently 
congested state where packet loss was massive (causing more retransmissions) 
and throughput was low. Adoption of the classic congestion control algorithms 
effectively eliminated this problem.

However, there remained several areas for improvement. Given TCP’s popu-
larity, a growing amount of effort was put into ensuring that TCP could be made 
to work well under a wider range of conditions. We now mention several of these 
that are found in many TCP implementations today.

16.3.1 NewReno

One problem with fast recovery is that when multiple packets are dropped in 
a window of data, once one packet is recovered (i.e., successfully delivered and 
ACKed), a good ACK can be received at the sender that causes the temporary 
window inflation in fast recovery to be erased before all the packets that were lost 
have been retransmitted. ACKs that trigger this behavior are called partial ACKs. 
A Reno TCP reacting to a partial ACK by reducing its inflated congestion window 
can go idle until a retransmission timer fires. To understand why this happens, 
recall that (non-SACK) TCP depends on the signal of three (or dupthresh) duplicate 
ACKs to trigger its fast retransmit procedure. If there are not enough packets in 
the network, it is not possible to trigger this procedure on packet loss, ultimately 
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leading to the expiration of the retransmission timer and invocation of the slow 
start procedure, which drastically impacts TCP throughput performance.

To address this problem with Reno, a modification called NewReno [RFC3782] 
has been developed. This procedure modifies fast recovery by keeping track of the 
highest sequence number from the last transmitted window of data (the recovery 
point, which we first saw in Chapter 14). Only when an ACK with an ACK num-
ber at least as large as the recovery point is received is the inflation of fast recov-
ery removed. This allows a TCP to continue sending one segment for each ACK 
it receives while recovering and reduces the occurrence of retransmission time-
outs, especially when multiple packets are dropped in a single window of data. 
NewReno is a popular variant of modern TCPs—it does not suffer from the prob-
lems of the original fast recovery and is significantly less complicated to imple-
ment than SACKs. With SACKs, however, a TCP can perform better than NewReno 
when multiple packets are lost in a window of data, but doing this requires careful 
attention to the congestion control procedures, which we discuss next.

16.3.2 TCP Congestion Control with SACK

With the introduction of SACKs and selective repeat to TCP, a sender is able to 
make better decisions about what segments to send in order to fill holes at the 
receiver (see Chapter 14). In filling the receiver’s holes, the sender generally sends 
each of the missing segments, in order, until all of the retransmissions for the lost 
segments have been received successfully. This procedure differs from the basic 
fast retransmit/recovery procedure mentioned previously in a somewhat subtle 
way.

In the case of fast retransmit/recovery, when a packet is lost, the sending TCP 
transmits only the segment it believes is lost and is able to send new data if the 
window W allows. Because the window is inflated for each arriving ACK dur-
ing fast recovery, with larger windows TCP typically is able to send some addi-
tional data after performing its retransmission. With SACK TCP, the sender can be 
informed of multiple missing segments and would theoretically be able to send 
them all immediately because they would all be in the valid window. However, 
this might involve sending too much data into the network at once, thereby com-
promising the congestion control. The following issue arises with SACK TCP: 
using only cwnd as a bound on the sender’s sliding window to indicate how many 
(and which) packets to send during recovery periods is not sufficient. Instead, the 
selection of which packets to send needs to be decoupled from the choice of when
to send them. Said another way, SACK TCP underscores the need to separate the 
congestion management from the selection and mechanism of packet retransmis-
sion. Conventional (non-SACK) TCP mixes these together.

One way to implement this decoupling is to have a TCP keep track of how 
much data it has injected into the network separately from the maintenance of 
the window. In [RFC3517] this is called the pipe variable, an estimate of the flight 
size. Importantly, the pipe variable counts bytes (or packets, depending on the 
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implementation) of transmissions and retransmissions, provided they are not 
known to be lost. Assuming a large value of awnd, a SACK TCP is permitted to 
send a segment anytime the following relationship holds true: cwnd - pipe ≥ SMSS. 
In other words, cwnd is still used to place a limit on the amount of data that can 
be outstanding in the network, but the amount of data estimated to be in the net-
work is accounted for separately from the window itself. How SACK TCP using 
this approach to congestion control compares with conventional TCP was first 
explored in detail with a series of simulations in [FF96].

16.3.3 Forward Acknowledgment (FACK) and Rate Halving

For TCP variants based on Reno (including NewReno), the typical behavior is that 
when cwnd is reduced after a fast retransmit, ACKs for at least one-half of the 
current window’s outstanding data must be received before the sending TCP is 
allowed to continue transmitting. This is an expected consequence of reducing 
the congestion window by half immediately when a loss is detected. It causes the 
sending TCP to wait for about half of an RTT and then send any new data during 
the second half of the same RTT, a more bursty behavior than is really required.

In an effort to avoid the initial pause after loss but not violate the convention 
of emerging from recovery with a congestion window set to half of its size on 
entry, forward acknowledgment (FACK) was described in [MM96]. It consists of two 
algorithms called “overdamping” and “rampdown.” Since the initial proposal, 
the authors updated their approach to form a unified and improved algorithm 
they call rate halving, based on earlier work by Hoe [H96]. To ensure that it works 
as effectively as possible, they further govern its behavior by adding bounding 
parameters, resulting in the complete algorithm being called Rate-Halving with 
Bounding Parameters (RHBP) [PSCRH].

The basic operation of RHBP allows the TCP sender to send one packet for 
every two duplicate ACKs it receives during one RTT. This causes the recovering 
TCP to have sent the appropriate amount of data by the end of the recovery period, 
but it spaces or paces this data evenly, rather than bunching all the transmissions 
into the second half of the RTT period. Avoiding the bunching or burstiness is 
advantageous because bursts tend to persist across multiple RTTs, stressing router 
buffers more than required.

To keep an accurate estimate of the flight size, RHBP uses information from 
SACKs to determine the FACK: the highest sequence number known to have 
reached the receiver, plus 1. Taking the difference between the highest sequence 
number about to be sent by the sender (SND.NXT in Figure 15-9) and the FACK 
gives an estimate of the flight size, not including retransmissions.

With RHBP, a distinction is made between the adjustment interval (the period 
when cwnd is modified) and the repair interval (when some segments are retrans-
mitted). The adjustment interval is entered immediately upon a loss or conges-
tion indicator. The final value for cwnd when the interval completes is half of 
the correctly delivered portion of the window of data in the network at the time 
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of detection. The following expression allows the RHBP sender to transmit, if 
satisfied:

(SND.NXT – fack + retran_data + len) < cwnd

This expression captures the flight size, including retransmissions, and 
ensures that if injecting another packet of length len, cwnd will not be exceeded. 
Provided all the data prior to the FACK is indeed no longer in the network (i.e., 
is lost or stored at the receiver), this causes the SACK sender to be appropriately 
controlled by cwnd. However, it can be overly aggressive if packets have been reor-
dered in the network because the holes indicated by SACK have not been lost.

In Linux, FACK and rate halving are implemented and enabled by default. 
FACK is activated only when SACK is enabled and the Boolean configuration vari-
able net.ipv4.tcp_fack is set to 1. When reordering is detected in the network, 
the more aggressive behavior of FACK is disabled.

Rate halving is one of several ways of pacing TCP’s sending procedure to 
avoid or limit burstiness. Although it offers a number of benefits, it also has a few 
problems. In [ASA00], the authors analyze TCP pacing in some detail using simu-
lations, concluding that in many cases it offers inferior performance to TCP Reno. 
Furthermore, rate-halving TCP has been known to exhibit poor performance when 
the connection may become limited by the receiver’s advertised window [MM05].

16.3.4 Limited Transmit

In [RFC3042], the authors propose limited transmit, a small modification to TCP 
designed to help it perform better when the usable window is small. Recall from 
the experience with Reno TCP that when operating with a small window, there 
may not be enough packets in the network to trigger the fast retransmit/recovery 
algorithms when loss occurs, as these algorithms typically require three duplicate 
ACKs to be observed prior to initiation.

With limited transmit, a TCP with unsent data is permitted to send a new 
packet for each pair of consecutive duplicate ACKs it receives. Doing this helps 
to keep at least a minimal number of packets in the network—enough so that 
fast retransmit can be triggered upon packet loss. This is advantageous to TCP 
because waiting for an RTO (which can be a relatively large amount of time—sev-
eral hundred milliseconds) can degrade throughput performance considerably. 
As of [RFC5681], limited transmit is now a recommended TCP behavior. Note that 
rate halving is one form of limited transmit.

16.3.5 Congestion Window Validation (CWV)

One of the issues with congestion management in TCP arises when the TCP 
sender stops sending for a period of time, either because it has no more data to 
send, or because it has been prevented from sending when it wants to for some 
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other reason. If all goes well, a sender never pauses, and it continues sending data 
and receiving ACKs from its peer. This continuous feedback enables it to keep a 
reasonably current (within one RTT) estimate of what cwnd and ssthresh should be.

If the TCP sender has been sending for some time, its cwnd may have grown 
to a substantial size. If it then fails to send for some time but resumes later, the 
large cwnd may allow the sender to inject an undesirably large number of packets 
(i.e., a high-rate burst) into the network without delay. Furthermore, if the pause 
is sufficiently long, its last cwnd value may no longer be appropriate for the path 
and congestion state.

In [RFC2861], the authors propose an experimental Congestion Window Valida-
tion (CWV) mechanism. Essentially, the sender’s current value of cwnd decays over 
a period of nonuse, and ssthresh maintains the “memory” of it prior to the initia-
tion of the decay. To understand the scheme, a distinction is made between an idle
sender and an application-limited sender. The idle sender has stopped producing 
data it wants to send into the network; ACKs for all the data it has sent so far 
have been received. Thus, the connection is truly quiescent—no data is flowing, 
so no ACKs are either, except for occasional window updates (see Chapter 15). The 
application-limited sender does have more data to send but has been unable to 
for some reason. This could be because the sending computer is busy doing other 
tasks, or because some mechanism or protocol layer below TCP is preventing data 
from being sent. This case results in underutilization of the allowed congestion 
window, but the connection is not completely quiescent. In particular, ACKs may 
still be returning for previously sent data.

The CWV algorithm work as follows: Whenever a new packet is to be sent, the 
time since the last send event is measured to determine if it exceeds one RTO. If so,

• ssthresh is modified but not reduced—it is set to max(ssthresh, (3/4)*cwnd).

• cwnd is reduced by half for each RTT of idle time but is always at least 1 
SMSS.

For application-limited periods that are not idle, the following similar behav-
ior is used:

• The amount of window actually used is stored in W_used.

• ssthresh is modified but not reduced—it is set to max(ssthresh, (3/4)*cwnd).

• cwnd is set to the average of cwnd and W_used.

Both of these changes decay the value of cwnd while “remembering” it in 
ssthresh. The first case can dramatically affect cwnd in one operation, if the applica-
tion has been idle for a long time. Handling the congestion window in this way 
can lead to better performance under some circumstances. As the authors report, 
reducing the burst of packets that can arise after an idle period eases the pressure 
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on potentially limited buffer space in routers, ultimately leading to fewer dropped 
packets. Note that because cwnd is decayed and ssthresh is not, the typical conse-
quence of applying this algorithm is to place the sender into slow start after a long 
enough pause. CWV is enabled by default in Linux TCP implementations.

16.4 Handling Spurious RTOs—the Eifel Response Algorithm 

As we saw in Chapter 15, when TCP encounters a large delay spike, it can expe-
rience a retransmission timeout even if no packet has been lost. Such spurious 
retransmissions arise in a number of circumstances relating to changes in the 
underlying link layer (such as cellular handoff) or sudden onset of severe conges-
tion contributing to a large increase in RTT. When this happens, the TCP adjusts 
ssthresh and enters slow start by setting cwnd to IW. If no packets have been lost, 
ACKs arriving after the RTO cause cwnd to grow relatively quickly, but TCP still 
sends unnecessary retransmissions and underutilizes the capacity until cwnd and 
ssthresh resettle.

To avoid the performance problems associated with spurious retransmissions, 
several methods have been proposed to detect them. We discussed some of them 
(e.g., DSACK, Eifel, F-RTO) in Chapter 14. Any one of these, or possibly others 
that may be developed, can be coupled with a response algorithm used to “undo” 
the changes TCP makes to its congestion control variables after a timeout. One 
popular (i.e., in the IETF standards track) response algorithm is the Eifel Response 
Algorithm [RFC4015].

Eifel comprises both a detection and a response algorithm, which are logically 
disjoint. Any TCP implementation using the Eifel Response Algorithm is com-
pelled to use some detection algorithm specified in a standards-track or experi-
mental RFC (i.e., one that is documented).

The Eifel Response Algorithm is aimed at handling the retransmission timer 
and congestion control state after a retransmission timer has expired. Here we 
discuss only the congestion-related portions of the response algorithm. It is initi-
ated after the first timeout-based retransmission is sent. Its purpose is to undo a 
change to ssthresh when a retransmission is deemed to be spurious. In all cases, 
before ssthresh is modified as a result of the RTO, it is captured in a special variable 
as follows: pipe_prev = min( flight size, ssthresh). Once this has been accomplished, 
a detection algorithm, such as one of those mentioned previously, is invoked in 
order to determine if the RTO is spurious. If it is, the following steps are executed 
when an ACK arrives after the retransmission:

1. If a received good ACK includes an ECN-Echo flag, stop (see Section 16.11).

 2. cwnd = flight size + min(bytes_acked, IW) (assuming cwnd is measured in 
bytes).

 3. ssthresh = pipe_prev.
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The pipe_prev variable is set before ssthresh is changed in the ordinary way. It 
provides a memory for ssthresh, so that it can be reinstantiated in step 3 if necessary. 
Step 1 deals with the case of an arriving ACK carrying the ECN flag. (We discuss 
ECN more in Section 16.11.) When this happens, it is considered unsafe to avoid 
undoing the reduction of ssthresh, so the algorithm terminates. Steps 2 and 3 consti-
tute the important part of the algorithm (with respect to cwnd). Step 2 restores cwnd
to a point where it may be able to inject some additional traffic into the network, but 
not more than IW new data. IW is considered a safe amount of data to inject into a 
network path with unknown congestion state. Step 3 restores ssthresh to its value 
before the RTO occurred, completing the undo operation.

16.5 An Extended Example

We now turn to an extended example to demonstrate most of the behaviors 
described in the preceding sections. Using the sock program, we arrange to send 
about 2.5MB of data from a Linux (2.6) sender to a FreeBSD (5.4) receiver over a 
DSL line. The DSL line is rate-limited in this direction to approximately 300Kb/s. 
The FreeBSD receiver is attached to a high-bandwidth connection. The minimum 
RTT between sender and receiver is 15.9ms, and there are 17 hops in the path. The 
systems are configured to use the baseline algorithms (i.e., slow start and conges-
tion avoidance) for most of their processing. This avoids many of the operating-
system-specific details. (We cover some of these later.) To set up this experiment, 
we run the following command at the receiver:

FreeBSD% sock -i -r 32768 -R 233016 -s 6666

This command arranges for the sock program to use a fairly large socket receive 
buffer (228KB) and perform fairly large application reads (32KB). For the path 
used, this is an adequate size of buffer for the receiver. At the sender we run the 
sock program in sending mode, as follows:

Linux% sock -n20 -i -w 131072 -S 262144 128.32.37.219 6666

This selects a large send buffer and sends 20*131,072 bytes (2.5MB) of data. The 
packet trace is captured using tcpdump on the sender. The command used to 
capture this trace is as follows:

Linux# tcpdump -s 128 -w sack-to-free-12.td port 6666

This ensures that at least 128 bytes of each packet are captured, plenty to capture 
all interesting TCP and IP header information. After the trace is collected, we can 
use the tcptrace tool [TCPTRACE] to get a number of useful summary statistics 
regarding the connection: 

Linux% tcptrace -Wl sack-to-free-12.td
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This command requests the program to provide information on the congestion 
window and output using a long (verbose) format. It produces the following 
output:

1 arg remaining, starting with 'sack-to-free-12.td'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov  4, 2004

3175 packets seen, 3175 TCP packets traced
elapsed wallclock time: 0:00:00.167213, 18987 pkts/sec analyzed
trace file elapsed time: 0:01:40.475872
TCP connection info:
1 TCP connection traced:
TCP connection 1:
      host a:        adsl-63-203-72-138.dsl.snfc21.pacbell.net:1059
      host b:        dwight.CS.Berkeley.EDU:6666
      complete conn: yes
      first packet:  Wed Sep 28 22:15:29.956897 2005
      last packet:   Wed Sep 28 22:17:10.432769 2005
      elapsed time:  0:01:40.475872
      total packets: 3175
      filename:      sack-to-free-12.td
  a->b:                                  b->a:
  total packets:          1903           total packets:          1272      
  ack pkts sent:          1902           ack pkts sent:          1272      
  pure acks sent:            2           pure acks sent:         1270      
  sack pkts sent:            0           sack pkts sent:           79      
  dsack pkts sent:           0           dsack pkts sent:           0      
  max sack blks/ack:         0           max sack blks/ack:         2      
  unique bytes sent:   2621440           unique bytes sent:         0      
  actual data pkts:       1900           actual data pkts:          0      
  actual data bytes:   2659240           actual data bytes:         0      
  rexmt data pkts:          27           rexmt data pkts:           0      
  rexmt data bytes:      37800           rexmt data bytes:          0      
  zwnd probe pkts:           0           zwnd probe pkts:           0      
  zwnd probe bytes:          0           zwnd probe bytes:          0      
  outoforder pkts:           0           outoforder pkts:           0      
  pushed data pkts:         44           pushed data pkts:          0      
  SYN/FIN pkts sent:       1/1           SYN/FIN pkts sent:       1/1      
  req 1323 ws/ts:          Y/Y           req 1323 ws/ts:          Y/Y      
  adv wind scale:            2           adv wind scale:            2      
  req sack:                  Y           req sack:                  Y      
  sacks sent:                0           sacks sent:               79      
  urgent data pkts:          0 pkts      urgent data pkts:          0 pkts 
  urgent data bytes:         0 bytes     urgent data bytes:         0 bytes
  mss requested:          1412 bytes     mss requested:          1460 bytes
  max segm size:          1400 bytes     max segm size:             0 bytes
  min segm size:           640 bytes     min segm size:             0 bytes
  avg segm size:          1399 bytes     avg segm size:             0 bytes
  max win adv:            5808 bytes     max win adv:          233016 bytes
  min win adv:            5808 bytes     min win adv:          170016 bytes
  zero win adv:              0 times     zero win adv:              0 times
  avg win adv:            5808 bytes     avg win adv:          232268 bytes
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  max owin:             137201 bytes     max owin:                  1 bytes
  min non-zero owin:         1 bytes     min non-zero owin:         1 bytes
  avg owin:              37594 bytes     avg owin:                  1 bytes
  wavg owin:             33285 bytes     wavg owin:                 0 bytes
  initial window:         2800 bytes     initial window:            0 bytes
  initial window:            2 pkts      initial window:            0 pkts 
  ttl stream length:   2621440 bytes     ttl stream length:         0 bytes
  missed data:               0 bytes     missed data:               0 bytes
  truncated data:      2556640 bytes     truncated data:            0 bytes
  truncated packets:      1900 pkts      truncated packets:         0 pkts 
  data xmit time:       99.631 secs      data xmit time:        0.000 secs 
  idletime max:         7778.8 ms        idletime max:         7930.4 ms   
  throughput:            26090 Bps       throughput:                0 Bps  

From this useful tool we can learn quite a bit about the connection. We are 
primarily interested in the left portion of the output (a->b). First of all, we see that 
1903 packets were sent in the a->b direction and 1902 of them were ACKs. This is 
expected, as the very first packet is normally a SYN—the only packet without the 
ACK flag turned on. Pure ACKs refer to packets containing no data. The sender 
produces one of these early in the connection, when providing an ACK to its peer’s 
SYN + ACK and when producing the final ACK when the connection is closed, 
so this is also expected. In the second column (b->a direction), we find that the 
receiver sent 1272 packets, all of which are ACKs. Of these, 1270 were pure ACKs, 
and 79 SACK packets (i.e., ACKs containing the SACK option) were sent. The two 
“non-pure” ACKs are the SYN + ACK and the FIN + ACK sent at the beginning 
and end of the connection, respectively.

The next five values indicate the proportion of data that was retransmitted. As 
we can see, 2,621,440 unique bytes were sent (i.e., not retransmitted), but 2,659,240 
bytes were sent in total, meaning some 2,659,240 – 2,621,440 = 37,800 bytes must 
have been sent more than once. The next two fields confirm this and indicate 
that these retransmitted bytes were contained in 27 retransmitted packets, for an 
average retransmitted segment size of 1399 bytes. Because this connection trans-
ferred 2,659,240 bytes in 100.476s, its average throughput is 26,466 bytes/s (about 
212Kb/s). Its average goodput, the amount of unretransmitted data transferred 
per unit time, is 2,621,440/100.476 = 26,090 B/s, about 209Kb/s. As we shall see, this 
connection experiences a number of significant disruptions to its normal opera-
tion. We shall use Wireshark’s analysis capabilities and our own analysis to follow 
TCP’s behavior when such events occur.

To get a visual image of the trace, we can use the Statistics | TCP Stream 
Graph | Time-Sequence Graph (tcptrace) function in Wireshark’s Statistics 
menu to obtain the image shown in Figure 16-4 (enhanced with arrows for the 
discussion that follows).

The y-axis of Figure 16-4 represents the relative TCP sequence number. Each 
small tick mark represents 100,000 sequence numbers. The x-axis is time, in sec-
onds. The dark solid line comprises many smaller I-shaped line segments, each 
of which represents the range of sequence numbers contained in a TCP segment. 
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The height of the I indicates the user-data payload size, in bytes. The slope of the 
“line” formed by these I-shaped characters is the data rate achieved by the con-
nection. Any movement to the lower right indicates a retransmission. The slope of 
the line for any given time range provides the average throughput over that time. 
As we can see, the highest sequence number sent was about 2600000 at time 100, 
which provides for a rough average goodput rate of 26,000 bytes/s, quite close to 
the numeric value from the preceding tcptrace output.

The top line is the largest sequence number the receiver is willing to accept 
(its highest advertised window) so far. As we can see, at the beginning of the time 
series, this line is at about 250000, with the actual value being 233016, as indi-
cated in the tcptrace output, in the b→a column. The bottom line represents the 
highest ACK number received at the sender so far. As discussed previously, TCP 
searches for additional bandwidth while it operates, by increasing its congestion 

Figure 16-4  Wireshark trace of a 2.5MB file upload executed by a Linux 2.6.10 TCP sender over a 
DSL line rate-limited to approximately 300Kb/s. The dark line represents sent sequence 
numbers. The top line is the highest sequence number advertised by the receiver (its 
right window edge), and the lower line represents the highest segment acknowledged 
by the receiver so far seen at the sender. The 11 events labeled represent cases where the 
congestion window has been modified.
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window. It does not violate the receiver’s advertised window. We see this in opera-
tion in this graph as the solid line moves from the lower line toward the upper 
line over time. If the upper line is never reached, either the sender or the usable 
network capacity is the limiting factor for the throughput of the connection. If the 
upper line is always reached, the receiver’s window is the likely limiting factor. 

16.5.1 Slow Start Behavior

We begin our analysis by observing the operation of the slow start algorithm 
described earlier. In Wireshark, we select the first packet of the trace and then 
use its Statistics | Flow graph function to illustrate the packets exchanged at the 
beginning of the connection (see Figure 16-5).

Figure 16-5  The Wireshark analysis shows the sequence and ACK numbers exchanged when the 
connection is first established. Each ACK received at the sender liberates two or three 
packets. This characteristic is typical of a sender in slow start. 

Here we see the initial SYN and SYN + ACK exchange. The ACK at time 0.032 
is a window update (see Chapter 15). The first two data packets are sent at times 
0.126 and 0.127. The ACK at time 0.210 is not for a single packet. Its ACK num-
ber is 2801 and thus ACKs both of the previously sent data packets because of the 
cumulative property of TCP ACKs. This is an example of delayed ACKs, which are 
often generated for every other data packet (or more frequently, as recommended 
by [RFC5681]). As we shall see for this particular (FreeBSD 5.4) receiver, it alter-
nates between ACKing one packet and two packets. This means there are two 
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ACKs returned for every three data packets sent on average (assuming no errors or 
retransmissions). We discussed delayed ACKs and window updates in Chapter 15.

An ACK arriving that covers two packets allows the sliding window at the 
sender to move forward by two packets and therefore permits two additional 
packets to be sent into the network. However, because this connection is just start-
ing out and it is still executing slow start, the arrival of a good ACK causes the 
sender to increase its congestion window by one packet (this Linux TCP manages 
its congestion window in packet units). In this case, the cwnd grows from 2 to 3. 
This has effect of allowing three packets to be sent overall as a result of the arriving 
ACK. They are sent at times 0.215, 0.216, and 0.217.

The ACK arriving at time 0.264 ACKs a single packet and indicates that the 
receiver next expects to see sequence number 4201. That packet, however, and the 
one after it with sequence number 5601, have already been sent and are still out-
standing. Thus, the ACK arrival allows cwnd to grow from 3 to 4, but because 
two packets are already outstanding, only two more are allowed to be sent (one 
because the ACK slid the window forward, another because the received good 
ACK allowed cwnd to grow by one packet). They are sent at times 0.268 and 0.268 
(within the same 1/1000s).

This startup behavior is typical of a sender executing slow start with a receiver 
delaying ACKs. The process continues in this fashion (each ACK liberating two 
or three packets) until something interesting occurs at about time 5.6. We now 
explore this further.

16.5.2 Sender Pause and Local Congestion (Event 1)

Looking at Figure 16-4, we find that after a segment is sent at time 5.512, a pause 
occurs until the next data segment is set at time 6.162. This can be better seen by 
using Wireshark’s graphical zoom-in feature as shown in Figure 16-6.

In this figure we see that the sender has stopped sending, no retransmitted 
packet appears to be present, yet the data rate appears to decrease after the pause. 
Why is this? We can investigate further with the flow trace function once again 
(see Figure 16-7).

The sending TCP has evidently ceased its sending demand at time 5.559. This 
is supported by the fact that the last transmitted data segment before the pause 
has the PSH flag turned on, which typically indicates that the sending buffer has 
been emptied. There could be several reasons for this, including the possibility 
that the host system is busy doing something else, preventing the sending applica-
tion from initiating its next write of data into the network.

We can observe that this pause is not the beginning of a retransmission recov-
ery period, yet the slope of the line decreases after the pause, indicating a reduced 
sending rate. Let us explore this behavior more closely to figure out why.

The last sequence number sent before the pause is 343001 + 1400 – 1 = 344400, 
which has never been sent before and is therefore not a retransmission. After the 
segment is sent at time 5.486 (highlighted), this connection will have its greatest 
amount of outstanding data: 341,601 + 1400 – 205,801 = 137,200 bytes (98 packets). 
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This tells us that the value of cwnd is 98 packets. The arrival of the ACK at time 
5.556 indicates that two more packets have been received at the receiver. The last 
packet to be sent before the pause contains sequence number 344400, so 97 packets 
are outstanding.

While the application is paused, 11 ACKs arrive (each alternating between 
ACKing either one or two full-size segments as mentioned before). The last one 
indicates that sequence number 233800 has been received, meaning 110,600 bytes 
(79 packets) now remain outstanding. At this point, the sender wakes up and con-
tinues to transmit. As a result of receiving this ACK at time 6.204, it should be able 
to inject 98 – 79 = 19 more packets at this point but is able to send only 8. The last 
sequence number it is able to send is 354201 + 1400 – 1 = 355600 at time 6.128.

What happens to the TCP at this point is not immediately obvious from the 
trace. We would have expected 19 packets to be sent, but only 8 were. The reason 
is that the sender filled a local (lower-layer) queue with its burst of packets and the 
subsequent ones were unable to be sent. Using the following command in Linux, 
and knowing that our transfer takes place over the ppp0 network interface, we 
can try to determine if some lower layer has caused TCP to have problems:

Figure 16-6  After starting using the slow start procedure, the connection pauses for about 512ms, at 
time 5.512, and then continues by sending a burst.
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Linux% tc -s -d qdisc show dev ppp0
qdisc pfifo_fast 0: bands 3 priomap  1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
Sent 122569547 bytes 348574 pkts (dropped 2, overlimits 0 requeues 0)

The tc program is used to administer the packet scheduling and traffic control 
subsystem in Linux [LARTC]. The –s and –d options provide detailed statistics. 
The directive qdisc show dev ppp0 means the queuing discipline for device 
ppp0 should be displayed, which is the method used to hold and prioritize the 
order in which packets are sent. Notice the two dropped packets. These packets 
were not dropped in the network but rather in the sending computer in a protocol 
layer below TCP. Furthermore, because they were dropped in a layer below TCP 
but above the layer where the packet capture facility operates, these packet trans-
mission attempts are not visible in the trace. Dropping transmitted TCP packets at 
the sending system is sometimes called local congestion, and it arises because TCP 
is producing data faster than the underlying local queues can be emptied. 

Figure 16-7  The sender pauses at time 5.559. In addition, the burst of packets at time 6.209 is limited 
to eight because of local congestion. Some TCP implementations such as this one limit 
the sending rate to avoid congesting queues on the sending host.
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Note

The Linux traffic control subsystem and other priority or QoS features supported 
in routers and operating systems (e.g., Microsoft’s qWave API [WQOS]) support 
different queuing disciplines that may order packets differently based on features 
in the packets (e.g., the IP DSCP value or TCP port number). Placing priority 
on some packets (e.g., multimedia data packets, TCP pure ACKs) may improve 
the user experience for interactive applications in networks that support priority. 
Much of the Internet does not support such priorities, but many LANs and some 
enterprise IP networks do. 

Local congestion is one of several reasons the Linux TCP implementation may 
be placed in the Congestion Window Reducing (CWR) state [SK02]. It starts by set-
ting ssthresh to cwnd/2, and by setting cwnd to min(cwnd, flight size + 1). In the 
CWR state, the sender reduces cwnd by one packet for every two ACKs received 
until cwnd reaches the new ssthresh or the CWR state is exited for some other rea-
son such as a loss event. It is essentially the rate-halving algorithm we mentioned 
previously. It is also invoked when the sending TCP receives an ECN-Echo indica-
tion in the received TCP header (see Section 16.1.1). 

With this knowledge, we can now understand what happened. When TCP 
continues after the pause, it is able to send only 8 packets. Any additional packets 
cannot be sent because of local congestion and instead place the TCP into the CWR 
state. Immediately, ssthresh is reduced to 98/2 = 49 packets and cwnd is set to 79 + 8 
= 87 packets. It then remains in the CWR state where it reduces cwnd by 1 for every 
two ACKs it receives, leading to a reduction in sending rate, until cwnd reaches 66 
packets at time 8.364.

The reduction in sending rate can also be observed as follows: Looking at Fig-
ure 16-6, before time 5.5 the slope of the line gives an effective data rate of approxi-
mately 500Kb/s. This is higher than the capacity of the link in the direction of the 
data transfer, so this extra apparent capacity is the result of one or more queues 
being filled up in the path, leading to an increased RTT because of queuing delay. 
We can use the Statistics | TCP Stream Graph | Round Trip Time Graph to visual-
ize this effect (see Figure 16-8).

In this figure, the y-axis represents the estimated RTT in seconds and the x-axis 
represents the sequence number. We can see that at approximately sequence num-
ber 340000, the RTT begins to decrease. This sequence number corresponds closely 
to the last sequence number sent before the pause described earlier (344400). The 
decreasing RTT corresponds to the fact that as the sender slows down, the net-
work is becoming less loaded (i.e., the rate at which data is draining from the net-
work exceeds the rate at which new traffic is arriving). This causes queues within 
network routers to empty, leading to a smaller wait time and a consequentially 
lower RTT.

The sending rate reduction continues while TCP remains in the CWR state. 
Eventually, if this continued, the RTT would decrease to its bare minimum value 
of about 17ms. In general, TCP avoids allowing this to happen because it wants to 
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Figure 16-8  The sender’s estimated connection round-trip time. Periods of increasing RTT (dense 
groupings of increasing values) correspond to buffers filling because of an excess of 
sending rate over forwarding rate at a router along the path. Decreasing RTTs represent 
the opposite effect, resulting from the sender slowing down and the queues draining.

“keep the pipe full” to ensure that it is using the maximum amount of network 
capacity currently available to it.

16.5.3 Stretch ACKs and Recovery from Local Congestion

At time 8.364, following the gradual reduction in cwnd initially caused by the TCP 
entering the CWR state, the TCP appears to start decreasing more quickly. This is 
a consequence of a change in the relationship of cwnd and the amount of outstand-
ing data indicated by the ACK at time 8.362 (highlighted in Figure 16-9).

The ACK at time 8.362 is for sequence number 317801, but the previously 
received ACK is for sequence number 313601, meaning this new ACK is for 317,801 
– 313,601 = 4200 bytes (three packets). This is commonly called a stretch ACK, mean-
ing it ACKs more than twice the largest segment sent so far. It could be caused by 
a number of possibilities, the simplest of which is a lost ACK. It is usually difficult 
to determine with certainty the cause of the stretch ACK, but the precise reason 
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Figure 16-9  A “stretch ACK” acknowledges three packets’ worth of sequence numbers. Such ACKs 
can cause the sender to act in a bursty manner and can occur when other ACKs are lost 
in transit.

is not usually important. In this example, we can assume that an earlier ACK was 
lost and continue to investigate how the sender behaves. Its arrival causes cwnd to 
drop from 68 to 66.

The Linux TCP implementation attempts to revise its estimate of the number 
of outstanding packets whenever it receives an ACK. (It also attempts to validate 
the congestion window whenever it sends segments, according to the Conges-
tion Window Validation algorithm described previously, but this does not have 
an effect here.) When in CWR state, if the outstanding packet count estimate is 
reduced for some reason, as it is here after receiving the stretch ACK, cwnd is 
adjusted to be the estimate plus 1. Note that this is in addition to its ordinary 
behavior in CWR, where it reduces cwnd by 1 for each pair of ACKs received. 
Generally, cwnd is reduced by either 1 or 0 for each ACK, and then cwnd is set to 
min( flight size + 1, [possibly reduced] cwnd). The CWR state remains operating 
until cwnd reaches ssthresh or some other event, such as a loss and retransmission, 
occurs.

Prior to receiving the stretch ACK, at time 8.258, 407,401 + 1400 – 313,601 = 
95,200 bytes (68 packets) are outstanding. After the stretch ACK is received, the 
number of outstanding packets is reduced to 65 and cwnd is set to 66.

Because the flight size estimate and cwnd are closely coupled in the CWR 
state, and the TCP receiver in this example delays ACKs, the result of a pair of 
ACKs arriving is to reduce cwnd by 2 and to liberate one packet. The reason for 
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this is as follows: Assume that before the arrival of any ACKs, cwnd is c0 and the 
flight size estimate is f0 = c0. When the first ACK arrives (i.e., for one packet), f1 = 
f0 - 1 and cwnd is updated to c1 = min(c0 - 1, f1 + 1) = c0 - 1. When the second ACK 
arrives (for two packets, because of delayed ACKs), f2 = f1 – 2 = c0 - 3 and cwnd is set 
to c2 = min(c1, f2 + 1) = min(c0 - 1,c0 - 2) = c0 - 2. Because the congestion window has 
shrunk by two packets, but three packets have been ACKed during this period, a 
single packet is liberated after the receipt of the second ACK.

The sender exits the CWR state at time 9.37 when cwnd reaches ssthresh at 49 
packets. TCP now returns to normal behavior and continues in congestion avoid-
ance (see Figures 16-10 and 16-11).

Figure 16-10  By time 9.369, the sender reverts to normal and sends either one or two packets per 
received ACK.

In Figure 16-10, the circled packets indicate where the sender’s state changes 
from CWR back to normal, where the congestion avoidance algorithm takes over. 
Figure 16-11 shows this behavior in more detail.

The sender continues in congestion avoidance, achieving relatively stable 
throughput until time 17.232. At this point, severe network congestion begins to 
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form, contributing to a large increase in the RTT. In Figure 16-8, this happens at 
sequence number 720000, where the RTT grows to about 6.5s—a more than three-
fold increase from its previously stable value of about 2s. This effect is common 
with the onset of severe congestion. Eventually, the network congestion is suf-
ficiently severe so as to cause a packet to be dropped. The sending TCP responds 
with its first retransmission.

16.5.4 Fast Retransmission and SACK Recovery (Event 2)

At time 21.209, after the dramatic increase in measured RTT, we observe the first 
retransmission. We can see this in more detail by zooming in as shown in Figure 16-12. 
The first retransmission (circled) is for the packet starting with sequence number 
690201, matching the highest ACK received so far (also 690201). It is triggered by 
the receipt of a single duplicate ACK carrying the SACK block [698601,700001]. 
Recall that these numbers indicate the sequence number range already received at 
the receiver. In this case, it is a single packet.

At time 21.209, when the retransmission takes place, the largest sequence 
number sent so far is 761601 + 1400 – 1 = 763000, and cwnd is 52. In conjunction 
with this fast retransmit, ssthresh is reduced from 49 to 26, and TCP enters the 
Recovery state. This TCP remains in Recovery state until it receives a cumula-
tive ACK for the recovery point: sequence number 763000 (or higher). In addition, 

Figure 16-11  TCP has completed its recovery and is back in the normal (congestion avoidance) state. 
It sends one or two packets for each ACK received.
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cwnd is reduced to ( flight size + 1) packets. However, because data has likely been 
lost, determining the flight size is not so straightforward. It is accomplished using 
the following relationship:

flight size = packets_outstanding + packets_retransmitted - packets_removed

The first term on the right-hand side represents all the packets sent once by 
the sender and not yet ACKed with the regular TCP cumulative ACK field. The 
second term represents any that have been resent (and not ACKed), and the final 
term represents any packets that are no longer in the network but also have not 
been ACKed by the basic TCP cumulative ACK. The value of packets_removed must 
be estimated because TCP has no reliable way to directly learn it. It represents the 
sum of any (out-of-order) packets cached at the receiver plus any packets that have 
been lost in the network. With SACK, it is possible to learn the number of packets 
cached at the receiver, but the number of lost packets must still be estimated.

Figure 16-12  The first retransmission (circled) occurs at time 21.209. SACK blocks are used to guide 
the sender as to what packets to retransmit. Eight retransmissions in total occur 
between times 21.0 and 22.0.
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The value of packets_outstanding here is (763,001 – 690,201)/1400 = 72,800/1400 
= 52 and the number of packets cached in the receiver is (700,001 – 698,601)/1400 
= 1400/1400 = 1 (derived from the sequence numbers in the SACK block). With 
FACK enabled, as it is here by default, holes in the receiver inferred by SACK infor-
mation are considered to be lost. Thus, in this case, TCP estimates that 698,601 – 
690,201 = 8400 (6 packets) have been lost. The flight size is therefore 52 + 1 - (1 + 6) 
= 46 packets, and cwnd is set to 47. While in the Recovery state, TCP reduces cwnd
by one packet for every two packets it receives, similar to the CWR state. After the 
first retransmission, another seven retransmissions take place, followed by trans-
mission of new data, based on SACK option data carried in each of the arriving 
ACKs between times 21.2 and 21.7 (see Figure 16-13).

In this figure, much of the normal Wireshark information has been removed 
to more clearly see the SACK options on each ACK. By looking at the SACK 
sequence numbers (SLE and SRE), we can see that most of the time there are two 
active blocks at the receiver: [698601,700001], which holds one packet, and another 
[702801,763001] (at its largest), that grows to be 43 packets. During the recovery 
period, the general rate-halving algorithm applicable to the CWR and Recovery 
states reduces cwnd by at least one packet for every pair of ACKs received. Because 
each received ACK effectively ACKs one packet in this case (through an increase 
in the SACK block size by one packet), flight size reduces by 1, which would permit 
another packet to be sent. However, because cwnd is also reduced by 1 for every 
other ACK, it takes two ACKs to liberate a new packet. Note how this differs from 
the CWR case. In that case, some ACKs provided acknowledgment for two pack-
ets, whereas here only one packet is ACKed (SACKed) per arriving ACK. Thus, for 
each of the transmissions and retransmissions shown in the plot, cwnd is reduced 
by 1 after each pair of ACKs has been received. During this recovery period, over-
all, cwnd shrinks from 47 to 20.

Most ACKs containing SACK options are duplicate ACKs for sequence num-
ber 690201 (44 of them), as Wireshark points out. There are five good ACKs that 
contain the SACK blocks [702801,763001] and [698601,700001]. Two more contain 
only the SACK block [702801,763001]. These good ACKs do not take the sender out 
of recovery, because their ACK numbers are all below the sequence number of the 
recovery point at 763000; they are partial ACKs, as discussed earlier.

TCP recovers from fast retransmit at time 23.301 with the arrival of a good 
ACK equal to a sequence number (765801) larger than the recovery point. At this 
point, cwnd is 20 and ssthresh is 26, meaning TCP is in slow start. By time 23.659, 
after several round trips, cwnd reaches the value 27, TCP is in the normal operat-
ing state, and the congestion avoidance algorithm takes over. This completes the 
sender’s first fast retransmit recovery period.

16.5.5 Additional Local Congestion and Fast Retransmit Events

The next four events consist of local congestion, a fast retransmit, and two more 
local congestion episodes. They are very similar to the types of events we have 
seen already, so they are summarized here only briefly.
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Figure 16-13  SACK recovery after fast retransmission. Packet 871 contains the first SACK option used on the connection. 
Subsequent ACKs contain SACK information until packet 950.
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16.5.5.1 CWR Again (Event 3)
A CWR event due to local congestion occurs at time 30.745. At this point, 1,090,601 
+ 1400 – 1,051,401 = 40,600 (29 packets) are outstanding, and cwnd is 31. This should 
allow two additional packets to be injected, but none are, because of local conges-
tion. In this particular case, cwnd is set to flight size + 1 = 30, and ssthresh is reduced 
to 15. TCP exits the CWR state when cwnd reaches ssthresh. This happens at time 
34.759, after another significant increase in the connection’s RTT.

16.5.5.2 Second Fast Retransmit (Event 4)
At time 36.914, there is another fast retransmit when cwnd = 16. Using the basic 
display from Wireshark, such retransmissions are easy to spot (see Figure 16-14). 

Figure 16-14  A Linux TCP sender enters the Disorder state upon receiving a duplicate ACK or an ACK with 
SACK information. Packets arriving while in this state trigger transmissions of new data. Subse-
quent duplicate ACKs (or presence of SACK information) place the sender into the Recovery state 
where retransmissions take place. 
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Here, the ACK arriving at time 36.878 (packet 1366) carries the SACK block 
[1117201,1118601] and ACK number 1110201. This places Linux TCP in the Disorder 
state, where arriving packets liberate one packet each (similar to limited transmit) 
of new data. Packet 1367 is the packet liberated in this case. 

With the arrival of the ACK at time 36.912 (packet 1368), containing SACK 
block [1117201,1120001] and a duplicate ACK, TCP enters the Recovery state and 
triggers the fast retransmit at time 36.914 (packet 1369). The highest sequence num-
ber sent so far is 1132601 + 1400 – 1 = 113400. Recovery is eventually completed 
at time 37.455, with the arrival of the ACK containing sequence number 1134001 
(packet 1391). Note that immediately following this ACK is a window update. For 
bulk data transfers such as the present example, where the receiver’s window is 
large relative to the bandwidth-delay product of the network, such updates are not 
usually of much consequence. When we have interactive traffic, small windows, 
or servers that only occasionally read from the network, these updates can become 
quite important, as we saw in Chapter 15. When the first retransmission takes 
place, ssthresh is reduced from 16 to 8. Eventually, when recovery completes, cwnd 
= 4 and ssthresh = 8. This leaves the sender in slow start because cwnd is smaller 
than ssthresh.

16.5.5.3 CWR Again (Events 5 and 6)
After the arrival of the ACK for sequence number 1359401 at time 43.356, TCP 
once again enters the CWR state because of local congestion when it tries to send 
subsequent packets. This ultimately reduces ssthresh to 8 and cwnd becomes 15. A 
second transmission failure, while in the CWR state, brings ssthresh down to 12. 
The CWR state is exited with cwnd = 7 and ssthresh = 8.

Another round of local congestion at time 59.652 forces TCP into CWR when 
cwnd = 19 and ssthresh = 10. In this case, the CWR state is interrupted by a timeout 
that places TCP into the Loss state. This represents a new type of event for us to 
investigate.

16.5.6 Timeouts, Retransmissions, and Undoing cwnd Changes

Although TCP keeps a retransmission timer in case fast retransmit is unable to 
repair a loss, we have not yet seen it in operation. This is fortunate, because gener-
ally when a timeout occurs, the connection is experiencing significant congestion 
and performance problems. In the next portion of the trace, shown in Figure 16-15, 
we see how the sending TCP handles the situation when its retransmission timer 
expires.

16.5.6.1 First Timeout (Event 7)
A retransmission occurs at time 62.486 (packet 2157) for sequence number 1773801 
(highlighted in Figure 16-15). Immediately prior to this, there is no evidence of 
duplicate ACKs or SACKs. 
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In Figure 16-15, at time 62.486, about 1.58s have elapsed since the last ACK was 
received, but according to Figure 16-8, the estimated RTT at this point is only about 
800ms. Thus, we may conclude this retransmission to be the result of a retransmis-
sion timer expiration. This places TCP into the Loss state, which ordinarily causes 
a drastic reduction of cwnd and effectively restarts the TCP in slow start. Here, 
TCP sets cwnd = 1 and ssthresh = 5, placing TCP in slow start, as expected. The 
timeout also forces any stored SACK information to be discarded. However, the 
receiver continues to send SACK information, so the sender can still make use of 
new SACK information it receives.

Note

TCP is supposed to “forget” its knowledge about received SACK information when 
experiencing a timeout because of the possibility that a receiver may renege on 
SACK information it provided earlier. This is suggested by [RFC2018] because 
of the (obscure) possibility that a receiver may wish to adjust its buffering so 
as to delete out-of-order data it has accumulated. Although not common, such 
behavior is permitted. When a receiver reneges, it is required to include the most 

Figure 16-15  The sender experiences its first timeout when RTO = 1.57s. In this case, the sender declares the 
timeout to be spurious and undoes the modifications it made to its congestion control state.
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recently received data blocks in the first SACK block of ACKs generated, even if 
it is discarded. Except for this block, additional blocks must cease to report data 
no longer being held at the receiver.

Most interestingly here, this congestion action is undone. As discussed earlier, 
the Eifel Response Algorithm can be invoked when TCP believes a retransmission 
timeout to be erroneous. In this case, it is declared erroneous because of evidence 
in the timestamp. The ACK received at time 62.757 for sequence number 1775201 
(packet 2158) carries a TSOPT with TSV of 17152514. However, the retransmission 
has the TSV of 17155274. Because the TSER field in the ACK covering the retrans-
mitted segment is earlier than the retransmission, the hole the retransmission was 
attempting to fill was not really a hole at all. Instead, the expiration of the retrans-
mission timer must have been erroneous.

By declaring the retransmission timer expiration to be erroneous and invok-
ing an Eifel-like response algorithm, TCP restores cwnd and ssthresh to their for-
mer values of 10 and immediately shifts to a normal operating state. This activates 
the congestion avoidance algorithm, and TCP continues without much fuss.

16.5.6.2 Fast Retransmit (Event 8)
The arrival of a duplicate ACK for sequence number 1789201 carrying SACK block 
[1792001,1793401] at time 67.510 (packet 2179) places TCP into the Disorder state 
once again. The largest sequence number sent so far when this state is entered 
is 1806000. Additional arriving SACKs trigger entry into the Recovery state and 
sending of another fast retransmit at time 67.550 for sequence number 1789201 
(packet 2182). This reduces ssthresh to 5 and cwnd begins shrinking until it also 
reaches 5. Recovery is complete with the arrival of an ACK at time 67.916 contain-
ing sequence number 1806001 (packet 2197).

16.5.6.3 CWR Again (Event 9)
There is another local congestion event at time 77.121 when cwnd = 18. This sets 
ssthresh = 9 and places TCP into the CWR state once again. However, the reduction 
of cwnd in the CWR state this time is interrupted early by a timeout, when cwnd
has been reduced by only 1, to 8.

16.5.6.4 Second Timeout (Event 10)
Another retransmission timeout triggers a retransmission at time 78.515 for 
sequence number 2175601 (not pictured). This sets cwnd = 1; ssthresh is still 9 and 
the retransmitted segment carries the TSOPT TSV value of 17171306. As with 
timeout event 7, this congestion action is also undone, by the arrival of the ACK 
at time 80.093 for sequence number 2179801 (packet 2641) containing the TSOPT 
TSER value of 17169948. When this happens, the flight size estimate is 2,184,001 + 
1400 – 2,179,801 = 5600 bytes (four packets). If cwnd were immediately restored 
to its pre-timeout condition (8), this would allow four packets to be immediately 
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injected into the network. Doing so is considered undesirable because it may lead 
to increased changes of dropped packets because of burstiness.

To prevent this bursty behavior, this Linux TCP implementation has a conges-
tion window moderation procedure, which limits the maximum number of packets 
generated in response to a single ACK to maxburst, with a value of 3 packets in 
this example. In this case, cwnd is therefore set to ( flight size + maxburst) = 4 + 3 = 
7. This regulation is related to the parameter of the same name proposed for TCP 
and evaluated using the NS-2 network simulator. This simulator has been used 
extensively in the exploration and development of new TCP algorithms [NS2].

16.5.6.5 Timeout and Final Recovery (Event 11)
At time 88.929 a retransmission timer has expired and a retransmission for 
sequence number 2185401 occurs, as depicted in Figure 16-16. 

Figure 16-16 A retransmission timer expires, initiating a timeout-based retransmission that cannot be undone. 
TCP continues in slow start.

The expiring timer places the sender into slow start with ssthresh = 5. This 
time, TCP is not able to undo the timeout, so cwnd is set to 1 and slow start pro-
gresses. This can be seen more clearly from the flow trace (see Figure 16-17).
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The retransmission for sequence number 2185401 is highlighted. Following 
the retransmission, we see the typical slow start behavior we saw during the 
beginning of the connection, when each arriving ACK liberates two or three pack-
ets, depending on how many packets were covered by the ACK. By time 89.434, 
when cwnd has reached ssthresh at 5, TCP continues in congestion avoidance.

16.5.7 Connection Completion

The final exchange of packets commences with the sender’s transmission of a FIN 
at time 99.757. Following this transmission, 13 ACKs arrive followed by the receiv-
er’s FIN. The very last packet (a final ACK) is sent at time 100.476. This exchange 
is depicted in Figure 16-18.

The largest sequence number sent is 2620801 + 640 – 1 = 2621440, equiva-
lent to the size of the overall transfer, 2.5MB. At time 99.757, (2,619,401 + 1400 – 
2,594,201)/1400 + 1 = 20 packets are outstanding. The arrival of 13 ACKs (7 of 
which ACK two packets each) covers the whole window of (2*7) + (13 - 7) = 20 
packets. Note that the ACK arriving at time 100.474 ACKs the final two packets of 
sizes 1400 and 640 bytes, respectively: 2,621,442 – 2,619,401 = 1400 + 640.

Figure 16-17  In Wireshark, the slow start behavior is apparent after a retransmission timeout. Each 
arriving ACK liberates two or three packets.
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This extended example illustrates most of the algorithms described so far and 
includes aspects of the basic TCP algorithms (slow start, congestion avoidance), 
selective acknowledgment, rate halving, as well as some newer procedures such 
as spurious RTO detection. We now discuss some modifications and capabilities 
that are less widespread, more speculative, or more recent. The Linux TCP stack 
implements many of these procedures, but not all of them are enabled by default. 
Frequently, a small change using the sysctl program is sufficient to experiment 
with them. More recent versions of the Windows stack (i.e., Windows Vista and 
later) also implement improvements beyond the features discussed so far.

16.6 Sharing Congestion State

The discussion so far and the example we have just seen have focused on how a 
single TCP connection adapts to congestion along the path. If other connections 
between the same hosts are made later, these subsequent connections typically 

Figure 16-18  During the connection closing procedure, the receiver produces 13 pure ACKs to indi-
cate that it has received all of the data the sender has produced. The final FIN-ACK 
exchange completes closure of the other half of the connection. Note that the FIN seg-
ments contain valid ACK numbers.
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have to establish their own values for ssthresh and cwnd over time as described pre-
viously. In many cases, subsequent connections could possibly learn of these values 
from earlier connections to the same hosts or from other currently active connec-
tions to the same hosts. This idea involves sharing the congestion state across mul-
tiple connections in the same machine. An early description in [RFC2140], entitled 
“TCP Control Block Interdependence,” describes how this might be accomplished. 
This work notes the difference between temporal sharing (new connections share 
information with others that are now CLOSED) and ensemble sharing (new connec-
tions share state with other active connections).

In an effort to generalize this idea and extend it to protocols and applica-
tions other than TCP, [RFC3124] describes the Congestion Manager, which provides 
a local operating system service available to protocol implementations to learn 
information such as path loss rate, estimated congestion, RTT, and so forth to des-
tination hosts.

In Linux, this idea is made available in the same subsystem that contains rout-
ing information and is known as destination metrics, which we saw in Chapter 
15. These metrics are enabled (but they were disabled for the extended example 
by setting the sysctl variable net.ipv4.tcp_no_metrics_save to 1). When 
a TCP connection goes to the CLOSED state, the following information is saved: 
RTT measurements (srtt and rttvar), an estimate of reordering, and the congestion 
control variables cwnd and ssthresh. These are used when new connections to the 
same destination start to help initialize the corresponding measurements.

16.7 TCP Friendliness

TCP being the dominant transport protocol on the Internet, it is commonplace for 
several TCP connections to be sharing one or more routers along their delivery 
paths. While they do not always share bandwidth equally in such circumstances, 
they do at least react to the dynamics of other TCP connections as they come and 
go over time. This is not guaranteed to be the case, however, when TCP competes 
for bandwidth with other (non-TCP) protocols, or when it competes with a TCP 
using some alternative set of controls on its congestion window.

To provide a guideline for protocol designers to avoid unfairly competing with 
TCP flows when operating cooperatively on the Internet, researchers have devel-
oped an equation-based rate control limit that provides a bound of the bandwidth 
used by a conventional TCP connection operating in a particular environment. 
This method is called TCP Friendly Rate Control (TFRC) [RFC5348][FHPW00]. It 
is designed to provide a sending rate limit based on a combination of connection 
parameters and with environmental factors such as RTT and packet drop rate. It 
also gives a more stable bandwidth utilization profile than conventional TCP, so it 
is expected to be appropriate for streaming applications that use moderately large 
packets (e.g., video transfer). TFRC uses the following equation to determine a 
sending rate:
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X s R bp pt p bp2 3 3 1 32 3 8RTO
2)( )(= + +  [2]

Here, X is the throughput rate limit (bytes/second), s is the packet size (bytes, 
excluding headers), R is the RTT (seconds), p is the number of loss events as a frac-
tion of packets sent [0,1.0], tRTO is the retransmission timeout (seconds), and b is the 
maximum number of packets acknowledged by a single ACK. The value of tRTO is 
recommended to be 4R, and the recommended value of b is 1.

The TCP sending rate can be expressed another way, based on how it adjusts 
its window in response to receiving a good ACK during congestion avoidance. 
Recall from the earlier discussion that standard TCP, when using the congestion 
avoidance algorithm, increases cwnd by an additive amount of 1/cwnd for each 
arriving good ACK and decreases it by a multiplicative factor of one-half on a loss 
event. This is called additive increase/multiplicative decrease (AIMD) congestion con-
trol, and we can produce a generalized AIMD congestion avoidance equation by 
replacing the values of 1/cwnd and ½ with variables a and b as follows: 

cwndt+1 = cwnd t + a / cwndt

cwndt+1 = cwndt – b* cwndt

Based on results from [FHPW00], this equation gives TCP the following sending 
rate, in packets per RTT:

a b
b
p

T

2
2
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=

−

  [3]

For regular TCP, where a = 1 and b = 0.5, this simplifies to . pT 1 2= , known 
as the simplified standard TCP response function. It relates the speed of TCP (regula-
tion of cwnd) to the packet drop rate the TCP experiences, without accounting for 
retransmission timeouts. When TCP is not limited by other factors (sender’s or 
receiver’s buffers, window scaling, etc.), this relationship governs TCP’s perfor-
mance in benign operating environments.

Any alteration to TCP’s response function obviously affects the way it (or 
another protocol implementing a similar congestion control scheme) competes 
with standard TCP. Therefore, new proposed congestion control schemes are typi-
cally analyzed using a measure of relative fairness. Relative fairness gives the ratio 
of the speed of the protocol using a modified congestion control scheme relative 
to standard TCP, as a function of the packet drop rate. This is a strong indicator of 
how fair any such modified schemes are with respect to sharing bandwidth across 
a common Internet path.
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Note that understanding these equations is only the first step in creating a 
speed regulation regime that competes fairly with standard TCP. The details of 
implementing TFRC for any particular protocol can be subtle and include how to 
correctly measure the RTT, loss event rate, and packet size. These issues are dis-
cussed in some detail in [RFC5348].

16.8 TCP in High-Speed Environments

In high-speed networks with large BDPs (e.g., WANs of 1Gb/s or more), conven-
tional TCP may not perform well because its window increase algorithm (the con-
gestion avoidance algorithm, in particular) takes a long time to grow the window 
large enough to saturate the network path. Said another way, TCP can fail to take 
advantage of fast networks even when no congestion is present. This issue arises 
primarily from the fixed additive increase behavior of congestion avoidance. If 
we consider a TCP using 1500-byte packets operating over a 10Gb/s long-distance 
link, some 83,000 segments are required to be outstanding in order to fully uti-
lize the available bandwidth, assuming no packet drops or errors in five billion 
packets. For an RTT of 100ms, this takes about 1.5 hours to achieve. In order to 
address this deficiency, a number of researchers and developers have explored 
ways to alter TCP in order for it to perform better in such networks, while retain-
ing a degree of fairness to standard TCP, especially for more common lower-speed 
environments.

16.8.1 HighSpeed TCP (HSTCP) and Limited Slow Start

The experimental HighSpeed TCP (HSTCP) specifications [RFC3649][RFC3742] 
propose to alter the standard TCP behavior when the congestion window is larger 
than a base value Low_Window, suggested to be 38 MSS-size segments. This value 
corresponds to a packet drop rate of 10-3 based on the simplified TCP response 
function given previously. This function is linear on a log-log plot of sending rate 
versus packet loss rate, so it is really a power law function.

Note

Functions that form a line on a log-log plot are called power law functions. They 
have equations of the form y = axk, meaning log y = log a + k log x (a and k are 
constants). This equation forms a line with slope k on a log-log plot.

To construct the type of power law function required, we select two points 
and create the equation that describes the line passing between them. Consider 
two such points as (p1, w1) and (P0, W0) where w1 > W0 > 0 and 0 < p1 < P0. On a lin-
ear plot, this would form a line with slope (w1 - W0)/( p1 - P0), but on a log-log plot 
it forms a line with slope S = (log w1 - log W0)/(log p1 - log P0). Then, based on the 
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equation in the Note, we have w = CpS, and we require some point, say (P0, W0), to 
determine C. After some algebra, we find that C = P0

-S W0, meaning w = pS P0
-S W0.

In Figure 16-19, we see a plot of both the conventional TCP response func-
tion and a proposed response function for HSTCP based on the point (P0, W0) = 
(.0015, 31) and S = -0.82. Note that for larger packet drop rates (over about .001) 
the response functions are the same, so these equations apply only for a certain 
maximum value of p. Comparing the two lines, when the packet drop rate is small 
enough, HSTCP is allowed to send more aggressively.

Figure 16-19  With HighSpeed TCP, the TCP response function is altered to be more aggressive 
for low packet drop rates and large windows, leading to higher throughputs for 
high bandwidth-delay-product networks. Image from presentation by Sally Floyd to IETF 
TWVWG, Mar. 2003.

To have TCP achieve this response function, the congestion avoidance proce-
dure is modified to take into account the current size of the window when making 
changes. This takes place, as with conventional TCP, upon the arrival of a good 
ACK. The response for a good arriving ACK is generalized as follows:

cwndt+1 = cwndt + a(cwndt)/cwndt 

When responding to a congestion event (e.g., packet loss, ECN indication), it 
responds as follows:

cwndt+1 = cwndt - b(cwndt)* cwndt



ptg999

772 TCP Congestion Control 

Here, a() is the additive increase function and b() is the multiplicative decrease 
function. In this generalization of standard TCP, they are functions of the current 
window size. To achieve the desired response function, we start by generalizing 
from equation [3]:

P
W0

0

=

a(w)(2 – b(w))
2b(w)

This gives:

a(w) = 2P0W0
2 b(w)/(2 – b(w))

This relationship does not have a unique solution—that is, there are many 
combinations of a() and b() that satisfy the relationship, even though some of 
them may not be practical or desirable for deployment.

Additional details of the changes proposed to the congestion avoidance pro-
cedure for TCP suggested by HSTCP are available in [RFC3649]. A companion 
document [RFC3742] describes how slow start can be modified to help TCP obtain 
a working congestion window in such environments. This is called limited slow 
start and is designed to slow down slow start, so that a TCP operating with large 
windows (thousands or tens of thousands of packets) does not double its window 
in one RTT.

With limited slow start, a new parameter called max_ssthresh is introduced. 
This value is not the maximum value of ssthresh but instead a threshold for cwnd
that works as follows: If cwnd <= max_ssthresh, slow start proceeds as normal. If 
max_ssthresh < cwnd <= ssthresh, then cwnd is increased by at most (max_ssthresh/2) 
SMSS per RTT. This is accomplished by modifying the management of cwnd dur-
ing slow start as follows:

if (cwnd <= max_ssthresh) {
      cwnd = cwnd + SMSS       (regular slow start)
} else {
      K = int(cwnd / (0.5 * max_ssthresh))
      cwnd = cwnd + int((1/K)*SMSS)        (limited slow start)
}

A suggested possible initial value for max_ssthresh is 100 packets, or 100*SMSS 
in bytes.

16.8.2 Binary Increase Congestion Control (BIC and CUBIC)

HSTCP is one of several proposals for modifying TCP to provide higher through-
put for large BDP networks. While it considers throughput and fairness with 
respect to conventional TCPs in similar circumstances, and elects to be more 
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aggressive than standard TCP under certain circumstances, it does not attempt 
to directly control what happens when HSTCP connections with differing RTTs 
compete with each other (called “RTT fairness”). This was studied for standard 
TCP some years back, revealing that TCPs with shorter RTTs obtain a larger share 
of the bandwidth on shared links as compared to those having larger RTTs, when 
using the same packet size and ACK strategy [F91]. For TCPs that increase cwnd
as a function of its size (so-called bandwidth-scalable TCPs), this unfairness can be 
even more severe. Whether RTT fairness should be considered desirable is sub-
ject to debate. Although RTT fairness would seem attractive from first principles, 
connections with larger RTTs are likely to be using more network resources (e.g., 
passing through more routers), so it may be reasonable for them to receive some-
what less throughput. In any case, knowing just how RTT (un)fairness behaves is 
a driving factor behind the popular TCP variants we explore next.

16.8.2.1 BIC-TCP
In an effort to create a scalable TCP and deal with the issue of RTT fairness, BIC-
TCP (formerly called BI-TCP) [XHR04] was developed and deployed in Linux ker-
nels starting with version 2.6.8. The main goal of BIC TCP is to provide linear RTT 
fairness even though congestion windows may be quite large (which is required 
to use high-bandwidth links). Linear RTT fairness means that connections receive 
a bandwidth share inversely proportional to their RTTs, rather than some more 
complicated or unknown function.

The approach modifies a standard TCP sender with two algorithms: binary 
search increase and additive increase. These algorithms are invoked after a conges-
tion indication (e.g., packet loss), but only one of the algorithms is in operation at 
any given point in time. The binary search increase algorithm operates as follows: 
The current minimum window is the last point at which the connection experienced 
no packet loss during an entire RTT. The maximum window is the window size at 
which the connection last experienced loss, if known. The desired window lies 
somewhere between the two. Using a binary search technique, BIC-TCP selects a 
trial window in the midpoint of these two values and tries again recursively. If this 
point shows continued packet loss, it becomes the new maximum and the process 
repeats. If not, it becomes the new minimum and the process repeats. The process 
terminates when the difference between the minimum and maximum windows is 
less than a predefined threshold called the minimum increment, or Smin.

The algorithm tends to find the desirable window, also called the saturation 
point, in a logarithmic number of trials, whereas a standard TCP would require 
a linear number (half of the difference in window sizes, on average). Thus, this 
approach makes BIC-TCP more aggressive than standard TCP during certain 
periods of operation, but this is desired in order to take advantage of high-speed 
environments without unwanted delay. The protocol is unusual, relative to other 
proposals, because its increase function is concave at some points—that is, its 
increase gets smaller as it gets closer to the saturation point. Most other algorithms 
use large change increments nearest the saturation point.
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The additive increase algorithm works as follows: When using binary search 
increase, the situation can arise where the distance from the current window size 
to the midpoint (in the sense of the binary search described previously) is large. 
Increasing the window to the midpoint in one RTT may be ill advised because of 
the potential for injecting large packet bursts into the network. This is prevented 
by the additive increase algorithm, which is invoked when the distance to the 
midpoint from the current window is more than some amount Smax. When this 
happens, the increment is limited to Smax per RTT, called window clamping. Once the 
midpoint is closer than Smax to the trial window, binary search increase takes over. 
Overall, upon detection of a loss, the window is reduced by a multiplicative factor 
β, and its growth starts again with additive increase and switches to binary search 
once the desired increase amount is less than Smax. The authors call the combined 
algorithms binary increase, or BI.

When the window grows beyond the current maximum, or no maximum 
is yet known because no loss event has occurred, it must be established. This is 
accomplished by a procedure known as max probing. The purpose of max probing 
is to use bandwidth when it becomes available. It proceeds in a way symmetric to 
the additive increase and binary increase algorithms. It starts in small initial incre-
ments, followed by larger increments if no congestion is indicated. The approach 
shows good stability because small changes are made near the saturation point, 
where the network is believed to be operating near its greatest capacity.

Linux (kernels 2.6.8 through 2.6.17) includes an implementation of BIC-
TCP that is enabled by default. Four sysctl parameters control its operation: 
net.ipv4.tcp_bic, net.ipv4.tcp_bic_beta, net.ipv4.tcp_bic_low_
window, and net.ipv4.tcp_bic_fast_convergence. The first Boolean vari-
able controls whether BIC is used (as opposed to the conventional fast retransmit/
recovery procedures). The next contains a scaling factor for cwnd to determine 
Smax (default 819). The next parameter controls the minimum size of the conges-
tion window before the BIC-TCP control algorithms take over. Its default value 
is 14, meaning that for small window values standard TCP congestion control is 
used. The last parameter is a flag, enabled by default. When set, it affects the way 
the new maximum and target windows are selected when the binary increase 
algorithm is in a downward trend. During a window reduction, the new maxi-
mum and minimum windows are set to the current and scaled (down by a factor 
of beta) values of cwnd, respectively. If fast convergence is enabled and the value 
of the new maximum is less than its previous value before it was set to cwnd, the 
value of the maximum window is further reduced between the average of it and 
the minimum window. After this, whether or not fast convergence is enabled, the 
target window is the average of the maximum and minimum values. This helps to 
achieve even bandwidth sharing more quickly when multiple BIC-TCP flows are 
sharing the same router.
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16.8.2.2 CUBIC
The authors of BIC-TCP revised their basic algorithms to form a new control algo-
rithm called CUBIC [HRX08]. It has been the default congestion control algorithm 
used in Linux TCP since kernel version 2.6.18. It addresses concerns raised that 
BIC-TCP may be too aggressive under some circumstances. It also simplifies the 
window growth procedures. Instead of using a threshold (Smax) to decide when to 
invoke the binary search increase versus additive increase, an odd-degree polyno-
mial function, in particular a cubic function, is used instead to control the window 
increase function. Cubic functions can have both convex and concave portions, 
meaning that they can grow more slowly in some portions (concave) and more 
quickly in others (convex). Until BIC and CUBIC, virtually all of the TCP literature 
advocated convex window growth functions. The specific window growth func-
tion, used by CUBIC to set cwnd, is as follows:

W(t) = C(t – K)3 + Wmax

In this equation, W(t) is the window at time t. C is a constant parameter (default 
0.4), t is the elapsed time in seconds since the last window reduction, and K is the 
time period the function takes to increase W to Wmax when there is no further loss 
event. Wmax is the last window size prior to the last window adjustment. K can be 
calculated as follows:

K
W
C

max3= β

where β is the multiplicative decrease constant (default 0.2). An illustration of the 
CUBIC window growth function for K = 2.71, Wmax = 10, and C = 0.4 on the interval 
t = [0, 5] is shown in Figure 16-20.

This figure illustrates how the CUBIC window growth function contains both 
a concave portion and convex portion. When a fast retransmit occurs, Wmax is set to 
cwnd, and new values of cwnd and ssthresh are set to β*cwnd. CUBIC uses a default 
value of 0.8 for β. The value W(t + RTT) gives the next target congestion win-
dow value. When an additional ACK arrives during congestion avoidance, cwnd is 
increased by (W(t + RTT) - cwnd)/cwnd.

It is worth noting that having t be the amount of elapsed time since the last 
window reduction event helps to ensure RTT fairness. Instead of changing the 
window by some fixed amount when ACKs arrive, the window change amount is 
a function of the elapsed time since the last window change. This decouples the 
window change operations from the particular pattern of ACK arrivals.

In addition to the cubic operating region, CUBIC also has a “TCP-friendly” 
region that operates when the window is small to ensure that CUBIC is not 
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penalized relative to regular TCP. More specifically, the window size of standard 
TCP in terms of the elapsed time t, Wtcp(t), is given by

W t
RTT

t
3 W

1
1tcp max

)
)

(
()( =

− β
+ β

+ β

So if cwnd is less than Wtcp(t) when an ACK arrives during congestion avoidance, 
CUBIC sets cwnd = Wtcp(t). This ensures TCP friendliness in common low- to mod-
erate-speed networks, where CUBIC would otherwise be disadvantaged.

As mentioned earlier, CUBIC has been the default congestion control algorithm 
for Linux kernels since 2.6.18. Since kernel version 2.6.13, however, Linux supports 
pluggable congestion avoidance modules [P07], allowing the user to pick which algo-
rithm to use. The variable net.ipv4.tcp_congestion_control contains the 
current default congestion control algorithm (default: cubic). The variable net.
ipv4.tcp_available_congestion_control contains the congestion control 
algorithms loaded on the system (in general, additional ones can be loaded as 
kernel modules). The variable net.ipv4.tcp_allowed_congestion_con-
trol contains those algorithms permitted for use by applications (either selected 
specifically or by default). The default supports CUBIC and Reno.

Figure 16-20  The CUBIC window growth function is a cubic function of t. It has a concave por-
tion in the area where W(t) < Wmax. In this region, CUBIC searches for the saturation 
point by growing cwnd with decreasing aggressiveness. After Wmax is reached, the 
growth function becomes convex, where it searches by growing cwnd with increasing 
aggressiveness.
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16.9 Delay-Based Congestion Control

The approaches to congestion control we have seen so far are usually triggered by 
packet loss, detected using some combination of ACKs or SACKs, ECN (if avail-
able), and expiration of a retransmission timer. ECN (see Section 16.11) allows a 
sending TCP to be informed about congestion prior to the need for the network 
to drop packets, but this requires participation from routers within the network 
that may not be available. However, even without ECN it is still possible to try to 
determine from a host whether congestion is about to occur within the network. 
One clue that congestion may be forming is an increase in measured RTT as the 
sender injects more packets into the network. We saw this situation in Figure 16-8, 
where additional packets were being queued rather than delivered, contributing 
to a higher measured RTT (until packets were ultimately discarded). Several con-
gestion control techniques depend on this observation. They are called delay-based
congestion control algorithms, as opposed to the loss-based congestion control 
algorithms we have seen so far.

16.9.1 Vegas

In 1994, TCP Vegas was introduced [BP95]. It was the first delay-based congestion 
control approach for TCP published and tested by the community of TCP devel-
opers. Vegas operates by estimating the amount of data it expects to transfer in a 
certain amount of time and comparing this with the amount of data it is actually 
able to transfer. If the requisite amount of data is not transferred, it is likely to 
be held up in a router queue along the path. If this condition persists, the Vegas 
sender slows down. This is in contrast to the standard TCP approach, which forces 
a packet drop to occur in order to determine the point at which the network is 
congested.

While in its congestion avoidance phase, during each RTT, Vegas measures 
the amount of data transferred and divides this number by the minimum delay 
observed across the connection. It maintains two thresholds, α and β (where α
< β). When the difference in expected throughput (window size divided by the 
smallest RTT observed) versus achieved throughput is less than α, the conges-
tion window is increased; when it is greater than β, the congestion window is 
decreased. Otherwise, it is left as is. All changes to the congestion window are 
linear, meaning the scheme is an additive increase/additive decrease (AIAD) conges-
tion control scheme.

The authors describe α and β in terms of buffer utilization at a bottleneck link. 
The smallest values of interest are 1 for α and 3 for β. The reasoning behind these 
values is as follows: At least one packet buffer should be occupied in the network 
path (i.e., at the queue in the router incident with the minimum-bandwidth link 
on the path) to keep the network busy. If extra bandwidth becomes available, occu-
pying two additional buffers (up to 3, the value for α) obviates the need to wait 
an extra RTT in order to inject more, which would be required if Vegas tried to 
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maintain only one buffer full. Furthermore, having the region (β–α) as the oper-
ating range leaves some room for minor changes in throughput without causing 
an immediate change in the window, a form of damping that aims to reduce rate 
oscillations.

With a slight modification, this approach can also be applied to the slow start 
period. Here, increasing cwnd by 1 for each good ACK is allowed only every other
RTT. For those RTTs when it is not increased, a measurement is made to ensure 
that throughput is increasing. If not, the sender switches to the Vegas congestion 
avoidance scheme.

Under certain circumstances, Vegas can be “fooled” into believing that the 
forward-direction delay is higher than it really is. This happens when there is 
significant congestion in the reverse direction (recall that the paths in the two 
directions of a TCP connection may be different and have different states of con-
gestion). In such cases, packets (ACKs) returning to the sending TCP are delayed, 
even though the sender is not really contributing to the (reverse-path) congestion. 
This causes Vegas to reduce the congestion window even though such an adjust-
ment is not really necessary. This is a potential pitfall for most techniques based 
on measuring RTT as a basis for congestion control decisions. Indeed, significant 
traffic in the reverse direction can cause the ACK clock (Figure 16-1) to be signifi-
cantly perturbed [M92].

Vegas is fair relative to other Vegas TCPs sharing the same path because each 
pushes the network to hold only a minimal amount of data. However, Vegas and 
standard TCP flows do not share paths equally. A standard TCP sender tends 
to fill queues in the network, whereas Vegas tends to keep them nearly empty. 
Consequently, as the standard sender injects more packets, the Vegas sender sees 
increased delay and slows down. Ultimately, this leads to an unfair bias in favor 
of the standard TCP. Vegas is supported by Linux but not enabled by default. For 
kernels prior to 2.6.13, the Boolean sysctl variable net.ipv4.tcp_vegas_
cong_avoid determines whether it is used (default 0). The variables net.ipv4.
tcp_vegas_alpha (default 2) and net.ipv4.tcp_vegas_beta (default 
6) correspond to the alpha and beta described previously but are expressed in 
half-packet units (i.e., 6 corresponds to 3 packets). The variable net.ipv4.
tcp_vegas_gamma (default 2) configures how many half-packets Vegas should 
attempt to keep outstanding during slow start. For kernels after 2.6.13, Vegas must 
be loaded as a separate kernel module and enabled by setting net.ipv4.tcp_
congestion_control to vegas.

16.9.2 FAST

FAST TCP was developed with particular attention to operations in high-speed 
environments with large bandwidth-delay products [WJLH06]. Similar to Vegas 
in spirit, it adjusts the window based on the difference between an expected 
throughput rate and an experienced rate. It differs from Vegas by adjusting the 
window based not only on the window size, but also on the difference between 
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the current and expected performance. It updates the sending rate every other 
RTT using a rate-pacing technique. If the measured delay is significantly below 
a threshold, the window is updated aggressively followed by a period when the 
increase is less aggressive. When the delay increases, the reverse takes place. FAST 
differs from the other approaches we have discussed because it is the subject of 
several patents and is being commercialized independently. It has received some-
what less scrutiny from the research community, but an independent evaluation 
[S09] has shown it to have good stability and fairness properties.

16.9.3 TCP Westwood and Westwood+

TCP Westwood (TCPW) and TCP Westwood+ (TCPW+) aim at handling large band-
width-delay-product paths by modifying a conventional TCP NewReno sender. 
TCPW+ is a correction to the original TCPW algorithm, so we will just refer to 
either as TCPW. In TCPW, the sender’s eligible rate estimate (ERE) is an estimate of 
the bandwidth available on the connection. It is continuously computed in a fash-
ion somewhat similar to Vegas (based upon the difference between an expected 
and an achieved rate), but with a variable measurement interval for the rates 
based on the dynamics of ACK arrivals. When congestion is low, the measurement 
interval is small, and vice versa. When a packet loss is detected, instead of reduc-
ing cwnd by half, TCPW computes an estimated BDP (ERE times the minimum 
RTT observed) and uses this as the new value for ssthresh. Agile probing [WYSG05] 
adaptively and repeatedly sets ssthresh when a connection would otherwise oper-
ate in slow start. This causes cwnd to grow exponentially in cases where ssthresh
has been increased (by initiating slow start). Westwood can be enabled in Linux 
kernels after 2.6.13 by loading a TCPW module and setting net.ipv4.tcp_con-
gestion_control to westwood.

16.9.4 Compound TCP

Starting with Windows Vista, it is possible to choose which congestion control 
procedure (“provider”) TCP should use, in a way similar to Linux’s pluggable 
congestion avoidance modules. One such option (but not the default, except for 
Windows Server 2008) is called Compound TCP (CTCP) [TSZS06]. CTCP makes 
window adjustments based upon packet loss, but also based on measured delays. 
In some sense it is a combination of standard TCP and Vegas, but with the scal-
ability features of HSTCP.

The authors begin by recounting a number of results shown in the Vegas and 
FAST research that suggest that delay-based congestion control schemes tend to 
have better utilization, less self-induced packet loss, faster convergence (to the 
correct operating point), plus better RTT fairness and stabilization. However, as 
mentioned previously, delay-based approaches tend to lose bandwidth when com-
peting with loss-based congestion control approaches. CTCP attempts to address 
this situation by combining a delay-based approach with a loss-based approach. 
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To do this, CTCP introduces a new window control variable called dwnd (the 
“delay window”). The usable window W then becomes

W = min(cwnd + dwnd, awnd)

The handling of cwnd is similar to that of standard TCP, but the addition of dwnd
may allow additional packets to be sent if the delay conditions are appropriate. 
When ACKs arrive during congestion avoidance, cwnd is updated as follows:

cwnd = cwnd + 1/(cwnd + dwnd)

The management of dwnd is based on Vegas and is nonzero only during con-
gestion avoidance (CTCP uses conventional slow start). As a connection operates, 
the minimum RTT measured is maintained in the variable baseRTT. Then, the dif-
ference in expected data outstanding versus the actual amount, diff, is computed 
as follows: diff = W*(1 - (baseRTT/RTT)), where RTT is the estimated (smoothed) 
RTT estimate. The value of diff estimates the number of packets (or bytes) queued 
in the network. CTCP, like most delay-based schemes, attempts to keep diff at a 
certain threshold, called γ, in order to ensure that the network remains utilized 
but not congested. Given this goal, the control process for dwnd is then expressed 
as follows:

             dwnd(t) + (α * win(t)k – 1)+, if diff < γ
dwnd(t + 1) =             (dwnd(t) – ζ * diff)+, if diff ≥ γ

           (win(t) * (1 – β) – cwnd/2)+, if loss detected{
where (x)+ means max(x, 0). Note that dwnd can never be negative. Rather, it may 
be zero, in which case CTCP behaves like standard TCP.

In the first case, where the network may be underutilized, CTCP grows dwnd
according to the polynomial α * win(t)k. This is a form of binomial increase and 
accounts for the way CTCP can be made more aggressive (similar to HSTCP) when 
the buffer occupancy is estimated to be less than γ. In the second case, where the 
buffer occupancy appears to be growing beyond the desired threshold γ, the con-
stant ζ dictates how quickly the delay-based component should be reduced (but 
recall that dwnd is always added to cwnd). This is what contributes to CTCP’s RTT 
and TCP fairness. When loss is detected, dwnd has its own multiplicative decrease 
factor β applied.

As can be seen, CTCP can be tuned using the parameters k, α, β, γ, and ζ. The 
value of k affects the level of aggressiveness. A value of about 0.8 was desired to 
be similar to HSTCP, but 0.75 was chosen for implementation reasons. The values 
of α and β affect smoothness and responsiveness. The default values are 0.125 and 
0.5, respectively. For γ, the authors suggest a default value of 30 packets based on 
empirical evaluation. If this value is too small, there may not be enough packets 
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outstanding to obtain good delay measurements. Conversely, values that are too 
large could result in undesirable persistent congestion.

CTCP is relatively new, so further experimentation and evaluation will no 
doubt be performed to see how well and fairly it competes with standard TCP, 
and how well it is able to adapt to significant changes in available bandwidth. In a 
simulation study, the author of [W08] noted that CTCP can perform poorly when 
network buffers are small (i.e., smaller than γ). They also suggest that CTCP can 
fall victim to some of the problems with Vegas, including rerouting (adapting to 
new paths with different delays) and persistent congestion. Finally, they observe 
that if many CTCP flows, each trying to keep γ packets in flight, share the same 
bottleneck link, performance can be poor.

As mentioned previously, CTCP is not enabled by default on most versions of 
Windows. However, the following command can be used to select CTCP as the 
congestion provider:

C:\> netsh interface tcp set global congestionprovider=ctcp

It can be disabled by selecting a different provider (or none). CTCP has also been 
ported to Linux as a pluggable congestion avoidance module but is not included 
by default.

16.10 Buffer Bloat

Although memory has traditionally been expensive (and remains so for high-
end routers), it is now commonplace to find commodity networking equipment 
that contains a significant amount of memory, potentially multiple megabytes of 
packet buffers. Perhaps ironically, this large amount of memory (as compared to 
traditional networking devices) can actually lead to degraded performance for 
protocols such as TCP. This problem has been termed buffer bloat [G11][DHGS07]. 
It relates to high amounts of latency introduced by queuing delay, primarily at the 
uplink side of residential gateways and access points in homes and small offices. 
The standard TCP congestion control algorithms, which tend to keep buffers full 
at bottleneck links, do not operate well when a large amount of buffering occurs 
between the sender and receiver because the congestion indicator (a packet drop) 
takes a long time to be delivered to a sender.

In [KWNP10], the authors find that upload bandwidth in the United States 
over cable and DSL ranges from about 256Kb/s to 4Mb/s. They also inferred buf-
fer sizing on commodity routers in the range from 16KB to 256KB. Figure 16-21 
shows how latency relates to data rate for several buffer sizes to help provide a 
perspective on these findings.

In this figure, the log-log graph displays the amount of latency experienced 
by data required to queue for various buffer sizes (1KB–2MB). Residential Internet 
upload bandwidth rates (typically 250Kb/s to 10Mb/s) can lead to latencies in the 
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multiple-second range if buffers are sized to be a few hundred kilobytes or more. 
Interactive applications generally require one-way delays to be below 150ms to 
provide a good quality of experience to users [G114]. Thus, if buffers remain filled 
to capacity because of one or more large competing uploads (e.g., BitTorrent file 
sharing), interactive applications can be adversely affected.

Buffer bloat is not a problem in all networking equipment. Indeed, the primary 
concern appears to be in overbuffered end-user access devices. There are mul-
tiple potential ways to deal with the issue, including protocol modifications (e.g., 
delay-based congestion control such as Vegas, but it may be negatively affected by 
high jitter [DHGS07]), dynamic buffer sizing at the access devices (suggested in 
[KWNP10]), or a combination of the two. We next turn to a combination approach 
that may help the buffer bloat problem but also has a number of other benefits.

16.11 Active Queue Management and ECN 

The discussion of TCP’s congestion response so far has assumed that the only way 
a TCP infers that congestion is happening is observation of packet drops. In par-
ticular, routers (the things that are mostly likely to become congested) do not ordi-
narily help inform the TCP at each host that congestion is imminent. Instead, they 
simply drop arriving packets when no more buffer space is available (called “drop 
tail”) and send packets that have already arrived in a first-in-first-out (FIFO) man-
ner. When Internet routers are passive like this (that is, they simply discard packets 

Figure 16-21  The log-log plot shows the latency due to queuing delay experienced by data in fully 
congested queues of various sizes. When large buffers remain full (“buffer bloat”), 
interactive applications can experience unacceptable latencies in the multiple-second 
range.
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when overloaded and provide no feedback regarding their congestion state), there 
is little a TCP can do other than react after the fact. If, however, these routers had 
a way to more actively manage their queues (i.e., by using a more sophisticated 
scheduling and buffer management policy than FIFO/drop tail), perhaps the situ-
ation could be improved. If they could also signal their congestion state to TCP 
endpoints, so much the better.

Routers that apply scheduling and buffer management policies other than 
FIFO/drop tail are usually said to be active, and the corresponding methods they 
use to manage their queues are called active queue management (AQM) mechanisms. 
The authors of [RFC2309] provide a discussion of the potential benefits of AQM. 
Although AQM can be useful independently, it becomes more useful when rout-
ers and switches implementing AQM have a common method for conveying their 
status to the end systems. For TCP, this is described in [RFC3168] and extended 
with additional security in an experimental specification [RFC3540]. These RFCs 
describe Explicit Congestion Notification (ECN), which is a way for routers to 
mark packets (by ensuring both of the ECN bits in the IP header are set) to indicate 
the onset of congestion. 

Random Early Detection (RED) gateways [FJ93] are one mechanism suggested 
as being capable of detecting the onset of congestion and controlling the mark-
ing of packets. These gateways implement a queue management discipline that 
measures the average queue occupancy over time. If the occupancy exceeds the 
minimum (called minthresh) and is less than the maximum (called maxthresh), a 
packet is marked with an increasing probability. If the average queue occupancy 
exceeds maxthresh, packets are marked with a configurable maximum probability 
(called MaxP), which could be 1.0. RED can also be configured to drop packets 
instead of marking them. 

Note

The RED algorithm is the basis for a number of variants (e.g., Cisco’s WRED, 
which uses different RED instances based on IP DSCP or precedence values) 
that are supported on many routers and switches.

When received by a TCP, a congestion mark indicates that the packet has passed 
through a congested router. Of course, it is the sender (rather than the receiver) that 
really needs this information in order to react by slowing down. Thus, the receiver 
echoes this indication back to the sender in a series of ACK packets.

The ECN mechanism operates partially at the IP layer and so is potentially 
applicable to transport protocols other than TCP, although most of the work on 
ECN has been with TCP, and it is what we discuss here. When an ECN-capable 
router experiencing persistent congestion receives an IP packet, it looks in the 
IP header for an ECN-Capable Transport (ECT) indication (currently defined as 
either of the two ECN bits in the IP header being set). If set, the transport protocol 
responsible for sending the packet understands ECN. At this point, the router sets 
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a Congestion Experienced indication in the IP header (by setting both ECN bits to 1) 
and forwards the datagram. Routers are discouraged from setting a CE indication 
when congestion does not appear to be persistent (e.g., upon a single recent packet 
drop due to queue overrun) because the transport protocol is supposed to react 
given even a single CE indication.

The TCP receiver observing an incoming data packet with a CE set is obliged 
to return this indication to the sender (there is an experimental extension to add 
ECN to SYN + ACK segments as well [RFC5562]). Because the receiver normally 
returns information to the sender by using (unreliable) ACK packets, there is a 
significant chance that the congestion indicator could be lost. For this reason, TCP 
implements a small reliability-enhancing protocol for carrying the indication back 
to the sender. Upon receiving an incoming packet with CE set, the TCP receiver sets 
the ECN-Echo bit field in each ACK packet it sends until receiving a CWR bit field 
set to 1 from the TCP sender in a subsequent data packet. The CWR bit field being 
set indicates that the congestion window (i.e., sending rate) has been reduced. 

Note

Although RED and ECN have been known for nearly two decades, they have not 
seen widespread Internet deployment. A variety of reasons have been asserted 
as to why (e.g., difficulty in setting RED parameters, a perception of limited ben-
efits). In 2005, a “reexamination” of ECN [K05] pointed out that using ECN on 
only data packets limits its benefits substantially. An experimental extension 
[RFC5562] defines the use of ECN in SYN + ACK packets with the possibility of 
greatly increasing the utility of ECN for certain workloads (e.g., Web traffic). 

A sending TCP receiving an ECN-Echo indicator in an ACK reacts the same 
way it would when detecting a single packet drop by adjusting cwnd, and it also 
arranges to set the CWR bit field in a subsequent data packet. The prescribed con-
gestion response of the fast retransmit/recovery algorithms is invoked (of course, 
without the packet retransmission), causing the TCP to slow down prior to suffer-
ing packet drops. Note that the TCP should not overreach; in particular, it should 
not react more than once for the same window of data. Doing so would overly 
penalize an ECN TCP relative to others.

In Windows Vista and later, ECN needs to be enabled to be used:

C:\> netsh int tcp set global ecncapability=enabled

In Linux, ECN is enabled if the Boolean sysctl variable net.ipv4.tcp_ecn
is nonzero. The default varies based on which Linux distribution is used, with 
off being most common. On Mac OS 10.5 and later, the variables net.inet.tcp.
ecn_initiate_out and net.inet.tcp.ecn_negotiate_in control whether 
ECN is enabled for outgoing traffic and for incoming traffic with ECN flags set, 
respectively. Of course, without cooperation from routers or switches, the utility 
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of ECN is limited in any case. Only time will tell if the vision for AQM will ever be 
fully realized in the global Internet.

Note

RED and ECN have been used successfully in a radically different operating envi-
ronment from that for which they were designed. Microsoft and Stanford have 
developed Data Center TCP (DCTCP) [A10], which uses RED implemented in 
layer 2 switches with simplified parameters to mark packets when instantaneous 
congestion is experienced. They also modify the TCP receiver behavior to set 
ECN-Echo in ACKs only when the last received packet contains a CE mark. They 
report a 90% reduction in buffer occupancy for comparable TCP throughput, 
allowing a tenfold increase in background traffic to be supported.

16.12 Attacks Involving TCP Congestion Control

We have seen already how TCP can be attacked by generating packets that cause 
TCP’s connection state machine to terminate the connection. TCP can also be 
attacked (or at least induced to behave in peculiar ways) when operating in the 
ESTABLISHED state. Most attacks on TCP congestion control attempt to force a 
TCP to send faster or slower than it would under ordinary circumstances.

Perhaps the earliest attack involves the fabrication of ICMPv4 Source Quench 
messages. When these are delivered to a host running TCP, any connection to the 
IP address contained in the offending datagram inside the ICMP message slows 
down. While this may have been a vulnerability some years back, using Source 
Quench messages for congestion control has been deprecated for use by routers 
since about 1995 (via [RFC1812], Section 5.3.6). On the other hand, for end hosts, 
[RFC1122] stated that a TCP must react to a Source Quench by slowing down. 
Combining these two facts, the simplest solution is to block ICMP Source Quench 
traffic at the router or host, and this is now common.

A more sophisticated and more recent set of attacks have been considered 
by looking at misbehaving receivers [SCWA99]. The authors describe three types of 
attacks that can cause a TCP sender to inject data at a rate faster than intended. 
Such attacks could be used, for example, to cause a Web client to have an unfair 
advantage over competing clients. The attacks are named ACK division, DupACK 
spoofing, and Optimistic ACKing and are implemented in a TCP variant the authors 
(jokingly) call “TCP Daytona.”

ACK division operates by producing more than one ACK for the range of 
bytes being acknowledged. Because the TCP congestion control typically operates 
based on the arrival of ACK packets (rather than the ACK field contained in the 
ACK itself), a sending TCP can be induced to increase cwnd faster than it would 
otherwise. This problem can be mitigated by basing the congestion control com-
putations on the amount of data acknowledged rather than the arrival of a packet, 
as is done with ABC.
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DupACK spoofing causes a sender to increase its congestion window during 
fast recovery. Recall from the previous discussion that during standard fast recov-
ery, cwnd is incremented for each duplicate ACK received. The attack involves cre-
ating extra duplicate ACKs that cause this to happen more quickly than intended. 
This attack is more difficult to defend against, because there is no clean way to 
map received duplicate ACKs to the segments they acknowledge (a nonce, an asso-
ciated value that changes with time, which we discuss in Chapter 18, would solve 
this problem). While the Timestamps option relates to this problem, it is an option 
and can be disabled on a per-connection basis. The best approach to addressing 
this problem appears to be modification of the sender side to limit the amount of 
outstanding data during recovery.

Optimistic ACKing involves producing ACKs for segments that have not yet 
arrived. Because TCP’s congestion control computations are based on end-to-end 
RTTs, ACKing data that has not yet arrived causes the sender to react faster than 
it would because it is fooled into believing the actual RTT is smaller. Furthermore, 
there is little penalty for doing this, as a sender typically ignores ACKs for data it 
has not yet sent. While this approach does not preserve data reliability at the TCP 
layer as the other attacks do (i.e., ACKed data could still be lost), it is frequently 
the case (e.g., in HTTP/1.1) that missing data can be reconstructed by an applica-
tion- or session-layer protocol. The authors describe a cumulative nonce that can 
address this problem and a way to alter the sizes of sent segments over time to 
better match up ACKs with sent segments. When the ACKs do not correspond, 
the sender can take action.

The problems described for misbehaving receivers have also received atten-
tion with respect to ECN by some of the same authors. Recall that with AQM using 
ECN, the TCP receiver returns the ECN indication to the sender in an ACK. The 
sender is then supposed to respond by slowing down. If the receiver fails to return 
the ECN indications to the sender (or routers in the network clear the indicators), 
the sender would never be informed of congestion and would not slow down. In 
[RFC3540], the authors describe an experimental way to use the ECT bit field of 
the ECN field (2 bits) of an IP packet as a form of nonce. The sender places a ran-
dom binary value in the field, and the receiver returns a 1-bit sum (an XOR opera-
tion) of the values of this field over time. When generating an ACK, the receiver 
places the sum bit 7 of the TCP header (currently reserved as zero). A misbehaving 
receiver has a 50/50 chance of guessing the sum. Because each packet represents 
an independent trial and a successful misbehaving receiver must have every sum 
correct, its chance of doing so is 1/2k for k packets (vanishingly small for a connec-
tion of any reasonable duration). 

16.13 Summary

TCP was designed as the primary reliable transport protocol for the Internet. 
Although its initial design included a flow control capability, used to cause a 
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sender to slow down when a receiver could not keep up, no provision was made 
initially for preventing the sender from overwhelming the network in between. In 
the late 1980s, the slow start and congestion avoidance algorithms were developed 
to regulate a TCP sender’s aggressiveness so as to avoid losing packets because 
of congestion in the network. These algorithms depend on using an implicit sig-
nal, packet loss, and an indicator of congestion. They are triggered when loss is 
detected, either by the fast retransmit algorithm or by retransmission timeouts.

Slow start and congestion avoidance regulate a sender’s operation by introduc-
ing a congestion window at the sender. This is used in conjunction with the con-
ventional window (based on window advertisements provided by the receiver). A 
standard TCP limits its window to the minimum of the two. Slow start grows the 
value of the congestion window exponentially with time, and congestion avoid-
ance grows it about linearly with time. Only one of the two algorithms is in opera-
tion at any one time, and this decision is made by comparing the current value 
of the congestion window to the slow start threshold: if the congestion window 
exceeds the threshold, congestion avoidance takes control; otherwise, slow start 
is used. Slow start is used initially when TCP establishes its connection and after 
restart conditions due to timeouts. It can also be used when a connection has gone 
idle for a significant amount of time. The slow start threshold is adjusted dynami-
cally during the course of the connection.

Congestion control has been a significant focus of the networking research 
community over the years. After more experience was gained with TCP and its 
slow start and congestion avoidance procedures, a number of improvements have 
been suggested, implemented, and standardized. By keeping track of when TCP 
is recovering from a collection of lost packets, the NewReno variant of TCP avoids 
some of the stalls that can occur with Reno variants when multiple packets are 
dropped in a single window of data. SACK TCP can improve upon NewReno’s 
behavior by permitting the sender to intelligently repair more than one packet 
drop per RTT. With SACK TCP, careful accounting must be established to ensure 
that the sender is not overly aggressive with respect to other TCPs with which it 
may be sharing an Internet path.

Some of the more recent changes to TCP congestion management include rate 
halving, congestion window validation and moderation, and “undo” procedures. 
The rate-halving algorithm causes the congestion window to reduce gradually 
after detected loss events instead of reducing it immediately. Congestion window 
validation tries to ensure that the congestion window is not overly large if a send-
ing application has been idle or unable to send for some time. Congestion window 
moderation limits the size of a burst in response to the receipt of a single ACK. The 
“undo” procedures, such as the Eifel Response Algorithm, undo congestion win-
dow modifications if the packet loss signal is deemed to be spurious, a condition 
detectable using a number of techniques. In such cases, the negative impact on 
performance by reducing the congestion window is minimized by restoring the 
congestion state to its condition prior to the reduction of the congestion window.
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After significant experience with TCP, it was observed that the congestion 
avoidance procedure can take a long time to find and exploit additional band-
width that becomes available. As a result, numerous proposals for “bandwidth-
scalable” TCP variants have been made. One of the better-known versions (within 
the IETF) is HSTCP, which allows the congestion window to grow much more 
aggressively in operating regimes where few packets are dropped and windows 
are large, as compared with conventional TCP. Subsequent suggestions have 
included FAST and CTCP, which base their window growth procedures on packet 
loss and latency measures. Widely deployed in Linux, the BIC-TCP and CUBIC 
algorithms use growth functions that are convex in some portions and concave in 
others. This supports small window changes during the saturation point, leading 
to enhanced stability at the possible cost of somewhat sluggish response to new 
available bandwidth (but still faster than standard TCP).

A significant change to the operation of TCP and Internet routers has been 
proposed with the specification of Explicit Congestion Notification (ECN), which 
would allow TCP to detect the onset of congestion before a packet loss is experi-
enced. Although simulations and research results have shown this to be desirable, 
it requires a moderate change to TCP implementations and a significant change to 
the way Internet routers operate. The extent to which this capability is deployed 
remains to be seen.

Although TCP provides the most widely used method for reliably moving 
data on the Internet, it does not implement much in the way of its own security. It 
is generally vulnerable to packet-forging attacks that can cause disruptions of con-
nections; an attacker need only have a good guess at a viable (in-window) sequence 
number to launch such attacks. In addition, modification of the ACK stream (or 
ECN bits, if they are supported) can induce a sender to behave in ways that are 
unfair to other TCP connections. Furthermore, nothing physically prevents an 
overly aggressive sender from simply violating all congestion control rules.

Combining all of the various algorithms and techniques developed for TCP 
into a single TCP implementation is not an easy task (Linux 2.6.38 TCP/IPv4 is 
about 20,000 lines of C code), and analyzing traces of a real-world TCP in action 
can be time-consuming. Tools such as tcpdump, Wireshark, and tcptrace make 
this job considerably easier. Because of its dynamic adaptation to the performance 
of the network, understanding TCP’s behavior is most easily accomplished with 
visualization techniques based on time-series plots, such as those used in this 
chapter.
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TCP Keepalive

17.1 Introduction

Many newcomers to TCP/IP are surprised to learn that no data whatsoever flows 
across an idle TCP connection. That is, if neither process at the ends of a TCP con-
nection is sending data to the other, nothing is exchanged between the two TCP 
endpoints. There is no polling, for example, as you might find with other network-
ing protocols. This means that we can start a client process that establishes a TCP 
connection with a server and walk away for hours, days, weeks, or months, and 
the connection should remain up. In theory, intermediate routers can crash and 
reboot, data lines may go down and back up, but as long as neither host at the 
ends of the connection reboots (or changes its IP address), the connection remains 
established. This is how TCP/IP was designed.

Note

The previous statement assumes that neither application—neither the client nor 
the server—has application-level timers to detect inactivity, causing either appli-
cation to terminate. It also assumes that no intermediate router is keeping state 
about the connection (such as a NAT box) that is required for proper operation 
that it might delete because of inactivity or lose because of system failure. In 
today’s Internet, these are big assumptions.

Under some circumstances, it is useful for a client or server to become aware 
of the termination or loss of connection with its peer. In other circumstances, it is 
desirable to keep a minimal amount of data flowing over a connection, even if the 
applications do not have any to exchange. TCP keepalive provides a capability use-
ful for both cases. Keepalive is a method for TCP to probe its peer without affect-
ing the content of the data stream. It is driven by a keepalive timer. When the timer 
fires, a keepalive probe (keepalive for short) is sent, and the peer receiving the probe 
responds with an ACK.



ptg999

794 TCP Keepalive 

Note

Keepalives are not part of the TCP specification. The Host Requirements RFC 
[RFC1122] says that this is because they could (1) cause perfectly good con-
nections to break during transient Internet failures, (2) consume unnecessary 
bandwidth, and (3) cost money for an Internet path that charges for packets. Nev-
ertheless, most implementations provide the keepalive capability.

TCP keepalive is a controversial feature. Many feel that polling of the other 
end has no place in TCP and should be done by the application, if desired. On 
the other hand, if many applications require such functionality, it is convenient 
to place it in TCP so that its implementation can be shared. The keepalive is an 
optionally enabled feature that can cause an otherwise good connection between 
two processes to be terminated because of a temporary loss of connectivity in the 
network joining the two end systems. For example, if the keepalive probes are sent 
during the time that an intermediate router has crashed and is rebooting, TCP 
incorrectly thinks its peer host has crashed.

The keepalive feature was originally intended for server applications that 
might tie up resources on behalf of a client and want to know if the client host 
crashes or goes away. Using TCP keepalive to detect dead clients is most useful for 
servers that expect to have a relatively short-duration dialogue with a noninterac-
tive client (e.g., Web servers, POP and IMAP e-mail servers). Servers implement-
ing more interactive-style services that last for a long time (e.g., remote login such 
as ssh and Windows Remote Desktop) might wish to avoid using keepalives.

A common example showing the utility of the keepalive feature nowadays is 
when a user uses the ssh (secure shell) remote login program to log in to a remote 
host through a NAT router. If the user were to establish the connection, do some 
work, then just power off the computer at the end of the day, without logging off, 
a half-open connection would be left. In Chapter 13 we showed that sending data 
across a half-open connection causes a reset to be returned, but that was from the 
server end, where the client was sending the data. If the client disappears, leaving 
the half-open connection on the server’s end, and the server is waiting for some 
data from the client, the server will wait forever. The keepalive feature is intended 
to detect these half-open connections from the server side.

Another reason for using keepalives is somewhat the reverse. If the user does 
not power off the computer but instead leaves a connection open all night (and 
wishes to continue using it the next day), the connection goes idle for many hours. 
In Chapter 7 we discussed how most NAT routers include a timeout mechanism 
that flushes the state of a connection after some period of inactivity. If the NAT 
timeout is less than the several hours before the user returns to use the login ses-
sion, and the NAT is not smart enough to probe the end station to make sure it is 
still active, or the NAT crashes, the connection is terminated. To avoid this common 
problem, ssh can be configured to use TCP keepalives. ssh also has the ability to 
use application-managed keepalives, and the two behave differently, especially with 
respect to their security properties. (Please see Section 17.3 for more on this.)
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17.2 Description

Either end of a TCP connection may request keepalives, which are turned off by 
default, for their respective direction of the connection. A keepalive can be set 
for one side, both sides, or neither side. There are several configurable param-
eters that control the operation of keepalives. If there is no activity on the connec-
tion for some period of time (called the keepalive time), the side(s) with keepalive 
enabled sends a keepalive probe to its peer(s). If no response is received, the probe 
is repeated periodically with a period set by the keepalive interval until a number of 
probes equal to the number keepalive probes is reached. If this happens, the peer’s 
system is determined to be unreachable and the connection is terminated.

A keepalive probe is an empty (or 1-byte) segment with sequence number 
equal to one less than the largest ACK number seen from the peer so far. Because 
this sequence number has already been ACKed by the receiving TCP, the arriving 
segment does no harm, but it elicits an ACK that is used to determine whether the 
connection is still operating. Neither the probe nor its ACK contains any new data 
(it is “garbage” data), and neither is retransmitted by TCP if lost. [RFC1122] dictates 
that because of this fact, the lack of response for a single keepalive probe should 
not be considered sufficient evidence that the connection has stopped operating. 
This is the reason for the keepalive probes parameter setting mentioned previously. 
Note that some (mostly older) TCP implementations do not respond to keepalives 
lacking the “garbage” byte of data.

Anytime it is operating, a TCP using keepalives may find its peer in one of 
four states:

1. The peer host is still up and running and reachable. The peer’s TCP 
responds normally and the requestor knows that the other end is still up. 
The requestor’s TCP resets the keepalive timer for later (equal to the value 
of the keepalive time). If there is application traffic across the connection 
before the next timer expires, the timer is reset back to the value of keepalive 
time.

2. The peer’s host has crashed and is either down or in the process of reboot-
ing. In either case, its TCP is not responding. The requestor does not receive 
a response to its probe, and it times out after a time specified by the keepalive 
interval. The requestor sends a total of keepalive probes of these probes, kee-
palive interval time apart, and if it does not receive a response, the requestor 
considers the peer’s host as down and terminates the connection.

3. The client’s host has crashed and rebooted. In this case, the server receives a 
response to its keepalive probe, but the response is a reset segment, causing 
the requestor to terminate the connection.

4. The peer’s host is up and running but is unreachable from the requestor for 
some reason (e.g., the network cannot deliver traffic and may or may not 
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inform the peers of this fact using ICMP). This is effectively the same as 
state 2, because TCP cannot distinguish between the two. All TCP can tell 
is that no replies are received to its probes.

The requestor does not have to worry about the peer’s host being shut down 
gracefully and then rebooting (as opposed to crashing). When the system is shut 
down by an operator, all application processes are terminated (i.e., the peer’s pro-
cess), which causes the peer’s TCP to send a FIN on the connection. Receiving the 
FIN would cause the requestor’s TCP to report an end-of-file to the requestor’s 
process, allowing the requestor to detect this scenario and exit.

In the first state the requestor’s application has no idea that keepalive probes 
are taking place (except that it chose to enable keepalives in the first place). Every-
thing is handled at the TCP layer. It is transparent to the application until one 
of states 2, 3, or 4 is determined. In these three cases, an error is returned to the 
requestor’s application by its TCP. (Normally the requestor has issued a read from 
the network, waiting for data from the peer. If the keepalive feature returns an 
error, it is returned to the requestor as the return value from the read.) In sce-
nario 2 the error is something like “Connection timed out,” and in scenario 3 we 
expect “Connection reset by peer.” The fourth scenario may look as if the connec-
tion timed out, or may cause another error to be returned, depending on whether 
an ICMP error related to the connection is received and how it is processed (see 
Chapter 8). We look at all four scenarios in the next section.

The values of the variables keepalive time, keepalive interval, and keepalive probes
can usually be changed. Some systems allow these changes on a per-connection 
basis, while others allow them to be set only system-wide (or both in some cases). 
In Linux, these values are available as sysctl variables with the names net.ipv4
.tcp_keepalive_time, net.ipv4.tcp_keepalive_intvl, and net.ipv4
.tcp_keepalive_probes, respectively. The defaults are 7200 (seconds, or 2 
hours), 75 (seconds), and 9 (probes).

In FreeBSD and Mac OS X, the first two values are also available as  sysctl
variables called net.inet.tcp.keepidle and net.inet.tcp.keepintvl, 
with default values 7,200,000 (milliseconds, or 2 hours) and 75,000 (milliseconds, 
or 75s), respectively. These systems also have a Boolean variable called net.inet
.tcp.always_keepalive. If this value is enabled, all TCP connections have the 
keepalive function enabled, even if the application did not request it. In these sys-
tems, the number of probes is a fixed default value: 8 (FreeBSD) or 9 (Mac OS X).

In Windows, these values are available for modification via registry entries 
under the system key:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

The value KeepAliveTime defaults to 7,200,000ms (2 hours); KeepAlive-
Interval defaults to 1000ms (1s). If there is no response to ten keepalive probes, 
Windows terminates the connection.
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Note that [RFC1122] places certain restrictions on the use of keepalives. In 
particular, the keepalive time must be configurable and must not default to less 
than 2 hours. In addition, keepalives must not be enabled unless an application 
requests one (although this behavior is violated if the net.inet.tcp.always_ 
keepalive variable is set). Linux does not provide a native facility for adding 
keepalives to applications that do not request it, but a special library can be pre-
loaded (i.e., loaded prior to ordinary shared libraries) to get this effect [LKA]. 

17.2.1 Keepalive Examples

We shall now go through states 2, 3, and 4 from the previous section, to see the 
packets exchanged using the keepalive mechanism. The operation in state 1 will 
be illustrated in the course of looking at the others.

17.2.1.1 Other End Crashes
Let us see what happens when the server host crashes and does not reboot. To 
simulate this we will do the following steps:

 1. Using the regedit program on a Windows client, modify the registry key, 
and set KeepAliveTime to 7000ms (7s). This may require the system to be 
rebooted to accept the new value.

 2. Establish an ssh connection between the Windows client and a Linux 
server using an option that enables TCP keepalives.

3. Verify that data can go across the connection.

4. Watch the client’s TCP send keepalive packets every 7s, and see them 
acknowledged by the server’s TCP.

5. Disconnect the network cable from the server, and leave it disconnected 
until the example is complete. This makes the client think the server host 
has crashed.

6. We expect the client to send ten keepalive probes, 1s apart, before declaring 
the connection dead.

Here is the interactive output on the client:

C:\> ssh -o TCPKeepAlive=yes 10.0.1.1 
(password prompt and login continues)
Write failed: Connection reset by peer (about 15 seconds after disconnect)

Figure 17-1 shows the results using Wireshark. In this example, the connec-
tion has already been established. The Wireshark output begins with a keepalive 
(packet 1) that is not identified as such. At this point, Wireshark has not processed 
enough packets to determine that the one sequence number in packet 1 is below 
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the receiver’s left window edge and is therefore a keepalive. Packet 2 contains an 
ACK number that allows Wireshark to process the sequence numbers in subse-
quent packets appropriately.

Most of this connection consists of keepalives and corresponding ACKs. Pack-
ets 1, 3, 5, 7, 14, 16, 18, 20, and 22–31 are all keepalives. Packets 2, 4, 6, 8, 15, 17, 
19, and 21 are the corresponding ACKs. Keepalives are sent periodically every 7s 

Figure 17-1  TCP keepalives are generated every 7s after the connection becomes idle. Each contains a below-
window sequence number that is ACKed by the peer. A cable disconnection after 1 minute causes 
subsequent keepalives to not be ACKed. The client tries ten times before giving up and terminat-
ing the connection. The termination is signaled to the server by the final reset segment (which the 
server cannot hear). This example also illustrates the use of DSACKs at the server and a spurious 
retransmission caused by the client delaying ACKs.
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provided they are ACKed. When no ACK is returned for a keepalive, the sender 
switches to a 1s interval for sending keepalives, according to the default value 
of KeepAliveInterval. This starts with packet 23 at time 62.120. The sender 
produces ten unacknowledged keepalives in total (packets 22–31). After that, it 
terminates the connection, which results in the final reset segment (packet 32) 
that is never received by the disconnected receiver. The user receives the following 
output when the connection terminates:

Write failed:  Connection reset by peer

This is a clear indication that the connection has terminated, but it is not entirely 
accurate. It was really the sender that terminated the connection, but it did so 
based on the lack of response from the receiver.

Apart from the use of keepalive segments, there are some other interesting 
features of this connection we will mention briefly. First, the server uses DSACKs 
(see Chapter 14). Each ACK contains the sequence number range of the previously 
received in-window segment. Next, a small bit of data is exchanged at time 26.09. 
The data represents a single key press. It is sent to the server, ACKed by the server, 
and echoed back. The data is encrypted, causing the packets containing data to be 
48 bytes in user data size (see Chapter 18).

Interestingly, the echoed character is sent twice. We can see that packet 11, 
which contains the echoed character is not ACKed immediately. Recall from 
Chapter 14 that Linux uses an RTO of at least 200ms. Here we see that the Linux 
server retransmits the echoed character 200ms later, which produces an immedi-
ate response from the client. Because this test was performed on an uncongested 
LAN, it is highly unlikely that segment 11 was dropped. Instead, it appears that 
Linux produced a spurious retransmission due to the client delaying ACKs. This 
is a similar sort of hazard we saw when exploring the poor interaction between 
the Nagle algorithm and delayed ACKs we discussed in Chapter 15. Here, the 
dynamic results in an unnecessary delay of about 200ms.

17.2.1.2 Other End Crashes and Reboots
In this example we will see what happens when the peer crashes and reboots. The 
initial scenario is the same as the previous one, except this time we set KeepAl-
iveTime to 120,000 (2 minutes). We establish a connection and then wait just over 
2 minutes to allow a keepalive message to be sent and ACKed. Then we discon-
nect the server from the network, reboot it, and then reconnect it. We expect the 
next keepalive probe to generate a reset from the server, because the server now 
knows nothing about this connection. Figure 17-2 presents the trace as displayed 
by Wireshark. 

In this example, the connection has been established and small amounts of 
data are exchanged starting at seconds 0.00 and 3.46. Then the connection goes 
idle. After 2 minutes have elapsed (the keepalive time), the client sends the first 
keepalive probe at time 123.47, containing the “garbage” byte below the receiver’s 
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left window edge. It is acknowledged, and the server is disconnected, rebooted, 
and reconnected. At time 243.47, 120s later, the client sends its second keepalive 
probe. Although this reaches the server, the server no longer has any knowledge 
about the connection and responds with a reset segment (packet 18). This informs 
the client that the connection is no longer active, and the user is provided the same 
“Connection reset by peer” error message we saw before. 

17.2.1.3 Other End Is Unreachable
In this case, the server has not crashed but becomes unreachable during the inter-
val when the keepalive probes are sent. An intermediate router may have crashed, 
a phone line may be temporarily out of order, or something similar. To simulate 
this example we will use our sock program with the keepalive option set to 

Figure 17-2  The server has rebooted between keepalives sent by the client. The last keepalive elicits a reset 
segment because the server no longer knows anything about the connection.
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establish a connection to a Web server. We will use a Mac OS X client and an LDAP 
server (port 389) running on ldap.mit.edu. After shortening the client’s keepalive 
time (for convenience) and opening the connection, we disconnect the network to 
see the effects. Here are the command lines and output at the client:

Mac# sysctl -w net.inet.tcp.keepidle=75000
Mac% sock –K ldap.mit.edu 389
recv error: Operation timed out     about 14 minutes later

The trace is displayed using Wireshark (see Figure 17-3).

Figure 17-3  The WAN connection is taken down after the first keepalive probe is acknowledged. Another 
probe is sent every 75s. After nine keepalives are sent without a response, the connection is ter-
minated and the client sends a reset to its peer. For the client, the situation is very similar to when 
the server crashes, as illustrated in Figure 17-1.

In this figure we can see the entire connection. After the initial three-way 
handshake, the connection remains idle and a keepalive is sent and acknowledged 
at about time 75 (packet 4). This first keepalive is triggered by the value of the net
.inet.tcp.keepidle variable. Shortly thereafter, the network is severed. Neither 
end of the connection produces data, so the next event is another keepalive sent by 
the client at time 150 (75s later, the value of the net.inet.tcp.keepintvl vari-
able). This pattern repeats with packets 7–14, with no ACKs present, even though 
the server is up and running. Finally, the client gives up 75s after its ninth unac-
knowledged keepalive probe. The connection termination is indicated to the server 
by a reset segment at the end (packet 15). Of course, the server is unable to receive 
this packet because the network is not operating.

When a client TCP using keepalives is unable to communicate across the 
network with its peer, as this example shows, it retries some number of times 
before giving up. This is essentially the same behavior we saw when the other 
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end crashed. In most cases, the sending TCP cannot tell the difference. There are 
some exceptions, such as when ICMP indicates that the destination has become 
unreachable or otherwise unavailable because of problems in the network, but 
these conditions are relatively rare because ICMP is often blocked. As a result, 
mechanisms such as TCP keepalive (or similar mechanisms implemented by 
applications) are used to detect disconnection periods.

17.3 Attacks Involving TCP Keepalives

As we mentioned before, ssh (version 2) has an application-level form of keep-
alive called server alive messages and client alive messages. These are different from 
TCP keepalive messages because they are sent over an encrypted channel at the 
application layer and contain data. TCP keepalives contain no user-level data, so 
the use of encryption is limited at best. The consequence is that TCP keepalives 
may be spoofed. When TCP keepalives are spoofed, the victim can be coerced into 
keeping resources allocated for a period longer than intended.

Although it may be a relatively minor concern, TCP keepalives are driven off a 
timer based on the various configuration parameters discussed earlier, and not off 
the dynamically adjusted retransmission timer used to retransmit segments with 
data. A passive observer could notice the existence of keepalives and their inter-
arrival times to conceivably learn information about the configuration parameters 
(possibly identifying the type of sending system, called fingerprinting) or about the 
network topology (i.e., whether downstream routers are forwarding traffic or not). 
These issues could be of concern in some environments.

17.4 Summary

As we said earlier, the keepalive feature has been somewhat controversial. Proto-
col experts continue to debate whether it belongs in the transport layer or should 
be handled entirely by the application. All popular TCP implementations now 
include the keepalive feature, which applications may optionally use to establish 
a “heartbeat” of traffic moving across a connection. Doing so can help a server by 
allowing it to detect nonresponsive clients and can help clients by keeping con-
nections active (e.g., to keep NAT state active) even if no application-layer data is 
flowing.

Keepalives operate by sending a probe packet (usually containing a “garbage” 
byte, although zero-length probes are also possible) across a connection after the 
connection has been idle for some relatively long period of time, often 2 hours. 
Four different scenarios can occur: the other end is still there, the other end has 
crashed, the other end has crashed and rebooted, or the other end is currently 
unreachable. We saw each of these scenarios with an example.
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In the first two keepalive examples that we examined, had keepalives not 
been used, and without any application-level timer or activity, TCP would never 
have known that the other end had crashed (or crashed and rebooted). In the final 
example, however, nothing was wrong with the other end; the connection was 
temporarily down. We must be aware of this limitation when using keepalives 
and consider whether or not such behavior is desired.

Attacks against the keepalive mechanism include causing a system to keep 
resources allocated longer than intended and possibly learning some otherwise 
hidden information about the end systems (although such information may be 
of limited use to an attacker). In addition, by default TCP does not use its own 
encryption, so keepalives and keepalive ACKs can be spoofed, whereas applica-
tion-level keepalives that employ encryption (e.g., ssh) cannot.
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18

Security: EAP, IPsec, TLS, 
DNSSEC, and DKIM 

18.1 Introduction

In this chapter we will take a look at several forms of security used with TCP/IP. 
Security is a very broad and interesting topic, and covering it comprehensively is 
far beyond the scope of this book. Consequently, we will be interested to know 
about the various types of security threats on the Internet, and we will delve into 
some detail on those security mechanisms aimed at countering them that are 
applicable to the operation of various protocols such as IP, TCP, and the important 
e-mail and DNS application protocols.

Although our partitioning is not really formal, security threats can be bro-
ken down into attacks that target implementation problems by trying to subvert 
processes into running code that was not intended, trying to get users to run pro-
grams that do bad things, and using network protocols in compliant but unau-
thorized ways. We have already seen forms of these attacks in other chapters. For 
example, one of the earliest worms (self-propagating software) on the Internet used 
a buffer overflow that overwrites the server process’s memory. Doing so allows a cli-
ent program to inject software into a server that ultimately runs this injected code. 
The injected code then performs the same action, thereby causing the program to 
self-propagate. Naturally, such code could perform more malicious activities than 
simply self-propagation. 

The various types of attacks and techniques can be combined, and compli-
cated software and security analysis tools have been developed as the value of the 
information on the Internet has increased. A variety of texts, including [MSK09], 
discuss the tools and techniques in more detail. Today, essentially any software 
executed by a user or as a user against the user’s intentions is known by the gen-
eral term malware, short for “malicious software.” Entire industries have been 
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developed to both create and reduce the effects of malware. Malware can be deliv-
ered in e-mail messages or attachments (e.g., in spam), picked up while visiting 
a Web site (drive-by attacks), or acquired when using portable media such as por-
table USB drives. 

In some cases, malware is used to take control of a large number of computers 
in the Internet (botnets). Botnets are controlled by individuals or organizations (bot 
herders) and can be used on a wide scale for a number of purposes such as send-
ing spam, compromising other computers, exfiltrating information from the com-
promised system (e.g., credit card and bank account information, and the user’s 
logged keystrokes), and launching DoS attacks by sending a large aggregate vol-
ume of Internet traffic to one or more victims. Botnets are now commonly offered 
as a service on a rental basis—a client can hire a bot herder to perform one or more 
nefarious tasks. One common task is to generate e-mails in hopes of inducing the 
recipient(s) to visit a particular Web site or purchase a particular product (phish-
ing). When a specific victim is targeted in this way, the activity is usually called 
spear phishing. 

Our interest is in understanding how secure communication protocols on the 
Internet work. Ironically, perhaps, many worms or viruses implement secure com-
munication protocols. In most cases, we will see how the types of protocols we 
have already studied such as IP, TCP, e-mail, and DNS have been augmented with 
security extensions (sometimes in the form of additional protocols) to enhance 
security. We need to be somewhat precise in defining what “security” means in 
terms of a communication protocol, in order to understand if the techniques avail-
able to us are sufficient to provide our desired level of protection. Therefore, we 
shall begin by studying the properties of information protection considered desir-
able in the field of information security.

18.2 Basic Principles of Information Security

There are three primary properties of information, whether in a computer net-
work or not, that may be desirable from an information security point of view: 
confidentiality, integrity, and availability (the CIA triad) [L01], summarized here:

• Confidentiality means that information is made known only to its intended 
users (which could include processing systems).

• Integrity means that information has not been modified in an unauthor-
ized way before it is delivered.

• Availability means that information is available when needed.

These are core properties of information, yet there are other properties we 
may also desire, including authentication, nonrepudiation, and auditability. Authen-
tication means that a particular identified party or principal is not impersonating 
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another principal. Nonrepudiation means that if some action is performed by a 
principal (e.g., agreeing to the terms of a contract), this fact can be proven later (i.e., 
cannot successfully be denied). Auditability means that some sort of trustworthy 
log or accounting describing how information has been used is available. Such 
logs are often important for forensic (i.e., legal and prosecuritorial) purposes.

These principles are applicable to information in physical (e.g., printed) form, 
for which mechanisms such as safes, secured facilities, and guards have been used 
for thousands of years to enforce controlled sharing, storage, and dissemination. 
When information is to be moved through an unsecured environment, additional 
techniques are required. To see why, let us examine the types of threats to which 
information can be exposed when it travels through an unsecured communica-
tion channel.

18.3 Threats to Network Communication

When considering the design and operation of network protocols, ensuring that 
information has the desired properties of integrity, availability, and confidentiality 
can be quite a challenge because of the wide range of possible attacks that can be 
carried out in an otherwise uncontrolled network such as the Internet. Attacks can 
generally be categorized as either passive or active [VK83]. Identifying the category 
is useful because different techniques are required to provide security depending 
on the particular category. Passive attacks are mounted by monitoring or eaves-
dropping on the contents of network traffic, and if not handled they can lead to 
unauthorized release of information (loss of confidentiality). Active attacks can 
cause modification of information (with possible loss of integrity) or denial of ser-
vice (loss of availability). Logically, such attacks are carried out by an “intruder” or 
adversary. This is often depicted using the scenario shown in Figure 18-1.

Alice Bob

Mallory
Eve

Figure 18-1  The principals, Alice and Bob, attempt to communicate securely, but Eve may eavesdrop 
and Mallory may modify messages in transit.
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The figure depicts the principals, Alice and Bob, trying to communicate. How-
ever, there are two attackers, Eve and Mallory. Eve (eavesdropper) is only able to 
monitor the traffic exchanged between Alice and Bob and thus can carry out only 
passive attacks. Mallory (malicious attacker) can store, modify, and replay traffic 
passing between Alice and Bob, so she can carry out active and passive attacks. 
Table 18-1 summarizes the major categories of passive and active attacks that Alice 
and Bob may face.

Table 18-1  Attacks on communication are broadly classified as passive or active. Passive attacks are ordinarily 
more difficult to detect, and active attacks are ordinarily more difficult to prevent.

Passive Active

Type Threats Type Threats

Eavesdropping Confidentiality Message stream 
modification

Authenticity, integrity

Traffic analysis Confidentiality Denial of service (DoS) Availability
Spurious association Authenticity

From an attacker’s perspective, Table 18-1 gives a quick summary of the pas-
sive attacks available to Eve and the active (and passive) attacks available to Mal-
lory. Eve is able to eavesdrop (listen in on, also called capture or sniff) and perform 
traffic analysis on the traffic passing between Alice and Bob. Capturing the traffic 
could lead to compromise of confidentiality, as sensitive data may be available to 
Eve without Alice or Bob knowing. In addition, traffic analysis can determine the 
features of the traffic, such as its size and when it is sent, and possibly identify the 
parties to a communication. This information, although it does not reveal the exact 
contents of the communication, could also lead to disclosure of sensitive informa-
tion and could be used to mount more powerful active attacks in the future.

While the passive attacks are essentially impossible for Alice or Bob to detect, 
Mallory is capable of performing more easily noticed active attacks. These include 
message stream modification (MSM), denial-of-service (DoS), and spurious associa-
tion attacks. MSM attacks (including so-called called man-in-the-middle or MITM 
attacks) are a broad category and include any way traffic is modified in transit, 
including deletion, reordering, and content modification. DoS might include dele-
tion of traffic, or generation of such large volumes of traffic so as to overwhelm 
Alice, Bob, or the communication channel connecting them. Spurious associations 
include masquerading (Mallory pretends to be Bob or Alice) and replay, whereby 
Alice or Bob’s earlier (authentic) communications are replayed later, from Mal-
lory’s memory.

Two major methods are available to prevent the passive and active attacks 
we have just described. One method would be to ensure through physical secu-
rity that only trusted parties have access to the communication infrastructure 
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connecting Alice and Bob. This approach is used in limited circumstances but is 
effectively impractical for any network spanning a large geographical distance. Of 
course, if the communication channel is wireless, securing it using only physical 
methods is effectively impossible. Given these considerations, some mechanism is 
needed to allow information to pass through unsecured communication channels 
in such a way that adversaries like Eve and Mallory are, for the most part at least, 
thwarted. This mechanism is cryptography. With effective and careful use of cryp-
tography, passive attacks are rendered ineffective, and active attacks are made 
detectable (and to some degree preventable).

18.4 Basic Cryptography and Security Mechanisms

Cryptography evolved from the desire to protect the confidentiality, integrity, and 
authenticity of information carried through unsecured communication channels. 
Such a capability is clearly of significant importance in protecting confidential 
information such as military orders, intelligence, and recipes for creating espe-
cially dangerous or valuable materials. The use of cryptography, at least in a prim-
itive form, dates back to at least 3500 BCE. The earliest systems were usually codes. 
Codes involve substitutions of groups of words, phrases, or sentences with groups 
of numbers or letters as given in a codebook. Codebooks needed to be kept secret 
in order to keep communications private, so distributing them required consider-
able care.

More advanced systems used ciphers, in which both substitution and rear-
rangement are used. Several codes were used in the Middle Ages, and by the 
late 1800s large code and cipher systems were commonly use for diplomatic and 
military communications. By the early twentieth century, cryptography was well 
established but would not take its major leap forward until World War II. Dur-
ing this period, electromechanical cryptographic machines such as the German 
ENIGMA and Lorenz machines posed a challenge to Allied cryptanalysts (code 
breakers). One of the first digital computers, Colossus, was developed by the 
British to decipher Lorenz-enciphered messages. A functioning Colossus Mark 
2 machine was created in 2007, after a 14-year effort, by Tony Sale of the National 
Museum of Computing at Bletchley Park, UK [TNMOC].

18.4.1 Cryptosystems

While the historical basis for cryptography is primarily for preserving confiden-
tiality, other desirable properties such as integrity and authentication can also 
be achieved using cryptographic and related mathematical techniques. To help 
understand the basics, Figure 18-2 illustrates how the two most important types of 
cryptographic algorithms, called symmetric key and public (asymmetric) key ciphers, 
work.
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This figure shows the high-level operation of symmetric and asymmetric key 
cryptography. In each case, a cleartext message is processed by an encryption algo-
rithm to produce ciphertext (scrambled text). The key is a particular sequence of 
bits used to drive the encryption algorithm or cipher. With different keys, the same 
input produces different outputs. Combining the algorithms with supporting pro-
tocols and operating methods forms a cryptosystem. In a symmetric cryptosystem, 
the encryption and decryption keys are typically identical, as are the encryption 
and decryption algorithms. In an asymmetric cryptosystem, each principal is gen-
erally provided with a pair of keys consisting of one public and one private key. 
The public key is intended to be known to any party that might want to send a 
message to the key pair’s owner. The public and private keys are mathematically 
related and are themselves outputs of a key generation algorithm. One of the major 
benefits of asymmetric key cryptosystems is that secret key material does not have 
to be securely distributed to every party that wishes to communicate.

Figure 18-2  The unencrypted (cleartext) message is passed through an encryption algorithm to 
produce an encrypted (ciphertext) message. In a symmetric cryptosystem, the same 
(secret) key is used for encryption and decryption. In an asymmetric or public key 
cryptosystem, confidentiality is achieved by using the recipient’s public key for encryp-
tion and private (secret) key for decryption.
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Without knowing the symmetric key (in a symmetric cryptosystem) or the 
private key (in a public key cryptosystem), it is (believed to be) effectively impossi-
ble for any third party that intercepts the ciphertext to produce the corresponding 
cleartext. This provides the basis for confidentiality. For the symmetric key cryp-
tosystem, it also provides a degree of authentication, because only a party holding 
the key is able to produce a useful ciphertext that can be decrypted to something 
sensible. A receiver can decrypt the ciphertext, look for a portion of the resulting 
cleartext to contain a particular agreed-upon value, and conclude that the sender 
holds the appropriate key and is therefore authentic. Furthermore, most encryp-
tion algorithms work in such a way that if messages are modified in transit, they 
are unable to produce useful cleartext upon decryption. Thus, symmetric cryp-
tosystems provide a measure of both authentication and integrity protection for 
messages, but this approach alone is weak. Instead, special forms of checksums 
are usually coupled with symmetric cryptography to ensure integrity. We discuss 
these later, after the cryptographic preliminaries.

A symmetric encryption algorithm is usually classified as either a block cipher
or a stream cipher. Block ciphers perform operations on a fixed number of bits (e.g., 
64 or 128) at a time, and stream ciphers operate continuously on however many bits 
(or bytes) are provided as input. For years, the most popular symmetric encryption 
algorithm was the Data Encryption Standard (DES), a block cipher that uses 64-bit 
blocks and 56-bit keys. Eventually, the use of 56-bit keys was felt to be insecure, 
and many applications turned to triple-DES (also denoted 3DES or TDES—apply-
ing DES three times with two or three different keys to each block of data). Today, 
DES and 3DES have been largely phased out in favor of the Advanced Encryption 
Standard (AES) [FIPS197], also known occasionally by its original name the Rijn-
dael algorithm (pronounced “rain-dahl”), in deference to its Belgian cryptographer 
inventors Vincent Rijmen and Joan Daemen. Different variants of AES provide key 
lengths of 128, 192, and 256 bits and are usually written with the corresponding 
extension (i.e., AES-128, AES-192, and AES-256).

Asymmetric cryptosystems have some additional interesting properties 
beyond those of symmetric key cryptosystems. Assuming we have Alice as sender 
and Bob as intended recipient, any third party is assumed to know Bob’s public 
key and can therefore send him a secret message—only Bob is able to decrypt it 
because only Bob knows the private key corresponding to his public key. How-
ever, Bob has no real assurance that the message is authentic, because any party 
can create a message and send it to Bob, encrypted in Bob’s public key. Fortunately, 
public key cryptosystems also provide another function when used in reverse: 
authentication of the sender. In this case, Alice can encrypt a message using her 
private key and send it to Bob (or anyone else). Using Alice’s public key (known to 
all), anyone can verify that the message was authored by Alice and has not been 
modified. However, it is not confidential because everyone has access to Alice’s 
public key. To achieve authenticity, integrity, and confidentiality, Alice can encrypt 
a message using her private key and encrypt the result using Bob’s public key. The 
result is a message that is reliably authored by Alice and is also confidential to 
Bob. This process is illustrated in Figure 18-3.
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When public key cryptography is used in “reverse” like this, it provides a 
digital signature. Digital signatures are important consequences of public key cryp-
tography and can be used to help ensure authenticity and nonrepudiation. Only a 
party possessing Alice’s private key is able to author messages or carry out trans-
actions as Alice.

In a hybrid cryptosystem, elements of both public key and symmetric key 
cryptography are used. Most often, public key operations are used to exchange a 
randomly generated confidential (symmetric) session key, which is used to encrypt 
traffic for a single transaction using a symmetric algorithm. The reason for doing 
so is performance—symmetric key operations are less computationally intensive 
than public key operations. Most systems today are of the hybrid type: public key 
cryptography is used to establish keys used for symmetric encryption of indi-
vidual sessions.

18.4.2 Rivest, Shamir, and Adleman (RSA) Public Key Cryptography

We have seen how public key cryptography can be used for both digital signatures 
and confidentiality. The most common approach is called RSA in deference to its 
authors’ names, Rivest, Shamir, and Adleman [RSA78]. The security of this sys-
tem hinges on the difficulty of factoring large numbers into constituent primes. 

Figure 18-3  The asymmetric cryptosystem can be used for confidentiality (encryption), authentica-
tion (digital signatures or signing), or both. When used for both, it produces a signed 
output that is confidential to the sender and the receiver. Public keys, as their name 
suggests, are not kept secret.
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To initialize RSA, two large prime numbers p and q are generated, which usually 
involves checking a number of large odd numbers that are randomly generated 
until two primes are found. The product of these primes n = pq is called the modu-
lus. The length of n, p, and q is usually measured in bits, with n often being 1024 
bits and the others being about 512, although larger sizes such as 2048 are now rec-
ommended. The value Φ(v) is known in number theory as the Euler totient of the 
integer v. It gives the number of positive integers less than v that are also coprime 
to v (i.e., whose greatest common divisor is 1). Because of the way n is constructed 
for RSA, Φ(n) = (q - 1)(p - 1).

Using the defnition for Φ(n), we can choose the RSA public exponent (called 
e for “encryption”) and derive a private exponent (called d for “decryption”) as 
multiplicative inverses using the relation d = e-1 (mod Φ(n)). In practice, e is often 
some value with a fairly small population count (i.e., has a small number of 1 bits) 
such as 65,537 (10000000000000001 binary), for faster computations. To form an 
encrypted ciphertext c from a cleartext message m, the value c = me (mod n) is com-
puted. To form the value m from c, decryption is performed: m = cd (mod n). An 
RSA public key consists of the public exponent e and modulus n. The correspond-
ing private key consists of the private exponent d and the modulus n.

As suggested earlier, public key algorithms such as RSA can also be used to 
produce digital signatures by essentially running RSA “in reverse.” To create an 
RSA signature of a message m, the value s = md (mod n) can be produced as a 
signed version of m. Anyone receiving the value s can apply the public exponent 
e to produce m = se (mod n), which provides the basis for verifying that whatever 
produced the value s was in possession of the private value d (otherwise the value 
m produced would not be sensible). 

The security of RSA is based on the difficulty of factoring large numbers. In 
the context of RSA and our scenario of Figure 18-1, Eve is able to obtain n and e but 
does not know p, q, or Φ(n). If she could determine any of these last three values, 
it would be trivial to determine d using the relation we have described. However, 
doing so appears to involve factoring n, and factoring numbers of 1000 or more bits 
is currently believed to be out of reach for even the best factorization algorithms. 
Indeed, factoring semiprimes (numbers that are a product of two primes) appears 
to represent the most difficult case for such algorithms.

18.4.3 Diffie-Hellman-Merkle Key Agreement (aka Diffie-Hellman or DH)

A common requirement in security protocols is to have two parties agree on a 
common set of secret bits that can be used as a symmetric key. Doing so in a net-
work that may contain eavesdroppers (such as Eve) is a challenge, because it is not 
immediately obvious how to have two principals (such as Alice and Bob) agree 
on a common secret number without Eve knowing. The Diffie-Hellman-Merkle Key 
Agreement protocol (more commonly called simply Diffie-Hellman or DH) provides 
a method for accomplishing this task, based on the use of finite field arithmetic 
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[DH76].1 DH techniques are used in many of the Internet-related security proto-
cols [RFC2631] and are closely related to the RSA approach for public key cryptog-
raphy. We shall have a brief look at how they work.

With the same cast of characters (Alice, Bob, etc.), let us assume that all parties 
are aware of two integers p and g. Let p be a (large) prime number and g < p be a 
primitive root mod p. With these assumptions, every integer in the group Zp = {1, 
..., p - 1} can be generated by raising g to some power. Said another way, for every 
n, there exists some k for which gk ≡ n (mod p). Finding the value (or values) of k 
given g, n, and p (called the discrete log problem) is considered to be difficult, result-
ing in the belief that DH is secure. Finding the value of n given g, k, and p is easy, 
resulting in the approach being practical.

For Alice and Bob to establish a shared secret key, they can use the following 
protocol: Alice chooses a secret random number a and computes A = ga (mod p), 
which she sends to Bob. Bob chooses a secret random number b and computes B = 
gb (mod p), which he sends to Alice. Alice and Bob arrive at the same shared secret 
K = gab (mod p). Alice computes this value this way:

K = Ba (mod p) = gba (mod p)

and Bob computes it this way:

K = Ab (mod p) = gab (mod p)

Given that gba is equal to gab (because Zp is so-called power associative and we 
assumed all parties are aware of the group Zp being used), both Alice and Bob 
know K. Note that Eve has access only to g, p, A, and B so cannot determine K 
without solving the discrete log problem [MW99]. However, this basic protocol 
is vulnerable to an attack from Mallory. Mallory can pretend to be Bob when 
communicating with Alice and vice versa by supplying her own A and B values. 
However, the basic DH protocol can be extended to protect from this man-in-the-
middle attack if the public values for A and B are authenticated [DOW92]. The 
classic approach, called the Station-to-Station protocol (STS), involves Alice and Bob 
signing their public values.

18.4.4 Signcryption and Elliptic Curve Cryptography (ECC)

When using RSA, additional security is provided with larger numbers. However, 
the basic mathematical operations required by RSA (e.g., exponentiation) can be 
computationally intensive and scale as the numbers grow. Reducing the effort of 
combining digital signatures and encryption for confidentiality, a class of sign-
cryption schemes [Z97] (also called authenticated encryption) provides both features 

1. The technique was described in a then-classified reference in 1973 by C. Cocks, “A Note on ‘Non-
Secret Encryption.’” See http://www.cesg.gov.uk/publications/media/notense.pdf.

http://www.cesg.gov.uk/publications/media/notense.pdf
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at a cost less than the sum of the two if computed separately. However, even 
greater efficiency can sometimes be achieved by changing the mathematical basis 
for public key cryptography.

In a continuing search for security with greater efficiency and performance, 
researchers have explored other public key cryptosystems beyond RSA. An alter-
native based on the difficulty of finding the discrete logarithm of an elliptic curve
element has emerged, known as elliptic curve cryptography (ECC, not to be con-
fused with error-correcting code) [M85][K87][RFC5753]. For equivalent security, 
ECC offers the benefit of using keys that are considerably smaller than those of 
RSA (e.g., by about a factor of 6 for a 1024-bit RSA modulus). This leads to sim-
pler and faster implementations, issues of considerable practical concern. ECC has 
been standardized for use in many of the applications where RSA still retains 
dominance, but adoption has remained somewhat sluggish because of patents on 
ECC technology held by the Certicom Corporation. (The RSA algorithm was also 
patented, but patent protection lapsed in the year 2000.)

18.4.5 Key Derivation and Perfect Forward Secrecy (PFS)

In communication scenarios where multiple messages are to be exchanged, it is 
common to establish a short-term session key to perform symmetric encryption. 
The session key is ordinarily a random number (see the following section) gener-
ated by a function called a key derivation function (KDF), based on some input such 
as a master key or a previous session key. If a session key is compromised, any of 
the data encrypted with the key is subject to compromise. However, it is common 
practice to change keys (rekey) multiple times during an extended communication 
session. A scheme in which the compromise of one session key keeps future com-
munications secure is said to have perfect forward secrecy (PFS). Usually, schemes 
that provide PFS require additional key exchanges or verifications that introduce 
overhead. One example is the STS protocol for DH mentioned earlier. 

18.4.6 Pseudorandom Numbers, Generators, and Function Families

In cryptography, random numbers are often used as initial input values to cryp-
tographic functions, or for generating keys that are difficult to guess. Given that 
computers are not very random by nature, obtaining true random numbers is 
somewhat difficult. The numbers used in most computers for simulating random-
ness are called pseudorandom numbers. Such numbers are not usually truly random 
but instead exhibit a number of statistical properties that suggest that they are 
(e.g., when many of them are generated, they tend to be uniformly distributed 
across some range). 

Pseudorandom numbers are produced by an algorithm or device known as a 
pseudorandom number generator (PRNG) or pseudorandom generator (PRG), depending 
on the author. Simple PRNGs are deterministic. That is, they have a small amount 
of internal state initialized by a seed value. Once the internal state is known, the 
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sequence of PNs can be determined. For example, the common Linear Congruential 
Generator (LCG) algorithm produces random-appearing values that are entirely 
predictable if the input parameters are known or guessed. Consequently, LCGs 
are perfectly fine for use in certain programs (e.g., games that simulate random 
events) but insufficient for cryptographic purposes. 

A pseudorandom function family (PRF) is a family of functions that appear to 
be algorithmically indistinguishable (by polynomial time algorithms) from truly 
random functions [GGM86]. A PRF is a stronger concept than a PRG, as a PRG can 
be created from a PRF. PRFs are the basis for cryptographically strong (or secure) 
pseudorandom number generators, called CSPRNGs. CSPRNGs are necessary in 
cryptographic applications for several purposes, including session key generation, 
for which a sufficient amount of randomness must be guaranteed [RFC4086]. 

18.4.7 Nonces and Salt

A cryptographic nonce is a number that is used once (or for one transaction) in a 
cryptographic protocol. Most commonly, a nonce is a random or pseudorandom 
number that is used in authentication protocols to ensure freshness. Freshness is 
the (desirable) property that a message or operation has taken place in the very 
recent past. For example, in a challenge-response protocol, a server may provide a 
requesting client with a nonce, and the client may need to respond with authenti-
cation material as well as a copy of the nonce (or perhaps an encrypted copy of the 
nonce) within a certain period of time. This helps to avoid replay attacks, because 
old authentication exchanges that are replayed to the server would not contain the 
correct nonce value.

A salt or salt value, used in the cryptographic context, is a random or pseudo-
random number used to frustrate brute-force attacks on secrets. Brute-force attacks 
usually involve repeatedly guessing a password, passphrase, key, or equivalent 
secret value and checking to see if the guess was correct. Salts work by frustrat-
ing the checking portion of a brute-force attack. The best-known example is the 
way passwords used to be handled in the UNIX system. Users’ passwords were 
encrypted and stored in a password file that all users could read. When logging 
in, each user would provide a password that was used to double encrypt a fixed 
value. The result was then compared against the user’s entry in the password file. 
A match indicated that a correct password was provided.

At the time, the encryption method (DES) was well known and there was 
concern that a hardware-based dictionary attack would be possible whereby many 
words from a dictionary were encrypted with DES ahead of time (forming a rain-
bow table) and compared against the password file. A pseudorandom 12-bit salt 
was added to perturb the DES algorithm in one of 4096 (nonstandard) ways for 
each password in an effort to thwart this attack. Ultimately, the 12-bit salt was 
determined to be insufficient with improved computers (that could guess more 
values) and was expanded.
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18.4.8 Cryptographic Hash Functions and Message Digests

In most of the protocols we have studied, including Ethernet, IP, ICMP, UDP, and 
TCP, we have seen the use of a frame check sequence (FCS, either a checksum or 
a CRC) to determine whether a PDU has likely been delivered without bit errors. 
Such mathematical functions tend to trade off the likelihood of detecting random 
errors against the amount of overhead required to carry the FCS value. When 
considering security, however, we are interested in ensuring message integrity 
not only against random, infrequent errors, but also against intentional message 
stream modification attacks. We are worried about Mallory modifying messages 
as they travel through the network. Ordinary FCS functions are not sufficient for 
this purpose.

A checksum or FCS can be used to verify message integrity against an adver-
sary like Mallory if properly constructed using special functions. Such functions 
are called cryptographic hash functions and often resemble portions of encryption 
algorithms. The output of a cryptographic hash function H, when provided a mes-
sage M, is called the digest or fingerprint of the message, H(M). A message digest 
is a type of strong FCS that is easy to compute and has the following important 
properties:

• Preimage resistance: Given H(M), it should be difficult to determine M if 
not already known.

• Second preimage resistance: Given H(M1), it should be difficult to deter-
mine an M2 ≠ M1 such that H(M1) = H(M2).

• Collision resistance: It should be difficult to find any pair M1, M2 where 
H(M1) = H(M2) when M2 ≠ M1.

If a hash function has all of these properties, then if two messages have the 
same cryptographic hash value, they are, with negligible doubt, the same mes-
sage. The two most common cryptographic hash algorithms are at present the 
Message Digest Algorithm 5 (MD5, [RFC1321]), which produces a 128-bit (16-byte) 
digest, and the Secure Hash Algorithm 1 (SHA-1), which produces a 160-bit (20-byte) 
digest. More recently, a family of functions based on SHA called SHA-2 [RFC6234] 
produce digests with lengths of 224, 256, 384, or 512 bits (28, 32, 48, and 64 bytes, 
respectively). Others are under development.

Notes

Cryptographic hash functions are often based on a compression function f, which 
takes an input of length L and produces a collision-resistant but deterministic 
output of size less than L. The Merkle-Damgård construction, which essentially 
breaks an arbitrarily long input into blocks of length L, pads them, passes them to 
f, and combines the results, produces a cryptographic hash function capable of 
taking a long input and producing an output with collision resistance.
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MD5 had been in widespread use with Internet protocols until it was reported 
broken in 2005 (i.e., two different 128-byte sequences were shown to have the 
same MD5 value) [WY05]. SHA-1 was used as an alternative, but it was also 
thought to possibly have weaknesses, so a SHA-2 family of algorithms was devel-
oped. Given SHA-2’s similarity to SHA-1, there is concern that it, too, may have 
weaknesses. In December 2010, the National Institute of Standards and Technol-
ogy (NIST) in the United States announced that five algorithms had been selected 
as final candidates for a new “SHA-3” cryptographic hash algorithm [CHP]. The 
selection of the final winning algorithm is scheduled for sometime after spring 
2012.

18.4.9 Message Authentication Codes (MACs, HMAC, CMAC, and GMAC)

A message authentication code (unfortunately abbreviated MAC or sometimes 
MIC but unrelated to the link-layer MAC addresses we discussed in Chapter 3) 
can be used to ensure message integrity and authentication. MACs are usually 
based on keyed cryptographic hash functions. Such functions are like message 
digest algorithms (see Section 18.4.8) but require a private key to produce or verify 
the integrity of a message and may also be used to verify (authenticate) the mes-
sage’s sender.

MACs require resistance to various forms of forgery. For a given keyed hash 
function H(M,K) taking input message M and key K, resistance to selective forgery
means that it is difficult for an adversary not knowing K to form H(M,K) given a 
specific M. H(M,K) is resistant to existential forgery if it is difficult for an adversary 
lacking K to find any previously unknown valid combination of M and H(M,K). 
Note that MACs do not provide exactly the same features as digital signatures. For 
example, they cannot be a solid basis for nonrepudiation because the secret key is 
known to more than one party.

A standard MAC that uses cryptographic hash functions in a particular way 
is called the keyed-hash message authentication code (HMAC) [FIPS198][RFC2104]. 
The HMAC “algorithm” uses a generic cryptographic hash algorithm, say H(M). 
To form a t-byte HMAC on message M with key K using H (called HMAC-H), we 
use the following definition:

HMAC-H (K, M)t = Λt (H((K ⊕ opad)||H((K ⊕ ipad)||M)))

In this definition, opad (outer pad) is an array containing the value 0x5C 
repeated |K| times, and ipad (inner pad) is an array containing the value 0x36 
repeated |K| times. ⊕ is the vector XOR operator, and || is the concatenation oper-
ator. Normally the HMAC output is intended to be a certain number t of bytes in 
length, so the operator Λt(M) takes the left-most t bytes of M.

The careful reader will observe that the definition of HMAC is a hash around 
another hash, of the form H(K1 || H(K2 || M)) using keys K1 and K2. This structure 
resists so-called extension attacks in which a selected pad value can be combined 
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(e.g., by Mallory) with an intercepted message and digest value to form a new, 
valid message and digest value (not sent by Alice). The values of ipad and opad are 
not critical but tend to produce K1 and K2 values with few bits in common (i.e., 
they have a large hamming distance). Certain extension attacks have been shown to 
be effective against naively constructed MACs such as those of the form H(K || 
M) or H(M || K) but ineffective against the HMAC construct (or NMAC construct 
[BCK96], of which HMAC is a derivative)[B06].

More recently, other forms of MACs have been standardized, called the cipher-
based MAC (CMAC) [FIPS800-38B] and GMAC [NIST800-38D]. Instead of using a 
cryptographic hash function such as HMAC, these use a block cipher such as AES 
or 3DES. CMAC is envisioned for use in environments where it is more convenient 
or efficient to use a block cipher in place of a hash function. Details of CMAC 
using AES-128, called AES-CMAC, are provided in [RFC4493]. In essence, it works 
by encrypting a message block using AES-128 with a key K, taking the result and 
XORing it with the subsequent block, encrypting the result, and repeating the pro-
cess until no more message blocks remain, with the output value being the result 
of the final encryption operation. If the final message block’s length is an even 
multiple of the algorithm’s block size, one subkey, derived from K using a special 
subkey-generating algorithm [IK03], is used in performing the final encryption. 
If not, the final message block is first padded and a second subkey, also generated 
from K, is used to perform the final encryption. GMAC uses a special mode of 
AES called Galois/Counter Mode (GCM). It also uses a keyed hash function (called 
GHASH, which is not a cryptographic hash function). We will see more about 
cryptographic operating modes in the next section.

18.4.10 Cryptographic Suites and Cipher Suites

At this point we have seen mechanisms to ensure confidentiality, authenticity, and 
integrity of information sent across an unsecured communication network. There 
are other capabilities (e.g., nonrepudiation) that can also be achieved by selecting 
the appropriate mathematical or cryptographic techniques. The combination of 
techniques used in a particular system, especially those we see used with Internet 
protocols, are called a cryptographic suite or sometimes a cipher suite, although the 
first term is more accurate. A cryptographic suite defines not only an enciphering 
(encryption) algorithm but may also include a particular MAC algorithm, PRF, 
key agreement algorithm, signature algorithm, and associated key lengths and 
parameters.

Many cryptographic suites are defined for use with the security protocols 
we shall discuss. Usually, an encryption algorithm is specified by its name and 
description, how many bits are used for its keys (often a multiple of 128 bits), along 
with its operating mode. Encryption algorithms that have been standardized for 
use with Internet protocols include AES, 3DES, NULL [RFC2410], and CAMEL-
LIA [RFC3713]. The NULL encryption algorithm does not modify the input and is 
used in certain circumstances where confidentiality is not required.
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The operating mode of an encryption algorithm, especially a block cipher, 
describes how to use the encryption function for a single block repeatedly (e.g., 
in a cascade) to encrypt or decrypt an entire message with a single key. Common 
modes today include cipher block chaining (CBC) and counter (CTR) mode, although 
many others have been defined. When performing encryption using CBC mode, 
a cleartext block to be encrypted is first XORed with the previous ciphertext block 
(the first block is XORed with a random initialization vector or IV). Encrypting in 
CTR mode involves first creating a value combining a nonce (or IV) and a counter
that increments with each successive block to be encrypted. The combination is 
then encrypted, the output is XORed with a cleartext block to produce a ciphertext 
block, and the process repeats for successive blocks. In effect, this approach uses a 
block cipher to produce a keystream. A keystream is a sequence of (random-appear-
ing) bits that are combined (e.g., XORed) with cleartext bits to produce a cipher-
text. Doing so essentially converts a block cipher into a stream cipher because no 
explicit padding of the input is required.

CBC requires a serial process for encryption and a partly serial process for 
decryption, whereas counter mode algorithms allow more efficient fully paral-
lel encryption and decryption implementations. Consequently, counter mode is 
gaining popularity. In addition, variants of CTR mode (e.g., counter mode with 
CBC-MAC (CCM), Galois Counter Mode, or GCM) can be used for authenticated 
encryption [RFC4309], and possibly to authenticate (but not encrypt) additional 
data (called authenticated encryption with associated data or AEAD) [RFC5116]. When 
authenticated encryption algorithms are used, separate MACs are generally not 
necessary. In the degenerate case of an AEAD algorithm operating on data that 
does not require confidentiality, a form of MAC is effectively produced (e.g., 
GMAC). When an encryption algorithm is specified as part of a cryptographic 
suite, its name usually includes the mode, and the key length is often implied. For 
example, ENCR_AES_CTR refers to AES-128 used in CTR mode. 

When a PRF is included in the definition of a cryptographic suite, it is usu-
ally based on a cryptographic hash algorithm family such as SHA-2 [RFC6234] or 
a cryptographic MAC such as CMAC [RFC4434][RFC4615]. Constructions of this 
type generally include the name of the function serving as the basis. For example, 
the algorithm AES-CMAC-PRF-128 refers to a PRF constructed using a CMAC 
based on AES-128. It is also written as PRF_AES128_CMAC. The algorithm PRF_
HMAC_SHA1 refers to a PRF based on HMAC-SHA1.

Key agreement parameters, when included with an Internet cryptographic 
suite definition, refer to DH group definitions, as no other key agreement pro-
tocol is in widespread use. When DH key agreement is used in generating keys 
for a particular encryption algorithm, care must be taken to ensure that the keys 
produced are of sufficient length (strength) to avoid compromising the security 
of the encryption algorithm. Consequently, more than 16 groups for use with DH 
in different contexts have been standardized [RFC5114]. The first 5 have become 
known as the “Oakley Groups” because they were specified by the Oakley pro-
tocol [RFC2409], an early component of IPsec that has since been deprecated. The 
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modular exponential or MODP groups are based on exponentiation and modular 
arithmetic. The elliptic curve groups modulo a prime or ECP groups [RFC5903] are 
based on curves over the Galois field GF(P) for a prime P, and the elliptic curve 
groups modulo a power of two or EC2N are based on curves over the field GF(2N) for 
some N.

A signature algorithm is sometimes included in the definition of a crypto-
graphic suite. It may be used for signing a variety of values including data, MACs, 
and DH values. The most common is to use RSA to sign a hashed value for some 
block of data, although the digital signature standard (written as DSS or DSA to indi-
cate the digital signature algorithm) [FIPS186-3] is also used in some circumstances. 
With the advent of ECC, signatures based on elliptic curves (e.g., ECDSA [X9.62-
2005]) are also now supported in many systems.

The concept of a cryptographic suite evolved in the context of Internet secu-
rity protocols because of a need for modularity and decoupled evolution. As com-
putational power has improved, older cryptographic algorithms and smaller key 
lengths have fallen victim to various forms of brute-force attacks. In some cases, 
more sophisticated attacks have revealed flaws that necessitate the replacement of 
the underlying mathematical and cryptographic methods, but the basic protocol 
machinery is otherwise sound. As a result, the choice of a cryptographic suite can 
now be made separately from the communication protocol details and depends 
on factors such as convenience, performance, and security. Protocols tend to make 
use of the components of a cryptographic suite in a standard way, so an appro-
priate cryptographic suite can be “snapped in” when deemed appropriate. It is 
now common practice in protocol design to “outsource” the security processing 
to a separately defined set of cryptographic suites that have been analyzed by a 
large community with the necessary cryptographic and mathematical expertise. 
Although the ability to “snap in” a new cipher suite is appealing, it can still take 
years to standardize on acceptable suites and get them deployed. For interoper-
ability, each participant in a communication exchange must usually employ the 
same suite. This can be a significant hurdle when cipher suites may be imple-
mented in a wide range of software and hardware systems.

18.5 Certificates, Certificate Authorities (CAs), and PKIs

The tools provided by cryptography and related mathematics, including digital 
signatures and enciphering algorithms, provide a sound basis for constructing 
secure systems, but a great deal of additional work is required to create an entire 
system from these parts. Among the items of particular concern are the construc-
tion of secure protocols that use cryptographic methods in safe ways, and how 
keys are created, exchanged, and revoked (called key management). Key manage-
ment remains one of the greatest challenges in deploying cryptographic systems 
on a widespread basis across multiple administrative domains.
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One of the challenges with public key cryptosystems is to determine the cor-
rect public key for a principal or identity. In our running example, if Alice were to 
send her public key to Bob, Mallory could modify it in transit to be her own public 
key, and Bob (called the relying party here) might unknowingly be using Mallory’s 
key, thinking it is Alice’s. This would allow Mallory to effectively masquerade as 
Alice. To address this problem, a public key certificate is used to bind an identity to 
a particular public key using a digital signature. At first glance, this presents a 
certain “chicken-egg” problem: How can a public key become signed if the digital 
signature itself requires a reliable public key? There are two ways this is accom-
plished today.

One model, called a web of trust, involves having a certificate (identity/key 
binding) endorsed by a collection of existing users (called endorsers). An endorser 
signs a certificate and distributes the signed certificate. The more endorsers for 
a certificate over time, the more reliable it is likely to be. An entity checking a 
certificate might require some number of endorsers or possibly some particular 
endorsers to trust the certificate. The web of trust model is decentralized and 
“grassroots” in nature, with no central authority. This has mixed consequences. 
Having no central authority suggests that the scheme will not collapse because 
of a single point of failure, but it also means that a new entrant may experience 
some delay in getting its key endorsed to a degree sufficient to be trusted by a 
significant number of users. Some groups hold “key signing parties” to hasten 
this process. The web of trust model was first described as part of the Pretty Good 
Privacy (PGP) encryption system for electronic mail [NAZ00], which has evolved 
to support a standard encoding format called OpenPGP, defined by [RFC4880].

A more formal approach, which has the added benefit of being provably 
secure under certain theoretical assumptions in exchange for more dependence 
on a centralized authority, involves the use of a public key infrastructure (PKI). A 
PKI is a service responsible for creating, revoking, distributing, and updating key 
pairs and certificates. It operates with a collection of certificate authorities (CAs). A 
CA is an entity and service set up to manage and attest to the bindings between 
identities and their corresponding public keys. There are several hundred com-
mercial CAs. A CA usually employs a hierarchical signing scheme. This means that 
a public key may be signed using a parent key which is in turn signed by a grand-
parent key, and so on. Ultimately a CA has one or more root certificates upon which 
many subordinate certificates depend for trust.  An entity that is authoritative for 
certificates and keys (e.g., a CA) is called a trust anchor, although this term is also 
used to describe the certificates or other cryptographic material associated with 
such entities [RFC6024], which we discuss next.

18.5.1 Public Key Certificates, Certificate Authorities, and X.509

While several types of certificates have been used in the past, the one of most inter-
est to us is based on an Internet profile of the ITU-T X.509 standard [RFC5280]. In 
addition, any particular certificate may be stored and exchanged in a number of 
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file or encoding formats. The most common ones include DER, PEM (a Base64 
encoded version of DER), PKCS#7 (P7B), and PKCS#12 (PFX). We also saw the use 
of PKCS#1 [RFC3447] in Chapter 8. Today, Internet PKI-related standards tend to 
use the cryptographic message syntax [RFC5652], which is based on PKCS#7 version 
1.5. In the following example, we use an X.509 certificate in PEM format, which is 
the default format for many Internet applications and has the added advantage of 
being easily displayed as ASCII. 

Certificates are primarily used in identifying four types of entities on the 
Internet: individuals, servers, software publishers, and CAs. One popular com-
mercial CA, Verisign, assigns a “class” to each certificate, in the range 1 through 
5. Class 1 certificates are intended for individuals, class 2 for organizations, class 
3 for servers and software signing, class 4 for online transactions between com-
panies, and class 5 for private organizations and governments. Certificate classes 
are primarily a convenience for grouping and naming types of certificates and for 
defining different security policies associated with them. Generally speaking, a 
higher class number is supposed to indicate more rigorous controls on the process 
required to validate an identity (called identity proofing) prior to issuing the associ-
ated certificate.

This still does not totally solve the chicken-egg PKI bootstrapping problem 
mentioned before. In practice, systems requiring public key operations have root 
certificates for popular CAs installed at configuration time (e.g., Microsoft Inter-
net Explorer, Mozilla’s Firefox, and Google’s Chrome are all capable of accessing 
a preconfigured database of root certificates). To see how this works, we can use 
a command that gives information about certificates. The openssl command, 
available for most common platforms including Linux and Windows, allows us to 
see the certificates for a Web site (some lines are wrapped for clarity):

Linux% CDIR=`openssl version –d | awk ’{print $2}’`
Linux% openssl s_client –CApath $CDIR \
             –connect www.digicert.com:443 > digicert.out 2>1
^C  (to interrupt)

The first command determines where the local system stores its preconfig-
ured CA certificates. This is usually a directory that varies by system. In this case, 
the name of the directory is stored in the shell variable CDIR. We next make a con-
nection to the HTTPS port (443) on the www.digicert.com server and redirect 
the output to the digicert.out file. The openssl command2 takes care to print 
the entity identified by each of the certificates, and at what depth they are in the 
certificate hierarchy relative to the root (depth 0 is the server’s certificate, so the 
depth numbers are counted bottom to top). It also checks the certificates against 
the stored CA certificates to see if they verify properly. In this case, they do, as 
indicated by “verify return” having value 0 (ok).

2. Note that a similar command unique to Windows called certutil is available with Windows 
2003 Server and the Windows Server 2003 Administration Tools Pack.

www.digicert.com
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Linux% grep ”return code” digicert.out
    Verify return code: 0 (ok)

The file digicert.out contains not only a trace of the connection to the 
server but also a copy of the server’s certificate. To get the certificate into a more 
usable form, we can extract the certificate data, convert it, and place the result into 
a PEM-encoded certificate file:

Linux% openssl x509 –in digicert.out –out digicert.pem

Given the certificate in PEM format, we can now use a variety of openssl
functions to manipulate and inspect it. At the highest level, the certificate includes 
some data to be signed (called the “TBSCertificate”) followed by a signature algo-
rithm identifier and signature value. To see the server certificate, we can use the 
following command (some lines are wrapped or removed for clarity):

Linux% openssl x509 –in digicert.pem –text
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
            02:c7:1f:e0:1d:70:41:4b:8b:a7:e2:9e:5e:58:42:b9
        Signature Algorithm: sha1WithRSAEncryption
        Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com,
                CN=DigiCert High Assurance EV CA-1
        Validity
            Not Before: Oct  6 00:00:00 2010 GMT
            Not After : Oct  9 23:59:59 2012 GMT
        Subject: 2.5.4.15=V1.0, Clause 5.(b)/
                 1.3.6.1.4.1.311.60.2.1.3=us/
                 1.3.6.1.4.1.311.60.2.1.2=Utah/
                 serialNumber=5299537-0142,
                 C=US, ST=Utah, L=Lindon, O=DigiCert, Inc.,
                 CN=www.digicert.com
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
            RSA Public Key: (2048 bit)
                Modulus (2048 bit):
                    00:d1:76:0b:1e:4e:96:d2:08:c1:b8:75:bd:20:9c:
                    66:7f:42:6b:54:8b:7f:7a:4a:f8:3e:df:70:68:1f: 
                    ...
                    25:7b:40:e9:e3:cc:a2:0d:95:29:f4:08:ed:50:16:
                    52:11:6f:de:a0:bb:34:bc:8b:b5:60:c1:ab:e4:78:
                    75:9f
                Exponent: 65537 (0x10001)
        X509v3 extensions:
            X509v3 Authority Key Identifier: 
                keyid:4C:58:CB:25:F0:41:4F:52:F4:
                28:C8:81:43:9B:A6:A8:A0:E6:92:E5



ptg999

Section 18.5 Certificates, Certificate Authorities (CAs), and PKIs   825

            X509v3 Subject Key Identifier: 
                4F:E0:97:FF:C1:AE:06:53:03:19:F7:
                0A:37:4B:9F:F0:13:E2:88:D8
            X509v3 Subject Alternative Name: 
                DNS:www.digicert.com, DNS:content.digicert.com
            Authority Information Access: 
                OCSP - URI:http://ocsp.digicert.com
                CA Issuers - URI:
                   http://www.digicert.com/CACerts/
                   DigiCertHighAssuranceEVCA-1.crt
            Netscape Cert Type: 
                SSL Client, SSL Server
            X509v3 Key Usage: critical
                Digital Signature, Key Encipherment
            X509v3 Basic Constraints: critical
                CA:FALSE
            X509v3 CRL Distribution Points: 
                URI:http://crl3.digicert.com/ev2009a.crl
                URI:http://crl4.digicert.com/ev2009a.crl
            X509v3 Certificate Policies: 
                Policy: 2.16.840.1.114412.2.1
                  CPS: http://www.digicert.com/ssl-cps-repository.htm
                  User Notice:
                    Explicit Text: 

            X509v3 Extended Key Usage:
                TLS Web Server Authentication,
                TLS Web Client Authentication
    Signature Algorithm: sha1WithRSAEncryption
        e1:e6:dd:0e:23:5f:08:9a:63:63:c7:a1:f3:95:f0:ca:7e:3c:
        57:81:2c:2a:19:2b:24:fe:e4:26:bd:91:27:7c:11:50:35:e7:
        ...
        fd:64:6f:97:8b:15:fb:d1:7a:f7:67:80:da:da:41:d8:e3:f9:
        e4:bd:92:97
-----BEGIN CERTIFICATE-----
MIIHLTCCBhWgAwIBAgIQAscf4B1wQUuLp+KeXlhCuTANBgkqhkiG9w0BAQUFADBp
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
...
8+qQ0wF/xY9rHM0+eIqy3da4AFhfW4sAmyafs7hcEMjUAkS6Yb0qIw8ud/1kb5eL
FfvRevdngNraQdjj+eS9kpc=
-----END CERTIFICATE-----

Looking at the command’s output, we see a decoded version of the certificate 
followed by an ASCII (PEM) representation of the certificate (between the BEGIN 
CERTIFICATE and END CERTIFICATE indicators). The decoded certificate shows 
a data portion and a signature portion. Within the data portion is some metadata 
including a Version field, indicating the particular X.509 certificate type (3, the 
most recent, is encoded using hex value 0x02), a Serial Number of the particular cer-
tificate, a number assigned by the CA unique to each certificate, and a Validity field 
that gives the time during which the certificate should be treated as legitimate, 
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starting with the Not Before subfield and ending with the Not After subfield. The 
certificate metadata also indicates which signature algorithm is used to sign the 
data portion. In this case, it is signed by computing a hash using SHA-1 and sign-
ing the result using RSA. The signature itself appears at the end of the certificate. 

The Issuer field indicates the distinguished name (jargon from the ITU-T X.500 
standard) of the entity that issued the certificate and may have these special sub-
fields (based on X.501): C (country), L (locale or city), O (organization), OU (orga-
nizational unit), ST (state or province), CN (common name). Other subfields have 
also been defined. In this case, we can see that an extended validation (EV) [CABF09] 
CA certificate has been used to sign the server’s certificate.

EV certificates represent an industry response to certain phishing attacks 
involving malicious Web sites that were issued certificates without rigorous iden-
tity proofing. Issuing of an EV certificate takes place only under an agreed-upon 
set of stringent criteria, and a user visiting a Web site using EV certificates and a 
modern browser typically sees a green title bar and CA information to indicate the 
enhanced level of rigor. One of the requirements for EV certificates placed upon 
each CA is to provide a certification practice statement (CPS), which outlines the 
practices used in issuing certificates. Considerations for authors of CPSs (and cer-
tificate policies or CPs that apply on a per-certificate basis) are given in [RFC5280]. 
Note that although EV certificates may provide higher assurance (e.g., for some 
Web sites), most users do not pay careful attention to the cues provided by Web 
browsers that reveal this fact [BOPSW09]. 

The Subject field identifies the entity this certificate is about, and the owner 
of the public key contained in the subsequent Subject Public Key Info field. In this 
example, the Subject field is a somewhat complex structure like the Issuer field 
and contains multiple object IDs (OIDs) [ITUOID]. Most are decoded with names 
(e.g., O, C, ST, L, CN), but some are not because the particular version of openssl
that printed the output did not understand them. The OID 1.3.6.1.4.1.311.60.2.1.3 
is also called jurisdictionOfIncorporationCountryName, and 1.3.6.1.4.1.311.60.2.1.2 
is called jurisdictionOfIncorporationStateOrProvinceName, both with obvious 
meanings. The OID 2.5.4.15 is businessCategory (see [CABF09] for details). Note 
that the CN subfield tends to be an important one when identifying subjects and 
issuers for certificates used on the Internet. For this certificate, it gives the cor-
rect matching name for the server (along with any names included in the Subject 
Alternative Name (SAN) extension). Nonmatching names or URLs (e.g., https:// 
digicert.com instead of https://www.digicert.com) referring to the same 
server, when accessed, result in an error. Note that CN is not really the field for 
holding a DNS name; SANs are intended for this purpose.

When a certificate needs to be validated, a recursive process works up the 
certificate hierarchy to a root CA certificate by matching the issuer distinguished 
name in one certificate with the subject name in another. In this case, the certificate 
was issued by DigiCert High Assurance EV CA-1 (the issuer’s CN subfield). 
Assuming all certificates are current in their validity periods and are being used 
in appropriate ways, some parent certificate (immediate parent, grandparent, etc., 

https://www.digicert.com
https://digicert.com
https://digicert.com
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but usually a root CA certificate) to the Subject field of the certificate we are evalu-
ating must be trusted for validation to be successful. 

The Subject Public Key Info field gives the algorithm and public key belonging 
to the entity specified in the Subject field. In this case, the public key is an RSA 
public key with a 2048-bit modulus and public exponent of 65537. The subject is 
in possession of the matching RSA private key (modulus plus private exponent) 
that is paired to the public key. If the private key is compromised, or if the public 
key needs to be changed for other reasons, the public and private keys must be 
regenerated and a new certificate issued. The old certificate is then revoked (see 
Section 18.5.2).

Version 3 X.509 certificates may include zero or more extensions. Extensions 
are either critical or noncritical, and some are required by the Internet profile in 
[RFC5280]. If critical, an extension must be processed and found acceptable by 
the relying party’s (CPS jargon) policy. Noncritical extensions are processed if 
supported but do not otherwise cause errors. In the present example, there are 
ten X.509v3 extensions. Although many extensions have been defined, those we 
shall discuss tend to fall into two informal categories. The first category includes 
information about the subject and how the certificate in question can be used. 
The second category relates to items describing the issuer and may include key 
identification and URIs indicating locations of additional information related to 
the issuing CA that is not included elsewhere. The certificate in our example is an 
end entity (not CA) certificate. CA certificates often have somewhat different exten-
sions or values for their extensions.

The Basic Constraints extension, a critical extension, indicates whether the cer-
tificate is a CA certificate. In this case it is not, so it cannot be used for signing 
other certificates. A certificate indicating that it is a CA certificate may be used in 
a certificate validation chain at a location other than a leaf. This is common for root 
CA certificates or for other certificate-signing certificates (“intermediate” certifi-
cates, such as the DigiCert High Assurance EV CA-1 certificate referenced 
in this example).

The Subject Key Identifier extension identifies the public key in the certificate. 
It allows different keys owned by the same subject to be differentiated. The Key 
Usage extension, a critical extension, determines the valid usage for the key. Pos-
sible usages include digital signature, nonrepudiation (content commitment), key 
encipherment, data encipherment, key agreement, certificate signing, CRL signing 
(see Section 18.5.2), encipher only, and decipher only. Because server certificates of 
this kind are primarily used for identifying the two endpoints of a connection and 
encrypting a session key (see Section 18.9), the possible usages may be somewhat 
limited, as in this case. The Extended Key Usage extension, which may be critical or 
noncritical, may provide further restrictions on the key use. Possible values of this 
extension when used in the Internet profile include the following: TLS client and 
server authentication, signing of downloadable code, e-mail protection (nonrepu-
diation and key agreement or encipherment), various IPsec operating modes (see 
Section 18.8), and timestamping. The SAN extension allows a single certificate to be 
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used for multiple purposes (e.g., for multiple Web sites with distinct DNS names). 
This alleviates the need to have a separate certificate for each Web site, which can 
significantly reduce cost and administrative burden. In this case, the certificate can 
be used for either of the DNS names www.digicert.com or content.digicert.
com (but not digicert.com, as mentioned before). The Netscape Cert Type exten-
sion is now deprecated but was used to indicate key usage to Netscape software.

The remaining extensions in our example certificate relate to the manage-
ment and status of the certificate and its issuing CA. The CRL Distribution Points
(CDP) extension gives a list of URLs for finding the CA’s certificate revocation list 
(CRL), a list of revoked certificates used to determine if a certificate in a valida-
tion chain has been revoked (see Section 18.5.2). The Certificate Policies (CP) exten-
sion includes certificate policies applicable to the certificate [RFC5280]. In this 
example, the CP extension contains a policy with two qualifiers. The Policy value of 
2.16.840.1.114412.2.1 indicates that the certificate complies with an EV policy. The 
CPS qualifier gives a pointer to the URI where the particular applicable CPS for 
the policy may be found. The User Notice qualifier may contain text intended to be 
displayed to a relying party. In this case it contains the following string:

Any use of this Certificate constitutes acceptance of the DigiCert EV CPS and the 
Relying Party Agreement which limit liability and are incorporated herein by 
reference.

The Authority Key Identifier identifies the public key corresponding to the pri-
vate key used to sign the certificate. It is useful when an issuer has multiple pri-
vate keys used for generating signatures. The Authority Information Access (AIA) 
extension indicates where information may be retrieved from the CA. In this case, 
it indicates a URI used to determine if the certificate has been revoked using an 
online query protocol (see Section 18.5.2). It also indicates the list of CA issuers, 
which includes a URL containing the CA certificate responsible for signing the 
example server certificate.

Following the extensions, the certificate contains the signature portion. It con-
tains the identification of the signature algorithm (SHA-1 with RSA here), which 
must match the Signature Algorithm field we encountered earlier. In this case, the 
signature itself is a 256-byte value, corresponding to the 2048-bit modulus used 
for this use of RSA.

18.5.2 Validating and Revoking Certificates

We have already encountered the idea that a certificate may have to be revoked 
and possibly replaced with a freshly issued certificate. Within the IETF, [RFC5280] 
defines the use of X.509 version 3 certificates with X.509 version 2 CRLs for the 
Internet. This brings up the question of how a certificate is revoked and how this 
fact is made known to relying parties that need to know that the certificates on 
which they depend are no longer trustworthy.

www.digicert.com
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To validate a certificate, a validation or certification path must be established that 
includes a set of validated certificates, usually up to some trust anchor (e.g., root 
certificate) that is already known to the relying party. One of the key steps involves 
determining if one or more of the certificates in a chain have been revoked. If so, 
the path validation fails. We saw some of this in Section 8.5.5.

There are several reasons why a certificate may need to be revoked, such as 
when a certificate’s subject (or issuer) changes affiliations or name. When a certifi-
cate is revoked, it may no longer be used. The challenge is to ensure that entities 
that wish to use a certificate become aware if it has been revoked. In the Internet, 
there are two primary ways this is accomplished: CRLs and the Online Certifi-
cate Status Protocol (OCSP) [RFC2560]. When the CRL Distribution Point extension 
includes an HTTP or FTP URI scheme, as it does in the preceding example, the 
complete URL gives the name of a file encoded in DER format containing an X.509 
CRL. In our example, we can retrieve the CRL corresponding to the certificate 
using the following command:

Linux% wget http://crl3.digicert.com/ev2009a.crl

and print it out as follows:

Linux% openssl crl –inform der –in ev2009a.crl –text
Certificate Revocation List (CRL):
        Version 2 (0x1)
        Signature Algorithm: sha1WithRSAEncryption
        Issuer: /C=US/O=DigiCert Inc/OU=www.digicert.com/
                CN=DigiCert High Assurance EV CA-1
        Last Update: Jan  2 06:20:13 2011 GMT
        Next Update: Jan  9 06:20:00 2011 GMT        
        CRL extensions:
            X509v3 Authority Key Identifier: 
                keyid:4C:58:CB:25:F0:41:4F:52:F4:
                28:C8:81:43:9B:A6:A8:A0:E6:92:E5

            X509v3 CRL Number: 
                732Revoked Certificates:
    Serial Number: 0119BF8D1A24460EBE59355A11AD7B1C
        Revocation Date: Jul 29 19:25:40 2009 GMT
        CRL entry extensions:
            X509v3 CRL Reason Code: 
                Unspecified
    ...
    Serial Number: 0D2ED685A9A828A21067D1826C5015A9
        Revocation Date: Dec 17 17:18:40 2010 GMT
        CRL entry extensions:
            X509v3 CRL Reason Code: 
                Superseded
    Signature Algorithm: sha1WithRSAEncryption
        d4:a3:50:07:1b:b8:17:ff:e2:83:3d:b9:6a:3e:22:8d:e4:22:
        40:12:0b:cf:26:d9:16:99:b1:96:5a:86:ea:3e:8a:3f:f9:39:
        ...
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        c7:e0:92:f6:66:72:7e:a4:f0:fd:16:d4:ec:2f:10:35:ea:2d:
        45:06:19:4b
-----BEGIN X509 CRL-----
MIIHeDCCBmACAQEwDQYJKoZIhvcNAQEFBQAwaTELMAkGA1UEBhMCVVMxFTATBgNV
BAoTDERpZ2lDZXJ0IEluYzEZMBcGA1UECxMQd3d3LmRpZ2ljZXJ0LmNvbTEoMCYG
...
hzcRf+ITVZ76LtHdzWDDPFujPyqPzMnkbGqGVsve9Gd4NcQiozOyoCDvaLezgO69
EYmMayk9zXFSaBVdEZ5Tgekrj0fFnsfgkvZmcn6k8P0W1OwvEDXqLUUGGUs=
-----END X509 CRL-----

Here we can see the format of an X.509 v2 CRL. The format is very similar 
to that of a certificate, and the entire message is signed by a CA as certificates 
are. This is useful because CRLs can be distributed like certificates: using oth-
erwise untrusted communication channels and servers. In comparison with a 
certificate, the validity period is replaced by a list of the previous and next CRL 
updates. There is no subject and no public key but instead a list of serial numbers 
for revoked certificates plus the time and reason for revocation. There may also be 
CRL extensions that are unique to CRLs. In this example, the Authority Key Identi-
fier extension gives a number identifying the key used by the CA in signing the 
CRL. The CRL Number extension gives the sequence number of the CRL. Other 
values are given in [RFC5280].

The other primary method for determining if a certificate has been revoked 
is OCSP. OCSP is an application-level request/response protocol usually oper-
ated over HTTP (i.e., using the HTTP protocol with TCP/IP on TCP port 80). An 
OCSP request includes information identifying a particular certificate, plus some 
optional extensions. A response indicates whether the certificate is not revoked, 
unknown, or revoked. An error may be returned if the request cannot be parsed 
or otherwise acted upon. The key used for signing the OCSP response need not 
necessarily match the key used to sign the original certificate. This is possible if 
the issuer included a Key Usage extension indicating an alternate OCSP provider.

To see an OCSP request/response exchange, we can execute the following 
commands once we have obtained the appropriate Class 1 certificate in the file 
DigiCertHighAssuranceEVCA-1.pem (not shown). In the following example, 
some lines are wrapped for clarity:

Linux% CERT=DigiCertHighAssuranceEVCA-1.pem
Linux% openssl ocsp –issuer $CERT –cert digicert.pem \
-url http://ocsp.digicert.com –VAfile $CERT –no_nonce –text
OCSP Request Data:
    Version: 1 (0x0)
    Requestor List:
        Certificate ID:
          Hash Algorithm: sha1
          Issuer Name Hash: B8A299F09D061DD5C1588F76CC89FF57092B94DD
          Issuer Key Hash: 4C58CB25F0414F52F428C881439BA6A8A0E692E5
          Serial Number: 02C71FE01D70414B8BA7E29E5E5842B9
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OCSP Response Data:
    OCSP Response Status: successful (0x0)
    Response Type: Basic OCSP Response
    Version: 1 (0x0)
    Responder Id: 4C58CB25F0414F52F428C881439BA6A8A0E692E5
    Produced At: Jan  2 08:03:24 2011 GMT
    Responses:
    Certificate ID:
      Hash Algorithm: sha1
      Issuer Name Hash: B8A299F09D061DD5C1588F76CC89FF57092B94DD
      Issuer Key Hash: 4C58CB25F0414F52F428C881439BA6A8A0E692E5
      Serial Number: 02C71FE01D70414B8BA7E29E5E5842B9
    Cert Status: good
    This Update: Jan  2 08:03:24 2011 GMT
    Next Update: Jan  9 08:18:24 2011 GMT

Response verify OK
digicert.pem: good
      This Update: Jan  2 08:03:24 2011 GMT
      Next Update: Jan  9 08:18:24 2011 GMT

As we can see, the OCSP transaction has indicated that the certificate is good. 
The request included the identification of a hash algorithm (SHA-1), a hash of the 
issuer name, a number identifying the issuer’s key (the same as the Key ID exten-
sion in the certificate), plus the certificate’s serial number. The responder, identi-
fied by the responder ID, identifies itself and signs the response. The response 
includes the hashes and numbers from the request, as well as the certificate status 
of “good” (i.e., not revoked). The OCSP protocol alleviates the client from having 
to download the latest CRL to check but still requires the client to form and verify 
the entire certification path. In some cases, this can be a considerable burden for 
the client.

To help address the burden of certificate chain formation and validation 
imposed on client systems, the Server-Based Certificate Validation Protocol (SCVP) 
has been defined in [RFC5055] but is not widely used. With SCVP, formulation of 
a certification path (called delegated path discovery or DPD) and, optionally, valida-
tion (called delegated path validation or DPV) of it can be offloaded to a server. Vali-
dation is offloaded only to a trusted server. Not only does this provide a method 
to reduce the load on clients, but it also offers a method for helping to ensure that 
a common validation policy is used consistently throughout an enterprise.

18.5.3 Attribute Certificates

In addition to public key certificates (PKCs) used to bind names to public keys, 
X.509 defines another type of certificate called an attribute certificate (AC). ACs are 
similar in structure to PKCs but lack a public key. They are used to indicate other 
information, including authorization information that may have a lifetime differ-
ent from (e.g., shorter than) a corresponding PKC [RFC5755]. ACs contain other 
structures similar to PKCs, including extensions and AC policies.
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18.6 TCP/IP Security Protocols and Layering

We have seen that cryptography provides a basis for building communication sys-
tems that have a number of desirable security properties. Protocols involving cryp-
tography can (and do) exist at a number of different layers in the protocol stack. 
Consistent with our understanding of the OSI reference model we discussed in 
Chapter 1, we now see that encryption, and thus various forms of strong security, 
can be supported at essentially every layer.

As we might expect, security services at the link layer protect information 
only as it flows across a single communication hop, security at the network layer 
protects information flowing between hosts, security at the transport layer pro-
tects process-to-process communication, and security at the application layer pro-
tects information manipulated by applications. It is also possible to protect the 
data manipulated by applications independently of the communication layers 
(e.g., files can be encrypted and sent as e-mail attachments). Figure 18-4 illustrates 
the most common security protocols used in conjunction with TCP/IP.

Figure 18-4  Security protocols exist at essentially every OSI stack layer, plus some “in-between” lay-
ers. Selecting the appropriate protocols for the threats to be addressed requires atten-
tion to detail.

In Figure 18-4, we can see that there are many security protocols, and the ones 
we care about at any given time depend on what scope of functionality we require. 
We shall discuss most of the protocols in Figure 18-4 in what follows, with par-
ticular emphasis on IPsec (machine-to-machine security at layer 3), TLS (Trans-
port Layer Security designed for supporting applications), and DNSSEC. TLS and 
IPsec are the most prevalent, as TLS is used with all secure Web communications 
(HTTPS) and IPsec is used with most network-layer security, including VPNs. 
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DNSSEC, which secures the DNS (see Chapter 11), is being introduced slowly, but 
the perceived demand is significant. Security of the DNS will help to limit DNS 
hijacking attacks, in which client systems are redirected to bogus DNS servers that 
supply incorrect information. Two of the fairly popular protocols we do not dis-
cuss in detail are Kerberos [RFC4120]—a trusted third-party authentication sys-
tem now used in Windows enterprise environments—and SSH [RFC4251]—the 
secure shell remote login and tunneling protocol used most often with UNIX-like 
systems. These protocols tend to be used among computers running particular 
operating systems, although this is by no means required. We have elected to use 
the detailed protocol descriptions in this chapter to cover the protocols that we 
believe will apply to an even broader Internet audience over time.

Although virtually every modern networking technology has some associ-
ated security approach, we shall move up the layers in the OSI stack from the bot-
tom, starting with the link layer. We have already seen (see Chapter 3) that some of 
the link-layer protocols have their own security mechanisms (e.g., 802.11-2007 has 
WPA2 included in the specification, based on the earlier 802.11i specification). We 
shall be especially concerned with protocols that apply to more than one specific 
type of link layer network.

18.7 Network Access Control: 802.1X, 802.1AE, EAP, and PANA

Network Access Control (NAC) refers to methods used to authorize or deny network 
communications to particular systems or users. Defined by the IEEE, the 802.1X 
Port-Based Network Access Control (PNAC) standard is commonly used with TCP/
IP networks to support LAN security in enterprises, for both wired and wireless 
networks. The purpose of PNAC is to provide access to a network (e.g., intranet or 
the Internet) only if a system and/or its user has been authenticated based on the 
system’s network attachment point. Used in conjunction with the IETF standard 
Extensible Authentication Protocol (EAP) [RFC3748], 802.1X is sometimes called 
EAP over LAN (EAPoL), although the 802.1X standard covers more than just the 
EAPoL packet format.

The most common variant of 802.1X is based on the standard as published in 
2004, however, [802.1X-2010] includes compatibility with 802.1AE (IEEE standard 
LAN encryption called MACSec) and 802.1AR (X.509 certificates for secure device 
identities). It also includes a somewhat complex MACSec key agreement protocol 
called MKA that we do not discuss further. In 802.1X, a system being authenti-
cated implements a function known as a supplicant. The supplicant interacts with 
an authenticator and a backend authentication server to perform authentication and 
gain network access. VLANs (see Chapter 3) are often used in helping to enforce 
the access control decisions made by 802.1X.

EAP can be used with multiple link-layer technologies and supports multiple 
methods for implementing authentication, authorization, and accounting (AAA). EAP 
does not perform encryption itself, so it must be used in conjunction with some 
other cryptographically strong protocol to be secure. When used with link-layer 
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encryption such as WPA2 on wireless networks or 802.1AE on wired networks, 
802.1X is relatively secure. EAP uses the same concepts of supplicant and authen-
tication server as does 802.1X, but with different terminology (EAP uses the terms 
peer, authenticator, and AAA server although even in EAP-related literature backend 
authentication server is sometimes used). An example setup is shown in Figure 18-5.

Figure 18-5  EAP, supported by 802.11i and 802.1X, allows for a peer (supplicant) to be authenticated by an 
authenticator that is separate from an AAA server. The authenticator can operate in “pass-
through” mode in which it does little more than forward EAP packets. It can also participate 
more directly in the EAP protocol. The pass-through mode allows authenticators to avoid having 
to implement a large number of authentication methods.

In this figure we see a hypothetical enterprise network including wired and 
wireless peers, a protected network that includes the AAA server and another 
intranet server on a particular VLAN, and an unauthenticated or “remediation” 
VLAN. The authenticator’s job is to interact with unauthenticated peers and the 
AAA server (via AAA protocols such as RADIUS [RFC2865][RFC3162] or Diameter 
[RFC3588]) to determine if each peer should be granted access to the protected net-
work. If so, this can be accomplished in several ways. The most common approach is 
to make a VLAN mapping adjustment so that the authenticated peer is assigned to 
the protected VLAN or to another VLAN that provides connectivity to the protected 
VLAN using a router (layer 3). An authenticator may use VLAN trunking (IEEE 
802.1AX link aggregation; see Chapter 3) and may be capable of assigning VLAN 
tags based on port number or forwarding VLAN tagged frames sent by the peer.

Note

In some EAP deployments, the authenticator is used without an AAA server, and 
the authenticator must evaluate the peer’s credentials on its own. When refer-
ring to the location where authentication is determined, the term EAP server is 
used in the EAP literature. Generally, the EAP server is the AAA server (backend 
authentication server) when the authenticator acts in pass-through mode and is 
the authenticator otherwise.
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In 802.1X, the protocol between the supplicant and the authenticator is divided 
into a lower and upper sublayer. The lower layer is called the port access control 
protocol (PACP). The higher layer is ordinarily some variant of EAP. For use with 
802.1AR, the variant is called EAP-TLS [RFC5216]. PACP uses EAPoL frames for 
communication, even if EAP authentication is not used (e.g., when MKA is used). 
EAPoL frames use an Ethertype field value of 0x888E (see Chapter 3).

Moving to IETF standards, EAP is not a single protocol but rather a frame-
work for achieving authentication using a combination of other protocols, some of 
which we discuss throughout the chapter, including TLS and IKEv2. The baseline 
EAP packet format is shown in Figure 18-6.

Figure 18-6  The EAP header includes a Code field for demultiplexing packet types (Request, 
Response, Success, Failure, Initiate, Finish). The Identifier helps match requests to 
responses. For request and response messages, the first data byte is a Type field.

The EAP packet format is simple. In Figure 18-6, the Code field contains one 
of six EAP packet types: Request (1), Response (2), Success (3), Failure (4), Initiate 
(5), and Finish (6). The last two are defined by the EAP Re-authentication Protocol 
(see Section 18.7.2); the official field values are maintained by the IANA [IEAP]. 
The Identifier field contains a number chosen by the sender and is used to match 
requests with replies. The Length field gives the number of bytes in the EAP mes-
sage, including the Code, Identifier, and Length fields. Requests and responses are 
used to perform identification and authentication with the peer, ultimately result-
ing in a Success or Failure indication. The protocol is capable of carrying an infor-
mative message so that human users can be given some instructions about what 
to do if their system is unable to authenticate. It is a reliable protocol that runs on 
a lower-layer protocol that is assumed to preserve order but is not assumed to be 
reliable. EAP itself does not implement other features such as congestion or flow 
control but may use protocols that do.

The typical EAP exchange starts with the authenticator sending a Request 
message to the peer. The peer responds with a Response message. Both messages 
use the same format, as shown in Figure 18-6. An overview of the exchange is 
shown in Figure 18-7.

The primary purpose of the Request and Response messages is to exchange 
whatever information is required to allow an authentication method to succeed. 
Numerous methods are defined within [RFC3748], and several are defined in 
other standards. The particular method being used is encoded in the Type field of 
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Request and Response messages using values of 4 or greater. Other special Type
field values include Identity (1), Notification (2), Nak (“Legacy Nak”) (3), and an 
Expanded Type extension (254). The Identity type is used by an authenticator 
to ask the peer its identifying information and provide a method for the peer to 
respond. The Notification type is used to display a message or notification to a 
user or log file (not for errors, but for notifications). When a peer does not support 
a method requested by the authenticator, it replies with a negative ACK (either a 
Legacy Nak or an Extended Nak). Extended Naks include a vector of implemented 
authentication methods not present in Legacy Naks.

EAP is a layered architecture that supports its own multiplexing and demulti-
plexing. Conceptually, it consists of four layers: the lower layer (for which there are 
multiple protocols), EAP layer, EAP peer/authenticator layer, and EAP methods 

Figure 18-7  The baseline EAP messages carry authentication material between the peer and the 
authenticator. In many deployments, the authenticator is a relatively simple device that 
acts in a “pass-through” mode. In such cases, most of the protocol processing takes 
place on the peer and AAA server. IETF standard AAA-specific protocols such as 
RADIUS or Diameter may be used to encapsulate EAP messages carried between the 
AAA server and authenticator.
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layer (for which there are many methods). The lower layer is responsible for trans-
porting EAP frames in order. Perhaps ironically, some of the protocols used to 
transport EAP are actually higher-layer protocols, many of which we have dis-
cussed already. Examples of EAP “lower-layer” protocols include 802.1X, 802.11 
(802.11i) (see Chapter 3), UDP with L2TP (see Chapter 3), UDP with IKEv2 (see 
Section 18.8.1), and TCP (see Chapters 12–17). Figure 18-8 shows how the layers are 
implemented in conjunction with a pass-through authenticator. A pass-through 
server would be the opposite but is not supported by RADIUS or Diameter.

Figure 18.8  The EAP stack and implementation model. In the pass-through mode, the peer and 
AAA server are responsible for implementing the EAP authentication methods. The 
authenticator need only implement EAP message processing, the authenticator process-
ing, and enough of an AAA protocol (e.g., RADIUS, Diameter) to exchange information 
with the AAA server.

In the “EAP stack” depicted in Figure 18-8, the EAP layer implements reliabil-
ity and duplicate elimination. It also performs demultiplexing based on the code 
value in EAP packets. The peer/authenticator layer is responsible for implementing 
the peer and/or authenticator protocol messages, based on demultiplexing of the 
Code field. The EAP methods layer consists of all the specific methods to be used for 
authentication, including any required protocol operations to handle large mes-
sages. This is necessary because the rest of the EAP protocol does not implement 
fragmentation and some methods may require large messages (e.g., containing 
certificates or certificate chains). 

18.7.1 EAP Methods and Key Derivation

Given its architecture, many EAP authentication and encapsulation methods are 
available for use (more than 50). Some are specified by IETF standards, and others 
have evolved separately (e.g., from Cisco or Microsoft). Some of the more common 
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methods include TTLS [RFC5281], TLS [RFC5216], FAST [RFC4851], LEAP (Cisco 
proprietary), PEAP (EAP over TLS, Cisco proprietary), IKEv2 (experimental) 
[RFC5106], and MD5. Of these, only MD5 is specified in [RFC3748], but it is no 
longer recommended for use. Unfortunately, the complexity does not end when 
specifying one of these methods alone. Within each method there are sometimes 
different options for cryptographic suites or identity verification. With PEAP, for 
example, some versions of Microsoft Windows support MSCHAPv2 and TLS.

The reasons for having so many options are partly historical. As security and 
operational experience have evolved over time, some methods were found to be 
too insecure or insufficiently flexible. Some authentication methods require an 
operating PKI that can provide client certificates (e.g., EAP-TLS), while others (e.g., 
PEAP, TTLS) do not require such infrastructure. Older protocols (e.g., LEAP) were 
designed at a time when other standards such as 802.11 (incorporating 802.11i) 
were not yet mature. Consequently, depending on the particular environment, 
various combinations of smart cards or tokens, passwords, or certificates may be 
required to use EAP. 

The purpose of the EAP methods is to establish authentication, and possibly 
authorization for network access. In some cases (e.g., EAP-TLS), the methods pro-
vide bidirectional authentication, whereby each end acts as both an authenticator 
and a peer. The type of authentication provided by a method is often a conse-
quence of the cryptographic primitives it employs.

Some methods provide more than authentication. Those that provide key deri-
vation are able to agree upon and export keys in a key hierarchy [RFC5247] and 
must provide for mutual authentication between the EAP peer and EAP server. 
The master session key (MSK, also called AAA-key) is used in deriving other keys 
using a KDF, either at an EAP peer or authenticator. MSKs are at least 64 bytes in 
length and are typically used to derive transient session keys (TSKs) that are used to 
enforce access control between a peer and an authenticator, often at lower layers. 
Extended MSKs (EMSKs) are also provided along with MSKs but are made avail-
able only to the EAP server or peer, not to pass-through authenticators, and are 
used in deriving root keys [RFC5295]. Root keys are keys associated with particular 
usages or domains. A usage-specific root key (USRK) is a key derived from an EMSK 
in the context with a particular usage. A domain-specific root key (DSRK) is a key 
derived from an EMSK for use in a particular domain (i.e., collection of systems). 
Child keys derived from a DSRK are known as domain-specific usage-specific root 
keys (DSUSRKs).

During an EAP exchange, multiple peer and server identities may be used, 
and a session identifier is allocated. On completion of an EAP-based authentica-
tion where key derivation is supported, the MSK, EMSK, peer identifier(s), server 
identifier(s), and a session ID are made available to lower layers. (A now-depre-
cated initialization vector might also be provided.) Keys generally have an asso-
ciated lifetime (8 hours is recommended), after which EAP re-authentication is 
required. For an in-depth discussion of EAP’s key management framework and an 
accompanying detailed security analysis, please see [RFC5247].
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18.7.2 The EAP Re-authentication Protocol (ERP)

In cases where EAP authentication has completed successfully, it is often desirable 
to reduce latency if a subsequent authentication exchange is required (e.g., a mobile 
node moves from one access point to another). The EAP Re-authentication Protocol
(ERP) [RFC5296] provides the ability to do this independent of any particular EAP 
method. EAP peers and servers that support ERP are called ER peers and servers, 
respectively. ERP uses a re-authentication root key (rRK) derived from a DSRK (or 
the EMSK, but [RFC5295] suggests avoiding this) along with a re-authentication 
integrity key (rIK) derived from the rRK used to prove knowledge of the rRK. 

ERP operates in a single round-trip time, which is consistent with its goal 
of reducing re-authentication latency. ERP begins with a full conventional EAP 
exchange, assumed to be in the “home” domain. The MSK generated is distrib-
uted to the authenticator and peer as usual. However, the rIK and rRK values are 
also determined at this time and shared only between the peer and EAP server. 
These values can be used in the home domain, along with rMSKs generated for 
each authenticator. When the ER peer moves to a different domain, different val-
ues (DS-rIK and DS-rRK, which are DSUSRKs) are used. The domain of the ER 
server is contained in a TLV area in ERP messages, allowing peers to determine 
the domain of the server with which they are communicating. Details of the pro-
tocol are given in [RFC5296].

18.7.3 Protocol for Carrying Authentication for Network Access (PANA)

While combinations of EAP, 802.1X, and PPP have all been used to support authen-
tication of the client (and network, in some cases), they are not entirely link-inde-
pendent. EAP tends to be implemented for particular links, 802.1X applies to IEEE 
802 networks, and PPP uses a point-to-point network model. To address this con-
cern, the Protocol for Carrying Authentication for Network Access (PANA) has been 
defined in [RFC5191], [RFC5193], and [RFC6345] based on requirements set out in 
[RFC4058] and [RFC4016]. It acts as an EAP lower layer, meaning it acts as a “car-
rier” for EAP information. It uses UDP/IP (port 716) and is therefore applicable to 
more than a single type of link, and it is not limited to a point-to-point network 
model. In effect, PANA allows EAP authentication methods to be used on any 
link-layer technology for determining network access.

The PANA framework includes three main functional entities: the PANA Cli-
ent (PaC), PANA Authentication Agent (PAA), and the PANA Relay Element (PRE). 
Normal usage also involves an Authentication Server (AS) and Enforcement Point 
(EP). The AS may be a conventional AAA server accessed using access protocols 
such as RADIUS or Diameter. The PAA is responsible for conveying authentica-
tion material from a PaC to the AS, and for configuration of the EP when network 
access is approved or revoked. Some of these entities may be colocated. The PaC 
and associated EAP peer are always colocated, as are the EAP authenticator and 
PAA. A PRE can be used to relay communications between a PaC and PAA when 
direct communication is not otherwise possible.
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The PANA protocol consists of a set of request/response messages including 
an extensible set of attribute-value pairs managed by the IANA [IPANA]. The pri-
mary payloads are EAP messages, sent in UDP/IP datagrams as part of a PANA 
session. There are four phases in a PANA session: authentication/authorization, 
access, re-authentication, and termination. The re-authentication phase is really a 
portion of the access phase wherein the session lifetime is extended by re-execut-
ing EAP-based authentication. The termination phase is entered either explicitly 
or as the result of the session timing out (either because of lifetime exhaustion 
or failure of liveness detection). PANA sessions are identified by a 32-bit session 
identifier included in each PANA message.

PANA also provides a form of reliable transport protocol. Each message 
contains a 32-bit sequence number. The sender keeps track of the next sequence 
number to send, and receivers keep track of the next expected sequence number. 
Answers contain the same sequence number as the corresponding request. Ini-
tial sequence numbers are randomly selected by the sender of the message (i.e., 
PaC or PAA). PANA also implements time-based retransmission. PANA is a weak 
transport protocol—it operates in a stop-and-wait fashion, does not use an adap-
tive retransmission timer, and cannot perform repacketization. It does, however, 
perform exponential backoff on its retransmission timer when faced with multiple 
packet losses.

18.8 Layer 3 IP Security (IPsec)

IPsec is an architecture and collection of standards that provide data source 
authentication, integrity, confidentiality, and access control at the network layer 
for IPv4 and IPv6 [RFC4301], including Mobile IPv6 [RFC4877]. It also provides 
a way to exchange cryptographic keys between two communicating parties, a 
recommended set of cryptographic suites, and a method for signaling the use of 
compression. Each communicating party may be an individual host or a security 
gateway (SG) that provides a boundary between a protected and an unprotected 
portion of a network. Thus, IPsec can be used in applications such as remote 
access to a corporate LAN (forming a VPN), to interconnect different portions of 
an enterprise securely across the open Internet, or to secure the communications 
of hosts or routers acting as hosts when exchanging routing information. When 
choosing a security approach for newly developed protocols, IPsec is sometimes 
selected [RFC5406]. 

Figure 18-9 indicates the types of deployments that can be accomplished using 
IPsec. A host implementation of IPsec may be integrated within the IP stack itself 
or may act as a driver sitting “below” the rest of the network stack (called the 
“Bump in the Stack” or BITS implementation). Alternatively, it may reside inside 
an inline SG, which is sometimes called the “Bump in the Wire” or BITW imple-
mentation approach. For BITW implementations, both host and SG functionality 
is generally required, as the device typically needs to be managed remotely. This 
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is similar to the reasons we see applications and transport protocols implemented 
in routers that would otherwise be pure layer 3 devices (see Chapter 1). IPsec can 
support multicast communications, but we focus first on the simpler and more 
common unicast case.

Figure 18-9  IPsec is applicable to securing host-to-host communications, host-to-gateway communications, 
and gateway-to-gateway communications. It also supports multicast distribution and mobility. 

The operation of IPsec can be divided into the establishment phase, where 
key material is exchanged and a security association (SA) is built, followed by the 
data exchange phase, where different types of encapsulation schemes, called the 
Authentication Header (AH) and Encapsulating Security Payload (ESP), may be used 
in different modes such as tunnel mode or transport mode to protect the flow of IP 
datagrams. Each of these IPsec components uses a cryptographic suite, and IPsec 
is designed to support a wide range of suites. A complete IPsec implementation 
includes the SA establishment protocol, AH (optionally), ESP, and a collection of 
appropriate cryptographic suites, configuration information, and setup tools. An 
overview that summarizes the evolution and current specifications for all IPsec 
components is given in [RFC6071]. 

Although an IPsec implementation may be present in a system (it is required 
to be present for IPv6 implementations), IPsec operates only selectively on certain 
packets based on policies set by administrators. The policies are contained in a 
security policy database (SPD), logically resident with each IPsec implementation. 
IPsec also requires two additional databases called the security association database
(SAD) and peer authorization database (PAD). These are consulted when determin-
ing how packets are to be handled, as illustrated in Figure 18-10.

Taking the (somewhat simplified) SG of Figure 18-10 as an example, particular 
fields of an arriving packet (traffic selectors) are inspected to determine whether 
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the arriving packet is using IPsec and has a preexisting SA. If so, processing is 
relatively simple and usually involves applying either ESP or AH, as described 
in Sections 18.8.2 and 18.8.3. If not, the SPD is used to determine what type of SA 
should be established, if any, and the SAD is populated to contain information on 
the new SA. If a new SA needs to be established, the simplest way is using some 
automated key establishment protocol. Although IPsec mandates the support of 
manual keying, where keys are simply typed in by hand, this method does not 
scale well and is error-prone. Therefore, it is expected that normally a key estab-
lishment protocol is used in establishing SAs. For IPsec, the most recent version of 
this protocol is what we explore next.

18.8.1 Internet Key Exchange (IKEv2) Protocol

The first step in using IPsec is to establish an SA. An SA is a simplex (one-direction) 
authenticated association established between two communicating parties, or 
between a sender and multiple receivers if IPsec is supporting multicast. Most 
frequently, communication is bidirectional between two parties, so a pair of SAs is 
required to use IPsec effectively. A special protocol called the Internet Key Exchange 

Figure 18-10  In a security gateway, IPsec packet processing takes place at layer 3 in a logical entity separating 
a protected and an unprotected network. The security policy database dictates the disposition of 
packets: bypass, discard, or protect. Protection generally involves applying or validating integ-
rity protection or encryption. An administrator configures the SPD to achieve desired security 
goals.
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(IKE) is used to accomplish this task automatically. The current version of the pro-
tocol is called IKEv2 [RFC5996]. We will refer to it simply as IKE. Note that IKE is 
one of the more complicated pieces of IPsec, so once we understand it, the rest is 
comparatively straightforward. Note, however, that we will discuss only the major 
points of how IKE operates as a protocol. For particular details, such as the myriad 
cryptographic suites and configuration parameters supported, the reader should 
consult [RFC5996] directly.

To establish an SA, IKE begins with a simple request/response message pair 
that includes a request to establish the following parameters: an encryption algo-
rithm, an integrity protection algorithm, a Diffie-Hellman group, and a PRF that 
gives a random-appearing output given any input bit string. In IKE, a PRF is used 
for generation of session keys. IKE first establishes an SA for itself (called an IKE_
SA) and can subsequently establish SAs for either AH or ESP (called CHILD_SAs). 
IKE is also capable of negotiating the use of IP Payload Compression (IPComp) 
[RFC3173] with each CHILD_SA, because applying compression at other layers 
after performing encryption is ineffective. We discuss the details of AH and ESP 
in Sections 18.8.2 and 18.8.3.

IKE operates using pairs of messages called exchanges that are sent between 
an initiator and a responder. The first two exchanges, called IKE_SA_INIT and 
IKE_AUTH, establish an IKE_SA and a single CHILD_SA. Subsequently,  CREATE_
CHILD_SA exchanges, used to establish additional CHILD_SAs, and INFORMA-
TIONAL exchanges, used to initiate changes in or gather status information about 
an SA, may occur. In most cases, a single IKE_SA_INIT and IKE_AUTH exchange 
(a total of four messages) is sufficient. Messages used in an exchange contain pay-
loads identified by type numbers that identify the type of information carried in 
each payload. Multiple payloads per message are common, and some long mes-
sages may require IP fragmentation.

IKE messages are sent encapsulated in UDP using port number 500 or 4500. 
However, because IKE traffic may pass through a NAT where the port number is 
rewritten, an IKE receiver should be prepared to receive traffic originating from 
any port. Port 4500 is reserved for UDP-encapsulated ESP and IKE [RFC3948]. IKE 
messages appearing on port 4500 are required to have their initial 4 data bytes set 
to 0 (the “non-ESP marker”) to differentiate them from other (i.e., ESP or WESP) 
messages.

IKE initiators perform timer-based retransmissions when IKE messages 
appear to have been lost. Responders perform retransmissions only when trig-
gered by an incoming request. An exponentially increasing retransmission timer 
is used for retransmissions, but the total number of retransmissions is left unspec-
ified. Both initiators and responders keep track of their last transmitted messages 
and corresponding sequence numbers. Sequence numbers are used to match 
requests with responses, and to identify message retransmissions. This makes 
IKE a window-based protocol with a maximum window size given by a responder 
that is initialized when an SA is first set up but can be increased later. The maxi-
mum window size limits the total number of outstanding requests.
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18.8.1.1 IKEv2 Message Formats
IKE messages contain a header followed by zero or more IKE payloads. The header 
structure is shown in Figure 18-11.

Figure 18-11  The IKE v2 header. All IKE messages contain a header followed by zero or more payloads. IKE 
uses 64-bit SPI values. The Exchange Type gives the purpose of the exchange and the payloads 
that may be expected in the message. The Flags field indicates whether the message was sent 
from an initiator or a responder. The Message ID associates requests with responses and is used 
for detecting replay attacks.

In the headers of IKE messages, as shown in Figure 18-11, the Security Param-
eter Index (SPI) is a 64-bit number that identifies a particular IKE_SA (other IPsec 
protocols use a 32-bit SPI value). Both the initiator and the responder have an 
SA for their peer, so each provides the SPI it is using, and this pair of values, 
combined with the IP addresses of the endpoints, can be used to form an effec-
tive connection identifier. The Next Payload field is discussed later in this section. 
The Major Version and Minor Version fields are set to 2 and 0, respectively, for 
this version of IKE. The major version number is changed when interoperability 
cannot be maintained between versions. The Exchange Type field gives the type 
of exchange of which the message is part: IKE_SA_INIT (34), IKE_AUTH (35), 
CREATE_CHILD_SA (36), INFORMATIONAL (37), and IKE_SESSION_RESUME 
(38; see [RFC5723]). Other values are reserved; the range 240–255 is reserved for 
private use. Three bit fields are defined for the Flags field (bits are labeled right 
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to left, starting from 0): I (Initiator, bit 3), V (Version, bit 4), and R (Response, bit 5). 
The I bit field is set by the original initiator and cleared by the recipient for return 
messages. The V bit field indicates that the sender supports a higher major version 
number of the protocol than is currently being used. The R bit field indicates that 
the message is a response to a previous message using the same message ID.

The Message ID field in IKE acts somewhat like the Sequence Number field in 
TCP (see Figure 12-3 in Chapter 12), except the message ID starts with 0 for the 
initiator and 1 for the responder. The field is incremented by 1 for each subsequent 
transmission, and responses use the same message ID as the requests. The I and 
R bit fields differentiate requests from responses. Message IDs are remembered 
when sent or received. Doing so allows each end to perform replay detection. Old 
message IDs are not processed. Wrapping of the Message ID field (possible, but not 
likely with 4 billion IKE messages) is handled by reinitiating the IKE_SA_INIT 
exchange.

The other fields (Next Payload and Length) help describe what the IKE message 
contains. Each message contains zero or more payloads, and each payload has its 
own particular structure. The Length field gives the size (in bytes) of the header 
plus all payloads in the message. The Next Payload field gives the type of the fol-
lowing payload. At present, 16 nontrivial types are defined (value 0 indicates no 
next payload), as shown in Table 18-2. The official current list can be found in 
[IKEPARAMS], which contains all standardized field values for IKEv2.

Table 18-2  IKEv2 payload types. A value of 0 indicates no next payload. 

Value Notation Purpose Value Notation Purpose

33 SA Security association 41 N Notify
34 KE Key exchange 42 D Delete
35 IDi Identification 

(initiator)
43 V Vendor ID

36 IDr Identification 
(responder)

44 TSi Traffic selector (initiator)

37 CERT Certificate 45 TSr Traffic selector (responder)
38 CERTREQ Certificate request 

(indicates trust 
anchors)

46 SK { } Encrypted and authenticated 
(contains other payloads)

39 AUTH Authentication 47 CP Configuration
40 Ni, Nr Nonces (initiator, 

responder)
48 EAP Extensible authentication 

(EAP)

The ranges 1–32 and 49–255 are reserved; the range 128–255 is reserved for 
private use. Each IKE payload begins with an IKE generic payload header, shown in 
Figure 18-12.
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The generic payload header is fixed at 32 bits, and the Next Payload and Payload 
Length fields provide for a “chain” of variable-size payloads (up to 65,535 bytes 
each, including the 4-byte payload header) to be present in a single IKE message. 
Each payload type has its own set of special headers. The C (critical) bit field indi-
cates that the current payload (not the one identified by the Next Payload field) is 
deemed “critical” for a successful IKE exchange. Receivers of critical payloads that 
do not understand the type code (provided in the previous payload’s Next Payload
field or in the IKE header’s Next Payload field) must abort the IKE exchange. Note 
that this capability provides the ability to create new payload types that may not 
be understood by all implementations.

18.8.1.2 The IKE_SA_INIT Exchange
To get a better idea of how IKE operates, we will start by describing the IKE_SA_
INIT exchange. It is the first of two exchanges, IKE_SA_INIT and IKE_AUTH, 
constituting the “initial exchanges” of IKE shown in Figure 18-13. The initial 
exchanges were formerly known as Phase 1 in earlier versions of IKE. Other 
exchanges (CREATE_CHILD_SA and INFORMATIONAL) may be initiated by 
either party only after the initial exchanges have completed, and they are always 
secured (encrypted and integrity-protected) based on the parameters established 
using the first two exchanges.

As shown in Figure 18-13, IKE_SA_INIT negotiates the choice of crypto-
graphic suite, exchanges nonces, and performs a DH key agreement. It may also 
include additional information, depending on the particular implementation and 
deployment scenario. It begins when the initiator sends an IKE message contain-
ing its set of supported cryptographic suites, DH information, and nonce using 
three payloads (SA, KE, and Ni). Details of each payload type are given in Section 
3 of [RFC5996], and we discuss some of them in Section 18.8.1.3; note that in some 
implementations additional payloads are also included. A lack of response to this 
message triggers retransmissions at the initiator.

Upon receiving the first message, the responder becomes aware that an IKE 
transaction is requested by the initiator, the initiator’s supported cryptographic 
suites, and configuration parameters. The responder selects an acceptable crypto-
graphic suite and expresses this in the SAr1 payload (see Section 18.8.1.3). It also 
provides its portion of the DH key agreement parameters in KEr, its nonce in Nr, 
and an optional request for the initiator’s certificate in the CERTREQ payload. 
CERTREQ payloads include an indication of CAs the responder finds acceptable 
for validating certificates that may be used in subsequent exchanges (i.e., it indi-
cates the responder’s trust anchors). A message containing the responder’s IKE 

Figure 18-12  A “generic” IKEv2 payload header. Each payload begins with a header of this form.
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header and all of these payloads is then sent in response to the initiator, complet-
ing the IKE_SA_INIT exchange. In some implementations, extra payloads (e.g., 
Notify and Configuration payloads; see Section 18.8.1.5) are also included. To bet-
ter understand how IKE_SA_INIT operates, we shall begin by discussing its most 
important payloads: SA, KE, Ni, and Nr.

18.8.1.3 Security Association (SA) Payloads and Proposals
SA payloads contain an SPI value and a set of proposals (often one). Proposals are 
built using proposal structures that are somewhat complex. Each proposal struc-
ture is numbered and contains an IPsec protocol ID. A protocol ID indicates one 
of the following IPsec protocols: IKE, AH, or ESP (see Sections 18.8.2 and 18.8.3). 
Multiple proposal structures using the same proposal number are considered 
to be part of the same proposal (an “AND” of the specified protocols). Proposal 
structures with different proposal numbers are considered different proposals (an 
“OR” of the specified protocols).

Each proposal/protocol structure contains one or more transform structures 
that describe algorithms to be used with the specified protocols. Typically, AH 
has a single transform (integrity check algorithm), ESP has two (integrity check 
and encryption algorithms), and IKE has four (DH group number, PRF, integrity 

Figure 18-13  The IKE_SA_INIT and IKE_AUTH exchange involves payloads used to establish the 
first two security associations (IKE_SA and one CHILD_SA). Certificates and certifi-
cate request payloads (with trust anchors) may also be included, as may Notification 
and Configuration payloads (not shown).
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check, and encryption algorithms). Combined encryption/integrity algorithms 
(e.g., authenticated encryption algorithms) are expressed solely as encryption 
algorithms with no separate integrity protection specification. A special extended 
sequence number “transform,” which is really just a Boolean value, indicates 
whether sequence numbers used with the SA (i.e., for AH or ESP) should be com-
puted using 32 or 64 bits.

If there are multiple transforms of the same type, the proposal is the union of 
the transforms (i.e., any are acceptable). If there are multiple transforms with dif-
ferent types, the proposal is the intersection. An individual transform may have 
zero or more attributes. These are necessary when a transform can be used in more 
than one way (e.g., a transform capable of processing keys of differing lengths 
would have an associated attribute with the particular key length to be used for 
the proposal). Most transforms do not require attributes, but the relatively com-
mon AES encryption transform does.

18.8.1.4 Key Exchange (KE) and Nonce (Ni, Nr) Payloads
In addition to SA payloads, IKE_SA_INIT messages include a KE (Key 

Exchange) and Nonce payload (written as Ni, Nr, or sometimes No). The KE pay-
load contains the DH group number and key exchange data representing the 
public numbers used in forming an ephemeral Diffie-Hellman key (initial shared 
secret). The DH group number gives the group in which the public value was 
computed. The Nonce payload contains a recently generated nonce between 16 
and 256 bytes in length. It is used in generating key material to ensure freshness 
and protect against replay attacks.

Once the DH exchange completes, each side can compute its SKEYSEED value, 
which is used for all subsequent key generation associated with the IKE_SA (unless 
a key-generating EAP method is used for this purpose; see Section 18.8.1.9), a total 
of seven secret values: SK_d, SK_ai, SK_ar, SK_ei, SK_er, SK_pi, and SK_pr. These 
values are computed as follows:

SKEYSEED = prf(Ni | Nr, g^ir)

{SK_d|SK_ai|SK_ar|SK_ei|SK_er|SK_pi|SK_pr} = 
prf+ (SKEYSEED, Ni|Nr|SPIi|SPIr)

Here, | is the concatenation operator. The cascading PRF function prf+ (K,S) = 
T1 | T2 | ..., where T1 = prf(K, S|0x01), T2 = prf(K, T1|S|0x03), T3 = prf(K, T2|S|0x03), 
T4 = prf(K, T3|S|0x04),... . The value g^ir is the shared secret established during 
the DH exchange. Ni and Nr are nonces (stripped of any payload headers). Note 
that each direction of each SA uses different keys, which explains why so many 
keys are required. The SK_d key is used for deriving keys for CHILD_SAs. The 
SK_a and SK_e keys are for authentication and encryption, respectively. The SK_p 
keys are used in generating AUTH payloads during the IKE_AUTH exchange.
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18.8.1.5 Notification (N) and Configuration (CP) Payloads
The N payload is a Notification or Notify payload. Although this type of payload 
is not shown in Figure 18-13, we shall see it used in the examples later. It can be 
used for conveying error messages and indications of various processing capabili-
ties with most of the IKE exchange types. It contains a variable-length SPI field 
and a 16-bit field to indicate the notification type [IKEPARAMS]. Values below 
8192 are used for standard errors, and values above 16383 are used for status indi-
cators. For example, when requesting the creation of a transport mode SA instead 
of the default tunnel mode, a Notify payload containing the USE_ TRANSPORT_
MODE value (16391) is used. If IP compression [RFC3173] is supported, this fact 
can be indicated by the IPCOMP_SUPPORTED value (16387). If Robust Header 
Compression (ROHC) [RFC5857] is supported, this can be indicated using the 
ROHC_ SUPPORTED value (16416), which also includes ROHC parameters used 
to establish a so-called ROHCoIPsec SA. A desire to use the “wrapped ESP” mode 
(see Section 18.8.3.2) is indicated using the USE_WESP_MODE value (16415). Notify 
payloads may contain a variable-length data portion whose content depends on 
the notification type.

A CP or Configuration payload also contains additional information like a 
Notify payload but is used primarily for initial system configuration. For example, 
obtaining information that might ordinarily be conveyed using DHCP (see Chap-
ter 6) can be carried over IKE using a CP. Configuration payloads are of the fol-
lowing major types: CFG_REQUEST, CFG_REPLY, CFG_SET, and CFG_ACK. CPs 
use attribute-value (ATV) pairs that contain a variable-length associated data area. 
Some 20 ATV pairs are defined [IKEPARAMS]. Most involve methods to learn 
about IPv4 or IPv6 addresses, subnet masks, or DNS server addresses. IPv6 con-
figuration requires special attention because of the way IPv6 ordinarily employs 
ICMPv6 for stateless autoconfiguration and Neighbor Discovery (see Chapter 8). 
An experimental specification [RFC5739] explores how IKEv2 can be used in con-
figuring an IPv6 node across an IPsec association in a VPN configuration.

18.8.1.6 Algorithm Selection and Application
IKE divides the set of transforms forming a cryptographic suite into four types: 
encryption (type 1, used with IKE and ESP), PRF (type 2, used with IKE), integrity 
protection (type 3, used with IKE and AH and optional in ESP), and DH group 
(type 4, used with IKE and optional in AH and ESP). Although IKE is capable of 
negotiating which particular cryptographic suite is to be used for each direction of 
an SA, support for a baseline set of algorithms (transforms) is deemed mandatory 
for any implementation. In addition, several algorithms have been chosen as rec-
ommended, with the strong possibility that they will be mandatory in the future. 
These algorithms are provided in [RFC4307] (see Table 18-3).

The IANA also keeps an official registry of values [IKEPARAMS], and 
although the list here includes the mandatory algorithms at the time of writing, 
many other algorithms, groups, and techniques have been proposed and pub-
lished, including options for ECC-based digital signatures (see [RFC4754]).
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18.8.1.7 The IKE_AUTH Exchange
As mentioned earlier, the SKEYSEED value is used to derive encryption and 
authentication keys that are in turn used to secure payloads during the IKE_
AUTH exchange. These keys are called SK_e and SK_a, respectively. The notation 
SK{P1, P2, ..., PN} indicates that payloads P1, ..., PN are encrypted and integrity-
protected using these keys. The primary purpose of the IKE_AUTH exchange is to 
provide identity validation for each peer. It also exchanges sufficient information 
to establish the first CHILD_SA.

To begin the IKE_AUTH exchange, the initiator sends the payload SK{IDi, 
AUTH, SAi2, TSi, TSr}. Given the proper decryption key, it provides the initiator’s 
identity, authentication information validating the initiator’s identity, another SA 
payload for the first CHILD_SA called SAi2, and a pair of traffic selectors (payloads 
TSi and TSr, discussed in Section 18.8.1.8). The initiator may also include its certifi-
cate in a CERT payload, a certificate request in a CERTREQ payload that identifies 
its trust anchors, and identification of the responder in the IDr payload. Sending 
the responder’s identity is useful in the case where the responder has multiple 
identities associated with the same IP address and needs to ensure that the proper 
SA is set up. Several different identity types are supported for ID payloads, includ-
ing IP address, FQDN, e-mail address, and distinguished name (to be used with 
X.509 certificates). The various types are maintained in the IKEv2 Identification 
Payload ID Types registry [IKEPARAMS].

The final message of the exchange includes the responder’s identity (IDr), 
authentication material to prove the responder’s identity (AUTH), the other SA 

Table 18-3  Mandatory-to-implement algorithms for use with IKEv2, grouped by type number

Purpose Name Number Status

Original 
Defining RFC/
Reference

IKE Transform 
Type 1 
(encryption)

ENCR_3DES

ENCR_NULL

ENCR_AES_CBC

ENCR_AES_CTR

3

11

12

13

Required

Optional

Recommended

Recommended

[RFC2451]

[RFC2410]

[RFC3602]

[RFC3686]
IKE Transform 
Type 2

(for PRFs)

PRF_HMAC_MD5

PRF_HMAC_SHA1

PRF_AES128_CBC

1

2

4

Optional

Required

Recommended

[RFC2104]

[RFC2104]

[RFC4434]
IKE Transform 
Type 3 (integrity)

AUTH_HMAC_MD5_96

AUTH_HMAC_SHA1_96

AUTH_AES_XCBC_96

1

2

5

Optional

Required

Recommended

[RFC2403]

[RFC2404]

[RFC3566]
IKE Transform 
Type 4 
(DH groups)

1024 MODP (Group 2)

2048 MODP (Group 14)

2

14

Required

Recommended

[RFC2409]

[RFC3526]
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constituting the CHILD_SA (SAr2), and a set of traffic selectors (TSi and TSr), 
which may be subsets of the original TSi and TSr values. All payloads in the 
IKE_AUTH exchange are encrypted and integrity-protected. A certificate payload 
(CERT) containing one or more certificates may also be sent at this point. If so, 
any public key required to validate the AUTH payload appears first in the certifi-
cate list. The specific contents vary depending on the cryptographic suite selected. 
During the exchanges, both sides must check all applicable signatures in order to 
be safe from compromise, including MITM attacks.

18.8.1.8 Traffic Selectors and TS Payloads
Traffic selectors indicate the fields and corresponding values of an IP datagram 
that cause it to be “selected” for IPsec processing. They are used in combination 
with an IPsec SPD to determine whether the containing datagram should be pro-
tected using IPsec. As mentioned previously, datagrams that are not protected are 
either bypassed or dropped by IPsec processing. 

The contents of a TS payload may include IPv4 or IPv6 address ranges, port 
number ranges, and an IPv4 protocol ID or IPv6 header value. Ranges are some-
times denoted with wildcard notation. For example, the notation 192.0.2.* or 
192.0.2.0/24 would represent the range 192.0.2.0–192.0.2.255. Traffic selectors can 
be used to help implement policies such as which cryptographic suite is required 
to establish an SA to a particular host or port range. Most of these details are han-
dled in the management interface to the SPD. During an IKE_AUTH exchange, 
each party specifies a TSi and TSr payload containing TS values. When one range 
is smaller than another, the smaller range is selected for use in a process called 
“narrowing.”

18.8.1.9 EAP and IKE
Although IKE includes its own authentication methods (see Section 2.15 of 
[RFC5996]), it can also make use of EAP (see Sections 2.16 and 3.16 of [RFC5996]). 
With EAP, a wide array of authentication methods can be used beyond the rela-
tively limited set of pre-shared keys or public key certificates otherwise required 
by IKE. Indeed, these limited sets of options for keying are one reason for the 
relatively limited success of IPsec more generally.

A desire to use EAP is indicated by omitting the first AUTH payload from 
the IKE_AUTH exchange in message 3 (Figure 18-1). By including the IDi pay-
load but no AUTH payload, the initiator asserts an identity but does not prove it. 
If EAP is acceptable, the responder returns an EAP payload and defers sending 
the SAr2, TSi, and TSr payloads until the EAP-based authentication is complete. 
This happens once the initiator has finally sent an EAP-acceptable AUTH payload 
that can be verified by the responder after one or more EAP payloads have been 
exchanged.

One issue regarding EAP with IKE involves a possible inefficiency due to 
double authentication. In particular, older EAP methods provided only one direc-
tion of authentication (peer to authenticator), so IKE requires certificate-based 
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authentication to perform authentication in the other direction. Recognizing that 
deploying the necessary key infrastructure is sometimes difficult, and that newer 
EAP methods support mutual authentication and key derivation, [RFC5998] pro-
vides a way to use only EAP for authentication. Using an EAP_ONLY_AUTHEN-
TICATION Notification payload sent by the initiator, the responder is able to 
suppress sending the AUTH and CERT payloads carried in message 4 (in Fig-
ure 18-1). In this case, subsequent AUTH payloads use the key generated by EAP 
instead of SK_pi and SK_pr.

Performing EAP-only authentication relies on EAP methods that are suffi-
ciently secure so as to obviate the need for IKE authentication. These are called 
safe EAP methods. To be safe, an EAP method must provide mutual authentica-
tion, be capable of generating keys, and be resistant to dictionary attacks. Some 13 
methods are given in [RFC5998], including EAP-TLS, EAP-FAST, and EAP-TTLS, 
that are believed to be safe.

18.8.1.10 Better-than-Nothing Security (BTNS)
A relatively recent development with IKE and IPsec is called better-than-nothing 
security (BTNS, pronounced “buttons”). BTNS aims to address some of the usabil-
ity and ease of deployment issues with IPsec, especially the need to establish a 
PKI or other deployed authentication system [RFC5387] to use certificates. Tech-
nically, BTNS is essentially unauthenticated IPsec [RFC5386], and it can be sup-
ported when IKE is used to establish an SA. With BTNS, public keys are used, 
but their containing certificates are not checked against a chain or root certificate. 
Consequently, an SA can ensure that the same entity is communicating over time 
but cannot ensure that any particular, validated entity established the SA. This 
form of authentication is called continuity of association and is weaker than the data 
origin authentication present in ordinary IPsec. BTNS makes no other substantive 
changes to IPsec; the formats of IKE, AH, and ESP messages remain the same.

18.8.1.11 The CREATE_CHILD_SA Exchange
The CREATE_CHILD_SA exchange is used to create CHILD_SAs for ESP or AH, 
or to rekey existing SAs (either IKE_SAs or CHILD_SAs) once the initial exchanges 
have completed. It uses a single exchange of packets and may be initiated by either 
side of the IKE_SA established during the initial exchanges. There are two vari-
ants, depending on whether a CHILD_SA or IKE_SA is being modified. Figure 
18-14 shows the variants, where the initiator is the entity initiating the CREATE_
CHILD_SA exchange and not necessarily the original initiator of the IKE_SA.

In Figure 18-14, the first exchange depicts a CREATE_CHILD_SA used to cre-
ate a new CHILD_SA or rekey an existing one. Rekeying is indicated by the pres-
ence of an N(REKEY_SA) Notification payload sent by the initiator. To complete 
the rekey operation, a new SA is first created, and the old one is subsequently 
deleted (see the next section). The new SA and traffic selector (TS) information 
allows most of the connection parameters to be altered. If desired, new DH val-
ues can also be exchanged at this point using KE payloads. This provides better 
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forward secrecy for the new SA. Rekeying an IKE_SA uses a similar exchange, 
except the KE payloads are required and the TS payloads are not used, as shown 
in the second part of Figure 18-14. 

18.8.1.12 The INFORMATIONAL Exchange
The INFORMATIONAL exchange is used for conveying status and error informa-
tion, usually using Notify (N) payloads. It is also used for deleting SAs using a 
Delete (D) payload and therefore constitutes one portion of the SA rekeying pro-
cedure. The exchange is shown in Figure 18-15.

An INFORMATIONAL exchange can take place only after successful comple-
tion of the initial exchanges. It includes an optional set of notifications, Delete (D) 
payloads that specify SAs to delete by SPI value, and Configuration (CP) payloads. 
Some response is always required for any message received from an initiator, 
even if it is an empty IKE message (i.e., contains only a header). Otherwise, the 
initiator would retransmit its message unnecessarily. In unusual cases, INFOR-
MATIONAL messages may be sent outside the context of an INFORMATIONAL 
exchange, usually to signal the receipt of an IPsec message containing an unrec-
ognized SPI value or unsupported IKE major version number.

Figure 18-14  The CREATE_CHILD_SA exchange can be used to create or rekey a CHILD_SA, or to rekey an 
IKE_SA. A Notification payload is used when modifying a CHILD_SA to indicate the SPI of the 
SA to modify.
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18.8.1.13 Mobile IKE (MOBIKE)
Once the IKE_SA has been established, it is ordinarily used until no longer 
required. However, when IPsec operates in an environment where IP addresses 
may change because of mobility or interface failure, a variant of IKE has been 
specified in [RFC4555] called MOBIKE. MOBIKE augments the basic IKEv2 proto-
col to include additional “address change” options available in INFORMATIONAL 
exchanges. MOBIKE specifies what to do when the changed addresses are known. 
It does not address the discovery problem of how to determine these addresses.

18.8.2 Authentication Header (AH)

Defined in [RFC4302], the IP Authentication Header (AH), one of the three major 
components of IPsec, is an optional portion of the IPsec protocol suite that pro-
vides a method for achieving origin authentication and integrity (but not confi-
dentiality) of IP datagrams. By providing only integrity and not confidentiality 
(and not working with NAT; see the remainder of this section), AH is the (far) 
less popular of the two primary IPsec data-securing protocols. In transport mode, 
AH uses a header placed between the layer 3 (IPv4, IPv6 base, or IPv6 extension) 
header and the following protocol header (e.g., UDP, TCP, ICMP). With IPv6, AH 
may appear immediately before a Destination Options extension header, if pres-
ent. In tunnel mode, the “inner” IP header carries the original IP datagram, con-
taining the ultimate IP source and destination information, and a newly created 
“outer” IP header contains information describing the IPsec peers. In this mode, 
AH protects the entire inner IP datagram. Generally speaking, transport mode 
is used between end hosts that are directly connected, and tunnel mode is used 
between SGs or between a single host and an SG (e.g., for supporting a VPN). The 
IPv4 and IPv6 encapsulations for transport-mode AH, using TCP as an example, 
are shown in Figure 18-16.

Figure 18-15  The INFORMATIONAL exchange is used to convey status information and delete SAs. 
It makes use of Notification (N), Delete (D), and Configuration (CP) payloads.
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Figure 18-16  The IPsec Authentication Header is used to provide authentication and integrity protection for IPv4 and IPv6 datagrams. In 
transport mode (depicted here with TCP), a conventional IP datagram is modified to include the AH. 
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In the figure, the IPv4 encapsulation uses a special IPv4 protocol number (51). 
For IPv6, the AH is placed between the destination and other options. In either 
case, the resulting datagram has a mutable portion of its header and an immuta-
ble portion of its header. The mutable portion is changed as the datagram moves 
through the network. Modifications include changing the IPv4 TTL or IPv6 Hop 
Limit field, IPv6 Flow Label field, DS Field, and ECN bits. The immutable portion, 
containing the source and destination IP addresses, is not changed by the net-
work and is integrity-protected using fields in the AH. This prevents transport 
mode AH datagrams from being rewritten by NATs, a potential problem for many 
deployments. Transport mode cannot be used with fragments (IPv4 or IPv6).

An alternative to transport mode is AH tunnel mode, shown in Figure 18-17. 
In this mode, the original datagram is untouched and instead is inserted inside an 
integrity-protecting new IP datagram.

In tunnel mode, the entire original IP datagram is encapsulated and protected 
with the AH. The “inner” header is unmodified, and the “outer” header is created 
using the source and destination IP addresses associated with an SG or host. In 
such cases, AH protects all of the original datagram, plus some portions of the 
new header (which prevents it being modified by a NAT).

Both modes of AH use the same AH shown in Figure 18-18. It identifies the 
datagram length and associated SA and includes integrity check information 
The Payload Length specifies the length of the AH in 32-bit-word units minus 2. 
The Security Parameters Index (SPI) field contains a 32-bit identifier of an SA at 
the receiver that contains SA-derived information relating to the association. For 
multicast SAs, the SPI value is handled in a special way (see Section 18.8.4). The 
Sequence Number is a 32-bit field that increments by 1 for each packet sent on the 
SA. This field is used for replay protection if enabled by the receiver (but it is 
always included by the sender, even if not checked by the receiver). An extended 
sequence number (ESN) operating mode is also defined and recommended and is 
negotiated during the IKE_SA_INIT exchange. If enabled, the sequence number 
is calculated using 64 bits, but only the lower-order 32 bits are included in the 
Sequence Number field. The length of the Integrity Check Value (ICV) field is vari-
able and depends on the cryptographic suite used. This field is always an integral 
multiple of 32 bits in length.

The algorithm used for integrity protection is specified in the correspond-
ing SA as a type 3 transform and can be established manually or by using some 
automatic method such as IKE. The optional, recommended, and mandatory algo-
rithms for AH (and ESP, later) are provided in [RFC4835] and include HMAC-
MD5-96 (optional), AES-XCBC-MAC-96 (recommended), and HMAC-SHA1-96 
(mandatory). The integrity check is computed over the following portions of the 
datagram: header fields before the AH that are either immutable in transit or pre-
dictable in value when arriving at the destination AH SA endpoint, the AH, every-
thing after the AH, high-order bits of the ESN (if employed, even though they are 
not sent), plus any padding.
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Figure 18-17  The IPsec tunnel mode AH encapsulations provide authentication and integrity protection for IPv4 and IPv6 datagrams. In 
tunnel mode (depicted here carrying TCP), a conventional IP datagram is encapsulated inside a new “outside” IP datagram 
that carries the original datagram. 



ptg999

858 Security: EAP, IPsec, TLS, DNSSEC, and DKIM  

Some controversy has arisen over the disposition of mutable fields such as the 
ECN bits used to signal incipient congestion (see Chapters 5 and 16) when tunnel 
modes are used. In [RFC4301], such fields are simply copied to the correspond-
ing fields present in the newly created “outer” IP header. In [RFC6040], however, 
normal mode and compatibility mode for tunnel encapsulation are defined. In normal 
mode, the CE and ECT bit fields are copied to the new header on encapsulation. In 
compatibility mode, the bits are cleared, producing an “outer” packet indicating 
a non-ECN-capable transport. During decapsulation, if the outer or inner header 
contains a CE indication, the indication is copied to the packet produced after 
decapsulation unless the original packet did not indicate ECT (in which case the 
packet is dropped). In addition, if ECT is indicated by either the outer or inner 
headers, ECT is set to true in the decapsulated packet.

18.8.3 Encapsulating Security Payload (ESP)

The ESP protocol of IPsec, defined in [RFC4303] (where it is called ESP (v3) even 
though ESP provides no formal version numbers), provides a selectable combina-
tion of confidentiality, integrity, origin authentication, and anti-replay protection 
for IP datagrams. It can employ a NULL encryption method [RFC2410], which is 
mandatory to support, if only integrity is to be used. Conversely, encryption can 
be used for confidentiality without integrity protection, although this combina-
tion is effective only against passive attacks and is highly discouraged. In the con-
text of ESP, integrity includes data origin authentication. Given its flexibility and 
feature set, ESP is (far) more popular than AH.

18.8.3.1 Transport and Tunnel Modes
Like AH, ESP has transport and tunnel modes. In tunnel mode, an “outer” IP 
packet includes an “inner” IP packet that may be entirely encrypted. This pro-
vides for a limited form of traffic flow confidentiality (TFC) because the “inner” 

Figure 18-18  The IPsec AH is used to provide authentication and integrity protection for IPv4 and IPv6 data-
grams in either transport or tunnel mode. The SPI value indicates which SA the AH belongs to. 
The Sequence Number field is used for countering replay attacks. The ICV provides a form of MAC 
over the immutable portions of the payload.
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datagram’s size and contents can be hidden using encryption. ESP may be used 
in combination with AH, if desired, and supports both IPv4 and IPv6. Using ESP 
in “integrity-only” mode may be preferable to AH in some cases for performance 
reasons (ESP may be more amenable to pipelining) and is a required configuration 
option for IPsec implementations. The encapsulations for ESP transport mode are 
shown in Figure 18-19.

The transport mode structure is similar to AH transport mode, except ESP 
trailer structures are used in support of ESP’s encryption and integrity protection 
methods (see Section 18.8.3). As with AH, ESP transport mode cannot be used 
with fragments. The tunnel mode encapsulations for ESP, similar to those for AH, 
are shown in Figure 18-20.

ESP does not use a strict header in the same way AH does. Instead, there 
is an overall ESP structure that includes a header and trailer portion. There is 
an optional (second) trailer structure if ESP is used with an integrity protection 
mechanism that requires space for additional check bits (labeled ESP ICV). The 
ESP structure is shown in Figure 18-21.

ESP-encapsulated IP datagrams use the value 50 in the Protocol (IPv4) or Next 
Header (IPv6) header fields. The ESP payload structure, shown in Figure 18-21, 
includes the SPI and sequence numbers, used in the same way as with AH. The 
primary difference is in the payload area. This area may be confidentiality-pro-
tected (encrypted) and can include a variable-length pad portion required by 
some encryption algorithms.

The payload is required to end on a 32-bit boundary (64 for IPv6) and have the 
last two 8-bit fields identify the Pad Length and Next Header (Protocol) field values. 
The Pad, Pad Length, and Next Header fields constitute the ESP trailer shown in Fig-
ures 18-19 and 18-20. Certain cryptographic algorithms may employ an IV. If pres-
ent, the IV appears at the beginning of the payload area (not shown). Additional 
padding for TFC purposes (called TFC padding) is permitted to appear within the 
payload area in front of the ESP trailer (see Figure 2 of [RFC4303] for details). It is 
used to disguise the length of the datagram to help resist traffic analysis attacks, 
although this features does not appear to be widely used. The Next Header field 
contains values chosen from the same space used in the IPv4 Protocol field or IPv6 
Next Header field (e.g., 4 for IPv4, 41 for IPv6). It may contain the value 59, indicat-
ing “no next header,” when carrying a dummy packet that is to be discarded. 
Dummy packets are another method sometimes used for resisting traffic analysis 
attacks. 

The ESP ICV is a variable-length trailer used if integrity support is enabled 
and required by the integrity-checking algorithm. It is computed over the ESP 
header, payload, and ESP trailer. Implicit values (e.g., high-order ESN bits) are also 
included. The length of the ICV is known as a consequence of selecting the par-
ticular integrity-checking method. It is therefore established at the time the cor-
responding SA is set up and not changed as long as the SA exists.

Anti-replay is supported provided integrity protection is enabled. This is 
accomplished using a sequence number derived from a running counter. The 
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Figure 18-19  The IPsec ESP is used to provide confidentiality (encryption), authentication, and integrity protection for IPv4 and IPv6 data-
grams. In transport mode (depicted here with TCP), a conventional IP datagram is modified to include the ESP head er. ESP in 
transport mode allows the transport payload to be encrypted, authenticated, and integrity-protected. 
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Figure 18-20  In tunnel mode (depicted here with TCP), ESP encapsulates a conventional IP datagram inside a new “outside” IP datagram 
that carries the original datagram. ESP allows the outer datagram to be modified (e.g., for NAT traversal) while the inner data-
gram remains intact. ESP is more popular than AH for most applications.
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Figure 18-21  The ESP message structure includes the encrypted payload in the middle. The SPI and Sequence Number constitute the ESP 
header, and the combination of the Pad, Pad Length, and Next Header fields constitutes the ESP trailer. An optional ESP ICV 
trailer is also used when integrity protection is employed.
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counter is initialized to 0 when an SA is first set up and incremented before being 
copied into each datagram sent on the SA. When anti-replay is enabled (the nor-
mal default), the sender checks to see that the counter has not wrapped and cre-
ates a new SA if wrapping is about to occur. The receiver implementing anti-replay 
keeps a valid window of sequence numbers (similar in some ways to the TCP 
receiver’s window). Datagrams containing out-of-window sequence numbers are 
dropped.

For systems that implement auditing, ESP processing can result in one or more 
auditable events. These events include the following: no valid SA exists for a session, 
the datagram given to ESP for processing is a fragment, the anti-replay counter 
is about to wrap, a received packet was out of the valid anti-replay window, the 
integrity check failed. Auditable events are recorded in a logging system. These 
events include metadata such as the SPI value, current date and time, source and 
destination IP addresses, sequence number, and IPv6 flow ID (if present).

18.8.3.2 ESP-NULL, Wrapped ESP (WESP), and Traffic Visibility
As mentioned previously, ESP ordinarily provides privacy using encryption, but 
it can also operate in an integrity-only mode using the NULL encryption algo-
rithm. Integrity-only mode (also called ESP-NULL) may be desirable in some cir-
cumstances, especially in enterprise environments where sophisticated packet 
inspection takes place within the network and confidentiality may be addressed 
in other ways. For example, some network infrastructure devices inspect pack-
ets for unwanted content (e.g., malware signatures) and are capable of providing 
alerts or shutting down network access when policy is violated. Such devices are 
essentially disabled if ESP is used with encryption in an end-to-end fashion (i.e., 
the way it was designed). Said another way, unless they have traffic visibility, they 
cannot do their jobs.

When a packet inspection device is faced with ESP traffic, it needs to make 
a decision about whether the traffic is encrypted (i.e., whether NULL encryption 
is being used or not). Given that the negotiation of an IPsec cryptographic suite 
is handled outside ESP (e.g., manually or using a protocol such as IKE), there are 
two current methods for doing so. The first is simply to use a set of nonstandard 
heuristics to make a guess [RFC5879]. Use of these has the benefit of not requiring 
any modification to ESP for supporting traffic visibility. The other method is to 
add a special description to ESP to indicate whether encryption is used. Wrapped 
ESP (WESP) [RFC5840], a standards-track RFC, defines a header that is placed 
ahead of the ESP packet structure. WESP uses a different protocol number (141) 
from ESP and can be negotiated with IKE using the USE_WESP_MODE (value 
16415) Notify payload. The variable-length WESP header includes fields to indi-
cate the location of payload information, along with a Flags field (maintained by 
the IANA [IWESP]) containing a bit indicating whether ESP-NULL is being used. 
Although WESP makes the job of determining whether ESP-NULL is being used 
or not easier for network infrastructure, its utility also depends on end hosts using 
the WESP header appropriately. Given that WESP is relatively new, this is not yet 
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the case today. On the other hand, the WESP format is extensible, so once imple-
mented it could be adapted for other purposes in the future.

18.8.4 Multicast

IPsec optionally supports multicast operations [RFC5374], although this capabil-
ity is not often used. The most basic form involves using manual key configura-
tion, but there are also multicast group key establishment methods called group 
key management (GKM) protocols managed by group controller/key servers (GCKSs). 
These are used to produce group security associations (GSAs), which include one 
or more IPsec SAs plus one or more GKM SAs used to provide parameters for 
establishing the IPsec SAs [RFC3740]. Given that members may dynamically join 
or leave a group, GKM protocols must deal with rekeying more frequently and 
carefully than regular two-party key establishment protocols, and such protocols 
have been a favorite topic for security researchers [AKNT04]. We shall not explore 
the details of how GKMs operate (such an explanation would be lengthy), but the 
interested reader may consult documentation for GDOI [RFC3547] or GSAKMP 
[RFC4535].

At present, multicast IPsec operation requires all members of a group to be 
homogeneous in their algorithmic and protocol processing capabilities. Both any-
source and single-source multicast (ASM and SSM) operations are supported (see 
Chapter 9), and the same procedures are used for IPv4 local broadcast addresses 
and for IPv6 anycast addresses. Host IPsec implementations may use any combi-
nation of tunnel and transport mode, but SGs must use tunnel mode where the 
tunnel destination addresses are multicast addresses.

Multicast IP datagrams present a challenge for IPsec when a tunnel mode is 
used because the outer IP datagram’s addressing needs to be a multicast desti-
nation address in order to be routed efficiently using a multicast-capable infra-
structure. This requires a special procedure, known as tunnel mode with address 
preservation, to be applied when placing datagrams into AH or ESP tunnels. 
In short, this procedure involves choosing the outer IP source and destination 
addresses to match the inner addresses (assuming the same version of IP is being 
used). The purposes of doing so are (1) to ensure that multicast routing is invoked 
on the datagram and (2) to ensure that the reverse path forwarding (RPF) check 
used in computing multicast routes works properly (see Chapter 9).

Introduction of multicast requires modification of some of the low-level IPsec 
machinery we saw in Figure 18-10. For example, the SPD and SAD are modified to 
include an “address preservation” flag used in implementing the address-preserv-
ing tunnel modes. In addition, a directionality flag in the SPD is used to determine 
under what circumstances SAs should be automatically created. This ensures that 
no SAs are created that would use prohibited multicast source addresses as a con-
sequence of simply reversing source and destination IP addresses (as with unicast 
SAs). The SPD may need to include state as to when a GKM protocol needs to be 
invoked (e.g., for obtaining a needed group key), and a group PAD (GPAD) holds 
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the information specific to each GCKS, including for which traffic selectors each 
GCKS is able to produce SAs and authentication information that may be required 
to engage in a particular GKM protocol with a particular GCKS. GPAD material is 
not consulted by non-GKM protocols such as IKE, but the PAD and GPAD struc-
tures might be implemented together.

18.8.5 L2TP/IPsec

The Layer 2 Tunneling Protocol (L2TP) (see Chapter 3) supports tunneling of layer 
2 traffic such as PPP through IP and non-IP networks. It relies on authentication 
methods that provide some authentication during connection initiation, but no 
subsequent per-packet authentication, integrity protection, or confidentiality. To 
address this concern, L2TP can be combined with IPsec [RFC3193]. The combi-
nation, called L2TP/IPsec, provides a recommended method to establish remote 
layer 2 VPN access to enterprise (or home) networks. L2TP can be secured with 
IPsec using either a direct L2TP-over-IP encapsulation (protocol number 115) or a 
UDP/IP encapsulation that eases NAT traversal.

L2TP/IPsec uses IKE by default, although other keying methods are possible. 
It uses an ESP SA in either transport mode (support required) or tunnel mode 
(support optional). The SA is used to secure the L2TP traffic, which is then respon-
sible for establishing the layer 2 tunnel. Because it is really a combination of two 
protocols, both of which involve authentication, L2TP/IPsec often requires two 
distinct authentication procedures: one for the machine (using IPsec with pre-
shared keys or certificates) and another for the user (e.g., using a name and pass-
word or access token).

L2TP/IPsec is supported on most modern platforms. On Windows, creating a 
new connection with the “Connect to a workplace” option can be used to enable 
L2TP and L2TP/IPsec. Some smartphones (e.g., Android, iPhone) support L2TP in 
their networking configuration setup screens. Mac OS X includes an L2TP/IPsec 
network adapter type that can be added using the system preferences. On Linux, 
it may be necessary to configure both IPsec and L2TP for them to work together. If 
L2TP is not required on such systems, direct IPsec may be preferable.

18.8.6 IPsec NAT Traversal

Using NATs with IPsec can present something of a challenge, primarily because IP 
addresses have traditionally been used in identifying communication endpoints 
and are assumed to not change. These assumptions were not entirely avoided (or 
obviated) when IPsec was first designed, so NAT has posed a problem. This is 
one factor contributing to the relatively slow deployment of IPsec. However, today 
IPsec supports both changing addresses (with MOBIKE) and NAT traversal.

To have a complete NAT traversal solution, we must take into account IKE, AH, 
and ESP in both transport and tunnel modes. As we shall see, when NATs must be 
accommodated, not all combinations of IPsec may be usable with all applications. 
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Guidance for what a solution requires is given in [RFC3715]. We shall first discuss 
a variety of issues that highlight fundamental incompatibilities between NATs 
and IPsec and then describe the methods that have been adopted to handle the 
problems.

One fundamental problem arises with AH and how NATs update the 
addresses in datagrams. Because the AH includes a MAC computation covering 
the datagram’s IP addresses, a NAT is unable to rewrite addresses without invali-
dating the AH. Note that ESP does not share this issue, as its integrity protection 
mechanism does not include the IP addresses in its MAC.

Another problem arises with the UDP and TCP transport protocols because of 
the pseudo-header checksum, which incorporates IP addresses in its computation. 
When the transport-layer checksum is integrity-protected or encrypted, the NAT 
is unable to update the checksum without forming an invalid packet. A similar 
situation can arise for NAPT when changing port numbers, or for other protocols 
that perform layering violations.

A third major problem relates to the ID payloads in IKE. There are several ways 
to identify an IKE peer, one of which is to use IP addresses. As these addresses are 
embedded within an encrypted IKE payload, they are not able to be modified by 
a conventional NAT, leading to failure. Alternative methods for identifying peers 
may be available, however (e.g., FQDN or the distinguished name from an X.509 
certificate).

A fourth significant concern is how a NAT or NAPT demultiplexes incoming 
traffic to the proper host. In protocols such as TCP and UDP, the port number is 
used for this purpose. However, IPsec AH and ESP act like transport protocols 
that carry no port numbers but instead use an SPI value. While some NATs can 
make use of the SPI value for demultiplexing, these values are chosen by an IPsec 
responder as a local matter and multiple independent hosts may choose the same 
value. Because a NAT cannot easily modify these values, it is possible for a NAT to 
improperly demultiplex incoming (returning) traffic, with a potential for errone-
ous delivery.

There are other potential problems for NATs that become more acute when 
IPsec is employed. For example, application protocols that carry IP addresses (e.g., 
SIP), if integrity-protected or encrypted, cannot be modified by a conventional 
NAT. In addition, configuration and analysis are more difficult because traffic that 
could otherwise be decoded for analysis is now obscured because of encryption. 
Fortunately, some network analysis tools (e.g., Wireshark) can process encrypted 
traffic if provided the necessary key material.

The primary approach to dealing with most of the NAT traversal concerns is 
to encapsulate IPsec ESP and IKE traffic using UDP/IP, which can be modified by 
conventional NATs when necessary. (There is no supported solution for NAT tra-
versal of AH.) An IKE initiator can use UDP port 500 or 4500 for sending IKE and 
then transition to using port 4500 for UDP-encapsulated ESP and IKE, whether or 
not a NAT is present. UDP ESP encapsulation is prohibited on port 500 according 
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to [RFC5996]. The purpose of using port 4500 is to avoid some NATs that improp-
erly process IPsec traffic on port 500.

NAT traversal for IKE is an optional feature of an IKE implementation. If 
supported, the following two Notification payloads can be included with the 
IKE_SA_INIT exchange: NAT_DETECTION_DESTINATION_IP and NAT_
DETECTION_SOURCE_IP. If present, these appear after the Ni and Nr payloads 
and before CERTREQ payloads. The data associated with these payloads includes 
a SHA-1 hash of the SPIs for the SA, the source or destination IP address, and the 
source or destination port number. Such information is preserved as the IKE mes-
sages are passed through NATs. When receiving IKE messages that suggest a NAT 
is present, IKE processing continues using a UDP/IP encapsulation on port 4500, 
which tends to pass through NATs unimpeded.

After having traversed one or more NATs, arriving IKE traffic being used to 
set up a transport-mode SA may contain traffic selectors (TS payloads) with IP 
addresses or ranges that are not meaningful (i.e., they are private IP addresses 
“behind” a NAT) and that do not match the IP addresses contained in the address-
ing fields of the IKE datagram arriving at the responder. This is handled by first 
storing the addresses in TSi and TSr IKE payloads for later use and later replacing 
them with the source and destination IP addresses present in the received data-
gram. In essence, this is a form of “delayed NAT” on TS payloads performed by 
the recipient. The resulting datagram and TS payloads are used to query the SPD 
in order to determine the security policy for the requested SA. If transport mode is 
used, the responder completes the exchange and the initiator performs similar TS 
payload substitution processing (see Section 2.23.1 of [RFC5996] for more details).

18.8.7 Example

There are several open-source and proprietary IPsec implementations. Windows 7 
supports IKEv2 and MOBIKE in Microsoft’s Agile VPN subsystem. Linux includes 
kernel-level IPsec support in kernel version 2.6 and later, and the OpenSwan and 
StrongSwan packages can be used to implement complete VPN solutions. In the 
following example, we use a Linux server running StrongSwan (IPv4 address 
10.0.0.3) with a Windows 7 client (IPv4 address 10.0.1.48) using RSA-based machine 
certificates we have created for authentication to demonstrate IKE. The IKE initial 
exchanges are shown in Figure 18-22.

Looking at this figure, we can see that Wireshark decodes the IKE exchange 
using ISAKMP as the protocol name. This is the now-deprecated Internet Security 
Association and Key Management Protocol and is the historical name of what ulti-
mately became IKE. The IKE header contains the initiator’s SPI (labeled “Initiator 
cookie”) and the responder’s SPI, which has not yet been established. The version 
number is 2, indicating that this packet contains IKEv2, and the exchange type is 
IKE_SA_INIT.

Looking closer, we can see this is an IKE_SA_INIT message containing five 
payloads: one SA, one KE, one Nonce, and two of type Notify. The SA payload 
includes six proposals, each of which contains a list of transforms. The proposals 
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Figure 18-22  A trace of the initial IKE exchanges, highlighting the first packet. The IKE_SA_INIT exchange is 
carried on UDP port 500 and includes the initiator’s SPI, proposals for cryptographic suite algo-
rithms, DH key exchange material, a nonce, and Notify payloads used to indicate addresses for 
NAT traversal. Each proposal in the SA payload requests the establishment of an IKE_SA using 
a set of transforms for encryption, integrity protection, a PRF used for generation of random 
numbers, and DH group parameters used in key agreement.
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represent sets of algorithms the initiator is willing to use. Proposal 6 (the last one) 
has been expanded to show more detail. It suggests AES in CBC mode with a 256-
bit key length for encryption, HMAC with SHA-256 for integrity protection, a PRF 
based on SHA-384, and the alternate 1024-bit MODP group for DH key agreement. 
The other proposals (not detailed) include suggestions for 3DES encryption, AES 
encryption with different key lengths, SHA-1 for integrity protection, and other 
SHA variants for the PRF. Following the SA payload, the Key Exchange payload 
contains the public information required to perform a DH exchange using the 
“alternate 1024-bit MODP group.” In the other payloads, we find a nonce contain-
ing a 48-byte random bit string and two Notify payloads used for NAT traversal. 
The first Notify payload is of type NAT_DETECTION_SOURCE_IP, and the sec-
ond contains NAT_DETECTION_DESTINATION_IP. The value in the first con-
tains a 20-byte SHA-1 hash over these values: 8 bytes of the initiator’s SPI, 8 bytes 
of the responder’s SPI (0 here), 4 bytes of source IPv4 address, and 2 bytes of UDP 
source port number. The value in the second covers the same as the first, except 
the destination port is used in place of the source port. Figure 18-23 illustrates the 
response to the first IKE_SA_INIT message.

In this figure, the IKE_SA_INIT message contains the following payloads: SA, 
KE, Nonce, three of type Notify, and a Certificate Request. The SA payload con-
tains only one proposal, comprising the following transforms: 3DES for encryp-
tion, HMAC_SHA1_96 for integrity, HMAC_SHA1 for the PRF, and group 2 for the 
DH exchange. The KE payload contains a 128-byte value from the 1024-bit MODP 
group. The Nonce payload contains a 32-byte random value for freshness. The next 
two Notify payloads contain NAT_DETECTION_SOURCE_IP and NAT_DETEC-
TION_DESTINATION_IP, as described earlier. Following these are new payloads 
we have not yet encountered: CERTREQ and MULTIPLE_AUTH_SUPPORTED.

The Certificate Request (CERTREQ) payload indicates the responder’s pre-
ferred certificates. In this case, the responder indicates that any certificates later 
supplied by the initiator should be associated with a particular certificate author-
ity. The encoding used to express the CA is one of several defined in Section 3.6 
of [RFC5996], but only the values 4, 12, and 13 are currently standardized. Here, 
the payload contains the value 4, meaning the Certificate Authority Data subfield 
contains a concatenation of SHA-1 hashes of the public keys (X.509 Subject Public 
Key Info element) of trusted CAs. Given that the length of this subfield is only 20 
bytes in this example, we can see that only a single CA is listed. It happens to be 
the SHA-1 hash of the DER encoding of the public key of the sample root certificate 
for the “Test CA” we created for this example.

Note

The binary Distinguished Encoding Rules (DER) format is a subset of the ASN.1 
standard Basic Encoding Rules (BER). DER permits values to be encoded in only 
a single, unambiguous way. DER is one of the two most popular ways to encode 
X.509 certificates. The other is PEM, an ASCII format, which we showed earlier. Var-
ious utilities, including openssl, may be used to convert between the two formats.
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Figure 18-23  The completion of the IKE_SA_INIT exchange includes the responder’s SPI (labeled 
“cookie”), a single proposal with transforms, DH parameters, a nonce value, and NAT 
traversal address parameters. This message also includes a CERTREQ payload to 
indicate and request acceptable certificates, and a notification indicating that multiple 
authentication methods (in series) are supported.
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The final payload in Figure 18-23 is a Notify payload containing the  MULTIPLE_
AUTH_SUPPORTED indication and no associated data. Defined as an experi-
mental extension to IKE in [RFC4739], it indicates the ability to use more than one 
authentication method. Such a situation may arise, for example, when using an 
IKE_AUTH exchange based on certificates to establish IKE SAs to a service pro-
vider, followed by some form of EAP-based authentication for the individual user.

The remaining packets shown in Figure 18-23 contain IKE_AUTH messages 
that are encrypted. They are carried using source and destination port number 
4500 instead of 500, and the encapsulation uses the special “non-ESP marker” con-
taining 4 bytes of 0 [RFC3947], indicating that the traffic is IKE and not ESP. The 
marker and port numbers are also used for the INFORMATIONAL exchanges we 
discussed previously.

Wireshark has the capability to decrypt encrypted IKE traffic if provided with 
the proper keys and SPI values. By providing a copy of the log trace file from the 
IKE server to Wireshark (located under Edit | Preferences | Protocols | ISAKMP), 
we can see the decrypted IKE payload information. (The Wireshark developers 
tend to prefer the original names of protocols such as ISAKMP and SSL instead of 
IKE and TLS, so that is what we see when looking at Wireshark output.)

The third packet in Figure 18-22 is the first fragment of a UDP/IP datagram 
that Wireshark reassembles when it receives the second fragment (packet 4). The 
decrypted and reassembled result is shown in Figure 18-24.

Here we can see the contents of the reassembled and decrypted UDP/IPv4 
fragments constituting the first packet of the IKE_AUTH exchange. The client 
provides the following IKE payloads: IDi, CERT, CERTREQ, AUTH, N(MOBIKE_
SUPP), CP, SA, TSi, and TSr. The IDi payload contains the name of the initiator, 
test client. The CERT payload contains a client certificate for test client signed by 
the Test CA certificate authority that we know the corresponding server should 
accept (because it was configured to). The CERTREQ payload contains requests 
for Test CA as well as 21 other CAs (not shown) known by this Windows 7 cli-
ent. The AUTH payload contains a data block signed using the RSA private key 
of the initiator (see Section 2.15 of [RFC5996]), which provides origin authentica-
tion. The N(MOBIKE_SUPPORTED) indicates the client’s willingness to follow 
the MOBIKE protocol. The CP(CFG_REQUEST) payload (not detailed) contains 
the following attributes: INTERNAL_IP4_ADDRESS, INTERNAL_IP4_DNS, 
INTERNAL_IP4_NBNS, and a PRIVATE_USE type (23456). These are used to 
help in configuring VPN access and serve a similar purpose to the configuration 
information typically provided locally by DHCP (see Chapter 6). NBNS refers to a 
NetBIOS name server. NetBIOS is an API that can be implemented on a number of 
networking protocols and is common in Microsoft Windows environments.

The SA payload in Figure 18-24 represents the information required to form a 
CHILD_SA. There are two proposals (not detailed), each for ESP using 32-bit SPI 
values (note that IKE uses 64-bit SPI values) with AUTH_HMAC_SHA1_96 as the 
integrity algorithm and not using extended sequence numbers (indicated using 
a proposal transform). The first proposal suggests the use of ENCR_AES_CBC 
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Figure 18-24  The IKE_AUTH exchange contains encrypted information and operates on UDP port 4500. The 
reassembly of two fragments produces an IKE message with an Encrypted/Authenticated data 
payload containing the following payloads: Identification initiator (IDi), Certificate (CERT), Cer-
tificate Request (CERTREQ), Authentication (AUTH), Notify (N), Configuration (CP), Security 
Association (SA), Traffic Selector initiator (TSi), and Traffic Selector responder (TSr).
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(256-bit keys) for encryption, and the second suggests ENCR_3DES. Because there 
is no N(USE_TRANSPORT_MODE) payload present, we conclude that each of the 
proposals involves using ESP in the default tunnel mode.

The Traffic Selector (TSi and TSr) payloads in Figure 18-24 indicate the IPv4 
and IPv6 address ranges that are permitted to be associated with the forming SA. 
The TSi has both a TS_IPv6_ADDR_RANGE and TS_IPv4_ADDR_RANGE that 
contain their entire address and port number ranges. TSr (not detailed) contains 
the same values.

The first IKE_AUTH message we just discussed is fairly complicated and 
requires more than a single 1500-byte UDP/IPv4 datagram to hold it. After pro-
cessing by the responder, the final message in the exchange is produced. It is 
shown in Figure 18-25.

In this figure, the server sends a response with the following payloads: IDr, 
CERT, AUTH, CP(CFG_REPLY), SA, TSi, TSr, N(AUTH_LIFETIME), N(MOBIKE_
SUPPORTED), and N(NO_ADDITIONAL_ADDRESSES). The IDr payload contains 
a DER-encoded name of the server. The CERT payload contains the matching (server) 
certificate, and the AUTH payload indicates knowledge of the corresponding pri-
vate key. The CP(CFG_REPLY) payload includes an INTERNAL_IP4_ADDRESS 
attribute, which is useful for VPN configuration. The SA payload is similar to the cli-
ent’s SA payload from Figure 18-24 and includes a single proposal with transforms 
ENCR_AES_CBC (256-bit keys), AUTH_HMAC_SHA1_96, and no ESNs.

The TSi and TSr values in this packet have been “narrowed” to be much smaller 
ranges than in the client’s IKE_AUTH message. In this case, the TSi is narrowed to 
the single IPv4 address 10.100.0.1. The TSr has been narrowed to 10.0.0.0/16. Each 
uses the full port range 0–65535. This is a relatively simple case of narrowing. In 
cases where more than one discontinuous subset of the range specified by the 
initiator is acceptable, an N(ADDITIONAL_TS_POSSIBLE) payload may be gener-
ated. Narrowing is used to achieve mutually agreeable address ranges for an SA.

The N(AUTH_LIFETIME) payload indicates that the authentication is going 
to last at most only 2.8 hours (10,154s, expressed as 000027aa in the trace). The 
N(MOBIKE_SUPPORTED) payload indicates the responder’s support for MOBIKE. 
The N(NO_ADDITIONAL_ADDRESSES) payload (not detailed) is used with 
MOBIKE to indicate that no additional IP addresses other than those used in the 
exchange are being used.

At this point, a tunnel mode ESP CHILD_SA has been set up and traffic can 
flow. We do not detail the traffic flow containing ESP packets (they are compara-
tively straightforward) but instead jump to the point where the SAs are to be torn 
down. This is accomplished using two sets of INFORMATIONAL exchanges con-
taining Delete payloads—one for the ESP SA and one for the IKE SA. Figure 18-26 
shows the request to close the ESP SA.

We can see in this figure the SA being deleted based on a close request at 
the client. Like other IKE traffic, it includes an encrypted and authenticated pay-
load. The encrypted payload in turn includes a single Delete payload. The Delete 
payload can indicate that more than one SPI is to be deleted, but in this case it 
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Figure 18-25  Completing the IKE_AUTH exchange, the responder produces an Encrypted/Authenticated data 
payload containing the following payloads: Identification responder (IDr), CERT, AUTH, CP(CFG_
REPLY), SA, narrowed TSi and TSR, along with N(AUTH_LIFETIME), N(MOBIKE_ SUPPORTED), 
and N(NO_ADDITIONAL_ADDRESSES). The first CHILD_SA can now commence.
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indicates only the one with SPI value 0x6cfca5ef. Packet 7 from the responder is 
essentially the same but contains a different setting in the Flags field (responder 
instead of initiator and response instead of request), a different encryption IV 
and integrity checksum data, and specification of a different SPI (c348faf2) in the 
Delete payload.

To close the IKE_SA, another exchange of INFORMATIONAL messages is 
required. The initiator begins with the packet shown in Figure 18-27. We can see 
here a request to close the IKE SA. Encrypted like other traffic, the Delete payload 
does not need to include an SPI value because it is implied to be the IKE SA car-
rying the deletion request. To complete the IKE SA deletion, the responder replies 
with an IKE message containing only an empty encrypted/authenticated payload 
type in packet 9. Its Next Payload type field is NONE (zero). This indicates the 
completion of the IKE SA deletion.

Figure 18-26  A request to delete the child ESP SA with SPI 6cfca5ef is carried on the IKE SA. The 
Delete payload shows Port: 1, which is mislabeled by Wireshark. (It should be Number 
of SPIs: 1.) 
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18.9 Transport Layer Security (TLS and DTLS)

So far we have discussed security protocols at layers 2 and 3. The most widely 
used protocol for security operates just above the transport layer and is called 
Transport Layer Security (TLS). TLS is used for securing Web communications and 
for several other popular protocols, including POP and IMAP (which are called 
POP3S and IMAPS, respectively, when protected with TLS). One reason for TLS’s 
popularity is that it can be implemented within or underneath applications that 
ride on top of the lower layers, whereas protocols such as EAP and IPsec usually 
require capabilities within the operating systems and protocol implementations of 
hosts and embedded devices.

There are several versions of TLS and its predecessor, the Secure Sockets Layer
(SSL) [RFC6101]. We shall focus on TLS version 1.2 [RFC5246], which is the most 

Figure 18-27  A request to delete the IKE SA. SPI values are not required because the entire message 
is carried on the IKE SA and there is no ambiguity.
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recent at the time of writing. TLS 1.2 can support backward compatibility with 
most older versions of TLS and SSL (e.g., TLS 1.0, 1.1, and SSL 3.0). However, SSL 
2.0 is weaker, and while interoperability with it is possible, it is now prohibited 
[RFC6176]. After discussing TLS 1.2, which operates over a stream-oriented proto-
col (usually TCP), we will look at the datagram-oriented variant called the Datagram 
Transport Layer Security (DTLS) [RFC4347]. DTLS is slowly gaining popularity for 
some applications such as VPN implementations that do not use IPsec. Its current 
specification is based on TLS 1.1 [RFC4346], but updates are under way [IDDTLS].

18.9.1 TLS 1.2

The security goals of TLS are not unlike those for IPsec, but TLS operates at a 
higher layer. Confidentiality and data integrity are provided based on a variety of 
cryptographic suites that use certificates that can be provided by a PKI. TLS can 
also establish secure connections between two anonymous parties (without using 
certificates), but this application is vulnerable to a MITM attack (not surprising, 
given that each end is not even strongly identified). The TLS protocol has two 
layers of its own, called the record layer and the upper layer. The Record protocol 
implements the record (lower) layer and is assumed to be layered on a reliable 
underlying protocol (e.g., TCP). Figure 18-28 shows the basic organization.

Figure 18-28  The TLS protocol “stack” has a lower record layer and three of its own upper-layer protocols 
called handshaking protocols. A fourth upper-layer protocol is the application protocol using 
TLS. The record layer provides fragmentation, compression, integrity protection, and encryp-
tion. The handshaking protocols perform many of the same tasks for TLS that IKE does for IPsec.

TLS is a client/server protocol, designed to support security for a connection 
between two applications. The Record protocol provides fragmentation, compres-
sion, integrity protection, and encryption for data objects exchanged between 
clients and servers, and the handshake protocols establish identities, perform 
authentication, indicate alerts, and provide unique key material for the Record 
protocol to use on each connection. The handshaking protocols comprise four spe-
cific protocols: the Handshake protocol, the Alert protocol, the Change Cipher 
Spec protocol, and the application data protocol. Like IPsec, TLS is extensible and 
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can accommodate existing or future cryptographic suites, which TLS calls cipher 
suites (CS). Many such combinations have been defined, and the IANA maintains 
a registry of the current set [TLSPARAMS]. Modern variants of TLS are based 
on SSL 3.0, originally developed by Netscape. TLS and SSL do not directly inter-
operate, but there are negotiation mechanisms that allow clients and servers to 
dynamically discover which protocol to use when a connection is first established.

The Change Cipher Spec protocol is used to change the current operating 
parameters. This is accomplished by first using the Handshake protocol to set up 
a “pending” state, followed by an indication to switch from the current state to the 
pending state (which then becomes the current state). Such switching is allowed 
only after the pending state has been readied. TLS depends on five cryptographic 
operations: digital signing, stream cipher encryption, block cipher encryption, 
AEAD, and public key encryption. For integrity protection, the TLS record layer 
uses HMAC. For key generation, TLS 1.2 uses a PRF based on HMAC with SHA-
256. TLS also integrates an optional compression algorithm that is negotiated 
when a connection is first established.

18.9.1.1 TLS Record Protocol
The Record protocol uses an extensible set of record content type values to iden-
tify which message type (i.e., which of the higher-layer protocols) is being mul-
tiplexed. At any given point in time, the Record protocol has an active current 
connection state and another set of state parameters called the pending connection 
state. Each connection state is further divided into a read state and a write state. 
Each of these states specifies a compression algorithm, encryption algorithm, and 
MAC algorithm to be used for communication, along with any necessary keys 
and parameters. When a key is changed, the pending state is first set up using 
the Handshake protocol, and then a synchronization operation (usually accom-
plished using the Cipher Change protocol) sets the current state equal to the pend-
ing state. When first initialized, all states are set up with NULL encryption, no 
compression, and no MAC processing.

The Record protocol’s processing flow is shown in Figure 18-29. It divides 
(fragments) higher-layer information blocks into records called TLSPlaintext 
records, which can be at most 214 bytes in length (but are usually much less). The 
choice of record size resides within TLS; higher-layer message boundaries are 
not preserved. Once formed, TLSPlaintext records are compressed using a com-
pression algorithm [RFC3749] identified in the current connection state. There is 
always one compression protocol active, although it may be (and usually is) the 
NULL compression protocol (which, not surprisingly, provides no compression 
gain). The compression algorithm converts a TLSPlaintext record into a TLSCom-
pressed structure. Compression algorithms are required to be lossless and may not 
produce an output that is larger than the input by more than 1KB. To protect the 
payload from disclosure and modification, encryption and integrity protection 
algorithms convert a TLSCompressed structure into a TLSCiphertext structure, 
which is then sent on the underlying transport connection.
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Figure 18-29  The TLS record layer starts with a TLSPlaintext record, which is compressed by a lossless com-
pression algorithm to form a TLSCompressed record. The TLSCompressed record is encrypted 
(and has a MAC applied) to form a TLSCiphertext record, which is sent for transmission. Con-
ventional stream and block ciphers require a MAC, and block ciphers may include padding. 
When using AEAD ciphers, a nonce is included with the encrypted and integrity-protected con-
tent, but no separate MAC is used.

Referring to Figure 18-29, when producing a TLSCiphertext structure, a 
sequence number is first computed (but not placed in the message), then a MAC 
is computed if necessary, and finally symmetric encryption is performed. Prior 
to encryption, the message may be padded (up to 255 bytes) to meet any block 
length requirements imposed by the encryption algorithm (e.g., for block ciphers). 
A MAC is not required for AEAD algorithms that provide both integrity and 
encryption (e.g., CCM, GCM), but a nonce is used in such cases.

Keys for the Record protocol are derived from a master secret provided by some 
method outside the Record protocol, most often by the Handshake protocol. Using 
the master secret, along with random values provided by the client and server 
applications at the beginning of the connection, the following keys are generated:

Mc | Ms | Dc | Ds | IVc | IVs = PRF(master_secret, "key expansion", 
server_random + client_random)
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In this assignment, | is the splitting operator and + is the concatenation opera-
tor. Mc denotes the MAC write key for the client, Ms denotes the MAC write key for 
the server, Dc denotes the client’s data write key, Ds denotes the server’s data write 
key, IVc denotes the client’s IV, and IVs denotes the server’s IV. With the | opera-
tor, each key uses however many bytes from the PRF function are required. MAC, 
encryption, and IV keys, if used, have a fixed length based on the cipher suite 
selected. The last two values are used only in cases where implicit nonce genera-
tion takes place with AEAD ciphers (see Section 3.2.1 of [RFC5116]). According to 
[RFC5246], the cipher suite requiring the most material is AES_256_CBC_SHA256. 
It requires four 32-byte keys, for a total of 128 bytes.

18.9.1.2 TLS Handshaking Protocols
There are three subprotocols to TLS, which perform tasks roughly equivalent 
to those performed by IKE in IPsec. More specifically, these other protocols are 
identified by numbers used for multiplexing and demultiplexing by the record 
layer and are called the Handshake protocol (22), Alert protocol (21), and Cipher 
Change protocol (20). The Cipher Change protocol is very simple. It consists of one 
message containing a single byte that has the value 1. The purpose of the message 
is to indicate to the peer a desire to change from the current to the pending state. 
Receiving such a message moves the read pending state to the current state and 
causes an indication to the record layer to transition to the pending write state as 
soon as possible. This message is used by both client and server.

The Alert protocol is used to deliver status information from one end of a 
TLS connection to another. This can include terminating conditions (either fatal 
errors or controlled shutdowns) or nonfatal error conditions. As of the publica-
tion of [RFC5246], 24 alert messages were defined in standards. More than half of 
them are always fatal (e.g., bad MACs, missing or unknown messages, algorithm 
failures).

The Handshake protocol sets up the relevant connection operating parameters. 
It allows the TLS endpoints to achieve six major objectives: agree on algorithms 
and exchange random values used in forming symmetric encryption keys, estab-
lish algorithm operating parameters, exchange certificates and perform mutual 
authentication, generate a session-specific secret, provide security parameters to 
the record layer, and verify that all of these operations have executed properly. 
Figure 18-30 shows the messages required.

The handshake shown in Figure 18-30 begins with Hello messages. The 
ClientHello message is usually the first message sent from client to server. It con-
tains a session ID, proposals for the cryptographic suite number (CS in Figure 
18-30), and a set of acceptable compression algorithms (which are usually just 
NULL, although [RFC3749] also defines DEFLATE). TLS supports in excess of 250 
cipher suite options [TLSPARAMS]. 

The ClientHello message also contains the TLS version number and a ran-
dom number called ClientHello.random. Upon receiving the ClientHello message, 
the server checks to see if the session ID is present in its cache. If so, the server 
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may agree to continue a previously existing connection (called a “resume”) by 
performing an abbreviated handshake. The abbreviated handshake is key to TLS 
performance and avoids having to repeatedly verify the authenticity of each end-
point, but it does require synchronization with respect to the cipher specification. 
The ServerHello message completes the first part of the exchange by carrying the 
server’s random number (ServerHello.random) to the client. This message also con-
tains a session ID value. If the value is the same as that provided by the client, it 
indicates the server’s willingness to resume. If not, it has the value 0 and a full 
handshake is required.

If a full (nonabbreviated) handshake is executed, the exchange of Hello mes-
sages results in each end becoming aware of the cipher suites, compression algo-
rithms, and random values of its peer. The server selects among the cryptographic 
suites specified by the client and may be required to provide its certificate chain in 

Figure 18-30  The normal TLS connection initiation exchange consists of several messages that 
may be pipelined. Required messages have solid arrows and are shown in boldface 
type. An abbreviated exchange takes place if a previously existing connection can be 
restarted. This avoids endpoint authentication, which can be costly for systems with 
limited processing capabilities.
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a Certificate message if it is to be authenticated (which is the typical case for secure 
Web traffic or HTTPS). The server may also send a ServerKeyExchange message if 
its certificate is not valid for signing, it has no certificate, or a temporary or ephem-
eral key is to be used to generate session keys. 

Note

The ServerKeyExchange message is used only in cases where the Certificate 
(server) message does not contain enough information to establish a premaster 
secret. Such cases include anonymous or ephemeral DH key agreement (i.e., 
cipher suites starting with TLS_DHE_anon, TLS_DHE_DSS, TLS_ DHE_RSA). 
The ServerKeyExchange message is not used for other suites, including those 
starting with TLS_RSA, TLS_DH_DSS, or TLS_DH_RSA.

At this point, the server may require client authentication. If so, it generates 
a CertificateRequest message. Once this message is sent, the server completes the 
second portion of the exchange by sending the mandatory ServerHelloDone mes-
sage. Upon receiving this (possibly pipelined) message from the server, the client 
may be required to prove its identity (i.e., knowledge of an appropriate private 
key corresponding to a certificate). If so, it first sends its certificate using a Cer-
tificate message in the same format used by the server. It then sends the manda-
tory ClientKeyExchange message. The contents of this message depend on the 
cryptographic suite used, but it generally contains either an RSA-encrypted key or 
Diffie-Hellman parameters that may be used to create a type of seed for creating 
new keys (called the premaster secret). Finally, it sends a CertificateVerify message 
to demonstrate that it possesses the private key corresponding to the previously 
provided certificate, if the server requested client authentication. This message 
contains a signature on the hash of all of the handshake messages the client has 
received and sent up to this point.

The final portion of the exchange includes a ChangeCipherSpec message, 
which is an independent TLS protocol content type (i.e., technically not a Hand-
shake protocol message). However, the mandatory Handshake protocol Finished 
messages can be exchanged only after a successful exchange of ChangeCipher-
Spec messages. The Finished messages are the first ones to be protected using the 
parameters exchanged up to this point. The Finished message themselves contain 
“verify data,” which consists of the following value:

verify_data = PRF(master_secret, finished_label, Hash(handshake_messages))

where finished_label has the value “client finished” for the client and 
“server finished” for the server. The particular hash function Hash is associ-
ated with the selection of the PRF made during the initial Hello exchange. TLS 1.2 
provides the ability to have variable-length verify data, but all previous versions 
and current cipher suites produce 12 bytes of verify data. The 48-byte master_
secret value is computed as follows:
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master_secret = PRF(premaster secret, “master secret”,
ClientHello.random + ServerHello.random)

where + is the concatenation operator. The Finished message is important because 
it can be used to know with a high degree of certainty that the Handshake proto-
col has completed successfully and subsequent data exchange can take place.

18.9.1.3 TLS Extensions
If we compare the capabilities of IKE and TLS we have discussed so far, we can 
see that IKE includes the ability to carry information beyond that required for 
basic SA establishment. This is accomplished using IKE Notify and Configuration 
payloads. To provide a similar extensible mechanism for TLS, various extensions
can be included with TLS 1.2 messages in a standard way. The baseline specifica-
tion for TLS 1.2 [RFC5246] includes a “signature algorithms” extension that a client 
uses to specify to a server what types of hash and signature algorithms it supports 
(MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 for hashes and RSA, DSA, 
ECDSA for digital signatures are defined). They are indicated in descending order 
of preference by pairs, as some systems allow only certain combinations. The cur-
rent list of extensions is given in [TLSEXT].

Previous versions of TLS had about a half-dozen extensions, and [RFC6066] 
updates these extensions for TLS 1.2. It defines the following extensions: server_
name (DNS-style name of the server being contacted), max_fragment_length 
(maximum length of a message as 2n bytes for n having values 9–12), client_certifi-
cate_url (indicates support for the CertificateURL handshake message used to send 
the URL of a certificate instead of a complete certificate), trusted_ca_keys (hashes 
or the names of trusted CA public keys and/or certificates), truncated_hmac (use 
the first 80 bits of HMAC calculations only), and status_request (requests that a 
server invoke OCSP and provide the DER-encoded response in a CertificateStatus 
handshake message to check a certificate). Each of these extensions may be pres-
ent in an (extended) ClientHello message and in some circumstances may appear 
in the ServerHello message to indicate agreement. Aside from these extensions 
and the two handshake messages already mentioned, [RFC6066] also defines 
four alert messages: certificate_unobtainable, unrecognized_name, bad_certifi-
cate_status_response, and bad_certificate_hash_value. These are self-explanatory 
and are not sent unless the peer has demonstrated understanding of the extended 
ClientHello type message.

Several other extensions have been defined or are reserved. The user_map-
ping extension [RFC4681] provides a method for providing context for the user 
identifier (e.g., Windows domain). Another expands the cert_type extension to 
include not only X.509 certificates but also OpenPGP certificates [RFC6091]. Ellip-
tic curve cipher suites are described by the informational document [RFC4492]. 
The Secure Remote Password protocol (SRP) can be integrated with TLS according to 
the methods defined in the informational document [RFC5054]. A use_srtp exten-
sion designed to produce a version of the Secure Real-Time protocol (SRTP) based on 
DTLS (see Section 18.9.2) is given in [RFC5764]. A method to eliminate the state a 
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server must store to perform session resumption is given by the SessionTicket TLS 
extension [RFC5077]. It involves placing the necessary state in an encrypted form 
in the client. Finally, an important renegotiation_info extension is used to combat 
a renegotiation vulnerability. We shall describe it in more detail next.

18.9.1.4 Renegotiation
TLS supports the ability to renegotiate cryptographic connection parameters while 
maintaining the same connection. This can be initiated by either the server or the 
client. If the server wishes to renegotiate the connection parameters, it generates a 
HelloRequest message, and the client responds with a new ClientHello message, 
which begins the renegotiation procedure. The client is also able to generate such 
a ClientHello message spontaneously, without prompting from the server.

Support for renegotiation is optional but “highly recommended” and is used, 
for example, when sequence numbers are about to wrap. Renegotiation can be 
refused by generating a “no_renegotiation” (type 100) warning alert. Although 
this type of alert is not required to be terminal, receiving such an alert may, by 
local policy, result in connection termination.

In 2009, a successful attack on TLS was demonstrated using the renegotiation 
capability. We describe it in more detail in Section 18.12. The vulnerability allows 
an attacker to establish a malicious TLS session with a server that can later be 
spliced into a subsequent legitimate session by a client using a MITM attack. The 
server believes that only a standards-compliant renegotiation has taken place. A 
solution to the problem, given in [RFC5746], involves binding any renegotiation 
more closely with the existing session using a TLS extension called renegotiation_
info (type 0xff01). When creating a new connection, renegotiation_info is empty. 
When client renegotiation takes place, it contains “client_verify_data,” and when 
server renegotiation takes place it contains a concatenation of “client_verify_data” 
and “server_verify_data.” The client_verify_data is defined to be the same verify_
data used with the Finished message sent by the client on the completion of the 
last handshake. This is a 12-byte value in TLS (36 for SSLv3). The server_verify_
data is defined to be the verify_data used with the Finished message sent by the 
server on completion of the last handshake.

Some deployed TLS (and SSL) servers abort a connection when unknown 
extensions are present. To handle this issue when deploying the (relatively new) 
renegotiation_info extension, an alternative is available. The TLS cipher suite 
TLS_EMPTY_RENEGOTIATION_INFO_SCSV can be used during connection 
establishment to indicate the equivalent of an empty renegotiation_info exten-
sion. This is using a signaling cipher suite value (SCSV) not to encode a real cipher 
suite, but instead to indicate a certain set of functions. (A similar trick is used in 
DNSSEC for NSEC3 records; see Section 18.10.1.3.)

18.9.1.5 Example
In the example shown in Figure 18-31, we see the messages exchanged during a 
connection setup with TLS 1.2 using TCP/IP on the local loopback interface. The 
client and server have RSA certificates, which each provides to its peer. The initial 
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TCP handshake and window update, as well as the 127.0.0.1 source and destina-
tion IPv4 addresses, are not shown. The trace has been annotated with right and 
left arrows for additional clarity. The arrows pointing to the right indicate TCP 
segments containing at least one TLS message sent by the client headed for the 
server. Left-pointing arrows indicate messages from the server to the client. To see 
this output, Wireshark was told to decode the trace by first choosing SSL under 
the Analyze | Decode As ... menu.

Figure 18-31  A normal TLS 1.2 connection establishment as shown by Wireshark. The server runs 
on port 5556. Client messages sent to the server are highlighted by arrows pointing to 
the right. Server messages sent to the client are shown with left-pointing arrows. TCP 
ACKs are interspersed with the TLS messages. After the Change Cipher Spec mes-
sage (segment 21), other messages are encrypted and authenticated. Segment 13 also 
includes the ServerHelloDone message.

In Figure 18-31, after the initial TCP-level handshake, the TLS exchange begins 
with a ClientHello message. TCP pure ACKs are seen interspersed with the TLS 
messages. After the ChangeCipherSpec message has been processed, the subse-
quent information is encrypted. To see what is happening in more detail, we shall 
expand the first few TLS messages. Figure 18-32 shows the detailed contents of the 
ClientHello message.
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Figure 18-32  A ClientHello message in TLS 1.2 contains version information, supported cipher 
suites and compression algorithms, random data, and a number of extensions. Here, 
the client supports Diffie-Hellman key agreement as well as key exchange using RSA. 
It uses AES-256 in CBC mode for encryption and SHA-256 for integrity protection.
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The ClientHello message detailed in Figure 18-32 is a Record protocol message 
carrying the ClientHello handshake message. It contains a 32-bit UNIX timestamp 
counting seconds since midnight, January 1, 1970, plus a random 28-byte value 
(ClientHello.random) used in forming keys. As this is a brand-new connection, its 
session ID is 0. Six bytes are devoted to carrying the client’s three supported cipher 
suites in preference order (most preferred first). Each suite is encoded using a 
16-bit value specified by the TLS Cipher Suite Registry in [TLSPARAMS]. Only a 
single compression method is supported—the NULL method, which achieves no 
compression gain and is typical. Also, 50 bytes are included for extensions. The 
cert_type extension indicates that either X.509 or OpenPGP certificates are under-
stood. The server_name extension contains 127.0.0.1, which was the name of the 
server provided to the client application. The renegotiation_info is empty, as this 
is the first handshake, as is the SessionTicket TLS extension. The signature_algo-
rithms extension indicates that the following combinations can be processed by 
the client: sha1-rsa, sha1-dsa, sha256-rsa, sha384-rsa, and sha512-rsa.

In this sample exchange, the server has been configured with only one cipher 
suite, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x006b). The server indi-
cates this fact when responding to the ClientHello by using the ServerHello mes-
sage shown in Figure 18-33.

In this figure, the server responds with a ServerHello message to the client’s 
ClientHello. The server provides its copy of the current time and its 28-byte ran-
dom value. It also includes a random 32-byte session ID. The server supports only 
a single cipher suite (DH key agreement using RSA certificates with AES-256 
encryption in CBC mode for encryption and SHA-256 for integrity protection). 
Like the client, it does not support any compression methods. It includes an empty 
renegotiation_info extension and an empty SessionTicket TLS extension. Follow-
ing this first message, the server continues with a Certificate message, as shown 
in Figure 18-34.

The message in Figure 18-34 carries the server’s 841-byte X.509v3 certificate to 
the client, which has been signed by a sample certificate authority called Test CA 
shown in the Issuer field. The field called SubjectPublickeyInfo contains the server’s 
270-byte public RSA key, which the client will use in authenticating the server. 
There are six extensions in the certificate: basicConstraints (critical), subjectAltName
(contains a DNS name for the server using the certificate), extKeyUsage (extended 
key usage, indicating that the purpose of the key is for authenticating a server), 
keyUsage (critical; indicates that the enclosed key may be used for key encipher-
ment or for generating digital signatures), subjectKeyIdentifier (a 20-byte number 
identifying the signed public key), and the authorityKeyIdentifier (a 20-byte number 
identifying the key used by the certificate authority to produce this certificate).

The ClientKeyExchange message is not detailed as it mostly includes binary 
information used in forming the DH exchange. The next message of interest is 
segment 13, which is a single TCP segment containing both a CertificateRequest 
message and a ServerHelloDone message. Figure 18-35 shows the contents.
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Figure 18-35 shows a TCP segment containing both a CertificateRequest mes-
sage and a ServerHelloDone message. The CertificateRequest is requesting the 
client to provide its certificate and to verify its authenticity using a subsequent 
CertificateVerify message. The type of certificate requested should be signed using 
either RSA or DSS from the Test CA certificate authority. The signature algorithms 
listed are sha1-rsa, sha1-dsa, sha256-rsa, sha384-rsa, and sha512-rsa.

Packet 15 (not detailed) contains the Certificate message that has the certificate 
chain for the client and its public key. In this case, the subject field contains “test 
client” and the issuer is Test CA. Thus, the client’s and server’s certificates were 
signed by the same CA and the chain is a single certificate. For the client to prove 
that it possesses the corresponding private key, it generates the CertificateVerify 

Figure 18-33  A ServerHello message in TLS 1.2 contains version information, supported cipher 
suites and compression algorithms, and a number of extensions. Here, the client sup-
ports Diffie-Hellman key agreement. It uses AES-256 for encryption and SHA-256 for 
integrity protection.
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Figure 18-34  Following the ServerHello, the server generates a Certificate message to carry its cer-
tificate. The client can use the certificate to authenticate the server. The same message 
format is used when the server authenticates the client.
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Figure 18-35  The server’s CertificateRequest and ServerHelloDone messages are contained in the 
same TCP segment. The client can use the certificate to authenticate the server. The 
same message format is used when the server authenticates the client.
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message (packet 19). The CertificateVerify message contains a signature on a hash 
of all the session’s handshake messages sent or received so far, signed using the 
private key of the client. This proves not only that the client is authentic, but that 
it has participated appropriately in the TLS exchanges up to this point and not 
lost or reordered any messages. After the CertificateVerify message, the Change 
Cipher message begins the subsequent (encrypted) communication.

18.9.2 TLS with Datagrams (DTLS)

The TLS protocol assumes a stream-based underlying transport protocol for deliv-
ering its messages. A datagram version (DTLS) relaxes this assumption but aims 
to otherwise achieve the same security goals as TLS using essentially all the same 
message formats. It was originally motivated by protocols such as SIP that run on 
UDP but do not care to use IPsec [RFC5406]. DTLS has also been adapted for use 
with DCCP [RFC5238] and SCTP [RFC6083]. The current version at the time of 
writing is DTLS 1.0 [RFC4347], based on TLS 1.1. An update, based on TLS1.2, is in 
the works [IDDTLS]. It uses the same protocol layering shown in Figure 18-28 and 
most of the same message exchanges.

The main challenge of providing TLS-like service without a reliable trans-
port is that datagrams may get lost, reordered, or duplicated. These problems 
can affect encryption and the Handshake protocol, both of which have ordering 
dependencies in TLS. To handle them, DTLS adds an explicit sequence number to 
each record carried by the record layer (they were implicit with regular TLS) and 
a timeout-based retransmission scheme with (different) sequence numbers from 
those used by the Handshake protocol.

18.9.2.1 DTLS Record Layer
In TLS, the ordering of records is important because the MAC computation of 
one record depends on its predecessor. More specifically, the MAC computation 
depends on an implicit 64-bit sequence number for each record that is incorrect 
in the presence of datagram reordering or loss. To remedy this problem, DTLS 
uses explicit sequence numbers at the record layer. These sequence numbers are 
reset to the value 0 after each ChangeCipherSpec message is sent. They are used 
in combination with an additional 16-bit epoch number incorporated into each 
record’s header. The epoch number is incremented by 1 for each change of cipher 
state. This handles the situation where multiple messages containing the same 
sequence number, generated as a result of multiple proximate handshakes, might 
be in flight simultaneously.

The MAC computation in DTLS is modified from its TLS counterpart to 
include the 64-bit concatenation of the two new fields (epoch first, followed by 
sequence number). This allows each record to be handled independently. Note 
that with TLS, a bad MAC results in connection termination. With DTLS, a full 
connection abort is not necessary, and a receiver may choose to simply discard the 
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record containing the invalid MAC or send an alert message (which, if generated, 
must be terminal).

Duplicates are simply dropped or are optionally considered as a replay and 
possible attack. Replay detection, if supported, is based on keeping a window of 
current sequence numbers at the receiver. The window is required to be at least 32 
messages but is suggested to be at least 64. The scheme is similar to that used in 
IPsec for AH and ESP. Records arriving with sequence numbers less than the left 
window edge are silently discarded as old or duplicative. Those within the win-
dow are checked as possible duplicates. A message within the window carrying 
a valid MAC is kept, even if out of order. Those with invalid MACs are discarded. 
Those with valid MACs that exceed the right window edge cause the right win-
dow edge to be advanced. Thus, the right window edge represents the validated 
message with the highest sequence number.

A single datagram may contain multiple DTLS records, but no single record 
may span multiple datagrams. The record layer allows applications to implement 
a PMTUD process similar to TCP’s (see Chapter 15) and avoids sending datagrams 
it believes are likely to be fragmented. Indeed, applications are supposed to receive 
an error indication if they attempt to send application messages that exceed the 
PMTU or maximum application datagram size (PMTU minus DTLS overhead). 
An exception to this rule is how DTLS handles the Handshake protocol, which can 
involve relatively large messages.

18.9.2.2 DTLS Handshake Protocol
Handshake protocol messages can be as large as 224 - 1 bytes but in practice are sev-
eral kilobytes. This can exceed a typical maximum UDP datagram size of 1.5KB. 
To handle this situation, a Handshake protocol message may span multiple DTLS 
records using a fragmentation procedure. Each fragment is contained in a record, 
which is contained in an underlying datagram. To implement fragmentation, each 
Handshake message contains a 16-bit Sequence Number field, a 24-bit Fragment Off-
set field, and a 24-bit Fragment Length field.

To perform fragmentation, the original message’s content is divided into mul-
tiple contiguous data ranges. Each range is required to be less than the maxi-
mum fragment size. Each range is placed in a message fragment. Each fragment 
contains the same sequence number as the original message. The Fragment Off-
set and Fragment Length fields are expressed in bytes. Senders avoid overlapping 
data ranges, but receivers are required to handle this possibility because senders 
may be required to adjust their record size over time and retransmissions may be 
necessary. 

To handle message loss, DTLS implements a simple timeout and retransmis-
sion capability that operates on groups of messages called flights. Figure 18-36 
shows both the full (left) and abbreviated (right) establishment exchanges, along 
with the DTLS Handshake protocol state machine.

In Figure 18-36, flight numbers are given in the area between the full and 
abbreviated exchanges. The full exchange is very similar to the full TLS exchange 
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shown in Figure 18-30, except for the additional HelloVerifyRequest and second 
ClientHello messages (which now contain cookies). The abbreviated exchange is 
different, however. In DTLS the server sends the first Finished message, whereas 
in TLS the client sends the first Finished message.

The lower right portion of Figure 18-36 depicts the state machine used by 
DTLS implementations when performing the Handshake protocol. There are 
three primary states: Preparing, Sending, and Waiting. The client starts in the Pre-
paring state as it creates its ClientHello message. The server begins in the Waiting 

Figure 18-36  In DTLS, the possibility of lost datagrams must be handled. The initial full exchange 
(left) comprises six “flights” of information, each of which can be retransmitted. The 
DTLS abbreviated exchange (top right) uses only three and differs slightly from TLS. 
DTLS maintains a three-state finite state machine (bottom right) when processing the 
protocol.
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state with no buffered messages or active retransmission timer. When sending, a 
retransmission timer is set and the Waiting state is entered upon completion of 
the transmission. Expiration of the retransmission (RTX) timer brings the proto-
col back to the Sending state to perform a retransmission, as does the receipt of 
a retransmitted flight from the peer. In this latter case the local system performs 
a retransmission of its own flight with the rationale that its previous transmis-
sion must have been partially or completely lost, as indicated by the presence of 
peer retransmission. If everything goes well, a flight is received, and the local 
system either finishes or returns to the Preparing state to form its next flight for 
transmission.

The state machine is driven by a retransmission timer with a recommended 
default value of 1s. If no response for a flight has been received within the timeout 
duration, the flight is retransmitted using the same Handshake protocol sequence 
numbers; record-layer sequence numbers still advance. Subsequent retransmis-
sions without a response result in doubling of the RTX timeout value, up to a value 
of at least 60s. This value may be reset after a successful transmission or a long idle 
period (ten times the current timer value or more).

18.9.2.3 DTLS DoS Protection
When datagrams are used instead of a reliable byte stream protocol, some addi-
tional security considerations come into play. Of special concern are two potential 
DoS attacks. It is relatively simple for an attacker to forge a source IP address when 
sending a ClientHello message. Many such messages could cause a DoS attack 
at the DTLS server because of exhaustion of processing resources when forming 
responses. A variant of this attack involves having multiple attacking machines 
include the same forged source (victim) IP address. The responding server(s) 
then send(s) responses to the victim’s IP address, causing the victim machine to 
undergo a DoS attack.

A stateless cookie validation procedure incorporated into the Hello exchange 
helps resist both DoS attacks. When a server receives a ClientHello message, it 
generates a new HelloVerifyRequest message containing a 32-bit cookie (which 
may be a function of a secret, the client’s IP addresses, and the connection param-
eters). A subsequent ClientHello message must contain a copy of the appropri-
ate cookie. Otherwise, the server refuses the exchange. This allows the server to 
quickly dispense with requests that do not provide valid cookies. It does not pro-
tect against coordinated attacks from multiple legitimate IP addresses that can 
complete the cookie exchange.

18.10 DNS Security (DNSSEC)

Now that we have discussed popular security protocols at the link, network, and 
transport layers, we move to the application layer. Although it is not yet widely 
deployed at the time of writing, we shall focus on how to provide enhanced 
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security for the Domain Name System (DNS). Security for DNS covers both data 
within the DNS (resource records or RRs) as well as security of transactions that 
synchronize or update contents of DNS servers. Given its important role in the 
operation of the Internet, a major effort has been undertaken to deploy these secu-
rity mechanisms. The mechanisms are called the Domain Name System Security 
Extensions (DNSSEC) and are discussed in a family of RFCs [RFC4033][RFC4034]
[RFC4035]. These RFCs are sometimes referred to as DNSSECbis because they 
replace an earlier set of specifications for DNSSEC. As we explore DNSSEC in 
further detail, it may be worthwhile to review the description of basic DNS (see 
Chapter 11).

The extensions provide origin authentication and integrity assurance for DNS 
data, along with a (limited) key distribution facility. That is, the extensions provide 
a cryptographically secure way to determine what entity has authored a block of 
DNS information and that the information has been received unaltered. DNSSEC 
also provides authenticated nonexistence. DNS responses indicating the nonexis-
tence of a particular domain name include protection similar to that of responses 
for existing domain names. DNSSEC does not provide privacy (confidentiality) 
of DNS information, DoS protection, or access control. Transaction security, used 
with DNSSEC, is defined separately, and we will mention it briefly after discuss-
ing the core DNSSEC data security capabilities.

DNSSEC accommodates resolvers with varying levels of security “aware-
ness.” A validating security-aware resolver (also called validating resolver) checks 
cryptographic signatures to ensure that the DNS data it handles is secure. Other 
resolvers, including stub resolvers on hosts and the “resolver side” of recursive 
name servers, may be security-aware but may not perform cryptographic valida-
tion. Instead, such resolvers should establish secure associations with validating 
resolvers. We shall focus on the validating resolvers, as they are the most sophis-
ticated and interesting. When operating, they are able to ascertain whether DNS 
information is secure (valid with all signatures checked), insecure (valid signatures 
indicate that something should not be present but is), bogus (proper data appears 
to be present but cannot be validated for some reason), or indeterminate (veracity 
cannot be determined, usually because of lack of signatures). The indeterminate 
case is the default case when no other information is available.

DNSSEC works securely only when a zone is signed by a domain administra-
tor, there is some basis for trust, and both server and resolver software participate. 
Validating resolvers check signatures to ensure that DNS information is secure, 
and they must be configured with one or more initial trust anchors that are simi-
lar to root certificates in a PKI. Note, however, that DNSSEC is not a PKI; in par-
ticular, it provides only limited signing and key revocation. It does not implement 
an analog to certificate revocation lists [RFC5011].

When performing a DNS query with DNSSEC, a security-aware resolver 
uses EDNS0 and enables the DO (DNSSEC OK) bit in an OPT meta-RR pres-
ent in the request. This bit indicates the client’s interest in and ability to process 
DNSSEC-related information along with its support for EDNS0. The DO bit is 
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the first (high-order) bit of the second 16-bit field in the “extended RCODE and 
flags” portion of the EDNS0 meta-RR (see Section 3 of [RFC3225] and Section 4 of 
[RFC2671]). Servers that receive requests in which the DO bit is not set (or pres-
ent) are prohibited from returning most of the RRs discussed in Section 18.10.1 
unless such records are explicitly asked for in the request. This helps to improve 
DNS performance because it avoids having to carry security-related RRs that are 
never processed by security-unaware resolvers. This can be especially beneficial 
because DNS typically uses relatively small UDP packets and falls back to using 
TCP, which increases latency due to its three-way handshake, for large responses.

When a server processes a request from a DNSSEC-enabled resolver, it checks 
the CD (checking disabled) bit in the DNS request (see Chapter 11). If set, this 
indicates that the client is willing to accept nonvalidated data in a response. When 
preparing a response, a server ordinarily validates the data it is returning crypto-
graphically. Successful validation results in the AD (authentic data) bit being set 
in the response [RFC4035]. A security-aware but nonvalidating resolver can in 
principle trust this information if it has a secure path to the server. However, the 
arguably best case is to use validating stub resolvers that perform cryptographic 
validation and consequently set the CD bit on queries. This provides end-to-end 
security of the DNS (i.e., an intermediate resolver need not be trusted), and it 
reduces the computational load on the intermediate servers that would otherwise 
have to perform cryptographic validation.

18.10.1 DNSSEC Resource Records

As specified in [RFC4034], DNSSEC uses four new resource records (RRs) and two 
message header bits (CD and AD). It also requires EDNS0 support and uses the 
DO bit field we mentioned previously. Two of the four RRs are used to contain sig-
natures for portions of the DNS name space, and the other two are used in helping 
to distribute and validate keys. A change in [RFC5155] created two additional new 
RRs, intended to replace one of the original four. 

18.10.1.1 DNS Security (DNSKEY) Resource Records
We begin by looking at how DNSSEC stores and distributes keys. DNSSEC uses 
the DNSKEY resource record to hold public keys. The keys are intended for use 
with DNSSEC only; other RRs (e.g., the CERT RR [RFC4398]) may be useful for 
holding keys or certificates for other purposes. The format of the RDATA portion 
of a DNSKEY RR is shown in Figure 18-37.

The Flags field in Figure 18-37 has 3 bits currently defined. Bit 7 is the Zone Key
bit field. If set, the DNSKEY RR owner’s name must be the name of a zone and the 
included key is called either a Zone Signing Key (ZSK) or a Key Signing Key (KSK). 
If not set, the record holds some other kind of DNS key that cannot be used for 
validating signatures for zones. Bit 15 is called the Secure Entry Point (SEP) bit. It 
is a hint that can be used by debugging or signing software to make an informed 
guess as to the purpose of the key. Signature validation does not interpret the SEP 
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bit, but keys with this bit set are usually KSKs and are used to secure the DNS 
hierarchy by validating keys in child zones (via DS records; see Section 18.10.1.2). 
Bit 8 is the Revoked bit [RFC5011] if set the key cannot be used for validation. 
The Protocol field holds the value 3 for this version of DNSSEC. The Algorithm
field indicates the signing algorithm [DNSSECALG]. Only DSA and RSA with 
SHA-1 (values 3 and 5, respectively) are defined for use with DNSKEY RRs accord-
ing to [RFC4034], but additional specifications support other algorithms (e.g., see 
[RFC5933] for ECC-GOST (value 12), [RFC5702] for SHA-256 (value 8)). These val-
ues are also used with several of the other DNSSEC RRs. The Public Key field holds 
a public key whose format depends on the Algorithm field.

18.10.1.2 Delegation Signer (DS) Resource Records
A delegation signer (DS) resource record is used to refer to a DNSKEY RR, usu-
ally from a parent zone to a descendant zone. These records are used during the 
authentication process to verify a public key (see Section 18.10.2). The DS RR for-
mat is shown in Figure 18-38.

Figure 18-37  The RDATA portion of the DNSKEY RR contains a public key used only for DNSSEC. 
The Flags field includes a Zone Key indicator (bit 7), a Secure Entry Point indicator (bit 
15), and Revoked indicator (bit 8). Generally, the zone key is set for all DNSSEC keys. 
If the advisory SEP bit is also set, the key is typically called a key signing key and is 
used for validating delegations to child zones. If not, the key is usually a zone sign-
ing key, has a shorter validity period, and is typically used to sign zone contents and 
not delegations. The included key is to be used with the algorithm specified in the 
Algorithm field.

Figure 18-38  The RDATA portion of the DS RR contains a nonunique reference to a DNSKEY RR in 
the Key Tag field. It also contains a message digest of the DNSKEY RR and its owner, 
plus indications of the type of digest and algorithm.
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The Key Tag field in Figure 18-38 is a reference to a DNSKEY RR. However, it 
is not unique. Multiple DNSKEY RRs may have the same tag value, so the field is 
used only as a search hint (confirming that validation is still necessary). The value 
for this field is computed as the 16-bit unsigned sum of data comprising the refer-
enced DNSKEY RR RDATA area (carries are ignored) as shown in Figure 18-37. The 
Algorithm field uses the same values as the DNSKEY RR Algorithm field. The Digest 
Type field indicates the type of signature used. Only value 1 (SHA-1) is defined by 
[RFC4034], but SHA-256 (value 2) is specified for use by [RFC4509]. The current 
list is contained in the DS RR Type Digest Algorithms registry [DSRRTYPES]. The 
Digest field contains the digest of the DNSKEY RR being referenced. More specifi-
cally, the digest is computed as follows:

digest = digest_algorithm(DNSKEY owner name | DNSKEY RDATA)

where | is the concatenation operator and the DNSKEY RDATA value is computed 
from the referenced DNSKEY RR as follows:

DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key

For the case of SHA-1, the digest is 20 bytes in length. For SHA-256 it is 32 
bytes. The DS RR is used to provide a downward link in the authentication chain 
across zone boundaries, so the referenced DNSKEY RR must be a zone key (i.e., bit 
7 of the Flags field in the DNSKEY RR must be set).

Note

At the time of writing, a variant of the DS RR called DS2 is under consideration 
[IDDS2]. It introduces a Canonical Signer Name to the DS RR so that multiple 
zones with identical content can be named differently and signed by multiple (dif-
ferent) signers. In addition, there is a DLV RR [RFC4431] that has been used to 
provide delegations in cases where a parent zone is not signed or has not pub-
lished DS RRs. The format of a DLV RR is identical to that of a DS RR; only the 
interpretation differs.

18.10.1.3 NextSECure (NSEC and NSEC3) Resource Records
Now that we have seen the RRs needed to hold and securely refer to keys, we move 
on to the records used to validate the structure of a zone and the resource records 
it contains. The NextSECure (NSEC) RR is used to hold the “next” RRset owner’s 
domain name in the canonical ordering of names (see Section 18.10.2.1) or a delega-
tion point NS type RRset. (Recall, an RRset is a set of RRs with the same owner, 
class, TTL, and type but with different data.) It also holds a list of RR types present 
at the NSEC RR owner’s name. This provides authentication and integrity verifica-
tion for the zone structure. The format of an NSEC RR is shown in Figure 18-39.
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The NSEC RR is used to form a chain of names corresponding to RRsets 
within a zone. Consequently, an RRset not present in the chain can be shown to 
not exist. This provides the authenticated denial of existence feature mentioned 
previously. The Next Domain Name field holds the next entry in the canonically 
ordered domain name chain for the zone without using the domain name com-
pression technique described in Chapter 11. The value of this field for the last 
NSEC record of the chain is the zone apex (the owner name of the zone’s SOA RR).

The Type Bit Maps field of the NSEC RR holds a bitmap of RR types present at 
the NSEC RR owner’s domain name. There is a maximum of 64K possible types, 
about 100 of which have been defined to date [DNSPARAMS]. Only a fraction of 
these are in widespread use. For example, the Internet’s root zone (domain name 
“.”), which became operational with DNSSEC on July 15, 2010, contains a Next 
Domain Name field of ac (a ccTLD) and a bitmap indicating the presence of records 
of the following types: NS, SOA, RRSIG, NSEC, and DNSKEY.

To encode the presence of a type, the whole space of RR types is divided into 
256 “window blocks,” numbered 0 through 255. For each block number, the pres-
ence of up to 256 RR types can be encoded using a bit mask. Given a block num-
ber N and bit position P, the corresponding RR type number is (N*256 + P). For 
example, in block 1, bit position 2 corresponds to RR type 258 (a type not currently 
defined). The field is encoded as follows:

Type Bit Maps = (window block number | bitmap length | bitmap)*

where | is the concatenation operator and * represents Kleene closure (i.e., zero or 
more). Each instance of the window block number contains a value in the range 
0–255, and the bitmap length contains the length of the corresponding bitmap 
in bytes (maximum value 32). The window block number and bitmap length are 
each single bytes, and the bitmap can be as long as 32 bytes (256 bits, one for each 
possible RR type in the window). Blocks in which no RR type is present are not 
included. The encoding is optimized for a sparse presence of types across blocks. 
For example, if only RR types 1 (A) and 15 (MX) were present, the encoding for the 
field would be as follows: 0x00024001 = (0x00 | 0x02 | 0x4001).

Figure 18-39  The RDATA portion of the NSEC RR contains the name of the next RRset owner for the 
zone in canonical order. It also contains an indication of which RR types were present 
at the NSEC RR owner’s domain name.
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The original structure of NSEC records defined in [RFC4034] creates a situa-
tion in which anyone is able to enumerate the authority records in a zone by walk-
ing the NSEC chain, called zone enumeration. This is an unwanted opportunity 
for “leakage” of information for many deployments. As a result, a pair of RRs, 
intended to replace NSEC, is defined in [RFC5155]. The first is called NSEC3. It 
uses cryptographic hashes of RR owner domain names rather than unencoded 
domain names. The format is shown in Figure 18-40.

Figure 18-40  The RDATA portion of the NSEC3 RR contains a hash of the name of the next RRset 
owner for the zone in canonical order. The hash function has been applied the number 
of times specified in the Iterations field. The variable-length Salt value is appended to 
the name prior to applying the hash function to provide dictionary attack resistance. 
The Type Bit Maps field uses the same structure as NSEC RRs. NSEC3PARAM records 
are similar but contain only the hash parameters (not the Next Hashed Owner or Type 
Bit Maps fields). 

In the NSEC3 record, the Hash Algorithm field identifies the hash function 
applied to the next owner name to produce the Next Hashed Owner field. Only 
SHA-1 (value 1) is defined to date [NSEC3PARAMS]. The low-order bit of the Flags
field contains an opt-out flag. If set, it indicates that the NSEC3 record may cover 
unsigned delegations. This is used in cases where a delegation (NS RRset) refers 
to a child zone that is not required to be or is not desired to be signed. The Itera-
tions field indicates how many times the hash function has been applied. A larger 
number of iterations may help to protect against finding the owner names cor-
responding to hash values found in NSEC3 records (dictionary attacks). The Salt 
Length field gives the length of the Salt field in bytes. The Salt field contains a value 
appended to the original owner name prior to computing the hash function. Its 
purpose is to help thwart dictionary attacks. 

The second RR specified by [RFC5155] is called the NSEC3PARAM RR (not 
shown separately). It uses the same format as the NSEC3 RR, except the Hash 
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Length, Next Hashed Owner, and Type Bit Maps fields are not present. It is used by 
an authoritative name server when choosing NSEC3 records to use in a negative 
response. The NSEC3PARAM RR provides the parameters needed for computing 
a hashed owner name.

To obtain the hash value for the Next Hashed Owner field, the following com-
putation is performed:

IH(0) = H(owner name | Salt)

IH(k) = H(IH(k - 1) | Salt) if k > 0

Next Hashed Owner = H(IH(Iterations) | Salt)

where H is the hash function specified in the Hash Algorithm field and the owner 
name is in canonical form. The iterations and salt values are taken from the cor-
responding fields of the NSEC3 RR.

To avoid confusion between NSEC and NSEC3 RR types, [RFC5155] allocates 
and requires the use of special security algorithm numbers 6 and 7 as aliases 
for identifiers 3 (DSA) and 5 (SHA-1) in zones employing NSEC3 RRs. Resolv-
ers unaware of the NSEC3 record type receiving these values treat the resulting 
records as insecure. This provides a certain limited form of backward compatibil-
ity (i.e., failing, but doing so without incorrectly interpreting RR data).

18.10.1.4 Resource Record Signature (RRSIG) Resource Records
Moving from the DNS structure to its contents, we require a way to provide ori-
gin authentication and integrity protection for RRs. DNSSEC signs and validates 
signatures on RRsets using the Resource Record Signature (RRSIG) RR, and every 
authoritative RR in a zone must be signed (glue records and delegation NS records 
present in parent zones aren’t). An RRSIG RR contains a digital signature for a 
particular RRset, along with information to identify which public key can be used 
to validate the signature, as shown in Figure 18-41.

The Type Covered field indicates the type of the RRset to which the signature 
applies. The value is taken from the standard set of RR types in [DNSPARAMS]. 
The Algorithm field indicates the signing algorithm. Only DSA and RSA with 
SHA-1 (values 3 and 5, respectively) are defined for use with RRSIG RRs according 
to [RFC4034], but [RFC5702] covers SHA-2 algorithms and [RFC5933] covers GOST 
algorithms (from the Russian Federation). The Labels field gives the number of 
labels in the original owner’s name of the RRSIG RR. The Original TTL field holds 
a copy of the TTL from the RRset as it appears in the authoritative zone (caching 
name servers may reduce the TTL). The Signature Expiration and Signature Inception
fields indicate the starting and ending validity times for the signature, expressed 
in seconds since January 1, 1970, 00:00:00 UTC. The Key Tag field helps to identify 
the DNSKEY RR that can be used to obtain the public key necessary to validate the 
signature contained in the Signature field, using the format described previously 
for the DS RR.
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18.10.2 DNSSEC Operation

Now that we have covered all the RRs required by DNSSEC, we can see how to 
use DNSSEC to secure zones. We shall first require the definition of a canonical 
ordering, mentioned earlier when defining the NSEC and NSEC3 record types. The 
purpose of a defined canonical ordering for a zone is to be able to enumerate a 
zone’s contents in a reproducible way that can be signed (different orders of the 
same contents would produce different values for any good hash function). Once 
we are familiar with the ordering, we look at how a zone is signed and how signed 
records describing a zone are validated.

18.10.2.1 Canonical Orderings and Forms
There are three canonical orderings of interest to us: the canonical name order 
within a zone, the canonical form for a single RR, and the canonical ordering of 
an RRset [RFC4034]. Recall from Chapter 11 that each RR has an owner name 
(owner’s domain name) consisting of labels. By treating each label in a name as a 
left-justified string of bytes and treating uppercase US-ASCII letters as lowercase, 
we can form a list of names. We first sort the names by their most significant 
(right-most) label, then by the next most significant label, and so on. The absence 
of a byte sorts before a zero-value byte. A valid canonical ordering would be com, 
company.com, *.company.com, UK.company.COM, usa.company.com. Wild-
cards can be used.

Figure 18-41  The RDATA portion of the RRSIG RR contains a signature for an RRset. The TTL of 
the RRset as it appears in the authoritative zone is also included, along with indicators 
of the algorithm and signature validity period. The Key Tag field refers to a DNSKEY 
RR containing a public key that can be used to validate the signature. The Labels field 
indicates how many labels constitute the original owning name of the RR.
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For a particular RR, there is a well-defined canonical form. This form requires 
the RR to adhere to the following rules: 

1. Every domain name is an FQDN and fully expanded (no compression 
labels).

2. All uppercase US-ASCII letters in the owner name are replaced by the cor-
responding lowercase versions.

3. All uppercase US-ASCII letters are replaced by their lowercase versions 
for any domain names present in the RDATA portion of records with type 
numbers 2–9, 12, 14, 15, 17, 18, 21, 24, 26, 33, 35, 36, 39, and 38.

4. Any wildcards (*) are not substituted.

5. The TTL is set to its original value as it appeared in the originating authori-
tative zone or the Original TTL field of the covering RRSIG RR.

Note

A number of clarifications and important changes are being applied to the base-
line DNSSECbis family of documents. The reader is encouraged to consult the 
most recent version of [IDDCIN] for further details. 

The canonical order of the RRs within an RRset follows essentially the same 
rule as for owner names but applies to an RR’s RDATA contents in canonical form 
treated as a left-justified byte string.

18.10.2.2 Signed Zones and Zone Cuts
DNSSEC depends on signed zones. Such zones include RRSIG, DNSKEY, and 
NSEC (or NSEC3) RRs and may contain DS RRs if there is a signed delegation 
point. Signing makes use of public key cryptography where the public keys are 
stored in and distributed by the DNS. Figure 18-42 shows an abstract delegation 
point between a parent and child zone.

In the figure, the parent zone contains its own DNSKEY RR, which provides 
the public key corresponding to the private key used to sign all authoritative 
RRsets in the zone using RRSIG RRs (multiple DNSKEYs are possible). A DS RR 
in the parent provides a hash of one of the DNSKEY RRs in the child’s apex. This 
establishes a chain of trust from the parent to the child. A validating resolver that 
trusts the parent’s DS RR can validate the child’s DNSKEY RR and ultimately the 
RRSIGs and signed RRsets within the child zone. This happens only if the valida-
tor has a root of trust that can be connected to the parent’s DNSKEY RR.

18.10.2.3 Resolver Operation Example
Given a chain of signed zones and a security-aware validating resolver, we can 
see how the contents of a DNS response can be validated. In the best case, a zone 
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can be reached through a chain of trust from the root zone. ICANN keeps a list of 
which zones have been enabled for DNSSEC by having DS records present in the 
root zone and signed DNSKEY RRs [TLD-REPORT].

Assume that we wish to resolve and verify an A RR type for the domain name 
www.icann.org. Proceeding from the root downward, we shall at first require 
the root’s trust anchor (i.e., DNSKEY RRs), DS records for org. contained in one 
of the root name servers, and perhaps RRSIG and NSEC (NSEC3) records. We 
then repeat the process using the org. and icann.org. domain names and cor-
responding DNS servers. We begin with the root zone:

Linux% dig @a.root-servers.net. . dnskey +noquestion +nocomments \ 
+nostats +multiline
;; Truncated, retrying in TCP mode.
; <<>> DiG 9.7.2-P3 <<>> @a.root-servers.net. . dnskey 
       +noquestion +nocomments +nostats +multiline
; (1 server found)
;; global options: +cmd
.  86400 IN    DNSKEY      257 3 8 ( AwEAAagAIKl ... ) ; key id = 19036

Figure 18-42  A zone cut for an authenticated delegated zone includes a DS RR in the parent containing a hash 
of the DNSKEY RR(s) in the child. All RRsets are signed with corresponding RRSIG RRs except 
the delegation NS RRs (and glue records) in the parent. NSEC RRs can be used to verify the 
types present in the zone and include an SOA RR type indication at the apex in the child zone.

www.icann.org
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.  86400 IN    DNSKEY      256 3 8 ( AwEAAb5gVAz ... ) ; key id = 21639

.  86400 IN    DNSKEY      256 3 8 ( AwEAAcAPhPM ... ) ; key id = 40288

Here we can see the trust anchor for the root zone, which constitutes the root 
of trust for all DNSSEC in the Internet. The first key is a KSK, indicated by the 
value 257 (SEP bit is 1), which is the preferred one used in forming trust chains. 
The others are marked as ZSKs. Next, we would like to ensure that all the records 
we have just seen are supposed to be present and have appropriate signatures. The 
root’s RRSIG records of interest can be seen as follows:

Linux% dig @a.root-servers.net. . rrsig +noquestion +nocomments \ 
+nostats +noauthority +noadditional
;; Truncated, retrying in TCP mode.

; <<>> DiG 9.7.2-P3 <<>> @a.root-servers.net. . rrsig +noquestion  
       +nocomments +nostats +noauthority +noadditional
; (1 server found)
;; global options: +cmd
. 86400 IN  RRSIG NSEC 8 0 86400 20101228000000 20101220230000 
                       40288 . RyoGB1dxxX...
. 86400 IN  RRSIG DNSKEY 8 0 86400 20110105235959 20101221000000
                         19036 . f8bzNvPmHR...

...

The RRSIG covering the DNSKEY record uses key tag 19036, which matches 
the KSK contained in the root zone’s DNSKEY RR. The root contains other RRSIG 
records (for its SOA and NS records), but we are more concerned with the RRSIGs 
for the DNSKEY and NSEC RRs. Just to be extra-sure that the DNSKEY RR should 
be present, we can inspect the root’s NSEC RR to verify that its type is present:

Linux% dig @a.root-servers.net. . nsec +noquestion +nocomments \ 
+nostats +noauthority +noadditional
; <<>> DiG 9.7.2-P3 <<>> @a.root-servers.net. . nsec +noquestion 
       +nocomments +nostats +noauthority +noadditional
; (1 server found)
;; global options: +cmd
.                 86400 IN    NSEC  ac. NS SOA RRSIG NSEC DNSKEY

This confirms that the root zone officially contains RRset types NS, SOA, 
RRSIG, NSEC, and DNSKEY, so we are in good shape so far. (Note also that ac.
is the first TLD in the canonical ordering of the root zone.) Next we need to check 
out the signatures on the delegation from the root to org.. This can be done as 
follows:

Linux% dig @a.root-servers.net. org. rrsig +noquestion +nocomments \ 
+nostats +noadditional +dnssec
; <<>> DiG 9.7.2-P3 <<>> @a.root-servers.net. org. rrsig +noquestion 
       +nocomments +nostats +noadditional +dnssec
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; (1 server found)
;; global options: +cmd
org. 172800     IN    NS    d0.org.afilias-nst.org.
org. 172800     IN    NS    b2.org.afilias-nst.org.
org. 172800     IN    NS    a0.org.afilias-nst.info.
org. 172800     IN    NS    b0.org.afilias-nst.org.
org. 172800     IN    NS    a2.org.afilias-nst.info.
org. 172800     IN    NS    c0.org.afilias-nst.info.
org. 86400      IN    DS    21366 7 2 96EEB2FFD9 ...
org. 86400      IN    DS    21366 7 1 E6C1716CFB ...
org. 86400 IN   RRSIG DS 8 1 86400 20101228000000 20101220230000 
                      40288 . jpcJOGclvvlnx9Kvz5 ...

The presence of the DS RRset and its associated RRSIG suggests that indeed 
there is a DNSSEC secured delegation. The RRSIG RR contains the key tag 40288, 
which refers to the third DNSKEY RR we saw earlier for the root zone (the ZSK). 
The NS records provide us with the names of the next servers to use in the next 
steps for our query. We can proceed by repeating the queries we made for the root, 
but this time using org.. We direct such queries at one of the servers specified in 
the NS RR for org. in the root:

Linux% dig @d0.org.afilias-nst.org. org. dnskey +dnssec +nostats \ 
+noquestion +multiline
; <<>> DiG 9.7.2-P3 <<>> @d0.org.afilias-nst.org. org. dnskey +dnssec 
       +nostats +noquestion +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8061
;; flags: qr aa rd; QUERY: 1, ANSWER: 6, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; ANSWER SECTION:
org.  900 IN  DNSKEY    256 3 7 ( AwEAAZTErUF ... ) ; key id = 1743
org.  900 IN  DNSKEY    256 3 7 ( AwEAAazTpnm ... ) ; key id = 43172
org.  900 IN  DNSKEY    257 3 7 ( AwEAAYpYfj3 ... ) ; key id = 21366
org.  900 IN  DNSKEY    257 3 7 ( AwEAAZTjbIO ... ) ; key id = 9795
org.  900 IN  RRSIG DNSKEY 7 1 900 20101231154644 
                            20101217144644 21366 org. 
                            aIZgEsoJO+Q8ZXM ...
org.  900 IN  RRSIG DNSKEY 7 1 900 20101231154644 
                  20101217144644 43172 org. MWWosWBdEmM8CiM ... 

Here we can see that four DNSKEY RRs exist, two of which are KSKs (value 
257) and two of which are ZSKs (value 256). The third one listed (21366) corre-
sponds to the DS RR we found located in the root zone. The RRSIG RRs use this 
key, plus the ZSK with ID 43172. To verify their presence as legitimate, we can 
look for NSEC or NSEC3 records that may be present for org.:
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Linux% dig @d0.org.afilias-nst.org. org. nsec +dnssec +nostats \ 
+noquestion
; <<>> DiG 9.7.2-P3 <<>> @d0.org.afilias-nst.org. nsec org. +dnssec 
       +nostats +noquestion
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61632
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; AUTHORITY SECTION:
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN NSEC3 1 1 1 
                                      D399EAAB 
                                      H9RSFB7FPF2L8HG35CMPC765TDK23RP6 
                                      NS SOA RRSIG DNSKEY NSEC3PARAM
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN RRSIG NSEC3 7 2 
                                      86400 20110105003654 
                                      20101221233654 
                                      43172 org. eBtna4fok ...

Here we see an NSEC3 record with owner name equal to the hashed version 
of org.. It indicates the presence of a DNSKEY and RRSIG record, as well as NS 
and NSEC3PARAM records. Following the last type, we can determine the NSEC3 
information:

Linux% ./dig @a0.org.afilias-nst.info. org. nsec3param +dnssec \    
+nostats +noadditional +noauthority +noquestion
; <<>> DiG 9.7.2-P3 <<>> @a0.org.afilias-nst.info. org. nsec3param 
       +dnssec +nostats +noadditional +noauthority +noquestion
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38602
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 7, ADDITIONAL: 13
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; ANSWER SECTION:
org.              900   IN    NSEC3PARAM 1 0 1 D399EAAB
org.              900   IN    RRSIG NSEC3PARAM 7 1 900 20101231154644 
                              20101217144644 43172 org. fS2kFw53e1Y ...

We can see that this NSEC3PARAM RR matches the NSEC3 RR because of the 
match of the value D399EAAB (signature). We can also see that the signature in the 
RRSIG RR came from the private key associated with DNSKEY having ID 43172. 
If all signatures match, so far we have a valid chain of trust. To complete the chain, 
we need information about icann.org.:
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Linux% dig @a0.org.afilias-nst.info. icann.org. any +dnssec +nostats \ 
+noadditional
; <<>> DiG 9.7.2-P3 <<>> @a0.org.afilias-nst.info. icann.org. any 
       +dnssec +nostats +noadditional
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61234
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 8, ADDITIONAL: 3
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;icann.org.             IN    ANY

;; AUTHORITY SECTION:
icann.org.        86400 IN    NS    a.iana-servers.net.
icann.org.        86400 IN    NS    b.iana-servers.org.
icann.org.        86400 IN    NS    c.iana-servers.net.
icann.org.        86400 IN    NS    d.iana-servers.net.
icann.org.        86400 IN    NS    ns.icann.org.
icann.org.        86400 IN    DS    41643 7 1 93358DB ...
icann.org.        86400 IN    DS    41643 7 2 B8AB67D ...
icann.org.        86400 IN    RRSIG DS 7 2 86400 20101231154644 
                              20101217144644 43172 org. cZ1Z30w// ...

We can see the DS RR indicating the signed delegation for icann.org. from 
org.. The RRSIG for the DS RRset is signed based on the ZSK with ID 43172. 
Using one of the servers present in the NS records, we can look at the final server:

Linux% dig @a.iana-servers.net. icann.org. dnskey +dnssec +nostats \ 
+noquestion +multiline

; <<>> DiG 9.7.2-P3 <<>> @a.iana-servers.net. icann.org. dnskey +dnssec 
       +nostats +noquestion +multiline
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22065
;; flags: qr aa rd; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; ANSWER SECTION:
icann.org. 3600 IN  DNSKEY 256 3 7 ( AwEAAbDmrVc ... ) ; key id = 41295
icann.org. 3600 IN  DNSKEY 256 3 7 ( AwEAAbgrYZd ... ) ; key id = 55469
icann.org. 3600 IN  DNSKEY 257 3 7 ( AwEAAZuSdr4 ... ) ; key id = 7455
icann.org. 3600 IN  DNSKEY 257 3 7 ( AwEAAcyguBH ... ) ; key id = 41643
icann.org. 3600 IN  RRSIG DNSKEY 7 2 3600 20101229153632 
                    20101222042536 41643 icann.org. 
                    UxR/5vyOIS ...
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Here we can see that four DNSKEY RRs exist—two KSKs and two ZSKs. The 
fourth one listed (41643) corresponds to the DS RR we found located in the org.
zone. The RRSIG RR uses this key. To find the answer to our ultimate query, we 
request the A record:

Linux% dig @a.iana-servers.net. www.icann.org. a +dnssec +nostats \ 
+noquestion  +noauthority +noadditional 
; <<>> DiG 9.7.2-P3 <<>> @a.iana-servers.net. www.icann.org. a +dnssec 
       +nostats +noquestion +noauthority +noadditional
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56258
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 3
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; ANSWER SECTION:
www.icann.org.          600   IN    A     192.0.32.7
www.icann.org.          600   IN    RRSIG A 7 3 600 20101229143630 
                                    20101222042536 55469 icann.org. 
                                    YRhlL/RA ...

We have finally reached the end of the chase for the A RR for www.icann.
org.. It contains the IP address 192.0.32.7, signed by an RRSIG RR using key 
ID 55469. This is the key from the fourth DNSKEY RR we saw at the apex of the 
icann.org. zone. So at this point it would appear that all is order. However, we 
have not demonstrated that all the signature values are actually correct. To do this 
validation, the following command may be executed:

Linux% dig @a.root-servers.net. www.icann.org. a +sigchase +topdown \
+trusted-key=trusted-keys 

This command works if the dig program has been compiled with the –DDIG_
SIGCHASE=1 compile-time option and the file trusted-keys contains the root’s 
DNSKEY RRset. After many lines of output, we find that it does indicate success. 
A simpler method for checking the validity can be achieved using a DNS/DNS-
SEC-checking Web site such as http://dnsviz.net. Output from such a query 
is shown in Figure 18-43.

Here we can see a successful validation for the A and AAAA RR types for the 
domain name www.icann.org.. Each rectangle represents a zone and contains 
its name and the time it was analyzed. Within each zone are ovals representing 
elements in the chain of trust, either DNSKEY or DS RRs. Dashed ovals indicate 
that the keys are not being used for signatures of interest. Arrows between ovals 
indicate RRSIG or DS digests. Two types of algorithms are represented. In the root 

www.icann.org
www.icann.org
http://dnsviz.net
www.icann.org
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Figure 18-43  A visualization of a DNSSEC chain of trust. Rectangles represent zones. Ovals represent chain 
nodes, and shaded ovals have the SEP bit set. Arrows indicate valid RRSIG records or DS digests. 
The double-circle oval indicates a trust anchor.
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zone, “alg = 8” indicates that RSA/SHA-256 [RFC5702] signatures are in use. In 
other zones, “alg = 7” indicates RSA/SHA-1 that permits the use of NSEC3 records 
[RFC5155]. For the DS RR in the root zone, “digest algs = 1,2” indicates that SHA-1 
[RFC4034] and SHA-256 [RFC4509] are supported.

18.10.3 Transaction Authentication (TSIG, TKEY, and SIG(0))

Some transactions in DNS, such as zone transfers and dynamic updates, could 
compromise the DNS structure or contents if improperly used. Consequently, 
they require some form of authentication. Even conventional DNS resolution may 
require authentication if a resolver expects to depend on validated DNS resolu-
tions but does not implement full DNSSEC processing. With transaction authenti-
cation, the exchange between a particular resolver and server (or between servers) 
is protected. Note, however, that transactional security does not directly protect 
the contents of the DNS, as does DNSSEC. As a result, DNSSEC and transaction 
authentication are complementary and can be deployed together. DNSSEC pro-
vides data origin authentication and integrity of zone data, while transaction 
authentication provides integrity and authentication for a particular transaction 
between a client and a server without checking the correctness of the content 
being exchanged.

 There are two primary methods for authenticating DNS transactions: TSIG 
and SIG(0). TSIG uses shared keys and SIG(0) uses public/private key pairs. To 
help ease the burden of deployment, a TKEY RR type can be used to help form 
keys (e.g., by holding public DH values) for either TSIG or SIG(0). We will begin 
by discussing TSIG, the more common of the transaction security mechanisms.

18.10.3.1 TSIG
Secret Key Transaction Authentication for DNS or Transaction Signatures (TSIG) 
[RFC2845] adds transactional authentication for DNS exchanges using signatures 
based on shared secret keys. TSIG makes use of a TSIG pseudo-RR that is com-
puted on demand and is used only to secure a single transaction. The format of 
the RDATA portion of a TSIG pseudo-RR is shown in Figure 18-44.

The figure shows the format of a TSIG pseudo-RR. Such RRs are sent in the 
additional data section of a DNS request or response. The original MAC algorithm 
specified in [RFC2845] was based on HMAC-MD5, but newer GSS-API (Kerbe-
ros) [RFC3645] and SHA-1- and SHA-256-based algorithms have since been speci-
fied in [RFC4635]; the current list is available at [TSIGALG]. The algorithm names 
were envisioned to be encoded as domain names (e.g., HMAC-MD5.SIG-ALG.
REG.INT), but now most use descriptive strings (e.g., hmac-sha1, hmac-sha256). 
The 48-bit Signed Time field is in UNIX time format (seconds since January 1, 1970, 
UTC) and gives the time the message contents were signed. This field is covered 
in the digital signature and is designed to detect and prevent replay attacks. The 
consequence of using an absolute time here is that peers using TSIG must agree on 
the time to within the number of seconds specified by the Fudge field. The MAC 
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Figure 18-44  The TSIG pseudo-RR RDATA area contains a signature algorithm ID, signature time 
and time fudge factor, and a MAC. Originally, only an MD5-based signature was 
used, but now SHA-1- and SHA-2-based signatures have been standardized. TSIG 
peers must be time-synchronized to within the number of seconds in the Fudge field. 
TSIG RRs are carried in the additional data section of a DNS message.

Size field gives the number of bytes required to contain the MAC in the MAC field 
and depends on the particular MAC algorithm. The Other Length field gives the 
size of the Other Data field in bytes, which is used only in carrying error messages.

To see TSIG in action, we can construct a sample zone called dynzone. and 
perform a signed dynamic update. We use the nsupdate program supplied with 
BIND9 to perform the update:

Linux% nsupdate
> zone dynzone.
> server 127.0.0.1
> key tsigkey.dynzone. 1234567890abcdef
> update delete two.dynzone.
> send

This series of instructions forms a DNS update message signed using TSIG 
that is sent to the server once the send instruction is issued. The request is shown 
in Figure 18-45.

In this figure, a dynamic DNS update request has been signed using the 
HMAC-MD5 signature algorithm. The signing key’s name is tsigkey. dynzone.. 
The request is to update the zone dynzone. by removing the entry  two. dynzone.. 
The name of the signature algorithm is HMAC-MD5.SIG-ALG.REG.INT, which is 
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the only signature algorithm supported by this particular software package. Note 
that the Original ID field (15746 decimal) matches the value of the Transaction ID
field (0x3d82). The response confirms that the update was successful, as shown in 
Figure 18-46.

Figure 18-46 show a successful response to a DNS dynamic update request 
signed using TSIG. The Flags field indicates that a dynamic update response con-
tains no errors. Once again, the TSIG pseudo-RR is contained in the additional 
information area.

Figure 18-45  A DNS dynamic update signed using TSIG. The request is to delete the RR for two.
dynzone.. The request is signed using the key with name tsigkey.dynzone.. The 
signature algorithm is HMAC-MD5, which produces a 128-bit (16-byte) signature.
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18.10.3.2 SIG(0)
Early versions of DNSSEC included signature (SIG) resource records that corre-
spond to the modern RRSIG RRs discussed previously. However, a particular kind 
of SIG RR called SIG(0) [RFC2931] does not cover static records in the DNS but 
instead is generated dynamically for transactions. The 0 part of SIG(0) refers to the 
length of data within an RR covered by the signature. As a result, SIG(0) records 

Figure 18-46  A DNS dynamic update response signed using TSIG. The RRset two.dynzone. has 
been successfully removed using dynamic update.
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can in principle be used instead of TSIG RRs to achieve the same result. However, 
they are implemented in different ways. Most importantly, SIG(0) places its basis 
of trust in public keys instead of shared keys. SIG(0) appears to be shrinking in 
popularity in favor of TSIG, so we do not discuss it further.

18.10.3.3 TKEY
The TKEY meta-RR type is intended to simplify the deployment of DNS transac-
tion security such as TSIG and SIG(0) [RFC2930]. To do this, TKEY RRs are dynam-
ically created and sent in the additional information section of DNS requests and 
responses. They can contain either keys or material used to form keys such as DH 
public values. It may be useful in local deployments but is not in widespread use.

18.10.4 DNSSEC with DNS64

In Chapter 11 we described DNS64, which translates IPv6 DNS requests into IPv4 
DNS requests and can synthesize AAAA records based on A records found in the 
IPv4 DNS. The scheme is useful for allowing IPv6-only hosts to access IPv4 servers 
and services. DNS64 works by synthesizing AAAA records. With DNSSEC, how-
ever, DNS RRs need to be signed by the signing authority (typically the domain 
name owner or zone administrator). This presents a challenge: How can DNS64 
synthesize RRs if it lacks the keys to produce DNSSEC-compatible signatures? The 
answer is, essentially, that it does not (see Sections 5.5 and 6.2 in [RFC6147]).

To operate DNS64 in conjunction with DNSSEC, the validation function 
is performed either in the host (where DNS64 could be implemented) or by the 
DNS64 device, assuming there exists a secure channel between a stub resolver 
and the DNS64 acting as a recursive name server. A validating DNS64 is known as 
vDNS64. A vDNS64 interprets the CD and DO bits in an incoming query. If neither 
is set, the vDNS64 performs synthesis and validation but does not set the AD bit 
in the (validated) response. If the DO bit is set and the CD bit is not, the vDNS64 
performs validation and synthesis and returns a validated response with the AD
bit set (which the client presumably interprets as meaning that the returned RRs 
are authentic). Note that the DNS64 first requests AAAA records on the IPv4 side 
and synthesizes A records only when it can validate that no AAAA records with 
the same owner exist. If both the DO and CD bits are set, the DNS64 may perform 
validation but not synthesis. In this case, it is presumed that the client will per-
form validation. This case represents a potential problem because if the client is 
security-aware but translation-oblivious, the returned RRs will probably not be 
usable in the IPv6 addressing realm.

18.11 DomainKeys Identified Mail (DKIM)

DomainKeys Identified Mail (DKIM) [RFC5585] is intended to provide an associa-
tion between an entity and a domain name that can be used to help determine 
the party responsible for originating a message, especially in the e-mail context. 
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It provides a method to help authenticate the signer of a message, which is not 
necessarily the sender, and this can be used in helping to fight spam at the e-mail 
distribution level (i.e., between mail agents). This is accomplished by adding a 
DKIM-Signature field to the basic Internet message format [RFC5322]. This field 
contains a digital signature of the header and body of the message. DKIM replaces 
an earlier standard called DomainKeys, which uses the DomainKey-Signature field.

18.11.1 DKIM Signatures

To produce a digital signature for a message, a Signing Domain Identifier (SDID) 
uses RSA/SHA-1 or RSA/SHA-256 and an associated private key. SDIDs are 
domain names from the DNS and are used to retrieve public keys stored as TXT 
RRs. A DKIM signature is encoded as a message header field using Base64 (such 
as PEM) that signs an explicitly listed set of message fields and the message body. 
When receiving an e-mail, for example, a mail transfer agent uses the SDID to 
perform a DNS query to find the corresponding public key, which it then uses to 
verify the signature. This avoids requiring a PKI. The owning domain name is 
constructed from the domain itself along with the selector (public key selector). For 
example, the public key for the selector key35 in domain example.com would be 
a TXT RR owned by key35._domainkey.example.com.

The DKIM-Signature field [RFC6376] is added to a message header and may 
contain several subfields (see [DKPARAMS] for the complete list). The operation 
of DKIM is conceptually similar to the DNS Sender Policy Framework (SPF; see 
Chapter 11) but is stronger because of the cryptographic digital signature. DKIM 
and SPF can be used together.

DKIM-enabled domains may elect to participate in Author Domain Signing 
Practices (ADSP) [RFC5617]. ADSP involves the creation of a machine-readable 
signing practices statement for a domain. Such records are placed in the DNS using 
TXT RRs with owner name equal to _adsp._domainkey.domain.. At present 
ADSP records are simple and indicate only how the authoring domain uses DKIM 
signatures. The values may be unknown, all, or discardable. These are really 
hints as to what a receiving agent might do with a received message. The value 
unknown indicates no particular statement, all indicates that the author signs 
all messages but unsigned ones may still be worthwhile, and discardable indi-
cates that unsigned messages should be considered subject to discarding. dis-
cardable is the most stringent level. 

18.11.2 Example

To get an idea of how a DKIM signature appears in an e-mail, we can simply 
extract the DKIM-Signature field from an e-mail message generated from a large 
e-mail provider such as Google’s Gmail:

DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
        d=gmail.com; s=gamma;
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        h=domainkey-signature:mime-version:received:
          sender:received:date
         :x-google-sender-auth:message-id:subject:from:to:content-type;
        bh=PU2XIErWsXvhvt1W96ntPWZ2VImjVZ3vBY2T/A+wA3A=;
        b=WneQe6kpeu/BfMfa2RSlAl1TvYKfIKmoQRXNc
          IQJDIVoE38+fGDaj0uhNm8vXp/8kJ  
          I8HqtkV4/P6/QVPMN+/5bS5dsnlhz0S/YoP
          bZx0Lt2bD67G4HPsvm6eLsaIC9rQECUSL
          MdaTBK3BgFhYo3nenq3+8GxTe9I+zBcqWAVPU=

This indicates a version 1 signature and digest algorithm of SHA-256 signed 
using RSA. The header and body canonicalization algorithms are both “relaxed,” as 
shown by the c= field. Canonicalization algorithms are used to rewrite messages 
in a consistent form. The current options are “simple” (the default), which does not 
alter the text, and “relaxed,” which can rewrite the input in common ways such 
as altering whitespace and wrapping long header lines. The selector (s=) is called 
gamma and the domain (d=) is gmail.com. We shall use these later to retrieve 
the appropriate public key. The header fields used in computing the signature 
(indicated by h=) include domainkey-signature (predecessor to DKIM), ver-
sion of MIME, received, sender date, x-google-sender-auth, message-id, 
subject, from, and content-type. The bh= subfield indicates the hash value 
on the message body expressed in Base64. The b= value contains the RSA signa-
ture on the hash of the headers listed in the h= subfield.

To retrieve the public key to validate the signature, we can form the following 
query:

Linux% dig gamma._domainkey.gmail.com. txt +nostats +noquestion
; <<>> DiG 9.7.2-P3 <<>> gamma._domainkey.gmail.com. txt 
       +nostats +noquestion
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17372
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; ANSWER SECTION:
gamma._domainkey.gmail.com. 296      IN   TXT   "k=rsa\; t=y\; p=MIGfMA0GCS
qGSIb3DQEBAQUAA4GNADCBiQKBgQDIhyR3oItOy22ZOaBrIVe9m/iME3RqOJeasANSpg2YTHTYV
+Xtp4xwf5gTjCmHQEMOs0qYu0FYiNQPQogJ2t0Mfx9zNu06rfRBDjiIU9tpx2T+NGlWZ8qhbiLo
5By8apJavLyqTLavyPSrvsx0B3YzC63T4Age2CDqZYA+OwSMWQIDAQAB"

This result indicates that the key is an RSA public key. The t=y entry denotes 
that the domain is testing DKIM, meaning that the results of any DKIM validation 
should not ultimately affect the message delivery process. To see an example of an 
ADSP, we can execute the following command:

Linux% host –t txt _adsp._domainkey.paypal.com.
_adsp._domainkey.paypal.com descriptive text "dkim=discardable"
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Here we can see that Paypal has elected to use the most stringent DKIM sign-
ing policy, suggesting that messages failing DKIM validation should be subject to 
being discarded. The use of ADSP statements at present is fairly rare because of 
the wide variety of e-mail systems and the ways that various mail agents rewrite 
messages.

18.12 Attacks on Security Protocols

Attacks on security protocols are somewhat different from the attacks on protocols 
we have seen in other chapters. Attacks discussed in other chapters tend to com-
promise some protocol that was never really designed with security in mind by 
taking advantage of some design or implementation flaw. Attacks against security 
protocols not only take these forms but may also involve cryptographic attacks 
that somehow subvert the mathematical basis upon which the security depends. 
Attacks can be successful against poor algorithms, weak or too-short keys, or 
poor combinations of various components that render an otherwise secure system 
much weaker. (A classic and fascinating example can be seen in the cryptanalysis 
of the VENONA system [VENONA].)

To understand some of the types of attacks targeting security protocols, we 
will begin from the lowest layer and work our way up. A number of attacks have 
been waged against 802.11 and EAP. Early security in 802.11 (e.g., WEP and WPA-
TKIP) has been shown to be easily compromised cryptographically [TWP07]
[OM09], and WPA2-AES is believed to be substantially more resilient, although 
use of poorly selected pre-shared keys (PSKs) can represent a significant vulner-
ability to dictionary attacks.

EAP does not have its own authentication method but can inherit vulnera-
bilities of the authentication methods on which it depends. Once again, systems 
based on EAP using keys derived from user passwords (e.g., EAP-GSS, EAP-LEAP, 
EAP-SIM) are often vulnerable to dictionary attacks. 802.1X/EAP is vulnerable 
to MITM attacks involving tunneled authentication protocols as discussed in 
[ANN02]. The problem relates to deriving a session key after only one side of a 
two-party connection has been authenticated. For example, if a server authenti-
cates to a client and this exchange is used as the basis to form a tunnel secured 
by a derived session key where another protocol that authenticates in the reverse 
direction operates inside, a MITM attack involving impersonation of the legiti-
mate client becomes possible.

A number of attacks have been published against IPsec, including a class of 
attacks that exploit the use of encryption without integrity protection [PY06], a 
configuration option supported but discouraged by the IPsec documentation. In 
essence, the ability to modify the ciphertext undetected using a bit flipping attack
can cause encrypted datagrams to be decrypted into datagrams that have been 
corrupted in predictable ways. For example, a tunnel mode ESP datagram with 
its bits flipped appropriately may decrypt to a datagram with an artificially 
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increased Internet Header Length (IHL) field that causes the payload to be processed 
as (invalid) IP options, ultimately generating an ICMP message that may be of use 
to an attacker.

At the transport layer, SSL 2.0 was shown to be vulnerable to a cipher suite 
rollback attack, in which a MITM could cause each end of an SSL connection to 
conclude that the peer is capable of only weak encryption. Doing so causes the 
peers to adopt an insecure cipher suite, which the attacker can exploit. A more 
sophisticated attack on SSL/TLS took advantage of the order of operations per-
formed at a receiver: decrypt, remove padding, and check MAC. If the padding 
length or MAC is incorrect, an SSL error message is generated. By observing the 
timing of these error messages, it was possible to create a padding oracle [CHVV03] 
to recover plaintext from OpenSSH. A padding oracle tells whether the plaintext 
used to create a ciphertext had a valid amount of padding. As mentioned previ-
ously, a more recent attack (on TLS 1.2) involves a MITM attack whereby a prefix of 
arbitrary length is injected into a TLS association, which is then renegotiated (but 
continued) when a legitimate client arrives [RD09]. The solution involves binding 
the previous channel parameters to the subsequent channel parameters using a 
TLS extension. The issue of channel binding and security is covered more broadly 
in [RFC5056].

Securing the DNS has been a long time coming, but the importance was 
underscored by the Kaminsky cache poisoning attack we described in Chapter 11. 
One of the original problems was the enumeration attack made available (actually 
required) by the use of NSEC records and countered by the use of NSEC3 records, 
if used properly [BM09]. At the end of 2009, Dan Bernstein mentioned a number 
of problems with DNSSEC in his keynote talk at a workshop [B09]: it can be used 
as a basis for amplification of DoS attacks, it leaks zone data even with NSEC3, 
its implementations contain exploitable bugs, signatures cannot be revoked, the 
cryptography may be subject to cryptanalysis, and some NS and A records pose 
vulnerabilities. At the time of writing, the root zone has been signed only recently, 
and few organizations have fully adopted DNSSEC. It is therefore likely that a 
variety of improvements and modifications will be implemented in the years to 
come.

18.13 Summary

The subject of security is broad and interesting, and we have only scraped the 
surface in this chapter. We desire several important properties of communica-
tion security, and typically these consist of some combination of confidentiality, 
authentication, integrity, and nonrepudiation. Cryptography is our most impor-
tant tool for achieving these information security properties. It involves a set of 
algorithms and keys. The two most important forms are symmetric or “secret 
key” cryptography, which has good computational performance but requires keys 
to be kept secret, and public key (asymmetric key) cryptography whereby each 
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principal has a key pair and one key is made public. Public key cryptography 
supports both authentication and confidentiality and can be combined with sym-
metric key cryptography for better performance. Other algorithms that involve 
mathematics closely related to cryptography include Diffie-Hellman key agree-
ment used to establish symmetric keys, pseudorandom functions for selecting 
random components to form keys, and MACs used to check message integrity. 
Protocols that use random nonces attempt to ensure freshness and resist replay 
attacks by requiring queries and responses to hold a common recently generated 
value. Salt (in the cryptographic sense) is used to perturb algorithms or input to 
algorithms in order to make dictionary attacks more difficult to mount.

When relying on a public key, we ordinarily want the public key to be signed 
or authenticated by some entity or group that we trust. A public key infrastructure 
or PKI that involves one or more certificate authorities is commonly used for this 
purpose, but web of trust models are also available. The most common format for 
holding PKI public keys (and other material) is based on the ITU-T X.509 standard 
for PKI and certificates. Certificates are usually signed recursively forming a tree, 
culminating at some top-level root of trust or trust anchor. To ensure that the trust 
chain is in place, certificates must be validated to ensure that the trust chain is 
unbroken and each chain element has not been revoked. Certificate status can be 
evaluated using widely distributed certificate revocation lists (CRLs) or using an 
online protocol such as OCSP. The entire certificate validation process can also 
be delegated to another party using SCVP, a protocol developed for this specific 
purpose.

There are a variety of file formats for holding certificates and keys. The DER 
or CER format is a binary encoding based on ASN.1. The PEM format expresses 
the DER encoding in ASCII, so such files are easily edited and inspected. The 
PKCS#12 (successor to Microsoft’s PFX) format can hold both certificates and pri-
vate keys and is ordinarily encrypted for protection of the private key material. A 
variety of programs such as openssl are capable of converting between formats.

There are security protocols at every protocol layer, and some between lay-
ers. Working from layer 2 up, some link technologies include their own encryp-
tion and authentication protocols, although these are not ordinarily considered 
TCP/IP protocols. In TCP/IP, EAP is used to establish authentication with a wide 
variety of mechanisms such as machine certificates, user certificates, smart cards, 
passwords, and so on. EAP is most often used in enterprise settings that have a 
backend authorization or AAA server. EAP can also be used for authentication in 
other protocols such as IPsec.

IPsec is a collection of protocols that provide security at layer 3: IKE, AH, 
and ESP. IKE establishes and manages security association between two parties. 
Security associations can involve authentication (AH) or encryption (ESP) and can 
operate in either transport or tunnel mode. In transport mode, the IP header is 
modified for authentication or encryption, while in tunnel mode an IP datagram 
in its entirety is placed inside a new IP datagram. ESP is the most popular. All IPsec 
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protocols can use different algorithms and parameters (cryptographic suites) for 
encryption, integrity protection, DH key agreement, and authentication.

Moving up the stack, transport-layer security (current version TLS 1.2) protects 
information moved between applications. It has its own internal layering consist-
ing of a record-layer protocol and three handshaking protocols called the Cipher 
Change protocol, Alert protocol, and Handshake protocol. In addition, the Record 
protocol supports application data. The record layer is responsible for encrypting 
and integrity-protecting data based on parameters supplied by the Handshake 
protocol. The Cipher Change protocol is invoked to change from a previously set-
up pending protocol state to an active protocol state. The Alert protocol indicates 
errors or connection problems. TLS with TCP/IP is the most widely used security 
protocol and supports encrypted Web browser connections (HTTPS). A variant of 
TLS called DTLS adapts TLS for use with datagrams and protocols such as UDP 
and DCCP.

To help secure host names and the Web better, DNSSEC is targeted at provid-
ing security for the DNS. On July 15, 2010, the Internet’s signed root zone was 
put into operation, satisfying a prerequisite for worldwide deployment. DNS-
SEC works by employing several new resource records in the DNS: DNSKEY, DS, 
NSEC/NSEC3/NSEC3PARAM, and RRSIG. The first two hold and refer to public 
keys used for signing the structure and contents of a zone. The NSEC or NSEC3/
NSEC3PARAM records help provide a canonical ordering of names and list of 
types present for a domain name. This allows a query to reliably determine the 
nonexistence of a domain name or presence of a particular type for a particular 
domain name. RRSIG records hold signatures on other records, and for a zone 
to be signed, all authoritative RRs within the zone must have associated RRSIG 
RRs. Once set up, security of DNS queries is checked by a validating resolver or 
name server that requires a trust anchor. Such systems check to ensure that digi-
tal signatures match the public keys supplied by the DNS. This allows for errors 
to be generated when some record is found to be inconsistent, and it is hoped 
it can thwart domain name hijacking attacks in which attackers masquerade as 
legitimate hosts. In some cases, DNS transactions are also secured. The TSIG and 
SIG(0) protocols provide a form of channel authentication, but only in the scope of 
DNS transactions. These protocols are used for transactions such as DNS dynamic 
updates and zone transfers.

Attacks on security protocols include not only the common exploitation of 
implementation bugs and insecure designs but also mathematical compromises 
and “side channel” attacks that are used to discover secret information (e.g., bits of 
keys). Over the years it has become clear that flexibility is needed in the strength 
of the cryptography used to secure communications, so most of the protocols we 
have discussed provide for cryptographic suites that can evolve as computational 
power improves and additional experience is gained. Many seemingly secure pro-
tocols, even those that have received extensive scrutiny by experts, have fallen 
prey to an energetic set of analysts who seek exploitable flaws, especially when 
MITM and other active attacks are possible. Extreme care is required in designing 
new security protocols and operating existing protocols in a secure fashion.
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Glossary of Acronyms

3GPP 3rd Generation Partnership Project (cellular SDO responsible for GSM, 
W-CDMA, LTE, etc.)

3GPP2 3rd Generation Partnership Project 2 (cellular SDO responsible for 
CDMA2000, EV-DO, etc.)

6rd IPv6 Rapid Deployment (an IPv6 transition mechanism in which IPv6 traf-
fic is carried over IPv4 networks, similar to 6to4 but using IPv6 prefix assign-
ments based on unicast address assignments)

6to4 Six to Four (carrying IPv6 traffic in IPv4 tunnels, some operational chal-
lenges have occurred)

A Address (IPv4) (DNS RR carrying an IPv4 address)

AAA Authentication, Authorization and Accounting (management capabilities 
associated with certain access protocols such as RADIUS and Diameter)

AAAA Address (IPv6) (DNS RR carrying an IPv6 address)

ABC Appropriate Byte Counting (in TCP congestion control, a method to 
account for the number of bytes ACKed instead of a constant factor when per-
forming CWND computations; can mitigate the slow window growth associ-
ated with delayed ACKs)

AC Attribute Certificate (a type of certificate used to carry attributes such as 
authorizations, but does not include a public key and therefore differs from a 
PKC)

ACCM Asynchronous Control Character Map (in PPP, indicates which bytes 
need to be escaped to avoid having unwanted effects)

ACD Automatic Collision Detection (procedure to detect and avoid IP address 
assignment collisions)

ACFC Address and Control Field Compression (in PPP, eliminating the address 
and control fields to reduce overhead)

ACK Acknowledgment (an indication that data has arrived at a receiver suc-
cessfully; applicable to multiple layers of the protocol stack)

ACL Access Control List (list of filtering rules determining which traffic is 
permitted, e.g., through a firewall)

ADSP Author Domain Signing Practices (with DKIM, a policy statement per-
taining to how DKIM is used or deployed within a particular domain)
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AEAD Authenticated Encryption with Associated Data (algorithms that per-
form encryption and authentication on one portion of their input and authen-
tication on another portion)

AES Advanced Encryption Standard (current-generation U.S. encryption 
standard)

AF Assured Forwarding (a PHB offering priority classes and prioritization 
within classes)

AFTR Address Family Transition Router element (in DS-Lite, a SPNAT used to 
share a small number of IPv4 addresses with multiple customers)

AH Authentication Header (optional IPsec protocol providing for authentica-
tion of IP traffic, including header information, which is incompatible with 
NATs)

AIA Authority Information Access (an X.509 certificate extension indicating 
resources useful in validating a certificate)

AIAD Additive Increase Additive Decrease (in TCP, methods that moderate 
CWND by adding to its value when congestion appears to be low and sub-
tracting from it when congestion appears to be increasing; not the standard 
TCP algorithm)

AIMD Additive Increase Multiplicative Decrease (in TCP, methods that 
moderate CWND by adding to its value when congestion appears to be low 
and multiplying it by a fraction less than one when congestion appears to be 
increasing)

ALG Application Layer Gateway (an agent, usually software, that converts 
protocols at the application layer)

A-MPDU Aggregated MPDU (frame containing multiple MPDUs, part of IEEE 
802.11n)

A-MSDU Aggregated MSDU (frame containing multiple MSDUs, part of IEEE 
802.11n)

ANDSF Access Network Discovery and Selection Function (a portion of MoS 
indicating information about networks that may be used to influence handoff 
and network selection)

AODV Ad-hoc On-Demand Distance Vector routing protocol (early ad-hoc on-
demand routing protocol using distance vectors)

AP Access Point (802.11 STA usually used to interconnect wireless and wired 
network segments)

API Application Programming Interface (functions invoked by applications to 
obtain effects such as sending and receiving network traffic)

APIPA Automatic Private IP Addressing (a mechanism whereby a node self-
configures its own IP address from a particular range; usually applies to IPv4 
nodes)
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APSD Automatic Power Save Delivery (periodic batch processing of 802.11 
frames in support of PSM)

AQM Active Queue Management (queue management methods that react to 
the traffic dynamics, not including “drop-tail” typical of FCFS/FIFO queue 
management)

ARP Address Resolution Protocol (a protocol above the link layer that resolves 
IPv4 addresses to MAC layer addresses, uses link layer broadcast addressing)

ARQ Automatic Repeat Request (the retransmission of information; usually 
after inferred loss)

AS Authentication Server (with PANA, server where authentication checks are 
performed)

AS Autonomous System (a 16- or 32-bit number used in connection with inter-
ISP routing to identify a collection of network prefixes and their owner)

ASM All-Source Multicast (multicast wherein any party can source traffic)

ASN.1 Abstract Syntax Notation One (an ISO standard defining the abstract 
syntax for information but not the corresponding encoding format; BER and 
DER are encodings for ASN.1 information)

AUS Application Unique String (input string to the DDDS algorithm)

AUTH Authentication (with IKE, payload containing information required to 
perform authentication of the sender)

AXFR Zone Transfer (full exchange of DNS zone information; uses TCP)

B4 Bridging Broadband element (in DS-Lite, a router which encapsulates IPv4 
traffic in IPv6 tunnels terminated at an AFTR, a B4 does not perform NAT 
functions)

BACP Bandwidth Allocation Control Protocol (with PPP, a protocol for config-
uring BoD)

BAP Bandwidth Allocation Protocol (a protocol used to configure links in a 
bundle for MPPP)

BCMCS Broadcast and Multicast Service Controller (in cellular networks, man-
ages multicast)

BER Basic Encoding Rules (an ITU standard encoding syntax; a subset of 
ASN.1)

BER Bit Error Rate (number of bit errors expected per number of bits in transit)

BGP Border Gateway Protocol (inter-domain routing protocol with policy 
support)

BIND9 Berkeley Internet Name Domain (version 9) (a name server software 
implementation popular on UNIX-like systems)

BITS Bump In the Stack (option for implementing IPsec in the host)
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BITW Bump In the Wire (option for implementing IPsec in the network)

BL Bulk Leasequery (in DHCP, a request/response protocol to convey current 
lease information)

BoD Bandwidth on Demand (ability to dynamically adjust available link 
bandwidth)

BOOTP Bootstrap Protocol (precursor to DHCP; used to configure hosts)

BPDU Bridge PDU (PDUs used by STP; exchanged by switches and bridges)

BPSK Binary Phase Shift Keying (modulating binary using two signal phases)

BSD Berkeley Software Distribution (UC Berkeley’s version of UNIX, included 
the first widely used implementation of TCP/IP)

BSDP Boot Server Discovery Protocol (an extension to DHCP developed by 
Apple to discover a boot image server)

BSS Basic Service Set (IEEE 802.11 terminology for an access point and associ-
ated stations)

BTNS Better Than Nothing Security (with IPsec, an option for using certifi-
cates without a full PKI but which is vulnerable to MITM attacks)

BU Binding Update (in MIP, establishes the mapping between a MN’s CoA and 
HoA)

CA Certificate Authority (organization responsible for generating and issuing 
public/private key pairs and signing and distributing signed public keys and 
CRLs)

CALIPSO Common Architecture Label IPv6 Security Option (security labels 
for IP packets; not widely used)

CBC Cipher Block Chaining (an encryption mode that uses the XOR opera-
tion to chain encrypted blocks together in an effort to resist re-arrangement 
attacks)

CBCP Callback Control Protocol (in PPP, establishes a callback number)

CCA Clear Channel Assessment (802.11 PHY-layer mechanism that detects 
channel usage)

CCITT Comité Consultatif International Téléphonique et Télégraphique (now 
ITU-T)

CCM Counter mode with CBC Message Authentication Code (an authenticated 
encryption mode combining CTR mode encryption with CBC-MAC)

CCMP Counter Mode with CBC-MAC Protocol (encryption used with WPA2; 
from IEEE 802.11i; successor to WPA)

CCP Compression Control Protocol (in PPP, established the compression meth-
ods to use)
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ccTLD Country Code TLD (a TLD based on the ISO3661-2 country code list)

CDP CRL Distribution Point (a location where a CA’s current CRL may be 
obtained)

CERT Certificate (with IKE, payload containing a certificate)

CERT Computer Emergency Response Team (groups that handle computer 
security incidents, including the first CERT at Carnegie Mellon University and 
U.S. Government’s US-CERT)

CERTREQ Certificate Request (with IKE, payload indicating trust anchor as an 
indication of acceptable certificates)

CGA Cryptographically Generated Address (address generated based on a 
hash on a public key)

CHAP Challenge-Handshake Authentication Protocol (protocol requiring a 
challenge to match a response; vulnerable to MITM attacks)

CIA confidentiality, integrity, and availability (principles of information secu-
rity; the “CIA triad”)

CIDR Classless Inter-Domain Routing (a move to address the ROAD problem 
by removing the IP address class boundaries but requiring an associated 
CIDR mask to be used with inter-domain routing)

CMAC Cipher-based Message Authentication Code (a particular way of using 
encryption algorithms as a MAC)

CN Correspondent Node (an MN’s conversation peer in MIP scenario)

CNAME Canonical Name (DNS RR providing an alias for another domain 
name)

CoA Care-of Address (MN’s address assigned while visiting non-home 
network)

CoS Class of Service (general term referring to differentiated services based on 
different classes of traffic; a concept supported by the Diff Serv architecture)

CoT Care-of Test (in a RR check, message sent to MN via its CoA resulting in 
MN obtaining a portion of a key used to secure BUs)

CoTI Care-of Test Init (in a RR check, triggers receiver to send a CoT message)

CP Configuration Payload (with IKE, extensible structure for conveying con-
figuration parameters)

CPS Certification Practice Statement (a CA’s policy statement about how certifi-
cates are issued or managed)

CRC Cyclic Redundancy Check (mathematical functions used to check for bit 
errors)

CRL Certificate Revocation List (a list of invalid certificates issued by a CA)
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CS Cipher Suite (in TLS, the choice of cryptographic algorithm suite)

CS Class Selector (in IP, a DSCP value designed to be compatible with the bit 
values associated with the now-deprecated “Type of Service” and “Traffic 
Class” IP header fields)

CSMA/CA Carrier-Sense Multiple Access/Collision Avoidance (WiFi’s MAC 
protocol, which involves sending when a link is idle and backing off if it is 
not)

CSMA/CD Carrier-Sense Multiple Access/Collision Detection (Ethernet’s clas-
sic MAC protocol, which involves sending when a link is idle and backing off 
if collisions are detected)

CSPRNG Cryptographycially Secure Preudo-Random Number Generator (a 
PRNG suitable for cryptographic use)

CSRG Computer Systems Research Group (developers of BSD UNIX at UC 
Berkeley)

CTCP Compound TCP (a “scalable” TCP variant implemented in modern Win-
dows systems that combines both delay-based and packet-loss based window 
adjustments)

CTR Counter (an encryption mode that uses a counter value to impose a 
required order on encrypted blocks while permitting parallel execution of 
encryption or decryption on multiple blocks)

CTS Clear To Send (message authorizing sender of RTS to send)

CW Contention Window (range of time an 802.11 station will wait before send-
ing under DCF)

CWND Congestion Window (in TCP, a limit placed on the sender’s window 
size to avoid or reduce congestion)

CWR Congestion Window Reducing (or Reduced) (in TCP, reduction of the 
sender’s usable window size)

CWV Congestion Window Verification (in TCP, a method to check and update 
the current value of CWND when deemed necessary)

DAD Duplicate Address Detection (with IPv6 ND and SLAAC, DAD helps 
determine whether a candidate IPv6 address is already in use by sending an 
NS message for the proposed address)

DCCP Datagram Congestion Control Protocol (a protocol that provides best-
effort datagram service to applications and also controls congestion)

DCF Distributed Coordination Function (CSMA/CA MAC for 802.11 networks)

DDDS Dynamic Delegation Discovery System (methods to support lazy bind-
ing of strings to data; usually used with DNS for discovery of servers for vari-
ous application protocols)
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DDoS Distributed DoS (a network-based attack often launched by botnets)

DER Distinguished Encoding Rules (an ITU standard encoding syntax; a sub-
set of BER for ASN.1 that requires a unique representation to be used for each 
value)

DES Data Encryption Standard (an older U.S. standard for symmetric data 
encryption using 56-bit keys)

DF Don’t Fragment (an IPv4 header bit indicating no fragmentation should be 
performed; important for PMTUD)

DH Diffie-Hellman (mathematical protocol to establish a secret value between 
two parties even in the presence of an evesdropper)

DHCP Dynamic Host Configuration Protocol (evolved from BOOTP; sets up 
systems with configuration information such as leased IP addresses, default 
router, and DNS server IP address)

DIFS DCF Inter-Frame Space (time between frames under 802.11 DCF)

DIX Digital, Intel, Xerox (creators and name of early Ethernet standard)

DKIM Domain Keys Identified Mail (a protocol for cryptographically binding 
the sending domain of e-mail with the associated originating mail servers)

DLNA Digital Living Network Alliance (an industry group focused on 
interoperability and protocols for consumer media devices such as TVs, DVD 
players, DVRs, etc.)

DMZ De-Militarized Zone (a network segment outside an organization’s inside 
firewall, usually used for hosts providing services to customers or the public)

DNA Detecting Network Attachment (procedures to detect a change in con-
nection state)

DNAME Non-Terminal Name Redirection (DNS RR supporting generation of 
multiple CNAME records using a DNS subtree aliasing mechanism)

DNS Domain Name System (maps names to IP addresses and more)

DNS64 DNS IPv4/IPv6 translation (a mechanism for IPv4/IPv6 coexistence to 
translate IPv4 DNS information for IPv6 DNS use)

DNSKEY Key for DNS (DNS RR used with DNSSEC to hold a public key)

DNSSEC DNS Security (original authentication and integrity assurance for 
DNS data)

DNSSL DNS Search List (used with RAs, indicates list of default domain 
extensions)

DOI Digital Object Identifier (a method for naming content objects and associ-
ating them with information records)

DoS Denial of Service (a type of resource exhaustion attack)
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DPD Delegated Path Discovery (method for delegating the collection of all 
information required to validate a certificate path)

DPV Delegated Path Validation (method for delegating the entire validation 
procedure for a certificate)

DS Delegation Signer (in DNS, an RR used with DNSSEC to secure a 
delegation) 

DS Differentiated Services (in IP traffic management, methods to provide per-
formance differentiation for traffic delivery) 

DS Distribution Service (in 802.11 LANs, the network or service used to inter-
connect APs, which is most often a wired 802.3/Ethernet network) 

DSA Digital Signature Algorithm (an algorithm for generating digital signa-
tures based on the discrete logarithm problem) 

DSACK Duplicate SACK (in TCP, a SACK variant that includes description of 
received duplicated segments) 

DSCP DS Code Point (field value in packet indicating a particular forwarding 
behavior is desired) 

DSL Digital Subscriber Line (dedicated broadband data link over POTS line) 

DS-Lite Dual Stack Lite (a framework for IPv6-based service providers to pro-
vide access to dual stack or single stack clients using a combination of IPv4-in-
IPv6 tunneling and NAT) 

DSRK Domain-Specific Root Key (key derived from an EMSK intended for use 
by systems under a single administrative authority) 

DSS Digital Signature Standard (a U.S. standard for digital signatures based 
on DSA) 

DSUSRK Domain-Specific USRK (a key combining the usage policies of a 
USRK and DSRK) 

DTLS Datagram TLS (variant of TLS used with datagram protocols such as 
UDP) 

DUID DHCP Unique Identifier (value placed in DHCP request to match 
responses) 

DUP Duplicate (used in multiple context—e.g., DUP ACKs) 

EAP Extensible Authentication Protocol (framework supporting various 
authentication methods) 

EAP-FAST EAP-Flexible Authentication via Security Tunneling (Cisco’s EAP 
method using TLS that replaces its earlier LEAP EAP method) 

EAPOL EAP over LAN (e.g., EAP over Ethernet as used in IEEE 802.1X) 

EAP-TTLS EAP-Tunneled Transport Layer Security (an EAP method based on 
earlier TLS EAP method, but requires only server side to obtain certificate) 
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EC2N Elliptic Curve groups modulo a power of 2 (groups based on elliptic 
curves, in the abstract algebra sense, over the Galois Field GF(2N)) 

ECC Error Correcting Code (redundant bits added to information bits usable to 
correct errors) 

ECDSA Elliptic Curve Digital Signature Algorithm (a variant of DSA using 
ECC) 

ECE ECN Echo (in TCP with ECN, the reflection of ECN information to a TCP 
sender) 

ECN Explicit Congestion Notification (direct method of indicating conges-
tion—e.g., by routers to hosts) 

ECP Elliptic Curve groups modulo a Prime (groups based on elliptic curves, in 
the abstract algebra sense, over the Galois Field G(P) for a prime P) 

ECT    ECN-Capable Transport (a transport protocol capable of interpreting ECN 
indicators) 

EDCA Enhanced Distributed Channel Access (802.11 coordinating function 
supporting QoS, from 802.11e) 

EDNS0 Extension mechanisms for DNS (version 0) (a method to extend DNS 
RRs, version 0, needed by DNSSEC) 

EF Expedited Forwarding (a PHB offering a service class as if no conges-
tion were present, generally implying it is the highest priority and requiring 
admission control to avoid oversubscription) 

EFO Expanded Flags Option (used with DHCP, indicates presence of additional 
options) 

EIFS Extended IFS (extended IFS used when receiving unrecognized frame 
under 802.11 DCF) 

EMSK Extended MSK (a secondary key generated in addition to the MSK by 
EAP after key derivation) 

ENUM E.164 to URI DDDS Application (a particular DDDS used to map E.164 
telephony-style addresses to URIs) 

EP Enforcement Point (with PANA, point where access control policies are 
enforced)

EQM Equal Modulation (using the same modulation scheme on different data 
streams simultaneously) 

ERE Eligible Rate Estimate (part of TCP Westwood+; estimate of the amount of 
bandwidth that could be used by a connection) 

ERP EAP Re-authentication Protocol (an EAP extension to reduce the latency 
when re-establishing authentication) 
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ESN Extended Sequence Number (in IPsec, an extended sequence number of 64 
bits used to combat replay attacks; normal sequence numbers are 32 bits) 

ESP Encapsulating Security Payload (required IPsec protocol providing for 
authentication and/or confidentiality of traffic) 

ESSID Extended Service Set Identifier (IEEE 802.11 network name) 

EUI Extended Unique Identifier (MAC-layer address prefix format defined by 
IEEE, extended from OUI) 

EV Extended Validation (a form of certificate with enhanced identity validation 
performed prior to issuance) 

EV-DO Evolution, Data Optimized (or Only) (3GPP2 wireless broadband stan-
dard; an evolution of CDMA2000) 

FACK Forward Acknowledgment (in TCP, one more than the highest sequence 
number known to have reached the receiver; determined using SACK) 

FCFS First Come, First Served (scheduling discipline with in-order service; no 
priority) 

FCS Frame Check Sequence (general term for bits used to check for bit errors) 

FEC Forward Error Correction (using redundant bits to correct errors in data bits)

FIFO First In, First Out (queue management discipline with in-order service; 
no re-arrangements) 

FIN Finish (a TCP header bit and last segment type sent on a TCP connection) 

FMIP Mobile IP with Fast Handovers (modification to MIPv6 with early 
handovers) 

FQDN Fully Qualifies Domain Name (a domain name with full domain exten-
sion included) 

F-RTO Forward RTO (in TCP, a method to infer whether a retransmission was 
spurious and if so facilitate the avoidance of unnecessary retransmissions) 

FTP File Transfer Protocol (a TCP-based file transfer protocol using separate 
control and data connections) 

GCKS Group Controller/Key Server (in IPsec, used with GKM; holds and 
issues keys for GSAs) 

GCM Galois/Counter Mode (an authenticated encryption mode combining 
CTR mode encryption with Galois mode authentication) 

GDOI Group Domain of Interpretation (in IPsec, a group key management 
protocol based on ISAKMP and IKE) 

GENA General Event Notification Architecture (an XML-based notification 
framework using HTTP over multicast UDP; used with UPnP) 

GI Guard Interval (in communications engineering, minimum time between 
transmissions used to avoid inter-symbol interference) 
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GKM Group Key Management (in IPsec, methods to distribute key material to 
a group in order to support group SA formation) 

GMAC Galois Message Authentication Code (an authentication-only variant of 
GCM) 

GMI Group Membership Interval (in IGMP and MLD, the amount of time a 
multicast router waits before deciding there is no particular source or no more 
group members; set to QRV * QI + QRI) 

GMRP Generic Multicast Registration Protocol (replaced by MMRP) 

GPAD Group PAD (with IPsec, abstraction of a database containing authentica-
tion data for all GCKS entities) 

GRE Generic Routing Encapsulation (generic encapsulation within IP 
datagrams) 

GSA Group Security Association (in IPsec, an SA established among group 
members using a multicast protocol) 

GSAKMP Group Secure Association Key Management Protocol (a framework 
for creating groups with common cryptographic information, distributing 
policy, performing access control, generating group keys, and recovering from 
group dynamic changes) 

GSPD Group SPD (in IPsec, an SPD capable of holding information for both 
SAs and GSAs) 

GSS-API Generic Security Services API (an API to access myriad security 
services such as authentication, confidentiality, etc.; typically used with the 
Kerberos authentication system) 

gTLD Generic TLD (a TLD—such as COM, EDU, MIL—not based based on 
country code) 

GVRP Generic Attribute Registration Protocol (replaced by MRP) 

HA Home Agent (system offering MIP helper service to an MN) 

HAIO Home Agent Information Option (in ICMPv6, an option supporting 
MIPv6 to indicate address of an HA) 

HCF Hybrid Coordination Function (coordinating function supporting both 
priority and contention-based 802.11 channel access) 

HDLC High-level Data Link Control (a popular ISO standard data link proto-
col, the basis for the most popular variant of PPP) 

HELD HTTP-Enabled Location Delivery (a protocol for delivering LCI using 
HTTP/TCP/IP) 

HIP Host Identity Protocol (a research protocol architecture focusing on mobil-
ity and security) 

HMAC Hash-based Message Authentication Code (a particular way of using 
hashing algorithms as a MAC) 
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HoA Home Address (in MIP, a MN’s address from its home network) 

HOPOPT IPv6 Hop-by-Hop Option (an IPv6 option type applicable to each 
hop in a path) 

HoT Home Test (in an RR check, message sent to MN via HA resulting in MN 
obtaining a portion of a key used to secure BUs) 

HoTI Home Test Init (in an RR check, triggers receiver to send a HoT message) 

HSPA High-Speed Packet Access (3GPP wireless broadband standard; an evo-
lution of WCDMA)  

HSTCP Highspeed TCP (a “scalable” TCP variant in which CWND is adjusted 
based in part on its current value; designed to operate more effectively in high 
capacity environments) 

HT High Throughput (higher speeds associated with the IEEE 802.11n 
standard) 

HTML Hyper-Text Markup Language (the basic language of the WWW) 

HTTP Hyper-Text Transfer Protocol (primary protocol of the WWW; often car-
ries HTML) 

HTTPMU HTTP using UDP (a method for carrying HTTP traffic on UDP 
using multicast addressing; used to carry SSDP messages in UPnP) 

HTTPS HTTP over SSL/TLS (standard for secure WWW exchange) 

HWRP Hybrid Wireless Routing Protocol (routing protocol proposed for IEEE 
802.11s) 

IA Identity Association (in DHCP, a collection of addresses) 

IAB Internet Architecture Board (one of IETF’s governing bodies; responsible 
for architectural oversight and apppointment of liasons to other SDOs) 

IAID IA Identifier (in DHCP, an ID referring to a particular IA) 

IANA Internet Assigned Numbers Authority (maintains protocol numbers and 
field values) 

IBSS Independent Basic Service Set (802.11 ad-hoc network) 

ICANN Internet Corporation for Assigned Names and Numbers (non-profit 
governing body for domain names and related policy) 

ICE Interactive Connectivity Establishment (a framework for performing NAT 
traversal, which entails trying direct connections, STUN, and finally TURN to 
enable communication in the presence of NATs) 

ICMP Internet Control Message Protocol (an information and error reporting 
protocol considered part of IP) 

ICS Internet Connection Sharing (alternative name for NAT; used with Micro-
soft Windows) 
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ICV Integrity Check Value (a value used to check the integrity of a message—
e.g., cryptographic hash) 

ID Identification (in IKE, payload indicating identity of sender) 

IDN Internationalized Domain Name (domain name encoding non-ASCII 
characters) 

IEEE Institute of Electrical and Electronics Engineers (SDO for link-layer proto-
cols and more) 

IESG Internet Engineering Steering Group (IETF’s governing body with RFC 
approval authority) 

IETF Internet Engineering Task Force (SDO for Internet standards) 

IGD, IGDDC Internet Gateway Device/Discovery and Control (a UPnP proto-
col for discovering and configuring gateway devices such as home NATs) 

IGMP Internet Group Message Protocol (a protocol to manage IPv4 multicast 
groups; used by routers and end hosts) 

IHL Internet Header Length (IPv4 header field indicating the header length in 
32-bit words) 

IID Interface Identifier (numeric identifier usually based on MAC address; 
used when choosing IPv6 addresses, but not used for this purpose when pri-
vacy extensions are enabled) 

IKE Internet Key Exchange (part of IPsec; a protocol to dynamically establish 
security associations including keys and operating parameters) 

IMAP Internet Message Access Protocol (used to retrieve e-mail headers and 
messages from servers) 

IMAPS IMAP over SSL/TLS (a secure protocol for fetching e-mail, supported 
by most e-mail programs) 

IN Internet (in DNS, the class name indicating Internet information) 

IND Inverse Neighbor Discovery (provides RARP-like function for IPv6) 

IP Internet Protocol (standard best-effort Internet packet protocol implement-
ing a common abstract datagram on any link layer network) 

IPCP IP Control Protocol (in PPP, an NCP used to configure an IPv4 network 
link) 

IPG Inter-Packet Gap (minimum spacing between frames in a MAC protocol) 

IPsec IP Security (a framework for securing IP traffic, including the IKE, AH, 
and ESP protocols) 

IPV6CP IPv6 Control Protocol (in PPP, an NCP used to configure an IPv6 net-
work link) 
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IRIS Internet Registry Information Service (database containing information 
relating address ranges, associated AS numbers, contact information, and 
name servers) 

IRTF Internet Research Task Force (research groups affiliated with IETF via the 
IAB) 

ISAKMP Internet Security Association and Key Management Protocol (in 
IPsec, SA establishment protocol pre-dating IKE) 

ISATAP Intra-Site Automatic Tunnel Addressing Protocol (an automatic IPv6-
to-IPv4 tunneling technology supported by Microsoft) 

ISDN Integrated Services Digital Network (combination circuit/packet 
switched data service) 

IS-IS Intermediate System to Intermediate System (ISO link-state routing 
protocol) 

ISL Cisco’s Inter-Switch Protocol (Cisco’s protocol for maintaining VLAN infor-
mation among switches) 

ISM Industrial, Scientific, and Medical (licence-free frequency bands in much 
of the world, used by Wi-Fi) 

ISN Initial Sequence Number (in TCP, the first sequence number for a con-
nection; assigned to the SYN) 

ISO International Organization for Standardization (SDO responsible for 
defining various protocols and encodings once considered for replacing 
TCP/IP) 

ISOC Internet Society (Internet standards leadership nonprofit corporation) 

ISP Internet Service Provider (an entity, often a business, that allocates 
addresses, provides DNS and routing, and works with other ISPs) 

ITU International Telecommunications Union (SDO for radio and telephony 
standards) 

ITU-T ITU Telecommunication Standardization Sector (formerly CCITT; one 
of the three “sectors” of ITU responsible for standards or “recommendations” 
such as ASN.1, X.25, DSL) 

IW Initial Window (in TCP, the initial value of CWND) 

IXFR Incremental Zone Transfer (incremental exchange of DNS zone informa-
tion, uses TCP) 

KE Key Exchange (with IKE, payload used for establishing keys; generally uses 
DH) 

KSK Key Signing Key (a key used with DNSSEC for signing other keys; typi-
cally has the SEP bit set) 

L2TP Layer 2 Tunneling Protocol (IETF standard link layer tunneling protocol) 
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LACP Link Aggregation Control Protocol (part of IEEE 802.1AX for managing 
link aggregates) 

LAG Link Aggregation Group (set of links acting together as one virtual 
higher-performance link) 

LAN Local Area Network (a network within a small geographic area such as a 
single site, office, or home) 

LCG Linear Congruential Generator (a deterministic type of popular PRNG, 
which is not a CSPRNG) 

LCI Location Configuration Information (data representing the location—geo-
graphical or civic—of a system) 

LCI Logical Channel Identifier (in circuit switching, identifier for a virtual 
channel) 

LCN Logical Channel Number (in circuit switching, number of a virtual 
channel) 

LCP Link Control Protocol (in PPP, used to establish a link) 

LDAP Lightweight Directory Access Protocol (a lookup protocol based on the 
ISO X.500 DAP protocol) 

LDRA Lightweight DHCP Relay Agent (mechanisms to allow layer 2 devices to 
act as DHCP relay agents) 

LEAP Lightweight Extensible Authentication Protocol (Cisco’s EAP method 
using WEP or TKIP keys; now known to have vulnerabilities) 

LLA Link Layer Address (in FMIPv6, a mobility header option to indicate link 
layer address) 

LLC Logical Link Control (sublayer of the MAC layer related to link control) 

LLMNR Link Local Multicast Name Resolution (a multicast variant of DNS 
designed for on-link use and that runs on a different port number than DNS; 
used for local service and node discovery) 

LMQI Last Member Query Interval (in IGMP and MLD, the time between 
group-specific query messages)

LMQT Last Member Query Time (in IGMP and MLD, the total spent after 
sending a last member query and possible transmissions; represents the 
“leave latency”) 

LNP Local Network Protection (a collection of techniques suggested for use in 
IPv6 deployments making NATs unnecessary) 

LoST Location-to-Service Translation (a framework for offering services based 
on location—e.g., indication of the nearest hospital) 

LQR Link Quality Reports (in PPP, reports of link quality measurements 
including number of packets received, sent, and rejected due to errors) 
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LTE Long-Term Evolution (3GPP wireless broadband standard; an evolution of 
HSPA) 

LW-MLD Lightweight MLD (variant of MLD with simpler join/leave 
semantics) 

MAC Media Access Control (controls for mediating access to a shared network 
medium, usually a portion of the link layer protocol) 

MAC Message Authentication Code (a mathematical function used to help 
verify the integrity of a message) 

MAN Metropolitan Area Network (a network spanning a modest geographical 
extent, such as a city or region) 

MCS Modulation and Coding Scheme (combination of modulation and coding, 
many combinations are available in 802.11n) 

MD Message Digest Algorithms (mathematical functions giving a short 
numeric “fingerprint” for a larger message) 

mDNS Multicast DNS (local variant of name service developed by Apple) 

MIH Media-Independent Handoff (mechanisms to support change of network 
attachment point between heterogeneous networks; the IEEE 802.21 standard 
covers MIH for 802.3, 802.11, 802.15, 802.16, 3GPP, and 3GPP2 network types) 

MII Media-Independent Interface (in hardware, the interface between 
the MAC implementation and PHY protocol implementation, which is 
PHY-independent) 

MIME Multipurpose Internet Mail Extensions (method for labeling and encod-
ing various object types in electronic mail) 

MIMO Multiple Input, Multiple Output (wireless antenna scheme with mul-
tiple antennas offering performance superior to single-antenna systems but 
requiring more sophisticated signal processing) 

MIP Mobile IP (IP addressing and routing extensions to support movement of 
network attachment point without address change) 

MITM Man-in-the-Middle attack (the typical form of an MSM attack, carried 
out by an interposer) 

MLD Multicast Listener Discovery (used by IPv6 routers to discover multicast 
receivers on a link; provides similar capabilities as IGMP for IPv4) 

MLPP Multilevel Precedence and Preemption (telephone scheme to prioritize 
calls—e.g., for military use) 

MMRP Multiple MAC Registration Protocol (part of MRP used for registering 
multicast interest) 

MN Mobile Node (the moving node in a MIP scenario) 
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MOBIKE Mobile version of IKE (enhancements to IKE to support mobility and 
change of addressing information) 

MODP Modulo-P groups (groups based on modular arithmetic, in the abstract 
algebraic sense, used with key establishment protocols) 

MoS Mobility Services (portion of the IEEE 802.21 standard supporting media-
independent handoff services) 

MP Mesh Point (name of a node in IEEE 802.11s operating in a mesh 
configuration) 

MP, MPPP, MLP, MLPPP Multi-link PPP (using PPP over multiple links 
simultaneously) 

MPDU MAC Protocol Data Unit (name of the frame used in 802.11 standards) 

MPE Manchester Phase Encoding (bit encoding scheme where a voltage transi-
tion indicates one bit) 

MPLS Multi-Protocol Label Switching (architecture that switches frames based 
on tag values, not IP addresses) 

MPPC Microsoft’s Point-to-Point Compression (used with PPP) 

MPPE Microsoft’s Point-to-Point Encryption (used with PPP) 

MPV Maximum Pad Value (in PPP, maximum number of pad bytes) 

MRD Multicast Router Discovery (protocol to discover on-link multicast router 
neighbors) 

MRP Multiple Registration Protocol (IEEE 802.1ak standard for registering 
attributes) 

MRRU Multilink Maximum Received Reconstructed Unit (MRU after recon-
struction from parts on multiple MP links) 

MRU Maximum Receive Unit (largest packet/message size a receiver will 
accept) 

MS-CHAP Microsoft’s Challenge-Handshake Authentication Protocol (an 
authentication protocol involving a request/replay and validated response, 
with two versions:  MS-CHAPv1 and MS-CHAPv2) 

MSDU MAC Services Data Unit (802.11 frame type available to layers above 
MAC) 

MSK Master Session Key (a key derived after an EAP session using methods 
supporting key derivation) 

MSL Maximum Segment Lifetime (in TCP, the maximum time a segment can 
exist in the network before being determined invalid) 

MSM Message Stream Modification (active modification of messages; usually a 
type of attack) 
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MSS Maximum Segment Size (in TCP, the largest segment a receiver is willing 
to receive; usually provided in an option during connection establishment) 

MTU Maximum Transmission Unit (maximum frame size a network will 
transport) 

MVRP Multiple VLAN Registration Protocol (part of MRP used for registering 
VLANs) 

MX Mail Exchanger (DNS RR indicating a priority order of hosts willing to use 
SMTP to exchange mail) 

NAC Network Access Control (process employed to determine whether a 
device should receive access rights to use a network) 

NACK Negative Acknowledgment (an indication of non-receipt or 
non-acceptance) 

NAP Network Access Protection (Microsoft’s variant of NAC; first available 
with Windows Server 2008) 

NAPT NAT with Port Translation (NAT with port re-writing, the most com-
mon form of NAT) 

NAPTR Name Authority Pointer (DNS RR used with a DNS-based DDDS for 
holding re-writing rules) 

NAR New Access Router (in FMIPv6, router that is expected to be used soon) 

NAT Network Address Translation (mechanism to re-write addresses in 
IP datagrams; used primarily to reduce the usage of globally routable IP 
addresses; usually used in conjunction with private IP addresses; also sup-
ports a type of firewall capability) 

NAT64 IPv6/IPv6 NAT (a NAT that translates between IPv4/ICMPv4 and 
IPv6/ICMPv6 and vice versa; proposed for IPv6/IPv4 interoperability and 
coexistence) 

NAT-PMP NAT Port Mapping Protocol (an alternative to IGD developed by 
Apple for configuring some NAT devices; provides the ability to remotely set 
up port forwarding) 

NAT-PT NAT with Protocol Translation (now-deprecated approach to IPv4/
IPv6 translation) 

NAV Network Allocation Vector (time delay before sending due to other sta-
tions’ channel use in 802.11 DCF) 

NBMA Non-Broadcast Multiple Access (multi-user networks lacking broad-
casting capability) 

NCoA New Care-of Address (in FMIPv6, CoA to be obtained from NAR) 

NCP Network Control rotocol (in PPP, used to establish the network-layer 
protocol) 
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ND, NDP Neighbor Discovery (IPv6 method to discovery and obtain MAC 
address of on-link neighbors; works like ARP; implemented as part of 
ICMPv6) 

NEMO Network Mobility (mobility where a router and network changes 
attachment point) 

NIC Network Interface Card (the device interfacing a computer with a 
network) 

NONCE number used once (a random value used in many cryptographic pro-
tocols to combat replay attacks) 

NPT66 IPv6-to-IPv6 NAPT (NAT with algorithmic address and port 
translation) 

NRO Number Resource Organization (the Address Supporting Organization 
to ICANN) 

NS Name Server (DNS RR carrying the name of another name server) 

NS Neighbor Solicitation (part of IPv6 ND; similar to an IPv4 ARP request but 
uses IPv6 multicast addressing; implemented using ICMPv6) 

NSCD Name Services Cache Daemon (process to provide caching for DNS and 
other resolutions popular on UNIX systems) 

NSEC Next Secure (DNS RR used with DNSSEC to indicate the next RR in an 
ordered list; used for authenticated denial of existence) 

NSEC3 Next Secure (version 3) (DNS RR like NSEC but including hash func-
tion to resist DNS name enumeration attacks) 

NSEC3PARAM NSEC Parameters (DNS RR used with DNSSEC holding 
NSEC3 hash function parameters) 

NTN Non-Terminal NAPTR (in DNS, a NAPTR pointing to another domain 
with records) 

NTP Network Time Protocol (a protocol for synchronizing clocks) 

NUD Neighbor Unreachability Detection (in IPv6 ND, to determine if a neigh-
bor can still be reached) 

OCSP Online Certificate Status Protocol (a protocol for checking the validity of 
a certificate; an alternative to obtaining a CRL) 

OFDM Orthogonal Frequency Division Multiplexing (a sophisticated modula-
tion scheme in which subcarriers of multiple frequences are simultaneously 
modulated in a specified bandwidth to achieve high throughput; used by DSL, 
802.11a/g/n, 802.16e, and advanced cellular data standards including LTE) 

OID Object Identifier (numeric identifier of a digital object; used in certificate 
encodings) 

OLSR Optimized Link State Routing (a standard protocol for on-demand rout-
ing in ad-hoc networks) 
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OOB Out Of Band (information delivered outside a primary communication 
channel) 

ORO Option Request Option (in DHCP, an option indicating a systems interest 
in knowing which options are supported) 

OSI Open System Interconnect (an abstract reference model specified by ISO 
for open systems that helped form the basis of layered design in protocols) 

OUI Organizationally Unique Identifier (original MAC-layer address prefix 
format defined by IEEE) 

P2P Peer-to-Peer (participating systems are both clients and servers) 

PA Provider-Aggregatable (IP address space where a customer’s prefix is given 
by their provider) 

PAA PANA Authentication Agent (PANA agent performing authentication, 
such as an AAA server) 

PaC PANA Client (PANA agent requesting authentication) 

PAD Peer Authentication Database (with IPsec, abstraction of database contain-
ing authentication information for each peer such as use of IKE or PSK and 
associated authentication data) 

PANA Protocol for Carrying Authentication for Network Access (UDP/IP car-
rier for EAP) 

PAP Password Authentication Protocol (protocol that carries cleartext pass-
word; vulnerable to MITM or eavesdroppers) 

PAWS Protection Against Wrapped Sequence Numbers (in TCP, method using 
TSOPT values to notice sequence number wrapping) 

PCF Point Coordinating Function (combined contention-free and contention-
based MAC protocol for 802.11; not widely used) 

PCO Phased Coexistence Operation (method for an 802.11 AP to switch chan-
nel widths for less negative impact on legacy equipment) 

PCoA Previous Care-of Address (in FMIPv6, current or previous CoA obtained 
from PAR) 

PCP Port Control Protocol (current-generation draft IETF protocol for configur-
ing NATs including SPNATs and NAT64) 

PDU Protocol Data Unit (describes a message at some protocol layer; some-
times used interchangeably and informally with packet, frame, datagram, 
segment, or message) 

PEAP Protected Extensible Authentication Protocol (a popular method to 
encapsulate EAP in TLS; similar to EAP-TTLS) 

PEN Private Enterprise Number (numbers assigned by IANA usable by an 
enterprise in forming OIDs) 
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PFC Protocol Field Compression (in PPP, eliminating the Protocol field to reduce 
overhead) 

PFS Perfect Forward Secrecy (in public key cryptography, the property by 
which compromise of one key leads at most to the compromise of data 
encrypted with that key and not other data or keys)  

PHB Per-Hop Behavior (abstract behavior at router used to implement DS) 

PHY Physical (a layer in the OSI; usually describes connectors, frequencies, 
coding, and modulation) 

PI Provider-Independent (IP address space owned by a customer; not derived 
from an ISP’s address prefix) 

PIM Protocol Independent Multicast (non-local multicast routing protocol that 
can leverage unicast routing protocols’ data and operations) 

PIO Prefix Information Option (in ICMPv6, an option carrying an IP address 
prefix)  

PKC Public Key Certificate (a digital object including a public key and signa-
ture from a CA, along with various usage policies and parameters) 

PKCS Public Key Cryptography Standards (methods to encode and represent 
public key and related material) 

PKI Public Key Infrastructure (system for managing and distributing public 
keys) 

PLCP Physical Layer Convergence Procedure (802.11 method for encoding and 
determining frame type and radio parameters)  

PMTU Path MTU (minimum MTU across links on the path from sender to 
receiver) 

PMTUD PMTU Discovery (process of determining the PMTU; usually 
depends on ICMP PTB messages) 

PNAC Port-Based NAC (a version of NAC wherein the physical port of attach-
ment is used in making an authorization decision) 

PoE Power over Ethernet (carries device power over Ethernet wiring) 

POTS Plain Old Telephone Service (conventional analog telephone service) 

PPP Point-to-Point Protocol (a link-layer configuration and data encapsulat-
ing protocol capable of carrying multiple network layer protocols and using 
multiple underlying physical links) 

PPPoE PPP over Ethernet (methods to establish a PPP association over an Eth-
ernet link) 

PPTP Point-to-Point Tunneling Protocol (Microsoft’s link layer tunneling 
protocol) 
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PRF Pseudorandom Function Family (a set of functions that cannot be distin-
guished from truly random functions using a polynomial-time algorithm; also 
sometimes used less formally to refer to a single such function) 

PRNG, PRG Pseudo-Random Generator (a mathematical function used to com-
pute a series of random-appearing values) 

PSK Pre-Shared Key (pre-placing encryption keys; no dynamic key exchange 
protocol used) 

PSM Power Save Mode (a mode of 802.11 where devices may “sleep” when not 
busy and poll to receive their information from an AP at a later time) 

PSMP Power-Save Multi-Poll (bi-directional version of APSD, part of 802.11n) 

PTB Packet Too Big (a ICMP Destination Unreachable Fragmentation Required 
or IPv6 Packet Too Big message indicating a packet is too large for the next-
hop MTU size) 

QAM Quadrature Amplitude Modulation (combination of phase and ampli-
tude modulation) 

QBSS QoS BSS (an 802.11 BSS enhanced with 802.11e or 802.11n QoS features) 

QI Query Interval (in IGMP and MLD, time between general queries) 

QoS Quality of Service (general term describing how traffic can be handled 
differently, usually with better or worse latency or drop precedence, based on 
configuration parameters) 

QPSK Quadrature Phase Shift Keying (typically, modulating two bits per sym-
bol typically using four signal phases, although more advanced versions with 
more bits per symbol are possible) 

QQI Querier’s Query Interval (in IGMP and MLD, time between sending 
general query messages; current non-querier multicast routers adopt the most 
recently received QQI value as their QI value) 

QQIC Querier’s Query Interval Code (in IGMP and MLD messages, encoding 
of the QQI value)

QRI Query Response Interval (in IGMP and MLD, the maximum amount of 
time a receiver is permitted to send a response to a query) 

QRV Querier Robustness Variable (in IGMP and MLD, sets number of 
retransmissions) 

QS Quick Start (in TCP, an experimental modification for faster startup behav-
ior provided devices on the path agree) 

QSTA QoS STA (an 802.11 STA supporting QoS capabilities) 

RA Router Advertisement (message indicating presence of an on-link router 
neighbor; uses ICMP) 
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RADIUS Remote Authentication Dial-In User Service protocol (a popular pro-
tocol for carrying AAA data) 

RAIO Relay Agent Information Option (in DHCPv6, an option used by relays 
to insert various bits of information) 

RARP Reverse ARP (protocol providing network layer to MAC layer address 
mappings) 

RAS Remote Access Server (a server that handles remote users—authentica-
tion, access control, etc.) 

RC4 Rivest Cipher #4 (a popular symmetric key encryption scheme designed 
by Ron Rivest) 

RD Router Discovery (procedure to locate a proximal router; uses ICMP) 

RDATA Returned Data (part of the DNS protocol used to hold returned data) 

RDNSS Recursive DNS Server (used in RAs; indicates address of DNS server) 

RED Random Early Detection (an AQM scheme that marks or drops pack-
ets with increasing probability when persistent congestion appears to be 
growing) 

RFC Request for Comments (documents published by IETF; some are 
standards) 

RGMP Router-port Group Management Protocol (Cisco’s protocol to enable 
IGMP snooping) 

RH Routing Header (an IPv6 extension header that alters traffic delivery path) 

RHBP Rate Halving with Bounded Pacing (in TCP, an evolved version of the 
FACK algorithm to help spread retransmissions more evenly across an RTT 
period after inferred packet loss) 

RIP Routing Information Protocol (small organization routing protocol; the 
original version does not support subnet masks) 

RIR Regional Internet Registry (allocates address space for some region of the 
world) 

RO Route Optimization (improving routes from indirect “dogleg” paths used 
in simple MIP) 

ROAD Running Out of Address Space (a problem motivating the creation of 
IPv6 and resulting in the creating of CIDR) 

ROHC Robust Header Compression (current-generation standards for protocol 
header compression) 

RP Rendezvous Point (used with multicast routing to exchange group 
information) 

RPC Remote Procedure Call (a framework supporting a program’s procedure 
calls to be handled remotely) 
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RPF Reverse Path Forwarding (to avoid loops, an RPF check is performed by 
multicast routers to ensure a multicast datagram arrives on the same interface 
used to reach the sender)

RPSL Routing Policy Specification Language (a language used to express rout-
ing policies such as which network prefix corresponds to which owning AS)  

RR Resource Record (a typed information block owned by a domain name and 
distributed via DNS) 

RRP, RR Return Routability/Procedure (a check used with MIPv6 to ensure a 
mobile node is authentic, and includes a HoA check and CoA check)  

RRset Resource Record Set (a collection of DNS RRs with same domain name 
owner and class) 

RRSIG Resource Record Signature (DNS RR used with DNSSEC holding a 
signature on an RRset) 

RS Router Solicitation (an ICMP message that induces a router to produce a 
response) 

RSA Rabin, Shamir, Adelman (the most popular public key cryptography 
algorithm) 

RSN Robust Security Network (improved security in IEEE 802.11i/WPA; 
included in 802.11 standard) 

RSNA RSN Association (full use/implementation of RSN) 

RST Reset (a TCP header bit and segment type that causes a TCP connection 
abort) 

RSTP Rapid Spanning Tree Protocol (decreased latency version of STP) 

RTO Retransmission Timeout (time before retransmitting data thought to be 
lost) 

RTS Request To Send (message indicating desire to send a subsequent 
message) 

RTT Round Trip Time (minimum time to expect a response from a communi-
cation peer) 

RTTM RTT Measurement (an instantaneous estimate of the RTT) 

RTTVAR RTT Variance (in TCP, time-averaged estimate of a connection’s RTT 
deviation) 

RTX Retransmission (re-sending of data) 

RW Restart Window (in TCP, CWND value when TCP restarts sending after an 
idle period)  

SA Security Association (in IPsec, state pertaining to a unidirectional associa-
tion between peers; includes agreed-upon keys, algorithms, etc.; an SA can be 
unicast or multicast) 
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SACK Selective Acknowledgment (in TCP, an option indicating correctly 
received out-of-sequence data) 

SAD Security Association Database (in IPsec, abstraction of database contain-
ing information on each active SA; logically indexed by SPI) 

SAE Simultaneous Authentication of Equals (form of authentication used with 
802.11s) 

SAP Session Announcement Protocol (carries experimental multicast session 
announcements; see also SDP) 

SCSV Signaling Cipher Suite Value (in TLS, a CS value that indicates not a CS 
but a particular set of alternative functions or options) 

SCTP Stream Control Transport Protocol (a reliable transport protocol alterna-
tive to TCP that does not enforce strict ordering and supports multiple sub-
streams and endpoint address changes) 

SCVP Server-Based Certificate Verification Protocol (a protocol supporting 
DPD and DPV for certificates) 

SDID Signing Domain Identifier (with DKIM, name for the domain of the 
signer) 

SDLC Synchronous Data Link Control (a precursor to HDLC, the link layer of 
SNA) 

SDO Standards-Defining Organization (including IEEE, IETF, ISO, ITU, 3GPP, 
3GPP2) 

SDP Session Description Protocol (a protocol that describes multimedia 
sessions) 

SEND Secure Neighbor Discovery (a secure variant of ND using CGAs) 

SEP Secure Entry Point (in DNSSEC, indicates a DNSKEY RR contains a KSK)

SFD Start Frame Delimiter (bit pattern indicating the starting portion of frame 
in a link PDU) 

SG Security Gateway (with IPsec, system terminating IPsec protocols, often at 
network edge) 

SHA Secure Hash Algorithm (one of a set of hashing algorithms suitable for 
ensuring message integrity) 

SIFS Shorts Inter-Frame Space (smallest amount of time between an 802.11 
frame and its ACK) 

SIIT Stateless IP/ICMP Translation (a framework for translation between IPv4 
and IPv6, including special rules for ICMP translation, NAT64, and DNS64) 

SIP Session Initiation Protocol (general signaling protocol; used with VoIP) 

SLAAC Stateless Address Autoconfiguration (a mechanism whereby a node 
self-configures its own IP address; usually applies to IPv6 nodes) 
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SLLAO Source Link-Layer Address Option (in ICMPv6, an option carrying the 
sender’s link layer address) 

SMSS Sender’s MSS (the MSS for a connection as viewed by the sender) 

SMTP Simple Mail Transfer Protocol (a protocol to carry e-mail in transit 
among mail transfer agents) 

SNA Systems Network Architecture (IBM’s network architecture) 

SNAP Subnetwork Access Protocol (IEEE terminology for 802.2 encapsulation; 
rare for TCP/IP networks) 

S-NAPTR Straightforward NAPTR (simplified NAPTR where AUS maps 
directly to result without regular expression substitution) 

SNMP Simple Network Management Protocol (status reporting and configura-
tion settings for network equipment; usually used with UDP/IP) 

SOA Start of Authority (DNS RR indicating meta-data about a zone) 

SOAP (formerly) Simple Object Access Protocol (a web services application 
protocol using XML, which provides RPC-like capabilities; SOAP is no longer 
an acronym) 

SPD Security Policy Database (with IPsec, abstraction of database containing 
security policies applying to how traffic is handled—e.g., discard, bypass, or 
protect) 

SPI Security Parameter Index (in IPsec, a logical index into the SAD to indicate 
security parameters, either 32 or 64 bits) 

SPNAT, CGN, LSN Service-Provider (“large scale”) NAT (a NAT deployment 
arrangement where address translation is performed by a service provider 
instead of a customer) 

SRP Secure Remote Password (a strong key agreement protocol based on pass-
words; being supported by various security protocols such as TLS and EAP) 

SRTP Secure Real-Time Protocol (a secure variant of the UDP/IP based real-
time protocol; typically used to carry multimedia information) 

SRTT Smoothed RTT (in TCP, time-averaged estimate of a connection’s RTT) 

SSDP Simple Service Discovery Protocol (an IETF-specified distributed service 
discovery protocol designed for LANs and residential networks used by 
UPnP) 

SSH Secure Shell Protocol (secure remote login/execution protocol; also sup-
ports tunneling of other protocols) 

SSID Service Set Identifier (802.11 network name) 

SSL Secure Sockets Layer (encrypted and integrity-protected layer above TCP; 
precursor to TLS) 
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SSM Single-Source Multicast (multicast wherein only a single party can source 
traffic to a particular group) 

STA Station (IEEE 802.11 terminology for an access point or associated wireless 
host) 

STP Spanning Tree Protocol (protocol used among bridges and switches to 
avoid loops) 

STUN Session Traversal Utilities for NAT (a client/server protocol for helping 
to fix the address and port number of a traffic flow when passing through a 
NAT) 

SWS Silly Window Syndrome (in protocols using window-based flow control, 
an undesirable situation where small amounts of data are exchanged due to 
the use of small window sizes) 

SYN Synchronize (a TCP header bit and first segment type sent on a TCP 
connection) 

TCP Transmission Control Protocol (a connection-oriented reliable stream 
protocol lacking message boundaries, which includes flow and congestion 
control) 

TCP-AO TCP Authentication Option (in TCP, an algorithm-agile mechanism to 
combat MSM attacks) 

TDES, 3DES Triple DES (encryption using three rounds of DES encipherment, 
resulting in an effective key length of 112 bits) 

TDM Time Division Multiplexing (sharing by allocation of separate usage time 
slots) 

TFC Traffic Flow Confidentiality (in IPsec, methods to disguise the traffic flow 
even when encrypted, including padding and generation of dummy packets) 

TFRC TCP Friendly Rate Control (methods to control the sending rate of a 
protocol so as to not compete unfairly with a TCP flow in a similar operating 
environment) 

TFTP Trivial File Transfer Protocol (UDP/IP-based simple transfer protocol) 

TKIP Temporal Key Integrity Protocol (replaced the WEP encryption algorithm 
for WPA) 

TLD Top-Level Domain (a top-level domain name such as EDU, COM, UK, ZA) 

TLS Transport Layer Security (based on the SSL protocol developed by 
Netscape) 

TLV Type/Length Value (used in protocols; indicates a type, length of variable-
length value, and the value) 

ToS Type of Service (older name for the IPv4 header byte indicating type of 
service; replaced with DS Field and ECN bits) 
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TS Traffic Selector (with IKE, specifications for identifying traffic such as IP 
address range, port number, etc.) 

TSER, TSecr Timestamp Echo Reply (in TCP, portion of TSOPT used to echo 
TSV value to peer) 

TSF Time Synchronization Function (establishes a common time in an 802.11 
BSS) 

TSIG Transaction Signatures (signatures used to secure individual DNS trans-
actions, not content from its origin) 

TSOPT Timestamps Option (in TCP, an option including the TSV and TSER 
values) 

TSPEC Traffic Specification (a structure indicating traffic parameters for 802.11 
QoS) 

TSV Timestamp Value (in TCP, portion of TSOPT used to identify the sender’s 
time—used in RTTM and PAWS) 

TTL Time-to-Live (IPv4 header field indicating number of remaining router 
hops allowed for a datagram) 

TURN Traversal Using Relay NAT (a protocol in which a third party relays 
information between hosts that are otherwise unable to communicate due to 
the presence of one or more NATs) 

TWA Time-Wait Assassination (in TCP, an erroneous condition caused by 
receiving certain segments during TIME-WAIT state) 

TXOP Transmission Opportunity (in 802.11, a form of “credit” allowing a sta-
tion to send one or more frames) 

TXT Text (DNS RR carrying descriptive text; used by DKIM) 

UBM Unicast Prefix-based Multicast addressing (deriving multicast addresses 
based on assigned unicast prefixes) 

UDL Unidirectional Link (link providing communication in only one 
direction) 

UDP User Datagram Protocol (a best-effort message protocol with message 
boundaries and lacking congestion or flow control) 

UEQM Unequal Modulation (using different modulation schemes on different 
data streams simultaneously) 

ULA Unique Local IPv6 Unicast Addresses (private addresses used with IPv6, 
allocated from the fc00::/7 prefix) 

U-NAPTR URI-enabled NAPTR (simplified NAPTR allowing limited regular 
expression substitution) 

U-NII Unlicensed National Information Infrastructure (unlicensed radio spec-
trum in much of the world) 
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UNSAF Unilateral Self-Address Fixing (heuristics used in an attempt to deter-
mine how a traffic flow is identified after passing through a NAT; a fragile 
process for which techniques like ICE are recommended alternatives) 

UP User Priority (802.11 priorities; based on same terminology from 802.1d) 

UPnP Universal Plug and Play (a protocol framework for device and service 
discovery aimed at the residential user; standardized by the UPnP Forum) 

URG Urgent Mechanism (in TCP, a method for marking and indentifying 
information as “urgent”; not recommended for use) 

URI Universal Resource Identifier (string of characters identifying a name or 
resource on the Internet, including URLs and URNs)  

URL Uniform Resource Locator (informally, a “WWW address”) 

URN Universal Resource Name (a URI using the urn scheme not implying 
availability of resource) 

USRK Usage-Specific Root Key (key derived from an EMSK intended to be 
used for certain purposes) 

UTC Coordinated Universal Time (standard time used by NTP and other 
protocols; effectively interchangeable with GMT but with some technical 
differences) 

UTO User Timeout (in TCP, the maximum time a TCP sender will wait 
attempting to retransmit before abandoning a connection) 

VC Virtual Circuit (a simulated dedicated communication path) 

VLAN Virtual LAN (used most often to simulate multiple distinct LANs on 
shared wiring) 

VLSM Variable-Length Subnet Masks (proximal use of subnet masks of differ-
ing lengths in same environment) 

VoIP Voice over IP (the carriage of voice traffic over IP networks, usually 
involves SIP signaling) 

VPN Virtual Private Network (virtually isolated network; often encrypted) 

W3C World Wide Web Consortium (SDO defining web standards such as 
XML) 

WAN Wide Area Network (a network connecting geographically distributed 
sites; usually involving multiple administrative authorities) 

WEP Wired Equivalent Privacy (original WiFi encryption; found to be cata-
strophically weak) 

WESP Wrapped ESP (in IPsec, a method to prepend ESP with a header to 
indicate if the following traffic is encrypted or only authenticated; useful for 
inspection by middleboxes) 
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Wi-Fi Wireless Fidelity (IEEE 802.11 wireless LAN standard) 

WiMAX Worldwide Interoperability for Microwave Access (IEEE 802.16 wire-
less broadband standard) 

WKP Well-Known Prefix (a checksum neutral IPv6 prefix, 64:ff9b::/96, used in 
algorithmic mappings between IPv4 and IPv6 addresses) 

WLAN Wireless LAN (a wireless LAN such as WiFi) 

WMM Wi-Fi Multimedia (subset of 802.11e QoS functions now available in 
802.11n) 

WoL Wake on LAN (method to remain in “sleep” mode until a particular 
packet is received) 

WPA WiFi Protected Access (802.11 encryption method) 

WPAD Web Proxy Autodiscovery Protocol (a protocol to discover the presence 
of a proximate WWW proxy) 

WRED Weighted RED (RED where the mark/drop probablity is a function of 
traffic class and weight assignment)  

WSCALE, WOPT, WSOPT Window Scale Option (in TCP, an option indicating 
a scaling factor is to be applied to the Window Size field) 

WWW World Wide Web (networked data environment using the HTTP/TCP/
IP protocol suite) 

X.25 ITU-T recommendation X.25 (an ITU-T standard packet switched network 
standard covering OSI layers 1-3; the most popular packet switched technol-
ogy until widespread use of TCP/IP) 

XML Extensible Markup Language (a set of rules for encoding documents in 
machine-readable form; extensively used by web services) 

XMPP Extensible Messaging and Presence Protocol (an open, extensible, 
HTML-based protocol for the exchange of messages, presence, and contact list 
information) 

ZSK Zone Signing Key (a key used with DNSSEC for signing zone contents, 
usually signed by a KSK) 
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Symbols
* (Wildcard)

domain names and, 526
local IP address restrictions in server design, 

500–501
.in-addr.arpa

classless delegation, 539
special domain for IPv4, 537–538

.ip6.arpa, 537–538

Numbers
2.4GHz band, Wi-Fi, 124–126
3DES. See Triple-DES
3GPP (3rd Generation Partnership Project), 275, 933
5GHz band, Wi-Fi, 124–126
6rd (IPv6 Rapid Deployment), 339, 933
6to4

definition of, 933
IPv4 to IPv6 transition, 482

A
A (address) records

definition of, 529, 933
overview of, 529–530
querying, 531
translating DNS from IPv4 to IPv6, 569

A-MPDU (aggregated MAC protocol data unit)
definition of, 934
frame aggregation support, 118–119

A-MSDU (aggregated MAC service data unit)
definition of, 934
frame aggregation support, 118

AAA (authentication, authorization, and account-
ing), 833–834, 933

AAAA (address) records
definition of, 933
DNS resource record types, 529–530
translating DNS from IPv4 to IPv6, 569

Abbreviated handshake, TLS, 881
ABC (Appropriate Byte Counting), in TCP, 733, 933
Abortive release, of TCP connections, 627
Abstract Syntax Notation One (ASN.1), 935
Access categories (ACs), in EDCA, 123

Access control
NAC (Network Access Control), 833–837
RADIUS server for, 141

Access control lists. See ACLs (access control lists)
Access Network Discovery and Selection Function 

(ANDSF), 275, 934
Access points. See APs (access points)
ACCM (Asynchronous Control Character Map), in 

PPP
definition of, 933
escaping characters and, 134–135

ACD (Address Conflict Detection), 176–177, 933
ACFC (Address and Control Field Compression), in 

PPP, 132, 933
ACK clock, in TCP, 731
ACK division, attack against TCP, 785
Acknowledge Number field, in GRE tunnels, 150
ACKs (acknowledgement)

clocking congestion via, 730–731
combined with SYN segments (SACK), 607
cumulative in TCP, 586–587
definition of, 933
duplicate ACK threshold in fast retransmit, 667
establishing TCP connections and, 597, 602–603
NAT and TCP and, 307–308
requesting connection to nonexistent TCP port, 

626
retransmission and, 580–581
retransmission timeout settings, 584
stretch ACKs in recovery from local congestion, 

754–757
TCP header field, 588–589
TCP segments and, 701
in Wi-Fi control frames, 116
window update and, 583

ACLs (access control lists)
definition of, 933
in packet-filtering firewalls, 300
rules in, 335

ACs (access categories), in EDCA, 123
ACs (attribute certificates)

as alternative to public key certificates, 831
definition of, 933
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ACSII characters, escaping in PPP operations, 
134–135

Actions, in ACL rules, 335
Active attacks, threats to network communication, 

807–809
Active closer, FIN segments and, 597
Active open, in TCP connections, 597
Active opener (client)

RST segments, 631
simultaneous open and, 600
in TCP connections, 596, 599

Active queue management (AQM), 782–785, 935
Ad hoc mode, Wi-Fi, 112
Ad-Hoc On-Demand Distance Vector (AODV)

definition of, 934
Wi-Fi mesh and, 130

Additive increase/additive decrease (AIAD)
congestion control and, 777
definition of, 934

Additive increase/multiplicative decrease (AIMD)
congestion control and, 769
definition of, 934

Address (A) records. See A (address) records
Address (AAAA) records. See AAAA (address) 

records
Address (Addr) field, in PPP frames, 132
Address and Control Field Compression (ACFC), in 

PPP, 132, 933
Address autoconfiguration. See SLAAC (stateless 

address autoconfiguration)
Address behavior, in NAT, 311–313
Address Conflict Detection (ACD), 176–177, 933
Address Family Transition Router (AFTR), in 

DS-Lite, 340, 934
Address management, DHCP for, 235
Address pools, DHCP, 235–236
Address realms

IP addresses, 299
proxy firewalls supporting private address 

realms, 301
Address Resolution Protocol (ARP), 165
Address selection, in IP host models

destination address selection algorithm, 224–225
overview of, 222–223
source address selection algorithm, 223–224

Address unreachable message, ICMPv6, 364
Admin-scope boundaries, in router configuration, 53
Administrative prohibition, ICMP messages and, 365
Administrative scope, in multicast addresses, 53
ADSP (Author Domain Signing Practices), in DKIM, 

916–917, 933
Advanced Encryption Standard. See AES (Advanced 

Encryption Standard)

ADVERTISE message, DHCPv6, 262–264
Advertised window. See awnd (advertised window)
Advertisement Interval option, neighbor discovery 

in IPv6, 412
Advertisement messages, in MRD, 394–395
AEAD (authenticated encryption with associated 

data), 820, 934
AES (Advanced Encryption Standard)

definition of, 934
standardized for Internet use, 819
as symmetric encryption algorithm, 811
in Wi-Fi security, 129

AES-MAC, 819
AF (Assured Forwarding), 190, 934
AFTR (Address Family Transition Router), in 

DS-Lite, 340, 934
Aggregated MAC service data unit. See A-MSDU 

(aggregated MAC service data unit)
Aggregation

route aggregation, 50
of Wi-Fi frames, 116–119

Agile probing, in TCP, 779
AH (Authentication Header)

authentication and integrity protection with, 856, 
858

definition of, 934
fields in, 856
in IPSec, 841
NAT updates and, 866
overview of, 454–455
transport and tunnel modes, 856–857

AIA (Authority Information Access)
certificate extension, 828
definition of, 934

AIAD (additive increase/additive decrease)
congestion control and, 777
definition of, 934

AIMD (additive increase/multiplicative decrease)
congestion control and, 769
definition of, 934

Alert protocol, TLS handshaking, 880
ALGs (application layer gateways). See also 

Gateways
definition of, 934
IP routers, 20
IPv4/IPv6 translation, 340–345
NAT Traversal as alternative to, 316
proxy firewalls and, 301

Allocation of IP addresses
multicast addresses, 65
overview of, 62
unicast addresses, 62–65
to users and organizations, 31
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Alternate ports
RSTP, 110
STP, 104–105

Amplification attacks, DNS-related attacks, 571
ANDSF (Access Network Discovery and Selection 

Function), 275, 934
Answer, authority, and additional information sec-

tion, of DNS message, 526–527
Any-source multicast (ASM)

definition of, 935
as multicast service model, 54

Anycast addresses, 62
AODV (Ad-Hoc On-Demand Distance Vector)

definition of, 934
Wi-Fi mesh and, 130

APIPA (Automatic Private IP Addressing)
definition of, 934
SLAAC and, 276, 284

APIs (Application Programming Interfaces)
definition of, 934
design and, 22

Application design
APIs in, 22
client/server design pattern, 20–21
peer-to-peer design pattern, 21–22

Application layer
full-duplex TCP service to, 587
of OSI model, 10
TCP and UDP services for, 585

Application-managed keepalives, 794
Application Programming Interfaces. See APIs 

(Application Programming Interfaces)
Application protocols, NAT and, 304
Application-unique strings. See AUS (application-

unique strings)
Appropriate Byte Counting (ABC), in TCP, 733, 933
APs (access points)

definition of, 934
ICMP fast handover messages and, 388
Wi-Fi, 112

APSD (automatic power save delivery), 120, 935
AQM (active queue management), 782–785, 935
Architecture, protocol

end-to-end argument, 6
error control and flow control, 7–8
fate sharing, 6–7
packets, connections, and datagrams, 3–6
principles of, 2–3
of protocol suite, 1

ARM (ARPANET Reference Model), 1–2, 13–16
ARP (Address Resolution Protocol)

ACD (Adddress Conflict Detection), 176–177
announcement packets, 176

arp command, 177–178
attacks related to, 178–179
cache, 169–170
cache timeout, 174
definition of, 935
determining MAC addresses, 442
direct delivery and, 167–169
example of use, 166–167
frame format, 170–171
gratuitous ARP, 175–176
interaction between IP fragmentation and 

ARP/ND, 496–497
introduction to, 165–166
IPv4 and, 13
operation of, 171–173
Proxy ARP, 174–175
request to nonexistent host, 173–174
setting IPv4 address for embedded device, 178
summary and references, 179–180
TCP connection timeouts and, 604

arp command
ARP cache timeout and, 174
examining ARP cache, 169–170
options, 177–178

ARP hack, 175
ARP poisoning, attacks on ICMP, 429
ARP probe, ACD defining, 176
ARP reply frames, 168
ARP request frames

direct delivery and, 167
Proxy ARP and, 174–175
request to nonexistent host, 173–174

ARPANET Reference Model (ARM), 1–2, 13–16
ARQ (Automatic Repeat Request), 579–581, 935
AS (Authentication Server), in PANA, 935
AS (autonomous system)

definition of, 935
multicast addresses based on, 55

ASM (any-source multicast)
definition of, 935
as multicast service model, 54

ASN.1 (Abstract Syntax Notation One), 935
Assignment of unicast addresses

to devices, 32
multiple providers/multiple networks/multiple 

addresses, 68–70
overview of, 65–66
single provider/multiple networks/multiple 

addresses, 67–68
single provider/no network/single address, 66–67
single provider/single network/single address, 67

Assignment policies, IA (Identity Association) based 
on, 255–256
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Assured Forwarding (AF), 190, 934
Asymmetric (public) key ciphers. See also Public key 

cryptography, 809–812
Asynchronous Control Character Map (ACCM)

definition of, 933
escaping characters and, 134–135

Attacks
ARP, 178–179
DNS, 571–572
ICMP, 428–429
Internet architecture, 25–26
IP address, 70–71
IP protocol, 226
link layer, 154–156
on NAT and firewall, 345–346
system configuration, 292
TCP, 640–643
TCP congestion control and, 785–786
TCP keepalive and, 802
TCP timeout/retransmission and, 687
TCP window management and, 723
UDP, 507–508

Attribute certificates (ACs)
as alternative to public key certificates, 831
definition of, 933

Attribution, of datagrams, 26
Auditability, ESP and, 863
Augmented message, CRC, 86
AUS (application-unique strings)

definition of, 935
ENUM records and, 551–552
NAPTR records and, 549

AUTH (authentication packets), in IKE, 935
Authenticated encryption, 814–815
Authenticated encryption with associated data 

(AEAD), 820, 934
Authenticated nonexistence, DNSSEC, 895
Authentication

AH (Authentication Header). See AH (Authenti-
cation Header)

basic principles of security, 806–807
DHCP and, 271–273
EAP methods for, 838
PPP and, 140–141
PSKs (preshared keys) for, 129–130
SAE (Simultaneous Authentication of Equals), 

130
SHA-1 algorithm in, 268
spoofing attacks and, 226
TCP-AO (Authentication Option), 612

Authentication, authorization, and accounting 
(AAA), 833–834, 933

Authentication Header. See AH (Authentication 
Header)

Authentication Option (TCP-AO)
definition of, 959
TCP header, 612

Authentication Server (AS), in PANA, 55, 935
Author Domain Signing Practices (ADSP), 916–917, 933
Authorities, in allocation of IP addresses, 62
Authority Information Access (AIA)

certificate extension, 828
definition of, 934

Authority Key Identifier, for identifying public keys, 
828, 830

Auto-proxy ARP, 175
Automatic power save delivery (APSD), 120, 935
Automatic Repeat Request (ARQ), 579–581, 935
Autonegotiation, in Ethernet

duplex mismatch and, 96
Autonomous system (AS)

definition of, 935
multicast addresses based on, 55

Autotuning TCP receive windows, 715–716
Availability, in CIA triad, 806
awnd (advertised window) in TCP

overview of, 729–730
slow start algorithm and, 733–734, 736

AXFR (full zone transfer) messages, in DNS, 
559–561, 935

B
B4 (Bridging Broadband), 340, 935
Backoff factor, RTO and, in TCP, 655
Backoff time, in MAC, 121–122
Backup ports, STP, 104–105
BACP (Bandwidth Allocation Control Protocol), 139, 

935
Bandwidth Allocation Protocol (BAP), 139
Bandwidth (capacity)

allocating in MP, 139
buffer bloat and, 781
connections and, 3

Bandwidth-delay product. See BDP (bandwidth-
delay product)

Bandwidth on demand (BOD), 139, 936
Bandwidth-scalable TCPs, 773
Bank teller’s algorithm, 138
BAP (Bandwidth Allocation Protocol), 139
Baran, Paul, 1
Basic Encoding Rules (BER), 935
Basic service set. See BSS (basic service set)
BCMCS (Broadcast and Multicast Service Control-

ler), 935
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BCP (best current practice) category, RFCs and, 23
BDP (bandwidth-delay product)

congestion control and, 730
high-speed networks and, 770
HSTCP (HighSpeed TCP) and, 772

BER (Basic Encoding Rules), 935
BER (bit error rate)

data frame fragmentation, 117–118
definition of, 935

Berkeley Internet Name Domain v. 9 (BIND9), 935
Berkeley sockets

half-close support, 598
incoming connection queue and, 636, 639–640
popular APIs, 22
restrictions on foreign endpoints, 635
state transitions, 618
TCP ports, 588
TCP_NODELAY option for disabling Nagle 

algorithm, 700
Berkeley Software Distribution. See BSD (Berkeley 

Software Distribution)
Best current practice (BCP) category, RFCs and, 23
Best-effort delivery, of packets, 7
Better-than-Nothing Security (BTNS), 852, 936
BGP (Border Gateway Protocol), 935
BI (binary increase), 774
BIC (Binary Increase Congestion Control)

BIC-TCP, 773–774
overview of, 772–773

Bidirectional tunneling, in mobile IP, 216–217
Big endian byte ordering, 183
Binary additive increase algorithm, 773–774
Binary exponential backoff, retransmission and, 650
Binary increase (BI), 774
Binary Increase Congestion Control (BIC)

BIC-TCP, 773–774
overview of, 772–773

Binary notation
expressing IP addresses in, 32–33
prefixes, 48
of subnet masks, 39

Binary phase shift keying (BPSK)
definition of, 936
higher throughput (802.11n) support and, 128

Binary search increase algorithm, BIC-TCP and, 
773–774

BIND9 (Berkeley Internet Name Domain v. 9), 935
Binding method, in STUN, 321
Binding, MNs (mobile nodes), 216–217
Binding Update (BU), in MIP, 936
Bit error rate (BER)

data frame fragmentation, 117–118
definition of, 935

Bit flipping attack, 918
Bit stuffing, in PPP frames, 132
BITS (Bump in the Stack), in IPsec, 840, 935
BITW (Bump in the Wire), in IPsec, 840, 936
Bitwise AND operation, used with subnet masks, 40
BL (Bulk Leasequery)

DCHP relay agents, 269–270
definition of, 936

Black hats, attacks related to Internet architecture, 26
Black holes, in PMTUD, 613
Blackhole route messages, ICMPv6, 372
Block ciphers, 811
Blocking route messages, ICMPv6, 372
Bloop attacks, 429
BOD (bandwidth on demand), 139, 936
Bombs, ICMP attacks, 428
Bonding, link aggregation and, 92–93
Boot Server Discovery Protocol (BSDP), 246, 936
BOOTP (Internet Bootstrap Protocol)

compatibility with DHCP, 236–238
definition of, 936
DHCP based on, 235
options, 238–239
relay agents, 268

BOOTREQUEST, 239, 242
Border Gateway Protocol (BGP), 209, 935
Bot attacks, 26
Bot herders, 806
Botnets

attacks related to Internet architecture, 26
taking control of computers, 806

BPDUs (Bridge PDUs)
building the spanning tree, 107
definition of, 936
RSTP (Rapid Spanning Tree Protocol), 110–111
STP and, 104
structure of, 105–107
viewing with Wireshark, 109

BPSK (binary phase shift keying)
definition of, 936
higher throughput (802.11n) support and, 128

Bridge PDUs. See BPDUs (Bridge PDUs)
Bridges

layer 2 relay agents, 270
overview of, 98–102
STP. See STP (Spanning Tree Protocol)

Bridging Broadband (B4), in DS-Lite, 340, 935
Broadcast addresses

overview of, 15
setting/finding, 437–439
structure of, 42–43

Broadcast and Multicast Service Controller 
(BCMCS), in cellular networks, 239, 935
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Broadcast domain, link-layer broadcast, 167
Broadcasting

introduction to, 435–436
overview of, 436–437
sending broadcast datagrams, 439–441
setting/finding broadcast addresses, 437–439

Brute-force attacks, 816
BSD (Berkeley Software Distribution)

definition of, 936
standards and, 24
Tahoe release, 737

BSDP (Boot Server Discovery Protocol), 246, 936
BSS (basic service set)

definition of, 936
QoS BBS, 122
Wi-Fi, 112

BTNS (Better-than-Nothing Security), in IPsec, 852, 
936

BU (Binding Update), in MIP, 936
Buffer bloat, TCP congestion control and, 781–782
Buffer overflow, worms, 805
Buffers

large buffers and auto-tuning, 715–719
packets stored in, 4

Bulk data, in TCP communication, 692
Bulk Leasequery (BL)

DCHP relay agents, 269–270
definition of, 936

Bump in the Stack (BITS), in IPsec, 840, 935
Bump in the Wire (BITW),in IPsec,  840, 936
Bundles, of PPP links, 137, 139
Byte stuffing, in PPP frames, 132

C
Cache

ARP cache, 169–170
ARP cache timeouts, 174

Cache poisoning, DNS-related attacks, 572
Caching servers, DNS, 517–518
CALIPSO (Common architecture Label IPv6 Secu-

rity Option), 199, 936
Callback Control Protocol (CBCP), in PPP

definition of, 936
negotiation of callbacks in LCP, 136

Callback, PPP supporting, 136
CAMELLIA, standardized for Internet use, 819
Candidate sets (CS), in source address selection, 

223–224
Candidate transport addresses, in ICE, 333
Canonical name records. See CNAME (canonical 

name) records
Canonical ordering, of RRset in DNSSEC, 902–903
Capture, network communication, 808

Capturing portals, link layer attacks, 155
Care-of address (CoA)

definition of, 937
in Mobile IP, 216–217

Care-of Test (CoT)
definition of, 937
mobility messages in RRP, 218–219

Care-of Test Init (CoTI)
definition of, 937
mobility messages in RRP, 218–219

Carrier-grade NAT (CGN), 315
Carrier sense, 120
Carrier sense, multiple access with collision avoid-

ance. See CSMA/CA (carrier sense, multiple 
access with collision avoidance)

Carrier sensed, multiple access with collision detec-
tion (CSMA/CD)

definition of, 938
Ethernet interface and, 80–81

CAs (certification authorities). See also Certificates 
(public key)

definition of, 936
PKI (Public Key Infrastructure) and, 821–822

Catenet. See also Internetwork, 1
CBC (cipher block chaining)

block ciphers in encryption algorithms, 820
definition of, 936

CBC-MAC (cipher block chaining message authenti-
cation code), 129

CBCP (Callback Control Protocol)
definition of, 936
negotiation of callbacks in LCP, 136

CCA (clear channel assessment), in Wi-Fi
definition of, 936
for physical carrier sense, 121

CCITT (Comité Consultatif International Télé-
graphique), 24, 936

CCM (counter mode)
CCMP algorithm based on, 129
definition of, 936

CCMP (counter mode with CBC Message Authenti-
cation Code)

definition of, 936
in Wi-Fi security, 129–130

CCP (Compression Control Protocol), in PPP,
definition of, 936
MPPE and, 145
overview of, 139–140

ccTLDs (country code TLDs)
definition of, 937
in DNS name space, 512–514

CDN (content delivery networks), 535
CDP (CRL Distribution Point), 828–829, 937
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CE (Congestion Experienced) bit, in IP header, 
783–784

CERT (Computer Emergency Response Team), 937
Certificate Policies (CP), 828
Certificate Request (CERTREQ) payload

definition of, 937
in IKE, 869–870

Certificate revocation lists. See CRLs (certificate 
revocation lists)

Certificates, ACs (attribute certificates), 831
Certificates option, in ND, 417
Certificates (public key)

CAs and PKIs and, 821–822
extensions, 827–828
for identifying four types of Internet entities, 823
validating, 826
validating and revoking certificates, 828–831
viewing preconfigured, 823–826

Certificates, SEND, 403
Certification authorities. See CAs (certification 

authorities)
Certification Path Advertisement message, ICMP 

Send messages, 407
Certification Path Solicitation message, ICMP Send 

messages, 406–407
Certification Practice Statement (CPS), 937
CERTREQ (Certificate Request) payload

definition of, 937
in IKE, 869–870

CGAs (cryptographically generated addresses)
definition of, 937
Handover Key Request/Reply options, 422–423
neighbor discovery options in IPv6, 414–415
RSA Signature option, 415–416
securing IPv6 Neighbor Discovery, 292
SEND (Secure Neighbor Discovery) and, 403–406
verification of, 405

CGN (carrier-grade NAT), 315
Chaddr (Client Hardware Address) field

DHCP/BOOTP message format, 238
MAC addresses in, 244

Challenge-response protocols, 816
Change Cipher Spec protocol, 878
Channels

in SSM multicast service model, 54
TURN, 327
Wi-Fi, 124

CHAP (Challenge-Handshake Authentication 
Protocol)

definition of, 937
for PPP authentication, 140–141

Character stuffing, in PPP frames, 132
Checkpointing, saving work, 10

Checksums
(Generic Routing Encapsulation), 150
applying at application layer, 601
for detecting packet errors, 580
IP header fields, 185
TCP, 586, 590
UDP, 475–478
UDP-Lite, 487–488
verifying message integrity, 817
WKP checksum neutrality, 341

CIA (confidentiality, integrity, and availability)
AH and, 856, 858
definition of, 937
ESP and, 860
overview of, 806

ciaddr (Client IP address) field, 237
CIDR (Classless Inter-Domain Routing)

definition of, 937
developed to alleviate pressure on available IPv4 

addresses, 47–48
masks, 47
routing scalability addressed by, 303

Cipher-based MAC (CMAC), 819–820, 937
Cipher block chaining (CBC)

block ciphers in encryption algorithms, 820
definition of, 936

Cipher block chaining message authentication code 
(CBC-MAC), 129

Cipher Change protocol, TLS handshaking, 880
Cipher suite rollback attacks, 919
Cipher suites. See CS (cipher suites)
Ciphertext

encrypting cleartext message, 810
TLS, 878–879

Civic location, location information in DHCP, 274
Clark, D., 3
Class of Service (CoS), 937
Class selector code points, 190
Class Selector (CS), 938
Classes, IP address

Class D addresses reserved for IPv4 multicast, 
54–55

overview of, 34–36
prefix length and, 47–48

Classic RTO method, 651–652
Classless Inter-Domain Routing. See CIDR (Classless 

Inter-Domain Routing)
Classless routes, DHCP and, 246
Classless Static Route (CSR) parameter, 246
Clear channel assessment (CCA)

definition of, 936
for physical carrier sense, 121

Clear to send. See CTS (clear to send)
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Client alive messages, 802
Client Hardware Address (Chaddr) field

DHCP/BOOTP message format, 238
MAC addresses in, 244

Client IP address (Ciaddr) field, in DHCP, 237
Client/server design pattern, 20–21
Client state machine, DHCP, 251–252
ClientHello message, in TLS, 887
Clients

keepalives detecting state of client host, 795
setting keepalive time for Windows client, 

797–799
Clock granularity, RTO bounds and, 654
Clock recovery, Ethernet frames, 84
CLOSED state, in TCP,

sharing connection state, 768
simultaneous open and close transitions, 625
TCP state transitions, 618

CLOSE_WAIT state, TCP state transitions, 618
CMAC (cipher-based MAC), 819–820, 937
CNAME (canonical name) records

definition of, 937
DNS resource record types, 534–536
translating DNS from IPv4 to IPv6, 569

CNs (correspondent nodes), in MIP, 216–218, 937
CoA (care-of address)

definition of, 937
in Mobile IP, 216–217

Coding theory, 579
Collision Count field, CGAs, 404–405
Comité Consultatif International Télégraphique 

(CCITT), 24, 936
Common architecture Label IPv6 Security Option 

(CALIPSO), 199,  936
Communication protocols

ARQ (Automatic Repeat Request), 579–581
congestion control, 583–584
flow control, 583
introduction to, 579
retransmission settings, 584
sliding windows, 582
TCP. See TCP (Transmission Control Protocol)
windows of packets, 581–582

Compound TCP (CTCP) algorithm, 779–781, 938
Compression

ACFC (Address and Control Field Compression), 
132

CCP (Compression Control Protocol), 139–140
header compression, 139, 142–143
MPPC (Microsoft Point-to-Point Compression 

Protocol), 140
PFC (Protocol Field Compression), 133

VJ (Van Jacobson) compression, 141
Compression Control Protocol. See CCP (Compres-

sion Control Protocol)
Compression labels, DNS names and, 523–524
Compression-optional attributes, STUN, 321
Computer Emergency Response Team (CERT), 937
Computer Systems Research Group (CSRG), 24, 938
Concurrent servers, 21
Confidentiality, in CIA triad, 806
Confidentiality, integrity, and availability. See CIA 

(confidentiality, integrity, and availability)
Configuration data delivery, DHCP for, 235
Configuration Payload (CP)

definition of, 937
IKE, 849

Congestion avoidance algorithm
classic algorithms for TCP congestion, 734–736
comparing with slow start, 736–737

Congestion collapse state, 728
Congestion control. See also Flow control

in communication protocols, 583–584
in TCP. See TCP congestion control
in UPD server design, 505

Congestion Experienced (CE) indicator, in IP header, 
783–784

Congestion indicator, ECN, 188
Congestion Manager, 768
Congestion window. See cwnd (congestion window)
Congestion Window Reducing. See CWR (Conges-

tion Window Reducing)
Congestion Window Validation (CWV), in TCP, 

742–744, 938
Connection completion, TCP congestion control, 

766–767
Connection-oriented networks, 5
Connection-oriented protocols, 595
Connection-oriented service, 585
Connection refused error, in TCP and UDP, 626
Connection state, TCP, 595
Connectionless networks, 5, 181
Connectionless protocols, 595
Connections, in protocol architecture, 3–6
Connections, TCP

aborting, 627–628
attacks related to, 640–643
establishing and terminating, 595–598
example of PMTUD with, 613–616
example showing packet-level details, 602–604
FIN_WAIT_2 state, 625
half-close operation, 598–599
half-open connections, 628–630
header options, 605–606
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incoming connection queue, 636–640
introduction to, 595
ISN (initial sequence number), 601–602
MSS (Maximum Segment Size) option, 606–607
PAWS (Protection against Wrapped Sequence 

Numbers), 610–611
PMTUD (Path MTU Discovery) and, 612–613
port numbers and, 632–634
quiet time concept, 624
requesting connection to nonexistent port, 626
reset segments, 625–626
restrictions on foreign endpoints, 635–636
restrictions on local IP addresses, 634–635
SACK (selective acknowledgement) option, 607
server operation and, 631–632
simultaneous open and close, 599–601
simultaneous open and close transitions, 625
state transition diagrams, 617–618
summary and references, 643–645
TCP-AO (Authentication Option), 612
timeout settings, 604–605
Timestamps option, 608–610
TIME_WAIT state (2MSL), 618–624
translating addresses and port numbers, 605
TWA (TIME-WAIT Assassination), 630–631
UTO (User Timeout) option, 611–612
WSCALE (Window Scale) option, 608

Conservation of packets, 731
Content delivery networks (CDN), 535
Content filters, web proxies operating as, 302
Contention window (CW)

definition of, 938
in MAC, 122

Control field, in PPP frames, 132
Control frames, Wi-Fi, 115–116
Cooks, C., 814
Coordinated Universal Time (UTC), 961
Correspondent nodes (CNs), in MIP, 216–218, 937
Correspondent registration, in RO, 218
CoS (Class of Service), 937
CoT (Care-of Test)

definition of, 937
mobility messages in RRP, 218–219

CoTI (Care-of Test Init)
definition of, 937
mobility messages in RRP, 218–219

Counter (CTR) mode
definition of, 938
operating modes of encryption algorithms, 820

Counter mode (CCM)
CCMP algorithm based on, 129
definition of, 936

Counter mode with CBC Message Authentication 
Code (CCMP)

definition of, 936
in Wi-Fi security, 129–130

Counters, IGMP/MLD, 467–468
Country code TLDs (ccTLDs)

definition of, 937
in DNS name space, 512–514

CP (Certificate Policies), 828
CP (Configuration Payload)

definition of, 937
IKE, 849

CPS (Certification Practice Statement), 937
CRCs (Cyclic Redundancy Checks)

applying at application layer, 601
compared with Internet checksum, 186
definition of, 937
for detecting errors in packets, 580
host address filtering and, 449, 451
integrity checking in Ethernet frames, 86–88
TCP reliability and, 586

CREATE_CHILD_SA exchange, IKE protocol, 852–853
CRL Distribution Point (CDP), 828–829, 937
CRLs (certificate revocation lists)

definition of, 937
distribution point for, 828–829
extensions, 830

Cryptographic suites, 819–821
Cryptographically generated addresses. See CGAs 

(cryptographically generated addresses)
Cryptographically strong PRNGs (CSPRNGs), 816, 

938
Cryptography. See also Encryption

attacks, 918
cryptographic and cipher suites, 819–821
cryptosystems, 809–812
DH (Diffie-Hellman-Merkle Key Agreement), 

813–814
ECC (Elliptic Curve Cryptography), 815
hash functions and message digests, 817–818
message authentication codes, 818–819
message syntax, 823
nonces and salt, 816
overview of, 809
PFS (Perfect Forward Secrecy), 815
pseudorandom numbers, generators, and func-

tion families, 815–816
RSA (Rivest, Shamir, and Adleman) public key 

cryptography, 812–813
signcryption, 814–815

CS (candidate sets), in source address selection, 
223–224
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CS (cipher suites)
definition of, 938
overview of, 819–821
in TLS, 878

CS (Class Selector), 938
CSMA/CA (carrier sense, multiple access with colli-

sion avoidance)
DCF as form of, 120
definition of, 938
WLANs (wireless LANs), 84

CSMA/CD (carrier sensed, multiple access with col-
lision detection)

definition of, 938
Ethernet interface and, 80–81

CSPRNGs (cryptographically strong PRNGs), 816, 938
CSR (Classless Static Route) parameter, 246
CSRG (Computer Systems Research Group), 24, 938
CTCP (Compound TCP) algorithm, 779–781, 938
CTR (Counter) mode

definition of, 938
operating modes of encryption algorithms, 820

CTS (clear to send)
carrier sense and, 121
definition of, 938
Wi-Fi control frames, 115

CUBIC algorithm, for 
TCP congestion control, 775–776

Current-state records, IGMP/MLD group member-
ship reports, 457

CW (contention window)
definition of, 938
in MAC, 122

cwnd (congestion window) in TCP
comparing slow start with congestion avoidance, 

736–737
congestion avoidance algorithm and, 734–736
CWV (Congestion Window Validation), 742–744
definition of, 938
Eifel Response Algorithm and, 744–745
FACK (forward acknowledgment) and, 741
overview of, 729–730
SACK congestion control and, 740–741
slow start algorithm and, 732–734
standard TCP algorithm and, 738
Tahoe, Reno, and Fast Recovery and, 737
undoing changes in, 762–766

CWR (Congestion Window Reducing)
CWR bit, 784
definition of, 938
fast retransmit events, 761–762
local congestion events, 764
sender pause and, 753

CWV (Congestion Window Validation), 742–744, 938
Cyclic Redundancy Checks. See CRCs (Cyclic 

Redundancy Checks)

D
DAD (duplicate address detection)

definition of, 938
DHCPv6, 259–260
IPv6 addresses and, 277–278
MLD messages and, 457
Neighbor Discovery protocol and, 253
RA and RS messages and, 280–282

Daemen, Joan, 811
Data Encryption Standard. See DES (Data Encryp-

tion Standard)
Data flow, TCP. See TCP data flow
Data frames

fragmentation and aggregation, 94–95
Wi-Fi, 116–119

Data labels, DNS names and, 523
Data-link layer, of OSI model, 9
Data types, resource record categories, 528
Datagram Congestion Control Protocol. See DCCP 

(Datagram Congestion Control Protocol)
Datagram TLS. See DTLS (Datagram TLS)
Datagrams

attribution of, 26
fragmenting, 148
important concepts in development of network 

architecture, 5–6
in protocol architecture, 3–6
receiving multicast, 447–449
sending multicast, 446–447
spoofing attacks and, 25–26
TLS with. See DTLS (Datagram TLS)

Datagrams, IP
direct delivery of, 167
DNS messages using IPv4 datagrams, 525
fragmentation of, 488
of ICMP messages within, 354–355
IPv4, 182
TCP encapsulation in, 587

Datagrams, UDP
DNS messages using, 525
encapsulation, 474
fragmentation of, 488–492
maximum size, 497–498
translating UDP/IPv4 and UDP/IPv6 datagrams, 

505–506
truncation of, 498

Davies, Donald, 1
Day, J., 2
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DCCP (Datagram Congestion Control Protocol)
definition of, 938
NAT and, 309
transport protocols in TCP/IP suite, 16

DCF (distributed coordinating function), in Wi-Fi
collision avoidance/backoff procedure, 121–122
definition of, 938
options for controlling sharing of wireless 

medium, 120
DDDS (Dynamic Delegation Discovery System)

definition of, 938
ENUM records and, 551–552
DNS NAPTR records and, 549
URI/URN resolution and, 553

DDNS (Dynamic DNS)
mapping DNS to DHCP addresses, 286
supporting DNS Update, 567

DDoS (distributed DoS)
attacks related to Internet architecture, 26
definition of, 939

Deadlock, Nagle algorithm resulting in, 699
Decimal notation, expressing IP addresses in, 32
Default router, IP forwarding, 208
Deferred authentication, in DHCP, 272
Defragmentation, of data frames. See also Fragmen-

tation, 117
Delay-based congestion control

buffer bloat and, 782
CTCP (Compound TCP) algorithm, 779–781
FAST TCP algorithm, 778–779
overview of, 777
TCPW (TCP Westwood) algorithm, 779
Vegas TCP algorithm, 777–778

Delayed ACKs
interaction with Nagle algorithm, 699
with piggybacking, 692
in TCP data flow, 695–696

Delegated path discovery (DPD)
certificate validation and, 831
definition of, 940

Delegated path validation (DPV)
certificate validation and, 831
definition of, 940

Delegation
classless .in-addr.arpa delegation, 539
DNS zones and, 516

Delegation signer (DS) resource record
definition of, 940
DNSSEC, 897–898

Delivery to multiple locations, broadcasting and 
multicasting for, 435

Demilitarized zones. See DMZ (demilitarized zones)

Demultiplexing
identifiers in, 11
implementation and design and, 10–13
TCP/IP suite and, 16–17

Denial-of-service. See DoS (denial-of-service)
DER (Distinguished Encoding Rules), 869, 939
DES (Data Encryption Standard). See also Triple-DES

definition of, 939
dictionary attacks and, 816
as symmetric encryption algorithm, 811

Destination address selection algorithm, in IP host 
models, 224–225

Destination cache, 403
Destination (DST) address, in Ethernet frame for-

mat, 85
Destination IP address

host processing of IP datagrams, 220–221
in IP datagrams, 186
in IP forwarding, 209
IPv6 header fields, 196
Routing header fields, 201
selection by hosts, 222–223
Teredo tunneling and, 485

Destination metrics, TCP timeout/retransmission, 
685–686

Destination Options, IPv6, 196
Destination unreachable messages, ICMP

overview of, 364
PTB (Packet Too Big), 612
requesting connection to nonexistent ports, 626
UDP datagram and, 480

Detecting Network Attachment (DNA), 241, 939
Detection algorithm, for spurious timeouts and 

retransmissions, 677
Detection, of congestion, 728–729
DF (Don’t Fragment), 939
DH (Diffie-Hellman-Merkle Key Agreement), 

813–814, 939
DHCP (Dynamic Host Configuration Protocol)

address pools and leases, 235–236
attacks related to, 292
authentication, 271–273
automatic address assignment, 67
BOOTP message format, 236–238
BOOTP options, 238–239
definition of, 939
DHCP/DNS interaction, 285–286
DHCPACK message, 250
DHCPDISCOVER message, 244–247
DHCPNAK message, 243
DHCPOFFER message, 247–248
DHCPREQUEST message, 241–243, 248–249
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DHCP (Dynamic Host Configuration Protocol), 
continued

location information, 274–275
manual configuration, 265–266
mobility and handoff information, 275
operation of, 239–241
overview of, 234–235
PPPoE (PPP over Ethernet) and, 286–291
Rapid Commit option, 273–274
reconfigure extension, 273
relays, 267–271
snooping, 276
state machine, 251–252
subnet mask configuration, 39
summary and references, 292–298

DHCP Unique Identifier. See DUID (DHCP Unique 
Identifier)

DHCPACK message, 241, 250
DHCPDECLINE message, 241
DHCPDISCOVER message, 240, 244–247
DHCPINFORM message, 241
DHCPLEASEQUERY message, 269
DHCPNAK message, 241, 243
DHCPOFFER message, 240, 247–248
DHCPRELEASE message, 241
DHCPREQUEST message, 239–243, 248–249
DHCPv6

DAD (Neighbor Solicitation), 259–260
DUID (DHCP Unique Identifier), 256–257
IA (Identity Association), 255–256
IPv6 address lifecycle, 252–253
manual configuration, 250–251
message format, 253–255
operation of, 257–258
overview of, 252
prefix delegation, 266–267
REQUEST message, 264–265
router solicitation and advertisement, 260–263

Dictionary attacks
DES and, 816
security protocol-related, 918

Differentiated Services Code Point (DSCP), 188–190, 
940

Differentiated Services field. See DS (Differentiated 
Services) field

Diffie-Hellman-Merkle Key Agreement (DH), 
813–814, 939

DIFS (distributed inter-frame space), in Wi-Fi
carrier sense and, 120–121
definition of, 939

Digest challenge, STUN mechanisms and, 325
Digests, message digests, 817–818

Digital, Intel, Xerox (DIX)
definition of, 939
Ethernet, 82

Digital Living Network Alliance (DLNA), 939
Digital Object Identifier (DOI), 939
Digital Signature Algorithm (DSA), 821, 940
Digital Signature Standard (DSS), 821, 940
Digital signatures

in cipher suites, 821
in public key cryptography, 812
RSA Signature option, 416

Digital subscriber line. See DSL (digital subscriber 
line)

Direct delivery
IP forwarding, 210–212
with IPv4, 167–169

Directed broadcast, 43
Direction specification, in firewall rules, 335
Discard Request messages, in LCP operation, 134
Discovery problem, in p2p networks, 22
Discrete log problem, in DH (Diffie-Hellman) 

encryption, 814
Distinguished Encoding Rules (DER), 869, 939
Distributed coordinating function. See DCF (distrib-

uted coordinating function)
Distributed DoS (DDoS)

attacks related to Internet architecture, 26
definition of, 939

Distributed inter-frame space (DIFS)
carrier sense and, 120–121
definition of, 939

Distribution service (DS)
definition of, 940
Wi-Fi, 112

Distributions, TCP/IP suite, 24–25
DIX (Digital, Intel, Xerox)

definition of, 939
Ethernet, 82

DKIM (DomainKeys Identified Mail)
definition of, 939
DKIM signatures, 916
example using, 916–918
overview of, 915–916

DLNA (Digital Living Network Alliance), 939
DMZ (demilitarized zones)

definition of, 939
DNS queries and, 565–567
packet-filtering firewalls and, 300
unicast addresses and, 67–68

DNA (Detecting Network Attachment), 241, 939
DNAME resource records, DNS, 536, 939
DNS-0x20, 572
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DNS (Domain Name System)
address and name server records, 529–530
answer, authority, and additional information 

section formats, 526–527
attacks related to, 571–572
AXFR (full zone transfer) messages, 559–561
caching and, 517–518
CNAME (canonical name) records, 534–536
definition of, 939
DHCP and, 233, 285–286
DNS notify, 564–565
dynamic updates, 555–558
ENUM records, 551–552
example using resource record types, 530–534
extension format (EDNSO), 524–525
introduction to, 511–512
IXFR (incremental zone transfer) messages, 

561–563
LDAP and, 570–571
LLMNR and mDNS, 569–570
mDNS (Multicast DNS), 444–445
message format, 520–524
MX (mail exchanger) records, 544–545
name resolution process, 518–520
name servers and zones, 516–517
name space, 512–514
naming syntax, 514–516
NAPTR (name authority pointer) records, 549–551
open DNS servers and DDNS, 567
OPT (option) pseudo records, 547–548
PTR (pointer ) records, 536–541
question (query) and zone section format, 526
resource record types, 527–529
S-NAPTR and U-NAPTR, 554–555
security. See DNSSEC (DNS Security)
SIP records, 552
SOA (start of authority) records, 541–544
sort lists, round-robin, and split DNS, 565–567
SPF (sender policy framework) and TXT records, 

545–547
SRV (service) records, 548–549
summary and references, 572–578
TCP/IP suite and, 19
translating DNS from IPv4 to IPv6, 568–569
transparency and extensibility, 567–568
URI/URN resolution, 553–554
well-known ports, 18, 525–526
zone transfers, 558–559

DNS Notify
initiating zone transfers, 525
necessity of zone transfers, 518

DNS proxy, 568
DNS Security. See DNSSEC (DNS Security)

DNS servers
caching, 517–518
gTLD servers, 519–520
primary and secondary, 517
response to DNS queries, 565–567
root servers, 518
zones, 516–517

DNS Update, DDNS support for, 567
DNS64

definition of, 939
DNSSEC with, 915
translating DNS from IPv4 to IPv6, 568–569

DNSKEY resource record
definition of, 939
DNSSEC and, 896–897
signed zones and zone cuts, 903

DNSSEC (DNS Security)
canonical orderings and forms, 902–903
definition of, 939
DNS-related attacks and, 571
DNS64 and, 915
DNSKEY resource record in, 896–897
DS (delegation signer) resource record in, 

897–898
NSEC (NextSECure) resource record in, 898–901
operation of, 902
overview of, 894–896
resolver operation example, 903–911
resource records, 896
RRSIG (Resource Record Signature) resource 

record in, 901–902
signed zones and zone cuts, 903
transaction authentication, 911–915

DNSSL (DNS Search List) option, in ND, 422–423
DOI (Digital Object Identifier), 939
Domain hacks, 514
Domain Keys Identified Mail. See DKIM (Domain 

Keys Identified Mail)
Domain Name System. See DNS (Domain Name 

System)
Domain names, DNS Search List option, 422–423
Domain-specific keys (DSRK)

definition of, 940
key derivation in EAP, 838

Domain-specific usage-specific root keys 
(DSUSRKs)

definition of, 940
key derivation in EAP, 838

Domains
DNS and, 19
in DNS name space, 512

Done message, ICMP, 388–390
Don’t Fragment (DF), 939
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DoS (denial-of-service)
definition of, 939
DNS attacks, 571
DTLS (Datagram TLS) protection, 894
IGMP or MLD attacks, 469–470
Internet architecture attacks, 26
system configuration attacks, 292
TCP attacks, 640
TCP timeout/retransmission attacks, 686
types of threats to network communication, 808
UDP attacks, 506

Dotted-decimal notation
IP addresses in, 32, 537
of subnet masks, 39

DPD (delegated path discovery)
certificate validation and, 831
definition of, 940

DPV (delegated path validation)
certificate validation and, 831
definition of, 940

Drive-by attacks, 806
Drop precedence, assigned to datagrams, 191
DS (delegation signer) resource record

definition of, 940
DNSSEC, 897–898

DS (Differentiated Services) field
definition of, 940
ICMP Parameter Problem and, 379
in IP header, 183
in IP protocol, 188–192

DS (distribution service)
definition of, 940
Wi-Fi, 112

DS-Lite (Dual-Stack Lite)
definition of, 940
IPv4/IPv6 translation, 339–340

DSA (Digital Signature Algorithm), 821, 940
DSACK (duplicate SACK) extension

definition of, 940
Eifel Detection Algorithm and, 679
Eifel Response Algorithm and, 681
overview of, 677–679

DSCP (Differentiated Services Code Point), 188–190, 
940

DSL (digital subscriber line)
buffer bloat and, 781
definition of, 940
overview of, 4
PPPoE and, 286–287

DSRK (domain-specific keys)
definition of, 940
key derivation in EAP, 838

DSS (Digital Signature Standard), 821, 940
DST (Destination) address, in Ethernet frame for-

mat, 85
DSUSRKs (domain-specific usage-specific root keys)

definition of, 940
key derivation in EAP, 838

DTCP (Dynamic Tunnel Configuration Protocol), 
154

DTLS (Datagram TLS)
definition of, 940
DoS protection, 894
example of use of, 884–891
handshake protocol, 892–894
overview of, 876–877
record layer, 891–892

Dual-Stack Lite (DS-Lite)
definition of, 940
IPv4/IPv6 translation, 339–340

DUID (DHCP Unique Identifier)
definition of, 940
DHCPDISCOVER message and, 246
types of, 256–257

DupACK spoofing, TCP congestion control attacks, 
785–786

Duplex modes
duplex mismatch, 96
overview of, 94–96

Duplicate ACK threshold (dupthresh), in TCP
in fast retransmit, 667
NewReno algorithm and, 739
packet reordering and, 683

Duplicate acknowledgements, congestion control 
and, 589

Duplicate address detection. See DAD (duplicate 
address detection)

Duplicate SACK. See DSACK (duplicate SACK) 
extension

Dupthresh. See Duplicate ACK threshold 
(dupthresh)

Duration field, in frame transmission, 121
DWORD value, 518
Dynamic Delegation Discovery System. See DDDS 

(Dynamic Delegation Discovery System)
Dynamic DNS (DDNS)

mapping DNS to DHCP addresses, 286
supporting DNS Update, 567

Dynamic Host Configuration Protocol. See DHCP 
(Dynamic Host Configuration Protocol)

Dynamic/private ports, 18
Dynamic Tunnel Configuration Protocol (DTCP), 

154
Dynamic updates, DNS, 555–558
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E
E-mail, PGP (Pretty Good Privacy) encryption for, 

822
EAP (Extensible Authentication Protocol)

attacks related to, 918
definition of, 940
ERP (EAP Re-authentication Protocol), 839
IKE protocol and, 851–852
key derivation, 838
layers of, 836–837
methods, 837–838
network security and, 833–834
packet format, 835
for PPP authentication, 141
request/response messages, 835–836
in Wi-Fi security, 129

EAP-FAST (EAP-Flexible Authentication via Secu-
rity Tunneling), 940

EAP Re-authentication Protocol (ERP), 839, 941
EAP-TTLS (EAP-Tunneled Transport Layer Secu-

rity), 838, 940
EAPoL (EAP over LAN), 833–834, 940
Eavesdropping

link layer attacks, 155
types of threats to network communication, 808

EC2N (Elliptic Curve groups modulo a power 2), 
821, 941

ECC (Elliptic Curve Cryptography), 815, 821
ECC (Error Correcting Code), 579, 941
ECDSA (Elliptic Curve Digital Signature Algo-

rithm), 941
ECE (ECN Echo), 589, 941
Echo Request/Reply (ping) messages

example of broadcasting, 438–439
ICMP, 380–383
in LCP operation, 134
Redirect message and, 374
sending from link-local unicast address, 445
translating ICMPv6 to ICMPv4, 426

ECN-Capable Transport (ECT), 783, 941
ECN Echo (ECE), 589, 941
ECN (Explicit Congestion Notification)

delay-based congestion control and, 777
detecting congestion, 728
ECN-Echo bit, 784
ICMP Parameter Problem and, 379
IP header fields, 183, 188–192
TCP congestion control attacks and, 786
TCP header fields, 782–785

ECP (Elliptic Curve groups modulo a Prime), 821, 941
EDCA (enhanced DCF channel access)

definition of, 941

UPs (user priorities), 123
Wi-Fi mesh and, 130

Edge ports, RSTP (Rapid Spanning Tree Protocol), 
110

Editors, NAT, 315
EDNS0 (Extension format for DNS)

definition of, 941
DNS (Domain Name System), 524–525
DNSSEC, 895–896

EF (Expedited Forwarding), 191, 941
EFO (Extended Flags option)

definition of, 941
Router Advertisement Flags Extension option, 

420–421
Eifel Detection Algorithm, 679–680
Eifel Response Algorithm

handling spurious RTOs in congestion control, 
744–745

responding to spurious transmissions, 680–682
EIFS (extended interframe space), in Wi-Fi

carrier sense and, 121
definition of, 941

Eligible rate estimate (ERE)
definition of, 941
in TCPW congestion control, 779

Elliptic Curve Cryptography (ECC), 815, 821
Elliptic Curve Digital Signature Algorithm 

(ECDSA), 941
Elliptic Curve groups modulo a power 2 (EC2N), 

821, 941
Elliptic Curve groups modulo a Prime (ECP), 821, 941
Elliptic curves, 815
Embedded devices, setting IPv4 addresses for, 178
EMSKs (extended MSKs)

definition of, 941
key derivation in EAP, 838

Encapsulating Security Payload. See ESP (Encapsu-
lating Security Payload)

Encapsulation
definition of, 10
of ICMP messages within IP datagrams, 354–355
IGMP/MLD, 453–454
implementation and design and, 10–13
TCP encapsulation in IP datagrams, 587
TCP/IP suite and, 16–17
tunnel encapsulation limits in IPv6, 198
of UDP datagram, 474

Encryption. See also Cryptography
MPPE (Microsoft Point-to-Point Encryption), 145
spoofing attacks and, 226
TCP-AO (Authentication Option), 612
in Wi-Fi security, 129
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End system, for protocol suites, 12
End-to-end argument, in protocol architecture, 6
End-to-end checksum, in UDP, 473, 475
Endpoint discriminator, LCP options, 138
Endpoints, TCP, 588, 595–596
Enforcement Point (EP), in PANA, 839, 941
Enhanced DCF channel access. See EDCA (enhanced 

DCF channel access)
ENUM records

definition of, 941
DNS resource record types, 551–552

Enumeration attacks, 919
EOL (End of List), TCP header options, 605
EP (Enforcement Point), in PANA, 941
Ephemeral port numbers, 18
EQM (equal modulation)

definition of, 941
higher throughput (802.11n) support and, 127

Equation-based rate control, 768
ERE (eligible rate estimate)

definition of, 941
in TCPW congestion control, 779

ERP (EAP Re-authentication Protocol), 839, 941
Error control, in protocol architecture, 7–8
Error Correcting Code (ECC), 579, 941
Error messages, ICMP

destination unreachable, 364–372
extended and multipart messages, 363–364
overview of, 309, 361–363
Parameter Problem message, 379–380
Redirect message, 372–375
time exceeded message, 375–378
translating ICMPv4 to ICMPv6, 424–425
translating ICMPv6 to ICMPv4, 427

ESN (Extended Sequence Number), in IPsec, 856, 942
ESP (Encapsulating Security Payload)

definition of, 942
ESP-NULL, WESP, and traffic visibility, 863–864
in IPSec, 217, 841
overview of, 858
transport and tunnel modes, 858–863

ESP-NULL, 863–864
ESS (extended service set), Wi-Fi, 112
ESSID (extended service set identifiers)

definition of, 942
Wi-Fi, 112

Established connections, TCP, 596
ESTABLISHED state in TCP

half-open connections and, 628
incoming connection queue and, 636
simultaneous open and close transitions, 625
TCP port numbers and, 632–634
TCP state transitions, 618

Ethernet (IEEE 802.3)
autonegotiation in, 95
converting IP multicast addresses to MAC 

addresses, 442–444
flow control, 98
frames, 84–86
frames sizes, 88–89
integrity checking on frames, 86–88
LAN/MAN standards, 82–84
MAC addresses, 16
MTU (maximum transmission unit), 506
overview of, 80–82
power saving, 96–97
speeds, 81
supporting broadcasting at link layer, 437

Ethernet interfaces, Promiscuous mode, 155
Ethernet type field, 16
ethtool, Linux program for checking full duplex 

support, 94
EUI (extended unique identifier)

definition of, 942
formats of IPv6 addresses, 44–45

EV-DO (Evolution, Data Optimized (or Only)), 942
EV (Extended Validation), 942
Exchange of database records. See Zone transfers
Expedited Forwarding (EF), 191, 941
Experimental category, RFCs and, 23
Experimental Values, neighbor discovery in IPv6, 

423
Explicit Congestion Notification. See ECN (Explicit 

Congestion Notification)
Explicit sending, in congestion control, 583
Explicit signaling, in congestion control, 728
Exponential backoff

binary, 650
SWS (silly windows syndrome) and, 713
in TCP connection timeout, 604

Extended and multipart messages, ICMP, 363–364
Extended Flags option (EFO)

definition of, 941
Router Advertisement Flags Extension option, 

420–421
Extended interframe space (EIFS)

carrier sense and, 121
definition of, 941

Extended MSKs (EMSKs)
definition of, 941
key derivation in EAP, 838

Extended Sequence Number (ESN), in IPsec, 856, 942
Extended service set (ESS), Wi-Fi, 112
Extended service set identifiers (ESSID)

definition of, 942
Wi-Fi, 112
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Extended unique identifier (EUI)
definition of, 942
formats of IPv6 addresses, 44–45

Extended Validation (EV), certificates, 942
Extensibility, DNS, 567–568
Extensible Authentication Protocol. See EAP (Exten-

sible Authentication Protocol)
Extensible Markup Language (XML)

common use with Web pages, 338
definition of, 962

Extensible Messaging and Presence Protocol 
(XMPP), 333, 962

Extension data structure, appended to ICMP mes-
sages, 363–364

Extensions
DNS. See EDNS0
identifiers, 44
IP header, 182–183
IPv6 header, 194–196
TLS, 883–884

Extranets, 20

F
F-RTO (Forward-RTO Recovery), in TCP

definition of, 942
for detecting spurious transmissions, 680

FACK (forward acknowledgment), in TCP
definition of, 942
for TCP congestion control, 741–742

Fast Recovery algorithm, 737–738
Fast retransmit

event, 761
example of, 668–671
introduction to, 647
local congestion and, 759–762
overview of, 667–668
SACK recovery and, 757–759

FAST TCP algorithm, 778–779
Fate sharing, in protocol architecture, 6–7
FCFS (first-come-first-served)

definition of, 942
packet processing, 4

FCS (Frame Check Sequence)
definition of, 942
integrity checking in Ethernet frames, 88
verifying message integrity, 817

FEC (forward error correction)
definition of, 942
higher throughput (802.11n) support and, 128

FIFO (first-in-first-out)
definition of, 942
queue management and, 782
scheduling packets, 4

File (Boot File Name) field, DHCP/BOOTP message 
format, 238–239

File Transfer Protocol. See FTP (File Transfer 
Protocol)

Filter-mode-change records, IGMP/MLD group 
membership reports, 457

Filters
host address filtering, 449–451
IGMP/MLD processing and, 456
iptables, 335
NAT, 312–313
packet-filtering firewalls, 300
web proxies operating as content filters, 302

FIN segments, in TCP
active and passive closers and, 597–598
connection completion and, 766
definition of, 942
half-close operation and, 598–599
half-open connections and, 628
sequence numbers in, 603

Fingerprinting, TCP keepalive attacks, 802
Fingerprints, or digest of message, 817–818
FIN_WAIT_1 state, TCP state transitions, 618, 625
FIN_WAIT_2 state, TCP state transitions, 618, 625
Firewalls

attacks related to, 345–346
configuring, 334
direct interaction with, 338–339
IP addresses and, 67
overview of, 300
packet-filtering firewalls, 300–301
proxy firewalls, 301–303
rules for packet-filtering, 335–336
summary and references, 345–346

First-come-first-served (FCFS)
definition of, 942
packet processing, 4

First-in-first-out. See FIFO (first-in-first-out)
Flags

DHCP/BOOTP message format, 236
GRE tunnels and, 150
IPv6 multicast addresses, 57, 58

Flooding attacks, 102, 428
Flow control. See also Congestion control

link layer and, 98
in protocol architecture, 7–8
rate-based and window-based, 583
in UPD server design, 505

Flow control, in TCP
example of dynamic window size adjustment 

and flow control, 705–708
large buffers and auto-tuning, 715–719
overview of, 700–701
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Flow control, in TCP, continued
sliding window protocol, 701–704
SWS (silly windows syndrome), 708–715
TCP header and, 590
zero windows and TCP persistent timer, 704–705

FMIP (Mobile IP with Fast Handovers), 388, 942
Foreign IP addresses

TCP port numbers and, 632
TCP server restrictions on foreign endpoints, 

635–636
Forgery, message authentication codes protecting 

against, 818
Forward acknowledgment (FACK), in TCP

definition of, 942
for TCP congestion control, 741–742

Forward error correction (FEC)
definition of, 942
higher throughput (802.11n) support and, 128

Forward-RTO Recovery (F-RTO)
definition of, 942
for detecting spurious transmissions, 680

Forwarding actions, IP forwarding, 209–210
Forwarding datagrams, 14
Forwarding tables, IP forwarding, 208–209
Four-message exchange operations, of DHCPv6, 

265–266
FQDN (fully qualified domain names)

definition of, 942
DHCPv6 and, 260
vs. unqualified domain names, 515

Fraggle attacks, UDP-related attacks, 506
Fragment header, IPv6 protocol, 203–208
Fragment number, data frame fragmentation, 117
Fragment Offset field

in IPv6 Fragment header, 203–205
in UDP fragmentation, 489

Fragmentation
of datagrams, 14
of IGMP packets, 470
of Internet traffic, 506
IP fragmentation. See IP fragmentation
UDP/IPv4, 488–492
of Wi-Fi frames, 116–119

Frame Check Sequence. See FCS (Frame Check 
Sequence)

Frame Control Word
in MPDU, 113
PSM (power save mode) and, 119
Retry bit and, 116

Frame Relay, best-effort delivery, 7
Frames, Ethernet

802.3 standard, 84–86
ARP frame format, 170–171

ARP reply frames, 168
ARP request frames, 167, 173–174
integrity checking on, 86–88
link-layer PDUs, 14
payload of, 16
sizes, 88–89

Frames, PPP, 131–132
Frames, Wi-Fi

control frames, 115–116
data frames, 116–119
management frames, 113–115
overview of, 113

FreeBSD
broadcast addresses, 441
incoming connection queue and, 638
standards and, 24

Frequencies, Wi-Fi, 124
Freshness property, authentication protocols and, 816
FTP (File Transfer Protocol)

definition of, 942
NAT and, 304
TCP/IP suite and, 13

Full duplex
support, 94–95
TCP service to application layer, 587

Fully qualified domain names. See FQDN (fully 
qualified domain names)

G
Galois/Counter Mode. See GCM (Galois/Counter 

Mode)
Galois MAC (GMAC), 819–820, 943
Gateway or Router IP Address (Giaddr) field

DHCP/BOOTP message format, 238
LDRAs and, 271

Gateways
application layer. See ALGs (application layer 

gateways)
between packet-switching networks, 1
between protocols, 20
RED (Random Early Detection) gateways, 783–785

GCKSs (group controller/key servers)
definition of, 942
multicast support in IPSec, 864–865

GCM (Galois/Counter Mode)
AES and, 819
definition of, 942
operating modes of encryption algorithms, 820

GDOI (Group Domain of Interpretation), 942
GENA (General Event Notification Architecture), 

338, 942
Generator polynomial, CRC and, 86–87
Generic Attribute Registration Protocol (GVRP), 943
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Generic Multicast Registration Protocol (GMRP), 943
Generic Routing Encapsulation. See GRE (Generic 

Routing Encapsulation)
Generic Security Services API (GSS-API), 943
Generic top-level domains (gTLD), 512–514, 943
GI (guard interval)

definition of, 942
higher throughput (802.11n) support and, 127

Giaddr (Gateway or Router IP Address) field
DHCP/BOOTP message format, 238
LDRAs and, 271

GKM (group key management)
definition of, 943
multicast support in IPSec, 864

Global Internet. See Internet
Global scope

configuring global addresses with SLAAC, 278
of IPv6 addresses, 43
of multicast addresses, 53

GLOP addressing, IP multicast, 54–56
GMAC (Galois MAC), 819–820, 943
GMRP (Generic Multicast Registration Protocol), 943
GPAD (Group PAD), 864, 943
Granularity, of TCP clock, 654
Gratuitous ARP, 175–176
GRE (Generic Routing Encapsulation)

definition of, 943
establishing tunneling with, 149–153
link layer attacks and, 156
NAT and tunneled packets, 310

Greenfield mode, 802.11n operating modes, 128
Group addresses. See Multicast addresses
Group controller/key servers (GCKSs)

definition of, 942
multicast support in IPSec, 864–865

Group Domain of Interpretation (GDOI), 942
Group key management (GKM)

definition of, 943
multicast support in IPSec, 864

Group members (Group Member Part), IGMP/MLD 
processing by, 454–457

Group membership
displaying IP group membership, 446–447
IGMP membership reports, 455

Group PAD (GPAD), 864, 943
Group Secure Association Key Management 

(GSAKMP), 943
Group security associations (GSAs)

definition of, 943
multicast support in IPSec, 864

Group SPD (GSPD), 943
GSAKMP (Group Secure Association Key Manage-

ment), 943

GSAs (group security associations)
definition of, 943
multicast support in IPSec, 864

GSPD (Group SPD), 943
GSS-API (Generic Security Services API), 943
gTLD (generic top-level domains), 512–514, 943
Guard interval (GI)

definition of, 942
higher throughput (802.11n) support and, 127

GVRP (Generic Attribute Registration Protocol), 943

H
HAIO (Home Agent Information Option), 943
Hairpinning (HP), 314, 486
Half-close operation, TCP connections, 598–599
Half-open connections, keepalives detecting, 794
Handoff information, DHCP, 275
Handover Key Request/Reply options, in ND, 

422–423
Handshaking protocols

DTLS (Datagram TLS), 892–894
three-way handshake in TCP, 597, 640
TLS, 880–883

HAs (home agents)
definition of, 943
Home Agent Information option in ND, 412–413
ICMP Home Agent Discovery Request message, 

386
ICMP Mobile Prefix Solicitation message, 

387–388
in Mobile IP, 216–217

Hash-based addresses (HBAs), 405
Hash functions

CGAs (cryptographically generated addresses) 
and, 404–405

cryptographic, 817–818
initial sequence numbers in TCP and, 601–602
TCP-AO (Authentication Option), 612

HBAs (hash-based addresses), 405
HC (hybrid coordinator), in HCCA, 123
HCCA (HFCA-controlled channel access), 123
HCF (hybrid coordination function)

definition of, 943
options for controlling sharing of wireless 

medium, 120
QoS and, 122–123

HDLC (High-Level Data Link Control)
Address and Control fields, 132
definition of, 943
LCP links based on, 131

Header compression, in PPP
CCP (Compression Control Protocol), 139
PPP (Point-to-Point Protocol), 142–143
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Header, ICMP
ICMP Parameter Problem and, 379–380
Redirected Header option in ND, 411

Header, IP
CE (Congestion Experienced) indicator in, 

783–784
Checksum field, 186–188
DS and ECN fields, 188–192
extensions, 182–183
header compression, 142–143
IPv6 extensions, 194–196
IPv6 Fragment header, 203–208
IPv6 RH (Router header), 200–203, 955
Mobile IP, 216
overview of, 183–186

Header, TCP
connection options, 605–606
fields in, 588–590
MSS (Maximum Segment Size) option, 606–607
PAWS (Protection against Wrapped Sequence 

Numbers), 610–611
SACK (selective acknowledgement) option, 607
TCP-AO (Authentication Option), 612
Timestamps option, 608–610
UTO (User Timeout) option, 611–612
WSCALE (Window Scale) option, 608

Header, UDP, 474–476, 481–482
HELD (HTTP-enabled Location Delivery)

definition of, 943
location information in DHCP, 274

Hexadecimal notation
expressing IP addresses in, 32–33
IPv6 addresses in, 537

HFCA-controlled channel access (HCCA), 123
Hierarchical routing, 48
High-Level Data Link Control. See HDLC (High-

Level Data Link Control)
High-speed environments, congestion control in, 770
High-Speed Packet Access (HSPA), 944
High Throughput (HT), 128, 944
HighSpeed TCP (HSTCP), 770–772, 944
Hijacking attacks

firewalls and NATs and, 345
TCP-related attacks, 641

HIP (Host Identity Protocol)
definition of, 943
Identifier/locator separating protocols, 70

Historic category, RFCs and, 23
HK-LIFETIME, Handover Keys, 422–423
Hlen (HW Len) field, DHCP/BOOTP message 

format, 236
HMAC (keyed-hash message authentication code), 

818–819, 943

HoA (home address)
definition of, 944
of IPv6 node, 199
in Mobile IP, 216–218

Hole punching, in NAT traversal, 317
Home address. See HoA (home address)
Home Agent Discovery Request message, ICMP, 386
Home Agent Information Option (HAIO), 943
Home Agent Information option, in ND, 412–413
Home agents. See HAs (home agents)
Home Test (HoT)

definition of, 944
mobility messages in RRP, 218–219

Home Test Init (HoTI)
definition of, 944
mobility messages in RRP, 218–219

Hop-by-hop
IP forwarding, 209
protocols, 12

Hop-by-hop options (HOPOPTs)
definition of, 944
IPv6, 196

Hop Limit field
ICMP Time Exceeded message, 375
IPv6, 199
MRD (Multicast Router Discovery) and, 394
ND messages and, 396

HOPOPTs (hop-by-hop options)
definition of, 944
IPv6, 196

Hops field, DHCP/BOOTP message format, 236
Host addresses, 35
Host fields, in IP addresses, 37
Host Identity Protocol (HIP)

definition of, 943
Identifier/locator separating protocols, 70

Host models, IP
address selection, 222–223
destination address selection algorithm, 224–225
overview of, 220–222
source address selection algorithm, 223–224

Host names, 19
Host number, in IP addresses, 35
Host Requirements RFCs, 23
Host unreachable message, ICMP, 364
Hosts

ARP request to nonexistent, 173–174
host address filtering, 449–451
keepalives detecting state of peer host, 795
server host crashes and does not reboot (keepal-

ive scenarios), 796
server host crashes and reboots (keepalive sce-

narios), 797–799
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server host unreachable (keepalive scenarios), 
799–800

in small networks, 11–13
HoT (Home Test)

definition of, 944
mobility messages in RRP, 218–219

HoTI (Home Test Init)
definition of, 944
mobility messages in RRP, 218–219

HP (Hairpinning), 314, 486
HSPA (High-Speed Packet Access), 944
HSTCP (HighSpeed TCP), 770–772, 944
HT (High Throughput), 128, 944
HTML (Hyper-Text Markup Language), 944
HTTP-enabled Location Delivery (HELD)

definition of, 943
location information in DHCP, 274

HTTP (Hypertext Transfer Protocol)
definition of, 944
proxy firewalls, 302–303
well-known port for, 18

HTTP over SSL/TLS (HTTPS), 944
HTTP using UDP (HTTPMU), 338, 944
HTTPMU (HTTP using UDP), 338, 944
HTTPS (HTTP over SSL/TLS), 944
Htype (HW Type) field, DHCP/BOOTP message 

format, 236
HWRP (Hybrid Wireless Routing Protocol)

definition of, 944
Wi-Fi mesh and, 130

Hybrid coordination function. See HCF (hybrid 
coordination function)

Hybrid coordinator (HC), in HCCA, 123
Hybrid cryptosystems, 812
Hybrid Wireless Routing Protocol (HWRP)

definition of, 944
Wi-Fi mesh and, 130

Hyper-Text Markup Language (HTML), 944
Hypertext Transfer Protocol. See HTTP (Hypertext 

Transfer Protocol)

I
IA (Identity Association)

definition of, 944
in DHCPv6, 255–256

IAB (Internet Architecture Board), 22, 944
IAID (Identity Association Identifier)

definition of, 944
in DHCP, 246, 255–256

IANA (Internet Assigned Numbers Authority)
allocation of IP addresses and, 62
allocation of IPv6 multicast addresses, 58
definition of, 944

IKE registry of values, 849
OUI (Organizationally Unique Identifier), 442–444
port number assignments, 18, 632
registry for Sec values, 405
registry for SRV values, 548–549
URI, 553

IANA Service Name and Transport Protocol Port 
Number (ISPR), 548

IBSS (independent basic service set)
definition of, 944
Wi-Fi, 112

ICANN (Internet Corporation for Assigned Names 
and Numbers)

definition of, 944
DNSSEC zones list, 904
TLD management, 512

ICE (Interactive Connectivity Establishment), 
332–334, 944

ICMP fix-up, 309
ICMP (Internet Control Message Protocol)

Advertisement Interval option in ND, 412
attacks related to, 428–429
Certificate option in ND, 417
CGA options in ND, 414–415
definition of, 944
destination unreachable, 364–372
DNS Search List option in ND, 422–423
Echo Request/Reply messages, 380–383
encapsulation of messages within IP datagrams, 

354–355
error messages, 361–363
Experimental Values in ND, 423
extended and multipart messages, 363–364
Handover Key Request/Reply options in ND, 

422–423
Home Agent Discovery Request message, 386
Home Agent Information option in ND, 412–413
ICMPv4 messages, 356–357
ICMPv6 messages, 358–360
IND (Inverse Neighbor Discovery), 401–402
introduction to, 353–354
IP Address/Prefix option in ND, 417–418
Link-Layer Address (LLA) option in ND, 418–419
MIPv6 fast handover messages, 388
MLD extension messages, 390–394
Mobile Prefix Solicitation message, 387–388
MRD (Multicast Router Discovery), 394–395
MTU option in ND, 411–412
NAT and, 309
ND options, 407–409
ND support, 395–396
Nonce option in ND, 416–417
NS (Neighbor Solicitation) message, 398–401
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ICMP (Internet Control Message Protocol), continued
NUD (Neighbor Unreachability Detection), 

402–403
Parameter Problem message, 379–380
Prefix Information option in ND, 410–411
processing messages, 360–361
queries/informational messages, 380
Recursive DNS Server option in ND, 420
Redirected Header option in ND, 411
redirection of messages, 372–375
Route Information option in ND, 420
Router Advertisement Flags Extension option in 

ND, 420–421
router solicitation and advertisement messages 

in ICMPv4, 383–385
router solicitation and advertisement messages 

in ICMPv6, 396–398
RSA Signature option in ND, 415–416
SEND (Secure Neighbor Discovery), 403–407
sending broadcast datagrams, 439
Source Link-Layer Address option in ND, 

409–410
Source Quench messages, 785
Source/Target Address List options in ND, 

413–414
summary and references, 430–434
TCP-related attacks, 641–642
time exceeded message, 375–378
Timestamp option in ND, 416
translating ICMPv4 to ICMPv6, 424–426
translating ICMPv6 to ICMPv4, 426–428
Trust Anchor option in ND, 417
use in layers of TCP/IP suite, 15

ICS (Internet Connection Sharing)
assignment of unicast addresses, 67
definition of, 944
NAT in Windows OS context, 337

ICV (Integrity Check Value), 856, 945
ID (identification payload), in IKE, 945
Id/loc split protocols, 70
Identification field

IP header fields, 185, 203–204
in UDP fragmentation, 489

Identification (ID payload), in IKE, 945
Identification messages, in LCP operation, 134
Identifier/locator separating protocols, 70
Identifiers

in demultiplexing, 11
IP addresses as, 70
in multiplexing, 10

Identity Association (IA)
definition of, 944
in DHCPv6, 255–256

Identity Association Identifier (IAID)
definition of, 944
in DHCP, 246, 255–256

IDN ccTLS (Internationalized ccTLDs), 512
IDNs (internationalized domain names), 512, 945
IEEE (Institute of Electrical and Electronics 

Engineers)
definition of, 945
Ethernet. See Ethernet (802.3)
interface standards, 44
LAN/MAN standards (802), 82–84
link aggregation (802.1AX), 92–93
Logical Link Control (802.2), 84
Multiple Registration Protocol (802.1ak), 111
network security (802.1x), 833–834
quality of service (802.1p), 90
standards of, 24
for VLANs (802.1q), 89–92
wireless (802.11). See Wi-Fi (wireless 

fidelity-802.11)
IESG (Internet Engineering Steering Group), 22–23, 

945
IETF (Internet Engineering Task Force)

definition of, 945
for Internet standards, 22–23
ROAD (ROuting and ADdressing) group, 47
securing IPv6 Neighbor Discovery, 292

ifconfig command, in UNIX and Linux
setting/finding broadcast addresses, 437
viewing active multicast addresses, 66
viewing format of link-local IPv6 address, 45–46

IGD (Internet Gateway Device), in UPnP
definition of, 945
NAT and, 338–339

IGDDC (Internet Gateway Device Discovery and 
Control), 337

IGMP (Internet Group Management Protocol)
attacks related to, 469–470
counters and variables, 467–468
definition of, 945
examples, 459–464
lightweight IGMP3, 464–465
MLD as translation of IGMPv3 to IPv6, 390
MRD (Multicast Router Discovery) and, 394
in multicast addressing, 15
overview of, 451–453
processing by group members (Group Member 

Part), 454–457
processing by multicast routers (Multicast Router 

Part), 457–459
robustness of, 465–467
snooping, 468–469
summary and references, 470–472



ptg999

Index 985

IHL (Internet Header Length), in IPv4
attacks related to, 919
definition of, 945
ICMP Parameter Problem and, 379
IP header and, 183

IIDs (interface identifiers)
as basis for unicast IPv6 addresses, 43–46
definition of, 945
for link-scoped IPv6 addresses, 58

IKE (Internet Key Exchange), in IPsec
algorithm selection and application, 849–850
BTNS (Better-than-Nothing Security), 852
CREATE_CHILD_SA exchange, 852–853
definition of, 945
EAP and, 851–852
example using, 867–876
IKE_AUTH exchange, 850–851
IKE_SA_INIT exchange, 846–847
INFORMATIONAL exchange, 853–854
KE (Key Exchange) and Ni, Nr (Nonce) payloads, 

848
message formats, 844–846
MOBIKE (Mobile IKE), 854
N (Notification) and CP (Configuration) pay-

loads, 849
NAT updates and, 866
overview of, 842–843
SA (Security Association) payloads and propos-

als, 847–848
traffic selectors, 851

IKE_AUTH exchange, 850–851, 871–874
IKE_SA_INIT exchange, 846–847, 867–870
IMAP (Interactive Mail Access Protocol)

definition of, 945
SRV record providing IMAP service, 549
well-known port for, 18

IMAPS (IMAP over SSL/TLS), 18, 945
Implementation architecture

design and, 8
layering, 8–10
multiplexing, demultiplexing, and encapsula-

tion, 10–13
Implementations, TCP/IP suite, 24–25
Implicit sending, in congestion control, 583
IN (Internet class name), 945
Incoming connection queue, TCP servers, 636–640
Incremental zone transfer (IXFR) messages, in DNS, 

561, 946
IND (Inverse Neighbor Discovery)

definition of, 945
neighbor discovery in IPv6, 401–402
Source/Target Address List options in ND, 

413–414

Independent basic service set (IBSS)
definition of, 944
Wi-Fi, 112

Indication transactions, STUN, 320
Indirect delivery, example of IP forwarding, 212–215
Industrial, Scientific, and Medical (ISM), 124
Information disclosure attacks, ICMP and, 428
Information security. See also Security, 806
Information theory, 579
Informational category, RFCs and, 23
INFORMATIONAL exchange, IKE protocol, 

853–854, 873, 875
Informational messages, ICMP, 309
Initial sequence number. See ISN (initial sequence 

number)
Initial window (IW) value

definition of, 946
in slow start algorithm, 732

Institute of Electrical and Electronics Engineers 
(IEEE). See IEEE (Institute of Electrical and 
Electronics Engineers)

Integrated Services Digital Network (ISDN), 946
Integrity Check Value (ICV), 856, 945
Integrity, in CIA triad, 806
Integrity protection, AH (Authentication Header), 

856, 858
Inter-Packet Gap (IPG), in Ethernet, 89, 945
Inter-Switch Link (ISL)

definition of, 946
VLAN trunking, 90

Interactive communication, TCP data flow, 692–695
Interactive Connectivity Establishment (ICE), 

332–334, 944
Interactive data, in TCP communication, 692
Interactive keystrokes, TCP and, 692–693
Interactive Mail Access Protocol. See IMAP (Interac-

tive Mail Access Protocol)
Interface address, IP addresses and, 35
Interface identifiers. See IIDs (interface identifiers)
Interface, in IP forwarding, 209
Intermediate system, for protocol suites, 12
Intermediate System to Intermediate System (IS-IS), 

946
International Organization for Standardization 

(ISO), 8–9
International Telecommunication Union. See ITU 

(International Telecommunication Union)
Internationalized ccTLDs (IDN ccTLS), 512
Internationalized domain names (IDNs), 512, 945
Internet

attacks related to Internet architecture, 25–26
internationalization of, 512
overview of, 19–20
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Internet, continued
TCP/IP suite forming basis of, 2
UDP in, 506–507
WWW compared to, 2–3

Internet Architecture Board (IAB), 22, 944
Internet Assigned Numbers Authority. See IANA 

(Internet Assigned Numbers Authority)
Internet checksum

algorithm for computing Internet-related check-
sum, 185

mathematics of, 187–188
overview of, 186–187

Internet class name (IN), 945
Internet Connection Sharing. See ICS (Internet Con-

nection Sharing)
Internet Control Message Protocol. See ICMP (Inter-

net Control Message Protocol)
Internet Corporation for Assigned Names and Num-

bers. See ICANN (Internet Corporation for 
Assigned Names and Numbers)

Internet Engineering Steering Group (IESG), 22–23, 
945

Internet Engineering Task Force. See IETF (Internet 
Engineering Task Force)

Internet Gateway Device Discovery and Control 
(IGDDC), 337

Internet Gateway Device (IGD)
definition of, 945
NAT and, 338–339

Internet Group Management Protocol. See IGMP 
(Internet Group Management Protocol)

Internet Header Length. See IHL (Internet Header 
Length)

Internet Key Exchange. See IKE (Internet Key 
Exchange)

Internet Protocol Control Protocol (IPCP)
MPPE and, 145
types of NCPs used on PPP links, 141

Internet Registry Information Service (IRIS), 554, 946
Internet Research Task Force (IRTF), 23, 946
Internet Security Association and Key Management 

Protocol (ISAKMP), 867, 946
Internet Service Providers. See ISPs (Internet Service 

Providers)
Internet Society (ISOC), 23, 946
Internetwork layer. See Network (internetwork) layer
Intra-Site Automatic Tunnel Addressing Protocol 

(ISATAP), 440, 946
Intranets, 20
Inverse Neighbor Discovery. See IND (Inverse 

Neighbor Discovery)
IP address pooling behavior, NAT and, 312
IP Address/Prefix option, in ND, 417–418

IP addresses
Address realms, 299
allocation of, 62
allocation of multicast addresses, 65
allocation of unicast addresses, 62–65
anycast addresses, 62
assigning unicast addresses, 65–66
attacks involving, 70–71
broadcast addresses, 42–43
CIDR, 47–48
classful addressing, 34–36
converting IP multicast addresses to MAC 

addresses, 442–444
definition of, 14
in DHCP/BOOTP message format, 237–238
expressing, 32–34
foreign IP address restrictions in server design, 

502–503
host names and, 19
introduction to, 31–32
IPv4/IPv6 translators, 52–53
IPv4 multicast addresses, 54–57
IPv6 addresses and interface identifiers, 43–46
IPv6 multicast addresses, 57–61
multicast addresses, 53–54
multiple addresses in UDP server design, 

501–502
multiple providers/multiple networks/multiple 

addresses, 68–70
route aggregation, 48–50
single provider/multiple networks/multiple 

addresses, 67–68
single provider/no network/single address, 

66–67
single provider/single network/single address, 67
spanning IP address families in server design, 

504
special use addresses, 50–52
spoofing attacks and, 226
structure of, 34
subnet addressing, 36–39
subnet masks, 39–41
summary and references, 71–77
TCP/IP suite and, 19
TCP server restrictions on local, 634–635
unicast and broadcast, 15
in UPD server design, 499–501
VSLM (variable-length subnet masks), 41–42

IP datagrams. See also Packets
fragmenting, 184
of ICMP messages within IP datagrams, 354–355
LCP (Link Control Protocol) and, 131–137
PPP and, 130–131
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source and destination IP addresses in, 186
in TCP/IP suite, 14

IP forwarding
direct delivery, 210–212
forwarding actions, 209–210
forwarding table, 208–209
indirect delivery, 212–215
overview of, 208

IP fragmentation
example of UPD/IPv4 fragmentation, 488–492
interaction between IP fragmentation and ARP/

ND, 496–497
of IP datagrams, 184
IP performing, 148
IPv6 Fragment header, 203–208
overview of, 488
reassembly timeout, 492
UDP-related attacks, 506

IP (Internet Protocol)
address selection by hosts, 222–223
attacks, 226
best-effort delivery, 7
bidirectional tunneling in mobile IP, 216–217
destination address selection algorithm, 224–225
discussion of issues in mobile IP, 220
DS field and ECN, 188–192
examples of forwarding, 210–215
forwarding. See IP forwarding
Fragment header, 203–208
header. See Header, IP
host models, 220–222
ICMP addressing limits in, 353
Internet checksum, 186–188
introduction to, 181–183
IPv6 extension headers, 194–196
IPv6 options, 196–199
mobile IP. See MIP (Mobile IP)
options, 192–194
RO (route optimization) in mobile IP, 217–219
Routing header, 200–203
source address selection algorithm, 223–224
summary and references, 226–231

IP masquerading
ipchains command for configuring, 345
NAT in Linux context, 337

IP routers, 20
ipchains command, configuring IP masquerading 

in Linux, 345
ipconfig command in Windows

manual management of DHCP information, 
250–251

manual management of DHCPv6 information, 
265–266

IPCP (Internet Protocol Control Protocol), in PPP
MPPE and, 145
types of NCPs used on PPP links, 141

IPG (Inter-Packet Gap), in Ethernet, 89, 945
IPSec (IP Security)

attacks related to, 918
Authentication Header. See AH (Authentication 

Header)
definition of, 945
Encapsulating Security Payload. See ESP (Encap-

sulating Security Payload)
example using IKE, 867–876
GRE tunnels and, 150
Internet Key Exchange protocol. See IKE (Internet 

Key Exchange)
L2TP/IPSec, 865
layer 3 security with, 840–842
multicast support, 864
NAT traversal, 865–867

iptables, 335
IPv4 addresses

allocation of multicast addresses, 65
allocation of unicast addresses, 62–65
configuring with SLAAC, 276
example of subnet addressing, 37
examples of subnet masks, 39
expressing, 32–33
foreign IP address restrictions in server design, 

502–503
IPv4-converted addresses, 341
IPv4-embedded IPv6 address, 52
IPv4/IPv6 translators, 52–53
IPv4-translatable addresses, 341
local address restrictions in UDP server design, 

500–501
multicast addresses, 54–57
multiple addresses in UDP server design, 

501–502
multiple servers per port in UPD server design, 

503–504
setting for embedded devices, 178
spanning IP address families in UDP server 

design, 504
special-use addresses, 50–51
tunneling IPv6 packets over UDP/IPv4 packets, 

154
using ARP to map to hardware addresses, 165

IPv4/IPv6 translation
DS-Lite (Dual-Stack Lite), 339–340
IPv4-converted and IPv4 translatable addresses, 

341–342
NAT and ALG for, 340–345
overview of, 340–341
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IPv4/IPv6 translation, continued
stateful translation, 344–345
stateless translation, 342–344

IPv4 protocol
ARP and, 13
Checksum field, 186–188
computing Internet checksum, 186–187
direct delivery with, 167–169
DS and ECN fields, 188–192
encapsulation of ICMP messages in, 354–355
header, 182–183
header fields, 183–186
ICMP messages related to, 356–357
ToS (Type of Service) byte in, 188–189
translation to/from IPv6. See IPv4/IPv6 

translation
tunneling IPv6 through, 482–487

IPv6 addresses
allocation of multicast addresses, 65
allocation of unicast addresses, 62–65
configuring global addresses with SLAAC, 278
configuring with SLAAC, 276–277
DAD (Duplicate Address Detection), 277–278
examples of subnet masks, 40
expressing, 32–34
interface identifiers and, 43–46
IPv4/IPv6 translators, 52–53
lifecycle of, 252–253
multicast addresses, 57–61
multiple servers per port in UPD server design, 

503–504
spanning IP address families in UDP server 

design, 504
special-use addresses, 51–52
tunneling IPv6 packets over UDP/IPv4 packets, 154
ULAs (Unique Local IPv6 Unicast Addresses), 225
wildcard address, 632

IPv6 protocol
Checksum field, 186–188
DS and ECN fields, 188–192
encapsulation of ICMP messages in, 354–355
extension headers, 194–196
Fragment header, 203
header, 182–183
header fields, 183–186
ICMP messages related to, 358–360
jumbogram support, 481
NAT and, 310–311
neighbor discovery. See ND (Neighbor Discovery 

Protocol)
options, 196–199
Rapid Deployment (6rd), 339, 933
Routing header, 200–203

Traffic Class byte in, 188–189
translating to/from IPv4. See IPv4/IPv6 

translation
tunneling through IPv4 networks, 482–487
UDP and, 481–482

IPv6 Remote-ID, DCHP relay agents, 268
IPV6CP (IPv6 Control Protocol), in PPP, 141, 945
IRIS (Internet Registry Information Service), 554, 946
IRTF (Internet Research Task Force), 23, 946
IS-IS (Intermediate System to Intermediate System), 

946
ISAKMP (Internet Security Association and Key 

Management Protocol), 867, 946
ISATAP (Intra-Site Automatic Tunnel Addressing 

Protocol), 440, 946
ISDN (Integrated Services Digital Network), 946
ISL (Inter-Switch Link)

definition of, 946
VLAN trunking, 90

ISM (Industrial, Scientific, and Medical), 124
ISN (initial sequence number)

definition of, 946
SYN segment containing, 597
in TCP connection establishment, 601–602
TCP header and, 589

ISO (International Organization for Standardiza-
tion), 8–9

ISOC (Internet Society), 23, 946
ISPR (IANA Service Name and Transport Protocol 

Port Number), 548
ISPs (Internet Service Providers)

ACs (access concentrator), 287
allocation of IP addresses and, 32, 62–63
definition of, 946
MTU (maximum transmission unit), 494

Iterative servers, 21
ITU (International Telecommunication Union)

definition of, 946
standards organizations, 24
X.509 standard. See X.509 standard

IW (initial window) value, in TCP
definition of, 946
in slow start algorithm, 732

iwconfig command, setting Wi-Fi control frame 
variables, in UNIX and Linux, 115

IXFR (incremental zone transfer) messages, in DNS, 
561–563, 946

J
Jacobson, V., 652–654, 731
Jumbograms

IPv6 options for, 198
IPv6 supporting, 481
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K
Kaminsky attacks, DNS-related, 572
Kamoun, F., 48
Karn’s algorithm, 655
KDF (key derivation function), 815
KE (Key Exchange)

definition of, 946
IKE payloads, 848

Keepalive interval
changing values of, 796
definition of, 795

Keepalive probes
changing values of, 796
definition of, 795
overview of, 793

Keepalive time
changing values of, 796–797
definition of, 795
server host crashes and reboots, 799–800
server host unreachable, 800–802

Keepalive timers, 793
Keepalives, TCP. See TCP keepalive
Key derivation function (KDF), 815
Key Exchange (KE)

definition of, 946
IKE payloads, 848

Key Hash field, RSA Signature option, 416
Key management, in cryptography, 821
Key signing keys. See KSKs (key signing keys)
Keyed-hash message authentication code (HMAC), 

818–819, 943
Keys, cryptographic, 810
Kleinrock, Leonard, 1, 48
KSKs (key signing keys)

definition of, 946
DNSSEC, 897, 905

L
L2TP/IPSec, 865
L2TP (Layer 2 Tunneling Protocol)

definition of, 946
establishing tunneling with, 149

LaBrea tarpit, attacks related to window manage-
ment, 723

LACP (Link Aggregation Control Protocol), 92–93, 
947

LAGs (link aggregation groups), 93, 947
Land attacks, ICMP attacks, 428
LANs (local area networks)

definition of, 947
Ethernet standards, 82–84
virtual. See VLANs (virtual LANs)

Large-scale NAT (LSN), IPv6 transition, 315

Last Member Query Interval (LMQI), in IGMP/
MLD, 468, 947

Last Member Query Time (LMQT), 466–467, 947
LAST_ACK state

simultaneous open and close transitions, 625
TCP state transitions, 618

Latency, connections and, 4
Layer 2 devices, DCHP relay agents, 270–271
Layer 2 Tunneling Protocol (L2TP)

definition of, 946
establishing tunneling with, 149

Layering
implementation and design and, 8–10
security protocols, 832–833
TCP/IP suite and, 14

Layering violation, transport layer, 476
LCG (Linear Congruential Generator), 816, 947
LCI (Location Configuration Information), 274, 947
LCI (logical channel identifier), 5
LCN (logical channel number), 5, 947
LCP (Link Control Protocol)

definition of, 947
operation of, 133–134
options, 134–137
overview of, 131–134

LDAP (Lightweight Directory Access Protocol)
definition of, 947
DNS and, 570–571
SRV record providing LDAP service, 548–549
well-known port for, 18

LDRAs (lightweight DHCP relay agents), 271, 947
LEAP (Lightweight EAP), 947
Leasequery, DCHP relay agents, 269–270
Leases

in BOOTP, 235
duration of DHCP leases, 235–236

Length field
in Ethernet frame format, 85–86
UDP header, 475, 481–482
Payload Length field, in IPv6 header, 184, 198, 

204–205
Total Length field, in IPv4 header, 183–184, 207

Licklider, J.C.R., 2
Lightweight DHCP relay agents (LDRAs), 271, 947
Lightweight Directory Access Protocol. See LDAP 

(Lightweight Directory Access Protocol)
Lightweight EAP (LEAP), 947
Lightweight IGMP3, 464–465
Lightweight MLD (LW-MLD), 394, 948
Lightweight MLDv2, 464–465
Limited slow start, 772
Limited transmit approach, to congestion control in 

TCP, 742
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Linear Congruential Generator (LCG), 816, 947
Link Address field, in DHCPv6 message format, 254
Link aggregation (802.1AX), 92–93
Link Aggregation Control Protocol (LACP), 92–93, 947
Link aggregation groups (LAGs), 93, 947
Link Control Protocol. See LCP (Link Control 

Protocol)
Link discriminator, LCP options, 139
Link layer

address resolution and, 165–166
attacks on, 154–156
autonegotiation in Ethernet interface, 95
bridges and switches, 98–102
broadcasting ARP frames, 167
duplex mismatch, 96
Ethernet (802.3) frames, 84–86
Ethernet frame sizes, 88–89
Ethernet supporting broadcasting at, 437
flow control (802.1X) in Ethernet interface, 98
full duplex Ethernet, 94–95
IEEE 802 LAN/MAN standards for, 82–84
integrity checking on Ethernet frames, 86–88
introduction to, 79
link aggregation (802.1AX), 92–93
MRP (Multiple Registration Protocol), 111
MTU (maximum transmission unit), 148
Point-to-Point Protocol. See PPP (Point-to-Point 

Protocol)
standards, 80–82
STP (Spanning Tree Protocol). See STP (Spanning 

Tree Protocol)
summary and references, 156–163
tunneling, 149–153
UDLs (unidirectional links), 153–154
VLANs and QoS tagging, 89–92
wireless LANs. See Wi-Fi (wireless 

fidelity-802.11)
WoL (Wake-on LAN), power saving, and magic 

packets, 96–97
Link-Layer Address. See LLA (Link-Layer Address)
Link Local Multicast Name Resolution (LLMNR), 

445, 569–570, 947
Link-local scope

configuring IPv4 addresses with SLAAC, 276
configuring IPv6 addresses with SLAAC, 

276–277
of IPv6 addresses, 43
IPv6 multicast addresses, 58–59
multicast addresses, 53
viewing format of link-local IPv6 address, 45

Link Quality Reports (LQRs)
definition of, 947
in PPP operations, 136

Links, unidirectional, 153–154
Linux OSs

autotuning TCP receive windows, 715
ethtool program for checking full duplex sup-

port, 94
IP masquerading, 337
IPSec implementations, 867
quick acknowledgments, 733
rate limiting of ICMP messages, 369–370
RTT estimation, 657–661
standards and, 24
vconfig command for manipulating 802.1p/q 

information, 90–91
LISTEN state, in TCP

TCP port numbers and, 632–633
TCP state transitions and, 618

LLA (Link-Layer Address)
definition of, 947
Link-Layer Address (LLA) option in ND, 418–419
Source Link-Layer Address option in ND, 

409–410
Source/Target Address List options in ND, 

413–414
LLC (Logical Link Control)

802.2 standard defining, 84
definition of, 947
relationship of link layer frames to data frames, 

116
LLMNR (Link Local Multicast Name Resolution), 

445, 569–570, 947
LMQI (Last Member Query Interval), in IGMP/

MLD, 468, 947
LMQT (Last Member Query Time), 466–467, 947
LNP (Local Network Protection), 310, 947
Local area networks. See LANs (local area networks)
Local congestion, in Linux TCP example,

fast retransmit and, 759–762
sender pause and, 750–754
stretch ACKs and recovery from, 754–757

Local IP addresses
restrictions in UDP server design, 500–501
TCP server restrictions on local, 634–635

Local net (limited) broadcast, 43
Local Network Protection (LNP), 310, 947
Location Configuration Information (LCI), 274, 947
Location-to-Service Translation (LoST), 274–275
Locators, IP addresses as, 70
Logical channel identifier (LCI), 5
Logical channel number (LCN), 5, 947
Logical Internet addresses, translating to physical 

hardware addresses, 167
Logical Link Control. See LLC (Logical Link Control)
Long options, DHCP/BOOTP options, 239
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Long-term credential mechanism, STUN, 325–326
Long-Term Evolution (LTE), 948
Longest matching prefix algorithm, 69, 209–210
Lookup, IP addresses form host names, 19
Loopback

hairpinning (NAT loopback), 314, 486
implementing loopback capacity, 145–148
PPP issues and, 134

LoST (Location-to-Service Translation), 274–275
Low-rate DoD attacks, TCP timeout/retransmission 

attacks, 686
LQRs (Link Quality Reports), in PPP

definition of, 947
in PPP operations, 136

LSN (large-scale NAT), IPv6 transition, 315
LTE (Long-Term Evolution), 948
LW-MLD (Lightweight MLD), 948

M
MAC layer, sublayer of link layer, 84
MAC (Media Access Control)

addresses in Ethernet frames, 16
chaddr (Client Hardware Address) field, 244
DCF collision avoidance/backoff procedure, 

121–122
definition of, 948
HCF (hybrid coordination function), 122–123
multicast addresses, 437
overview of, 120–121
protocols, 81
virtual carrier sense and physical carrier sense, 121

MAC (message authentication codes), 818–820, 948
MAC PDU (MPDU), 113, 949
MAC Services Data Unit (MSDU), in 802.11n, 949
Magnification attacks, UDP-related attacks, 506
Mail exchanger (MX) records, in DNS

definition of, 950
DNS resource record types, 544–545

Mailboxes, port numbers as, 474
Malware (malicious software)

attacks related to Internet architecture, 26
definition of, 805–806

Man-in-the-middle attacks. See MITM (man-in-the-
middle) attacks

Management frames, Wi-Fi, 113–115
Manchester Phase Encoding (MPE)

clock recovery in Ethernet frames, 85
definition of, 949

MANs (metropolitan area networks)
cable TV and DSL, 79
definition of, 948
Ethernet standards, 82–84

Mapping timer, clearing NAT state, 308–309

MAPs (mesh APs), 130
Masks, in IP forwarding, 209
Masquerading attacks

firewalls and NATs and, 345
ICMP attacks and, 429
link layer attacks, 155
types of threats to network communication, 808

Master session keys (MSK), in EAP
definition of, 949
key derivation in EAP, 838

Maximum pad value (MPV), 137, 949
Maximum probing, 774
Maximum received unit (MRU)

definition of, 949
length of LCP packet and, 134

Maximum segment life (MSL). See also TIME_WAIT 
state (2MSL)

SYN segments, 610
TIME_WAIT state (2MSL) and, 618

Maximum Segment Size. See MSS (Maximum Seg-
ment Size)

Maximum transmission unit. See MTU (maximum 
transmission unit)

MCS (Modulation and coding scheme)
definition of, 948
higher throughput (802.11n) support and, 127

MD (Message Digest Algorithms)
definition of, 948
MD-5 (Message Digest Algorithm 5), 817–818
TLS extensions, 883

mDNS (Multicast DNS), 444–445, 570, 948
Mean deviation, in RTT estimation, 653
Mechanisms

DNS TXT records and DKIM, 546
STUN, 325–326

Media Access Control. See MAC (Media Access 
Control)

Media independent handoff (MIH)
definition of, 948
mobility and handoff information in DHCP, 275

Member links, in PPP bundles, 137
Mesh (802.11s), Wi-Fi, 130
Mesh APs (MAPs), 130
Mesh deterministic access, 130
Mesh Point (MP), 949
Mesh points (MPs), 130, 949
Mesh STAs (mesh stations), 130
Message authentication codes (MAC), 818–820, 948
Message boundaries, datagrams and, 5–6
Message digests

Message Digest Algorithms. See MD (Message 
Digest Algorithms)

overview of, 817–818
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Message formats
DHCP and BOOTP, 236–238
DHCPv6, 253–255
DNS, 520–524
ESP, 862
IKE protocol, 844–846
STUN, 320

Message stream modification (MSM)
definition of, 949
types of threats to network communication, 808

Meta types, resource record categories, 528
Metcalfe’s Law, 19
Metropolitan area networks. See MANs (metropoli-

tan area networks)
MF (More Fragments) field, in UDP fragmentation, 

489
Michael, for message integrity checking, 129
Microsoft CHAP (MS-CHAP), 949
Microsoft Point-to-Point Compression Protocol 

(MPPC), 140, 949
Microsoft Point-to-Point Encryption (MPPE), 145, 150
MIH (media independent handoff)

definition of, 948
mobility and handoff information in DHCP, 275

MIME (Multipurpose Internet Mail Extensions), 948
MIMO (multiple input, multiple output)

definition of, 948
higher throughput (802.11n) support, 126–127

MIP (Mobile IP)
bidirectional tunneling, 216–217
definition of, 948
DHCP and, 233
discussion of issues in, 220
handling IP nodes, 199
ICMP fast handover message in MIPv6, 388
ICMP Home Agent Discovery Request message, 

386
ICMP Mobile Prefix Solicitation message, 

387–388
Mobile IP with Fast Handovers (FMIP), 942
Mobile IPv6, 70
overview of, 215–216
RO (route optimization), 217–219
Routing header and, 200

Misbehaving receivers, TCP congestion control 
attacks, 785

MITM (man-in-the-middle) attacks
ICMP attacks and, 428
security protocol-related, 918–919
types of threats to network communication, 808

MLD (Multicast Listener Discovery)
attacks related to, 469–470
counters and variables, 467–468

DAD and, 278
definition of, 948
examples, 459–464
ICMP extension messages, 390–394
lightweight MLDv2, 464–465
overview of, 15, 451–453
processing by group members (Group Member 

Part), 454–457
processing by multicast routers (Multicast Router 

Part), 457–459
query/report/done messages in ICMP, 388–390
robustness of, 465–467
snooping, 468–469
summary and references, 470–472

MLPP (Multilevel Precedence and Preemption), 189, 
948

MMRP (Multiple MAC Registration Protocol), 111, 948
MNs (mobile nodes)

definition of, 948
in Mobile IP, 216–218

MOBIKE (Mobile IKE), 854, 865, 949
Mobile IP. See MIP (Mobile IP)
Mobile nodes (MNs)

definition of, 948
in Mobile IP, 216–218

Mobile Prefix Advertisement messages, ICMP, 
410–411

Mobile Prefix Solicitation message, ICMP, 387–388
Mobility header, 216
Mobility messages, in RRP, 218–219
Mobility Services (MoS)

definition of, 949
mobility and handoff information in DHCP, 275

Modifiers, DNS TXT records, 546
MODP (Modulo-P groups), in DH, 821, 949
Modulation and coding scheme (MCS), in 802.11n

definition of, 948
higher throughput (802.11n) support and, 127

Modulo-P groups (MODP), in DH, 821, 949
More Frag field, data frame fragmentation, 117
MoS (Mobility Services)

definition of, 949
mobility and handoff information in DHCP, 275

MP (Multilink PPP)
definition of, 949
overview of, 137–139

MPDU (MAC PDU), 113, 949
MPE (Manchester Phase Encoding)

clock recovery in Ethernet frames, 85
definition of, 949

MPLS (Multi-Protocol Label Switching), 215, 949
MPPC (Microsoft Point-to-Point Compression Proto-

col), 140, 949
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MPPE (Microsoft Point-to-Point Encryption), 145, 150
MPs (mesh points), 130, 949
MPV (maximum pad value), 137, 949
MRD (Multicast Router Discovery)

definition of, 949
designing location of multicast routers, 469
overview of, 394–395

MRP (Multiple Registration Protocol)
802.1ak, 111
definition of, 949

MRRU (multilink maximum received reconstructed 
unit), 138, 949

MRU (maximum received unit)
definition of, 949
length of LCP packet and, 134

MS-CHAP (Microsoft CHAP), 949
MSDU (MAC Services Data Unit), in 802.11n, 949
MSK (master session keys)

definition of, 949
key derivation in EAP, 838

MSL (maximum seqment life), in TCP. See also 
TIME_WAIT state (2MSL)

SYN segments, 610
TIME_WAIT state (2MSL) and, 618

MSM (message stream modification) attack
definition of, 949
types of threats to network communication, 808

MSS (Maximum Segment Size), in TCP
definition of, 950
SWS (silly windows syndrome) and, 709
TCP header, 590, 605–607

MSTP (Multiple Spanning Tree Protocol), in bridges, 
111

MTU (maximum transmission unit)
definition of, 950
for Ethernet, 86, 506
frame formats and, 79
ISPs (Internet Service Providers) and, 494
link layer and, 148
neighbor discovery options in IPv6, 411–412
PPPoE (PPP over Ethernet) and, 614
preventing fragmentation of TCP datagrams, 

612–613
PTB messages in ICMPv6, 370–371

Multi-access networks, 9
Multi-Protocol Label Switching (MPLS), 215, 949
Multi6 architecture, 70
Multicast addresses

allocation of, 65
IPv4 multicast addresses, 54–57
IPv6 multicast addresses, 57–61
NAT and, 310
overview of, 53–54

Multicast DNS (mDNS), 444–445, 570, 948
Multicast groups

overview of, 15
RP (rendezvous point), 60

Multicast Listener Discovery. See MLD (Multicast 
Listener Discovery)

Multicast Listener Query, Report, and Done mes-
sages, ICMP messages, 388–390

Multicast Router Discovery. See MRD (Multicast 
Router Discovery)

Multicast routers
designing location of, 469
IGMP/MLD processing by, 457–459
overview of, 452–454
querier election, 466
query message options, 459

Multicast state, 441
Multicasting

converting IP multicast addresses to MAC 
addresses, 442–444

example of, 444–446
host address filtering, 449–451
introduction to, 435–436
IPSec supporting, 864–865
overview of, 441–442
receiving multicast datagrams, 447–449
sending multicast datagrams, 446–447

Multihomed systems
IPv6 and, 70
overview of, 12–13
unicast addresses and, 67–68

Multilevel Precedence and Preemption (MLPP), 189, 
948

Multilink maximum received reconstructed unit 
(MRRU), 138, 949

Multilink PPP (MP), 137–139, 949
Multiple input, multiple output (MIMO)

definition of, 948
higher throughput (802.11n) support, 126–127

Multiple MAC Registration Protocol (MMRP), 948
Multiple Registration Protocol (MRP)

802.1ak, 111
definition of, 949

Multiple Spanning Tree Protocol (MSTP), 111
Multiple VLAN Registration Protocol (MVRP), 111, 950
Multiplexing

implementation and design and, 10–13
important concepts in development of network 

architecture, 4
TCP/IP suite and, 16–17

Multipurpose Internet Mail Extensions (MIME), 948
MVRP (Multiple VLAN Registration Protocol), 111, 

950
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MX (mail exchanger) records, in DNS
definition of, 950
DNS resource record types, 544–545

N
N (Notification), IKE payloads, 849, 873
NA (Neighbor Advertisement)

ICMPv6 messages, 277
IND (Inverse Neighbor Discovery), 401
main components of ND, 396
neighbor discovery in IPv6, 398–401

NAC (Network Access Control), 833–837, 950
NACK (Negative ACKs), 111, 950
Nagle algorithm, in TCP

Delayed ACK interaction with, 699
disabling, 699–700
overview of, 696–698
reducing number of packets across WANs, 692

Nagle, John, 696
Name authority pointer records. See NAPTR (name 

authority pointer) records
Name resolution. See also DNS (Domain Name 

System)
of host names into IP addresses, 511
process of, 518–519

Name server (NS) records
definition of, 951
DNS resource record types, 529–530

Name servers
caching, 517–518
DNS, 516–517

Name Service Caching Daemon (NSCD), 518, 951
Name space, DNS, 512–514
Naming syntax, DNS, 514–516
NAP (Network Access Protection)

definition of, 950
DHCP leases and, 246

NAPT (Network Address Port Translation), 305–306, 
950

NAPTR (name authority pointer) records
definition of, 950
DNS resource record types, 549–551
NTN (non-terminal NAPTR), 551–552
S-NAPTR and U-NAPTR, 554–555
URI/URN resolution and, 553–554

NAR (New Access Router), 417, 950
NAT (network address translation)

address and port translation behavior, 311–313
address pools, 312
attacks related to, 345–346
configuring, 334
definition of, 950
direct interaction with, 338–339
DS-Lite (Dual-Stack Lite) and, 339–340

editors, 315
filtering behavior, 312–313
firewall rules, 335–336
hairpinning (NAT loopback), 314, 486
ICE and, 332–334
ICMP and, 309
IPSec NAT traversal, 865–867
IPv4/IPv6 translation, 340–345
IPv6 and, 310–311
mapping, 307
multicast and, 310
NAPT (Network Address Port Translation), 

305–306
other transport protocols and, 309
overview of, 303–305
pinholes and hole punching, 317
port forwarding and port mapping and, 314
private addresses and, 51
rules, 337–338
session, 307–308
SPNAT (service provider NAT), 315–316
STUN (Session Traversal Utilities for NAT), 

319–326
summary and references, 346–352
TCP and, 306–308
Teredo tunneling and, 485–486
translating TCP and UDP addresses and port 

numbers, 605
traversal, 316
tunneled packets and, 310
TURN (Traversal Using Relays around NAT), 

326–332
UDP and, 308–309
UNSAF (unilateral self-address fixing), 317–319

NAT-PMP (NAT Port Mapping Protocol)
definition of, 950
direct interaction with NAT and firewalls, 

338–339
NAT Port Mapping Protocol (NAT-PMP)

definition of, 950
direct interaction with NAT and firewalls, 

338–339
NAT-PT (NAT with Port Translation), 950
NAT Traversal

ICE (Interactive Connectivity Establishment), 
332–334

overview of, 316
pinholes and hole punching, 317
STUN (Session Traversal Utilities for NAT), 

319–326
TURN (Traversal Using Relays around NAT), 

326–332
UNSAF (unilateral self-address fixing), 317–319

NAT with Port Translation (NAT-PT), 950
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NAT64, IPv6/IPv4 translation, 344, 950
NAV (Network Allocation Vector), 121, 950
NBMA (non-broadcast multiple access)

ICMP Redirect message used with, 375
ND and, 396
overview of, 167

NCoA (New Care-of Address), 419, 950
NCPs (Network Control Protocols), 131, 141–142, 

950
ND (Neighbor Discovery Protocol)

Advertisement Interval option, 412
Certificate option, 417
CGA options, 414–415
definition of, 951
DNS Search List option, 422–423
Experimental Values in, 423
Handover Key Request/Reply options, 422–423
Home Agent Information option, 412–413
IND (Inverse Neighbor Discovery), 401–402
interaction between IP fragmentation and ARP/

ND, 496–497
IP Address/Prefix option, 417–418
Link-Layer Address (LLA) option, 418–419
MTU option in, 411–412
Nonce option, 416–417
NS (Neighbor Solicitation) message, 398–401
NUD (Neighbor Unreachability Detection), 

402–403
options, 407–409
overview of, 395–396
Prefix Information option, 410–411
Recursive DNS Server option, 420
Redirected Header option, 411
Route Information option, 420
Router Advertisement Flags Extension option, 

420–421
router solicitation and advertisement messages 

in ICMPv6, 396–398
RSA Signature option, 415–416
SEND (Secure Neighbor Discovery), 403–407
Source Link-Layer Address option, 409–410
Source/Target Address List options, 413–414
Teredo tunneling and, 486–487
Timestamp option, 416
Trust Anchor option, 417

NDP. See ND (Neighbor Discovery Protocol)
Negative ACKs (NACK), 133, 950
Negative caching, DNS servers and, 517
Neighbor Advertisement. See NA (Neighbor 

Advertisement)
Neighbor Discovery Protocol. See ND (Neighbor 

Discovery Protocol)
Neighbor Solicitation messages, ICMPv6, 277

Neighbor Unreachability Detection (NUD)
definition of, 951
neighbor discovery in IPv6, 402–403

NEMO (Network Mobility), 216, 951
Net number, in IP addresses, 35
NetBoot service, from Apple, 246
netsh command, viewing in-use multicast groups 

in Windows OSs, 447–448
netstat command

displaying IP group membership, 446–447
restricting local IP addresses, 634
viewing active multicast addresses, 66
viewing forwarding table with, 446–447
viewing IPv4 UDP servers, 500–501

Network Access Control (NAC), 833–837, 950
Network Address Port Translation (NAPT), 305–306, 

950
Network address translation. See NAT (network 

address translation)
Network Allocation Vector (NAV), in Wi-Fi, 121, 950
Network architecture

APIs, 22
ARM (ARPANET Reference Model), 1–2, 13–16
attacks related to Internet architecture, 25–26
client/server design pattern, 20–21
end-to-end argument, 6
error control and flow control, 7–8
fate sharing, 6–7
implementation and design, 8
implementations and distributions, 24–25
Internet, intranets, extranets, 19–20
layering, 8–10
multiplexing, demultiplexing, and encapsula-

tion, 10–13, 16–17
names, addresses, and DNS, 19
packets, connections, and datagrams, 3–6
peer-to-peer design pattern, 21–22
port numbers, 17–19
principles of, 2–3
standardization of, 22–24
summary and references, 26–30
TCP/IP suite, 13

Network byte order, TCP/IP headers, 183
Network communication, threats to, 807–809
Network Control Protocols (NCPs), 131, 141–142, 950
Network File System (NFS), 478
Network interface cards. See NICs (network inter-

face cards)
Network (internetwork) layer

address resolution and, 165–166
of OSI model, 9
passing datagram to transport layer, 17
TCP and UDP in, 585
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Network Mobility (NEMO), 216, 951
Network Time Protocol. See NTP (Network Time 

Protocol)
New Access Router (NAR), 417, 950
New Care-of Address (NCoA), 419, 950
NewReno algorithm, 739–740
Next Header field

ICMP Parameter Problem and, 379–380
IPv6, 194–195
Mobile IP, 216
UDP header, 476
UDP-Lite, 487

Next-hop, in IP forwarding, 209
Next Server IP Address (Siaddr) field, DHCP/

BOOTP message format, 238, 246
NextSECure resource record. See NSEC (NextSECure) 

resource record
NFS (Network File System), 478
NICs (network interface cards)

definition of, 951
host address filtering, 449–451
overview of, 92

No Route to Destination, ICMPv6 messages, 365
Node-local scope

of IPv6 addresses, 43
multicast addresses, 53

Node Requirements RFCs, 23
Nominees, in ICE, 333
Non-broadcast multiple access. See NBMA (non-

broadcast multiple access)
Non-HT mode, 802.11n operating modes, 128
Non-terminal NAPTR (NTN), 551, 951
Nonce (number used once)

cryptographic nonces and, 816
definition of, 951
IKE payloads, 848
in ND, 416–417, 486–487

Nonportable addresses, allocation of IP addresses 
and, 62

Nonrepudiation, basic principles of security, 
806–807

NOP (No Operation), TCP header options, 605
Notification (N), IKE payloads, 849, 873
NPTv6, 310, 951
NRO (Number Resource Organization)

allocation of IP addresses and, 62–63
definition of, 951

NS (name server) records
definition of, 951
DNS resource record types, 529–530

NS (Neighbor Solicitation)
definition of, 951
IND (Inverse Neighbor Discovery), 401–402

main components of ND, 396
neighbor discovery in IPv6, 398–401

NSCD (Name Service Caching Daemon), 518, 951
NSEC (NextSECure) resource record

canonical ordering of, 902
definition of, 951
DNSSEC, 898–901
signed zones and zone cuts, 903

NSEC Parameters (NSEC3PARAM), in DNSSEC, 
898, 951

NSEC3PARAM (NSEC Parameters), in DNSSEC, 
900, 951

NTN (non-terminal NAPTR), 551, 951
NTP (Network Time Protocol)

definition of, 951
multicast group in, 54
variable-scope IPv6 multicast addresses, 58

NUD (Neighbor Unreachability Detection)
definition of, 951
neighbor discovery in IPv6, 402–403

Nuke class, bombs attacks on ICMP, 428
NULL encryption algorithm, 819
Number Resource Organization (NRO)

allocation of IP addresses and, 62–63
definition of, 951

Number used once. See Nonce (number used once)

O
Object Identifier (OID), 951
OCSP (Online Certification Status Protocol)

definition of, 951
validating and revoking certificates, 829–831

OFDM (Orthogonal frequency division 
multiplexing)

definition of, 951
MIMO and, 127

OID (Object Identifier), 951
OLSR (Optimized Link State Routing)

definition of, 951
Wi-Fi mesh and, 130

Online Certification Status Protocol (OCSP)
definition of, 951
validating and revoking certificates, 829–831

OOB (Out of Band), 719, 952
Op field, DHCP/BOOTP message format, 236
Open DNS servers, 567
Open Systems Interconnection (OSI)

definition of, 952
layering and, 8

Open systems, TCP/IP suite as, 2
OpenPGP, 822, 883
OPT (option) pseudo records, DNS resource record 

types, 547–548
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Optimal window size, 730
Optimistic ACKing, TCP congestion control attacks, 

785–786
Optimistic DAD, 253
Optimistic state, IPv6 addresses, 253
Optimized Link State Routing (OLSR)

definition of, 951
Wi-Fi mesh and, 130

Option overloading, DHCP/BOOTP, 239
Option Request Option (ORO), in DHCP, 952
Orderly release, aborting TCP connections, 627
Organizationally Unique Identifier. See OUI (Orga-

nizationally Unique Identifier)
ORO (Option Request Option), in DHCP, 952
Orthogonal frequency division multiplexing (OFDM)

definition of, 951
MIMO and, 127

OSI (Open Systems Interconnection)
definition of, 952
layering and, 8

OUI (Organizationally Unique Identifier)
definition of, 952
formats of IPv6 addresses, 44–45
IP multicasting and, 442–444

Out of Band (OOB), 719, 952
Overlay networks

p2p and, 22
tunneling allowing formation of, 149

P
P2P (Peer-to-Peer)

definition of, 952
design pattern, 21–22
discovery problem in, 22

PA (provider-aggretable) addresses
allocation of IP addresses and, 62
definition of, 952

PAA (PANA Authentication Agent), 839, 952
PaC (PANA client), 839, 952
Packet duplication, TCP timeout/retransmission, 

684–685
Packet-filtering firewalls

overview of, 300–301
rules, 335–336

Packet-filtering, NAT functions, 305
Packet reordering, TCP timeout/retransmission, 

682–684
Packet size threshold, in Wi-Fi control frames, 115
Packet sniffing, 26, 156
Packet-switching, 4
Packet-switching networks, 1
Packet Too Big. See PTB (Packet Too Big)

Packetization, TCP reliability and, 586
Packets

AQM (active queue management), 782–783
conservation of, 731
IEEE, 84
in protocol architecture, 3–6
retransmission and, 580–581
sliding window protocol, 582
in TCP/IP suite, 14
windows of packets, 581–582

PACP (port access control protocol), 835
PAD (peer authorization database)

definition of, 952
in IPSec, 841

PAD (PPPoE Activity Discovery) messages, 288
Padded payload, in Ethernet frame format, 86
Padding

block size in PPP, 136–137
IPv6 options for, 197–198

Padding oracle, security protocol-related attacks 
and, 919

PANA Authentication Agent (PAA), 839, 952
PANA client (PaC), 839, 952
PANA (Protocol for Carrying Authentication for 

Network Access), 839–840, 952
PAP (Password Authentication Protocol)

definition of, 952
for PPP authentication, 140

Parameter Problem messages
ICMP, 379–380
translating ICMPv4 to ICMPv6, 426
translating ICMPv6 to ICMPv4, 426–427

Partial ACKs, in TCP, 739
Passive attacks, types of threats to network commu-

nication, 807–809
Passive closer, FIN segments and, 597
Passive open, in TCP connections, 597
Passive opener (server)

RST segments, 631
in TCP connections, 599

Password Authentication Protocol (PAP)
definition of, 952
for PPP authentication, 140

Path MTU, 148
Path MTU Discovery. See PMTUD (Path MTU 

Discovery)
Path MTU (PMTU), 953
Pattern-match-criteria, in ACL rules, 335
PAWS (Protection against Wrapped Sequence 

Numbers)
definition of, 952
TCP header, 610–611
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Payloads
of frames, 16, 86
IKE protocol, 847–849
IP header, 184–185, 203–206
jumbogram options, 198
UDP header, 475, 482

PCF (point coordination function), in Wi-Fi
definition of, 952
options for controlling sharing of wireless 

medium, 120
PCO (phased coexistence operation)

definition of, 952
higher throughput (802.11n) support and, 128

PCoA (Previous Care-of Address), 419, 952
PCP (Port Control Protocol)

definition of, 952
direct interaction with NAT and firewalls, 339

PD (prefix delegation), 266–267
PDUs (protocol data units)

definition of, 952
encapsulation and, 10
link layer. See Frames, Ethernet

PEAP (Protected EAP), 838, 952
Peer Address field, in DHCPv6 message format, 254
Peer authorization database (PAD)

definition of, 952
in IPSec, 841

Peer-to-Peer (P2P)
definition of, 952
design pattern, 21–22
discovery problem in, 22

PEN (Private Enterprise Number), 257, 952
Per-association (per-connection) basis, for NAT con-

nections, 303–304
Per-flow state, LCI and LCN and, 5
Per-hop behavior (PHB)

definition of, 953
forwarding and, 189

Perfect Forward Secrecy (PFS), 815, 953
PFC (Protocol Field Compression)

definition of, 953
PPP and, 133

PFS (Perfect Forward Secrecy), 815, 953
PGP (Pretty Good Privacy), 822
Phased coexistence operation (PCO)

definition of, 952
higher throughput (802.11n) support and, 128

PHB (per-hop behavior)
definition of, 953
forwarding and, 189

Phishing attacks, 806
PHY (physical) layer, 953

Physical addresses, translating logical addresses to, 
167

Physical carrier sense, 121
Physical layer

802.11 standard describing, 123–124
channels and frequencies, 124–126
of OSI model, 9

PI (provider-independent) addresses
allocation of IP addresses and, 63
definition of, 953

Piggybacking, Delayed ACKs and, 692, 695
PIM (Protocol Independent Multicast), 953
ping. See Echo Request/Reply (ping) messages
Ping of death attacks

ICMP attacks, 428
UDP attacks, 506–507

Pinholes, in NAT traversal, 317
PIO (Prefix Information option)

definition of, 953
neighbor discovery options in IPv6, 410–411

PKCs (public key certificates). See also Certificates, 
831, 953

PKCS (Public Key Cryptography Standards), 953
PKI (Public Key Infrastructure)

CGAs not requiring, 404
definition of, 953
overview of, 822

Plain old telephone service (POTS)
definition of, 953
DSL and, 287

Plaintext
encrypting cleartext message, 810
TLS, 878

PLCP (Physical Layer Convergence Procedure), 113, 
953

PLPMTUD (Packetization Layer Path MTU Discov-
ery), 612–613

Plug and Play, 337–339
PMTU (Path MTU), 148, 953
PMTUD (Path MTU Discovery)

definition of, 953
example of use with TCP, 613–616
example using UDP, 493–496
link layer and, 148
PTB messages in ICMPv6, 370–371
TCP connections and, 612–613
TCP-related attacks, 641–642
using UDP for, 493

PNAC (Port-Based Network Access Control), 833, 953
PoE (power-over-Ethernet)

definition of, 953
higher throughput (802.11n) support and, 128
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Point coordination function (PCF), in Wi-Fi
definition of, 952
options for controlling sharing of wireless 

medium, 120
Point-to-Point Protocol. See PPP (Point-to-Point 

Protocol)
Point-to-Point Tunneling Protocol. See PPTP (Point-

to-Point Tunneling Protocol)
Pointer (PTR) records, DNS resource record types, 

536–541
POP3, SRV record providing POP3 service, 549
Port access control protocol (PACP), 835
Port-Based Network Access Control (PNAC), 833, 953
Port Control Protocol (PCP)

definition of, 952
direct interaction with NAT and firewalls, 339

Port forwarding, in NAT, 314
Port mapping, in NAT, 314
Port numbers

binding options available to TCP server, 635
as mailboxes, 474
TCP/IP suite and, 17–19
TCP servers, 632–634
in UPD server design, 499–500

Port overloading, in NAT, 313
Port parity, in NAT, 313
Port preservation, NAT and TCP and, 307
Port-Preserving Symmetric NAT (PP), 486
Port states, STP, 104–105
Port translation behavior, in NAT, 311–313
Port unreachable message, ICMP, 365–370
Ports

multiple UDP servers per port, 503–504
requesting connection to nonexistent TCP port, 

626
in TCP header, 588

POTS (plain old telephone service)
definition of, 953
DSL and, 287

Pouzin, Louis, 1
Power-over-Ethernet (PoE)

definition of, 953
higher throughput (802.11n) support and, 128

Power save mode (PSM), 119–120, 954
Power Save Multi-Poll (PSMP), 120, 954
Power saving, Ethernet (802.3) and, 96–97
PP (Port-Preserving Symmetric NAT), 486
PPP over Ethernet. See PPPoE (PPP over Ethernet)
PPP (Point-to-Point Protocol)

authentication, 140–141
CCP (Compression Control Protocol) and, 

139–140

definition of, 953
example of, 143–145
header compression, 142–143
MP (Multilink PPP), 137–139
NCPs (Network Control Protocols), 141–142
overview of, 130–131

PPPMux, 137
PPPMuxCP (PPP Mux Control Protocol), 137
PPPoE Activity Discovery (PAD) messages, 288
PPPoE (PPP over Ethernet)

definition of, 953
Discovery and PPP Session phases, 288
DSL and, 287
example of use of, 289–291
message format, 288–289
MTU (maximum transmission unit) and, 614
overview of, 286

PPTP (Point-to-Point Tunneling Protocol)
definition of, 953
establishing sessions, 151–153
establishing tunneling with, 149–153
NAT editors and, 315

Preamble, of Ethernet frame, 84
Preferred lifetime

IA (Identity Association) and, 255
IPv6 addresses, 252

Prefix delegation (PD), 266–267
Prefixes

in IPv4 and IPv6 address management, 47–48
route aggregation and, 50
subnet mask formats, 39

Presentation layer, of OSI model, 10
Preshared keys. See PSKs (preshared keys)
Pretty Good Privacy (PGP), 822
Previous Care-of Address (PCoA), 419, 952
PRFs (pseudorandom functions), 816, 954
PRGs (pseudorandom generators), 815–816, 954
Primary DNS servers, 517
Priority fields, QoS 802.1p, 90
Private Enterprise Number (PEN), 257, 952
PRNGs (pseudorandom numbers)

definition of, 954
overview of, 815–816

Probing, NAT session, 308
Promiscuous ARP, 175
Promiscuous mode, Ethernet interfaces, 155
Protected EAP (PEAP), 838, 952
Protection against Wrapped Sequence Numbers 

(PAWS)
definition of, 952
TCP header, 610–611

Protocol data units. See PDUs (protocol data units)
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Protocol field
IP header, 185
in PPP frames, 132–133
UDP header, 476

Protocol Field Compression (PFC)
definition of, 953
PPP and, 133

Protocol for Carrying Authentication for Network 
Access (PANA), 839–840, 952

Protocol identifiers, in multiplexing, 10
Protocol Independent Multicast (PIM), 953
Protocol multiplexing, 10
Protocol suites

definition of, 1
end and intermediate systems, 12

Protocols, 1
Provider-aggretable (PA) addresses

allocation of IP addresses and, 62
definition of, 952

Provider-independent (PI) addresses
allocation of IP addresses and, 63
definition of, 953

Proxy ARP, 174–175
Proxy firewalls

overview of, 301–303
types of firewalls, 300

Proxy Router Solicitation (RtSolPr), 388
Proxy routers, 388
PrRtAdv (Proxy Router Advertisement), 388
Pseudorandom functions (PRFs), 816, 954
Pseudorandom generators (PRGs), 815–816, 954
Pseudorandom numbers. See PRNGs (pseudoran-

dom numbers)
PSH bit

sender pause and local congestion (event 1), 750
in TCP communication, 694–695

PSKs (preshared keys)
definition of, 954
encryption and, 129–130
vulnerability to dictionary attacks, 918

PSM (power save mode), 119–120, 954
PSMP (Power Save Multi-Poll), 120, 954
PTB (Packet Too Big)

definition of, 954
destination unreachable and, 612
ICMP attacks and, 429
ICMPv6 messages, 364, 370–371
TCP-related attacks, 641

PTR (pointer ) records, DNS resource record types, 
536–541

Public key certificates. See also Certificates
DNSKEY resource record and, 896
overview of, 822

Public key cryptography
asymmetric (public) key ciphers, 809–812
Handover Key Request/Reply options, 422–423
RSA (Rivest, Shamir, and Adleman), 812–813

Public Key Infrastructure. See PKI (Public Key 
Infrastructure)

Pure ACK, TCP header, 590

Q
QAM (quadrature amplitude modulation), 128, 954
QAPs (QoS access points), 122
QBSS (QoS BSS), 122, 954
QI (Query Interval), in IGMP and MLD, 468, 954
QoS access points (QAPs), 122
QoS BSS (QBSS), 122, 954
QoS (quality of service)

802.1p standard, 90
APSD and, 120
definition of, 954
HCF (hybrid coordination function) and, 122–123
tagging, 89–92
in VLANs, 86

QoS stations (QSTAs), 122–123, 954
QPSK (quadrature phase shift keying), 128, 954
QQI (Querier’s Query Interval), in IGMP/MLD, 954
QQIC (Querier’s Query Interval Code)

definition of, 954
in MLD, 390
MLD and, 459

QRI (Query Response Interval), in IGMP/MLD, 468, 
954

QRV (querier robustness variable), in IGMP/MLD, 
466–467, 954

QS (Quick-Start)
definition of, 954
IPv6 options for, 199

QSTAs (QoS stations), 122–123, 954
Quadrature amplitude modulation (QAM), 128, 954
Quadrature phase shift keying (QPSK), 128, 954
Qualifiers, DNS TXT records, 546
Quality of service. See QoS (quality of service)
Querier election, multiple multicast routers and, 466
Querier robustness variable (QRV), 466–467, 954
Querier Robustness Variable (QVR), 390
Querier’s Query Interval Code. See QQIC (Querier’s 

Query Interval Code)
Querier’s Query Interval (QQI), in IGMP/MLD, 954
Queries, DNS, 526
Queries/informational messages, ICMP

Echo Request/Reply messages, 380–383
Home Agent Discovery Request message, 386
MIPv6 fast handover messages, 388
MLD extension messages, 390–394
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MLD query/report/done messages, 388–390
Mobile Prefix Solicitation message, 387–388
MRD (Multicast Router Discovery), 394–395
overview of, 380
router solicitation and advertisement messages 

in ICMPv4, 383–385
Query Interval (QI), in IGMP and MLD, 468, 954
Query message

ICMP, 388–390
IGMP, 457–459

Query/response, in DNS protocol, 518
Query Response Interval (QRI), in IGMP/MLD, 468, 

954
Query types, resource record categories, 528
Question (query) and zone section format, 526
Queueing theory, in congestion control, 583
Queues

packets stored in, 4
TCP server incoming connection queue, 636–640

Quick acknowledgments, Linux, 733
Quick-Start (QS)

definition of, 954
IPv6 options for, 199

Quiet time concept, TCP state transitions, 624
QVR (Querier Robustness Variable), 390

R
RA (Router Advertisement)

Advertisement Interval option in ND, 412
definition of, 954
DHCPv6, 260–263
Home Agent Information option in ND, 412–413
ICMP attacks and, 429
ICMP messages, 383–385
ICMPv6 messages, 280–281
link with NA (Neighbor Advertisement), 396
MTU option in ND, 411–412
neighbor discovery in IPv6, 396–398
Prefix Information option, 410–411
Route Information option in ND, 420
Router Advertisement Flags Extension option, 

420–421
Trust Anchor option, 417

RADIUS (Remote Authentication Dial-In User 
Service)

for access control, 141
definition of, 955

RAIO (Relay Agent Information Option)
definition of, 955
DHCP, 268

Random Early Detection (RED) gateways
AQM (active queue management) and, 783–785
definition of, 955

Random numbers, in ND, 416–417
Rapid Commit option, DHCP/BOOTP message 

format, 273–274
Rapid Spanning Tree Protocol (RSTP), 103, 110–111, 

956
RARP (reverse ARP), 166, 955
RASs (remote access servers)

control decisions by, 141
definition of, 955

Rate-based flow control, 583
Rate halving, for TCP congestion control, 741–742
Rate-Halving with Bounding Parameters (RHBP)

definition of, 955
for TCP congestion control, 741–742

Rate limiting, of ICMP messages in Linux server, 
369–370

RC4 algorithm
definition of, 955
in Wi-Fi security, 129–130

RD (Router Discovery)
definition of, 955
overview of, 383–385

RDATA, in DNS resource record, 527, 955
RDNSS (Recursive DNS Server)

definition of, 955
neighbor discovery in IPv6, 420

Real-Time Protocol (RTP), 313
Reassembly

fragmentation and, 488
of fragmented datagrams, 14, 205
timeout, 492

Rebinding time (T2), for DHCP messages, 240
Receive window structure, sliding window protocol, 

701
Reconfigure extension, DHCP, 273
Record layer, in TLS

DTLS (Datagram TLS), 891–892
TLS (Transport Layer Security), 877

Record markers, datagrams and, 5–6
Record protocol, TLS, 878–880
Recovery point, in TCP retransmission, 671
Recur field, GRE tunnels and, 150
Recursive DNS Server (RDNSS)

definition of, 955
neighbor discovery in IPv6, 420

RED (Random Early Detection) gateways
AQM (active queue management) and, 783–785
definition of, 955

Redirect messages, ICMP
ICMP attacks and, 428
overview of, 372–375
Redirected Header option in ND, 411

Reference model, of protocol suite, 1
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Referenced connections, TCP reset segments and, 
625

regedit program in Windows, setting keepalive 
time with, 797

Regional Internet registries (RIRs)
allocation of IP addresses and, 62–63
definition of, 955

Registered ports, 18
Reject route message, ICMPv6, 372
Relative fairness, congestion control schemes and, 

769
Relay Agent Information Option (RAIO)

definition of, 955
DHCP, 268

Relay agents, DHCP
layer 2 devices, 270–271
leasequery and bulk leasequery, 269–270
overview of, 267
RAIO (Relay Agent Information Option), 268
Remote-ID and IPv6 Remote-ID, 268
Server Identifier Override, 268–269

Relayed transport address, TURN, 326
Reliability, TCP, 586–587
Remote access servers (RASs)

control decisions by, 141
definition of, 955

Remote Authentication Dial-In User Service 
(RADIUS)

for access control, 141
definition of, 955

Remote-ID, DCHP relay agents, 268
Remote procedure call (RPC)

definition of, 955
SOAP and, 338

Rendezvous point (RP)
definition of, 955
for multicast groups, 60

Renegotiation, of cryptographic connection param-
eters in TLS, 884

Renewal time (T1), for DHCP messages, 240
Reno algorithm, 737–738
Renumbering, allocation of IP addresses and, 63
Repacketization, in TCP

overview of, 586
TCP timeout/retransmission, 686–687

Replay attacks
Nonce option in ND countering, 416–417
types of threats to network communication, 808

Report message, ICMP, 388–390
REQUEST message, DHCPv6, 264–265, 269
Request/response transactions, in STUN, 320
Request to send. See RTS (request to send)
Reserved addresses, IPv6 multicast, 61

Reserved field, in IPv6 Fragment header, 203–204
Reset (RST) segments, TCP

aborting connections, 627–628
definition of, 956
half-open connections, 628–630
incoming connection queue and, 637
overview of, 625–626
requesting connection to nonexistent port, 626
TWA (TIME-WAIT Assassination), 630–631

Resolver
accessing DNS with, 511
DNSSEC example of operation, 903–911
UDP and, 525–526
validating security aware resolver, 895

Resource Record Set. See RRSet (Resource Record Set)
Resource Record Signature resource record. See 

RRSIG (Resource Record Signature) resource 
record

Resource records. See RRs (resource records)
Resource utilization attacks

attacks related to IGMP or MLD, 469–470
UDP-related attacks, 506

Response algorithm, for spurious timeouts and 
retransmissions, 677

Restart Window (RW), 739, 956
Retransmission

ARQ and, 580
of packets, 7
in TCP. See TCP timeout/retransmission
timeout settings in communication protocols, 584

Retransmission ambiguity problem, 655, 679
Retransmission (RTX), 894, 956
Retransmission timeout. See RTO (retransmission 

timeout)
Retry bit, Frame Control Word, 116
Return Routability Procedure (RRP), in MIP

definition of, 956
in RO, 218–219

Reverse ARP (RARP), 166, 955
Reverse DNS queries, 536
Reverse lookup, host names from IP addresses, 19
Reverse Path Forwarding (RPF), 956
RFC (Request for Comments), 23–24, 955
RGMP (Router-port Group Management Protocol), 

469, 955
RH (Routing Header)

definition of, 955
in IPv6, 200–203

RHBP (Rate-Halving with Bounding Parameters)
definition of, 955
for TCP congestion control, 741–742

RIID field, IPv6 multicast addresses, 60–61
Rijmen, Vincent, 811
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Rijndael algorithm. See AES (Advanced Encryption 
Standard)

RIP (Router Information Protocol), 955
RIRs (regional Internet registries)

allocation of IP addresses and, 62–63
definition of, 955

Rivest, Shamir, and Adleman. See RSA (Rivest, 
Shamir, and Adleman)

rlogin (UNIX), precursor to SSH, 692
RO (route optimization), in MIP

definition of, 955
in mobile IP, 217–219

ROAD (Running Out of Address Space), 955
Robust Header Compression (ROHC), 143, 955
Robust Security Network access (RSNA)

definition of, 956
in Wi-Fi security, 129

Robust Security Network (RSN)
definition of, 956
in Wi-Fi security, 129

Robustness/reliability, of IGMP and MLD, 465–467
ROHC (Robust Header Compression), 143, 955
Roles, STP, 104–105
Root bridge, building the spanning tree in STP, 107
Root certificates, 822
Root ports, STP, 104–105
Rouge RAs, ICMP attacks and, 429
Round-robin, DNS, 565–567
Round-trip time. See RTT (round-trip time)
Round-trip-time

estimation, 584
traceroute measuring, 377

Route aggregation, 48–50
Route Information option, in ND, 420
Route optimization (RO), in MIP

definition of, 955
in mobile IP, 217–219

Route Type identifiers, 201
Router Advertisement. See RA (Router 

Advertisement)
Router Alert, IPv6 options for, 198
Router Discovery (RD)

definition of, 955
overview of, 383–385

Routing Header (RH)
definition of, 955
IPv6, 200–203

Router Information Protocol (RIP), 955
Router Requirements RFC, 23
Router Solicitation. See RS (Router Solicitation)
Router solicitation and advertisement messages in 

ICMPv4, ICMP, 383–385

Routers
congestion of, 727–728
crashes, 226
default router, 208
IGMP/MLD processing by multicast routers, 

457–459
IP routers, 20
multicast routing, 452–454
between packet-switching networks, 1
in small networks, 11–13

Routing Policy Specification Language (RPSL), 65, 
956

Routing protocols, 209
Routing tables, 208, 439–441
RP (rendezvous point), in IP Multicast

definition of, 955
for multicast groups, 60

RPC (remote procedure call)
definition of, 955
SOAP and, 338
Reverse Path Forwarding (RPF), 956

RPSL (Routing Policy Specification Language), 65, 
956

RRP (Return Routability Procedure), in MIP
definition of, 956
in RO, 218–219

RRs (resource records), in DNS
address and name server records, 529–530
CNAME (canonical name) records, 534–536
definition of, 956
in DNS message format, 520–521
dynamic DNS updates and, 555–557
ENUM records, 551–552
example using resource record types, 530–534
MX (mail exchanger) records, 544–545
NAPTR (name authority pointer) records, 549–551
OPT (option) pseudo records, 547–548
overview of, 527–529
PTR (pointer ) records, 536–541
S-NAPTR and U-NAPTR, 554–555
SIP records, 552
SOA (start of authority) records, 541–544
SPF (sender policy framework) and TXT records, 

545–547
SRV (service) records, 548–549
translating DNS from IPv4 to IPv6, 569
transparency and, 568
URI/URN resolution, 553–554

RRs (resource records), DNSSEC
DNSKEY resource record, 896–897
DS (delegation signer) resource record, 897–898
NSEC (NextSECure) resource record, 898–901
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RRs (resource records), DNSSEC, continued
overview of, 896
RRSIG (Resource Record Signature) rescource 

record, 901–902
RRset (Resource Record Set)

canonical ordering of, 902–903
definition of, 956
dynamic DNS updates and, 555–557
overview of, 527

RRSIG (Resource Record Signature) resource record
definition of, 956
DNSSEC, 901–902
signed zones and zone cuts, 903

RS (Router Solicitation)
definition of, 956
DHCPv6, 260–263
ICMP attacks and, 429
ICMP messages, 383–385
ICMPv6 messages, 280
link with NS (Neighbor Solicitation), 396
neighbor discovery in IPv6, 396–398

RSA (Rivest, Shamir, and Adleman)
in cipher suites, 821
definition of, 956
ECC as alternative to, 815
overview of, 812–813
TLS extensions, 883

RSA Signature option, in ND, 415–416
RSN (Robust Security Network)

definition of, 956
in Wi-Fi security, 129

RSNA (Robust Security Network access)
definition of, 956
in Wi-Fi security, 129

RST. See Reset (RST) segments, TCP
RSTP (Rapid Spanning Tree Protocol), 103, 110–111, 

956
RTO (retransmission timeout), in TCP

classic method, 651–652
clock granularity and RTO bounds, 654
definition of, 956
initial values, 654
introduction to, 647
Linux RTT estimation, 657–661
retransmission ambiguity and Karn’s algorithm, 

655
robustness of RTTM to loss and reordering, 

662–664
RTT estimation behaviors, 661–662
RTTM (RTT Measurement) with Timestamps 

option, 656–657
setting, 651
slow start algorithm and, 732

spurious. See Spurious timeouts and retransmis-
sions, in TCP

standard method, 652–654
TCP connections and, 611

RTP (Real-Time Protocol), 313
RTS (request to send)

carrier sense and, 121
definition of, 956
Wi-Fi control frames, 115

RtSolPr (Proxy Router Solicitation), 388
RTT (round-trip time)

classic method of RTT estimation, 651–652
clock granularity and RTO bounds, 654
definition of, 956
estimation behaviors, 661–662
HSTCP (HighSpeed TCP) and, 773
initial values in RTO, 654
Linux estimation of, 657–661
Nagle algorithm and, 696–697
retransmission timeout settings and, 584–585
RTO based on, 648, 651
standard method of estimating, 652–654
"stop and wait’ protocol and, 581
STUN messages, 320
TCP Timestamp option and, 610

RTTM (RTT Measurement)
robustness to loss and reordering, 662–664
with Timestamps option, 656–657, 956

RTTVAR (RTT Variance), in TCP, 685–686, 956
RTX (Retransmission), 894, 956
RW (Restart Window), in TCP, 739, 956

S
S-NAPTR (straightforward NAPTR)

definition of, 958
DNS resource record types, 554

SACK (selective acknowledgement)
definition of, 957
DSACK (duplicate SACK) extension, 677–679
example of retransmission with, 673–676
fast retransmit and SACK recovery, 757–759
receiver behavior, 672
retransmission with, 647, 671–672
sender behavior, 673
for TCP congestion control, 740–741
in TCP header, 589, 607

SAD (security association database)
definition of, 957
in IPSec, 841–842

SAE (Simultaneous Authentication of Equals)
definition of, 957
Wi-Fi mesh and, 130

Salt, in cryptography, 816
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SAP (Session Announcement Protocol)
definition of, 957
for multicast sessions, 55

SAs (Security Associations), in IPsec
CREATE_CHILD_SA exchange, 852–853
definition of, 956
GSAs (group security associations), 864
in IPSec, 841
payloads and proposals, 847–848
proposed algorithms, 867–869

Scalability, of DNS, 516
Scope

ICMPv6 error (Beyond Scope of Source Address), 
371

of IPv6 addresses, 43
IPv6 multicast addresses, 57–58
of multicast addresses, 53

SCSV (Signaling Cipher Suite Value), 884, 957
SCTP (Stream Control Transmission Protocol)

definition of, 957
NAT and, 309
transport protocols in TCP/IP suite, 16

SCVP (Server-Based Certificate Validation Protocol)
certificate validation and, 831
definition of, 957

SDID (Signing Domain Identifier), 916, 957
SDLC (Synchronous Data Link Control)

based on HDLC, 131
definition of, 957

SDOs (standards-defining organizations), 23, 957
SDP (Session Description Protocol)

definition of, 957
ICE and, 332–333
IP multicast and, 55

Secondary DNS servers, 517
Secret Key Transaction Authentication for DNS 

(TSIG), 911–914
Secs field, DHCP/BOOTP message format, 236
Secure Entry Point (SEP) bit, DNSSEC, 896, 905, 957
Secure Hash Algorithm 1. See SHA 1 (Secure Hash 

Algorithm 1)
Secure hash function, 404
Secure Neighbor Discovery. See SEND (Secure 

Neighbor Discovery)
Secure Real-Time Protocol (SRTP), 883, 958
Secure Remote Password (SRP), 883, 958
Secure Shell. See SSH (Secure Shell)
Secure Sockets Layer (SSL). See also TLS (Transport 

Layer Security), 876–877, 958
Security

ACs (attribute certificates), 831
basic principles, 806–807

certificates, CAs, and PKIs, 821–822
cryptographic and cipher suites, 819–821
cryptographic nonces and salt, 816
cryptosystems, 809–812
DH (Diffie-Hellman-Merkle Key Agreement), 

813–814
ECC (Elliptic Curve Cryptography), 815
hash functions and message digests, 817–818
introduction to, 805–806
message authentication codes, 818–819
PFS (Perfect Forward Secrecy), 815
protocols. See Security protocols
pseudorandom numbers, generators, and func-

tion families, 815–816
public key certificates, CAs, and X.509, 822–828
RSA (Rivest, Shamir, and Adleman) public key 

cryptography, 812–813
signcryption, 814–815
summary and references, 919–932
threats to network communication, 807–809
validating and revoking certificates, 828–831
Wi-Fi, 129–130

Security association database (SAD)
definition of, 957
in IPSec, 841–842

Security Associations. See SAs (Security 
Associations)

Security Gateway (SG), in IPsec, 840, 957
Security Parameter Index (SPI), in IPsec

definition of, 958
IKE protocol, 844

Security policy database (SPD), in IPsec
definition of, 958
in IPSec, 841–842

Security protocols
attacks on, 918–919
DKIM (Domain Keys Identified Mail), 915–918
DNS. See DNSSEC (DNS Security)
EAP methods, 837–838
ERP (EAP Re-authentication Protocol), 839
Internet Key Exchange. See IKE (Internet Key 

Exchange)
IPSec (IP Security), 840–842
IPSec NAT traversal, 865–867
L2TP/IPSec, 865
layering and, 832–833
NAC (Network Access Control), 833–837
PANA (Protocol for Carrying Authentication for 

Network Access), 839–840
transport layer. See TLS (Transport Layer 

Security)
Segments Left field, in Routing header, 201–202
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Segments, TCP, 586
Selective acknowledgement. See SACK (selective 

acknowledgement)
Selective retransmission, 673
Self-clocking

ACKs and, 731
Nagle algorithm and, 696

Self-describing padding, 137
Send maximum segment size. See SMSS (send maxi-

mum segment size)
SEND (Secure Neighbor Discovery)

Certificate option, 417
certification path solicitation/advertisement, 

406–407
CGAs (cryptographically generated addresses), 

403–406
definition of, 957
Handover Key Request/Reply options, 422–423
ICMP attacks and, 429
neighbor discovery options in IPv6, 414–415
Nonce option in ND, 416–417
overview of, 403
RSA Signature option, 415–416
securing IPv6 Neighbor Discovery, 292
Timestamp option, 416
Trust Anchor option, 417
as variant on ND, 396

Send window structure, sliding window protocol, 
701

Sender pause and local congestion (event 1), TCP 
congestion control, 750–754

Sender policy framework (SPF) records, DNS 
resource record types, 545–547

SEP (Secure Entry Point) bit, DNSSEC, 896, 905, 957
Sequence Control field, data frame fragmentation, 

117
Sequence numbers

for avoiding duplicate packets, 580
data frame fragmentation and, 117
GRE, 150
PPP, 138
TCP, 587–588
TCP-related attacks, 641
TCP segments, 701
URG, 590

Sequencing header, in MP, 138
Sequential Port-Symmetric NAT (SP), 486
Server alive messages, TCP keepalive attacks, 802
Server-Based Certificate Validation Protocol (SCVP), 

831
Server Identifier Override, DCHP relay agents, 

268–269

Server Load Reduction (SLR), 486
ServerHello message, in TLS, 887–889
Servers

accessing servers behind NAT, 314
iterative and concurrent, 21
server host crashes and does not reboot (keepal-

ive scenarios), 796
server host crashes and reboots (keepalive sce-

narios), 797–799
server host unreachable (keepalive scenarios), 

799–800
Service model, TCP, 585–586
Service provider NAT. See SPNAT (service provider 

NAT)
Service set identifiers (SSID)

definition of, 958
Wi-Fi, 112

Service sets, Wi-Fi, 112
Service (SRV) records, DNS resource record types, 

548–549
Session Announcement Protocol (SAP)

definition of, 957
for multicast sessions, 55

Session Description Protocol. See SDP (Session 
Description Protocol)

Session Initiation Protocol (SIP)
definition of, 957
ENUM records and, 551–552

Session keys, in public key cryptography, 812
Session layer, of OSI model, 10
Session timers, NAT, 307–308
Session Traversal Utilities for NAT. See STUN (Ses-

sion Traversal Utilities for NAT)
SFD (start frame delimiter), in link layer protocols

clock recovery in Ethernet frames, 84
definition of, 957

SG (Security Gateway), in IPsec, 840, 957
SHA 1 (Secure Hash Algorithm 1)

for authentication in DHCP, 268
definition of, 957
overview of, 817–818
TLS extensions, 883

Shannon, Claude, 579
Sharing connection state, 767–768
Shim6 protocol, 70
Short Interframe Space (SIFS), in Wi-Fi

definition of, 957
in MAC, 122

Short sequence number, LCP options, 138
Short-term credential mechanism, STUN, 325
Siaddr (Next Server IP Address) field, DHCP/

BOOTP message format, 238, 246
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SIFS (Short Interframe Space), in Wi-Fi
definition of, 957
in MAC, 122

Signaling Cipher Suite Value (SCSV), 884, 957
Signature verification, CGAs for, 405–406
Signed zones, DNSSEC, 903
Signing Domain Identifier (SDID), 916, 957
SIIT (Stateless IP/ICMP Translation)

definition of, 957
IPv4/IPv6 translation, 342–344

Silly windows syndrome. See SWS (silly windows 
syndrome)

Simple Mail Transfer Protocol. See SMTP (Simple 
Mail Transfer Protocol)

Simple Network Management Protocol (SNMP)
definition of, 958
well-known port for, 18

Simple Object Access Protocol (SOAP)
definition of, 958
GENA using, 338

Simple Service Discovery Protocol. See SSDP (Simple 
Service Discovery Protocol)

Simple Tunneling of UDP through NATs, 319
Simultaneous Authentication of Equals (SAE)

definition of, 957
Wi-Fi mesh and, 130

Simultaneous close, in TCP connections
overview of, 600–601
state transition, 625

Simultaneous open, in TCP connections
defined, 597
overview of, 599–600
state transition, 625

SIP Outbound mechanism, in ICE, 333
SIP records, DNS resource record types, 552
SIP (Session Initiation Protocol)

definition of, 957
ENUM records and, 551–552

SLAAC (stateless address autoconfiguration)
configuring IPv4 link-local addresses, 276
configuring IPv6 link-local addresses, 276–277
deciding whether to use, 244
definition of, 957
example of, 278–283
IPv6 DAD (Duplicate Address Detection), 277–278
IPv6 global addresses, 278
overview of, 276
stateless DHCP and, 283–284
utility/benefit of, 284–285

Sliding window protocol
movement of windows, 702–704
in packet communication, 582
send and receive structures, 701

TCP as, 589
SLLAO (Source Link-Layer Address Option), 

409–410, 958
Slot time, in MAC, 122
Slow start algorithm, in TCP

classic algorithms for TCP congestion, 732–734
comparing with congestion avoidance, 736–737
limited, 772
viewing slow start behavior with Wireshark, 

749–750
slow start threshold. See ssthresh (slow start 

threshold)
SLR (Server Load Reduction), 486
Smack attacks, ICMP attacks and, 429
Smoothed RTT. See SRTT (smoothed RTT)
SMSS (send maximum segment size)

definition of, 958
SWS (silly windows syndrome) and, 709
TCP connections and, 613

SMTP (Simple Mail Transfer Protocol)
definition of, 958
MX (mail exchanger) records and, 544
SRV record providing SMTP service, 549
well-known port for, 18

Smurf attacks, ICMP, 428
SNA (System Network Architecture)

definition of, 958
SDLC in, 131

Sname (Server Name) field, DHCP/BOOTP message 
format, 238–239

SNAP (Subnetwork Access Protocol), 958
Sniffing, 808
SNMP (Simple Network Management Protocol)

definition of, 958
well-known port for, 18

Snooping
DHCP, 276
IGMP/MLD, 468–469

SNS (Symmetric NAT Support), 486
SOA (start of authority) records

definition of, 958
DNS resource record types, 541–544

SOAP (Simple Object Access Protocol)
definition of, 958
GENA using, 338

sock program
creating UDP datagram, 493, 496
generating UDP datagram with, 478–481
restricting local IP addresses, 634

Sockets
popular APIs, 22
in TCP connections, 595–596
TCP ports, 588
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SOCKS proxy firewalls, 302–303
Soft state

ARP cache timeout and, 174
multicast information and, 441

SOLICIT message, DHCPv6, 260, 269
Solicitation messages, in MRD, 394–395
Solicitation of servers, by clients, 435
Sort lists, DNS, 565–567
Source address selection algorithm, in IP host mod-

els, 223–224
Source IP addresses

address selection by hosts, 222–223
host processing of IP datagrams, 220–221
ICMPv6 errors, 371–372
in IP datagrams, 186

Source Link-Layer Address Option (SLLAO), 
409–410, 958

Source Quench messages, TCP congestion control 
attacks, 785

Source/Target Address List options, in ND, 413–414
SP (Sequential Port-Symmetric NAT), 486
Spam

DNS resource record for fighting, 545–547
as malware, 806

Spanning tree, building, 107
Spanning Tree Protocol. See STP (Spanning Tree 

Protocol)
Spatial multiplexing, power save mode, 120
Spatial streams, higher throughput (802.11n) sup-

port, 126
SPD (security policy database)

definition of, 958
in IPSec, 841–842

Spear phishing attacks, 806
Special-use IP addresses

for IPv4, 50–51
for IPv6, 51–52
local net (limited) broadcast, 43

SPF (sender policy framework) records, DNS 
resource record types, 545–547

SPI (Security Parameter Index)
definition of, 958
IKE protocol, 844

Split DNS, 565–567
SPNAT (service provider NAT)

definition of, 958
DS-Lite and, 339
overview of, 315–316

Spoofing attacks
ICMP, 429
Internet architecture, 25
IP addresses, 70, 226
TCP, 640–642
TCP keepalive attacks, 802

Spurious association attacks, 808
Spurious timeouts and retransmissions, in TCP

congestion control and, 744–745
DSACK (duplicate SACK) extension, 677–679
Eifel Detection Algorithm, 679–680
Eifel Response Algorithm, 680–682
F-RTO (Forward-RTO Recovery), 680
overview of, 677

SRC (Source) address, in Ethernet frame format, 85
SRP (Secure Remote Password), 883, 958
SRTP (Secure Real-Time Protocol), 883, 958
SRTT (smoothed RTT)

classic method of RTT estimation, 651–652
definition of, 958
destination metrics and, 685–686

SRV (service) records, DNS resource record types, 
548–549

SSDP (Simple Service Discovery Protocol)
definition of, 958
direct interaction with NAT and firewalls, 338
viewing in-use multicast groups in Windows 

OSs, 448
SSH (Secure Shell)

for application-managed keepalives, 794
definition of, 958
TCP data flow and, 692
tracing RTT of TCP connection, 697–698
well-known port for, 18
well-known ports for, 632

SSID (service set identifiers)
definition of, 958
Wi-Fi, 112

SSL (Secure Sockets Layer). See also TLS (Transport 
Layer Security), 876–877, 958

SSM (source-specific multicast)
attacks related to IGMP or MLD, 470
definition of, 959
IGMP and MLD supporting, 452
MLD supporting, 390
as multicast service model, 54

ssthresh (slow start threshold), in TCP congestion 
control

comparing slow start with congestion avoidance, 
736

Eifel Response Algorithm and, 744–745
overview of, 733
standard TCP algorithm and, 738

Standard RTO method, in TCP, 652–654
Standard TCP congestion control algorithm, 728–739
Standards

IETF (Internet Engineering Task Force) in, 22–23
link layer, 80–82
other organizations in, 23–24
RFC (Request for Comments) and, 23–24
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Standards-defining organizations (SDOs), 23, 957
Standards-track category, RFCs and, 23
Start frame delimiter (SFD)

clock recovery in Ethernet frames, 84
definition of, 957

Start of authority (SOA) records, in DNS
definition of, 958
DNS resource record types, 541–544

STAs (stations), in Wi-Fi
definition of, 959
Wi-Fi, 112

State-change records, IGMP/MLD group member-
ship reports, 457

State machine, DHCP, 251–252
State, storing in connection switches, 5
State transitions, TCP

FIN_WAIT_2 state, 625
overview of, 616
quiet time concept, 624
simultaneous open and close transitions, 625
state transition diagrams, 617–618
TIME_WAIT state (2MSL), 618–624

Stateful translation, IPv4/IPv6, 344–345
Stateless address autoconfiguration. See SLAAC 

(stateless address autoconfiguration)
Stateless IP/ICMP Translation (SIIT)

definition of, 957
IPv4/IPv6 translation, 342–344

Stateless mode, DHCPv6, 283–284
Static multiplexing, 4
Station-to-Station (STS) protocol, relation to DH 

(Diffie-Hellman), 814
Statistical multiplexing, 4
STODER, repacketization and, 686
“Stop and wait” protocol

communication protocols and, 581
Nagle algorithm and, 697
TCP and, 696

STP (Spanning Tree Protocol), in bridges
BPDU structure, 105–107
building the spanning tree, 107
definition of, 959
example of, 107–109
handling topology changes, 107
overview of, 102–104
port states and roles, 104–105
RSTP (Rapid Spanning Tree Protocol), 110–111

Straightforward NAPTR (S-NAPTR)
definition of, 958
DNS resource record types, 554

Stream ciphers, symmetric key ciphers, 811
Stream Control Transmission Protocol. See SCTP 

(Stream Control Transmission Protocol)

Stretch ACKs, 754–757
Strong host model, 220
STS (Station-to-Station) protocol, relation to DH 

(Diffie-Hellman), 814
STUN (Session Traversal Utilities for NAT)

attributes defined by TURN, 328
binding method, 321
definition of, 959
ICE making use of, 332–334
mechanisms, 325–326
message formats, 320
Teredo servers compared with, 482

Subdomains, in DNS hierarchy, 514
Subnet addressing, 36–39
Subnet broadcast addresses. See Broadcast 

addresses
Subnet fields, in IP addresses, 37
Subnet masks

overview of, 39–41
VLSM (variable-length subnet masks), 41–42

Subnetwork Access Protocol (SNAP), 105, 958
Subnetworks, 37
Switches and bridges

attacks on, 155
layer 2 relay agents and, 270
link layer and, 98–102
in small networks, 11–13
VLAN, 90

SWS (silly windows syndrome)
definition of, 959
example of avoiding, 709–715
overview of, 708
rules for avoiding, 708–709

Symmetric key encryption
cryptographic algorithms, 809–811
KDF (key derivation function) in, 815

Symmetric NAT Support (SNS), 486
SYN bit field, TCP header, 589–590
SYN cookies, in TCP

attacks related to window management and, 723
TCP-related attacks, 640–641

SYN floods, TCP-related attacks, 640
SYN segments, in TCP

combined with ACKs (SACK), 607
definition of, 959
establishing TCP connections and, 602–603
MSL (maximum seqment life), 610
NAT and TCP, 307–308
requesting connection to nonexistent TCP port, 

626
in TCP connections, 596–597
TCP header and, 589
WSCALE (Window Scale) option and, 608
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Synchronous Data Link Control (SDLC)
based on HDLC, 131
definition of, 957

SYN_RCVD state, in TCP
incoming connection queue and, 636
simultaneous open and close transitions, 625
TCP state transitions, 618

SYN_SENT state, in TCP
simultaneous open and close transitions, 625
TCP state transitions, 618

System configuration options
attacks related to system configuration, 292
autoconfiguration. See SLAAC (stateless address 

autoconfiguration)
DHCP (Dynamic Host Configuration Protocol). 

See DHCP (Dynamic Host Configuration 
Protocol)

introduction to, 233–234
summary and references, 292–298

System Network Architecture (SNA) from IBM
definition of, 958
SDLC in, 131

T
T1 (Renewal time), for DHCP messages, 240
Tahoe algorithm, TCP congestion control, 737–738
Tarpits, attacks related to window management, 723
Tayor, Bob, 2
tc program, for packet scheduling and traffic con-

trol subsystem in Linux, 752
TC (Topology Change), in BPDU structure, 106
TCA (Topology Change Acknowledgment), 106
TCN (topology change notification), 107
TCP-AO (Authentication Option)

definition of, 959
TCP header, 612

TCP congestion control
active queue management and ECN, 782–785
attacks related to, 785–786
BIC (Binary Increase Congestion Control), 

772–774
buffer bloat, 781–782
classic algorithms for, 730–732
comparing slow start with congestion avoidance, 

736–737
congestion avoidance algorithm, 734–736
connection completion and, 766–767
CTCP (Compound TCP) algorithm, 779–781
CUBIC, 775–776
CWV (Congestion Window Validation), 742–744
delay-based, 777
example of handling, 745–749

FACK (forward acknowledgment) and rate halv-
ing for, 741–742

fast retransmit and local congestion, 759–762
fast retransmit and SACK recovery, 757–759
FAST TCP algorithm, 778–779
handling spurious RTOs, 744–745
in high-speed environments, 770
HSTCP (HighSpeed TCP), 770–772
introduction to, 727–728
limited transmit approach to, 742
NewReno algorithm for, 739–740
SACK (selective acknowledgement) for, 740–741
sender pause and local congestion (event 1), 

750–754
sharing connection state, 767–768
slow start algorithm, 732–734
slow start behavior, 749–750
slowing down TCP senders, 729–730
standard TCP algorithm, 728–739
stretch ACKs and recovery from local conges-

tion, 754–757
summary and references, 786–792
Tahoe, Reno, and Fast Recovery algorithms, 

737–738
TCPW (TCP Westwood) algorithm, 779
TFRC (TCP Friendly Rate Control), 768–770
timeouts, retransmissions, and undoing cwnd 

changes, 762–766
Vegas TCP algorithm, 777–778

TCP data flow
attacks related to window management, 723
delayed ACK interaction with Nagle algorithm, 

699
delayed ACKs, 695–696
disabling Nagle algorithm, 699–700
example of dynamic window size adjustment 

and flow control, 705–708
example using urgent mechanism, 720–722
flow control, 700–701
interactive communication, 692–695
introduction to, 691
large buffers and auto-tuning, 715–719
Nagle algorithm, 696–698
sliding window protocol, 701–704
summary and references, 723–725
SWS (silly windows syndrome), 708–715
urgent mechanism, 719–720
zero windows and TCP persistent timer, 704–705

TCP Friendly Rate Control (TFRC), 768–770, 959
TCP/IP suite

ARPANET Reference Model, 13–16
based on ARPANET, 1
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implementations and distributions, 24–25
layering, 14
multiplexing, demultiplexing, and encapsula-

tion, 16–17
names, addresses, and DNS, 19
OSI model compared with, 8–9
overview of, 13
port numbers, 17–19

TCP keepalive
attacks related to, 802
description of, 795–797
introduction to, 793–794
server host crashes and does not reboot, 797–799
server host crashes and reboots, 799–800
server host unreachable, 800–802
summary and references, 802–803

TCP segments, 15
TCP servers

incoming connection queue, 636–640
overview of, 631–632
port numbers and, 632–634
restrictions on foreign endpoints, 635–636
restrictions on local IP addresses, 634–635

TCP timeout/retransmission
attacks related to, 687
classic RTO method, 651–652
clock granularity and RTO bounds, 654
congestion control and, 762–766
connection establishment and, 604–605
destination metrics, 685–686
DSACK (duplicate SACK) extension, 677–679
Eifel Detection Algorithm, 679–680
Eifel Response Algorithm, 680–682
example of, 648–651
example of fast retransmit, 668–671
example of retransmission with SACK, 673–676
example of timer-based retransmission, 665–667
F-RTO (Forward-RTO Recovery), 680
fast retransmit, 667–668
introduction to, 647–648
Linux RTT estimation, 657–661
packet duplication, 684–685
packet reordering, 682–684
repacketization, 686–687
retransmission ambiguity and Karn’s algorithm, 

655
retransmission with SACK, 671–672
robustness of RTTM, 662–664
RTO (retransmission timeout) setting, 651
RTT estimation behaviors, 661–662
RTTM (RTT Measurement) with Timestamps 

option, 656–657

SACK receiver behavior, 672
SACK sender behavior, 673
spurious timeouts and retransmissions, 677
standard RTO method, 652–654
summary and references, 688–690
timer-based retransmission, 664–665

TCP (Transmission Control Protocol)
ARQ as basis of, 579
connection management. See Connections, TCP
definition of, 959
encapsulation in IP datagrams, 587
flow control and, 7–8
header fields, 588–590
introduction to, 584–585
NAT and, 306–308
reliability, 586–587
service model, 585–586
STUN and, 320
summary and references, 591–593
transport protocols in TCP/IP suite, 15
well-known ports for, 525–526

TCP Westwood+ (TCPW+) algorithm, 777
TCP Westwood (TCPW) algorithm, 779
tcpdump command

connecting to Web server on host, 171
ICMP destination unreachable messages, 480
not converting IP addresses to machine names, 

479
viewing UDP fragmentation, 490–491

TCP_NODELAY option, for disabling Nagle algo-
rithm, 700

tcptrace, connection statistics with, 745–747
TCPW+ (TCP Westwood+) algorithm, 777
TCPW (TCP Westwood) algorithm, 779
TDM (time-division multiplexing), 4, 959
Teardrop attacks

ICMP, 428
UDP, 506

telnet command
connecting to Web server on host, 171
establishing TCP connections, 602

Telnet program
SSH replacing, 692
well-known port for, 18

Temporal Key Integrity Protocol (TKIP), in Wi-Fi, 
129–130

Temporary addresses, in DHCPv6, 255–256
Tentative state, IPv6 addresses, 253
Teredo, tunneling IPv6 over IPv4

IPv4/IPv6 translation, 339
relays and servers, 482
tunneling, 154, 482–487
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Termination messages
in LCP operation, 134
in MRD, 394–395

Termination, of TCP connections, 595–598
TFC (Traffic Flow Confidentiality), 858
TFN (Tribe Flood Network), 429
TFRC (TCP Friendly Rate Control), 768–770, 959
TFTP (Trivial File Transfer Protocol)

definition of, 959
ICMP port unreachable messages and, 366–370

Threats, to network communication, 807–809
Three-way handshake, 597, 640
Throughput (802.11n), Wi-Fi, 126–128
Time-division multiplexing (TDM), 4, 959
Time exceeded message, ICMP, 375–378
Time-Remaining messages, in LCP operation, 134
Time sync function. See TSF (time sync function)
Time-to-live. See TTL (Time-to-live)
TIME-WAIT Assassination (TWA), 630–631, 960
Timed wait (MSL), 618
Timeouts, TCP. See TCP timeout/retransmission
Timer-based retransmission

example of, 665–667
introduction to, 647
overview of, 664–665

Timestamp Echo Reply. See TSER (Timestamp Echo 
Reply)

Timestamp Request/Replay message, ICMP attacks 
and, 429

Timestamp Value. See TSV (Timestamp Value)
Timestamps option. See also TSOPT (timestamps 

option)
neighbor discovery in IPv6, 416
TCP header, 608–610

TIME_WAIT state (2MSL), in TCP
overview of, 618–624
TCP state transitions, 624
TWA (TIME-WAIT Assassination), 630–631

Tinygrams, 696
TKIP (Temporal Key Integrity Protocol), in Wi-Fi, 

129–130
TLDs (top-level domains)

definition of, 959
in DNS name space, 512
name servers for, 517

TLS (Transport Layer Security)
with datagrams (DTLS), 884–891
definition of, 959
DTLS DoS protection, 894
DTLS handshake protocol, 892–894
DTLS record layer, 891–892
example of use of, 884–891

extensions, 883–884
handshaking protocols, 880–883
HTTP/HTTPS and, 18
overview of, 876–877
Record protocol, 878–880
renegotiation of cryptographic connection 

parameters, 884
TCP with, 320
TLS 1.2, 877–878

TLV (type-length-value) sets
definition of, 959
IPv6 options held as, 196–197

Top-level domains. See TLDs (top-level domains)
Topology Change Acknowledgment (TCA), 106
Topology change notification (TCN), 107
Topology Change (TC), in BPDU structure, 106
Topology changes, STP handling, 107
ToS (Type of Service) byte

definition of, 959
ICMP Parameter Problem and, 379
in IPv4, 183, 188–189
redefined as DSCP/ECN fields, 379

Total Length field
ICMP Parameter Problem and, 379
in IP header, 183–184

TPDU (transport PDU), 10
traceroute, for determining routing path, 

376–378
Traffic analysis, types of threats to network com-

munication, 808
Traffic Class byte, in IPv6, 183, 188–189
Traffic Flow Confidentiality (TFC), 858
Traffic selectors (TS)

definition of, 960
IKE, 851, 873

Traffic specification (TSPEC), in Wi-Fi QoS
definition of, 960
in HCCA, 123

traffic visibility, ESP (Encapsulating Security Pay-
load), 863–864

Transacation authentication, in DNS, 911–915
Transaction Signatures (TSIG), in DNS

definition of, 960
transaction authentication in DNSSEC, 911–914

Transient session keys (TSKs), 838
Translating

DNS from IPv4 to IPv6, 568–569
ICMPv4 to ICMPv6, 424–426
ICMPv6 to ICMPv4, 426–428
IPv4 to IPv6, 482
UDP/IPv4 and UDP/IPv6 datagrams, 505–506

Translation behavior, NAT, 312
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Translation functions, NAT, 305
Translators, TCP connections, 605
Transmission Control Protocol. See TCP (Transmis-

sion Control Protocol)
Transmit opportunities (TXOPs), in Wi-Fi QoS

in DCF, 123
definition of, 960

Transparency, DNS, 567–568
Transport layer

layering violation, 476
of OSI model, 9–10
security. See TLS (Transport Layer Security)
transport protocols in TCP/IP suite, 15–16
UDP checksum, 475–476

Transport Layer Security. See TLS (Transport Layer 
Security)

Transport PDU (TPDU), 10
Transport protocols, 309
Traversal, NAT, 316
Traversal Using Relays around NAT. See TURN 

(Traversal Using Relays around NAT)
Tribe Flood Network (TFN), 429
Triple-DES (3DES)

definition of, 959
standardized for Internet use, 819
as symmetric encryption algorithm, 811

Trivial File Transfer Protocol (TFTP)
definition of, 959
ICMP port unreachable messages and, 366–370

Trunking, VLAN switches and, 90
Trust anchors

CAs (certification authorities) and, 822
in ND, 417
SEND (Secure Neighbor Discovery), 403

TS (traffic selectors), in IPsec
definition of, 960
IKE, 851, 873

TSER (Timestamp Echo Reply), in TCP
definition of, 960
Eifel Detection Algorithm and, 679
TCP Timestamp option and, 609
timer-based retransmission and, 665–666

TSF (time sync function), in Wi-Fi
in 802.11 specification, 119–120
definition of, 960
Wi-Fi frames and, 114

TSIG (Transaction Signatures), in DNS
definition of, 960
transaction authentication in DNS, 911–914

TSKs (transient session keys), 838
TSOPT (timestamps option), in TCP

definition of, 960

Eifel Detection Algorithm using, 679
Linux RTT estimation and, 657
robustness of RTTM to loss and reordering, 

662–664
RTTM (RTT Measurement) with, 656–657
TCP header, 608–610

TSPEC (traffic specification), in Wi-Fi QoS
definition of, 960
in HCCA, 123

TSV (Timestamp Value), in TCP
definition of, 960
Eifel Detection Algorithm and, 679
RTTM with Timestamps option, 656
TCP Timestamp option and, 608–609

TTL (Time-to-live)
definition of, 960
ICMP Time Exceeded message, 375, 378
IP header fields, 184
MRD (Multicast Router Discovery) and, 394
name servers, 517
QS (Quick-Start) TTL, 199
SYN segments, 611

Tunnel endpoint, IPv6 traffic and, 46
Tunneled packets, NAT and, 310
Tunneling

IPv4/IPv6 translation, 339
IPv6 options for, 198
link layer and, 149–153
link layer attacks and, 156

Tunneling proxy servers, 302
TURN (Traversal Using Relays around NAT)

definition of, 960
ICE making use of, 332–334
overview of, 326–332
Teredo relays compared with, 482

TWA (TIME-WAIT Assassination), 630–631, 960
TXOPs (transmit opportunities), in Wi-Fi QoS

in DCF, 123
definition of, 960

TXT records
definition of, 960
DNS resource record types, 545–547

Type field, in Ethernet frame format, 85–86
Type-length-value (TLV) sets

definition of, 959
IPv6 options held as, 196–197

Type of Service byte. See ToS (Type of Service) byte

U
U-NAPTR (URI-enabled NAPTR)

definition of, 960
DNS resource record types, 555
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U-NII (Unlicensed National Information 
Infrastructure)

5GHz band for, 124
definition of, 960

UBM (unicast-prefix-based multicast)
allocation of IPv4 addresses, 56
definition of, 960

UDLs (unidirectional links)
definition of, 960
link layer and, 153–154

UDP-Lite, 487–488
UDP servers

designing, 498–499
flow control and congestion control in server 

design, 505
foreign IP address restrictions in server design, 

502–503
IP addresses and port numbers in server design, 

499–500
local IP address restrictions in server design, 

500–501
multiple addresses in server design, 501–502
multiple servers per port, 503–504
spanning IP address families in server design, 

504
UDP (User Datagram Protocol)

attacks related to, 507–508
broadcast overhead and, 451
checksum, 475–478
connection refused error, 626
as connectionless protocols, 595
definition of, 960
examples, 478–481
flow control and congestion control in server 

design, 505
foreign IP address restrictions in server design, 

502–503
header, 474–475
ICE and, 332
interaction between IP fragmentation and ARP/

ND, 496–497
in the Internet, 506–507
introduction to, 473–474
IP addresses and port numbers in server design, 

499–500
IP fragmentation and, 488–492
IPv6 and, 481–482
local IP address restrictions in server design, 

500–501
maximum UDP datagram size, 497–498
multiple addresses in server design, 501–502
multiple servers per port, 503–504
NAT and, 308–309

PMTUD (Path MTU Discovery) with, 493–496
reassembly timeout, 492
sending broadcast datagrams, 439
server design, 498–499
spanning IP address families in server design, 504
STUN and, 320
summary and references, 508–510
Teredo tunneling and, 482–487
translating UDP/IPv4 and UDP/IPv6 datagrams, 

505–506
transport protocols in TCP/IP suite, 15
UDP-Lite, 487–488
well-known ports for, 525–526

UEQM (unequal modulation), in 802.11n
definition of, 960
higher throughput (802.11n) support and, 127

ULAs (Unique Local IPv6 Unicast Addresses)
definition of, 960
NAT and, 310
overview of, 225

Unauthorized access attacks, 26
Unequal modulation (UEQM), in 802.11n

definition of, 960
higher throughput (802.11n) support and, 127

Unicast addresses
allocation of, 62–65
anycast addresses, 62
assigning, 65–66
C class spaces for, 35
definition of, 34
Echo Request message sent from link-local uni-

cast address, 445–446
IIDs as basis for unicast IPv6 addresses, 43–46
multiple providers/multiple networks/multiple 

addresses, 68–70
overview of, 15
single provider/multiple networks/multiple 

addresses, 67–68
single provider/no network/single address, 

66–67
single provider/single network/single address, 

67
Unicast-prefix-based IPv6 multicast addresses, 58
Unicast-prefix-based multicast (UBM)

allocation of IPv4 addresses, 56
definition of, 960

Unicode, internationalization of Internet, 512
Unidirectional links (UDLs)

definition of, 960
link layer and, 153–154

Uniform Resource Locator (URL), 961
Unilateral self-address fixing. See UNSAF (unilateral 

self-address fixing)
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Unique Local IPv6 Unicast Addresses. See ULAs 
(Unique Local IPv6 Unicast Addresses)

Universal Plug and Play (UPnP) framework
definition of, 961
direct interaction with NAT and firewalls, 

337–339
Universal Resource Identifier. See URI (Universal 

Resource Identifier)
UNIX

Berkeley version. See BSD (Berkeley Software 
Distribution)

rlogin, 692
Unlicensed National Information Infrastructure 

(U-NII)
5GHz band for, 124
definition of, 960

Unreachable hosts, keepalives detecting, 795–796
UNSAF (unilateral self-address fixing)

definition of, 961
overview of, 317–319
STUN (Session Traversal Utilities for NAT), 319–326

Updates
DNS Update, 567
dynamic DNS updates, 555–558

UPnP (Universal Plug and Play) framework
definition of, 961
direct interaction with NAT and firewalls, 337–339

Upper layer, TLS (Transport Layer Security), 877
UPs (user priorities), in Wi-Fi QoS, 123, 961
URG (Urgent Mechanism), in TCP

definition of, 961
example working with urgent data, 720–722
overview of, 719–720
TCP header, 590

URI-enabled NAPTR (U-NAPTR)
definition of, 960
DNS resource record types, 555

URI (Universal Resource Identifier)
definition of, 961
ENUM records and, 551–552
NAPTR records and, 549
URI/URN resolution, 553–554

URL (Uniform Resource Locator), 961
URN resolution, 553–554
Usage-specific keys (USRK), in EAP

definition of, 961
key derivation in EAP, 838

User Datagram Protocol. See UDP (User Datagram 
Protocol)

User priorities (UPs), in Wi-Fi QoS, 123, 961
User Timeout (UTO) option, in TCP

definition of, 961
TCP header, 611–612

USRK (usage-specific keys)
definition of, 961
key derivation in EAP, 838

UTC (Coordinated Universal Time), 961
UTO (User Timeout) option, in TCP

definition of, 961
TCP header, 611–612

V
Valid lifetime

IA (Identity Association) and, 255
IPv6 addresses, 252

Validating certificates, 828–831
Validating security aware resolver, in DNSSEC, 

895
Variable-length subnet masks (VLSM), 41–42, 961
Variable-scope addresses, IPv6 multicast, 58
Variables, IGMP/MLD, 467–468
vconfig command, for manipulating 802.1p/q 

information in Linux, 90–91
VCs (virtual circuits)

definition of, 961
multiplexing and, 4

Vegas TCP algorithm, 777–778
Vendor Extension field, DHCP/BOOTP message 

format, 238, 246
VENONA system, 918
Virtual carrier sense, 121
Virtual circuits (VCs)

definition of, 961
multiplexing and, 4

Virtual LANs. See VLANs (virtual LANs)
Virtual private networks. See VPNs (virtual private 

networks)
Viruses, 806
VJ (Van Jacobson) compression, 141–142
VLAN identifier, 90
VLAN tag, 90
VLANs (virtual LANs)

definition of, 961
multicast routing, 452
overview of, 89–92
QoS tagging and, 145–148

VLSM (variable-length subnet masks), 41–42, 961
VoIP (Voice over IP), 961
VPNs (virtual private networks)

connecting to Internet via, 20
definition of, 961
tunneling, 149

W
W3C (World Wide Web Consortium), 24, 961
Wake-on LAN (WoL), 96–97, 962
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WANs (wide area networks)
definition of, 961
Internet as, 2
PPPoE and, 286–287

War driving, link layer attacks, 155
Weak host model, 220
Web caches, web proxies operating as, 302
Web of trust, public key certificates and, 822
Web proxies, 302
Web Proxy Auto-Discovery Protocol (WPAD), 302, 

962
Web Proxy Autodiscovery Protocol (WRED), 962
Weighted RED (WRED), 783, 962
Well-known ports

overview of, 18
for SSH (Secure Shell), 632
for UDP or TCP, 525–526

Well-Known Prefix (WKP), in algorithmic address 
translation, 341, 962

WEP (wired equivalent privacy) in Wi-Fi
attacks related to, 918
definition of, 961
Wi-Fi attacks and, 155
for Wi-Fi security, 129–130

WESP (Wrapped ESP), in IPsec, 863–864, 961
White hats, 26
WHOIS service, 63–64
Wi-Fi Multimedia (WMM), in Wi-Fi QoS, 122, 962
Wi-Fi Protected Access. See WPA (Wi-Fi Protected 

Access)
Wi-Fi (wireless fidelity- IEEE 802.11)

attacks, 155
attacks related to, 918
channels and frequencies (802.11b/g), 124–125
control frames, 115–116
CSMA/CA and, 84
data frames, fragmentation, and aggregation, 

116–119
definition of, 962
frames, 113–115
higher throughput (802.11n), 126–128
mesh (802.11s), 130
overview of, 111–112
physical layer, 123–124
physical layer channels and frequencies, 124–126
power save mode and time sync function, 

119–120
RSTP (Rapid Spanning Tree Protocol), 120–123
security, 129–130
throughput (802.11n), 116, 126–128

Wide area networks. See WANs (wide area 
networks)

Wildcard (*)
domain names and, 526
local IP address restrictions in server design, 

500–501
Wildcard address, IPv6 addresses, 632
WiMAX (Worldwide Interoperability for Microwave 

Access), 79, 82–83, 962
Window advertisement (window update)

in window-based flow control, 583
WSCALE (Window Scale) option in TCP, 608

Window-based flow control, 583
Window management, TCP

example of dynamic window size adjustment 
and flow control, 705–708

flow control and, 700–701
large buffers and auto-tuning, 715–719
sliding window protocol, 701–704
SWS (silly windows syndrome), 708–715
zero windows and TCP persistent timer, 704–705

Window probes, in TCP window management, 704
Window Size field

cwnd (congestion window), 729
flow control and, 727
TCP segments, 701

Window update
SWS (silly windows syndrome) and, 711
TCP header and, 590
window management and, 706

Windows of packets, in communication protocols, 
581–582

Windows OS (Microsoft)
autotuning TCP receive windows, 715
ICS (Internet Connection Sharing), 337
IPSec implementations, 867

Wired equivalent privacy. See WEP (wired equiva-
lent privacy)

Wireless fidelity. See Wi-Fi (wireless fidelity-802.11)
Wireless LANs (WLANs). See also Wi-Fi (wireless 

fidelity-802.11), 962
Wireshark

Flow graph, 749
monitoring TCP keepalives, 797–798
TCP Stream Graph, 707, 747–748
TCP ZeroWindowProbe, 710
viewing BPDUs with, 109

WKP (Well-Known Prefix), 341, 962
WLANs (wireless LANs). See also Wi-Fi (wireless 

fidelity-802.11), 962
WMM (Wi-Fi Multimedia), in Wi-Fi QoS, 122, 962
WoL (Wake-on LAN), 96–97, 962
WOPT. See WSOPT (Window Scale Option)
World Wide Web Consortium (W3C), 24, 961
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World Wide Web (WWW)
definition of, 962
Internet compared to, 2–3

Worldwide Interoperability for Microwave Access 
(WiMAX), 79, 82–83, 962

Worms
attacks related to window management, 723
buffer overflow and, 805
types of malware, 806

WPA (Wi-Fi Protected Access)
attacks related to, 918
definition of, 962
Wi-Fi attacks and, 155
for Wi-Fi security, 129–130

WPAD (Web Proxy Auto-Discovery Protocol), 302, 962
Wrapped ESP (WESP), in IPsec, 863–864, 961
WRED (Weighted RED), 783, 962
WSOPT (Window Scale Option)

definition of, 962
TCP header, 608, 610

WWW (World Wide Web)
definition of, 962
Internet compared to, 2–3

X
X.25 protocol

definition of, 962
VCs (virtual circuits) and, 4–5

X.509 standard
certificate extensions, 827–828
file or encoding formats in, 822–823
TLS extensions, 883
validating and revoking certificates, 828–831
viewing preconfigured certificates, 823–826

XML (Extensible Markup Language)
common use with Web pages, 338
definition of, 962

XMPP (Extensible Messaging and Presence Proto-
col), 333, 962

Y
Yiaddr (Your IP address) field, DHCP/BOOTP mes-

sage format, 237, 247
Your IP address (Yiaddr) field, DHCP/BOOTP mes-

sage format, 237, 247

Z
Zero window advertisement

example of dynamic window size adjustment 
and flow control, 705–708

large buffers and auto-tuning, 717–719
probes, 710
SWS (silly windows syndrome) and, 711–713
TCP persistent timer and, 704–705

Zombie attacks, 26
Zone cuts, DNS and DNSSEC, 903
Zone enumeration, NSEC chain and, 900
Zone signing key (ZSK)

definition of, 962
DNSSEC, 896, 905

Zone transfers, in DNS
AXFR (full zone transfer) messages, 559–561
DNS notify and, 558–559, 564–565
initiating, 525
IXFR (incremental zone transfer) messages, 

561–563
overview of, 517–518

Zones, DNS
dynamic updates, 555–558
overview of, 516–517

Zones, DNSSEC, 903
ZSK (zone signing key)

definition of, 962
DNSSEC, 896, 905
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